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1
Introduction

Attempting to understand the nature of cosmological inflation has united some of
the most exciting fields of both experimental and theoretical physics. The inves-
tigation utilizes the oldest light in the universe, the cosmic microwave background
(CMB) radiation, as a tool to probe the physics of how the universe is believed to
have inflated to at least 1026 times its original size, some 10−36 seconds after the Big
Bang singularity. Although the CMB appears to be homogeneous on a larger scale,
closer inspection has shown it to have tiny inhomogeneities, known as temperature
anisotropies, that are presumed to be the result of quantum fluctuations during in-
flation. This implies that there is a picture across the whole sky, on the scale of
the universe, that can be traced back to the quantum scale fluctuations in the very
early universe.

In attempting to explain these observations, an inflationary paradigm has been con-
structed, and for the single-field slow-roll model, inflation is sourced by the scalar
inflaton field on de Sitter (dS) spacetime. To account for temperature anisotropies
measured in the CMB, models suggest that the universe inflated unevenly due to
scalar perturbations of the dS metric induced by quantum fluctuations of the inflaton
field. More specifically, the temperature anisotropies are traced back to correlation
functions of the scalar perturbations of the metric, and subsequently, correlation
functions of the inflaton fluctuations. Observational evidence suggests that the
scalar perturbations of the metric are nearly Gaussian and scale invariant [1], which
is interpreted as the inflaton being scale invariant and weakly coupled, as the path
integral measure of a free theory is Gaussian. In the case of single-field slow-roll
inflation, the growth of the metric is facilitated by the inflaton field slowly rolling
down a nearly flat potential, such that the self-interaction of the inflaton is sup-
pressed during the period of inflation, resulting in a weakly coupled theory, with
nearly Gaussian 2-point correlation functions [2]. Although observations suggest
nearly Gaussian and scale invariant perturbations of the metric, measuring non-
Gaussianity, which corresponds to measuring the interaction of the inflaton field [3],
would significantly advance our understanding of inflationary dynamics [1]. A non-
Gaussian measurement would, in terms of correlation functions, be the measurement
of a 3-point correlation function of the scalar perturbation of the metric, and ob-
serving large non-Gaussianity would suggest a strongly interacting inflaton. Issues
such as these call for the further investigation of correlation functions of quantum
field theories at various coupling strengths on de Sitter spacetime.

Holography provides tools to map gravitational theories to field theories, and, by
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1. Introduction

formulating the gravitational theory in different ways, it is possible to vary the field
theory it maps to. Moreover, field theory correlation functions to be computed
holographically by relating them to gravitational computations. Motivated by cur-
rent issues in inflation, this thesis aims to use holography to study the correlation
functions of a strongly coupled field theory on dS4. This is accomplished using
a configuration known as the D3/D7 scalar slipping mode [4], which will now be
considered. By first embedding a probe D7-brane on the gravitational side of the
AdS5/CFT4 correspondence [5], where AdS5 is foliated by slices of dS4, it is possible
to add massive flavor degrees of freedom to a strongly coupled field theory on dS4,
breaking conformal invariance. In this case, there is a scalar field on the worldvolume
of the D7-brane that corresponds to a massive N = 2 hypermultiplet of flavor fields
in the field theory. Then, minimizing the worldvolume of the D7-brane corresponds
to computing the 1-point function of the hypermultiplet on dS4. Holographically
computing the 1-point function of a strongly coupled hypermultiplet of flavor fields
on dS4, dual to the probe D7-brane slipping mode, is the objective of this thesis.

Previous studies have been conducted using holography as a tool to study strongly
coupled quantum field theories on dS4. In [6], the stress-energy tensor of a strongly
coupled conformal field theory was studied on the de Sitter static patch using holog-
raphy. In [7], the holographic dual of a massive probe D7-flavor brane embedded
in dS4-sliced AdS5 was studied numerically. In this case, the dilaton, axion and
self-dual five form field were retained at the level of the D7-brane action. Similar
D3/D7 configurations have been used to study separate topics, such as [8], where
a probe D7-brane was used to numerically compute the mass and condensate of a
field theory on AdS4.

This thesis is organized as follows. Chapter 2 sets the scene for holographically
computing strongly coupled field theories on de Sitter space. Section 2.1 introduces
the cosmic microwave background, inflation, and the inflaton field. Section 2.2
discusses some concepts in quantum field theory, including coupling, divergences,
renormalization, beta functions, the large Nc limit, symmetries, and N = 4 Super
Yang-Mills theory. Section 2.3 introduces string theory, type IIB superstring theory,
and supergravity. Section 2.4 introduces D-branes and their role in string theory.
Section 2.5 introduces the AdS/CFT correspondence. Section 2.6 covers the relevant
coordinate systems for hyperspheres, anti-de Sitter, de Sitter, and how foliation is
performed on anti-de Sitter spacetime. Section 2.7 discusses how to add flavor to
AdS/CFT, with an emphasis on the D7-brane slipping mode. In section 3.1 a mas-
sive probe D7-brane is embedded in AdS5 × S5, where AdS5 is foliated Minkowski
spacetime, and the action and boundary asymptotics of the scalar slipping mode are
computed. Section 3.2 discusses holographic renormalization and boundary condi-
tions for the slipping mode. In section 3.3 the flat-slicing slipping mode equation
of motion (EOM) is solved numerically and compared to the known supersymmet-
ric background solution to ensure the numerical solver is functioning correctly. In
section 4.1.1 a probe D7-brane is embedded in dS4-sliced AdS5. In section 4.1.2,
asymptotic solutions at the boundary are discussed. In section 4.1.3 the asymptotic
solution is acquired for dS4-sliced AdS5 by performing a near-boundary expansion.

2



1. Introduction

In section 4.2 the slipping mode EOM is solved numerically in this background for
both small and large masses. In section 4.3 the correction to the mass is computed
by performing a large mass expansion. In section 4.4 coordinates are switched in or-
der to compute the smallest mass solutions located behind the de Sitter horizon. In
section 4.4.1 the embedding is described in the new coordinates, where there is the
possibility of using new boundary conditions. In section 4.4.2 the analytical form
of the smallest mass solutions is acquired using the new boundary conditions. In
section 4.5, the slipping mode EOM is solved behind the horizon using two separate
boundary conditions for both small and large masses.
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2
Background

2.1 Inflation
The inflationary paradigm is the collection of models in cosmology that describe
cosmic inflation, which is a period in the early universe in which space expanded
exponentially, approximately 10−34 seconds after the big bang singularity. A cosmic
observable that is believed to probe this process is the cosmic microwave back-
ground (CMB) radiation, which is the thermal black-body radiation of temperature
T ≈ 2.7K leftover from the recombination epoch, some 300,000 years after the big
bang. This radiation is present across the whole sky, and nearly homogeneous, ex-
cept for small fluctuations on the order of 10−5, known as temperature anisotropies
[9]. Observations by the WMAP satellite have confirmed these anisotropies to great
accuracy [10]. Inflationary models suggest these temperature anisotropies may be
traced back to quantum fluctuations during the very early universe.

Cosmological inflation is described by a flat Friedmann-Robertson-Walker universe
with accelerating scale factor ä(t) > 0, equivalent to a shrinking co-moving horizon
d
dt

(aH)−1 < 0, where H = ∂t ln a is the Hubble parameter. In this context, the
Friedmann equation reads

H2 =
(
ȧ

a

)2
= ρ

3M2
P

, (2.1)

where Mp is the Planck mass, and ρ is the field density. Inflation must be sustained
long enough for the scale factor to grow by a factor of e60, during which H is approx-
imately constant, yielding an exponential scale factor a(t) ≈ eHt [9]. Consequently,
the geometry during inflation is approximately de Sitter (dS), which in the spatially
flat gauge reads

ds2 = −dt2 + a2(t)δijdxidxj, (2.2)

where i, j = 1, 2, 3. For single-field slow-roll inflation, the exponential growth is
sourced by a scalar inflaton field φ, that is minimally coupled to gravity, with a
potential that is almost flat. The model combines the Einstein-Hilbert action with
that of a scalar field S = SEH + Sφ, given by

S =
∫
dx4√−g

(1
2R−

1
2g

µν∂µφ∂νφ− V (φ)
)
. (2.3)

where the metric is given by (2.2), and V (φ) is the inflaton potential. Extremizing
the inflaton action yields the equation of motion
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2. Background

φ̈+ 3Hφ̇+ V ′(φ) = 0, (2.4)

where V ′ = ∂φV . Then, by combining the energy-momentum tensor Tµν = − 2√
−g

δSφ
δgµν

with the assumption of a perfect fluid T µν = diag{ρ,−p,−p,−p}, the field pressure
and density can be expressed as

ρ = 1
2 φ̇

2 + V (φ), p = 1
2 φ̇

2 − V (φ). (2.5)

Combining the scalar field density (2.5) with the Friedmann equation (2.1), then
gives the constraint

3M2
PH

2 = 1
2∂tφ+ V (φ). (2.6)

The slow-roll regime is characterized by φ̈ � Hφ̇ ∼ V ′(φ) for equation (2.4), and
φ̇2 � M2

PH
2 ∼ V (φ) for equation (2.1). This ensures that the field rolls slowly

due to the flat potential V (φ). This regime is commonly described by the slow-roll
parameters

ε = φ̇2

2M2
PH

2 = − Ḣ

H2 , η = − φ̈

Hφ̇
= Ḧ

H3 (2.7)

where the spacetime inflates as long as ε, η � 1.

On a quantum scale, the inflaton field fluctuates φ(t, xi) = φ(t)+δφ(t, xi), where φ(t)
is a spatially homogeneous solution, and δφ(t, xi) is the fluctuation. The fluctuations
δφ(t, xi) induce scalar perturbations ζ(t, xi) of the metric (2.2) [11], which can be
seen by switching to the co-moving gauge

ds2 = −dt2 + a2(t)e2ζ(t,xi)δijdx
idxj. (2.8)

Using a time reparameterization, it is possible to relate ζ(t, xi) ∼ Hδt(xi) [2], which
implies that inflation occurred for different periods of time at different points in
space due to the time delay δt(xi). It is this inhomogeneous growth of the universe
during inflation that is believed to source the temperature anisotropies seen in the
CMB [1]. The temperature anisotropies can be related to the inflaton fluctuations δφ
by first Fourier transforming to momentum space δφk(t) =

∫
d3xeixjk

j
δφ(t, xj), then

considering how the modes δφk are affected by the shrinking co-moving horizon
(aH)−1. At the beginning of inflation, the modes δφk are inside the co-moving
horizon (aH)−1 � k−1. As inflation happens, the co-moving horizon shrinks, and a
point comes at which the modes exit the co-moving horizon (aH)−1 = k−1 and stop
oscillating. By the end of inflation, the modes are frozen well outside the co-moving
horizon (aH)−1 � k−1. After inflation, the co-moving horizon grows again, allowing
the frozen modes to re-enter the horizon and continue oscillating [1]. In addition to
the preservation of δφk outside the horizon, the scalar perturbations of the metric,
ζk, are also preserved. In terms of correlation functions evaluated at horizon exit,
the scalar perturbations and modes are related by

〈ζk, ζk′〉 ∼
H2

φ̇2 〈δφk, δφk′〉, (2.9)
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2. Background

where for slow-roll inflation 〈δφ~k, δφ~k′〉 ∼ H2

k3 δ(~k − ~k′) [2]. From (2.9), it is possible
to compute the power spectrum Pζ(k) which reads

〈ζ~k, ζ~k′〉 ∼ Pζ(k)δ(~k − ~k′). (2.10)

By combining the power spectra frozen at the horizon exit, with transfer functions
associated with cosmological evolution after horizon re-entry, it is possible to account
for how fluctuations in the inflaton field δφ source the temperature anisotropies ∆T
seen in the CMB [1].

Measuring non-Gaussianity at the level of the CMB temperature anisotropies mea-
sures the degree of interaction at the level of the inflaton field [3]. Any dependence
of the potential on the inflaton, results in interactions. For slow-roll inflation, the
derivatives of the potential (the slow-roll parameters) are kept small in order to keep
the potential flat, suppress interactions, and facilitate inflation. In this sense, the
slow-roll parameters describe how weakly coupled the theory is. There has been no
experimentally observed non-Gaussianity in the CMB. Consequently, the inflaton is
assumed to be weakly coupled, and the standard inflationary paradigm slow-rolls at
a nearly flat potential.

2.2 Field theory
One of the most attractive features of the AdS/CFT correspondence is its ability
to relate weakly coupled string theories to strongly coupled quantum field theories
(QFTs). In general, computing observables in strongly coupled QFTs is difficult
due to the lack of a small coupling constant in which to perturbatively expand. For
AdS5/CFT4, the a string theory is mapped to the strongly coupled N = 4 super
Yang-Mills (SYM) gauge theory. In order to sketch the field theory side of Ad-
S/CFT, this section considers some of the concepts underlying N = 4 SYM. This
proceeds by first addressing perturbative expansion, divergences, and gauge theo-
ries, then discussing the role of symmetry in QFTs.

The method of perturbatively expanding weakly coupled field theories carries with
it intrinsic divergences. The divergences occur in two types: UV divergences, which
correspond to infinities in the expansion at high energies and small distances, and
IR divergences, which correspond to infinities at low energies and large distances.
To deal with such divergences, one typically employs regularization through one of
two methods: dimensional regularization or via a cutoff. Thereafter, the theory is
renormalized, which involves introducing counter terms to cancel infinities present in
the bare terms. The result is renormalized terms, which are physical and dependent
on some scale introduced in the regularization procedure. The renormalized terms,
being dependent on a scale (e.g. energy scale), will vary, or “run”, when the scale is
changed. These scale transformations build a group known as the Renormalization
Group (RG), and the relationship between the bare terms and the renormalized
terms is represented by the RG equation. The running of the coupling constant
and other parameters present in the original Lagrangian (e.g. field, mass) can be

7



2. Background

determined through this equation. More specifically, the RG equation contains the
β function, which describes how the coupling constant runs with scale, and the
so-called anomalous dimensions, which describe how other parameters (e.g. mass,
field) run with the scale [12].

When the β function vanishes, the coupling constant no longer runs with the mass
scale, i.e. the coupling is scale invariant. The value of the coupling at which the
β function vanishes is called a fixed point. A special case is the fixed point for
which the coupling goes to zero while the cutoff goes to infinity; this is known as
asymptotic freedom. For an asymptotically free theory, the coupling is strong at
low energies, and weak at high energies.

Quantum field theories can also be afflicted with anomalies, which is when symme-
tries present in the classical theory are not preserved during the process of quantiza-
tion. One example of an anomalous theory is massless φ4 theory in d = 4, which is
renormalizable, and has a dimensionless coupling constant. Quantization, however,
results in divergences, which, when handled through regularization then renormal-
ization, introduce a renormalization scale that breaks scale invariance.

Gauge transformations in field theories refer to transformations between redundant
degrees of freedom that describe the same physical state. These transformations
build a Lie group. If the generators commute, the theory is called Abelian, and non-
Abelian if they do not commute. Quantum electrodynamics is an Abelian gauge
theory with a U(1) symmetry. On the other hand, quantum chromodynamics is an
example of a non-Abelian gauge theory with an SU(3) symmetry.

Non-Abelian gauge theories have many interesting characteristics: they exhibit
asymptotic freedom, as the coupling strength decreases with increasing energy, and
color confinement, as the quarks are bound by gluons, and thus confined to hadrons.
Moreover, a relationship between non-Abelian gauge theories and string theory has
been discovered. For the non-Abelian SU(Nc) Yang-Mills theory the β function is

β(gYM) = µ
dgYM
dµ

= −11
3 Nc

g3
YM

16π2 +O(g5
YM), (2.11)

where Nc is the number of colors, and gYM is the coupling constant. Due to asymp-
totic freedom, SU(Nc) Yang-Mills theory is strongly coupled at low energies, making
perturbative expansions unfeasible. This can be circumvented, however, by taking
the limit in the dimensionless parameter Nc →∞, while letting gYM → 0, such that
λ ≡ g2

YMNc is constant [13]. Here, λ is known as the ’t Hooft coupling. What results
from this is that the gauge theory simplifies in the Large Nc limit, and perturba-
tive expansions in 1/Nc in this regime correspond to the perturbative expansions of
strings, with string couplings proportional to 1/Nc.

Symmetry and groups play a central role in QFTs, and discussion begins by remind-
ing the reader of the Lorentz group. The Lorentz transformations (spatial boosts
and rotations of R1,3) build the Lorentz group SO(1, 3), whose generators Jµν obey

8



2. Background

Transformation Operator
Translation xµ → xµ + a Pµ

Lorentz xµ → Λµ
νx

ν Jµν
Dilatation xµ → λxµ D

Special Conformal xµ → xµ+bµx2

1+2bx+b2x2 Kµ

Inversion xµ → xµ

x2 I

Table 2.1: Conformal Transformations
The eigenvalues ofD are−i∆, where ∆ is known as the scaling dimension of the field.
Scaling transformations of fields are given by φ(xµ)→ λ∆φ(λxµ) [5]. Moreover, the
scaling dimension is bound for a four dimensional unitary conformal field theory,
with scalars having ∆ ≥ 1, and vectors having ∆ ≥ 3 [12].

the Lorentz Algebra. The Poincaré group is an extension of the Lorentz group,
which includes translations given by the generators Pµ. The Poincaré algebra can
be further extended in two important ways. The first is the conformal algebra, which
is the Poincaré algebra plus transformations that preserve angles. The second is the
supersymmetry algebra, in which, instead of only considering objects that transform
in tensor representations of the Lorentz group, one considers objects that transform
in the spinor representation. This introduces N spinor supercharges, which corre-
spond to N supersymmetries, and includes anticommutative (fermionic) generators
in addition to the preexisting commutative (bosonic) generators [12].

The conformal group has SO(2, 4) ∼ SU(2, 2) symmetry, and angle-preserving con-
formal transformations are given by

gµν(x)→ Ω−2(x)gµν(x), (2.12)

where the metric gµν(x) is preserved by an arbitrary positive scale factor [5]. This
means that the line element ds2 → (ds′)2 = Ω−2(x)gµν(x)dxµdxν changes, but angles
remain locally unaffected, and importantly, causality is preserved. This extension in-
troduces the generators D for dilatation, Kµ for special conformal transformations
as well as inversion symmetry, where the generators obey the conformal algebra.
More explicitly, the relevant transformations are given by Table 2.1.

Supersymmetry (SUSY), on the other hand, extends the Poincaré algebra by intro-
ducing N Weyl spinor supercharges, where N is the number of independent super-
symmetries. The SUSY algebra is invariant under rotations of the supercharges into
one another, forming the R-symmetry group [14]. The supercharges act as helicity
raising and lowering operators on states. For helicity less than 1 (i.e. no gravity)
the maximum number of supercharges allowed is N = 4.

The supersymmetric extension of the non-Abelian SU(Nc) Yang-Mills theory is
called N = 4 super Yang-Mills. This is a gauge theory that has superconformal
symmetry given by the SU(2, 2 | 4) group in four dimensions. Superconformal sym-
metry includes conformal symmetry, R-symmetry, Poincaré supersymmetry, and
conformal supersymmetry. N = 4 SYM has a dimensionless coupling constant gYM ,
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2. Background

and all fields are massless. It is believed to be UV finite, and has vanishing β func-
tions. Hence, the theory is scale invariant both classically and after quantization.
Furthermore, the theory has S-duality group SL(2,Z) invariance, which is invariance
under transformations between strong and weak coupling [12]. These characteristics
of N = 4 SYM, in combination with its relationship to string theory in the large Nc

limit, make it a particularly interesting field theory to study.

2.3 String theory
Conceptually, a relativistic string can be seen as the extension of relativistic point
particles to higher dimensions. If a point particle is a zero dimensional object that
traces out a one-dimensional worldline in time, then a string is a one-dimensional
object that sweeps out a two-dimensional worldsheet in time. Similarly, while the
action of the point particle is proportional to the length of the worldline, the action
of the string is proportional to the area of the worldsheet. The worldsheet is a Rie-
mann surface, and is parameterized by coordinates that describe its spatial value,
and its proper time [15].

Strings come in two types, open and closed, where the open string has two end-
points, and the closed string is a loop with no endpoints. Moreover, strings have a
fundamental dimensionful parameter ls that sets the length scale for the theory, and
a fundamental tension given by T = 1/(2πl2s). The energy of a string scales with its
tension T , and its coupling gs.

The simplest bosonic string theory is described by the Nambu-Goto action, which
describes the area of the worldsheet. In this case, equations of motion correspond
to extremizing the area of the worldsheet. For the case of open strings, the equation
of motion can be solved with Dirichlet or Neumann boundary conditions (BCs).
Dirichlet boundary conditions imply that the end point of the string is fixed, while
Neumann imply the end point can move.

Perturbative expansion translates nicely from QFT to string theories, in which the
topologies of string worldvolumes are expanded out in a similar fashion to Feynman
diagrams. In the same spirit, interactions between strings can be included using the
coupling constant gs [12]. Bosonic string theory, however, is only consistent (i.e. not
plagued by gauge anomalies) in d = 26 dimensions, and contains tachyons.

Such problems can be dealt with by extending string theory to superstring theory
via supersymmetry. SUSY ensures that, at any mass level, the bosonic and fermionic
degrees of freedom are equal. This introduces fermions, eliminates both closed and
open string tachyons, and is consistent in d = 10. Quantization of open superstrings
gives the Neveau-Schwarz (NS) sector for bosonic states, and the Ramond (R) sector
for fermionic states. Closed superstrings are obtained from combinations of open su-
perstrings, and the closed superstring sectors are NS-NS, NS-R, R-NS, and R-R [15].

There are five cases of superstring theories in d = 10, but the interesting case with
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2. Background

regard to AdS/CFT is called type IIb superstring theory, which has N = 2 super-
symmetry with 32 Poincaré supercharges [16]. Remarkably, the low-energy effective
action of Type IIB superstring theory, is the same as that of an independently formu-
lated theory called supergravity (SUGRA), which was acquired by demanding local
supersymmetry in general relativity [12]. Classical solutions of SUGRA, known as
p-branes, are understood to correspond to the objects on which open strings end,
known as D-branes [5].

2.4 D-branes
D-branes were conceived as hyperplanes on which open strings ended when their
endpoints were fixed (i.e. Dirichlet boundary conditions). Since their conception,
however, D-branes have been extended to dynamical objects that serve a variety of
purposes. For example, a string moving freely through spacetime (i.e. Neumann
boundary conditions) can be modelled by a spacetime filling D-brane. Moreover,
D-branes can have mass, and source closed strings by the worldsheet duality [12].

The dimensions of a D-brane are specified using the Dp-brane notation, where there
are p-spatial directions and one time direction. In this way, a D0-brane can be seen
as a particle, a D1-brane a string, a D2-brane a sheet, and so on [16]. In contrast
to strings, however, D-branes are non-perturbative objects.

The low-energy effective action for massless Dp-branes is acquired by combining
the Dirac-Born-Infeld (DBI) action SDBI with Chern-Simons action SCS, yielding
SDp = SDBI + SCS. For a single massless brane, SDBI includes pullbacks from
NS-NS sector bulk fields, the dilaton, as well as a U(1) gauge field confined to the
brane. The Chern-Simons part, on the other hand, includes terms where NS-NS
fields couple to background R-R fields, which describes charge under R-R fields on
the brane [12]. All in all the full action describes massless excitations of a Dp-brane.
Multiple branes can be placed on top of one another, which enhances the gauge
field’s symmetry from U(1) to U(Nc), where Nc is the number of Dp-branes. Open
strings can begin and end on different branes, and the endpoints are kept track of
with so-called Chan-Paton factors.

Massive Dp-branes in type IIb superstring theory curve spacetime, and correspond
to black p-brane solutions of type IIb SUGRA [5]. Furthermore, they are Bogo-
mol’nyi–Prasad–Sommerfield (BPS) objects that preserve half of the Poincaré su-
percharges of the background [12]. The importance of such Dp-branes becomes clear
in the context of the AdS/CFT correspondence.

2.5 AdS/CFT
The AdS/CFT correspondence identifies objects in N = 4 SU(Nc) SYM field theory
with objects in N = 2 Type IIB superstring theory. In addition to being a dual-
ity between strong and weak coupling, AdS/CFT is also a duality between open
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and closed strings. This can be understood by considering the type IIb superstring
theory in flat R9,1 spacetime with a stack of Nc coincident D3-branes embedded in
R3,1. The embedding of these D3-branes breaks half of the Poincaré supersymmetry
of the string theory. The result is a setup in which open strings begin and end on
the D3-branes in R3,1, while closed strings occupy R9,1. The correspondence may be
seen by studying two regimes of this system. By first considering weakly coupled
open strings at low energies, then strongly coupled closed strings low energies, the
relationship between the field theory and the string theory becomes clear [12].

Considering weakly interacting open strings at low energies in the setup described
above implies that gs → 0 and α′ → 0. This can be done in such a way that physical
observables remain fixed by taking the Maldacena limit, which requires that u = r/α′

is fixed as α′ → 0 [17]. In this limit, the open and closed strings decouple, and have
two differing low-energy effective descriptions. The low-energy effective dynamics of
the open strings are given by SU(Nc) N = 4 SYM theory on the worldvolume of the
D3-branes in R3,1, while the closed strings are given by type IIb SUGRA in flat R9,1.

On the other hand, considering strongly interacting closed strings at low energies
implies that gsNc →∞ and α′ → 0 in the initial setup. To begin with, we study the
gsNc →∞ limit, where D3-branes become massive and curve the d = 10 spacetime.
For the extremal case, the d = 10 spacetime is is given by the metric

ds2 = H−1/2(−dt2 + d~x2) +H1/2(dρ2 + ρ2dΩ2
5) (2.13)

where ρ is the radial coordinate of the background dimensions ρ2 = X2
4 + . . .+X2

9 ,
H = 1 + L4

ρ4 , L is the radius of the space, and L4 = 4πgsNcα
′2. This metric can be

divided into two geometrically distinct regions. The region where ρ � L in (2.13)
is called the near-horizon region, and is asymptotically AdS5 × S5, given by

ds2
AdS5×S5 = ρ2

L2 (−dt2 + d~x2) + L2

ρ2 dρ
2 + L2dΩ2

5, (2.14)

while the region ρ� L of (2.13), is asymptotically flat R9,1. Then, physical observ-
ables are once again fixed by the Maldacena limit as α′ → 0. This decouples the
closed strings in d = 10 space, with the metric (2.13), from the open strings bound
to the D3-branes embedded in R3,1.

Clearly, type IIb superstring theory in R9,1, with Nc D3-branes embedded in R3,1,
yields very interesting results at low energies. AdS/CFT then serves to relate these
objects. More specifically, AdS/CFT states that the on-shell bulk action of type
IIb superstring theory in AdS5 × S5 corresponds to the generating functional of
N = 4 SU(Nc) SYM in R3,1 [17]. This leads to a one-to-one map of states from the
string theory in the bulk to the field theory on the boundary. This map relates open
strings to closed strings, strongly coupled systems to weakly coupled ones, and is a
realization of the holographic principle, as it relates a d dimensional bulk theory to
a d− 1 dimensional boundary theory.

12
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The radial coordinate ρ plays a key role. The near-horizon region ρ→ 0 is the UV
of the bulk theory, and corresponds to the IR of the boundary theory, while the
asymptotic boundary ρ → ∞ is the IR of the bulk theory, and corresponds to the
UV of the boundary theory. The bulk theory experiences IR divergences which re-
late to UV divergences in the boundary theory. These divergences are dealt with by
holographic renormalization. This is implemented by first introducing a regulator
along the radial coordinate of the bulk action, and constructing covariant countert-
erms. Then, the holographically renormalized bulk action is acquired by subtracting
the counterterms from the regulated action to cancel divergences that appear when
removing the regulator [18].

2.6 Geometry

In this section, geometries relevant to this thesis are discussed. First, coordinate
systems are described for hyperspheres (section 2.6.1). Then, several relevant coor-
dinate systems for both AdS and dS spacetimes are given (sections 2.6.2 and 2.6.3).
Finally, how to foliate AdS with slices of a lower dimensional spacetime is explained
with an emphasis on dS4-sliced AdS5, where dS4 is given by static patch coordinates
(section 2.6.4).

2.6.1 Spheres

Generally, the sphere Sd may be parameterized by hyperspherical coordinates, which
read

ω1 = cosχ1

ω2 = sinχ1 cosχ2
...

ωd = sinχ1 . . . sinχd−1 cosχd
ωd+1 = sinχ1 . . . sinχd−1 sinχd

(2.15)

under the conditions that 0 ≤ χi < π while 1 ≤ i < d, and 0 ≤ χd < 2π [19]. In this
way, the line element for Sd may be written as

dΩ2
d = dχ2

1 + sin2 χ1dχ
2
2 + . . .+ sin2 χ1 . . . sin2 χd−1dχ

2
d. (2.16)

When considering the S5 in AdS5 × S5, a convenient form of the line element is

dΩ2
5 = dθ2 + sin2 θdΩ2

4−i + cos2 θdΩ2
i , (2.17)

where i = 1, 2, 3, 4 and 0 ≤ θ ≤ π/2 [20].

13
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2.6.2 Anti-de Sitter space
In R2,d, anti-de Sitter spacetime (AdSd+1) is given by the hyperboloid

X2
0 −

d∑
i=1

X2
i +X2

d+1 = L2, (2.18)

where L is the AdS radius [12]. The corresponding line element is

ds2 = −dX2
0 +

d∑
i=1

dX2
i − dX2

d+1. (2.19)

One commonly used coordinate system that covers the entire space is called global
coordinates. These are given by the parameterization

X0 = L
cos τ
cos θ , Xi = Lωi tan θ, Xd+1 = L

sin τ
cos θ (2.20)

where i = 1, . . . , d and ∑i ω
2
i = 1. Here, τ is a timelike coordinate, θ is a spatial

coordinate, and ωi are angular coordinates for the sphere. This yields the line
element

ds2 = L2

cos2 θ
(−dτ 2 + dθ2 + sin2 θdΩ2

d−1), (2.21)

with 0 < θ ≤ π
2 . A second coordinate system that only covers one half of the space

is called Poincaré patch coordinates

X0 = X4 = L2

2ρ

(
1 + ρ2

L4 (−t2 + ~x2 + L2)
)

Xi = ρxi
L

X5 = ρt

L
, (2.22)

where i = 1, 2, 3. The corresponding line element reads

ds2
AdS5 = ρ2

L2 (−dt2 + d~x2) + L2

ρ2 dρ
2. (2.23)

Here, t ∈ R is a timelike coordinate, ρ > 0 is a radial coordinate, and xi =
(x1, x2, x3) ∈ R3 [12]. In these coordinates, the asymptotic boundary is located
at ρ → ∞, while the near-horizon region is at ρ → 0. By making the coordinate
transformation coordinate transformation ρ = er/L, we acquire a variant of these
coordinates, which will be called the r-coordinates

ds2
AdS5 = L2e2r/L(−dt2 + d~x2) + dr2. (2.24)

Inverting the radial coordinate ρ = L2

z
results in the z-coordinates, which are given

by the line element
ds2

AdS5 = L2

z2 (−dt2 + d~x2 + dz2), (2.25)

and the coordinate transformation z = ew/L yields the w-coordinates

ds2
AdS5 = L2e2w/L(−dt2 + d~x2 + dw2). (2.26)
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2.6.3 de Sitter space
In d-dimensions, de Sitter spacetime (dSd) is given by

−X2
0 +X2

1 + . . . +X2
d = `2 = 1

H2 (2.27)

where ` is the de Sitter radius, and H is the Hubble constant [6]. Its line element is
given by

ds2
dSd

= −dX2
0 +

d∑
i=1

dX2
i . (2.28)

Similar to AdS, there are also global coordinates in dS that cover the entire space,
given by

X0 = sinh τ
`
, Xi = Ωi cosh τ

`
, (2.29)

where τ ∈ R, i = 1, . . . , d, and ∑i ω
2
i = 1. The corresponding line element is

ds2
dSd

= −dτ 2 + `2 cosh2 τ

`
dΩ2

d−1. (2.30)

A second set of coordinates are the static patch coordinates, given by

X0 =
√
`2 − ξ2 sinh τ̄

`
, Xj = ξΩj, Xd =

√
`2 − ξ2 cosh τ̄

`
(2.31)

where j = 1, . . . , d− 1. This yields the line element

ds2
dSd

= −
(

1− ξ2

`2

)
dτ̄ 2 + dξ2

1− ξ2

`2

+ ξ2dΩ2
d−2 (2.32)

where τ̄ ∈ R, and 0 ≤ ξ < `. Translations in time leave τ̄ unchanged, hence the
static nature of the coordinates.

2.6.4 dS4-sliced AdS5

An important feature of asymptotically AdS spacetime is that it can be foliated by
slices of a lower dimensional spacetime. Consider the asymptotically AdSd metric
GMN where M,N = 0, 1, . . . , d. When expressed in Fefferman-Graham form [21],
this reads

ds2
AdSd

= GMN(z, x)dXMdXN = L2

z2 (dz2 + gmn(z, x)dxmdxn), (2.33)

where m,n = 0, 1, . . . , d− 1, and gmn(z, x) is given by the the expansion

gmn(z, x) = g(0)
mn(x)+z2g(2)

mn(x)+. . .+zdg(d)
mn(x)+zd log(z2)h(d)

mn(x)+O
[
zd+1

]
. (2.34)

The metric at the boundary is then gmn(0, x) = g(0)
mn(x). In this context, the flat-

slicing is given by g(0) = η, but it is equally viable to choose dS slicing g(0) = gdS.
Note that in the interest of computing the 1-point function dual to the scalar slipping
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mode, the choice of coordinate system dS is arbitrary. At leading order of the near-
boundary expansion (2.34), the line element of dS4-sliced AdS5 is then

ds2
AdS5 = L2

z2 (dz2 + ds2
dS4), (2.35)

Subleading order terms, on the other hand, are computed by using recursively solving
Einstein’s field equations in a vacuum with a negative cosmological constant under
the assumption that g(0) = gdS [22]. This yields the near-boundary expansion at
subleading order

gmn(z, x) =
(

1− z2

4`2

)2

gdSmn(x) +O
[
z4
]
, (2.36)

which corresponds to the line element

ds2
AdS5 = L2

z2

dz2 +
(

1− z2

4`2

)2

ds2
dS4

 , (2.37)

where the asymptotic boundary at z = 0, and a bulk horizon exists at z = 2`. Note
that in (2.37), ds2

dSd−1
is independent of z-coordinate, which implies that changes in

z will only scale the dS space but not affect its internal structure.

Performing the coordinate transformation z = 2`e−r/L in the expression (2.37) yields
the r-coordinates

ds2
AdS5 =

(
L

`

)2
sinh2

(
r

L

)
ds2

dS4 + dr2, (2.38)

where the asymptotic boundary is at r → ∞ and the bulk horizon is at r → 0.
In a similar manner, the w-coordinates are acquired through the transformation
z = 2`ew/L, resulting in the line element

ds2
AdS5 = 1

sinh2
(
w
L

) ((L
`

)2
ds2

dS4 + dw2
)
, (2.39)

where the asymptotic boundary is at w → 0 and the bulk horizon is at w →∞ [23].

2.7 Flavor in AdS/CFT
In [4], it was proposed that massive flavors could be added to the gauge theory side of
the AdS/CFT correspondence by embedding a small number (Nf ) of massive probe
D7-branes in the near-horizon geometry of Nc →∞ D3-branes, given by AdS5×S5

(2.14). The probe D7-brane introduces open string degrees of freedom in the bulk
theory, which in the dual picture, corresponds to N = 2 supersymmetric hypermul-
tiplets in the fundamental representation of SU(Nc), in d = 3 + 1. On the gravity
side, the probe D7-brane breaks half of the supersymmetry of supergravity, leaving
eight real Poincaré supercharges. In the dual picture, the N = 4 SYM theory of the
couples to an N = 2 hypermultiplet in the fundamental representation of SU(Nc).
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Embedding a probe D7-brane in this way allows for open strings connecting the
D3- and D7-branes, open strings beginning and ending on the D7 brane, as well
as open strings beginning and ending on the D3-branes. If the D7- and D3-branes
are separated, the open strings connecting the branes stretch and become massive,
breaking the conformal symmetry of the gauge theory. Embedding massive probe
D7-branes in this way can lead to a backreaction, in which the mass of the D7-brane
distorts the AdS5 × S5 geometry to the extent that it is no longer a solution of
supergravity. This is dealt with by taking the probe brane limit, in which Nf � Nc

and Nf/Nc → 0, such that the backreation can be ignored.

In the D3/D7 configuration considered in this thesis, there is a bulk scalar field
on the worldvolume of the D7-brane called the slipping mode, that is dual to a
boundary operator O, constructed from flavor fields [4]. The mass of the slipping
mode is M2 = −3, and although the mass is negative, it is allowed as it is over the
Breitenlohner-Freedman bound M2L2 ≥ −d2

4 , where d = 4 is the dimension of the
gauge theory, and AdS unit radius is used [24]. According to AdS/CFT, the mass
on the gravity side M2 and the dimensions of the dual operator ∆, are related by
M2L2 = ∆(∆− d), where ∆ = 1, 3.

2.7.1 Embedding probe D7-branes in AdS5 × S5

In general, the directions in which the branes extend are free Neumann boundary
conditions for open strings, while the directions in which the branes do not extend are
fixed Dirichlet boundary conditions. Following the prescription of [4], the dimensions
occupied by the probe D7-brane, as well as the stack of D3-branes, are chosen as
shown in Table 2.3.

0 1 2 3 4 5 6 7 8 9
D3 × × × ×
D7 × × × × × × × ×

Table 2.3: The branes extend in the dimensions denoted by ×, and are perpen-
dicular to the remaining dimensions. The 4,5,6,7 directions have a peculiar quality
because they are given by Dirichlet boundary conditions for the D3-brane and Neu-
mann boundary conditions for the D7-brane. These are called Neumann-Dirichlet
(ND) directions. Note that the D7-brane is parallel to 4,5,6,7 space while the D3-
branes are perpendicular to it.

In the bulk theory, the addition of a probe D7-brane breaks the SO(6) isometry
of the background dimensions 4,5,6,7,8,9 to SO(4) × SO(2), where the SO(4) acts
on X4, . . . , X7, and SO(2) acts on X8 and X9. In the boundary theory, this cor-
responds to adding a fundamental hypermultiplet that breaks the SU(4) w SO(6)
R-symmetry of N = 4 SYM to SO(4) × SO(2). The fundamental hypermultiplet
carries opposite charges under SO(2) w U(1), and this is viewed as a chiral symme-
try [25].

17



2. Background

Embedding a probe D7-brane in the near-horizon geometry of the D3-branes is
achieved by mapping the 8-dimensional D7-brane embedding coordinates ξi, where
i = 0, . . . , 7, to the 10-dimensional AdS5 × S5 coordinates Xµ, where µ = 0, . . . , 9.
In flat-slicing, with unit AdS radius, the line element of AdS5 × S5 reads

ds2 = 1
z2 (−dt2 + d~x2 + dz2) + dθ2 + cos2 θdΩ2

3 + sin2 θdψ2, (2.40)

where the S3 given by dΩ2
3 = dχ2

1 + sin2 χ1(dχ2
2 + sin2 χ2dχ

2
3). A convenient choice

for the embedding coordinates ξi is to simply have them be identical to the first
eight coordinates of AdS5 × S5. This configuration, called the static gauge, is time
independent and preserves the SO(4) symmetry of the S3.

0 1 2 3 4 5 6 7
Xµ t x1 x2 x3 z χ1 χ2 χ3
ξi ξ0 ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7

Here, the D7-brane occupies AdS5 × S3, filling the dimensions of AdS5, and wrap-
ping the S3 inside the S5. This embedding leaves the 8 and 9 directions unidentified,
which are two spherical coordinates of the S5, namely, the polar angle X8 = θ, and
the azimuthal angle X9 = ψ. Since the D7-brane doesn’t extend in these directions,
its position is given in 8-9 plane [26].

As long as the D7-brane is located at (θ, ψ) = (0, 0), it sits exactly on top of the
D3-branes, wrapping the S3 located on the equator of the S5. At this position,
the gravity theory is massless, corresponding to a massless dual theory that pre-
serves conformal symmetry. Furthermore, the SO(2) symmetry of the 8-9 plane is
preserved, which corresponds to preserving the U(1) chiral symmetry of the funda-
mental hypermultiplet in the dual picture.

Making the ansatz that ψ = 0 and θ = θ(z) allows the D7-brane to move in the θ
direction as a function of the radial coordinate z. This choice preserves the trans-
lation invariance of the dual theory [20]. The D7-brane being allowed to move in
the θ(z) direction, implies that the S3 is allowed to move between the equator and
the pole of the S5, located at θ = 0 and θ = π

2 , respectively. This can be thought
of as the higher dimensional analog of a rubber band slipping off a ball. On the
gravity side, any nonzero value of θ separates the D3- and D7-branes, giving tension
to strings, and breaking the SO(2) symmetry of the 8-9 plane. This gives mass to
the field theory, breaks conformal invariance, and breaks the U(1) chiral symmetry
of the fundamental hypermultiplet. Note that the distance between the D3- and
D7-branes in the θ direction is proportional to the mass of the dual hypermultiplet.

In this thesis, we consider two different ways for the D3- and D7-branes to be sepa-
rated in the θ direction. The first case involves a cutoff being introduced at a finite
value of the radial coordinate z = zm, corresponding to θ(zm) = π

2 . In this case, the
D7-brane extends along the radial coordinate from the UV at z = 0 to the cutoff
in the IR at z = zm. This corresponds to S3 slipping from the equator of the S5
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at θ(0) = 0, to the pole at θ(zm) = π
2 , then disappearing from a five-dimensional

point of view. Here, the mass of the flavor hypermultiplet can be dialed through the
cutoff zm. In the second case, the position of D7-brane is given by θ(0) = α, where
0 ≤ α ≤ 2π, implying that the brane extends all the way from the UV to the IR.
In this case the mass of the flavor hypermultiplet can be dialed through the cutoff zm

2.7.2 Scalar slipping mode action
To study the dynamics of θ(z), we need only consider the pullback of the spacetime
metric onto the worldvolume of the D7-brane, which resides in the DBI part of the
greater D7-brane action, and reads

gD7
ij = Gµν

∂Xµ

∂ξi
∂Xν

∂ξj
. (2.41)

This entails that θ(z) is contained in an action that is simply proportional to the
worldvolume of the brane, which reads

SD7 = TD7

∫
d8ξ
√
gD7, (2.42)

where TD7 = (2π)−7g−1
s (α′)−4, and gD7 = det(gD7

ij ). Notice that this action is of a
similar form to the Nambu-Goto action, which is simply proportional to the area
of it’s worldsheet. The equations of motion resulting from the Nambu-Goto action
minimize the area of its 2-dimensional worldsheet, while the equations of motion
resulting from (2.42) minimize the worldvolume of the D7-brane. Moreover, the
static gauge, and ansatz ψ = 0 and θ = θ(z), result in considerable simplifications

SD7 = TD7
√
gS3
√
gR1,3

∫
dz
√
gD7. (2.43)

Here, gD7 depends only on z, θ(z), and θ′(z), while all other coordinates are in-
tegrated out as the volumes of the S3 and R1,3. Extremizing (2.43) then yields a
second-order nonlinear differential equation of motion involving θ(z). Although the
bulk action (2.43) is divergent, it is possible to ensure regular solutions at the level
of the boundary conditions of the EOM.

2.7.3 Mapping to flavor fields
AdS/CFT tells us that at the asymptotic boundary, θ(z) solutions of the bulk EOM
yield information about dual operatorO. More specifically, as z → 0, the asymptotic
behavior of the bulk scalar field is expected to be

θ(z) ∼ zd−∆
{
m+O

[
z2
]}

+ z∆
{
c+O

[
z2
]}
, (2.44)

where d is the dimension of the gauge theory, ∆ is the larger dimension of O, m
is the source of O, and c fixes the vacuum expectation value (vev) 〈O〉 [12]. The
parametersm and c are the leading order coefficients of two series expansions in small
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z. For the D3/D7 system, ∆ = 1, 3 and d = 4, and the leading order asymptotic
solution contains a linear and a cubic part

θ(z) = mz + cz3. (2.45)

The linear coefficient m is related to the mass of the hypermultiplet of flavor fields
by mtrue = m/(2πα′) [20]. By varying the cutoff zm ∼ 1/m, it is possible to dial the
mass in the flavor fields. The vev 〈O〉, on the other hand, which corresponds to the
condensate of the dual flavor fields, is fixed by the leading order linear and cubic
coefficients (m and c, respectively) [24].

Given these general expectations of the D3/D7 configuration, we proceed to describe
how to compute θ(z) near the boundary. Consider AdS5×S5, where AdS5 is given in
Fefferman-Graham coordinates (2.33), and the near-boundary expansion (2.34) is to
O [z4]. Computing the pullback of this AdS5× S5 metric to the worldvolume of the
D7-brane (2.41), allows one to calculate the slipping mode action (2.43). Expanding
the slipping mode action in fluctuations θ about the asymptotic boundary, and re-
taining only quadratic fluctuation terms, results in a quadratic action. Extremizing
the quadratic action then yields a linearized equation of motion, which is subse-
quently expanded about the asymptotic boundary to O [z4]. Asymptotic solutions
of this this equation of motion will have a general form given in Fefferman-Graham
coordinates

θ(z) = z


∆−1∑
i=0

α(i)z
i +

∆−1∑
j=0

β(j)z
j log(z)

+O
[
z∆+1

]
. (2.46)

where ∆ = 3. The coefficients α(i) and β(j) are then determined by the equation of
motion. Moreover, the coefficients of (2.46) are expected to simplify such that the
leading order cubic and linear coefficients (α(0) and α(2)) determine all others. If this
is the case, then these coefficients have been identified as the mass and condensate
parameters m and c, as shown in (2.44).

For the flat-slicing of the D3/D7 scalar slipping mode, where AdS is given by (2.25),
an exact solution to the bulk EOM is known to be

θ(z) = arcsin(mz) = mz + m3

6 z3 + . . . , (2.47)

where cutoff is located at zm = 1/m, and the condensate relates to the mass by
c(m) = m3

6 . This is referred to as the supersymmetric background solution, and will
act as a benchmark as it is identified with 〈O〉 = 0 [24].
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3
Flat Case

In the flat case, the equation of motion of the D3/D7 scalar slipping mode in flat-
slicing is solved numerically, and the values corresponding to the dual mass and
condensate are extracted from the numerical solution. In section 3.1, a massive
probe D7-brane with flavor is embedded in the AdS5 × S3 subspace of AdS5 × S5,
where AdS5 is foliated by slices of Minkowski space. Then, the action and equation of
motion are calculated. Thereafter, in section 3.2, holographic renormalization is im-
plemented at the level of the boundary conditions. In section 3.3, the EOM is solved
using a numerical differential equation solver and the holographically renormalized
boundary conditions. For the flat-slicing, the EOM is known to be solved by the
supersymmetric background solution, and a solution with the form of (2.47) is used
as a fitting function for the numerical solution. Finally, the numerically computed
coefficients corresponding to the mass and condensate are plotted and compared to
the background solution. This is in order to confirm that the embedding, boundary
conditions, and numerical solver are all functioning correctly.

3.1 Probe D7-brane in flat-slicing
The line element of AdS5 × S5 reads

ds2
AdS5×S5 = GMNdX

MdXN = ds2
AdS5 + dΩ2

5 (3.1)

where XM are coordinates in d = 10 with M,N = 0, . . . , 9. For the flat case, AdS5
is foliated by slices of Minkowski space R3,1, which reads

ds2
AdS5 = 1

z2

(
ds2

R3,1 + dz2
)

= 1
z2

(
−dt2 + d~x2 + dz2

)
, (3.2)

where ~x = (x1, x2, x3). The S5 on the other hand, is expressed in the same coordi-
nates as (2.17), reading

dΩ2
5 = dθ2 + cos2 θdΩ2

3 + sin2 θdψ2 (3.3)

where dΩ2
3 = dχ2

1 +sin2(χ2
1)(dχ2

2 +sin2(χ2)dχ2
3). The flat-slicing of AdS5×S5 is then

ds2
AdS5×S5 = 1

z2 (−dt2 + d~x2 + dz2) + dθ2 + cos2 θdΩ2
3 + sin2 θdψ2. (3.4)

In these coordinates, the asymptotic boundary is located at z = 0 and the near-
horizon region is at z →∞. The induced metric of AdS5×S5 onto the worldvolume
of the D7-brane, can be acquired from (3.4) using (2.41), which reads
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3. Flat Case

ds2
D7 = GMN

∂XM

∂ξi
∂XN

∂ξj
dξidξj = gD7

ij dξ
idξj, (3.5)

where ξi are the embedding coordinates, and i, j = 0, . . . , 7. The choice of embedding
is the static gauge where the embedding coordinates are identified as

(ξ0, ξ1, ξ2, ξ3) = (t, x1, x2, x3), ξ4 = z, (ξ5, ξ6, ξ7) = (χ1, χ2, χ3). (3.6)

The remaining two coordinates X8 and X9 are chosen to be (X8, X9) = (θ, ψ),
which implies that the D7-brane’s position in AdS5×S5 space is given in the (θ, ψ)
plane. The ansatz is then made that ψ = 0 and θ = θ(z), such that the brane is only
free to move in the θ direction as a function of the radial coordinate z. Computing
the induced metric under these assumptions gives

gD7
ij = diag{−G00, . . . , G77}+G88∂iX

8∂jX
8 +G99∂iX

9∂jX
9. (3.7)

Due to the ansatz, the G88∂iX
8∂jX

8 term gives a non-zero contribution, while the
G99∂iX

9∂jX
9 term is zero, yielding the line element

ds2
D7 = 1

z2ds
2
R3,1 +

 1
z2 +

(
∂θ(z)
∂z

)2
 dz2 + cos2 θ(z)dΩ2

3. (3.8)

Given the explicit form of the induced metric, it is possible to compute an action.
The dynamics of the of the scalar slipping mode are given by an action that is simply
proportional to the volume of the brane, which reads

SD7 = TD7

∫
dξ8√gD7. (3.9)

where gD7 = det gD7
ij . Inserting the induced metric (3.8) into the action (3.9), then

performing the integration over the R3,1 and S3 coordinates, yields the volumes
of the respective spaces. As √gR3,1 , √gS3 , and TD7 are simply constant, they are
suppressed from the calculation. The part of the action with θ(z) dependence is
then

S̃D7 =
∫
dz

cos3 θ(z)
z5

√√√√1 + z2
(
∂θ(z)
∂z

)2

. (3.10)

Extremizing the action (3.10) with respect to θ(z) yields the second-order nonlinear
equation of motion for the slipping mode in flat slicing

z cos(θ(z))
(
4z2θ′(z)3 − zθ′′(z) + 3θ′(z)

)
− 3

(
z2θ′(z)2 + 1

)
sin(θ(z)) = 0. (3.11)

To ensure that the near-boundary behavior in flat slicing is indeed given by (2.47),
one simply needs to perform the near-boundary expansion on action (3.10), and find
the resulting solution. By expanding the action about the boundary to subleading
order in θ, and retaining only quadratic terms, one arrives at the linearized EOM

θ′′(z)
z3 − 3θ′(z)

z4 + 3θ(z)
z5 = 0. (3.12)
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3. Flat Case

Here, assuming a solution of the form θ(z) = z∆ yields ∆ = 1, 3, which confirms
the scaling dimensions suggested in section 2.7. Moreover, assuming an asymptotic
solution of the general form (2.46) with ∆ = 3, results in the background solution
(2.47)

θ(z) = mz + m3

6 z3 +O
[
z4
]
. (3.13)

3.2 Holographic renormalization
To solve the equation of motion (3.11), boundary conditions are constructed using
tools from holographic renormalization in order to deal with the divergent bound-
aries. Two types of IR boundary conditions will be discussed. The first case involves
the D7-brane extending from the UV boundary (z = 0) and ending at a cutoff at a
finite z = zm, while the second case involves the D7-brane extending all the way to
the IR boundary (z =∞).

First, however, note that embedding the D7-brane in the AdS5 × S3 subspace of
AdS5 × S5 implies that it occupies all of dimensions AdS5, and wraps the S3 inside
the S5. Generically, for the slipping mode, the D7-brane is free to move in the θ
direction, between the equator and the pole of the S5 at θ = 0 and θ = π

2 , respec-
tively. The massless case is given by the D7-brane being located at θ = 0, where
there is no separation between the D3- and D7-branes. The massive case, on the
other hand, is given by 0 < θ ≤ π

2 .

The cutoff boundary conditions are constructed by having the S3 slip off the pole
of the S5 at the cutoff z = zm, corresponding to θ(zm) = π

2 . Moreover, the generic
condition in the UV is given by the massless case θ(0) = 0. Together, these yield
the generic cutoff conditions

θ(z = 0) = 0,

θ(z = zm) = π

2 ,
(3.14)

where the D7-brane occupies 0 ≤ z ≤ zm. These boundary conditions yield a two
parameter family of divergent solutions of the EOM (3.11), where the divergences
are associated with the boundaries.

To remove the divergences at the boundaries, a regulator (ε) is introduced, where
ε � 1, such that the boundaries are avoided when solving (3.11). This results in
the modification

θ(z = ε) = ε,

θ(z = zm) = π

2 − ε.
(3.15)

The cutoff z = zm, however, must be considered in more detail. Here, a divergence
occurs because the D7-brane doesn’t end smoothly due to a singularity occurring
when the S3 slips off the pole of the S5. To understand this, we can recall the anal-
ogy that the S3 wrapping the S5 is somewhat like a rubber band wrapping a ball.
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3. Flat Case

At θ = 0, the S3 wraps the equator of the S5. As θ increases, the S3 travels toward
the pole at θ = π

2 , shrinking along the way. Upon reaching the pole, the shrinking
S3 contracts to zero, which results in a conical singularity. This divergence can be
avoided by demanding that instead of contracting to zero, the S3 shrinks smoothly,
resulting in Euclidean space at the pole.

To illustrate how a sphere can shrink to Euclidean space, consider the round metric
on a 4-sphere ds2 = dr2 + sin2 rdΩ2

3, where the S3 is shrinking as a function of the
radial coordinate r. Taking r → 0 allows one to approximate sin2 r ≈ r2, yielding
ds2 = dr2 + r2dΩ2

3, which is nothing other than 4-dimensional Euclidean space in
spherical coordinates. Such smooth shrinking can be implemented in the slipping
mode via a substitution of variables. To realize this, we substitute θ(z) = π

2 −ϕ(z),
where ϕ(z = 0) = π

2 and ϕ(z = zm) = 0, in the induced metric (3.8), yielding the
line element

ds2
D7 = 1

z2ds
2
R3,1 +

1 + 1
z2

(
∂z

∂ϕ

)2
 dϕ2 + sin2 ϕ(z)dΩ2

3. (3.16)

Then, by requiring dz
dϕ

= 0 at z = zm, the shrinking S3 results in Euclidean space as
z → zm

ds2
D7 = dϕ2 + ϕ2dΩ2

3 + . . . . (3.17)
This can be recast as θ′(zm) =∞, yielding new IR boundary conditions at the cutoff
that ensure the smooth shrinking of the S3 at the pole of the S5

θ(z = zm) = π

2 − ε,

θ′(z = zm) = Λ,
(3.18)

where Λ = 1
ε
. The second case is where the D7-brane extends all the way to the IR

boundary, requiring new boundary conditions at z =∞. Clearly, the z-coordinates
aren’t the convenient for this region, so the r-coordinates are used instead, where
the IR boundary is located at r = 0. Here, we consider a new way to separate the
D3- and D7-branes in the θ direction. This is implemented by the conditions

θ(r = 0) = α,

θ′(r = 0) = 0,
(3.19)

where α is dialed between 0 ≤ α ≤ 2π, and the massless case is given by α = 0.
Here, divergences are once again handled by introducing the regulator ε, resulting
in the modified conditions

θ(r = ε) = α,

θ′(r = ε) = ε.
(3.20)

3.3 Numerics in flat-slicing
The numerical differential equation solver NDsolve (Mathematica) is used to solve
the EOM (3.11), using the cutoff boundary conditions (3.18), where the parameters
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3. Flat Case

were chosen to be zm = 1, ε = 10−3, and Λ = 103. The solution was then plotted
against the supersymmetric background solution (2.47) to confirm that the NDsolve
was functioning properly (Fig. 3.1a).

Thereafter, the relationship between m and c was studied at various values of the
cutoff zm, corresponding to dialing the mass in the dual picture. Note that the
cutoff zm is inversely proportional to the mass. This was realized by a For-loop
containing NDsolve, which iterated through 20 different values of zm between 0.1 6
zm 6 2, solving the EOM (3.11) each time. Each solution was fit to a function ffit(z)
containing a linear and cubic part

ffit(z) = mz + cz3. (3.21)

The coefficients (m, c) were then collected from the fitting function (3.21) and plot-
ted, as depicted in Figure 3.1b. As a confirmation of the mass and condensate
being extracted from NDsolve correctly, the supersymmetric background solution
c(m) = m3

6 was expected to be reproduced each time.

(a) (b)

Figure 3.1: (a) Numerically computed θ(z) in flat slicing (solid red line) versus
background solution arcsin(mz) (dashed blue line). (b) Mass and condensate pa-
rameters (m, c) (solid red dots) versus background solution c(m) = m3/6 (dashed
blue line). This confirms that the numerics are working properly and that a probe
D7-brane has been embedded into AdS5 × S5 in flat-slicing.
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4
Curved Case

4.1 Probe D7-brane in dS4-sliced AdS5

In section 4.1.1, the probe D7-brane is embedded in the AdS5 × S3 subspace of
AdS5 × S5, where AdS5 is foliated by slices of dS4 according to section 2.6.4. The
boundary asymptotics of the slipping mode are discussed in section 4.1.2, and the
mass and condensate are identified in section 4.1.3. In section 4.2, the slipping mode
equation of motion is solved numerically and fit to the asymptotic solution in order
to numerically compute the mass and condensate. Thereafter, in section 4.3, the
correction to the mass is computed analytically and shown to accurately describe
medium mass slipping mode solutions.

4.1.1 Embedding

For dS4-sliced AdS5, the line element of AdS5 × S5 expressed in the w-coordinates
reads

ds2
AdS5×S5 = 1

sinh2(w
L

)

((
L

`

)
2ds2

dS4 + dw2
)

+L2(dθ2 +cos2 θdΩ2
3 +sin2 θdψ2), (4.1)

Here, the asymptotic boundary is located at w = 0, and a horizon exists at w =∞.
We proceed by setting L = ` = 1. The line element of the D7-brane is then

ds2
D7 = 1

sinh2(w)
ds2

dS4 +
 1

sinh2(w)
+
(
∂θ(w)
∂w

)2
 dw2 + cos2 θ(w)dΩ2

3, (4.2)

corresponding to the slipping mode action

S̃D7 =
∫
dw

cos3 θ(w)
sinh5(w)

√√√√1 + sinh2(w)
(
∂θ(w)
∂w

)2

, (4.3)

Notice that this action is the same as (3.10) with the z terms in the argument
replaced with sinh(w). Moreover, in both the w- and z- coordinates asymptotic
boundaries are located at zero, and at leading order, expanding in small w gives
sinh(w) ≈ w. These observations will be used when performing the near-boundary
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4. Curved Case

expansion. Extremizing the action (4.3) results in the second order non-linear equa-
tion of motion for the slipping mode

csch(w)
(
θ′′(w) cos(θ(w)) + 3 sin(θ(w))

(
θ′(w)2 + csch2(w)

))
− cosh(w)θ′(w) cos(θ(w))

(
4θ′(w)2 + 3csch2(w)

)
= 0.

(4.4)

4.1.2 Asymptotic solutions
AdS/CFT tells us that the mass and condensate of the dual hypermultiplet is given
by the form of bulk scalar solutions θ(w) near the asymptotic boundary of AdS at
w = 0. More specifically, by solving the near-boundary expansion of the EOM with
power series solutions θ(w), it is possible to identify the mass and condensate of the
dual theory as coefficients. Studying near-boundary behavior can be cumbersome
in w-coordinates. Given that both the w- and z-coordinates have the asymptotic
boundary of AdS located at zero, and that solutions θ will behave the same in this
limit, switches will be made between w and z. In z-coordinates, asymptotic solutions
are expected to have the form

θ(z)→ zd−∆
{
m+O

[
z2
]}

+ z∆
{
c+O

[
z2
]}
. (4.5)

where ∆ is the larger dimension of the dual operator O (larger root of M2L2 =
∆(∆−d)), the dimension of the boundary theory is d, the mass of O is proportional
to m, and its vev 〈O〉 is fixed by c. For the D3/D7 system, ∆ = 3, d = 4, m
is proportional to the mass of a fundamental hypermultiplet of flavor fields, and
its chiral condensate is fixed by c. The results is a solution containing a linear
part zd−∆ = z, and a cubic part z∆ = z3, where m and c are the leading order
coefficients of two independent series solutions. This implies that at leading order
in the near-boundary expansion, the asymptotic solution is expected to be

θ(z) = mz + cz3, (4.6)

At higher orders, however, there is the possibility of mixed terms. This can be
seen by considering the first few orders of a power series solution (2.46) in the
z-coordinates

θ(z) = z
{
α(0) + α(1)z + α(2)z

2 + β(2)z
2 log(z) + . . .

}
+ z3

{
ᾱ(0) + . . .

}
, (4.7)

where both α(2) and ᾱ(0) are cubic coefficients. The consequence leaving this mixing
unsolved is that the cubic coefficient of a fitting function in the numerical routine
would contain contributions that don’t pertain to the condensate. To sort this out,
the contributions to the cubic coefficient may be identified analytically by solving
the near-boundary expansion of the EOM with power series solutions. The near-
boundary expansion is performed first by expanding in small θ(w) in the action (4.3),
then retaining only quadratic terms results in a linearized EOM near the boundary.
Thereafter, an expansion is performed in small w, and coordinates are switched to
z, where the cubic z3 term is studied to assess whether there is an α(2) contribution.
In accordance with [24], asymptotic solutions are expected to only contain of odd
powers of z (α(1) = α(3) = . . . = 0), and logarithmic terms are expected to only
occur only after subleading order (β(0) = β(1) = 0).
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4.1.3 Near-boundary expansion
Expanding the argument of the action (4.3) to subleading order in θ(w) yields

S̃D7 ≈
∫
dw

1
sinh5(w)

(
1− 3θ(w)2

2

)(
1 + sinh2(w)θ

′(w)2

2

)
(4.8)

where considering only quadratic terms implies

S̃D7 ≈
∫
dw

(
− 3θ(w)2

2 sinh5(w)
+ θ′(w)2

2 sinh3(w)

)
. (4.9)

When extremized with respect to θ(w), yields a linearized equation of motion

θ′′(w)
sinh3(w)

− 3 cosh(w)θ′(w)
sinh4(w)

+ 3θ(w)
sinh5(w)

= 0. (4.10)

The near-boundary expansion of (4.10) then proceeds by expanding cosh(w) and
sinh(w) to subleading order in power series about w = 0 results in

θ′′(w)(
w + z3

6

)3 −
3
(
1 + w2

2

)
θ′(w)(

w + w3

6

)4 + 3θ(w)(
w + w3

6

)5 = 0. (4.11)

Simplification yields that at leading (4.12) and subleading (4.13) orders of the near-
boundary expansion, the equation of motion reads

0 =θ
′′(w)
w3 − 3θ′(w)

w4 + 3θ(w)
w5 , (4.12)

0 =
( 1
w3 −

1
2w

)
θ′′(w) +

( 3
w5 −

5
2w3

)
θ(w) +

( 2
w2 −

3
w4

)
θ′(w) (4.13)

The first equation (4.12) is identical to the linearized flat-slicing EOM (3.12) near the
boundary of AdS. This is expected because at leading order of the near-boundary
expansion, (2.35), there is no correction for the curvature of de Sitter space. Equa-
tion (4.13), on the other hand, is the linearized EOM near the boundary of AdS
in dS4-sliced AdS5 given by the metric (2.37). To identify whether the cubic term
in the full asymptotic solution (4.7) contains a contribution that doesn’t pertain to
the condensate (α(2)), we insert the solution

θ(w) = α(0)w + α(1)w
2 + α(2)w

3 + β(2)w
3 log(z) +O

[
w4
]
, (4.14)

into the near-boundary expansion EOM. For the dS-slicing EOM (4.13), the coeffi-
cients are identified as α(1) = α(2) = 0 and β(2) = 1

4α(0). As a check, the coefficients
in the flat-slicing EOM (4.12), were identified as α(1) = β(2) = 0, and the solution is
the supersymmetric background solution, as expected. Given that α(2) = 0 in dS-
slicing, it can be concluded that there is no mixing of terms in the cubic coefficient
of the full asymptotic solution. In terms of the mass and condensate parameters,
the asymptotic solution then reads

θ(w) = mw + cw3 + 1
4mw

3 log(z) +O
[
w4
]

(4.15)
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4.2 Numerics in dS4-sliced AdS5

The numerical differential equation solver NDsolve was used to iteratively solve the
EOM (4.4) at different cutoffs, using the cutoff boundary conditions (3.18), with
ε = 10−3 and Λ = 103. The computation was done in the z-coordinates (2.37),
where the dS-horizon is located at z = 2`, and we set ` = 1. This was once more
implemented by a For-loop, containing NDsolve, which iterated through 20 different
values of zm. Each numerical solution was fit to a function with the form of the
analytically acquired solution (4.15)

ffit(z) = mz + 1
4mz

3 log(z) + cz3, (4.16)

in a fitting window between ε ≤ z ≤ 5ε. The coefficients (m, c) were then collected
from the fitting function (4.16) and plotted. In order to study the large and small
mass limits, the interval of iteration was changed for the cutoff zm.

(a) (b)

Figure 4.1: (a) Small mass solutions in dS4-slicing (red dots) versus flat-space
solution c(m) = m3/6 (blue line) in the interval zm = {0.099, 1.980}. The numerical
solutions appears to be off-set from the flat-space solution. (b) Close-up view of
smallest values in (a) where the solution was found to be approximately linear
c(m) ≈ 0.76m (green line). At the smallest masses, near the cutoff zm = 2, the
numerical solver hits the dS-horizon.
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(a) (b)

Figure 4.2: (a) Medium mass solutions in dS4-slicing (red dots) versus flat-space
solution c(m) = m3/6 (blue line) in the interval zm = {0.04, 0.8}. (b) Close-up
view of (a). Again, the numerical solution appears to be off-set from the flat-space
solution.

(a) (b)

Figure 4.3: (a) Large mass solutions in dS4-slicing (red dots) versus flat-space
solution c(m) = m3/6 (blue line) in the interval zm = {0.01, 0.2}. (b) Close-up view
(a). The numerical solution appears to follow the flat-space solution.

At the smallest masses, the relationship between the numerically computed param-
eters m and c was found to be approximately linear (c(m) ≈ 0.76m). Masses could
not be computed beyond the cutoff zm = 2, as the numerical solver hit the de Sitter
horizon at z = 2`. As the mass gets larger, the numerical solution appears to follow
the flat-space solution c(m) = m3/6 in an offset manner, while at the largest masses,
the numerical solver clearly reproduces the flat-space solution.

At small masses m� 1
`
, the effects of de Sitter curvature to dominate the relation-

ship between the mass and condensate parameters m and c. Moreover, the smallest
mass solutions are hidden behind the de Sitter horizon, and acquiring them requires
a change of coordinates. At large masses m � 1

`
, the effects of de Sitter curva-

ture become negligible in comparison to the effects of the mass. This is confirmed
by the reappearance of the flat-space solution. At medium masses, however, there
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appears to exist a regime in which both the effects of dS curvature and mass are
non-negligible. Accurately describing this region requires a correction to the mass.

4.3 Mass correction
To determine the relationship between the mass and condensate in the medium
mass regime, where the effects of both dS curvature and mass are non-negligible,
the correction to the mass is calculated. This is accomplished by performing a large
mass expansion in small values of the inverse de Sitter radius 1

`
. In this case, the

dS-radius is no longer suppressed from the slipping mode action

S̃D7 =
∫
dz

1
z5

(
1− λ2z2

4

)
cos3 θ(z)

√√√√1 + z2
(
∂θ(z)
∂z

)2

, (4.17)

where λ = 1
`
. Computing the equation of motion of (4.17), then expanding about

λ = 0 up to order O [λ4] results in the expression

z cos(θ(z))
(
z
(
4− λ2z2

)
θ′′(z) + 2z2

(
λ2z2 − 8

)
θ′(z)3 +

(
λ2z2 − 12

)
θ′(z)

)
−3

(
λ2z2 − 4

) (
z2θ′(z)2 + 1

)
sin(θ(z)) = 0.

(4.18)

In this case, solutions of the EOM have the form

θ(z) = θ(0)(z) + λ2θ(2)(z) +O
[
λ4
]

(4.19)

where θ(0)(z) = mz + m3

6 z
3 + O [z4] is the flat-space solution (2.47), and θ(2)(z) is

to be determined. Applying the cutoff boundary conditions (3.18) to θ(z) results in
additional conditions for the leading and subleading order solutions

θ(0)(zm) = π

2 , θ′(0)(zm) =∞,

θ(2)(zm) = 0, θ′(2)(zm) = 0.
(4.20)

Inserting the solution (4.19) into the EOM (4.18), expanding in a series up to O [λ4],
and solving with Dsolve yields a solution θ(2)(z) that is dependent on two undeter-
mined constants. These constants are identified by expanding θ(2)(z) to leading order
about the z = zm boundary and applying the boundary condition θ(2)(zm) = 0. To
fourth order in z, the solution θ(z) then reads

θ(z) =
( 1
zm

+ λ2 zm
8 +O

[
λ4
])
z

+
(

1
6z3

m

+ λ2
(

1
16zm

− log(zm)
4zm

+ log(z)
4zm

)
+O

[
λ4
])
z3

(4.21)

The corrected field theory parameters (m and c) were reinstated in (4.21) by de-
manding that the linear z coefficient should be the corrected mass m, which is ac-
complished by zm = 1

m

(
1 + λ2 1

8m2

)
. In terms of the physical mass and condensate,
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the leading order correction then reads

θ(z) = mz +
(
m3

6 + λ2 1
4m log(mz)

)
z3 +O

[
z4
]
, (4.22)

where the corrected condensate is identified as the cubic coefficient c(m) = m3

6 +
λ2 1

4m log(m).

(a) (b)

Figure 4.4: (a) Medium mass solutions in dS4-slicing (red dots), mass correction
c(m) = m3

6 + λ2 1
4m log(m) (blue line), uncorrected flat space solution c(m) = m3/6

(red line) in the interval zm = {0.06, 1.33}. (b) Close-up view of (a). The correction
to the mass clearly fixes offset of the uncorrected flat-space solution.

4.4 Behind the horizon

Switching to r-coordinates (2.38) allows one to obtain the smallest mass solutions
that have up until this point been located behind the horizon. Moreover, the linear
behavior of the smallest mass solutions can be evaluated analytically. Finally, in
these coordinates it is possible to consider new embedding in which the D7-brane
extends to the center of AdS. In section 4.4.1, the embedding of a probe D7-brane
is described in r-coordinates. In section 4.4.2, the form of the asymptotic solution
in the new coordinates is confirmed, and the form of the near-massless solutions
are evaluated using the IR boundary conditions (3.20). Finally, in section 4.5, the
slipping mode EOM is solved for all masses using two different boundary conditions
(cutoff and IR).

4.4.1 Embedding
The slipping mode action is now given by

S̃D7 =
∫
dr sinh4(r) cos3 θ(r)

√√√√1 +
(
∂θ(r)
∂r

)2

, (4.23)
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where the asymptotic boundary is located at r →∞, while the center of AdS is at
r = 0. This results in the equation of motion

(
θ′(r)2 + 1

)
(4 cosh(r)θ′(r) cos(θ(r)) + 3 sinh(r) sin(θ(r)))

+ sinh(r)θ′′(r) cos(θ(r)) = 0.
(4.24)

Here, it is still possible to embed the D7-brane using the cutoff boundary conditions

θ(rm) = π

2 ,

θ′(rm) = Λ,
(4.25)

such that the brane depends on the radial coordinate and slips off of the pole at a
finite value r = rm. In addition to this, these coordinates allow for a second type of
boundary condition

θ(ε) = α,

θ′(ε) = ε,
(4.26)

where 0 ≤ α ≤ 2π, such that the position of the D7-brane is determined by dialing
α.

4.4.2 Near-massless solutions

Extracting the analytic form of the linear fit of the smallest mass solutions proceeds
by once again expanding the action in fluctuations θ(r) about the r = 0 boundary.
Retaining only quadratic terms results in a linearized EOM in the IR. Then, solving
the linearized EOM, allows one to analytically identify c(m) in the near-massless
regime. These solutions correspond to solving the EOM at a finite distance away
from r = 0, as α will not be set to zero. The linearized EOM in this case is

− sinh4(r)θ′′(r)− 4 sinh3(r) cosh(r)θ′(r)− 3 sinh4(r)θ(r) = 0, (4.27)

and asymptotic solutions up to fourth order in the radial coordinate have the form

θ(r) = α(0)e
−r + α(1)e

−2r + α(2)e
−3r + β(2)re

−3r. (4.28)

By inserting (4.28) into (4.27), switching to the z- coordinates with r = − log(z),
then expanding about the asymptotic boundary z = 0 the coefficients were identified
as α(1) = 0 and β(2) = 4α(0). Confirming that, in the r-coordinates, the solution has
the expected form

θ(r) = me−r − 4mre−3r + ce−3r. (4.29)

Then, by solving (4.10) with the IR boundary conditions (4.26) and the solution
(4.29), the near-massless behavior of the condensate is identified as c(m) = 3m.
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4. Curved Case

4.5 Numerics behind the horizon
For the medium to large masses the numerical differential equation solver NDsolve
was used to iteratively solve the EOM (4.24) at different cutoffs rm, using the cutoff
boundary conditions (4.25), with ε = 10−3 and Λ = 103. This was implemented by
a For-loop, containing NDsolve, which iterated through 20 different values of rm.
Each numerical solution was fit to a function of the form (4.29). The coefficients
(m, c) were then collected from the fitting function and plotted. For the small mass
limit, the boundary conditions were changed to (4.26) and iteration was instead
performed for 20 values between 0 ≤ α ≤ 2π.

(a) (b)

Figure 4.5: (a) Small mass solutions acquired using α BC (4.26) (blue dots) versus
medium mass solutions acquired using cutoff BC (4.25) (red dots). The red and
blue dots meeting smoothly indicates a second-order phase transition between two
different D7-branes at m∗ ≈ 2.64 and c∗ ≈ 14.51. As argued in [20], a smooth
transition, in combination with a large vanishing cycle, suggests that the phase
transition is second-order, as opposed to first-order which would be associated with
a discontinuity. (b) Close-up view of phase transition in (a).

(a) (b)

Figure 4.6: (a) Smallest mass solutions acquired using α BC (4.26) (blue dots)
can be seen converging toward the line c(m) = 3m (b) Combined solutions including
large masses acquired using cutoff BC (4.25) (purple dots). These solutions can be
seen following the background solution c(m) = m3/6.
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5
Conclusion

In this thesis, the 1-point function of a strongly coupled hypermultiplet of flavor
fields on dS4, dual to the probe D7-brane slipping mode on dS4-sliced AdS5, was
computed holographically. This was accomplished by first embedding the probe D7-
brane in Minkowski foliated AdS5×S5. Following this, the first step of holographic
renormalization was implemented at the level of the boundary conditions, ensuring
regular solutions. This enabled a numerical confirmation of the known supersymmet-
ric background solution. Then, the D7-brane was embedded in dS4-sliced AdS5×S5,
the asymptotic boundary solution was evaluated analytically, and the mass and con-
densate were computed numerically for both large and small masses. The numerical
results suggested that at small masses m � 1

`
, the effects of de Sitter curvature to

dominated the relationship between the mass and condensate parameters, where a
linear relationship was found between m and c. At large masses m� 1

`
, the effects

of de Sitter curvature become negligible in comparison to the effects of the mass,
and the background solution reappeared c = m3/6. In order to accurately describe
the medium mass regime, in which neither the effects of de Sitter curvature or mass
could be neglected, the subleading order mass correction was evaluated analytically
to be c = m3/6 + `−2m log(m)/4, and shown to fix the offset numerical solution.
Thereafter, coordinates were switched in order to circumvent the de Sitter horizon,
where the smallest mass solutions could be computed numerically. Moreover, this
allowed a new type of D7-probe brane to be embedded in dS4-sliced AdS5 × S5,
given by new boundary conditions. The near-massless solutions were evaluated ana-
lytically by solving equation of motion near the IR boundary, where the relationship
was found to be c = 3m. The near-massless solutions were confirmed numerically
for the new D7-brane embedding, and the largest mass solutions, acquired using
the original D7-brane embedding, followed the background solution. A second-order
phase transition was observed between the two D7-branes at the value m∗ ≈ 2.64
and c∗ ≈ 14.51.

The natural continuation of this investigation would be to use the acquired data to
compute the strongly coupled 2-point correlation function dual to the slipping mode
and to compare it to the weakly coupled 2-point function of slow-roll inflation. An
initial aspect that requires further consideration is scale invariance. The 2-point
function of slow-roll inflation is nearly scale invariant, while the 2-point function
dual to the slipping mode has mass, violating scale invariance. Here, one could in-
vestigate the possibility of suppressing the breaking of scale invariance via the mass
at strong coupling. If possible, a small violation of scale invariance should then yield
a nearly scale invariant strongly coupled 2-point function.
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5. Conclusion

Computationally, the holographic 2-point function would be acquired by solving
the bulk equations of motion with small fluctuations added to the original solution
θ(z)+ δθ(z, x, t). Here, an initial problem to tackle would concern time dependence.
For Minkowski foliated AdS5, it is possible to Fourier transform and replace the x
and t dependence with k and ω. Computing the 2-point function on dS4, on the
other hand, requires commitment to a coordinate system. For global coordinates
on dS4, for example, x dependence could be replaced by spherical harmonics, but
switching from time to frequency would complicate matters. Numerically comput-
ing 2-point function would correspond to solving linear partial differential equations
of motion, where parameterizing solutions with frequency dependence could pose
conceptual challenges.

Given the numerical computation of a strongly coupled 2-point function on dS4,
one could investigate the qualitative differences between observing a strongly and
a weakly coupled inflaton. Here, however, one would have to take consideration to
the fact that in the large Nc limit, correlation functions are suppressed by powers of
Nc [5]. This entails that, although the holographic dual to scalar slipping mode is
strongly coupled, the fact that it is also a largeNc theory may prevent any observable
large non-Gaussianity.
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