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Uncertainty and Sensitivity Analysis for Nuclear Reactor Noise 
Simulations 
Master’s Thesis in Master Program in Nuclear Science and Technology 
HUAIQIAN YI 
Department of Physics 
Chalmers University of Technology 
 

Abstract 

 

 Neutron noise in nuclear reactors is related to the fluctuations of the neutron flux 

that can occur in stationary operational conditions. These fluctuations may be induced 

by different types of phenomena such as vibration of reactor components, 

perturbations of the coolant flow, stochastic aspects of nuclear fissions, etc. Neutron 

noise carries information about the actual properties of the reactor, and its analysis 

can help to diagnose anomalies that can evolve over time into more severe issues. 

The aim of the thesis is to evaluate the impact of modelling uncertainties on 

reactor noise simulations. For this purpose, the reactor noise simulator CORE SIM 

together with a statistical methodology for input uncertainty propagation are used. 

A simplified light water reactor with a thermal neutron absorber of variable 

strength placed in one point of the core, is analyzed. The uncertainties associated to 

the macroscopic neutron cross-sections of the core and to the neutron absorber, are 

considered. These uncertainties are assumed to behave as random variables with 

either a uniform or a normal probability density function. Then random samples can 

be generated for each type of cross-sections in each point of the core and for the noise 

source (i.e. the neutron absorber), and be propagated to the CORE SIM outputs. The 

calculations are performed for both the forward and the adjoint noise, and the results 

are used for the uncertainty and sensitivity analysis. 

The uncertainty analysis shows that the probability density functions of the 

outputs are close to normal distributions, whether the input uncertainties are 

normally or uniformly distributed. 

The Pearson correlation coefficient is used to quantify the sensitivity of the 

calculated forward and adjoint noise to the uncertain input parameters. The noise in 

the core is strongly correlated to the cross-sections taken at the position of the noise 

source, and to the characteristics of the noise source. In general terms, the most 

influential macroscopic cross-sections are found to be the thermal fission, thermal 

capture, and removal ones. 

 

Keywords: reactor noise analysis, CORE SIM, statistical code uncertainty propagation, 

uncertainty and sensitivity analysis, macroscopic cross-section
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Nomenclature 

Symbols: 

E   Neutron energy [𝑘𝑔𝑚2𝑠−2] 

   Angular frequency [rad𝑠−1] 

J   Neutron current density vector [𝑚−2𝑠−1] 

   Scalar neutron flux [𝑚−2𝑠−1] 

  Neutron noise [a. u. ] 

D   Diffusion coefficient [m] 

v   Neutron speed [m𝑠−1] 

   Fraction of delayed neutrons [1] 

   Fission neutron spectrum [1] 

   Fission neutron yield [1] 

   Decay constant [𝑠−1] 

C   Concentration of the precursors [𝑚−3] 

T  Total macroscopic cross-section [𝑚−1] 

a  Macroscopic absorption cross-section [𝑚−1] 

c  Macroscopic capture cross-section [𝑚−1] 

f  Macroscopic fission cross-section [𝑚−1] 

0s  Macroscopic scattering cross-section [𝑚−1] 

r  Macroscopic removal cross-section [𝑚−1] 

r   Space coordinate 

 t   Time coordinate 

Subscripts: 

g  Neutron energy group 

'g g  Neutron scattering from energy group 'g  to g  

0  Nominal value 

1 Fast neutron group 

2  Thermal Neutron group 

max  Maximum value 

min  Minimum value 

Superscripts: 

p  Prompt neutrons 

d  Delayed neutrons 

T  Transpose of a matrix 

†  Adjoint notation
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1 Introduction 

1.1 Nuclear energy 

 Nuclear energy is a type of primary energy that can be used for electricity 

generation. A large amount of this form of energy can be released from a little amount 

of material, so large energy to fuel ratio can be achieved. On the other hand, the use 

of it is associated to a high risk because of the production of strongly radioactive 

materials. 

 The first nuclear pile was built by Fermi in 1942. During World War II nuclear 

energy and technology had a quick and huge development in USA, within the 

framework of the Manhattan project under the military supervision, for the purpose 

of the atomic bomb. In 1950s, the focus turned to peaceful and civil use of nuclear 

energy for generating electricity with controlled chain reactions. 

 Currently there are over 440 commercial nuclear power reactors operating in 31 

countries with 60 more reactors under construction, not including the 245 civil 

research reactors. The total capacity of nuclear power is over 390,000 MWe and covers 

11% of the world’s electricity supply [1]. Nuclear power acts as a continuous and 

reliable base load power, which emits almost no greenhouse gases. 

 The primary energy comes from splitting heavy nuclei, such as plutonium and 

uranium. The nucleus consists of nucleons (protons and neutrons), and it is the strong 

interaction force that holds them together with a very small interacting range. In order 

to split the nucleus it is necessary to provide an amount of energy equal to the binding 

energy. In the process of splitting heavy nuclei into lighter nuclei energy will be 

released in the form of photons and kinetic energy of the fission products. In nuclear 

reactors, fission is mainly due to neutrons colliding with the uranium-235: 

 235 1 140 94 1

92 0 54 38 02 200U n Xe Sr n MeV       (1.1) 

From this fission reaction, on average 2-3 new neutrons are emitted and can be used 

to induce other fission reactions, so that a self-sustainable chain reaction is possible. 

However, the produced neutrons are fast neutron with average energy of 2 MeV. At 

theses energies the neutron fission cross-sections of uranium-235 (i.e. the probability 

that a neutron can induce fission with uranium-235) is much lower than at thermal 

energies. This means that either a very high concentration of uranium-235 must be 

available or the neutrons generated in the fission process must be slowed down to 

thermal energies by moderation. 

 Most of the current nuclear power reactors are thermal (i.e. based on thermal 

fissions) and use a moderator. 

 The quality of the moderator is quantified by the amount of energy that the 



2 
 

neutron will lose per elastic scattering with the moderator, by the probability of elastic 

scattering, and by the probability of absorption. Higher amount of energy lost, larger 

probability of scattering and lower probability of absorption defines a good moderator. 

Water and graphite are usually chosen as neutron moderator because of the low 

probability of capturing neutrons. However, the graphite has some unsatisfying 

properties, so the most used moderator is water. 

 With the combination of appropriate enrichment of the uranium fuel and the right 

volume of moderator, a self-sustaining and steady chain reaction can be obtained in a 

nuclear reactor for electricity production. 

1.2 Nuclear reactors and reactor noise 

 The reactor core is a bounded region contained in the reactor pressure vessel, it 

contains the fuel assemblies and moderator. It is the place where neutron 

multiplication and the chain reactions take place. With an ongoing chain reaction, heat 

can be continuously generated and extracted by the coolant. The most common 

commercial reactors are Light Water Reactors (LWRs), where light water is used as 

neutron moderator and as coolant. Two main designs of LWRs are available: 

Pressurized Water Reactor (PWR) and Boiling water Reactor (BWR) as shown in Fig. 1.1. 

The PWR sends the heated water from the core to the steam generator for steam 

production, while BWR produces steam directly in the core. 

 

 
Figure 1.1 Internal structure of a PWR (left) and a BWR (right) [2]. 

 The reactor core consists of fuel assemblies. Several fuel rods, which are made 

from UO2 pellets, are compiled into a fuel assembly. These fuel assemblies are located 

in the core and they contains different amount of uranium-235 and additional 

materials so that the distribution of neutron density field in the core is as flat as 

possible and that hot spots are avoided. The ultimate aim of core control is to keep the 
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reactor in critical condition for the entire operating time. For such kind of purpose, 

some measures are taken. For instance by adding burnable absorbers in the fuel 

elements allows to compensate for the change in the fuel along time (in fact uranium-

235 is consumed along the operations). In normal operations, small deviations from 

the critical state can be adjusted by tuning different plant parameters and systems. 

The fissions and so the reactor power can be adjusted by inserting or withdrawing 

control rods or by altering the concentration of boron (which is a neutron absorber) in 

the water flowing through the reactor. 

 Considering the complexity and heterogeneities of a nuclear core, it can be a 

difficult task to predict the behavior of the neutron density distribution. However, 

through the usage of cross-sections, the behavior of the core can be modelled rather 

accurately. The microscopic cross-section is an “effective area” that quantifies the 

probability of a certain reaction given a target nucleus and an incident particle. In case 

of nuclear reactors, these cross-sections are defined for neutrons. A more useful 

parameter is the macroscopic cross sections which takes into account a target 

containing more nuclei, even different types of nuclei. The macroscopic cross-section 

has a unit of 
1cm

 and has a physical meaning that represents the probability of 

interaction per unit path length. Thus the types of interaction that the neutrons could 

have with the target materials in the core can be represented and classified as: 

 The absorption cross-section: this includes both capture of the neutrons that 

results in forming a heavier nuclei and capture of neutrons that will induce 

fission of the fuel. 

 The fission cross section: quantifies the probability that fission will be induced 

 The scattering cross section: the probability that the neutron will be scattered 

when colliding with the target nuclei rather than absorbed. 

Once the cross-sections have been properly defined and calculated, the neutron flux 

at the core level can be calculated using for instance a two group neutron diffusion 

approximation. This approach is described in more details in the next chapter. 

 As mentioned above, a steady and stable neutron flux in the reactor is needed for 

producing electricity in a stationary manner. However, fluctuations of the neutron flux 

are inevitable and exist in all operating stages of a nuclear reactor. 

 At low power, the “zero power reactor noise” dominates. The existence of such 

noise is not due to the change in material properties of the core but rather the 

stochastic nature of nuclear processes. The random distribution of the neutron 

distribution in reactors operating at low power arises from the randomness of nuclear 

processes such as how far a neutron will travel or for how long time it will exist before 

it interacts with other atoms, what kind of reaction will arise from neutron-atom 

interactions and if a fission event is induced, how many more neutrons will be emitted. 

The “zero power reactor” noise dominates over the “power reactor noise” in low 

power (low level of static flux) as the variance of the former is proportional to the static 

(mean) neutron flux while the variance of the latter is proportional to the square of 

the static neutron flux [3]. 
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 In reactors which is operating at a high power level, with also a high level of the 

static neutron flux, the “power reactor noise” dominates. In such systems, the change 

in material properties or reactor conditions will be the driving force for perturbations 

in the static neutron flux. These changes can be, for instance, fluctuations related to:  

the temperature of the fuel or the moderator; the pressure or the flow of the coolant; 

mechanical vibrations of internals such as fuel rods or control rod. All these 

perturbations can cause the macroscopic cross-sections of the core and so the neutron 

flux to fluctuate. 

 The analysis of the zero power reactor noise allows to extract some important 

information about the nuclear properties of the system such as cross-sections and 

reactivity. The analysis of the power reactor noise can help to identify issues and 

malfunctions of the reactor core, before the situation can escalate. Therefore there 

has been an interest in the development and application of noise analysis techniques 

for diagnostic purposes [4], [5], [6]. 

1.3 Uncertainty and sensitivity analysis 

 In the nuclear industry there is a high demand for realistic simulations with 

reliable confidence levels, for operating reactors with sufficiently large safety margins. 

 Although high fidelity is an important goal for modelling of nuclear reactors, the 

calculated results always deviate from the real solutions. These deviations are due to 

a number of uncertainties that can arise from the basic nuclear data, the boundary 

and initial conditions, approximations in the computational models, etc. Then the 

quantification of the impact of the uncertainties on the calculated results are 

necessary. 

 Sensitivity analysis is also another significant aspect. Computer codes process a 

number of input parameters used to describe the system and provides output results. 

Sensitivity analysis can provide information about the dependency of the outputs on 

the model inputs, and help to discriminate the most important input modelling 

parameters. As a result, a better understanding of models can be achieved and 

possible improvements can be identified. 

1.4 Objective and outline of the thesis 

 The objective of this thesis work is to investigate the impact of input uncertainties 

on reactor noise simulations for a localized perturbation in the core. For this purpose, 

the reactor noise simulator CORE SIM is used. The input uncertainties are related to 

the macroscopic cross-sections of the core, and to the parameters that describe the 

neutron noise source. The uncertainty and sensitivity analysis is based on a statistical 

methodology, and it is performed for both the forward and the adjoint neutron noise 

calculation. 
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 The structure of the thesis is as follows. In chapter 2, the methodology used in the 

work is described. In chapter 3, the results from the uncertainty analysis of the forward 

and adjoint calculations are discussed. In chapter 4, the results of the sensitivity 

analysis for the forward and adjoint calculations are presented. In chapter 5, 

concluding remarks are provided. 
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2 CORE SIM and uncertainty and 

sensitivity analysis 

 In this chapter the methodology followed in the work is described. The 

reactor noise simulator CORE SIM and the basic equations implemented in the tool are 

introduced in section 2.1. The procedure for the uncertainty and sensitivity analysis is 

discussed in section 2.2. The uncertainties associated to the input parameters are 

described in section 2.3. The approach for the analysis of the output is explained in 

sections 2.4 and 2.5. 

2.1 The multi-purpose neutronic tool CORE SIM 

 CORE SIM is a neutronic tool that can be used for neutronic simulations of both 

critical reactors and subcritical systems with an external neutron source. The static 

neutron flux and the first order neutron noise together with their adjoint functions can 

be calculated. Since the present study is on a LWR-type of a reactor core, the discussion 

is focused only on critical systems. 

2.1.1 Two-group neutron diffusion theory 

 The calculation of CORE SIM relies on the 2-group diffusion theory and one group 

of delayed neutrons. The multi-group diffusion equation can be derived from the 

energy-dependent transport equation by using a few approximations as given below. 

A relationship can be established between the current density vector and the 

scalar neutron flux using the Fick’s law which states that: 

      , , , , , ,E t D E t E t  J r r r . (2.1) 

The diffusion coefficient  ,D Er  is usually expressed as: 

  
 
1

, ,
3 , ,tr

D E t
E t




r
r

. (2.2) 

In this expression the macroscopic transport cross-section is used for the diffusion 

coefficient, so the anisotropy scattering can be represented to some extent and some 

features of the transport equation can be recovered. 

 The energy dependence of the diffusion equation is handled using the multi-group 

formalism where the range of possible neutron energy is divided into G  energy bins 

as: 
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  
1

min max 1; ;g g

g G

E E E E 



    , (2.3) 

where the first group ( 1g  ) has the highest energy neutrons and the last group 

( g G ) represents neutrons with the lowest energy. 

 When dealing with non-steady-state systems, the fission source term should be 

handled with care as some neutrons are produced with in 710 s  and are referred to 

as prompt neutrons, while delayed neutrons appear after a    decay of some fission 

fragments (precursors of delayed neutrons). The delayed neutrons are modelled by 

tracking the precursors. In the case of only one family of precursors, three additional 

parameters are defined as: the fraction of delayed neutrons  ; the decay constant of 

the precursors  ; and the space- and time-dependent concentration of the 

precursors  ,C tr . 

 As a result, the time-dependent diffusion equation can be expressed as [7]: 

 

         

     

   

0, ' '

' 1

, ' '

' 1

,

1
, , , , ,

1 , ,

, ,

G

g g g s g g g

gg

G
p

g f g g

g

d

g T g g

t D t t t t
v t

t t

C t t

  

   

 








      

  

 





r r r r r

r r

r r

  (2.4) 

with p

g  and d

g  both fulfilling 

 
1 1

1
G G

p d

g g

g g

 
 

     (2.5) 

and representing the relative contribution of the prompt and delayed neutrons in the 

energy group g  respectively. An additional equation is required for the 

concentration of the precursors, i.e.: 

      , '

' 1

, , ,
G

f g

g

C t t C t
t

  



  


r r r . (2.6) 

 CORE SIM is based on 2-group diffusion theory. Then, Eqs. (2.4) and (2.6) can be 

simplified as follows: 

 
         

           

1 1,0 1 ,1 ,1

1

1 ,2 2

1
, , 1 , ,

, , 1 , , ,

[

]

f a

r f

t D t t t
v t

t t t t C t

   

    


        

    

r r r r

r r r r r

  (2.7) 

 
       

   

1 2,0 2 1

2

,2 2

1
, , , ,

, ,

r

a

t D t t t
v t

t t

  




     



r r r r

r r

  (2.8) 
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        ,1 ,2, , , ,f fC t t t C t
t

  


    


r r r r . (2.9) 

with the removal cross-section defined as: 

    
   

 
0,2 1 2

0,1 2

1

, ,
, ,

,

s

r s

t t
t t

t










   

r r
r r

r
  (2.10) 

In the above expressions, 1  is the fast neutron flux and 2  is the thermal neutron 

flux. It is assumed that both the prompt and delayed neutron are produced only as fast 

neutrons and thus only contributing to the fast group. The diffusion coefficients are 

considered to be time-independent, as it decreases the computational burden without 

relevant differences in the results [8]. 

2.1.2 Neutron noise equations based on 2-group diffusion theory 

 CORE SIM is designed to treat the case of stationary perturbations. The equations 

for the fluctuations of the neutron flux (i.e. the neutron noise) are derived from linear 

perturbation theory. 

 In Eqs. (2.7) to (2.9), the generic time-dependent quantity  ,X tr  can be split 

into two parts. The first part is the mean value which corresponds to the steady state 

condition or to the critical configuration of the system, and thus it is independent of 

time and is denoted as  0X r . The second part is the fluctuation around their mean 

value and this fluctuation varies with time, and it is denoted as  ,X t r . Thus each 

time dependent quantity can be written as: 

      0, ,X t X X t r r r . (2.11) 

The time-dependent quantities, as can be seen in Eqs. (2.7) through (2.9), can be the 

macroscopic cross-sections in both groups, the neutron flux and the concentration of 

the precursors. 

 The derivation of the 2-group equations for the neutron noise consists of the 

following steps. First, Eq. (2.11) is substituted in Eqs. (2.7)-(2.9) for all the time –

dependent quantities. Second, the second order terms (in the form 

   , ,X t Y t r r ) are neglected, i.e. linear theory is applied. Third, the time-

independent equations, 

 
       

         

1,0 1,0 ,1,0 ,1,0

,0 1,0 ,2,0 2,0

1

1 0

[

]

f a

r f

D   

   

       

    

r r r

r r r r
  (2.12) 

          2,0 2,0 ,0 1,0 ,2,0 2,0 0r aD         r r r r r   (2.13) 

are subtracted from the time-dependent equations. Fourth, a Fourier transform is 

performed in angular frequency ( 2 f  ) on each and every term of the equation 
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and the following property is used: 

 
 

    
df x

i f x
dx


 

 
 

F F . (2.14) 

Fifth, the equation describing the concentration of precursors is eliminated. Finally the 

equations describing the dynamic behavior is obtained: 

 

       

 
 

 
 

           

1,0 1 ,1,0 ,0 1

1

,1,0 ,2,0

1 2

1,0 1,0 ,1 1,0 ,1

, ,

1 , 1 ,

, , 1 ,

a r

f f

eff eff

r a f

i
D

v

i i

k i k i

i

i


   

  
   

   


        

 

 
         

 

    
        

    

 
       

 

r r r r

r r
r r

r r r r r r

 (2.15) 

 
         

   

2,0 2 ,2,0 2 ,0 1

2

1,0 2,0 ,2

, , ,

, ,

a r

r a

i
D

v


     

     

 
        

 

    

r r r r r

r r

  (2.16) 

The Fourier transform of any quantity  ,X t r  is obtained according to: 

    , , i tX X t e dt  






 r r   (2.17) 

2.1.3 Equations implemented in CORE SIM 

The time-independent equation given by Eq. (2.12)-(2.13) will have solution only 

if the system is critical. The system is critical if the material and geometry properties 

are such that a perfect neutron balance in the system is obtained, and thus the 

behavior of the neutron flux is time-independent with 1effk  . If the system is not 

critical (i.e. 1effk  ), a steady state solution can still be obtained by re-normalizing the 

fission source terms by a factor mk . The effective multiplication factor effk  is the 

largest eigenvalue. This eigenvalue is associated to the eigenfunctions that have the 

same positive sign throughout the core and correspond to the static fluxes of the 

system, i.e.  1,0 r  and  2,0 r . The steady state conditions thus solved in CORE SIM 

is the following eigenvalue equations [8]: 

    
 

 
 

 

 

1, 1,

2, 2,

1m m
sta

mm m

D F
k

 

 

   
                 

r r
r r r

r r
  (2.18) 

with 

  
 

 
1,0

2,0

0

0

D
D

D

 
  
 

r
r

r
 , (2.19) 
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  
   

   
,1,0

,2,0

0a r
sta

r a

  
   

  

r r
r

r r
  (2.20) 

and 

  
   ,1,0 ,1,0

0 0

f fF
     

  
 

r r
r . (2.21) 

 The dynamic equations (2.15) and (2.16) are derived assuming that the system 

is critical. However, when the system is not critical the dynamic equations can also be 

obtained by renormalizing the macroscopic fission cross-sections with effk . After 

renormalization, the dynamic equations solved for critical systems in CORE SIM is thus, 

written in a matrix form: 

 

   
 

 

     
 

 
 

 

 

1

2

,1,1

,2,2

,
,

,

,,
, ,

,,

crit

dyn

crit
fa

r a fr

fa

D
 


 

  
     

  

  
           

  
      

   

r
r r

r

rr
r r r r

rr

  (2.22) 

with 

  
 

 
1,0

2,0

0

0

D
D

D

 
  
 

r
r

r
, (2.23) 

  

 
 

   

,2,0

1

,0 ,2,0

2

, 1

,

fcrit

crit
eff

dyn

r a

i

k i

i

v

 


 




  
   

   
 

   
  

r
r

r

r r

, (2.24) 

      
 ,1,0

1 ,2,0 ,0

1

, 1
fcrit

a r

eff

i i

v k i

 


 

  
       

 

r
r r r , (2.25) 

  
 

 
1,0

1,0

r






 
  

 

r
r

r
, (2.26) 

  
 

 
1,0

2,0

0

0
a






 
  
 

r
r

r
  (2.27) 

and 

  

   1,0 2,0
1 1

,

0 0

crit

eff efff

i i

k i k i

  

    

    
       

      
 
 

r r

r . (2.28) 

In the current work, the adjoint calculations are also evaluated. In fact the adjoint 
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problem is also of interest because of some useful properties [8]. The inner product 

between two space-dependent flux functions      1 2

T

     r r r  and 

     1 2

T

     r r r  is defined as: 

      ,
T

V

d     r r r   (2.29) 

The operator 
†

L  is the adjoint of the operator L  if it satisfies the following 

expression [9]: 

  
†† †

, ,L L   
 

   
 

. (2.30) 

Then, the adjoint noise problem associated with the forward noise problem is given 

by: 

    
 

 

 

 

† †
†

1 1

††
22

, ,
,

,,

crit

dyn

S
D

S

   


  

    
              

r r
r r

rr
  (2.31) 

where  

    
†

, ,
crit critT

dyn dyn   r r . (2.32) 

The superscript T  indicates the transpose of the matrix operator. 

 In brief, one CORE SIM calculation in a critical system provides the solution of the 

eigenvalue equations given by Eq. (2.18). Once the eigenvalue ( 0 effk k ) and the 

eigenfunctions (  1,0 r  and  2,0 r ) for the fundamental mode have been 

determined, then they are used for the forward noise calculation based on Eq. (2.22). 

The same procedure is applied to the adjoint case. 

2.1.4 Types of neutron noise sources 

 In Eq. (2.22) the fluctuation of the neutron flux (i.e., the neutron noise) may be 

induced by the fluctuation of the absorption cross section (  ,a  r ), the fluctuation 

of the fission cross-section (  ,f  r ) and the fluctuation of the removal cross-

section (  ,r  r ). As mentioned in section 1.2, the fluctuations of the cross-sections 

can be due to different types of perturbations, such as an absorber of variable strength 

in the core, a vibrating control rod, or oscillations of the property of the 

moderator/coolant. 

 In this thesis the neutron noise induced by an absorber of variable strength is 

studied. This kind of a perturbation is localized, i.e. its position does not vary. The 

scenario can be then modelled with Eq. (2.22), where the noise source is specified in 

terms of only  ,a  r  (and where  ,f  r  and  ,r  r  are set equal to 

zero). 
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2.1.5 Relationship between the adjoint and forward problems 

 The forward noise equation (2.22) can be written in a compact form as: 

 S L   (2.33) 

A localized neutron noise source in 
sr  is considered. The type of source is an absorber 

of variable strength and it can be modelled with fluctuations in the thermal absorption 

cross-section. Then the source in the forward problem can be defined as follows: 

  
 2

0
,

s

S 
 

 
  

 
r

r r
  (2.34) 

where 

    2 2,0 ,2,0a   r r . (2.35) 

 The adjoint problem solved in CORE SIM is given by Eq. (2.31) which can also be 

written in a compact form as: 

 † † †S L   (2.36) 

If the adjoint noise source is defined as a point-like source in the thermal group, then 

it can be written as: 

 
 

†

4 0

0
S

 

 
  

  r r
  (2.37) 

The associated adjoint noise is denoted as: 

 
 

 

†

2,1 0†

†

2,2 0

, ,

, ,

 


 

 
  
  

r r

r r
. (2.38) 

In Eq. (2.38) the first subscript of the adjoint neutron noise indicates the energy group 

in which the adjoint noise source is defined, while the second index indicates the 

energy group of the adjoint noise.  

Similarly, a point-like adjoint source can be chosen in the fast group as: 

 
 3 0†

0
S

 


  
  
 

r r
  (2.39) 

The corresponding adjoin noise can then be expressed as: 

 
 

 

†

1,1 0†

†

1,2 0

, ,

, ,

 


 

 
  
  

r r

r r
. (2.40) 

 Taking the case where the source of the adjoint problem is in the thermal group 

as example, the relation between the forward thermal noise and the adjoint noise can 

be derived. 
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From the definition of adjoint operator, the following relationship can be written: 

    † †, = ,S S    . (2.41) 

The latter can be given in an integral form as: 

 
 

   

 

   

†

2,1 0 1

†
2 4 022,2 0

, , , ,0 0

, ,, ,

s

s s

dr dr
   

     

      
        

          
 

r r r r

r r r rr rr r
 (2.42) 

Thus: 

    †

2 2,2 0 4 2 0, , , ,s s      r r r r   (2.43) 

Inserting Eq. (2.35) into Eq. (2.43), and considering that the source strength of the 

forward and adjoint problem are defined such that  ,2,0 4sa r   , one finally obtains: 

      †

2,0 2,2 0 2 0, , , ,s s s     r r r r r   (2.44) 

 A similar relation between the forward fast noise and the adjoint noise can be 

derived: 

      †

2,0 1,2 0 1 0, , , ,s s s     r r r r r   (2.45) 

When the noise source in the forward problem is due to the fluctuation of the thermal 

absorption cross-section, the adjoint noise of interest is actually only the thermal 

adjoint noise, but with the adjoint source either in the fast or in the thermal group. 

2.1.6 Input data for CORE SIM 

 The input parameters needed in Eq. (2.22), and also in CORE SIM, are the material 

data (static macroscopic cross-sections and the diffusion coefficients), the kinetic data, 

and the perturbations of the macroscopic cross-sections which are the source of the 

neutron noise. 

In CORE SIM, a three dimensional system can be modelled. The system is 

discretized into a number of equal computational nodes in the Cartesian coordinate 

system. The equations implemented in CORE SIM are solved for each of the nodes. 

These equations are spatially averaged with respect to these nodes, and the following 

node averaged quantities are used: 

    ,

1
,

n

g n g

n V

t t dr
V

   r   (2.46) 

 

   

 

,

,

,

1
, ,

n

X n g

n V

X n

g n

t t d
V

t







 

 r r r

  (2.47) 

with nV  being the volume of node n  and ,X n  representing the macroscopic 
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cross-sections in the node n . By averaging the macroscopic cross-sections in the way 

given in Eq. (2.47), the actual reaction rates in each node are preserved. 

 The nodes are rectangular boxes; the overall nodalization is shown in Fig. 2.1(a) 

and the nodes of any axial level of the core is presented in Fig 2.1(b). 

 

 
Figure 2.1 (a) A schematic drawing of the discretized core (left), (b) the node on a level of the 

discretized core, bounded within the black lines which is the boundary of the core 

 

 In the thesis work, a simplified LWR core is considered. In particular, the core is 

homogeneous in terms of material properties, and is surrounded with no reflector. 

The core is discretized into 27 levels along the axial direction (z); in the (x-y) plane, 

each level includes 800 nodes. Thus the total number of nodes is 21600. Three input 

values are required in CORE SIM to define the size of the nodes. These values are saved 

in the input file named “GEOM_data.mat”. The value used in this work, together with 

the descriptions are listed in Table 2.1. 

 

Table 2.1 The values used that defines the size of each node used for computation. 

Variable name Description of the 

variable 

Value used [cm] 

DX The length of a node in 

the x-direction 

15.3750 

DY The length of a node in 

the x-direction 

15.3750 

DZ The length of a node in 

the x-direction 

14.7200 

 

According to the node size given above, the core has a diameter of 4.92 m and a 

height 3.9744 m, which is typical of a LWR. 
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 The reference values for the macroscopic cross-sections data are listed in Table 

2.2. 

 

Table 2.2 the material data used in the static and dynamic calculations in case of a bare reactor near to 

criticality. 

1,0D
 

(cm) 

2,0D
 

(cm) 

,1,0a  

(cm-1) 

,2,0a  

(cm-1) 

,0r  

(cm-1) 

,1,0f
 

(cm-1) 

,2,0f
 

(cm-1) 

1.8002 0.4338 0.0073 0.0574 0.0131 0.0038 0.0748 

 

 The values of the macroscopic cross-sections given in Table 2.2 are assigned to all 

the nodes of the core, because the core is assumed to be homogeneous. Each node 

can be identified by a triplet of indexes  , ,I J K , where I , J  and K  refer to the 

x-, y- and z-directions respectively, so the set of cross-sections assigned to a specific 

node can be identified by the same triplet of indexes. 

 The neutron noise source for an absorber of variable strength is determined by 

assigning a position (i.e. a node given in terms of a triplet of indexes  , ,I J K ), an 

amplitude for the variation of the absorption cross-section, and a frequency for the 

fluctuation of the perturbation. In the current work, the source is located at position 

(16, 16, 7), has a strength 1

,2,0 1 cma    and a frequency equal to 1 Hz.  

The nuclear kinetic data needed for the simulation includes the effective fraction 

of the delayed neutrons  , the decay constant of the neutron precursors  , and the 

average neutron speed in the fast and thermal group respectively. The values used in 

the work are given in Table. 2.3. 

 

Table 2.3 The kinetic data used in dynamic calculations. 

1v  

(cm s-1) 

2v  

(cm s-1) 

  

(pcm) 

  

(s-1) 

1.77746 × 107 389659 564.06 0.0847 

 

 The adjoint calculation also requires static macroscopic cross-sections, kinetic 

data, and the definition of a source. In order to fulfill the relationship given in Eq. (2.44) 

and (2.45) for the forward and adjoint noise, the same set of input data is used for 

the two cases. 

2.1.7 Output of CORE SIM 

 Since the calculation made in CORE SIM is in the frequency domain, the results for 

both the forward and adjoint problem are complex numbers, given in all the 21600 

nodes of the core. The information that can be extracted from the complex noise is 
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the magnitude and the phase of the noise. The magnitude of the neutron noise carries 

the information of how much the actual neutron flux will deviate from its static value. 

The phase of the noise can be interpreted as a time shift between the source and its 

effect at any point in the reactor. A further discussion on the phase of the noise is 

provided in Chapter 4. The phase of the noise is calculated using the “angle” function 

in Matlab and it is given in radians. 

 Fig. 2.2 and 2.3 are an example of the results that can be obtained from the CORE 

SIM calculation for an absorber of variable strength. In Fig. 2.2 the magnitude of both 

the fast and thermal noise in the axial channel where the source is located at (i.e. 

channel (16, 16, K), with K being the axial level), and the noise over the plane of the 

source (i.e. plane (I, J, 7), with I and J being the index on the x- and y- direction 

respectively) are plotted. In Fig. 2.3 the phase for both the fast and thermal noise are 

shown. 

 In Fig. 2.2 a sharp decrease of both the magnitude of the fast and thermal noise 

is observed. On the other hand, Fig. 2.3 shows that the phase of the fast and thermal 

noises has a little deviation throughout the core, and an out of phase behavior of the 

noise occurs. 

 
Figure 2.2 The magnitude of the fast noise (top) and the magnitude of the thermal noise (bottom). The 

plot for the channel is shown on the left while the plot for the level is on the right. 
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Figure 2.3 The phase of the fast noise (top) and the phase of the thermal noise (bottom). The plot for 

the channel is shown on the left while the plot for the level is on the right. 

 

2.2 Procedure for uncertainty and sensitivity analysis 

 In order to analyze how the results calculated with CORE SIM can be influenced 

by the uncertainties in the input parameters, a statistical methodology for the 

propagation of input uncertainties to the code outputs is applied [10]. The procedure 

is illustrated in Fig. 2.4. 

 

Figure 2.4 Schematic description of the analysis of the propagation of input uncertainties. 

 

In Fig. 2.4, the three subscripts for the adjoint noise respectively indicate the 
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energy group in which the adjoint noise source is defined, the energy group (as 

mentioned above, only the thermal adjoint noise is of interest), and the number of the 

sample. 

The macroscopic cross-sections are the main input parameters for CORE SIM, and 

they are a typical source of uncertainty. The noise source is a local perturbation of the 

thermal absorption cross-section. Because of the randomness or the lack of 

knowledge of the noise source, uncertainties are also introduced into the strength and 

the frequency of the noise source. In addition, it is interesting to see how the neutron 

noise calculation can be affected by possible deviations from the nominal noise source. 

The possible uncertainties of the diffusion coefficients for either the fast or thermal 

group are not included in the study. 

 Once the input parameters with uncertainties are chosen, the next step is to 

statistically describe the uncertainties with probability distribution functions (pdfs). A 

rigorous approach would requires the estimation of the pdfs from experimental data. 

In the current work, the pdfs for the input uncertainties are assumed and two types 

are selected: the uniform distribution and the normal distribution. 

 With the uncertain input parameters and their associated “pdfs” settled, a sample 

of size N  can be generated for each uncertain input parameter, hence N  sets of 

input parameter are generated. For each of these sets, a neutron noise calculation is 

performed using CORE SIM. Consequently, samples of size N  for the output 

variables are obtained (see Fig. 2.4). 

 In nuclear safety analysis, output uncertainties are usually quantified in terms of 

tolerance limits. According to the requirements on the tolerance limits, the number of 

calculations N  can be determined. The minimum number of runs for a two-sided 

tolerance limit that includes at least a fraction   of the possible results with a 

probability of   or greater, is given by the Wilk’s formula [11]: 

   11 1N NN       . (2.48) 

The minimum number of runs for different cases of   and   are summarized in 

Table 2.4. 

 

Table 2.4 Minimum number of calculations needed for typical values ofαandβ 

α 

β 

0.9 0.95 0.99 

0.9 38 77 388 

0.95 46 93 473 

0.99 64 130 662 

 

The nuclear regulation authorities usually request    and    to be equal to 0.95, 

thus uncertainty analysis can be based on 93 runs. However, since the computation 

time of each run is reasonably short, 500 calculations were used for this thesis. As 
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discussed later, such a high number of calculations also improves the confidence level 

of sensitivity analysis.  

  

2.3 Uncertainty in the input parameters 

 Each of the input parameters needs a probability density function that describes 

how its value can vary because of its uncertainty. In this work, the values for an 

uncertain input parameter are assumed to be uniformly or normally distributed, so 

they are generated from the uniform distribution or from the normal distribution. 

For the case of a uniform pdf, the values of one uncertain input parameter is 

generated in the interval 0.05 , 0.05X X X X      , where X  is the reference 

value of the uncertain input parameter.  

For the case where the uncertain input parameters are normally distributed, the 

distributions are taken as: 

  
 

2

22

2

1
| , 0.025

2

x

f x X X e



 





    . (2.49) 

The standard deviation of the normal distribution is chosen to be 2.5% of the reference 

values of each input parameter, so that the range of the possible values that the 

uncertain input parameters can take for the normal cases are similar to the uniform 

case. 

 The core is discretized into 21600 nodes, and the macroscopic cross-sections need 

to be specified for each node. In the current work, an independent random sample is 

generated for each type of macroscopic cross-section and for each node in the core. 

Then 21600 independent random samples for each cross-section are created (one for 

each node). Each independent random sample contains 500 values, one for each of 

the 500 runs. An example of random samples for the removal cross-section is given in 

Fig. 2.5. The random samples are generated with a uniform and a normal distribution, 

for node (16, 16, 7) and for the 500 runs. 
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Figure 2.5 The random values generated for the removal cross-section in the node (16, 16, 7) for the 

500 runs from a uniform distribution (red) and a normal distribution (green). 

 

Figure 2.5 shows that the range of the possible values for both the uniform and the 

normal case are similar. 

 In order to solve the forward and adjoint problems (see Eq. (2.22) and Eq. (2.31)), 

the input macroscopic cross-sections required are: the macroscopic absorption cross-

sections in both groups, the macroscopic fission cross-sections in both groups 

multiplied by the average number of neutrons produced per fission (  ) , the 

macroscopic removal cross-section.  

The macroscopic absorption cross-section is the sum of two contributions: 

 The capture of neutrons: the neutrons are captured by the target nucleus 

and an isotope nucleus of the target is formed. 

 The fission reaction: the absorption of the neutron causes the target 

nucleus to be in an excited state and fission occurs. 

 

The following expression can be then written: 

 a f c    . (2.50) 

In view of this, the uncertainties introduced in the fission and in the capture cross-

section influence the absorption cross section. Although the absorption cross-section 

is used as the input for the calculations of CORE SIM, uncertainty is introduced into the 

capture and fission cross-section independently and the sum of these two parameters 

is used as the input absorption cross-section. 
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 The procedure is described in the following. The fission cross section is not directly 

available since we only have the reference value for f , i.e. the fission cross section 

is multiplied by the average number of neutrons produced per fission. The value of the 

average number of neutrons produced per fission for the current calculations is taken 

to be ' 2.44  , which is the typical value for U-235 based fuel, and, in the current 

work, it is assumed to be fixed. The reference value of the fission cross-sections are 

then calculated according to: 

 , ,0

, ,0
'

f g

f g






    (2.51) 

where 1g   and 2g   corresponds to the fast and thermal group respectively. 

Then the mean value of the capture cross sections are calculated as: 

 , ,0 , ,0 , ,0c g a g f g      (2.52) 

 The uncertainties are introduced into , ,0f g  and ,0r  using:. 

 *

0 0       (2.53) 

where   is a random number between -0.05 and 0.05 according to a uniform 

distribution, or generated from a normal distribution with a mean value of 0  and a 

standard deviation of 00.025  . The “star” superscript indicates the generated 

random value for the macroscopic cross-section. The value of the random number for 

f  is saved as f . 

 The uncertainty of the absorption is obtained by summing up the random values 

of the capture cross-section and of the fission cross-section. Thus uncertainty is 

introduced into the capture cross-sections according to: 

 *

, ,0 , ,0 , ,0c g c g c c g       (2.54) 

where the random number c  is generated independently from other random 

numbers used for the other cross sections. The random value for the fission cross-

section is generated using: 

 *

, ,0 , ,0 , ,0f g f g f f g     . (2.55) 

The random number used in Eq. (2.55) is the same as the one used in the perturbation 

of f . Finally the random value for the absorption cross section can be obtained by 

using the combined random value of fission and capture: 

 * * *

, ,0 , ,0 , ,0 , ,0 , ,0 , ,0a g c g f g a g c c g f f g           . (2.56) 

 At this stage all the cross-sections needed for the input of CORE SIM are ready to 

be used for the uncertainty and sensitivity analysis. 
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 The above procedure is such that the absorption cross-section is not uniformly 

distributed because the summation of two uniformly distributed variables leads to 

variable with a trapezoidal distribution. This is discussed in Chapter 3 with the 

uncertainty analysis. 

 The calculations performed for the forward and adjoint problem are summarized 

in Table 2.5 and 2.6, respectively. 

 

Table 2.5 Summary of the cases of the calculations made for the forward problem 

Case Independently 

varied cross-

sections 

Other 

uncertain 

parameters 

Number of 

calculations 

Distribution 

used for 

input 

parameters 

Description 

 

 

F1 

 

 

,1,0c  

,2,0c  

,0r  

,1,0f  

,2,0f  

 

 

,2,0a  

and 

f  

 

 

 

 

500 

 

Uniform 

Distribution 

 

The amount of 

variation for 

each type of 

cross-section 

and for each 

node is different 

 

 

F2 

 

Normal 

Distribution 

As reported in Table 2.5, the forward noise is evaluated at two points. The first 

one is the point where the source is located at, i.e. (16, 16, 7). The second one is a 

point away from the source location, i.e. (16, 7, 7).  

To set up consistent relations between the forward and adjoint problem (see Eq. 

(2.44) and (2.45)), the adjoint calculations performed are chosen as listed in Table 2.6. 

The adjoint problem, as mentioned earlier, uses the same sets of input parameters as 

the forward problem, including the static macroscopic cross-sections, the frequency 

and the strength of the source. 

Table 2.6  Summary of the cases of the calculations made for the forward problem with uniformly 

distributed input parameters 

Case Position of source 

in the core 

Group position of 

the source 

Distribution of the 

input parameters 

G1 
(16, 16, 7) 

Fast  

Uniform 

Distributions 

G2 Thermal 

H1 
(16, 7, 7) 

Fast 

H2 Thermal 

I1 
(16, 16, 7) 

Fast  

Normal 

Distributions 

I2 Thermal 

J1 
(16, 7, 7) 

Fast 

J2 Thermal 
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2.4 Uncertainty analysis of the code output 

 When all the calculations for input uncertainty propagation are performed, the 

results are then gathered for both the forward problem and the adjoint problem. In 

the latter case only the thermal adjoint noise is analyzed, as the fast adjoint noise does 

not correspond to any forward noise of interest.  

 From the calculations, samples of the output quantities are available. The analysis 

is focused on the magnitude and the phase of the forward and adjoint noises. The pdfs 

underlying these samples are evaluated by plotting the relative histograms. This is 

done using the “histfit” function in Matlab. The number of bins used for the histograms 

is 23. In addition, the results obtained from the application of a normal distribution fit 

and of a nonparametric kernel-smoothing distribution fit, are provided. 

  The parameters used in the uncertainty analysis are: 

 The mean value of the values in a set of data, calculated using: 

 1 2 Nx x x
x

N

  
   (2.57) 

where x  can be the magnitude or the phase of either the forward or 

adjoint noise with N  the number of calculations is thus 500. 

 The standard deviation of the values in a set of data, calculated using: 

 
2

1

1

1

N

i

i

x x
N




 

 . (2.58) 

with the mean value given in Eq. (2.57). The standard deviation quantifies 

the amount of dispersion of a set of data values. 

 The kurtosis of the probability distribution of the results, calculated as: 

 
 

 

4

1

2
2

1

1

1

N

i

i

N

i

i

x x
N

k

x x
N








 

 
 





. (2.59) 

The kurtosis is also a measure of how peaked the distribution of a set of data is. The 

kurtosis of a normal distribution is equal to 3. Compared to normal distributions, 

samples with kurtosis values higher than 3 have a stronger peak and a more rapid 

decay, thus resulting in “heavier” tail than normal. An example of samples with 

different kurtosis is illustrated in Fig. 2.6. In the plot on the right, the random numbers 

generated from a normal distribution have a kurtosis of 2.96, which is very close to the 

theoretical value of 3. In the plot on the left, the random numbers are consistent with 

a double exponential distribution, and are characterized by a much more distinct peak. 

The kurtosis for this set of random numbers is 5.9, much larger than the normal case. 
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Figure 2.6 10,000 random numbers generated from a normal distribution (left) and from a double 

exponential (Laplace) distribution (right) [12]. 

 

2.5 Statistical measures for sensitivity analysis 

 The input and output samples respectively generated for and obtained from the 

uncertainty calculations, can be also used for the sensitivity analysis. The aim of 

sensitivity analysis is to investigate the impact of the input parameters on the 

calculated outputs. Through sensitivity analysis, the most and less influential input 

parameters on an output can be identified. 

 The correlations between the inputs and outputs can be evaluated using different 

coefficients, such as Pearson correlation coefficient, the Spearman correlation 

coefficient and so on. The correlation used in this work is the Pearson correlation 

coefficient [13], [14]. 

The Pearson correlation coefficient provides a measure of the linear relationship 

between two variables, given a representative sample of the same size for each of 

them. In complex computational models, the relationship between the input and 

output is very unlikely linear and monotonic, however Pearson coefficient are still 

useful.  

In the current work, plots of the Pearson correlation coefficient calculated 

between pairs of input and output are given. The pair with high Pearson correlation 

coefficient indeed shows a linear correlation. The coefficient is calculated using the 

Matlab function “corr”. The Pearson correlation coefficient between an input jX  and 

an output kY  both represented by a sample of size N, is calculated according to: 

 
  

   

, ,

1

2 2

, ,

1 1

N

jj n k n k

n
jk N N

jj n k n k

n n

x x y y

c

x x y y



 

 



 



 
  (2.60) 

 The values of the coefficient ranges from -1 to 1. A value of 1jkc   indicates a 

perfect linear correlation between the two random variables while a value of 0jkc   

indicates that the two random variables are completely uncorrelated. If the sign of the 
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coefficient is positive, the two random variables are positively correlated and they 

change values in the same direction. A negative value means that the two variables 

vary in opposite directions. Since this is a statistical measure, a certain level of 

confidence must be specified. A critical value can then be chosen such that if the 

absolute value of the calculated Pearson correlation coefficient is lower than the 

critical value, then this pair of random variables are considered to be not statistically 

significant.  The critical value z  is determined by choosing the value for the level of 

significance   which gives the probability of rejecting a true hypothesis that two 

parameters are not correlated. For instance, a significance level of 0.05 indicates a 5% 

chance that a correlation may be estimated between the pair, even though there is 

actually no correlation.  

 The procedure of determining the critical value for a given number of code runs 

and a chosen significance level is given as follows. If the significance level is chosen to 

be 0.05 with 500 runs, a value of 1t  is first determined from the two-tailed Student’s 

t-distribution with the degree of freedom 500 2 498n    . The value of 1t  

obtained is 1.96474. The critical value can be determined as: 

 
1

2

t
z

n t



. (2.61) 

In the current example 1z  is then equal to 0.08770. This means that, if the absolute 

value of the Pearson correlation coefficient is greater than 1 0.08770z  , the pair of 

random variables can be considered to be correlated, but there is 5% probability that 

the correlation is not true. 

 Instead of the significance level, it is possible to select the critical value to be equal 

to a prescribed value. In this work, the critical value z  is equal to 0.2. Given 500 

values from the calculations, the significance level can be determined as follows. First, 

the value of t  is obtained according to [15]: 

 
21

z
t n

z



. (2.62) 

For the values of z  and n  given above, the value of t  is equal to 4.55522. Using 

the two-tailed Student’s t-distribution with a degree of freedom of 498, the level of 

significance is estimated to be 
66.58882 10    . Accordingly if a pair has a value of 

the Pearson correlation coefficient that is larger than 0.2, and is considered to be 

correlated, there is only 
46.58882 10 %  probability that this conclusion is wrong, 

i.e. the correlation is almost certain. 
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3 Uncertainty analysis 

 Calculations for input uncertainty propagation are performed using CORE SIM. 

These results allow to investigate the distributions of the output parameters with 

respect to both uniformly and normally distributed input uncertainties. 

A discussion on the uncertainty of the absorption cross-section resulting from the 

combination of the uncertainties related to the capture and fission cross-section is first 

given (section 3.1). Then the analysis of the uncertainty distributions of the outputs 

for the forward calculations (section 3.2) and for the adjoint problem (section 3.3) are 

presented. 

 

3.1 Uncertainty of the absorption cross-sections 

As discussed in section 2.3, the uncertainties of the capture and fission cross-

sections are sampled independently. The sum of these uncertain cross-sections leads 

to the uncertain absorption cross-section.  

Although the uncertainties for the capture and fission cross-sections are assumed 

to be uniformly or normally distributed, the uncertainty of the absorption cross-

section is not. 

In case that a uniform distribution is used for the capture and fission cross-

sections, then the pdf associated to the absorption cross-section is a trapezoidal one 

as proved below. 

For the fast group, the probability density function of the fission and capture cross 

section are: 

  
,min ,max

,max ,min

1

0                        otherwise

f f

f fFIS

x
f x


   

  



  (3.1) 

and 

  
,min ,max

,max ,min

1

0                          otherwise

c c

c cCAP

y
f y


   

  



. (3.2) 

It is also noticed that the intervals of x   and y   does not overlap each other and 

thus the calculation can be carried as follows. 

 The density function of a random variable z (in this case the absorption cross-

section) that is the sum of two uniformly distributed random variables x and y (i.e., the 

fission and the capture cross-section), is given by: 
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      ABS FIS CAPf z f z y f y dy



  . (3.3) 

Since  CAPf y  is zero unless ,min ,maxc cy    , the integral becomes: 

    
,max

,min
,max ,min

1 c

c
ABS FIS

c c

f z f z y dy



 
   . (3.4) 

The integrand is 0 unless ,min ,maxf fz y      or, ,max ,minf fz y z    . 

 Considering the definition of absorption cross-section, it is not possible that 

,min ,mina f cz       or ,max ,maxa f cz      . Then the pdf is zero for these 

cases. 

 In the fast group, the mean (and thus the minimum and maximum value) of the 

capture cross section is larger than the fission cross section. Hence, different cases can 

be considered as below. 

If ,min ,min ,min ,maxf c a c fz        , one has: 
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
  (3.5) 

If ,min ,max ,min ,maxc f a f cz        , one has: 
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  (3.6) 

If ,min ,max ,max ,maxf c a c fz        , one has 
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
  (3.7) 

 Thus the probability density function for the fast absorption cross-section can be 

summarized as: 
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 (3.8) 

For the thermal group, a similar result can be obtained. The difference in the 

thermal group is that the interval where the values of the thermal fission cross section 

lies is larger than the interval where the thermal capture lies, i.e. the opposite to the 

situation of the fast cross sections. The density function for the thermal absorption 

cross section is given by: 
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 (3.9) 

The theoretical density functions given in Eq. (3.8) and (3.9) are compared with 

the histograms estimated from the samples obtained with the 500 calculations. In the 

specific example the absorption cross-section is the one associated to the point (16, 7, 

7). 

 

Figure 3.1 The theoretical curve and the actual sampled fast (left) and thermal (right) absorption cross 

section at the node (16, 7, 7) for the 500 runs made. 
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 The curves are scaled to the height of the histogram for the purpose of 

comparison, since the actual pdfs given in Eq. (3.8) and (3.9) are larger. As can be 

seen in the figure, the distribution of the input absorption cross section is no longer a 

uniform distribution but more values are found to be close to the mean value. 

 In the calculations based on normally distributed input uncertainties, the 

uncertain absorption cross-sections also follow a normal distribution. In fact when two 

independent random variables are normally distributed, i.e.: 

 
 

 
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,

,

X

Y

X N X

Y N Y




  (3.10) 

then the sum of them provides a random variable Z X Y   that is still normally 

distributed. The resulting pdf for Z is such that:  2 2, X YZ N X Y    . 

3.2 Output uncertainties in the forward problem 

3.2.1 Results from input samples with uniform distributions 

The output distributions are given in terms of histograms and distribution fits. In 

Fig. 3.2 and 3.3 the results for the magnitude and the phase of the calculated noise for 

two points in Case F1 (Forward problem with uniformly distributed uncertain input 

parameters) are shown. Figure 3.2 is for the position where the noise source is, i.e. 

point (16, 16, 7). Figure 3.3 is for the position away from the noise source which is the 

point (16, 7, 7).  
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Figure 3.2 Distributions of the amplitude (top) and phase (bottom) of the noise at point (16,16,7), for 

case F1. Normal density function estimator (red solid line); non-parametric kernel-smoothing 

distribution fit (green dashed line). 

 

 

 
Figure 3.3 Distributions of the amplitude (top) and phase (bottom) of the noise at point (16,7,7), for 

case F1. Normal density function estimator (red solid line); non-parametric kernel-smoothing 

distribution fit (green dashed line). 

The mean, standard deviation and kurtosis values for the plots above will be given 

in Table 3.1 together with the normal case F2. 
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3.2.2 Results from input samples with normal distributions 

The sensitivity analysis presented in the next chapter is based on input samples 

with uniform distribution. However, it is of interest to study how the results can be 

affected by a different choice of probability density function for generating the input 

samples. Hence, input samples with normal distributions whose standard deviation is 

equal to 2.5% of the mean values. Such a standard deviation allows to have 

comparable ranges with the ones from uniform distributions. 

 Figure 3.4 shows the histogram and the distribution estimations for the magnitude 

and phase of the noise in the case F2, at point (16, 16, 7). Similarly Fig. 3.5 shows the 

results at point (16, 7, 7). 

 

Figure 3.4 Distributions of the amplitude (top) and phase (bottom) of the noise at point (16,16,7), for 

case F2. Normal density function estimator (red solid line); non-parametric kernel-smoothing 

distribution fit (green dashed line). 
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Figure 3.5 Distributions of the amplitude (top) and phase (bottom) of the noise at point (16,7,7), for 

case F2. Normal density function estimator (red solid line); non-parametric kernel-smoothing 

distribution fit (green dashed line). 

3.2.3 Comparison between the uniform and normal cases 

The simulations where the input parameters are associated with a normal density 

function are labelled as the normal case. Similarly, the uniform case is related to the 

input parameters being sampled uniformly. As discussed in section 3.1, the uncertainty 

is not directly introduced in the absorption cross section, so this leads to non-uniform 

and non-normal distributions for the latter. 

The distributions of the results are close to a Gaussian for both cases. This 

outcome suggests that the distribution of the output may be rather insensitive to how 

the input uncertainties are distributed. 

 The two cases are compared in Table 3.1 for point (16,16,7) and Table 3.2 for point 

(16,7,7).  
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Table 3.1 The mean, standard deviation and kurtosis values for the noise at point (16, 16, 7). 

Point 

(16, 16, 7) 

Mean Standard deviation Kurtosis 

Uniform Normal Uniform Normal Uniform Normal 

1  5.50796 5.51375 0.37141 0.31668 2.92743 3.27654 

2  3.38934 3.39243 0.22327 0.1974 2.88685 3.22559 

1  3.13742 3.13741 1.634E-04 1.381E-04 2.69854 3.30114 

2  3.1398 3.13982 8.419E-05 7.155E-05 2.82112 2.90292 

 

Table 3.2 The mean, standard deviation and kurtosis values for the noise at point (16, 7, 7). 

Point 

(16, 7, 7) 

Mean Standard deviation Kurtosis 

Uniform Normal Uniform Normal Uniform Normal 

1  0.18195 0.18188 0.01547 0.01296 3.01150 3.40933 

2  0.04146 0.04141 0.00372 0.00307 2.86447 3.29889 

1  3.08838 3.0883 9.701E-04 8.212E-04 2.22584 3.33059 

2  3.0881 3.08809 9.765E-04 8.270E-04 2.22199 3.33221 

 

It is then observed that: 

 

- For the magnitude of the noise 

o The mean value of the normal cases is similar to the uniform cases. 

 

o The standard deviation of the normal case is smaller than the uniform case. 

The random input values generated from the normal distribution has a 

standard deviation of 2.5% of their mean values. As can be seen in the 

example given in Fig. 2.5 the range of possible values that the cross-section 

can take, is larger in the normal case. In the normal case, the probability 

that the value is beyond the range of the uniform case is only about 5%. 

Thus with the values of the input parameters more centered to their mean 

value in the normal cases than in the uniform cases, a smaller standard 

deviation for the results of the normal cases are observed. 

 

o As explained in Chapter 2, the value of the kurtosis describes how peaked 

is a distribution or how concentrated are the values in a sample are to the 

mean value. The kurtosis values in the uniform case are smaller than 3 
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(except for the amplitude of the fast noise at point (16,7,7)) and they are 

always smaller than the values for the normal case. In the latter the values 

are greater than 3. This may indicate that the use of uniform distributions 

leads to somewhat of flatter distributions of the output. Nevertheless, all 

the kurtosis values are close to 3, indicating that the distributions of the 

magnitude are similar to normal distributions. 

 

- For the phase of the noise 

o The mean value of the phases in the uniform case and the normal case are 

similar as the phase across the core deviates little from   in the scenario 

of an absorber of variable strength. 

 

o When comparing between the uniform and normal cases, the behavior of 

the standard deviation for the phase is similar to the one for the magnitude. 

A higher value is obtained in the uniform cases than the normal cases. 

 

o The kurtosis values for the phases again are close to 3. However, in the 

uniform case, a low value of the kurtosis is found at the position (16, 7, 7). 

The histogram of the phases of the noise at position (16, 7, 7) are flatter 

than the histogram of the phases at the position (16, 16, 7). The kernel 

smoothing curve also deviates quite significantly from the normal fitting 

density function. The reason for this behavior can be seen from the 

sensitivity analysis of the phases. At the point where the noise source is, 

the input parameters that impact the phases of the noise are the thermal 

capture, thermal fission, removal cross sections together with the 

frequency at which the calculation is made. However, at point (16, 7, 7) the 

only influential parameter on the phase of the noise is the frequency. Since 

the frequency for the uniform case is also associated to an uncertainty with 

a uniform density function, this tends to flatten the result of the phase in 

a significant way. 

 

3.3 Output uncertainties in the adjoint problem 

As derived in Chapter 2, the thermal adjoint noise induced with a source defined 

in the fast group, has a corresponding relationship to the fast forward noise (see Eq. 

(2.44)), while the thermal adjoint noise from a source defined in the thermal group, 

corresponds to the thermal forward noise (see Eq. (2.45)). The relationships between 

the magnitude of the forward and adjoint noise can be obtained from Eq. (2.44) and 

(2.45), and they read: 
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      †

2,0 1,2 0 1 0, , , ,s s s    r r r r r   (3.11) 

and 

      †

2,0 2,2 0 2 0, , , ,s s s    r r r r r . (3.12) 

The relationships between the phases are given as: 

    †

1,2 0 1 0arg , , arg , ,s s           r r r r   (3.13) 

and 

    †

2,2 0 2 0arg , , arg , ,s s           r r r r . (3.14) 

 From these relationships, the data of the thermal adjoint noise with the adjoint 

source defined in the fast group can be compared with the magnitude and phase of 

the fast forward noise. On the other hand, the data of the thermal adjoint noise with 

the adjoint source defined in the thermal group can be compared to the thermal 

forward noise. 

3.3.1 Results from input samples with uniform distributions 

 The input samples of the cross sections used in the adjoint calculations are the 

same as the ones used in the forward calculations. Then each run provides results that 

satisfy Eqs. (3.11)-(3.14). 

 Figure 3.6 gives the results from the adjoint calculations corresponding to the 

forward problem F1 (see Table 2.5) where the noise is analyzed at (16, 16, 7). The plots 

on the left are about the thermal adjoint noise with an adjoint source defined in the 

fast group, which corresponds to the fast forward noise. The plots on the right show 

the thermal adjoint noise with an adjoint source defined in the thermal group, which 

corresponds to the thermal forward noise. Hence the data of the plots on the left are 

taken from the thermal adjoint noise of case G1 (see Table 2.6) at the position (16, 16, 

7), and the plots on the right are taken from the thermal adjoint noise of case G2 (again, 

see Table 2.6) at the position (16, 16, 7). 

 In Fig. 3.7 the results from the adjoint calculations corresponding to the forward 

problem F1 where the noise is analyzed at (16, 7, 7). The data of the left plots are taken 

from the thermal adjoint noise in case H1 at the position (16, 16, 7), and the plots on 

the right are taken from the thermal adjoint noise in case H2 at the position (16, 16, 

7).  
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Figure 3.6 The adjoint calculations corresponding to the forward noise evaluated at (16, 16, 7) for the 

Case F1. 

 

 

Figure 3.7 The adjoint calculations corresponding to the forward noise evaluated at (16, 7, 7) for the 

Case F1. 
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3.3.2 Results from input samples with normal distributions 

In Fig. 3.8 the results from the adjoint calculations correspond to the forward 

problem F2 (see Table 2.5) where the noise is analyzed at (16, 16, 7). The data of the 

plots on the left are taken from the thermal adjoint noise in case I1 (see Table 2.6) at 

the position (16, 16, 7), and the plots on the right are taken from the thermal adjoint 

noise in case I2 (see Table 2.6) at the position (16, 16, 7). 

 

 
Figure 3.8 The adjoint calculations corresponding to the forward noise evaluated at (16, 16, 7) for the 

Case F2, both with normally distributed input parameters. 

 

In Fig. 3.9 the results from the adjoint calculations correspond to the forward 

problem F2 where the noise is analyzed at (16, 7, 7). The data of the plots on the left 

are taken from the thermal adjoint noise of case J1 at the position (16, 16, 7), and the 

plots on the right are taken from the thermal adjoint noise of case J2 at the position 

(16, 16, 7). 
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Figure 3.9 The adjoint calculations corresponding to the forward noise evaluated at (16, 7, 7) for the 

Case F2, both with normally distributed input parameters. 

3.3.3 Comparison between the uniform and normal cases 

The mean, standard deviation and kurtosis of the histograms given in Figs. 3.6-3.9, 

are summarized in Table 3.3 for the adjoint calculations that correspond to the forward 

noise evaluated at point (16, 16, 7); and in Table 3.4 for the adjoint calculations that 

correspond to the forward noise at point (16, 7, 7). 

 

Table 3.3 The mean, standard deviation and kurtosis values for the adjoint noise corresponding to the 

forward noise at point (16, 16, 7). 

Corresponding 

Forward Point 

(16, 16, 7) 

Mean Standard deviation Kurtosis 

Uniform Normal Uniform Normal Uniform Normal 

†

1,2  
35.6215 35.5647 1.53408 1.25771 2.74896 2.99257 

†

2,2  
21.9152 21.8773 0.76998 0.66309 2.57065 3.39446 

†

1,2  
-0.00418 -0.00418 1.634E-04 1.381E-04 2.69854 3.30114 

†

2,2  
-0.00177 -0.00177 8.419E-05 7.155E-05 2.82112 2.90292 
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Table 3.4 The mean, standard deviation and kurtosis values for the adjoint noise corresponding to the 

forward noise at point (16, 7, 7). 

Corresponding 

Forward Point 

(16, 7, 7) 

Mean Standard deviation Kurtosis 

Uniform Normal Uniform Normal Uniform Normal 

†

1,2  
1.17590 1.17261 0.06549 0.05373 3.14433 3.31726 

†

2,2  
0.26797 0.26698 0.01697 0.01361 2.87900 3.34956 

†

1,2  
-0.05321 -0.05325 9.701E-04 8.212E-04 2.22584 3.33059 

†

2,2  
-0.05347 -0.05350 9.765E-04 8.270E-04 2.22199 3.33221 

 

From the comparison of these results, it can be seen that the output distributions 

of the adjoint calculations are rather insensitive to the input distributions. In both 

cases for the adjoint calculations, the results are approximately distributed according 

to a normal, as the comparison between the kernel smoothing curve and the normal 

fitting curve shows. In particular, the calculated mean values are similar; and smaller 

standard deviation values and higher kurtosis values are estimated in the normal case. 

Such an outcome is consistent with the one for the forward case (see section 3.2.3). 

3.4 Comparison between the forward and adjoint 

calculations 

 The comparison is made only for calculations with uniformly distributed input 

parameters, as the same conclusions can be drawn for the normal cases. 

 

By comparing Table. 3.1 and 3.3 (or 3.2 and 3.4), it can be observed that: 

 

- For the magnitude of the noise 

o The mean values of the magnitude of the forward noise are smaller than the 

adjoint noise. According to Eq. (3.11) and (3.12), the magnitude of the 

forward noise is obtained by multiplying the thermal adjoint noise by the 

thermal static flux. The thermal static flux calculated in the core is smaller 

than unity, thus the magnitude of the adjoint noise is larger than the 

magnitude of the forward noise. 

o As the values of the magnitude of the adjoint noise are larger than the values 

of the forward noise, the standard deviation is also rescaled and larger for the 

adjoint noises. 
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o The lower value of the kurtosis for the adjoint calculations implies that the 

distributions are less peaked than the ones obtained from the forward 

calculations. Then the uncertainty in the input parameters has a slightly larger 

impact on the adjoint calculations. 

 

- For the phase of the noise 

o The mean value is shifted by   according to Eq. (3.13) and (3.14). 

 

o The standard variation remains the same because the shift of a random 

variable X   by adding a constant c   has no effect: 

    X c X     (3.15) 

However, since the absolute mean value of the phase becomes smaller while 

the standard deviation remains the same in the adjoint problem, then the 

ratio /   is considerably larger compared to the forward problem. The 

interval of the possible value for both cases is the same, but for the adjoint 

problem, it is associated to a smaller mean value. Thus the range of possible 

values with respect to the mean value is larger. 

 

o The kurtosis values are close. If the output results for the adjoint problem are 

denoted as the random variable Y  and the results for the forward problem 

are denoted as the random variable X , then their kurtosis values are equal 

to each other because of the shift of  : 

  
     

 

44

4 4

X Y

E YE X
k X k Y

  

 

          (3.16) 

The similar kurtosis and standard deviation value lead to distributions that do 

not differ much from each other. 
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4 Sensitivity analysis 

The sensitivity analysis is based on the calculations in which the uncertainty of the 

input parameters is uniformly distributed. 

4.1 Sensitivity analysis for the forward problem 

 The sensitivity analysis for the forward problem is based on the calculations for 

the case F1 (see Table 2.5). 

 The forward noise source is placed at the point (16, 16, 7) and the sensitivity 

analysis is carried out for the noise located at the point where the source is, and at 

another point away from the source but on the same level as the source, i.e. (16, 7, 7). 

The positions of the source and of the noise are illustrated in Fig. 4.1. 

 

 

Figure 4.1 Axial level 7 of the core nodalization: position of the source (red) and the positions at which 

the noise is evaluated (orange). 
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4.1.1 Correlations between uncertain input parameters and noise in the 

same node 

 The Pearson correlation coefficients are calculated between the cross-sections in 

one node and the magnitude and the phase of the noise in the same node. The 

correlations between the source frequency and the noise, and between the noise 

source strength and the noise are also included. 

 In Figs. 4.2 and 4.3 the results are shown for the points (16, 16, 7) and (16, 7, 7), 

respectively. 

 
Figure 4.2 The Pearson correlation coefficient between the cross sections at the point (16, 16, 7), the 

frequency, the source strength and the noise at (16, 16, 7) for the Case F1. The plot for the magnitude 

is shown on the left and the phase on the right. 

 

 
Figure 4.3 The Pearson correlation coefficient between the cross sections at the point (16, 7, 7), the 

frequency, the source strength and the noise at (16, 7, 7) for the Case F1. The plot for the magnitude is 

shown on the left and the phase on the right. 
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Magnitude of the noise 

 

The thermal capture cross-section in the node where the source is, shows a 

negative correlation to the magnitude of both the fast and thermal noise in the same 

node. In fact an increase in the thermal capture cross section leads to a decrease in 

the thermal static flux. Less thermal neutrons induces less fissions, and the fast 

neutron flux decreases too because less fast neutrons are released from the fissions. 

As mentioned earlier, the “power reactor noise” is proportional to the square of the 

static flux, and thus decreasing both the fluxes cause the noise in both groups to 

decrease as well. The correlation to the magnitude of the fast noise is even slightly 

stronger than to the thermal noise. The reason might be the capture of one thermal 

neutron would mean that a fission together with 2-3 fast neutrons are lost. In view of 

this, the fast flux may be more sensitive to the thermal capture cross-section. 

The thermal fission cross-section in the node (16, 16, 7) shows a significant 

positive correlation to the fast noise and no correlation to the thermal noise in the 

node (16, 16, 7). This can be explained as follows. When the static fission cross-section 

increases, more thermal neutrons are absorbed to induce fission. The primary effect 

would be a decrease in the thermal flux and an increase in the fast flux. This loss of 

thermal neutrons can be compensated by the more removal (down scattering of fast 

neutrons). More down-scattered fast neutrons would cause the fast flux to decrease, 

but such a reduction is largely counterbalanced by the multiple fast neutrons that are 

produced per fission. Thus, the increase of thermal fission cross-section will result in 

an increase of the fast flux and consequently the fast forward noise, while the thermal 

noise is almost unaffected. 

The correlation between the thermal absorption cross-section and the noises is a 

combined effect of the thermal fission cross-section and the thermal capture cross-

section. The thermal absorption cross section only shows significant negative 

correlation to the thermal noise. On the other hand the fast noise is not affected, as 

the more fissions compensates the more down-scattering and the more thermal 

captures. 

A positive correlation is found between the removal cross-section in the node (16, 

16, 7) and the magnitude of both the fast and thermal noise in the node (16, 16, 7). 

The increase of removal cross-section indicated better moderation of the neutrons and 

thus more thermal neutrons that have a large probability of inducing fission reactions 

are produced. This results in both an increase in the thermal flux and fast flux and 

consequently the fast noise and thermal noise. 

The calculations are carried out around the frequency of 1 Hz. As it can be seen in 

either Fig. 4.2 or Fig. 4.3, the change of frequency does not affect the magnitude of 

the noise. To explain this behavior, the real part of the dynamic equations can be taken. 

In fact the imaginary part is very small and the magnitude of the noise can be 

approximated with the value of the real part. For instance, the complex noise 

computed at the location of the source is -5.5975 + 0.0234i, and the magnitude is 
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5.5975. For the node (16, 7, 7), the complex noise is -0.1845 + 0.0098i, and the 

magnitude is 0.1847. So the real part of the noise is very close to the magnitude. The 

real part of the dynamic equation is derived as follows. 

The dynamic equations are: 

 

       

 
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  (4.2) 

The fast noise, thermal noise and the noise source consist of a real and an imaginary 

part as: 

      Re Im,X X iX  r r r , (4.3) 

The latter is inserted into Eq. (4.1), and the following expressions are obtained: 
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  (4.4) 
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  (4.5) 

The real part of the first term in the fast equation is: 

  1,0 1,ReD   r . (4.6) 

The real part of the second term in the fast equation is: 

      ,1,0 ,0 1,Re

1

a r
v




 
    
 

r r r . (4.7) 

Some approximations can be made. Since 1v  , one can assume that 
1

0
v


. In fact, 

using the kinetic data given in Table 2.3 with 2 6.2832f   , the numerical value 
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of ω/𝑣1 is about 3.53 × 10−7. The second term becomes: 

      ,1,0 ,0 1,Rea r     r r r   (4.8) 

The real part of the third term in the fast equation is: 
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For this term, the following approximation is introduced 
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The numerical value of the two expressions in Eq. (4.10), using the kinetic data value 

given in Table. 2.3 is 0.9944 and 
57 10  respectively. The third term can then be 

written as: 
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Similarly the fourth term in the fast equation can be simplified as: 
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In the real part of the thermal equation the term  2,Im

2v


 r  can be neglected, since 

2v   and  2,Im 0 r . Under this assumption, the real part of Eq. (4.5) can be 

written as: 

            2,0 2,Re ,2,0 2,Re ,0 1,Re 2,0 ,2,Rea r a
D             r r r r r r   (4.13) 

In summary, the real part of the noise calculation can be approximated as: 
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  (4.14) 

            2,0 2,Re ,2,0 2,Re ,0 1,Re 2,0 ,2,Rea r a
D             r r r r r r   (4.15) 

 In the current case of frequencies around 1 Hz, Eq. (4.14) shows that, the real 
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part which dominates the value of the magnitude of the noise, is not influenced by the 

frequency. 

A change in the strength of the noise source causes the noise to vary with the 

same trend. This influence decreases with increasing distance from the noise source 

as expected. Nevertheless, by moving away from the source, the strength of the noise 

source becomes more and more dominant over the other parameters. In addition, the 

cross sections at a point away from the source, have almost no impact on the noise 

calculated. The only contribution from the cross-sections is due to the removal cross 

section, even though it is weak. This can be seen from Fig. 4.3. 

 

Phase of the noise 

 

When the phase of the fast noise is evaluated at the position where the noise 

source is, all the input parameters have no significant effect, except the frequency (see 

Fig. 4.2).  

As regards the phase of the thermal noise at the location of the noise source, the 

relevant correlations are with the thermal capture cross-section, the fission cross-

section and the removal cross-section, and with the frequency (again, see Figure 4.2). 

The thermal capture cross section shows a positive correlation, while the thermal 

fission and removal cross section shows a negative correlation. The reasons for these 

correlations are still unclear and further investigations are needed. 

The frequency has negative correlations to the phase of both the fast and thermal 

noise. The correlation with the frequency increases in absolute value as the position 

for the evaluation of the noise gets away from the source, while the influence of the 

other parameters vanish (compare Fig. 4.2 and Fig. 4.3). 

In Fig. 4.4 the correlation coefficients between the noise and the frequency are 

given for all the nodes over the plane where the source is placed. The spatial behavior 

of the correlation is such that the Pearson coefficient reaches values very close to -1 

after few nodes from the source, which means that the frequency and the phases are 

almost negatively linear correlated in a large part of the core. This increase in absolute 

value of the correlation also indicates that the phase delay of the noise is more 

sensitive to the change in frequency as the position gets further away from the noise 

source. 
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Figure 4.4 The correlation between the frequency and the phase of the fast neutron noise (left) and of 

the thermal neutron noise (right) at different nodes in level 7. 

4.1.2 Pearson correlation coefficient between the thermal capture cross-

section over level 7 and the noise in a fixed position 

The influence of the cross-sections in other nodes, on the noise calculated at the 

source point is investigated. For instance, the cross-sections are taken at the point (16, 

7, 7), and their correlations with respect to the noise at point (16, 16, 7) are calculated 

and plotted in Fig. 4.5. 

 
Figure 4.5 Pearson correlation coefficient between each type of cross-section at point (16, 7, 7) and the 

magnitude of the noise (left), and the phase of the noise (right) at the point where the noise source is. 

 

Figure 4.5 shows that the cross sections in a point away from the source will not 

influence the noise calculated in the node where the source is. As seen in Fig. 4.2 

where the noise is taken at the position of the source, the strongest influence to both 

the magnitude and the phase of the noise are from the thermal capture cross section 

of the same node. Thus if there should be any influence from any kind of cross-section 

in other nodes to the noise calculated in the node (16, 16, 7), it should most probably 

be thermal capture cross-section. Hence the correlation between this cross-section 
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taken in all the nodes of axial level 7 and the noise at the position (16, 16, 7) is 

investigated. The relative Pearson correlation coefficients are calculated and shown in 

Fig. 4.6. 

 

 

Figure 4.6 The spatial variation of the correlation between the input thermal capture cross sections of 

the nodes in level 7 and the output the magnitude of the fast (left) and thermal (right) noise at the 

node (16, 16, 7). 

 Only the thermal capture cross-section from the same node influences the noise 

calculated at (16, 16, 7). The value of the Pearson correlation coefficient for the 

thermal capture cross-section in all the other nodes is smaller than 0.2, and is 

considered to be negligible. No smooth decrease of the correlation is observed. 

 For the correlations between the noise evaluated in position (16,7,7) and cross-

sections at the position of the noise source, results are summarized in Fig. 4.7. In this 

case, the relevant effects are due to the thermal capture cross-section and the thermal 

removal cross-section. 

In addition the correlation between the output taken at the point (16, 7, 7) and 

the thermal cross-section taken in all the nodes on level 7 is analyzed (see Fig. 4.8). 

Although the cross-section in the neighborhood of where the noise is evaluated has a 

significant impact, the strongest correlation is still with the cross-section in the node 

where the noise source is. 
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Figure 4.7 Pearson correlation coefficient between each type of cross-section at point (16, 16, 7) where 

the noise source is and the magnitude of the noise (left), and the phase of the noise (right) at point 

(16, 7, 7). 

 

 

Figure 4.8 The spatial variation of the correlation between the input thermal capture cross sections of 

the nodes in level 7 and the output the amplitude of the fast and thermal noise at the node (16, 7, 7). 

 

 From Fig. 4.6 and Fig. 4.8, it can be concluded that the cross-sections in the node 

where the source is defined, will play a strong role in the calculation of the magnitude 

of the noise at both the same node and also other nodes in the core. 

4.1.3 Pearson correlation coefficient between source strength and noise 

magnitude over level 7 

The Pearson correlation coefficient between the strength of the noise source and 

the magnitude of the noises of the nodes in level 7 is plotted in Fig. 4.9. The strength 

of the source has positive, significant correlations to the magnitude of the noise taken 

in any node on level 7 (the Pearson correlation coefficient is above 0.2 for all the 

nodes). However, no smooth variation is observed. 
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Figure 4.9 The correlation between the strength of the noise source and the magnitude of the fast 

neutron noise (left) and of the thermal neutron noise (right) at different nodes in level 7. 

4.2 Sensitivity analysis for the adjoint problem 

 The input uncertainties for the adjoint calculations are defined according to a 

uniform probability density function, as for the sensitivity analysis of the forward 

problem. Thus the adjoint cases that are analyzed, are case G1, G2, H1 and H2 (see 

Table 2.6). 

The adjoint source strength is equal to the one used for the noise source in the 

thermal absorption cross section. The relationships between the forward and adjoint 

problem are given by Eqs. (2.45), (2.46) and (3.13)-(3.16). Since the forward noise is 

evaluated at points (16, 16, 7) and (16, 7, 7), the sources for the adjoint problem are 

defined in these two points. In fact in the adjoint problem the position of the source 

corresponds to the position of the forward noise and the position of the adjoint noise 

corresponds to the position of the forward source.  

4.2.1 Correlations between the uncertain input parameters and the noise 

in the same node 

 For both the G cases and the H cases, the adjoint noise is evaluated at point (16, 

16, 7) and point (16, 7, 7). The Pearson correlation coefficient is calculated between 

the thermal adjoint noise and the cross-sections taken in the same node. 

Figure 4.10 shows the results for point (16, 16, 7), in the case G1 (source in the 

fast group) and in the case G2 (source in the thermal group). The correlations of the 

adjoint noise with the frequency and the strength of the source are also calculated and 

included in the plot. 
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Figure 4.10 The Pearson Correlation Coefficient between the input parameters and (a) the magnitude 

of the thermal adjoint noise (left figures) and (b) the phase of the thermal adjoint noise (right figures) 

at the same point (16, 16, 7) in case G1 (top figures) and G2 (bottom figures). 
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Figure 4.11 shows the correlations between the thermal adjoint noise from the 

calculations of case G1 and G2, and the input cross sections, when all the quantities 

are taken at point (16, 7, 7). 

 

Figure 4.11 The Pearson Correlation Coefficient between the input parameters and (a) the magnitude 

of the thermal adjoint noise (left figures) and (b) the phase of the thermal adjoint noise (right figures) 

at the same point (16, 7, 7) in case G1 (top figures) and G2 (bottom figures). 
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Figure 4.12 and Figure 4.13 are, respectively, for point (16, 16, 7) and point (16, 7, 

7), and they show the correlations between the thermal adjoint noise from the 

calculations of case H1 (source in the fast group) and H2 (source in the thermal group), 

and the cross sections. 

 

Figure 4.12 The Pearson Correlation Coefficient between the input parameters and (a) the magnitude 

of the thermal adjoint noise (left figures) and (b) the phase of the thermal adjoint noise (right figures) 

at the same point (16, 16, 7) in case H1 (top figures) and H2 (bottom figures). 
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Figure 4.13 The Pearson Correlation Coefficient between the input parameters and (a) the magnitude 

of the thermal adjoint noise (left figures) and (b) the phase of the thermal adjoint noise (right figures) 

at the same point (16, 7, 7) in case H1 (top figures) and H2 (bottom figures). 

 

Figures 4.10 and 4.12 and Figures 4.11 and 4.13 show almost identical results, as 

the G cases and H cases differ only in the position of the source in the core. Therefore 

only the results given in Figure 4.10 and 4.11 are commented below.  

In Figure 4.10 (plots on the top), the magnitude of the thermal adjoint noise of 

case G1 (i.e., the source is in the fast group) is affected by the thermal capture cross 

section according to a negative correlation; and by the thermal fission cross section 

according to a positive correlation. These two opposite effects result in an insensitive 

behavior of the magnitude of the thermal adjoint noise to the uncertainty in the 

thermal absorption cross-section. The other influencing input parameter is the 

strength of the adjoint noise source, and this plays a major role. 

As shown in the plots at the bottom of Figure 4.10, the magnitude of the thermal 

adjoint noise in case G2 (i.e., the source is defined in the thermal group) is negatively 

correlated to the thermal capture cross-section (significant effect) and the thermal 

fission cross-section (slight effect). This results in a more negative correlation with the 

absorption cross section. A weak correlation is also found with the removal cross-

section. Again, the most influential input parameter is the strength of the source. 
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The frequency shows no correlation to the magnitude of the noises in both cases 

G1 and G2. Such a behavior is the same as in the forward problem. 

The phase of the thermal adjoint noise in case G1 (Figure 4.10, plot on the top-

right) is only sensitive to the frequency of the source. For case G2 (Figure 4.10, plot on 

the bottom-right), there is a positive correlation with the capture cross-section, and a 

negative correlation with the removal cross-section, with the thermal fission cross-

section, and with the frequency. Similarly to the forward problem, the strength of the 

source has no impact on the phase of the thermal adjoint noise. 

The results for cases G1 and G2 at point (16, 7, 7) are given in Fig. 4.11. The 

magnitude of the thermal adjoint noise in case G1 (plot on the top-left) responds to 

the change in the cross-sections in a similar manner to what occurs for point (16, 16, 

7). However, the correlations are weaker. Such a behavior was also observed for the 

forward problem. 

For the case G2, the correlation between the cross-sections and the magnitude of 

the thermal adjoint noise are different for point (16, 16, 7) and point (16, 7, 7). As 

shown in the plot on the bottom-left of Fig. 4.11, the thermal absorption and removal 

cross-sections are no longer influential at point (16, 7, 7). On the other hand, the 

thermal fission cross-section has a weak positive effect on the magnitude of the 

thermal adjoint noise. 

For the phase at the point away from the source, i.e. (16, 7, 7), only the frequency 

has a strong impact. 

4.2.2 Pearson correlation coefficient between input parameters and 

adjoint noise from different nodes 

Similarly to the forward problem, the correlations between the cross sections 

taken in one node and the adjoint noise evaluated in a different node are investigated.  

The analysis is performed for both G cases and H cases (Table 2.6). The objective 

is to evaluate how the adjoint noise at the position of the noise source is influenced 

by the cross-sections of another node; and how the adjoint noise at a point away from 

the source is influenced by cross-sections at the location of the source. 

Figures 4.14 and 4.15 summarize the results for the G cases. In Fig. 4.14 the cross-

section data are taken at point (16, 7, 7) and the thermal adjoint noise is taken at point 

(16, 16, 7). In Fig. 4.15, it is the opposite: the cross-section data are taken at (16, 16, 7) 

and the thermal adjoint noise is taken at (16, 7, 7). 
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Figure 4.14 Pearson correlation coefficient between cross-sections at point (16, 7, 7) and (a) magnitude 

of the thermal adjoint noises (left figures) and (b) phase (right figures) at point (16, 16, 7) using the 

data from cases G1 (top figures) and G2 (bottom figures). 
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Figure 4.15 Pearson correlation coefficient between cross-sections at point (16, 16, 7) and (a) 

magnitude of the thermal adjoint noises (left figures) and (b) phase (right figures) at point (16, 7, 7) 

using the data from cases G1 (top figures) and G2 (bottom figures). 
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Figures 4.16 and 4.17 are referred to the H cases, where the source is located at 

(16, 7, 7). In Fig. 4.16 the cross-section data are taken at (16, 16, 7) and the thermal 

adjoint noise is taken at (16, 7, 7). In Fig. 4.17 the cross-section data are taken at (16, 

7, 7) and the thermal adjoint noise is taken from point (16, 16, 7). 

 

 
Figure 4.16 Pearson correlation coefficient between cross-sections at point (16, 16, 7) and (a) 

magnitude of the thermal adjoint noises (left figures) and (b) phase (right figures) at point (16, 7, 7) 

using the data from cases H1 (top figures) and H2 (bottom figures). 
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Figure 4.17 Pearson correlation coefficient between cross-sections at point (16, 7, 7) and (a) magnitude 

of the thermal adjoint noises (left figures) and (b) phase (right figures) at point (16, 16, 7) using the 

data from cases H1 (top figures) and H2 (bottom figures). 

 

From Figs. 4.14 and 4.16, it can be concluded that the amplitude and phase of the 

thermal adjoint noise at the location of the source are not affected by the cross-

sections in other nodes. 

Figures 4.15 and 4.17 show that, when the source is defined in the thermal group, 

the magnitude of the thermal adjoint noise at a point away from the source, is slightly 

influenced by some of the cross-sections at the node where the source is placed. These 

influences are due to a weak negative correlation with the thermal capture cross-

sections (and with the thermal absorption cross-section too), and to a positive 

correlation with the removal cross-section. Again, the phase is not affected by the 

cross-sections. 

In the forward problem, the noise evaluated at point (16, 7, 7), far from the source, 

is not influenced by the cross-sections at the same point (except a weak effect of the 

removal cross-section), but rather by the cross-sections at the point where the source 

is (see Figs. 4.3 and 4.7). The adjoint problem equivalent to this forward problem 

corresponds to the H cases, and the relative results are given in Fig. 4.12 and 4.17. In 

these adjoint calculations, the source is defined in (16, 7, 7) and the adjoint noise is 
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evaluated at point (16, 16, 7). In Fig. 4.12 the adjoint noise at (16, 16, 7), in the H cases, 

is negatively correlated to the thermal capture cross-section and positively correlated 

to the thermal fission cross-section, being the cross sections taken at (16, 16, 7). In Fig. 

4.17, a different behavior is observed with respect to the one from Fig. 4.12. The cross 

sections are taken at (16, 7, 7) where the adjoint source is defined, and the thermal 

absorption and thermal capture cross-sections have a negative correlation with the 

magnitude of the thermal adjoint noise of case H2 (see the bottom-left plot in Fig. 

4.17). In addition, the removal cross section has a positive correlation with the 

magnitude of the thermal adjoint noise of case H2. The thermal fission cross-section 

is important in Fig. 4.12, but it is negligible in Fig. 4.17. The same kind of behavior can 

also be observed in the G cases. Thus the adjoint noise evaluated at a point away from 

the source may be affected by the cross-sections over the nodes in the core, in 

different ways. 

4.2.3 Pearson correlation coefficient between the source frequency and 

the phase of the adjoint noise over level 7 

In the forward case, the correlation between the source frequency and the phase 

of both the thermal and fast noise increases in absolute terms, with increasing 

distance from the source. In the adjoint calculations, a similar phenomenon is 

observed.  

In the adjoint problem an adjoint source is given in a fixed location and the adjoint 

noise is evaluated in the different points of the core. This corresponds to a forward 

problem where the noise source is moved in the core, while the noise response is 

measured in the fixed position of the adjoint source.  

The G cases, which have the adjoint noise source defined in point (16, 16, 7), are 

considered. The analysis of the correlation between the source frequency and the 

thermal adjoint noise over the entire level 7 is shown in Fig. 4.18. An increase in the 

absolute value of the Pearson correlation coefficient between the frequency and the 

thermal adjoint noise is estimated as one moves away from the adjoint source. This 

smooth increasing variation is similar to the results obtained from the forward cases.  
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Figure 4.18 Radial dependence of the correlation between the frequency and the phase of the thermal 

adjoint noise for case G1 (left) and for case G2 (right). 

4.3 Comparison between the forward and adjoint 

calculations 

The comparison between the results of the forward and adjoint calculations points out 

that: 

 

1. In both types of calculations, the most significant correlations between cross-

sections and noise taken in the same node, are given at the location of the 

noise source. 

2. In both types of calculations, the noise at the point where the source is defined, 

is only influenced by the cross-sections taken in the same node, while the effect 

of the cross-sections from other nodes is negligible. 

3. In the forward calculations, the noise at other points than the source location, 

is affected by the cross-sections associated to the location of the source, and 

this is also observed for the adjoint calculations from the cases G2 and H2. 

 

According to Eqs. (2.44) and (2.45), the sensitivity analysis for the adjoint 

problem can be compared with the sensitivity analysis for the forward problem as 

follows. 

In the forward problem, the noise evaluated in the position of the source is 

influenced only by the cross-sections in the same node (see Figs. 4.2 and 4.5). In the 

corresponding adjoint problem, a similar outcome is obtained (see Figs. 4.10 and 4.14). 

However, there are differences in the correlations calculated between the cross-

sections and the magnitude of the noise taken at the same point (16, 16, 7) where the 

source is. The comparison between Fig. 4.2 (the forward case) and Fig. 4.10 (the 

adjoint case), shows that the correlation between the thermal fission cross-section 

and the thermal adjoint noise of case G1 (which corresponds to the fast forward noise) 

is found to be stronger than the one in the forward case. The removal cross-section 
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has positive correlation with the fast forward noise, while it has no impact on the 

thermal adjoint noise of case G1. In the forward and adjoint calculations, the influence 

from the strength of the noise source is also stronger. 
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5 Summary and conclusions 
 This thesis work provides an investigation of the effect of possible input 

uncertainties on reactor noise calculations by making use of the neutronic tool CORE 

SIM and a statistical methodology for input uncertainty propagation to the code 

outputs. Both forward and adjoint problems are considered. The uncertain input 

parameters included in the study, are the static neutron macroscopic cross-sections, 

and the strength and frequency of the neutron noise source. These input uncertainties 

are assumed to be uniformly or normally distributed. 

 The core is discretized into a large number of nodes and the calculations are made. 

Two points are chosen where the forward noise is evaluated. The first point is the 

position where the source is located at, the second point is a position away from the 

source. Adjoint calculations corresponding to the forward problem are also performed. 

Using the input and output samples, the sensitivity analysis is carried out. 

 From the uncertainty analysis, the distribution of the calculated forward noise is 

close to a normal distribution regardless of how the uncertain input parameters are 

distributed. However, the distribution of the input parameters still has some influence 

on the results as the distributions of the outputs show a more peaked behavior when 

input normal distributions are used. Furthermore, the phase of the forward noise at 

the point away from the source shows a flattened distribution and this is due to the 

dependency on the frequency. A similar general behavior for the adjoint calculations 

is also observed. 

 From the sensitivity analysis of the forward problem, it is seen that only the 

macroscopic cross-sections in the thermal group and the removal cross-section will 

influence noise calculations. The magnitude of the noise at the point where the source 

is located at, will only be impacted by the cross-sections of the same node. However, 

the noise located at a position away from the source will be influenced by the cross-

sections in the node where the source is. The phase in the node where the source is 

will be influenced by both the static macroscopic cross-sections and the frequency. 

The phase at other nodes however, will only be affected by the frequency. The 

behavior of the corresponding adjoint calculations in general are the same as the 

forward calculations, but differences still exist as one would expect as the structure of 

the equation solved are changed. 

 This project represents the first effort to assess the impact of input uncertainties 

on reactor noise calculations. Future studies may be conducted on different aspects. 

As mentioned above, the input uncertainties were assumed normally or uniformly 

distributed. However, more realistic quantification of the uncertainties in the cross-

sections can be based on experimental data. Although diffusion coefficients were not 

included in this work, they may be a source of uncertainty that cannot be disregarded. 

About the sensitivity analysis, further work is needed for a better understanding of the 

interplay between input parameters, uncertainties and neutron noise. For instance, a 

closer analysis of the behavior of the noise phase may be of particular interest. 
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