
Control of Self-Driving Vehicles
Using Deep Learning

Master’s thesis in Computer Science – algorithms, languages and logic

JACOB GENANDER
ANNA NYLANDER

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Master’s thesis 2018:EX099/2018

Control of Self-Driving Vehicles Using Deep
Learning

JACOB GENANDER
ANNA NYLANDER

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden 2018

Control of Self-Driving Vehicles Using Deep Learning
JACOB GENANDER
ANNA NYLANDER

© JACOB GENANDER, 2018.
© ANNA NYLANDER, 2018.

Supervisor: Lennart Svensson, Department of Electrical Engineering
Examiner: Tomas McKelvey, Department of Electrical Engineering

Master’s Thesis 2018:EX099/2018
Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Lidar point cloud seen from above, depicting a simulated car as it takes a
left turn. The dotted lines represent the car’s past trajectory (red), ground truth
future trajectory (green) and predicted future trajectory (blue), as predicted by a
deep neural network.

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Control of Self-Driving Vehicles Using Deep Learning
JACOB GENANDER
ANNA NYLANDER
Department of Electrical Engineering
Chalmers University of Technology

Abstract
This thesis investigates the use of deep learning to control an autonomous vehicle in
urban environments. A so called direct perception system was implemented, allow-
ing for human interpretation of the output while providing a means of guaranteed
safety. Moreover, the system was trained using unlabeled data, providing a cost and
time efficient alternative to other approaches. The data was obtained by recording
lidar and GNSS-IMU sensor readings while driving a simulated car. Together with
high level directions, traffic light status and speed limit, this information captured
the state of the ego-vehicle and its surroundings at every time step. Given such a
state, the networks were trained to predict the future trajectory of the ego-vehicle.
The predicted trajectory could then be followed by applying appropriate control
signals to the vehicle, found using a model predictive controller. Four types of deep
neural networks were implemented in order to explore different ways of predicting
trajectories. The performance of the networks was measured using the mean squared
error between the ground truth trajectories and the predicted ones. In addition, a
more qualitative analysis was made by visually inspecting the trajectories. Three
of the four network types obtained similar performance, while all networks failed to
reach acceptable performance. The networks were able to predict acceptable trajec-
tories in some situations, e.g., turning at crossroads and driving on straight roads.
On the other hand, some situations were evidently more difficult, e.g., non-crossroad
turns and stopping for traffic lights and other vehicles. Owing to these results, it is
not possible to conclude whether the sensors provide sufficient information to control
a vehicle or not. In conclusion, deep learning seems to be a promising technique for
controlling autonomous vehicles, although the problem was harder than expected.

Keywords: Machine Learning, Deep Learning, Autonomous Driving, Direct Percep-
tion, CARLA Simulator, LIDAR, Trajectory Prediction.

v

Acknowledgements
First and foremost, we would like to thank our supervisor Lennart Svensson for
giving us the opportunity to be part of this exciting and interesting project. From
the start, he has encouraged our experimentation and ideas and he has also given
advice and shared interesting thoughts. We would also like to express our deep
gratitude to Juliano Pinto and Dapeng Liu for implementing the MPC, discussing
ideas and assisting in general. They have both been great sources of inspiration.
Assistance provided by Anders Karlsson was greatly appreciated — we always left his
office energized and motivated. Thanks should also be given to Luca Caltagirone for
discussing some of the key concepts of the project, to Samuel Scheidegger for helping
us with his PyTorch expertise and to Mikael Kågebäck for sharing his knowledge on
RNNs. Finally, we wish to thank our examiner Tomas McKelvey for reviewing the
thesis, and the E2 department for providing us with a place to work in and an SSD
to put the data on.

Anna Nylander, Gothenburg, August 2018
Jacob Genander, Gothenburg, August 2018

vii

Contents

List of Figures xiii

List of Tables xix

Nomenclature xxi

1 Introduction 1
1.1 Background . 1

1.1.1 Mediated Perception vs Behaviour Reflex 1
1.1.2 SLAM vs see-and-drive . 2

1.2 Objective . 4
1.3 Data . 4

1.3.1 Lidar . 4
1.3.2 GNSS-IMU . 5
1.3.3 Intentions . 5

1.4 Scope . 5
1.5 Contribution . 6
1.6 Thesis Outline . 6

2 Theory 7
2.1 Machine Learning and Neural Networks 7
2.2 Feed-Forward Neural Networks . 8

2.2.1 Training a Network . 10
2.3 Activation Function . 11
2.4 Loss Function . 12
2.5 Optimization Methods for Gradient Descent 13

2.5.1 Minibatch SGD Optimization 13
2.5.2 Adam Optimization . 14

2.6 Networks . 15
2.6.1 Convolutional Neural Networks 16
2.6.2 Recurrent Neural Networks 18
2.6.3 Long Short-Term Memory . 19
2.6.4 Gated Recurrent Unit . 21

2.7 Regularization . 21
2.7.1 Dropout and Spatial Dropout 22
2.7.2 Weight Decay . 24

2.8 Control module . 24

ix

Contents

2.8.1 Model Predictive Control . 24
2.9 Clustering Algorithm . 26

2.9.1 K-means . 26
2.10 Principal Component Analysis . 28
2.11 Semantic Segmentation . 29
2.12 Object Classification, Localization and Detection 30

3 System Overview 33
3.1 Online system (test driving) . 33
3.2 Training a network . 33
3.3 Our Main Ideas . 35

3.3.1 Pure Regression Idea . 35
3.3.2 PCA Regression Idea . 36
3.3.3 Cluster Idea . 36
3.3.4 Semantic Segmentation Idea 37

4 Method 39
4.1 Tools and Equipment . 39

4.1.1 CARLA . 39
4.2 Gathering data for training . 40

4.2.1 Gathering Intentions . 41
4.3 Data Preprocessing . 41

4.3.1 Balancing the data set . 41
4.3.2 Lidar . 42
4.3.3 Rest of the Values . 42

4.4 Network Architectures . 44
4.4.1 Pure Regression Networks . 44

4.4.1.1 CNN Fully Connected (FCNet1, FCNet2) 44
4.4.1.2 CNN Only (CNNOnly) 45
4.4.1.3 CNN with Bias (CNNBiasFirst, CNNBiasLast, CNNBi-

asAll) . 46
4.4.1.4 CNN with LSTM (CNNLSTM) 48
4.4.1.5 LSTM (LSTMNet) 48
4.4.1.6 LSTM Bidirectional (LSTMNetBi) 48
4.4.1.7 GRU (GRUNet) . 49

4.4.2 PCA Regression Networks . 49
4.4.3 Clustering Networks . 49
4.4.4 Semantic Segmentation Networks 51

4.5 Training . 52
4.6 Control Technique . 53
4.7 Network evaluation . 53

5 Results 57
5.1 Network Loss . 57

5.1.1 Experimentation Phase . 57
5.1.2 Pure Regression Idea . 59
5.1.3 PCA Idea . 61

x

Contents

5.1.4 Cluster Idea . 62
5.1.5 Semantic Segmentation Idea 63

5.2 Visual Inspection . 65
5.3 Benchmarking . 74

6 Discussion 77
6.1 Predictions . 77
6.2 Data . 78
6.3 Architectures and Ideas . 79
6.4 Benchmarking Problems . 80
6.5 Future Work . 81

7 Conclusion 83

References 86

A Lidar implementation in CARLA I
A.1 CARLA’s depth maps . I

A.1.1 Sampling the relevant points I
A.2 converting to a 3D point cloud . III
A.3 Interpolation . III

B Pure Pursuit VII

C Recorded measurements from CARLA - an Example IX

xi

Contents

xii

List of Figures

2.1 The typical structure of a neuron used in neural networks. The output
of a neuron in general is here denoted o. 9

2.2 An FFNN with an input layer, one hidden layer and an output layer.
Each circle represents one neuron, as depicted in Figure 2.1. The
output of the final layer corresponds to the approximation ŷ of the
ground truth y. 9

2.3 The activation functions used. Note that, in contrast to ReLu, ELU
can produce negative values. 11

2.4 The retained momentum is used to find a better step direction. This
is especially useful in cases where the gradient direction fluctuates
heavily. 14

2.5 A 3x3 kernel is sliding over the input and produces the feature map.
The input is padded with zeros in order to maintain the size of the
feature map. 16

2.6 One 3x3 kernel moves over an input using a stride of 2. By using a
larger stride the resulting featuremap reduces in size. 17

2.7 A small example of max pooling. The input is divided in 2x2 blocks
where only the largest value is kept. While max pooling is the most
common pooling, there are also min pooling and average pooling. . . 17

2.8 A 3x3 kernel with different dilation. 18
2.9 To the left is a RNN with input x, output y and a hidden state h.

The right hand side shows the unrolled equivalent. 19
2.10 Left: LSTM unit where the input xt and previous cell state ct−1 are

modified to form the output ht. The output is in turn propagated to
the next time step, together with the updated cell state ct. Right:
GRU, similar to the LSTM unit but without cell state. 21

2.11 The validation error increases while the training error still decreases. 22
2.12 An illustration of dropout. The crossed out neurons are dropped and

not used for this forward and backward pass. 23
2.13 A kinematic bicycle model of a car. 25
2.14 Top: road map with green and white drivable areas and black non-

drivable areas. Bottom: Distance map of road boundaries to all non-
drivable areas of the town. Black means small distance and white
means high. For example, Obstacle 2 represents the smallest area at
the top. Each distance map corresponds to a constraint, telling the
MPC not to allow actions that drive the car into the non-drivable areas. 27

xiii

List of Figures

2.15 Example of data clustering. The black points is the µk (the centroids)
of respective cluster. 28

2.16 The hand is reduced to 2 dimensions in the shadow. By picking
projection vectors w1 and w2 with the most variance the features are
retained in the dimension reduction (left image). Choosing principal
components poorly can cause the projected data to be unrecognizable
(right image) . 29

2.17 To the left is the original image and to the right is the semantically
segmented equivalent. The problem is binary, with only two classes:
”cat” and ”not cat”. 30

2.18 Nine bounding boxes of three sizes at different locations. Notice how
the best fit around each cat is achieved using different box sizes.
Adjusting the height, width and location would potentially make even
better fits. 31

3.1 A simplified sequence diagram of the system. 34
3.2 Trajectory reconstruction using one of the five leading principal com-

ponents of the training data, respectively. Blue lines correspond to
low (possibly negative) principal component values, while orange lines
correspond to high values. From left to right, the characteristics could
be described as speed, right turn, acceleration, minor right turn and
slow down, then speed up. Each line has been offset slightly on the
horizontal axis for clarity, while vertical offset is just part of the prin-
cipal component. Axis unit is meters. 35

3.3 Trajectory reconstruction (orange) made by accumulating one through
five of the leading principal components of the training data. The
reconstructed trajectory aligns better and better with the original
trajectory (blue) for each added principal component. The MSE be-
tween curves is displayed in the lower part of each plot. Axis unit is
meters. 36

3.4 Nine clusters formed using the k-means algorithm on the training
data. Blue lines are observed trajectories, while the red line in each
cluster is the corresponding centroid. Axis unit is meters. 37

3.5 The red dots is the past path, the green small dots are the recorded
ground truth trajectory. The purple circles are the generated ground
truth for the semantic segmentation. Each image corresponds to one
channel, in other words one specific future time frame. 38

4.1 An image from the CARLA simulator. 40
4.2 A 3D lidar pointcloud (left) is viewed from above (right). The lighter

color represents higher altitude and darker color represents lower al-
titude. 43

4.3 Network architecture of FCNet1. 46
4.4 Network architecture of FCNet2. 46
4.5 Network architecture of CNNOnly. 46
4.6 Past values form one bias for each channel in a convolution layer. . . 47

xiv

List of Figures

4.7 Network architecture of CNNBiasAll, applying individual biases to
all convolution layers. The PCA, cluster and semantic segmentation
idea networks make use of the same structure enclosed in the dashed
box, simply referred to as CNNBiasAll. 47

4.8 Network architecture of CNNwithLSTM. 48
4.9 Network architecture of LSTMNetwork. 49
4.10 General architecture of the PCA idea networks. 50
4.11 Architecture of the cluster idea network. The dashed line indicates

how the trajectory with highest class probability is extracted using
information from the class probabilities, but that backpropagation is
not applicable along that line. 50

4.12 Architecture of the semantic segmentation network. The network is
trained using the binary cross-entropy loss, whereas the MSE loss is
used merely to compare the model with others. 51

4.13 Top: Acceleration over time as an input to the dynamics approxima-
tion network. Middle: Predicted and ground truth throttle values for
the corresponding acceleration in the top plot. Bottom: Predicted
and ground truth brake signals. It can be seen that the predicted sig-
nals roughly follow the ground truth. For example, predicted brake
signals are applied when a deceleration is present. 54

5.1 Validation loss for ten first pure regression network architechtures
implemented. It can be seen that the networks called CNNBiasFirst,
CNNBiasLast and CNNBiasAll have better performance than the rest. 58

5.2 When training the same network architecture, Adam is superior to
Mini-batch SGD, as the validation loss decreases more quickly and
ultimately reaches lower values. Note that the network trained using
Mini-batch SGD did not train for as many iterations, but the trend
is still clearly visible. 59

5.3 Validation loss for the pure regression idea networks. The networks
named More layers 1 and More layers 2 were trained for 14 hours,
whereas the rest were trained for 7 hours each. 60

5.4 Validation loss for the CNNBiasAll network using only the current
lidar frame and using the current and previous lidar frames. No
effective gain in performance was observed, whereas the training speed
was halved. 60

5.5 Validation loss for the PCA idea networks. The difference in perfor-
mance was similar when using 5, 7, 10 and 20 components respectively. 62

5.6 Validation loss for the cluster idea networks. 63
5.7 Validation loss for the semantic segmentation idea networks. 64
5.8 Validation loss for the networks with lowest test loss for each of the

main ideas. There is little difference in performance between the
ideas, except for the semantic segmentation idea which performs worse. 64

xv

List of Figures

5.9 Turning left without intention. Top: Pure regression and cluster idea
models seem similarly accurate, while PCA idea and semantic seg-
mentation idea networks struggle. Bottom: another left turn which
requires the network to follow to road. It can be seen in the lidar im-
ages that a left turn is crucial, but all four models struggle to predict
an acceptable trajectory. 66

5.10 Turning left with intention (i.e., instructed to turn left in a cross-
roads).Top: Most models predict fairly accurate trajectories. Bottom:
All models undershoot with respect to the ground truth trajectory. . 67

5.11 Going straight ahead. Top: All four models are accurate in this
rather simple situation. Bottom: All four models fail to correct for
the perturbation of the steering signal. 68

5.12 Waiting for traffic light. Top and bottom: Vehicle is waiting for
green light and networks should predict no movement. Evidently, the
networks manage to make appropriate predictions in some cases but
not in others. 69

5.13 Another vehicle is driving in front of the car, and thus the ego-vehicle
in the recorded data is slowing down. This scenario causes the pre-
dictions to behave undesirable. Top: wanting to turn when it in fact
should continue straight ahead. Bottom: wanting to turn when it in
fact should stop for a traffic light. A reasonable explanation for this
behaviour is that slowing down near a crossroads usually means that
the vehicle will soon be turning. In the scenario shown, the turn is
expected, but more than ten meters ahead of the predicted trajectory. 70

5.14 Series of images depicting how the pure regression network More lay-
ers 1 predicts movement as soon as the traffic light turns green. First
image: Car is waiting for a traffic light to turn green, predicting no
movement. Second image: Traffic light changed from red to green,
predicting a small movement even though the acceleration is zero.
Third image: Predicted trajectory grows longer, still with no acceler-
ation present. Fourth image: Finally, the car starts moving and the
predicted trajectory aligns with the ground truth. 71

5.15 Series of predictions in a turn without intention, using the pure re-
gression network More layers 1. The first (left) image shows how the
turn is being initiated in the prediction of time step 2147, although
too slowly compared to the ground truth. Just two time steps later,
at time step 2149, the turn has been aborted and the predicted tra-
jectory continues straight off the road. Between steps 2150 and 2157,
the predictions become better and better and finally align quite well
with the ground truth. The network continues to predict with about
the same accuracy, however with some overshooting, until the curve
has ended. 72

xvi

List of Figures

5.16 The total acceleration and the steering angle have been plotted over
the time series depicted in Figure 5.15. The four vertical lines in each
plot mark the time steps corresponding to the images in Figure 5.15.
It seems like the network predicts turning trajectories based on these
signals rather than the lidar image, although it is unclear to what
degree. 72

5.17 Networks predict trajectories intersecting other vehicle. Top: The
other car is moving and the predicted trajectory is correctly going
through it. Bottom: Other car is standing still but the network
incorrectly wants the car to go through it. Note that more lidar
images are required for the network to figure out if the car in front is
moving or not. 73

5.18 Comparison between predictions byMore layers 2 with different train-
ing times. Top: Trained for 14 hours. Bottom: Trained for 63 hours.
The networks seems to be making the same mistakes, although pre-
dicting smoother trajectories in general. 74

5.19 Predicted segmentation map from the semantic segmentation network
at different time steps (5, 10, 15, 20, 25 and 30) into the future. Bright
yellow means high probability and purple means low probability. The
probability values control the transparency of the segmentation map,
making the top view lidar image visible in the background. As for
the other prediction plots, the green dot is the ground truth position
and the blue dot is the predicted position, calculated as the center of
mass of the semantic segmentation map. 75

A.1 Depth map recorded by the CARLA depth cameras. The RGB values
represent the distance to each pixel. II

A.2 The blue dots is the relevant pixels which should be extracted from
each depth map in order to recreate a lidar point cloud. The curvature
arises when a ray sweep a perpendicular plane. II

A.3 The image shows which point of an object each pixel "sees". Tra-
ditionally the distance to an object is measured between the pixel
and the object, red line in the left image. Instead the depth value in
CARLA is decided by the perpendicular distance between the object
and the pixel, the red line in the right image. III

A.4 The final result of the lidar extraction form the depth cameras. The
colors represent which camera the points are recorded with. IV

A.5 A depth camera with resolution 400x300 was used. The difference
in smoothness of the lines between not using interpolation (left) and
using interpolation with a threshold of 1 meter (middle) and using a
threshold of 2 meters (right) is clearly visible. V

B.1 A semi circle is fitted between the current position of the rear wheel
and the look ahead distance L. The steering rate ω is decided by eq.
B.1. VIII

xvii

List of Figures

xviii

List of Tables

4.1 Frame distribution over categories. Classes straight and traffic light
constitute a disproportionate amount of all recorded frames. 42

4.2 Encoder (top part) and context module (bottom part) used as a basis
for most networks. All convolutions are 3× 3 45

4.3 The baseline for respective data set. 55

5.1 Minimum validation loss obtained for different network architectures
(trained using the mini-batch SGD optimization technique). 58

5.2 Test loss obtained for the pure regression idea networks. Training
More layers 2 for a total of 14 hours yielded a small gain in perfor-
mance, compared to training for only 7 hours. 61

5.3 Test loss obtained for the PCA idea networks. 61
5.4 Test loss obtained for the cluster idea networks. 62
5.5 Test loss obtained for the semantic segmentation idea networks. Us-

ing a larger radius seems to decrease the loss more quickly. The
network Radius 10-8-6-4 was trained for 14 hours but did not reach
the baseline loss. 63

xix

List of Tables

xx

Nomenclature

ANN Artificial Neural Network
BPTT Back-Propagation Through Time
CNN Convolutional Neural Network
FC Fully Connected
GNSS Global Navigation Satellite System
GRU Gated Recurrent Unit
IMU Inertial Measurement Unit
LIDAR Light Detection And Ranging
LSTM Long-Short Term Memory
MPC Model Predictive Control
MSE Mean Squared Error
RNN Recurrent Neural Network
SLAM Simultaneous Localization and Mapping

xxi

List of Tables

xxii

1
Introduction

Recently, self-driving cars have become an increasingly hot topic, and have gained
a lot of attention from media. Both academia and industry have invested great
amounts of resources in the development of fully autonomous cars. Companies such
as Waymo1 and Tesla2 are already testing their autonomous cars on the road, but
none of them have yet reached full autonomy.

By populating the roads with autonomous vehicles, it is argued that numerous ar-
eas will see positive effects. Not only might self-driving cars decrease the number of
fatal accidents, but it may also lead to less traffic congestion and higher comfort for
humans. It is also believed that self-driving cars will utilize the infrastructure more
efficiently, and lower the environmental impact. The expected benefits are many,
but there is still a long way to go before full autonomy of vehicles becomes reality.

Developing a system which can control a car is a very difficult task. A typical system
needs to accurately and quickly scan and interpret a dynamic environment as well
as read and understand the intentions of other road users. The system should then
calculate the best action to safely and efficiently reach the desired destination, while
also communicating its intentions to other road users. The system must also be
extremely robust as one small error could lead to fatal accidents.

1.1 Background

The development of fully autonomous cars is not complete, and novel methods to
address the problem pop up regularly. However, there are several established ap-
proaches and design choices, all of which one has to consider before attempting to
create an autonomous vehicle.

1.1.1 Mediated Perception vs Behaviour Reflex
When approaching autonomous driving, methods are commonly divided into two
main paradigms; mediated perception and behaviour reflex [1]. With the mediated
perception approach, the system is divided into several sub tasks which is later

1https://waymo.com/
2https://www.tesla.com/autopilot

1

1. Introduction

melded into one system. A common first step is to divide the system into an en-
vironment perception part, an action decision part and a control module. The
environment perception part is where sensor data is gathered and interpreted. This
part could locate and identify objects. The action decision part is where the next
actions are calculated and evaluated. Lastly, the control module is where the final
steering signals are derived. Each part can then be evaluated, improved or replaced
independently of the rest of the system. An advantage to this approach is that it
provides insight into the process and a human can interpret the system step-by-step.
This can be very beneficial for debugging, parameter tuning, and also opens up the
possibility of integrating constraints on the outputs. The constraints could act as
fail-safes in case the system malfunctions.

On the other hand, behaviour reflex models learn a single function for the whole
system, leaving the algorithm in a black box which outputs steering signals to the
car. In [2] and [3], different methods of environment perception are presented. One
advantage of such monolithic systems is that the tedious task of data annotation
can be skipped, as the model is trained on basically raw data (which is not the
case for mediated perception). This end-to-end approach was utilized in [4], which
developed an artificial neural network (ANN) which takes video frames as input
and outputs the steering angle for an autonomous vehicle. However, no throttle or
velocity is predicted in [4]. As mentioned in the same article, end-to-end systems
self-optimize according to the task, e.g., to produce steering signals. This means
that the network learns the task without solving explicitly defined sub tasks. Sub
tasks which are essential for human drivers to master (e.g., identifying the drivable
road) may not necessarily be optimal for an autonomous vehicle. A self-optimizing
system usually yields a smaller, more effective ANN, compared to a modular ap-
proach (i.e., mediated perception) [4].

However, as an alternative to these two extremes, an intermediate approach can
be taken, called direct perception [1]. The idea with direct perception is to provide
insight into the system and enable use of constraints, while also keeping the ad-
vantages of a monolithic behaviour reflex system. The authors of [1] demonstrate
an ANN which successfully learns to map raw pixel data to a number of parame-
ters, including distance to preceding cars and to lane markings. These values are
then used to control a simulated car. The authors of [5] provide another system
which produces a cost map over future positions. This cost map is used in a model
predictive controller (MPC) to calculate steering signals. In 2017, [6], developed a
technique for autonomous vehicles using a similar direct perception approach. They
attain very promising results, and a demo can be seen online3.

1.1.2 SLAM vs see-and-drive
Another design choice to consider is whether to use map-based localization and ac-
tion planning or using a more direct ”see-and-drive” approach. The former is based

3Link to demo videos: http://goo.gl/ksRrYA

2

1. Introduction

on the Simultaneous Localization and Mapping (SLAM) problem, as described in
[7, 8]. A SLAM-algorithm should map the environment as well as simultaneously
localize its own position within said map. Furthermore, the algorithm should rec-
ognize changes to the environment and update its map accordingly to accurately
portray its surroundings. As noted in [7, 8], there are several approaches to solving
the SLAM problem, but many practical complications arise when applying it in the
real world.

Using GNSS (Global Navigation Satellite System) to locate the vehicle might seem
like an obvious solution, but the availability and accuracy of GNSS is a big issue. The
signals can be affected by atmospheric conditions and the ”urban canyon” problem
describes the issue of signal shadow in areas with tall buildings or forests. Moreover,
localization errors are hard to detect which could have substantial consequences [7],
e.g., driving on the sidewalk or colliding with buildings.

Another common problem with SLAM-algorithms is drift, i.e., small localization
errors growing, or drifting, with time. There are numerous methods explained in [7]
which reduce the drift of the trajectory, but currently there is no technique which
avoids drift entirely. The only way to efficiently counter the drift problem is to ever
so often correct the position with a known reference [7]. By using preexisting maps,
it is possible to find such a reference by establishing mapping between the input
sensor readings and the map.

However, the maps must contain enough information to localize the vehicle regard-
less of season, weather or traffic situation [7]. Creating such an information dense
high-precision map is very expensive and time-consuming. Moreover, the map must
be kept updated with the latest information as the roads and environment change,
which is not a trivial task.

In contrast to a map-based approach there is a ”see and drive” approach. It res-
onates more directly with how humans drive, and bases decisions and actions on
the perceived surroundings. While, of course, the vehicle still needs some kind of
directions to reach an end-goal, it is not an essential part of the actual driving and
can be outsourced to existing navigation solutions. Advantages of such an approach
is that no high precision map needs to be created or maintained and it can drive
in an unknown territory. Furthermore, it is not dependent on being online or being
connected with other vehicles, therefore it can integrate seamlessly with our current
infrastructure.

Even if SLAM seems to be the most used technique today, it is worth investing
resources in developing a good independent see-and-drive system. As localization is
an extremely important part of current autonomous cars, it is important to make
the systems robust and have redundancy. By complementing the system with other
techniques which utilize different sensors and information, the system becomes more
reliable.

3

1. Introduction

1.2 Objective
The project will focus on the above described see-and-drive approach. More specif-
ically, a direct perception system will be implemented using deep learning and a
model predictive controller. The direct perception system should then drive a sim-
ulated car according to traffic rules. The neural network will predict a future tra-
jectory, conditioned on the current state of the ego-vehicle and its surroundings.
The state consists of measurements from lidar and global navigation satellite system
(GNSS-IMU) sensors, intentions, traffic light status and the current speed limit.
The model predictive controller will then take the predicted trajectory as input and
output a sequence of timed control signals, i.e., throttle, brake and steer values for
each time step in the sequence. When applying the sequence of control signals to
the vehicle, the resulting trajectory should align with the predicted one.

The aim of the project is to evaluate how well different neural network architectures
can drive an autonomous car, while still keeping the output human-interpretable.
The project will use a simulator named CARLA, an open source autonomous driv-
ing simulator created by Dosovitskiy et al. in 2017 [9]. As shown in [6], lidar and
GNSS-IMU readings together with intentions seem to hold enough information to
yield good driving, motivating the choice of sensor data.

Consequently, the objectives are to determine:
1. How well a system with human-interpretable output can drive an autonomous

car.
2. Which neural network architecture yields the best result in terms of autonomy.
3. If lidar combined with GNSS-IMU data is enough to drive a car.

1.3 Data
The current state of the vehicle and the world around it must be perceived by
the driver (human or mechanical) in order to plan its trajectory. A multitude of
sensors are available in CARLA, e.g., cameras, depth-cameras, lidar, GNSS, IMU,
etc. Lidar and GNSS-IMU will mainly be used, while no traditional camera feed will
be available to the network. Compared to lidar, the spatial information in cameras
is limited, due to perspective. Thus it is reasonable to believe lidar is the superior
option, as it captures the three dimensional relationship between the sensor and its
surroundings.

1.3.1 Lidar
A lidar (light detection and ranging) sensor comprises a number of lasers positioned
in a fan pattern. Each laser shoots a beam of light and a sensor records the reflection.
The time between shooting and receiving a reflected light pulse is measured, and the
distance to the hit object can be calculated. Together with the orientation of the
lidar unit, the vertical and the horizontal angle of the beam, the point of reflection

4

1. Introduction

can be positioned in 3D space relative to the lidar unit. The resulting collection of
3D points is called a point cloud [10].

1.3.2 GNSS-IMU

GNSS is a navigation system based on satellites. The position is based on the
distance between multiple satellites and calculated using triangulation. While it is
commonly used today, the signals are affected by atmospheric conditions and could
fall victim to blockage by tall buildings, thus it is not a reliable system [7].
Inertial Measurement Unit (IMU) is a combination of accelerometers, gyroscopes
and sometimes magnetometers. It can measure forces acting upon the object and
it’s angular rate. It is often used in, e.g., air crafts, vehicles or smart phones.

1.3.3 Intentions

The promising results in [6] were obtained using something they call intentions,
which provide a sense of direction and planning. An intention consists of intention
direction and intention proximity, i.e., turn right in 50 meters. An advantage of
using this kind of navigation is its similarity to the input humans use. Hence the
intentions can easily be accessed and extracted from existing apps, e.g., Google
Maps API. It is shown in [6] that by providing an intention to the ANN, the path
prediction improved significantly.

1.4 Scope

As there are many interesting scenarios to investigate when creating an autonomous
vehicle, the scope of this project is limited to keep it feasible. Firstly, the perfor-
mance of the systems is limited by the data available. In real life, an autonomous
vehicle would need to handle roundabouts, crossings without traffic lights, parking,
etc. However, the traffic situations in this project are those available in the simula-
tor, limited to making simple turns, starting and stopping according to traffic lights,
following three different speed limits and adapting to other vehicles and pedestrians.
Furthermore, the traffic light status will be assumed to be known even though no
camera is utilized. The autopilot provided by the simulator will be used to create
the ground truth driving. Although it does follow traffic rules by default, it is not
very sophisticated. For example, throttle and brake values are set to one of three
states (e.g., no throttle, half-way throttle and full throttle), which might be consid-
ered a limitation.

The project will only evaluate the ideas presented in Section 3.3, using the data
presented in Section 1.3. The computational speed (hardware listed in Section 4.1)
will also be a natural limitation.

5

1. Introduction

1.5 Contribution
This thesis contribute to the field of autonomous driving and specifically to the
idea of using deep learning to create a direct perception system. Such a system
would allow for human interpretation of its behaviour, while providing a means for
guaranteed safety, using constraints and common optimization techniques. Four
ideas are investigated and compared in the search for a neural network which can
predict future trajectories of a vehicle. We find that none of them reach a satisfactory
level of performance, but also that a deep learning direct perception system as a
concept has potential. In particular, we find that three of the network ideas have
similar performance, while another type of network is significantly inferior.

1.6 Thesis Outline
After this chapter, an extensive theory chapter is presented which explains the
underlying concepts and math. It aims to provide the reader with the necessary
understanding in order to follow the rest of the thesis. Chapter 3 introduces the
overall structure of the system and Section 3.3 proposes the four main ideas. The
main ideas refer to the different approaches taken to solve the problem presented
above. The following part, Chapter 4, discusses the method. This includes, but is
not limited to, a layout of the tools used (Section 4.1), a closer look at the data and
how it is processed (Section 4.2 and 4.3), and a detailed description of the neural
networks (Section 4.4). The results are presented in Chapter 5 which is followed by
a discussion in Chapter 6. Finally a conclusion is given in Chapter 7.

6

2
Theory

In this chapter we explain the theory behind key concepts used in the project. Sec-
tions 2.1 and 2.2 cover the basics of artificial neural networks and their basic struc-
ture. Section 2.3 and 2.4 thoroughly disclose the used activation- and loss functions.
The two optimization algorithms for neural network training are discussed in Sec-
tion 2.5.

With a good foundation, a more in depth explanation of the relevant types of neural
networks is covered in Section 2.6. After that, Section 2.7 covers the most used
regularization techniques for neural networks. Thereafter Section 2.8 discusses the
control module which produces the steering signals to the car. Finally Section 2.9
to Section 2.12 covers some key concepts which will be the foundation of the main
ideas in the project.

2.1 Machine Learning and Neural Networks

When applying machine learning one often seeks to approximate a function f(x) = y,
from some example input data x with corresponding output data y. The big ad-
vantage of using machine learning is that a model can be used to approximate very
complex functions, without having the model’s parameters explicitly defined from
the start. Instead, the model can learn by being exposed to data. The base principle
is that the model takes (small) steps towards finding a better approximation to a
function, thus better describing the desired output.

Within machine learning there are three main categories: supervised learning, unsu-
pervised learning and reinforcement learning. Depending on the problem at hand,
one or the other is preferred. In supervised learning, the model is given some input
data x and some corresponding correct answers y, often referred to as the ground
truth. The model should then find a specific function f(x) = ŷ ≈ y which maps
the input data to the ground truth. For data without a known correct answer y
the function should hopefully learn to find a good approximation of the correct an-
swer. Unlike supervised learning, the data in unsupervised learning has no explicit
mapping from input to output, and thus no ground truth. The main idea behind
unsupervised learning is instead to find some function which capture some features
of the data. Some examples are finding clusters, detecting anomalies or synthesizing
new data. Likewise, reinforcement learning requires no input-output mapping, but
instead tries to maximize a reward. This is done by letting an agent, e.g., robot or

7

2. Theory

software, interactively perform actions in an environment, according to some learned
action policy that tells the agent how to behave. The policy is learned by ”trial-
and-error” exploration, where early actions may affect the reward at a later time.
Consequently, the agent must alternate between exploring new policies and exploit-
ing the currently best one, as discovering new action policies is likely to increase the
long term reward [11].

While the aforementioned division is based on which environment and data is avail-
able, one can also divide the techniques depending on the type of problem, namely:
classification or regression. A classification problem decides which class(es) a type of
data belongs to, e.g., which genres does a text belong to. In contrast to the discreet
classification, regression is used to estimate continuous values, e.g., the expected
weight of a newborn baby. Whether to use classification or regression depends on
what problem we want to solve.

As implied before, machine learning is centered around data. The data is usually
split into three data sets with different purposes. Firstly, the training set is the
data the algorithm trains on. This set should be the largest and cover all types of
data the algorithm is expected to handle. Secondly there is often a validation set.
The algorithm should not train (update parameters) on the validation set, rather
it is used during training as an assurance that the algorithm generalizes well to
unseen data. Hyperparameters are often tuned manually to obtain good results on
the validation set. Finally the test set is used only when the algorithm has finished
training. The purpose of the test set is to evaluate the final model on data which has
not been used in any part of the training, as an unbiased measure of its performance.

This project is mainly focused around supervised learning. Both classification and
regression is explored in different ideas, but in all ideas the corner stone is deep
learning. Deep learning is a niche of machine learning where one uses deep neural
networks. Before looking at deep neural networks, the basics need to be understood.

2.2 Feed-Forward Neural Networks

The simplest type of ANN is a Feed-Forward Neural Network (FFNN). It was first
devised in the 1940s, gathering inspiration from the human brain [12]. Since then
many improved approaches and techniques have been devised, but the foundation
is still the same.

An FFNN consists of several neurons which can be seen in Figure 2.1. Each neuron
j in the hidden layer gets some input values x1, x2, ..., xk which are multiplied with
its respective synaptic weights wj1, wj2, ..., wjk. The products are then summed
together with a bias bj. The value of the summation is then passed trough an
activation function σ(·), which results in the output oj. The complete equation for

8

2. Theory

Figure 2.1: The typical structure of a neuron used in neural networks. The output
of a neuron in general is here denoted o.

the output of neuron j is thus

oj = σ

(∑
i

wjixji + bj

)
. (2.1)

The output of neuron i in the following layer is computed using the same procedure,
but with the output of the previous layer as its input.

Figure 2.2: An FFNN with an input layer, one hidden layer and an output layer.
Each circle represents one neuron, as depicted in Figure 2.1. The output of the final
layer corresponds to the approximation ŷ of the ground truth y.

The neurons of an FFNN may be connected in several layers (called perceptrons).
The neurons are connected using the aforementioned weights in an acyclic fashion,
where the output of the neurons in one layer is the input of the neurons in the next
layer. Passing data through a network will be denoted as f(x,θ) = ŷ where x and
ŷ is the input- and output data respectively, and θ represents the parameters of the
network, i.e., weights and biases. Figure 2.2 depicts an example of such a network.
This neural network in particular is fully connected, which means that all neurons

9

2. Theory

in one layer is connected to all neurons in the following layer.

The size of the input layer is determined by the shape of the input data, e.g., if the
input data is an image, then each input x may represent one pixel. The size of the
output layer is dependent on the shape and size of the desired output. Depending
on the problem, the activation function might differ between the layers, but usually
the same activation function is used throughout the network. An exception might
be the last layer, which needs to produce values in the range of the target values y.
The most important purpose of the activation function is to introduce non-linearity
into the otherwise linear model.

Naturally, the architecture of the network has a huge impact on performance. For
example, the number of layers, size of layers, and hyperparameters can all affect
the network greatly. On non-trivial data sets, i.e., the data having relationships
which are hard to approximate, it is quite difficult creating an effective network
from scratch, which can model these relationships. Furthermore there is no easy
way to tell beforehand whether an architecture will perform well or not. Currently,
the only established way of evaluating an architecture is simply to train the network
and measure its performance — a potentially time consuming process.

2.2.1 Training a Network
Training of a supervised neural network, as described in [13], usually starts by ini-
tializing all parameters to small random values. The parameters are then adjusted
in order to minimize the distance between the output of the network and the ground
truth, thus being an optimization problem. This distance can be calculated using
a suitable function for the problem at hand, e.g., the L2-norm, which measures the
squared distance between the output and ground truth vectors. The distance is
then used to construct a scalar valued loss or error, denoted by L, which can be
optimized. Finding a good loss function L = L(f(x;θ),y) is important in order for
the network to learn correctly.

In order to adjust the parameters of neural networks one common method is gradient
descent, also known as steepest descent. In every step of the training, the gradient
of the loss w.r.t. the parameters, ∇θL(·), points in the direction of the steepest
increase of loss. Hence, subtracting the gradient from the parameters moves their
values towards producing a lower loss value.

The learning rate η is set to scale the update, as to not take too large or small steps in
parameter space. Too large learning rate value may cause the loss to diverge, while
a too small value may cause a too slow convergence [13]. By calculating the gradient
of the loss w.r.t. all the parameters, these can be iteratively updated according to

θ ← θ − η∇θL(f(x;θ),y). (2.2)

In order to compute the gradient of the loss w.r.t. a specific parameter in the
network, the gradients of all parameters between the last network layer and the

10

2. Theory

parameter of interest have to be calculated, as they depend on each other. This
is done using the chain-rule of calculus and results in the error being propagated
backwards through the network. This procedure is called backpropagation.

During training of a supervised neural network, this process is repeated many times
over the training data set; first passing a data point forward in the network, then
doing backpropagation and updating the parameters. In each iteration, the network
becomes a little bit better at mapping the input to the desired output data, and
hopefully converges to a satisfying performance.

2.3 Activation Function
The activation function in general and its purpose was briefly discussed before in
Section 2.2. In this project, three main activation functions are used: Exponential
Linear Unit (ELU), Logistic Sigmoid and Softmax. The first is an activation function
commonly used for regression problems, defined as

ELU(x) =

x, ifx > 0
α(exp(x)− 1), ifx ≤ 0

, (2.3)

where α controls the slope rate where x ≤ 0. It is similar to the Rectified Linear
Unit (ReLU), but has negative values which reduce bias of the activation mean and
thus speeds up learning [14]. The functions are plotted for comparison in Figure 2.3.

-5 0 5
-1

-0.8
-0.6
-0.4
-0.2
0

0.2
0.4
0.6
0.8
1

Sigmoid
ReLu
ELU

Figure 2.3: The activation functions used. Note that, in contrast to ReLu, ELU
can produce negative values.

11

2. Theory

The logistic sigmoid and softmax functions are quite similar and both are primarily
used for classification problems. Both functions convert arbitrary values to a (dis-
crete) probability distribution over class membership and saturate when exposed to
large positive or negative values. The main difference between the two functions
is that the logistic sigmoid is used when performing binary logistic regression (e.g.,
hotdog or not hotdog?), while the softmax function is used for multi-class logistic
regression. The sigmoid function is defined as

σ(x) = 1
1 + e−x

, (2.4)

converting an arbitrary value x to a value between 0 and 1. The softmax activation
function is defined as

σ(x)j = exj∑N
n=1 e

xn
(2.5)

and scales an N-dimensional vector x of arbitrary values into having all values
σ(x) ∈ (0, 1) and∑N

i=1 xi = 1. Consequently, it can be used to represent a probability
distribution, where dimension n of the vector represents the probability of belonging
to class n.

2.4 Loss Function
The loss function will differ depending on the network and if the problem is within
regression or classification. A common loss function for regression is the Mean
Squared Error (MSE) described below. It is also the function used in this project
to measure the performance of the neural networks. Even in the cases another loss
function is used to train the neural network, the MSE is also calculated in order to
accurately compare performance.

The MSE is used to compare the ground truth with the prediction. The output of
the network is an ordered sequence p̂ = (p̂1, . . . , p̂nf

), consisting of horizontal-vertical
coordinate pairs p̂n = (x, y) relative to the vehicle’s current position, predicting its
future path. The coordinate pair at index n in the series correspond to the position
at time n ·∆t seconds from the current time, where ∆t = 0.1 seconds. The loss L
for a predicted trajectory p̂ and ground truth trajectory ṗ is defined as

L = 1
k

k∑
n=1

(p̂n − ṗn)2, (2.6)

where the squaring is performed element-wise. The errors in a sequence are here
weighted equally.

While MSE is used as the loss function for the regression neural networks, the
most commonly used loss function for classification is cross entropy. Cross entropy
measures the difference between two distributions, i.e., how the output classification
probability differs to the ground truth distribution (however, the ground truth is

12

2. Theory

usually only one class, i.e., a degenerate or uniform distribution). The cross entropy
between two distributions is defined as

H(P,Q) = H(P) +DKL(P ||Q), (2.7)

where P is the ”true” distribution and Q is the guessed distribution [13]. To put
cross entropy in context, consider the definition of entropy H(P) of a distribution
P :

H(P) = −
n∑
i=1

Pr(pi) log (Pr(pi)). (2.8)

As described in [13], entropy measures how unpredictable the events of the distri-
bution are, i.e., the average amount of information attained from one event drawn
from the distribution. The Kullback–Leibler divergence DKL(P ||Q) describes the
relative entropy of P with respect to Q. The guessed distribution Q makes some as-
sumptions to try to look as similar to P as possible, and the cross entropy describes
how wrong the assumptions are.

Lastly, a special case of cross entropy is Binary Cross Entropy, where only two
classes exist. For example, when predicting road regions in traffic images, the two
classes could be is road or is not road. The function is defined as

ln(ŷ, y) = − (yi log (ŷi) + (1− yi) log (1− ŷi)) , (2.9)

in which ŷ is the output from the network and y is the target (i.e., ground truth).
Binary cross entropy is used as a loss function in the neural networks based on
semantic segmentation. A theory section about semantic segmentation can be found
in Section 2.11.

2.5 Optimization Methods for Gradient Descent
Since training of a neural network can be very time consuming, it is crucial to do
it efficiently. In this section the two main optimization methods used in the project
will be presented. Both are based on the previously explained gradient descent, but
apply some additional heuristics to the optimization process.

2.5.1 Minibatch SGD Optimization
The most naïve way to apply gradient descent is to simply update network param-
eters using the gradients of the average loss on the whole training set, also known
as batch gradient descent [15]. Although the negative gradient may point in a very
precise direction of steepest descent, it may take prohibitively long time to calculate
gradients on the whole data set. On the other extreme, calculating the gradients
using only one input at a time, referred to as stochastic gradient descent, may yield
too large jumps in parameter space to learn the task at hand efficiently [15]. The
stochasticity is a result of calculating the gradient using a random data point instead
of using the average of all points.

13

2. Theory

Consequently, it might be a good idea to calculate gradients using a small subset of
µ datapoints, referred to as a minibatch. By using randomly sampled minibatches
in each iteration of the training, an estimate of the true gradient (i.e., as computed
on the whole training set) is made. This way of training, called minibatch stochastic
gradient descent [15], may speed up convergence and enable training on otherwise
prohibitively large datasets [13].

The minibatch SGD optimizer used in this project also utilizes a technique called
Momentum. Similarly to when using only one data point to calculate gradients,
estimates may become very noisy when using a small mini-batch size. Because of
this noise, the gradients may vary greatly compared with the gradients computed
on the full train set. Therefore, it can be useful to preserve some of the velocity
attained by following previous gradients, where the velocity refers to the direction
and magnitude of previous gradients. Momentum is a technique which introduces
such a velocity parameter, m, which accumulates past gradients while decaying their
contributions exponentially each iteration. An illustration of the impact of using
momentum is found in Figure 2.4. The velocity update is defined by

m← αm− η∇θ
(

1
µ

µ∑
i=1

L(f(x(i);θ),y(i))
)
, (2.10)

where the gradient of the average loss in a minibatch is calculated. The learning
rate is denoted by η, while α ∈ [0, 1) defines the rate of decay [13]. The parameters
are updated accordingly, using the formula

θ ← θ +m. (2.11)

Figure 2.4: The retained momentum is used to find a better step direction. This
is especially useful in cases where the gradient direction fluctuates heavily.

2.5.2 Adam Optimization
Finding a good value for the learning rate is of great importance, as it dictates
training results to a high degree [13]. There exists methods for finding a good

14

2. Theory

value for the learning rate, as well as ways of applying scheduled modifications to it
while training. Nevertheless, approaches to adapting the learning rate to individual
parameters have shown to be preferable due to their fast convergence times and
great results. In [15], a comparison between some of the most common optimizers is
made, suggesting that adaptive learning rate capabilities are preferable when dealing
with deep and complex networks. In particular, the Adam optimization algorithm
is pointed out to possibly be the best in general.

The intuition behind adapting the learning rate to individual parameters is that pa-
rameters with a history of small magnitude gradients should be updated with more
impact than those with larger ones [15]. Ultimately, training will progress more
evenly along all parameter axes [13].

Adam [16] (which is an acronym for adaptive moment estimation) makes use of
past gradients, much like momentum. In addition, it also incorporates the square of
past gradients. Using the following notation for the gradient g of the loss L w.r.t.
parameters θ,

g = ∇θL (f(x);θ), y) , (2.12)
the mean m and uncentered variance v estimates are calculated, respectively, as

m← β1m+ (1− β1)g (2.13)

and
v ← β2v + (1− β2)g2, (2.14)

where β1 and β2 are decay rates in the interval [0, 1) and g2 denotes element-wise
squaring of g [13]. The estimates are then bias-corrected using the terms

m̂ = m

1− β1
(2.15)

and
v̂ = v

1− β2
(2.16)

Finally, the update rule used in Adam is

θ ← θ − η√
v̂ + ε

m̂ (2.17)

where ε is a small valued constant used for numerical stability.

2.6 Networks
In Section 2.2 the basics of neural networks was explained. However there are many
variants of networks which are advantageous in different settings. In this projects
two main variants where used, namely Convolutional Neural Network (CNN) and
Recurrent Neural Network (RNN). CNNs have seen great success among computer
vision tasks and are a natural choice when dealing with spatial data in image format,
e.g., the top view of a car’s surroundings. Recurrent networks are particularly suited
for processing series of data, as they can keep and update an internal state, acting
as a memory.

15

2. Theory

2.6.1 Convolutional Neural Networks
Convolution is an operation which may be applied to N-dimensional operands. For
the purpose of simplicity and relevance to this project, the following paragraphs will
discuss the two-dimensional case only.

A CNN consists of a number of convolutional layers. Each such layer makes use of
a number of convolutional filters, or kernels. The values of these kernels are learned
during training of the network and act as feature detectors. One kernel might for
example learn to identify the presence of horizontal edges in an image [17]. Note
that the size of a kernel is set during the initialization, and cannot be changed later
on. Figure 2.5 depicts one kernel sliding across the image to extract one feature.
The resulting array is called a feature map. Usually, more than one kernel is used
which results in several feature maps. The input image can be seen as a special case
of a feature map.

Figure 2.5: A 3x3 kernel is sliding over the input and produces the feature map.
The input is padded with zeros in order to maintain the size of the feature map.

The convolution operation consists of sliding the kernel over the image and per-
forming element-wise multiplication with the intensities of the pixels covered by the
kernel, producing one value per location. These outputs collectively form a feature
map, indicating for all regions the presence of the particular feature learned by the
kernel. The convolution operation is often denoted by ∗ and is here defined on a
2D-image I with a kernel K as

(I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n), (2.18)

where i, j are the pixel indices on which the convolution is applied, while m and n
are the width and height of the kernel [13]. Note that an individual element in row

16

2. Theory

a and column b of the matrices I and K is denoted using parentheses rather than
subscripts for clarity.

Figure 2.6: One 3x3 kernel moves over an input using a stride of 2. By using a
larger stride the resulting featuremap reduces in size.

Convolution with a kernel on an image can be applied with different stride lengths
s, meaning that the kernel is moved s pixels horizontally and vertically before per-
forming the operation. Figure 2.6 shows a kernel using s = 2.
When doing convolutions the resulting feature map of a convolution will be smaller
than the input (except for kernel size 1x1 with stride 1). If one wishes to maintain
the input size from layer to layer, padding can be applied. Most often zero-padding
is used, as zero corresponds to no activation. Note that if the filter size, height or
width, does not break even with the number of pixels in the corresponding dimen-
sion, the last pixels at the end of the image will be lost.

Figure 2.7: A small example of max pooling. The input is divided in 2x2 blocks
where only the largest value is kept. While max pooling is the most common pooling,
there are also min pooling and average pooling.

On the other hand, reducing the size of the input also reduces the demands on

17

2. Theory

computation and memory. This can be achieved by pooling neighbouring pixels and
reducing them to only one value, e.g., by taking the largest of the values, as is done
in max pooling, see fig 2.7. Moreover, by summarizing the inputs in this way, the
network becomes more robust to small features translations [13].

Figure 2.8: A 3x3 kernel with different dilation.

Another possible modification to the kernel is dilation. Consider a network with
convolutional layers, having kernels of size 3x3 and applying stride s = 1. Every
unit in the resulting feature map of the first layer then has access to a 3x3 region of
the input, i.e., a receptive field of size 3x3. By dilating the elements of kernels in the
next layer, each unit in the resulting feature map gains access to information about
to non-overlapping regions in the input. It is thus possible to increase the receptive
field exponentially with each layer (instead of linearly), while maintaining the num-
ber of parameters in them [18]. In fig 2.8 there are some examples visualizing how
the dilation affects the kernel.

As each output unit in a convolution layer may be connected only to a small region
of the input image, i.e., the kernel is smaller than the image, such networks are
said to have sparse interactions [13]. As the parameters of a kernel are shared across
every small region in the whole image, the memory requirements can be significantly
reduced compared to using a fully connected layer, which could possibly have several
orders of magnitude more parameters. As a kernel is applied to all pixels in an image,
the corresponding feature may be detected at different locations in the input image
and feature maps. This is beneficial, since the same kernel can be used regardless
of the feature’s location, as opposed to learning location-specific feature detectors
[13].

2.6.2 Recurrent Neural Networks
Recurrent neural networks are particularly suited for processing series of data, while
allowing for input and output sequence of varying length. RNNs are comprised by
recurrent units, or cells. These terms are equivalent and used to describe smaller
networks within the larger network, encapsulating a more complex structure than a

18

2. Theory

single layer of neurons. By updating and transferring a hidden state between time
steps within a recurrent unit, recurrent networks effectively exhibit memory [19].
By unrolling the time steps, the recurrence can be seen as multiple copies of the
same network, connected along the time axis, visualized in Figure 2.9. The memory
might be updated using so called gated units (e.g., the units explained in Sections
2.6.3 and 2.6.4), but is not a necessity. However, as demonstrated in [19], recurrent
units with gates can be superior to simpler units without gates.

Figure 2.9: To the left is a RNN with input x, output y and a hidden state h. The
right hand side shows the unrolled equivalent.

When using simple units without gates for updating the hidden state between time
steps of an RNN, the gradients tend to vanish (or explode) as the error is backprop-
agated. In the case of using, e.g., the hyperbolic tangent function as the activation
function, the gradients vanish due to the fact that its partial derivative is always
less than 1, except in 0. When gradients are multiplied during backpropagation, the
parameter updates become exponentially smaller (or larger with too large parame-
ter initialization values) towards the beginning of the network. As a consequence,
learning long-term dependencies in the input may take impractically long time [19]
or result in numeric overflows.

The vanishing gradient problem can be alleviated using gated units. The gates
operate on the unit’s hidden state and input to decide what to remember from
previous time steps and how to integrate information from the current input into
the memory. The activation function applied on the modified state is the identity,
i.e., there is no squashing of the output, meaning that gradients do not vanish nor
explode [20].

2.6.3 Long Short-Term Memory

One of the popular gated units is the Long Short-Term Memory (LSTM) unit [20]
which makes use of three gates, namely the input gate, forget gate and output gate.
The LSTM unit operates on the input x, a hidden state h and a cell state c to

19

2. Theory

transfer relevant information between time steps, see Figure 2.10.

The purpose of the forget gate is to regulate the flow of information from the previous
hidden state, i.e., what to remember [19]. The activation of the forget gate at time
step t, i.e., step t in the input sequence, is defined by

ft = σ(Wf · [ht−1, xt] + bf), (2.19)

where [ht−1, xt] denotes concatenation of the previous hidden state and the current
input. Parameters Wf and bf are the weights and biases of the forget gate (hence
the f in the subscript), while · denotes matrix multiplication. The activation is a
measure of inclusion to the next time step.

In a similar way, the input gate is responsible for including the relevant parts of the
input and discarding the rest, according to the equation

it = σ(Wi · [ht−1, xt] + bi), (2.20)

whereWi and bi are the weights and biases of input gate. A new candidate cell state
c̃t is formed by

c̃t = tanh(Wc · [ht−1, xt] + bc), (2.21)
using the same notation principle as before for weights and biases.

The candidate cell state could potentially become the new, updated cell state (hence
being referred to as a candidate cell state). The actual new cell state ct can now be
formed, using a mix of the old cell state ct−1 and the candidate cell state c̃t. Again,
what should be included from respective state is decided by the forget gate ft and
input gate it which are used to scale old and candidate cell states. The updated cell
state is calculated as

ct = ft � ct−1 + it � c̃t, (2.22)
where � denotes element-wise multiplication.

The output gate determines what part of the updated cell state ct are relevant for
the output. A vector õt describing the relevance is formed by

õt = tanh(Wo · [ht−1, xt] + bo). (2.23)

Finally, the actual output ht (i.e., the updated hidden state) of the LSTM unit at
time step t is defined by

ht = ot � tanh(ct), (2.24)
which is the updated cell state activation, scaled by the output gate.
By using the reversed input sequence in addition to the original sequence, [21] show
that such a bidirectional network can produce better results than a standard unidi-
rectional RNN. The intuition behind using the reversed sequence is that the predic-
tion performed in the current time step can benefit from information available from
future time steps as well [21]. This has shown to be useful in, e.g., neural machine
translation [22].

20

2. Theory

2.6.4 Gated Recurrent Unit
Another unit related to the LSTM is the Gated Recurrent Unit (GRU). It makes
use of a reset gate and an update gate, while having only one state, see Figure 2.10.
The information flowing from the previous state ht−1 is restricted by the reset gate,
for which the activation is calculated as

rt = σ(Wr · [ht−1, xt] + br). (2.25)

As the name suggests, the reset gate has the power of resetting the current state,
i.e., forgetting previous time steps, either partially or completely.

Likewise, the update gate has the power to decide how much to update the previous
state with information from the current input, according to

zt = σ(Wz · [ht−1, xt] + bz). (2.26)

Like in the LSTM unit, a candidate state h̃t is computed using the formula

h̃t = tanh(Wh · [ht−1, xt] + bh). (2.27)

The output of the GRU is defined as

ht = (1− zt)� ht−1 + zt � h̃t, (2.28)

i.e., as a linear interpolation between the previous state ht−1 and the candidate state
h̃t.

Figure 2.10: Left: LSTM unit where the input xt and previous cell state ct−1 are
modified to form the output ht. The output is in turn propagated to the next time
step, together with the updated cell state ct. Right: GRU, similar to the LSTM
unit but without cell state.

2.7 Regularization
A potential difficulty with machine learning algorithms is finding a good generaliza-
tion, i.e., low loss not only on the training set but also on previously unseen data.

21

2. Theory

If a network does not generalize well to other data but has low error on the training
set, it overfits to the training data. In order to prevent overfitting, a number of
different so called regularization techniques can be applied.

A common mistake when designing network architectures is creating too big and
complex networks with too much freedom. With enough parameters, a model might
describe any dataset perfectly, yet still fail to generalize well to unseen data. In that
case it rather ”remembers” the data than finds the most important features of the
data. On the other hand, big networks tend to be more powerful, making network
size a trade-off.

One common regularization method is early stopping, which simply means termi-
nating the training before the network overfits [13]. In practice, the network should
stop before the validation loss starts to increase, see fig 2.11.

Figure 2.11: The validation error increases while the training error still decreases.

Note that it is essential the data is of sufficient quality. If the training data does
not represent the real data fairly, it will be hard or even impossible to acquire good
results. Naturally, if a network trained on data from one distribution is presented
with data from a radically different distribution, the output is expected to be poor.

2.7.1 Dropout and Spatial Dropout
Dropout is a regularization technique which effectively accumulates multiple weaker
models to produce a stronger model, i.e., with better predictions. However, training
multiple networks could require an impractical amount of time and computational
power. Instead, dropout seeks to approximate this process by dropping some neu-
rons in each iteration of the training to produce smaller networks within the large

22

2. Theory

network, hence the name ”dropout” [23]. An illustration can be seen in 2.12.

Dropping a neuron is equivalent to setting its output value to zero. Each neuron is
dropped with some probability p ∈ (0, 1] and thus retained with probability (1− p).
This is equivalent to sampling a random network of subset neurons from the full
network, for every training iteration. The training then progresses as normal, where
the data is passed forward through the network, the error is propagated backwards
and the parameters are updated. By only training a sampled network in each it-
eration, complex co-adaptions between neurons are broken. This means that the
output of one neuron must not rely too heavily on the output of any other neuron,
thus becoming more robust to noise. When the network has finished training, all
neurons are enabled. Since every training iteration was performed with on average
(1− p) times the total number of neurons, the parameters now need to be scaled by
a factor (1− p). In effect, the expected output of each neuron is the same as during
training, and the full network is an approximation of all possible combinations of
subset networks [23].

Spatial dropout can be seen as the CNN-equivalence of standard dropout. With
knowledge of the original dropout approach explained above, it might feel sensible
to drop neighbouring neurons. However, this idea will not work well in the context
of images, as nearby pixels in an image are usually highly correlated. Adjacent pixel
can even be said to have approximately the same value. By the same principle, error
gradients from adjacent pixels contribute with approximately the same value. By
dropping one of the two neighbouring pixels (neurons) as when applying standard
dropout, the total contribution of gradients is effectively halved. As noted by [24], a
factor p of all neurons are dropped on average, meaning that training is slowed down
by a factor p without any gain in performance. Instead of using the original dropout
approach, [24] suggests dropping entire feature maps and show that performance is
increased by doing so. Dropping entire feature maps, or channels, is called spatial
dropout and retains the original idea introduced by [23].

input output

Figure 2.12: An illustration of dropout. The crossed out neurons are dropped and
not used for this forward and backward pass.

23

2. Theory

2.7.2 Weight Decay
Another typical regularization method is weight decay, also known as L2 regulariza-
tion. In other contexts L2 regularization is also called rigde regression or Tikhonov
regularization. The main principle behind weight decay is to penalize the size of the
free parameters (weights and biases) in the cost function L̃(·) [13]. Earlier, the cost
function was the error function, as we simply wanted to minimize the error between
predicted values and ground truth. But now we add a weight decay term, and thus
want to minimize

L̃(f(x,θ),y) = α

2w
>w + L(f(x,θ)y). (2.29)

By adding the L2 term, the magnitude is maintained mostly for parameters con-
tributing significantly to reducing the loss. Conversely, the magnitude of parameters
which contribute less to decreasing the loss will be heavily reduced due to the penal-
ization. As a result, some of the parameters will decay towards zero, thus limiting
the chances of overfitting to the data [13]. In other words, weight decay prevents
the parameter vectors from growing unnecessarily large and limits less significant
weights from pointing in an arbitrary direction, otherwise dragging down the per-
formance and generalization [12].

2.8 Control module
The path which is output from the network is used to calculate actual steering
signals to the car. There are in general three ways to do so, namely using path
stabilization, trajectory stabilization or model predictive control (MPC) [25]. While
all methods are used to reach a desired position along a given path, path stabilization
disregards the time for reaching each position. Because control over the acceleration
is a requirement (in order to start and stop) and safety constraints are desirable,
the MPC is preferable in this project and is explained below in Section 2.8.1. For
the interested, the theory behind the path stabilization technique pure pursuit is
covered in Appendix B.

2.8.1 Model Predictive Control
For each time step, a reference trajectory is planned for a number of future time
steps, using the current state of the vehicle and information about its surroundings.
A series of future steering signals are optimized as to result in the reference trajec-
tory (according to some cost function) while still being within the physical limits of
the vehicle. The first steering signals of the output optimized series are applied, and
the process repeats. Another example of such a controller is the model predictive
path integral (MPPI) controller used in [5].

The controller performs simulations on a kinematic bicycle model. The model is
defined, as in [26], as a vehicle with one front wheel and one rear wheel, positioned
at distances lr and lf form the center of mass, see Fig. 2.13.

24

2. Theory

Figure 2.13: A kinematic bicycle model of a car.

The state S is defined as

ẋ = v cos(ψ + β)
ẏ = v sin(ψ + β)

ψ̇ = v

lr
sin β

v̇ = a

β = tan−1
(

lr
lf + lr

tan (δf)
)
,

(2.30)

where x and y are the coordinates of the center of mass, ψ is the heading of the
vehicle in the global frame, v is the velocity and δf is the steering wheel angle at time
step t. Like any ordinary car, the back-wheels are not used for steering and thus
it is assumed to always have δr = 0. The dotted variables represent the updated
values at time step t+ 1.

The control inputs to the MPC, i.e., the variables used to control the kinematic bi-
cycle model when simulating driving, are the acceleration a and the steering wheel
angle δf [26]. Applying a series of control inputs to some initial vehicle state yields a
trajectory. The distance between the resulting trajectory (for example using MSE)
and the desired trajectory can be minimized by tuning the control input series, using
some optimization technique.

In order to properly model the dynamics of the CARLA vehicle, a neural network
was used. The neural network aims to find the relationship between acceleration
and the throttle and brake signals of the particular car model used in the simula-
tor.The neural network input consists of the simulated car’s state, defined as the
steering angle, heading angle, forward speed (in the direction of the vehicle heading)

25

2. Theory

and a desired acceleration in the direction of the vehicle heading. Given this state,
the network predicts the throttle and brake signals to apply in order to achieve
the desired acceleration. When the MPC has produced a control input series, the
acceleration a can be mapped to actual throttle and brake values using this network.

Furthermore, as the MPC constructs the control signals by optimization, additional
constraints can be included. In this project, a representation of the road boundaries
was included in the form of a distance map for each obstacle. Each road map was
first divided into a grid, for which the distance to the nearest road boundary was
calculated, together with the corresponding gradients of the distance w.r.t. the grid
cell position, see Fig. 2.14. The distance maps were calculated using road maps,
provided on the CARLA github site1.

Each distance map was calculated by first finding the perimeter pixels of the corre-
sponding object in the road map image (top image in Figure 2.14). For each pixel in
the whole image, the smallest distance to any of the perimeter pixels was set as the
pixel value in that particular distance map. Any point in the map can be queried
for the (bilinearly inerpolated) distance and the gradient of the distance, which are
both used by the MPC.

2.9 Clustering Algorithm
One of our ideas are based on a classification network and in order to first extract
the different classes, we need to use a clustering algorithm. The application and
context of the clustering algorithm is explained in Section 3.3.3, however in this
section we will explain how the algorithm works. There are several approaches to
cluster data, we use k-means clustering which is applicable for data of arbitrarly
high dimension.

2.9.1 K-means
K-means is an iterative clustering algorithm which aims to divide the N data points
into K clusters and find their respective mean value µk. A data point xn belongs
to the cluster k which minimizes (xn −µk)>(xn −µk), i.e., the cluster with closest
mean. After all xn have been assigned a cluster, the means µk are moved to better
represent the clusters, using the formula

µk =
∑
n znkxn∑
n znk

. (2.31)

The full algorithm, as described in [27], is as follows
1. Initialize the cluster means to random values. Initialize the binary array z of

size N ×K.
2. For each data point xn find cluster k which is the closest. Set znk to 1 to

indicate which cluster xn belongs to. Set ∀znj = 0 for j 6= k.
1https://github.com/carla-simulator/carla/issues/129

26

https://github.com/carla-simulator/carla/issues/129

2. Theory

Figure 2.14: Top: road map with green and white drivable areas and black non-
drivable areas. Bottom: Distance map of road boundaries to all non-drivable areas
of the town. Black means small distance and white means high. For example,
Obstacle 2 represents the smallest area at the top. Each distance map corresponds
to a constraint, telling the MPC not to allow actions that drive the car into the
non-drivable areas.

27

2. Theory

3. If z is unchanged from the last iteration, i.e., the clusters are unchanged, stop.
4. Update each µk according to eq. (2.31).
5. Go to 2

In summary, the algorithm aims to minimize the total distance D, calculated as

D =
N∑
n=1

K∑
k=1

znk(xn − µk)>(xn − µk). (2.32)

This algorithm will always converge to a minimum. However, finding a global mini-
mum is not guaranteed as the initial weights are random. In order to find the global
minimum one would need to find all combinations of clusters for all data points
which quickly becomes unfeasible. In practice, one runs the algorithm several times
and then picks the clustering with lowest D [27]. An example of a finished k-means
clustering is seen in Figure 2.15.

Figure 2.15: Example of data clustering. The black points is the µk (the centroids)
of respective cluster.

2.10 Principal Component Analysis
Principal Component Analysis (PCA) is commonly used for dimensionality reduction
of data, and is described below in accordance with [27]. PCA can be beneficial for,
e.g., feature selection and visualization of data. PCA projects data from m to d
dimensions using a linear combination

xnd = w>d yn (2.33)

of N data points yn (of dimensionality m) and m vectors wd, where d is the number
of desired dimensions. In other words, each point is converted from xn1, .., xnm to
xn1, .., xnd. The algorithm aims to find the best projection vectors wd, i.e., which
maintain the most data in the lower dimensions. The vectors wd are also called the
principal components.

28

2. Theory

The principal components wd is chosen based upon which projection results in the
highest variance of the data. By looking for the highest variance, the most distin-
guished features of the data is maintained. After finding the first principal compo-
nent w1 the following w2 must be orthogonal to w1, i.e., w>1 w2 = 0. The third
component must then be orthogonal to both w1 and w2, and so on. An intuitive
example of the usage of PCA is illustrated in 2.16.

Figure 2.16: The hand is reduced to 2 dimensions in the shadow. By picking
projection vectors w1 and w2 with the most variance the features are retained in
the dimension reduction (left image). Choosing principal components poorly can
cause the projected data to be unrecognizable (right image)

In this project PCA is used in one of our main ideas. By lowering the number of
variables the network is expected to output, we theorize the network has easier to
learn. More about the usage of PCA in Section 3.3.2 and 3.3.3.

2.11 Semantic Segmentation

Semantic segmentation is an image processing problem in which one wishes to find
and identify objects on a pixel level. Each pixel is assigned to one of the predefined
semantic classes. A good semantic segmentation system will classify each pixel
correctly, and thus create a semantic segmentation map where image regions are
partitioned with semantic coherence, yet with precise boundaries. A binary class
example of a semantically segmented image can be seen in Figure 2.17.

There are many ways to tackle this problem, but the most successful approaches
are based on deep fully convolutional neural networks (FCN) which perform a pix-
elwise class prediction [28, 29, 30]. An advantage of using a FCN is that the input
image size is unrestricted. Furthermore, in contrast to general deep neural networks
which compute a general nonlinear function, a FCN calculates a nonlinear filter [28].

In the area of autonomous driving, semantic segmentation is frequently used for en-
vironment perception and applied on the output of, e.g., cameras. The image-feed
is processed through a semantic segmentation filter and the output is typically for-
warded to an action decision system. For instance, [31] use semantic segmentation
in this fashion.

29

2. Theory

The usage of semantic segmentation in this project will differ from the ”classical”
idea where some objects in an image are located and identified. Instead, this project
will use semantic segmentation in a similar fashion as [6], that is, using a pixelwise
classification to predict which pixels the car will be located on in the future. In
contrast to [6], the model presented in this report (Section 3.3.4 will also consider at
which relative time step each position is reached, consequently forming a trajectory.

Figure 2.17: To the left is the original image and to the right is the semantically
segmented equivalent. The problem is binary, with only two classes: ”cat” and ”not
cat”.

2.12 Object Classification, Localization and De-
tection

The problem of producing a desired trajectory of a vehicle, as formulated in this
project, is somewhat related to other computer vision tasks. Such tasks may in-
clude object classification, object localization and object detection. The following
paragraphs will briefly explain said problems, some proposed solutions to them, and
how they relate to the path prediction problem.

Object classification is the problem of determining which category a single object
in an image belongs to, i.e., what the image as a whole depicts. A probability is
assigned to each of the possible categories, where the one with highest probability
may be used as the final prediction. In contrast, object localization refers to the
problem of finding the spatial location of an object in an image. This is often done
using a square bounding box which encapsulates the whole object. In conjunction
with object classification, it is possible to both locate and classify not only one ob-
ject, but a fixed number of objects within an image. A more general problem is that
of object detection, which seeks to locate and classify all object instances (from the

30

2. Theory

possible categories) appearing in an image. This means that the number of classified
objects may be different from image to image [32], as well as what classes are found.

One of the suggested solutions to the object detection problem incorporates so called
region proposals, which indicate regions in the image that are likely to contain an
object of interest. The proposals may be inferred using some standalone algorithm
as in [33] or using an end-to-end model which predicts both region proposals and
class probabilities, as in [34]. In the case of [34], a fixed number of regions, or
bounding boxes, of varying size are distributed evenly over the input image. For
each bounding box, the probability of containing an object is predicted, as well as
proposed adjustments to the bounding box as to yield a better fit around the object.
Finally, the adjusted bounding boxes are used to extract regions of interest from the
input image. The regions with high enough probability of containing an object can
then be classified.

Figure 2.18: Nine bounding boxes of three sizes at different locations. Notice how
the best fit around each cat is achieved using different box sizes. Adjusting the
height, width and location would potentially make even better fits.

One of the most interesting parts of the described system is that it performs both
classification (i.e., region does or does not contain an object) and regression (i.e.,
adjustments to location, width and height of bounding box) simultaneously. With
respect to this project, classification could be done over different types of trajectories,
e.g., left turn, right turn, constant forward velocity or accelerating forward velocity.
Trajectory classes could be found using a clustering algorithm such as k-means. Re-
gression could then be performed to construct adjustments to a typical trajectory
of the predicted class, e.g., elongating a left turn or shorten a forward trajectory
with constant velocity. A parameterization of trajectories could be done using PCA.

31

2. Theory

When performing object classification and localization in conjunction, one could also
imagine a system which simply predicts a class and one bounding box (or adjust-
ments to some predefined bounding box). In that case, the system would be class
agnostic, meaning that the bounding box is produced using the same model param-
eters regardless of which class is predicted. In contrast, a class specific system would
produce the bounding box using class specific parameters [32]. This can in practice
be implemented by predicting individual parameters for each class, but computing
the loss only for the ones corresponding to the predicted class. For example, a class
specific system with c classes and four bounding box parameters (width, height, x-
and y-location) would produce c×4 parameters, while a class agnostic system would
produce only c× 1.

When locating an object in an image, the predicted object class might not influence
the properties of the bounding box more than, e.g., the distance and perspective do.
However, when adjusting a trajectory, the proper adjustments are highly dependent
on which type of trajectory is to be adjusted. For example, a right turn trajectory
which perfectly aligns with the ground truth is not be adjusted at all, while a left
turns should be mirrored. Hence, it is crucial to construct a class specific model in
this project.

A final note on the theory of class specific object classification and localization
models: the error of the predicted adjustments should only be backpropagated for
the ground truth class, as in [35]. As the adjustments are class specific, it would be
meaningless and most likely hurt performance severely to compute the loss on the
incorrect classes as well.

32

3
System Overview

This chapter will give a brief overview of the system and how it is structured. Sec. 3.1
will describe the overall program and the most important components. The system
is built to drive a car (or a simulated car) continuously, i.e., online. However, the
supervised network is trained in an offline setting with prerecorded data and ground
truth. A general overview of how to train a network is covered in sec. 3.2. Lastly
the three main ideas for the neural networks will be presented in Section 3.3

3.1 Online system (test driving)
CARLA is used to simulate a car and continuously receives steering signals. A rough
UML sequence diagram of the system can be seen in fig. 3.1. Note that the diagram
is not exact, rather, clarity is prioritized.

The simulation of the virtual world and the cars is called server. The server is pro-
vided by CARLA and we have not changed this except for settings and a few small
modifications to better suit our model. The client is the program which runs the
machine learning algorithm and the decision making. The client is provided with all
the data from the server, e.g., lidar, GPS-IMU and traffic status. The client is then
expected to return steering signals for the car to the server. Unlike in reality, the
time in the simulator is bound to discrete steps. One time step in the simulator is
further referenced to as a frame or time step, and the update rate is 10 frames per
second.

After the client receives the data and saves it, a preprocessing step is initiated. The
preprocessing converts and stacks the data to match the desired form of the input
to the network. The network calculates the desired path which is then fed to the
MPC module. The MPC is also provided with the current position of the car, its
velocity and its heading angle. From the MPC, the car’s next steering angle, brake
and throttle is returned and forwarded from the client to the server, which executes
the actions. The data for the next time frame is then provided to the client and the
loop continues until the simulation is halted.

3.2 Training a network
The main focus of this project have been to develop a good network which outputs
a good trajectory prediction for the car. The system explained above uses a fully

33

3. System Overview

Figure 3.1: A simplified sequence diagram of the system.

trained network used only for inference, and which is trained in a separate offline
program.

Firstly data is gathered and saved to disk using the CARLA server and the pro-
vided autopilot client. The autopilot is mildly modified to drive zigzag in order to
get more varied data and to make the model robust to small driving errors. When
the data is collected, it is annotated and driving intentions are generated. The rest
of the preprocessing occurs and the updated data is saved. Now the network trains
on the data, and the ground truth for the current time step t is fetched from the nf
future time steps (t+ 1, t+ 2, ..., t+ nf + 1).

The model is saved regularly during training, both as a safeguard if the training
crashes and as a means to prevent overfitting. The validation- and training loss is
also saved regularly to facilitate an analysis of its performance. When finished, the
network is evaluated on the test set and all results are saved. If the results look
promising, the best performing iteration of the network can be used in a driving test
in the system described above in sec. 3.1. Note that the MPC module is not used in
the training and (obviously) no feedback is given to the server as the network trains
offline.

34

3. System Overview

3.3 Our Main Ideas
During the project, many neural networks have been trained, tested and evaluated.
Some neural networks have only minor differences, such as variations of hyperpa-
rameter values, while others differ on a more fundamental level. There are three
main neural network ideas that have been examined in this project, each tested
with different hyperparameters values. The ideas will be briefly introduced in the
following sections to provide a better overview of the project.

3.3.1 Pure Regression Idea
One of the most basic ideas for predicting a trajectory is to simply define a regression
problem from some input to an output sequence of x- and y-coordinates. We refer
to this idea as pure regression, since no classification or parameterization of the
trajectory is made. One advantage of using this definition is that it is straight
forward to implement. Moreover, highly complex trajectories can be formed, as there
is no restriction on the relationship between coordinates in the sequence. In other
words, the shape of the trajectory could have arbitrarily sharp turns in any direction.
However, giving the regression model this freedom could also be a disadvantage, as
predicted trajectories may become rough and hard to follow in practice.

Figure 3.2: Trajectory reconstruction using one of the five leading principal com-
ponents of the training data, respectively. Blue lines correspond to low (possibly
negative) principal component values, while orange lines correspond to high values.
From left to right, the characteristics could be described as speed, right turn, accel-
eration, minor right turn and slow down, then speed up. Each line has been offset
slightly on the horizontal axis for clarity, while vertical offset is just part of the
principal component. Axis unit is meters.

35

3. System Overview

Figure 3.3: Trajectory reconstruction (orange) made by accumulating one through
five of the leading principal components of the training data. The reconstructed
trajectory aligns better and better with the original trajectory (blue) for each added
principal component. The MSE between curves is displayed in the lower part of
each plot. Axis unit is meters.

3.3.2 PCA Regression Idea
In contrast to predicting each coordinate explicitly, a trajectory can be formed by
predicting its overall characteristics. Speaking in broad terms, such characteristics
could be the amount of acceleration, amount of turning, turn direction, etc. These
characteristics could then be used as parameters of a function which in turn out-
puts a sequence of coordinates. Compared to directly predicting each coordinate,
predicting the overall trajectory traits could lower the number of output variables.
More interestingly, the shape of the trajectory would by default follow a smooth line
which is then modified according to the predicted characteristics. This restricts the
trajectories and ensures smoother driving paths, more similar to our ground truth.

Instead of creating a function by hand which produces trajectory coordinates from
some defined characteristics, important traits of the recorded trajectories can be
found using PCA, see Figure 3.2. The predicted principal components can then be
used to create a sequence of coordinates, as described. An example of this can be
seen in Figure 3.3, where it is shown that the five leading principal components can
be used to reconstruct the example trajectory with an MSE of 0.002.

3.3.3 Cluster Idea
Predicting the trajectory can also be posed as a classification problem, where each
class corresponds to one type of trajectory. As opposed to the separate characteris-

36

3. System Overview

tics described in 3.3.2, one trajectory class would represent a specific combination of
characteristics, such as slow left turn or large acceleration straight ahead. Different
classes of trajectories can be found using the k-means clustering algorithm, as ex-
plained in 2.9.1. The centroid of each cluster corresponds to the typical trajectory
of that class, see Figure 3.4.

The class-typical trajectories are fixed and it may be that none of them describes
the ground truth trajectory very well. As a solution to this problem, adjustments to
the trajectories’ principal components are predicted as well. This enables the model
to compensate for differences between class-typical and ground truth trajectories.

Figure 3.4: Nine clusters formed using the k-means algorithm on the training
data. Blue lines are observed trajectories, while the red line in each cluster is the
corresponding centroid. Axis unit is meters.

3.3.4 Semantic Segmentation Idea
The problem can also be formulated in terms of a semantic segmentation problem,
and thus remove all regression from the problem. More precisely, it is a binary
pixel-level semantic segmentation problem and thus only two classes are used in this
idea: ”Part of the trajectory” and ”Not part of the trajectory”. The binary classes
will be encoded 1 and 0 respectively. In the output of the network, which is an
image, each pixel has a probability of it being part of the future trajectory or not.
An image with probabilities will be produced for each future time step one wishes
to predict. For example, for 6 future time steps the output will consists of 6 images
each of same size, in which the pixels will have a probability of being a part of the
trajectory for that specific time step.

37

3. System Overview

To fit this type of classification output, the ground truth must be customized. For
each future ground truth coordinate, an image of probabilities is created. Around
the coordinate a circle is drawn, and all pixels within the circle is set to 1 and all
pixels outside the circle is set to 0. The circle have a quite big radius in order to
provide the network with enough positive feedback for it to learn within a feasible
time. An example of the generated ground truth is shown in Figure 3.5, where each
image corresponds to an output channel, i.e., time frame. The motivation behind
this idea is its similarities with the method in [6], which seems to produce good
results. The major differences between [6] and this approach is that time needs to
be taken into account here.

Figure 3.5: The red dots is the past path, the green small dots are the recorded
ground truth trajectory. The purple circles are the generated ground truth for the
semantic segmentation. Each image corresponds to one channel, in other words one
specific future time frame.

38

4
Method

This chapter will recount the method used in the project. In general, the project
has been implemented in an iterative fashion, starting with a smaller system which
has been expanded upon. However, no established agile method was used.
The first section will describe the tools and software used. Section 4.2 will depict
how the data was collected, and is then succeeded by a description of the data
preprocessing process in Section 4.3. A detailed account of the neural network
architectures are given in Section 4.4. The implementation of the MPC is briefly
explained in Section 4.6 and the chapter is concluded with an description of the
neural network evaluation method in Section 4.7.

4.1 Tools and Equipment
The hardware for this project consisted of one PC with a quad core Intel Core i5-
7600 @ 3.5 GHz, with 32 GB DDR4 RAM. The graphics card was an Asus NVIDIA
GeForce GTX 1080Ti with 11GB memory capacity.

The used software included linux system with CUDA1 9.1 and Pytorch2 0.4.0.
Python3 3.6 was mainly used, but a few libraries required an older version. Lastly,
after some research, CARLA was the preferred simulator for the project.

4.1.1 CARLA
Numerous simulators were compared to find the best choice for this project. The
free open-source options are few and the available simulators were AirSim (by Mi-
crosoft) and CARLA. None of the simulators supported LIDAR at the time of the
decision. Due to the tight time schedule, CARLA was preferred as it provided pre-
existing towns and benchmarks, and it also seemed easier to use. An image from
the CARLA simulator is shown in Figure 4.1.

It is easy to create one’s own autonomous car and test drive it in two different
preexisting virtual towns, Town01 and Town02. CARLA can provide a feed from
cameras which features RGB-values, depth-values and also online semantic segmen-
tation. The car simulations are based on NVIDIAS PhysX implementation of ve-

1https://developer.nvidia.com/cuda-downloads
2https://pytorch.org/
3https://www.python.org/

39

4. Method

Figure 4.1: An image from the CARLA simulator.

hicles. CARLA also had numerous examples on how to use the software and clear
and easy to follow tutorials. As of spring 2018 it also provides the possibility to use
LIDAR sensors. The biggest drawback of CARLA was the late implementation of
LIDAR and the software is computationally heavy, therefore the simulations is time
consuming. Before the release of the lidar implementation we gathered the lidar
values using CARLAs depth maps, which is documented in appendix A.

4.2 Gathering data for training
Data was gathered by recording sensor values in the simulator with a frame rate
of 10Hz. We recorded all state-values of the car, e.g., acceleration, yaw, velocity,
throttle, brake, etc. We also recorded the state of relevant surrounding objects, e.g.,
position of traffic signs and lights as well as the state of the ligths. A full list of
recorded data can be seen in appendix C. The simulated lidar was set to mimic
a Velodyne HDL-32E. It consists of 32 beams which is approximately evenly dis-
tributed in the vertical range from −30.67 to 10.67 degrees.

CARLA’s autopilot was used to drive the car, as it could be left to perform the
time consuming job while following the traffic rules. The autopilot decides the route
randomly and cannot be configured beforehand. Uniform noise was added to the
steering signal of the autopilot, making the car zigzag a bit. This was done in hope
that the networks would learn to correct for bad heading angles.

The data was collected in a number of episodes (i.e., periods of driving) in the simu-
lator. Train, test and validation sets were created by recording 20, 8 and 1 episodes

40

4. Method

respectively. Each episode in the train set lasted for 18000 time steps (30 min real
time). However, the car would often get stuck at some point for the remainder of
the episode, due to unexpected behaviour of the simulator (other cars tipping over
in a turn or pedestrians standing in the road). The unusable data was trimmed
from the data set and the rest of the episodes (for the test and validation sets) were
recorded for only 9000 time steps each (15 min real time) as a preventive measure.

The train set was recorded in the largest of two simulator towns (Town01), while
the validation and test sets were recorded in the smaller one (Town02). This allowed
for training on more diverse scenarios, while reducing the correlation between train
and test data.

4.2.1 Gathering Intentions
In order to create intentions for the data sets, the driving path needed to be known.
However the autopilot drives randomly through the town, so manual annotations of
the path were created in retrospect. With a script the annotations are converted
to intention direction and intention proximity values and saved with the rest of the
data.

Furthermore the traffic information is also documented and saved. CARLA saved
the position of all traffic lights and traffic signs and also records the status of the
traffic lights. A script saves the relevant traffic information by checking which traffic
object the car passes. The saved traffic information includes the current and up-
coming speed limit, the state of the next traffic light, and the distance to the next
traffic object.

4.3 Data Preprocessing
Before sending the data to the network, some preprocessing is necessary. This was
as to reshape and structure the data but also to reduce the size of the data, as for
example lidar point clouds are very information dense. Furthermore the data was
very disproportionate between, e.g., right turns and left turns. This could cause
the networks to form a bias to a certain action, therefore the data set was balanced
during training. By enabling resampling, data from categories with fewer examples
appear just as often as data from categories with a lot of data.
By enabling resampling, examples from small categories will appear more often, e.g.
an example from category ”right” might appear 10 times on average, while data
from ”straight” might appear only once.

4.3.1 Balancing the data set
A large amount of the train data consisted of passages on straight roads and waiting
for traffic lights. In order to enable the networks to train more on critical scenarios,

41

4. Method

such as taking a turn without intention, the train data was manually divided into
seven categories and balanced, see table 4.1. During training, each category was
sampled with equal probability, except for category ’other’. This category mainly
included undesired events such as crashes, and was not sampled at all. However,
because the recurrent networks were trained in a sequential way, i.e., two consecutive
mini-batches contained measurements from consecutive time steps, the balancing
was not done for these networks.

Category Frames %
left 3903 1.7

right 2323 1.0
left intention 7735 3.3

right intention 5567 2.4
straight 103732 44.7

traffic light 108254 46.6
other 700 0.3

Table 4.1: Frame distribution over categories. Classes straight and traffic light
constitute a disproportionate amount of all recorded frames.

4.3.2 Lidar
Each point cloud consisted of a number of real valued points in 3D space. This
allows for taking a bird’s perspective, as successfully used by [6], and is also used in
this project. One advantage with this perspective is that distances to objects can be
easier to determine in a top view compared to a horizontal view. The point cloud is
trimmed to a 60x60 m square, centered around the lidar position. Remaining points
are then divided into a 600x600 grid as seen from above the vehicle, corresponding
to pixels in an image. The pixel value is based on the maximum elevation within
the grid. The global maximum elevation is 7.65 ≈ 8 meter which can be calculated
with the lidar scattering angle and the the field of visibility (60x60m). The sensor is
placed in the center at 2 meter altitude. The pixel values of the max elevation where
normalized to lie in [0, 1] with the lidar positioned at 0.5. An image of the point
cloud and the generated top view is visible in Figure 4.2. Other statistics could
in theory be calculated and separated into different channels of the image. How-
ever, the maximum elevation should capture the most relevant information, such as
road boundaries, other vehicles, pedestrians and so on. Note that other information
normally extracted from a lidar, like reflectively, is not available in the CARLA
simulator.

The maximum elevation image (lidar) lt and vehicle measurements mt made at time
step t are collectively referred to as the state ξt = (lt,mt) of the vehicle.

4.3.3 Rest of the Values
The extensive recorded ”raw” data (example listed in Appendix C) is used to create
a more comprehensive set of values. For the current time step tc, the past np states

42

4. Method

Figure 4.2: A 3D lidar pointcloud (left) is viewed from above (right). The lighter
color represents higher altitude and darker color represents lower altitude.

ξt is used as input to the network. So for each time step t the measurement mt is
extracted, which includes the following values where

xt, yt is the coordinates relative to the cars position at t.
at is the total acceleration of the car at t.
st is the total speed of the car.
δt is the steering wheel angle.
intention direction is either left (-1) or right (1)
intention proximity is the distance in meters to an upcoming crossroads
speed limit at t is the maximum speed allowed
traffic object distance at t is the distance in meters to the next traffic light or traffic

sign (whichever comes first).
traffic light status at t is the colour of the next traffic light. This is always

known, no matter the distance to the traffic light.
If any of the last five values is unknown for any reason, it is set to 0. Additionally,
there are two more values saved to mt.

ψt is the yaw of the car w.r.t the global coordinates.
category is which category the time step belongs to, e.g., straight road, or right

turn.

43

4. Method

The last two values are not part of the input to the network, but are instead used
for calculating the relative coordinates xt, yt and for balancing the data set, as de-
scribed in Section 4.3.1. Note that the ground truth for tc consists of the relative
coordinates ṗt = (xt, yt) for nf future time steps, namely

(
ṗt+1, ..., ṗt+nf +1

)
In conclusion, the input to the network consists of the current state of the car
ξt = (lt,mt) concatenated with the np past states ξt−1, ...ξt−np−1. The values lt and
mt might be introduced at different points in the network architecture, however
both are always used. The ground truth trajectory, ṗ, is then compared with the
predicted trajectory p̂ through the loss function in order to train the network. Both
ṗ and p̂ consists of nf coordinate pairs (x, y).

4.4 Network Architectures
The basis of all networks has been the network proposed in [6]. It makes use of an
encoder part, a context module and a decoder part. The encoder reduces the input
size using convolutions and max poolings, i.e., encoding the input in a smaller sized
tensor. The context module then makes use of dilated convolutions to obtain a re-
ceptive field covering the full encoded input feature maps, thus grasping the context.
The decoder part then uses transposed convolutions, i.e., learned up-sampling, to
produce an output image of the same dimensions as the input image, i.e., to decode
the last feature map of the context module. Each pixel in the decoder output image
contains an estimated probability of the vehicle driving over the corresponding po-
sition in the future. Since this project formulates the trajectory prediction problem
in other ways, the decoder part is replaced by other parts, described in the following
sections. Another noteworthy difference is that the non-lidar data from previous
time steps in [6] are encoded in the form of image channels, whereas the data in this
project is simply used as is. The encoder and context modules used in this project
is listed in Table 4.2.

The network architectures listed below describe the overall differences between them.
Variants of the same network architectures were trained, for example using differ-
ent number of clusters or convolution channels. For more specific details on these
architecture variants, see our github repository4.

4.4.1 Pure Regression Networks
The following paragraphs describe the networks implemented for the pure regression
idea explained in Section 3.3.

4.4.1.1 CNN Fully Connected (FCNet1, FCNet2)

A natural modification to the network proposed in [6] was to replace the decoder
part with fully connected layers, to produce an array of future vehicle positions. As

4 https://github.com/AnnaNylander/exjobb/tree/master/network/architectures

44

https://github.com/AnnaNylander/exjobb/tree/master/network/architectures

4. Method

Layer Type Size Channels Stride Dilation
1 CONV 600× 600 8 1 1× 1
2 CONV 600× 600 8 1 1× 1
3 MAX 300× 300 8 2
4 CONV 300× 300 16 1 1× 1
5 CONV 300× 300 16 1 1× 1
6 MAX 150× 150 16 2
7 CONV 150× 150 96 1 1× 1
8 CONV 150× 150 96 1 1× 1
9 CONV 150× 150 96 1 2× 1
10 CONV 150× 150 96 1 4× 2
11 CONV 150× 150 96 1 8× 4
12 CONV 150× 150 96 1 12× 8
13 CONV 150× 150 96 1 16× 12
14 CONV 150× 150 96 1 20× 16
15 CONV 150× 150 96 1 24× 20
16 CONV 150× 150 96 1 28× 24
17 CONV 150× 150 96 1 32× 28
18 CONV 150× 150 96 1 1× 32
19 CONV 150× 150 16 1 1× 1

Table 4.2: Encoder (top part) and context module (bottom part) used as a basis
for most networks. All convolutions are 3× 3

the number of parameters can become large when coupling image-like feature maps
to a fully connected layer, the aim was to create a network similar to that in [6] but
reduce the number of parameters. This was done by inserting max pooling layers.
In FCNet1 (Figure 4.3), the reduction was performed before the context module,
whereas it took place after the context module in FCNet2 (Figure 4.4). The 11
measurements (relative position, steering rate, etc.) from each of the past np = 30
time steps were flattened to a 330 × 1 tensor and concatenated with the reduced
lidar tensor of the current time step nc. The network further progressed with three
fully connected layers.

4.4.1.2 CNN Only (CNNOnly)

This network, seen in Figure 4.5 relies on convolutions and max poolings, i.e., it
has no fully connected layers. Besides running the lidar encoder part, the values in
the np = 30 previous time steps are convolved with a 3 × 1 kernel over the time
dimension. Such convolutions are alternated with max pooling to achieve one scalar
per channel in the output of the lidar encoder part. The scalars are then added as
a bias before applying the activation function.

45

4. Method

Figure 4.3: Network architecture of FCNet1.

Figure 4.4: Network architecture of FCNet2.

Figure 4.5: Network architecture of CNNOnly.

4.4.1.3 CNN with Bias (CNNBiasFirst, CNNBiasLast, CNNBiasAll)

Another way for the network to utilize the information available from the np = 30
previous time steps was to incorporate them as a bias in the convolutions. For each

46

4. Method

kernel in a convolution layer, a scalar value was constructed using a fully connected
layer from these measurements to a single output neuron. The bias value corre-
sponding to a particular kernel was added before applying the activation function.
An illustration of the concept is shown in Figure 4.6.

Figure 4.6: Past values form one bias for each channel in a convolution layer.

Three networks were implemented using this technique; one with kernel biases added
only in the first layer, one added only in the last layer, and one added to all layers.
The final architecture, with bias added to all layers, can be seen in Figure 4.7

Figure 4.7: Network architecture of CNNBiasAll, applying individual biases to
all convolution layers. The PCA, cluster and semantic segmentation idea networks
make use of the same structure enclosed in the dashed box, simply referred to as
CNNBiasAll.

47

4. Method

4.4.1.4 CNN with LSTM (CNNLSTM)

In this network (Figure 4.8), an LSTM network was used to process the measure-
ments from the previous time steps. The output of the LSTM was added as a bias
to each kernel in final layer of the encoder part, much like the bias in previously
described CNN networks.

Figure 4.8: Network architecture of CNNwithLSTM.

4.4.1.5 LSTM (LSTMNet)

A network with three LSTM units was constructed with 500 hidden neurons in each.
States (lidar and values) from np = 30 consecutive time steps where included in each
iteration of the training, where each input state was used to predict the trajectory
in the coming nf = 30 time steps. The architecture is seen in Figure 4.9.

As the states of recurrent units depend on previous states and inputs, it is unde-
sirable to train on non-consecutive data. In other words, the states should contain
information about events directly preceding the current input. Therefore, the train-
ing was conducted in a consecutive manner, where the input data in two consecutive
mini-batches contained data from two consecutive time periods in the recorded data.
In other words, the input is timeordered, even between different mini-batches. The
hidden state and cell state could therefore be preserved between iterations. As the
states are never reset, this way of training makes use of the information available
from previous iterations, as would be done at inference time (while driving).

4.4.1.6 LSTM Bidirectional (LSTMNetBi)

This is a bidirectional version of the LSTM network described above, consisting of
three units with 500 hidden neurons each. Although the natures of, e.g., text and

48

4. Method

Figure 4.9: Network architecture of LSTMNetwork.

vehicle states are fundamentally different, not least due to the fact that future vehicle
states are not available at driving time, the bidirectional approach could be tried
at training time. At inference time, both the current state ξnc and a previous state
ξnc−np from nf time steps ago would be part of the input. The LSTM unit should
be capable of remembering the input at time tc − np, but including state ξtc−np in
the input might act as a reminder. This network is equivalent to the LSTM network
but uses bidirectional units instead.

4.4.1.7 GRU (GRUNet)

This network is equivalent to the LSTM network but uses GRU units instead.

4.4.2 PCA Regression Networks
The PCA regression network predicts some of the leading principal components of
the trajectories recorded, as explained in 3.3.2. It is similar in architecture to the
pure regression networks, with the exception of the last part, which transforms the
estimated principal component values into a full trajectory with coordinates for the
nf = 30 future time steps. The resulting trajectory is then compared with the
ground truth using MSE. The PCA regression Network can be seen in Figure 4.10.

4.4.3 Clustering Networks
The clustering network predicts which class the future trajectory belongs to, as well
as adjustments to the principal components of the class-typical trajectory. The out-
put of the classification part is a vector, seen as a probability distribution over the
possible classes. Since the ground truth is known, the distribution is a vector of
all zeros, except the element representing the correct class which is equal to one,
forming a so called one-hot vector. The classification loss is then calculated using
the cross-entropy between the class prediction distribution and the ground truth
distribution. In Figure 4.11 a schematic figure of the architecture is shown. Three
versions where trained, using 10, 20 and 100 clusters respectively.

49

4. Method

Figure 4.10: General architecture of the PCA idea networks.

As mentioned, the principal component part predicts adjustments to seven of the
leading principal components of each possible class. The adjustments are then added
to the principal components of the predicted class. The predicted class is taken to be
the one with highest probability in the predicted class distribution, although it might
not be the ground truth class. This is in hope that the classification accuracy will
increase to an acceptable level and that the predicted adjustments will bring some
robustness to misclassification. The MSE is calculated on the adjusted trajectory,
which is added to the cross-entropy loss of the classification. Added together, the
two losses form the total loss which is the starting point of the backpropagation.

Figure 4.11: Architecture of the cluster idea network. The dashed line indicates
how the trajectory with highest class probability is extracted using information from
the class probabilities, but that backpropagation is not applicable along that line.

50

4. Method

4.4.4 Semantic Segmentation Networks
The semantic segmentation network (Figure 4.12) is basically the CNNBiasAll net-
work without any further processing after the context module, although with dif-
ferent number of channels in the last layer. It gives as output one semantic map
per future predicted time step, where each pixel value in a feature map indicates a
scaled probability of being occupied by the vehicle at the time step corresponding
to that semantic map. Note that each pixel value corresponds to the output of
the logistic sigmoid function (in [0, 1]), and that the binary cross-entropy is used to
classify each individual pixel. This means that the values in a feature map does in
general not sum to one and is thus not strictly speaking a probability distribution.
However, scaling the pixel values would easily yield a valid probability distribution,
and it can therefore be thought of as one for simplicity.

The center of mass of a semantic map is calculated to form the predicted coordinates.
Note that the MSE is merely used to compare the loss with that of other models,
whereas the binary cross-entropy is used for training. As the cross-entropy loss
becomes smaller, so does the MSE loss. In contrast, training on the MSE loss does
not ensure the pixel values converge towards the ground truth semantic maps; the
center of mass can be equal to the ground truth coordinates for many semantic maps
different from the ground truth.

Figure 4.12: Architecture of the semantic segmentation network. The network is
trained using the binary cross-entropy loss, whereas the MSE loss is used merely to
compare the model with others.

51

4. Method

4.5 Training

The training procedure changed somewhat during the course of the project. This
is a result of learning how Pytorch can best be utilized, that the mini-batch SGD
and Adam optimization techniques yield substantially different results, and realizing
just how time consuming neural network training can be.

In the beginning of the project, referred to as the experimentation phase, the mini-
batch size for each of the non-recurrent models was set to 16. This seemed to be
the largest value which could be used among all networks without running out of
memory on the GPU. For the recurrent models, which required reading data in a
continuous fashion, the mini-batch size was set to one (i.e., common stochastic gra-
dient descent) simply to reduce the implementation complexity.

These first networks trained during the experimentation phase (see Figure 5.1) were
trained using Mini-batch SGD with momentum, in conjunction with two separate
schedulers for learning rate and momentum. The scheduler continuously increases
the learning rate for one epoch (i.e., one pass through the training data) up to a
maximum value, after which it decreases back to its initial value for another epoch.
The reason for using this kind of scheduling is to first let the network slowly ”warm
up”, i.e., set the parameter values to something better than random, then to take
as large steps as possible for a quicker convergence, and then to slowly settle and
allow for some fine tuning. The part where large learning rates are applied has some
potentially regularizing effects, as it allows for escaping local minima encountered
during the warm up phase [36]. The maximum learning rate values were found using
a so called learning rate finder algorithm, and ranged between 10−6 and 3 · 10−4 for
the different networks. The goal of the learning rate finder is to find the largest
learning rate value which does not cause the loss to diverge, thus speeding up train-
ing. It starts by training a network with a given optimization algorithm, in this
case Mini-batch SGD, using a very small learning rate, e.g., 10−8. The learning
rate is then continuously increased during the training and will eventually be large
enough to cause the (smoothed) loss to diverge. The learning rate is then chosen
to be about one order of magnitude smaller than the value causing loss divergence,
simply to not risk diverging [37].

The latter networks were trained using the Adam optimization technique, as it
yielded better performance. The learning rate was set to 10−5 and a weight decay
value was set to 10−5 for Adam. Note that Adam makes use of adaptive learning
rate and that using a scheduler in addition would thwart the benefits.

Because some of the networks trained later were larger, i.e., had more parameters, a
mini-batch size of 12 was chosen instead of 16 as to fit on the GPU. Moreover, these
were trained using a time limit of seven hours instead of training for two epochs.
The idea is that although some networks might yield good results, their training
time might be substantially longer than others and therefore not feasible to train
until convergence.

52

4. Method

4.6 Control Technique

The model predictive controller was implemented by Juliano Pinto and Dapeng
Liu, both of whom are PhD students at the department of Electrical Engineering,
Chalmers University of Technology. For each time step t the MPC is fed the pre-
dicted trajectory p̂ consisting of global coordinates for nf future time steps, and the
current state of the car (global coordinates, acceleration, velocity, yaw). The MPC
then optimizes the steering signals (i.e., throttle, brake, steering angle) to best follow
the desired trajectory, while also not breaking any constraints. Environmental con-
straints, used to prevent going off road or hitting an object, is based on the distance
maps described in Section 2.8.1. The MPC must be able to locate the car within
the distance maps and thus the coordinates must be global, as mentioned before.
The MPC must also hold the physical constraints of the car, e.g., acceleration or
turn ratio.

The MPC optimization algorithm is dependent on an accurate model of the vehicle.
However the car simulation in CARLA is based on NVIDIA’s PhysX engine, which
makes the car model very realistic but also very difficult to accurately recreate in the
MPC. Especially, the relationship between the acceleration of the car and the steer-
ing signals throttle and brake was difficult to model, which is why a neural network
was used to approximate the relationship. In order to facilitate for the network,
the car simulator was restricted to only have one gear (and reverse), which covered
a large velocity range of about 0 − 100 km/h. This is somewhat unrealistic but it
greatly simplified the complexity of the acceleration-steering signal relationship and
also saved time. The neural network was trained on 30 min of data and an example
of the performance can be seen in Figure 4.13.

The level of precision can be adjusted, but as a trade off to computing time. As
the connection between the server (CARLA simulator) and the client (the module
controlling the car) can time out, the computation time must be kept low. The
computation time depends on the number of future coordinates mf ∈ (Z|mf ≤ nf)
the MPC needs to regard, and also the maximum number of optimization steps
allowed. By using every third of the nf future coordinates (i.e., mf = nf/3) and
setting the maximum optimization steps to 300 was enough for most situations.

The MPC might not always find the optimal route as it has a time constraint,
and sometimes is cannot find any feasible path. Furthermore the MPC returns the
steering signals for mf time steps, but only the steering signals for the next time
step t+ 1 is forwarded to the car simulator, which performs the action.

4.7 Network evaluation

The networks will be evaluated by comparing the results with a baseline and also
through visual inspection. A baseline is the average loss of the output from a (typi-
cally) simple and conventional algorithm. The baseline for our problem, predicting

53

4. Method

Figure 4.13: Top: Acceleration over time as an input to the dynamics approxi-
mation network. Middle: Predicted and ground truth throttle values for the corre-
sponding acceleration in the top plot. Bottom: Predicted and ground truth brake
signals. It can be seen that the predicted signals roughly follow the ground truth.
For example, predicted brake signals are applied when a deceleration is present.

a driving trajectory, is created from the future locations of the car without changing
the direction or velocity. In other words, given the state of the car at t the next
coordinates at t+ 1 are calculated by

[xt+1, yt+1] = [xt, yt] + vt ∗ 0.1, (4.1)

where 0.1 seconds is the defined length of a time step. The loss is derived and
the procedure is repeated for all data points in the data set. The average loss is
the baseline of the data set, see Table 4.3 for the respective baselines used. To con-
clude, the networks should perform at least as good as the baseline to add any value.

Another manner of evaluating the networks was through visual inspection. By
plotting the output trajectory from the network against the ground truth upon the
topview lidar image, one can gauge its performance. It is important to keep in mind
that the output trajectory must not exactly match the ground truth, as driving a car
is not deterministic. However the output trajectory must look realistic, consequently
it must follow the road, stop for obstacles and not crash.

54

4. Method

Data set Baseline
Train 6.894
Validation 7.670
Test 7.591

Table 4.3: The baseline for respective data set.

55

5
Results

After implementing and training the various networks described in the method sec-
tion (Section 4), the results were evaluated using two measures, namely the loss of
the predicted trajectory and visual inspection, both of which are presented below.
The results are presented respectively for each of the four main ideas described in
Section 3.3.

5.1 Network Loss
The loss is a quantitative measure of how close the predicted trajectories are to the
ground truth trajectories. Even though some networks were trained using different
losses, the evaluation is done only on the MSE, as it enables fair comparison between
networks.

5.1.1 Experimentation Phase
In the experimentation phase, ten different network architectures were tried in search
for the best overall pure regression architecture. They were trained for two epochs
each, but it should be noted that the expenditure of training time differed vastly
among the networks. As can be seen in Figure 5.1, some networks achieved approxi-
mately the same performance as the baseline, while others were significantly poorer.
Table ?? presents the minimum validation loss achieved on each of the architectures.

The recurrent networks named LSTMNet, LSTMNetBi and GRUNet seemed to con-
verge towards the same loss value, although very slowly. As the training of these
recurrent networks was quite different compared to the rest, i.e., not balancing data
nor shuffling it, a totally fair comparison cannot be made. However, as they took
longer time to train and obtained worse performance than the non-recurrent net-
works, they were not explored further. When observing Figure 5.1, it can be seen
that the recurrent networks have been trained for approximately half as many itera-
tions as the rest of the networks. This is an artifact of reading 30 time steps in each
mini-batch, using a mini-batch size of one. Thus, the recurrent networks processed
the same amount of data in approximately half the number of iterations compared
to using a mini-batch size of 16 as the other networks.

The networks called CNNLSTM and CNNOnly were considerably worse than the
other networks. While CNNLSTM did not seem to learn anything of value, CN-

57

5. Results

Figure 5.1: Validation loss for ten first pure regression network architechtures
implemented. It can be seen that the networks called CNNBiasFirst, CNNBiasLast
and CNNBiasAll have better performance than the rest.

Network Minimum validation loss
CNNBiasAll 6.2607
CNNBiasFirst 7.1126
CNNBiasLast 6.6577
CNNLSTM 32.0375
CNNOnly 18.5160
GRUNet 15.1629
LSTMNet 17.8025
LSTMNetBi 15.9195
FCNet 1 7.1495
FCNet 2 7.4194

Table 5.1: Minimum validation loss obtained for different network architectures
(trained using the mini-batch SGD optimization technique).

NOnly appears to have ”realized” something important towards the final iterations
(i.e., escaped a local minimum), almost instantaneously dropping in loss.

In conclusion, the recurrent networks did not seem very promising. Among the
networks with better performance, there was little difference. However, CNNBiasAll
seemed slightly better. For this reason, the same architecture was trained another
time using the Adam optimization algorithm. A comparison of the loss can be seen
in Figure 5.2 and confirms the findings in [15], i.e., Adam is the superior optimization
method. Thus it was used in all future training.

58

5. Results

Figure 5.2: When training the same network architecture, Adam is superior to
Mini-batch SGD, as the validation loss decreases more quickly and ultimately reaches
lower values. Note that the network trained using Mini-batch SGD did not train for
as many iterations, but the trend is still clearly visible.

5.1.2 Pure Regression Idea
The CNNBiasAll architecture was tested with different number of layers, number
of channels in the convolutions, number of maxpoolings, different dilation sizes and
different convolution strides. For a more detailed specification of the different net-
works, see our github repository1.

The validation losses of each architecture, within the pure regression idea, are plot-
ted over the number of training iterations in Figure 5.3. It illustrates how similar
the performance was between different architectures. The network More Layers 2
seemed the most promising, as it yielded the lowest test loss (see Table ??), and the
training was therefore continued for another 7 hours. Unfortunately, there was not
much difference after the additional 7 hours. The network More layers 1 was also
trained for a total of 14 hours, obtaining similar but slightly poorer performance.
Since the network should be able to slow down for cars in front of the vehicle, it
must have some information about the movement of other objects. As loading just
one extra lidar frame form the previous time step resulted in a doubling in training
time, see Figure 5.4, and because the results were no better than using a single lidar
frame, it was decided to train using only one frame.

1 https://github.com/AnnaNylander/exjobb/tree/master/network/architectures

59

https://github.com/AnnaNylander/exjobb/tree/master/network/architectures

5. Results

Figure 5.3: Validation loss for the pure regression idea networks. The networks
named More layers 1 and More layers 2 were trained for 14 hours, whereas the rest
were trained for 7 hours each.

Figure 5.4: Validation loss for the CNNBiasAll network using only the current
lidar frame and using the current and previous lidar frames. No effective gain in
performance was observed, whereas the training speed was halved.

60

5. Results

Network Test loss (7h) Test loss (14h)
Baseline 7.591 7.591
CNNBiasAll 3.8872
Miscellaneous 1 5.6770
More channels 1 4.4894
More channels 2 4.5699
More dilation 1 3.9167
More layers 1 3.8987 3.5178
More layers 2 3.6866 3.2072
More layers 3 3.9121
More layers 4 3.9933
More maxpool 1 4.2930
More stride 4.5891

Table 5.2: Test loss obtained for the pure regression idea networks. Training More
layers 2 for a total of 14 hours yielded a small gain in performance, compared to
training for only 7 hours.

5.1.3 PCA Idea
As can be seen in Figure 5.5, there is little difference between using 5 or 20 principal
components. The PCA idea seems to perform approximately as good as the pure re-
gression idea. The network with lowest test loss after seven hours of training, namely
the network using 20 components, was trained for a total of 14 hours. However, as
presented in Section 5.2, the trajectories became less smooth when using more prin-
cipal components, indicating that 20 dimensions perhaps was too many. For this
reason, the network using 5 principal components was trained equally long, reaching
approximately the same test loss (see Table ??) while maintaining the smoothness
of the trajectories.

Network Test loss (7h) Test loss (14h)
Baseline 7.591 7.591
5 components 4.5116 3.8046
7 components 4.5667
10 components 4.4443
20 components 4.3247 3.6317

Table 5.3: Test loss obtained for the PCA idea networks.

61

5. Results

Figure 5.5: Validation loss for the PCA idea networks. The difference in perfor-
mance was similar when using 5, 7, 10 and 20 components respectively.

5.1.4 Cluster Idea
The cluster idea yielded somewhat larger test losses compared to the PCA and pure
regression ideas, see Table ??. The number of clusters does not seem to significantly
affect the performance, at least not within the limited training time. The network
with 20 clusters yielded lowest validation loss during the first seven hours, which
was why it was trained for another 14 hours. As can be seen in Figure 5.6, the
network using 100 clusters was trained further as well, out of curiosity. The same
figure and Table ?? indicate that too little training was not the issue, but rather
the relatively high number of clusters.

Network Test loss (7h) Test loss (14h)
Baseline 7.591 7.591
10 clusters 6.0589
20 clusters 5.6275 4.5555
100 clusters 5.9859 4.9808

Table 5.4: Test loss obtained for the cluster idea networks.

62

5. Results

Figure 5.6: Validation loss for the cluster idea networks.

5.1.5 Semantic Segmentation Idea
The semantic segmentation idea seems to yield considerably higher MSE loss com-
pared to the rest of the ideas, both on the validation (see Figure 5.7) and test set
(see Table ??). It is the only network idea which did not reach the baseline perfor-
mance. The three networks were trained using different radii of the location in the
ground truth semantic map. The network labelled Radius 6-5-4-3 started training
using a radius of 6 m for three hours, then 5 m for two hours, 4 m for one hour
and finally 3 m for one hour. The training procedure was similar for the network
labelled Radius 10-8-6-4, but which was trained another seven hours using a radius
of 4 m. The Radius 4 network was trained using a radius of 4 m all seven hours.

Network Test loss (7h) Test loss (14h)
Baseline 7.591 7.591
Radius 10-8-6-4 9.8988 8.6059
Radius 4 15.2244
Radius 6-5-4-3 12.3799

Table 5.5: Test loss obtained for the semantic segmentation idea networks. Using a
larger radius seems to decrease the loss more quickly. The network Radius 10-8-6-4
was trained for 14 hours but did not reach the baseline loss.

Finally, when comparing the validation losses in Figure 5.8 for the networks with
lowest test loss in each main idea, it is evident that all ideas except for the seman-
tic segmentation idea are approximately equal in performance. The network with
smallest loss on the test set after training 14 hours, namely More layers 2 with a test
loss of 3.2072, was further trained until it reached a total of 63 hours. The test loss

63

5. Results

Figure 5.7: Validation loss for the semantic segmentation idea networks.

obtained was 2.5922, which is significantly smaller than after 14 hours of training,
although the difference is quite small with respect to the additional training time.
In the visual inspection section, the model trained for 14 hours will be used for a
fair comparison with the rest of the networks.

Figure 5.8: Validation loss for the networks with lowest test loss for each of the
main ideas. There is little difference in performance between the ideas, except for
the semantic segmentation idea which performs worse.

64

5. Results

5.2 Visual Inspection
The predicted trajectories of the best network for each idea, i.e., having lowest loss
on the test set, were plotted in blue on top of the top view lidar image, together
with the past (red) and the future ground truth (green) trajectories. An exception
to this definition of the best network is for the PCA idea network. Using 5 and 20
principal components respectively did not make a large difference on the test loss,
but the network using 20 principal components had significantly more ”squiggly”
trajectory predictions. As smoother trajectory predictions was a motivation behind
the PCA idea, the network using 5 principal components was deemed the best of the
PCA idea networks, although yielding slightly higher test loss. The following text
is an interpretation of the plots, describing the results in different traffic situations.
Note that the figures have been selected to showcase both good and bad predictions
in these situations. In two of the presented situations, the network More layers 1
was used instead of More layers 2, even though More layers 2 yielded lower test loss.
This was done in order to more clearly demonstrate the behaviour in the situation
at hand.

Figure 5.9 shows the behaviour in a left turn without intention, meaning that the
car has no choice but to follow the road to the left. This is one of the most basic
scenarios, since there is no choice to be made regarding the direction, no traffic
lights to follow and no pedestrians or cars that can (in a legal way) cross the road
at this point. It is evident from the top row of Figure 5.9 that the pure regression
and cluster idea models are able to produce reasonable trajectories. However, the
bottom row of the same figure depicts a similar left turn where it can be seen that
the predicted trajectories continue outside the road. Note how the trajectories of the
cluster idea model and PCA idea model are similar to those of the pure regression
model, while being smoother and more realistic.

65

5. Results

Pure regression idea
G
oo

d
Ba

d
Cluster idea PCA idea Sem. seg. idea

Figure 5.9: Turning left without intention. Top: Pure regression and cluster idea
models seem similarly accurate, while PCA idea and semantic segmentation idea
networks struggle. Bottom: another left turn which requires the network to follow
to road. It can be seen in the lidar images that a left turn is crucial, but all four
models struggle to predict an acceptable trajectory.

Figure 5.10 shows a crossroads where the car is directed to take a left turn. As can
be seen from the top row, pure regression, cluster and PCA idea models manage this
particular situation quite well, while the semantic segmentation idea model struggles
again. The bottom row displays the same turn as the top row but at a later time
step, where the car is approximately half way through the turn. All four models
tend to undershoot with respect to the ground truth trajectory.

66

5. Results

Pure regression idea
G
oo

d
Ba

d
Cluster idea PCA idea Sem. seg. idea

Figure 5.10: Turning left with intention (i.e., instructed to turn left in a cross-
roads).Top: Most models predict fairly accurate trajectories. Bottom: All models
undershoot with respect to the ground truth trajectory.

An even simpler situation than the left turn without intention would be to follow
a straight road. The top row of Figure 5.11 shows how the four models manage
to predict trajectories that align very well with the ground truth. The bottom row
presents a situation where the car is driving in a zigzag fashion due to the added
steering noise. All four models fail to predict trajectories that correct for the per-
turbation, and continue in the current direction. Note that although the direction is
not desirable, the speed (spacing between points) is quite accurate. It is also worth
noting that the semantic segmentation network predicts four points in a cluster to-
wards the top of the image, indicating it has not learned to predict speed as good
as the other networks.

67

5. Results

Pure regression idea
G
oo

d
Ba

d
Cluster idea PCA idea Sem. seg. idea

Figure 5.11: Going straight ahead. Top: All four models are accurate in this
rather simple situation. Bottom: All four models fail to correct for the perturbation
of the steering signal.

In both rows of Figure 5.12 the car can be seen waiting for a traffic light to turn
green. In the top row, the pure regression, cluster and PCA networks seem to han-
dle the situation correctly, while the semantic segmentation network predicts some
small movement. However, the predictions on the bottom row show that the pure
regression and PCA idea networks would like to go past the traffic light, despite
being red. The cluster and semantic segmentation networks show similar behaviour,
but to a lesser degree.

68

5. Results

Pure regression idea
G
oo

d
Ba

d
Cluster idea PCA idea Sem. seg. idea

Figure 5.12: Waiting for traffic light. Top and bottom: Vehicle is waiting for green
light and networks should predict no movement. Evidently, the networks manage
to make appropriate predictions in some cases but not in others.

Another interesting result can be seen in Figure 5.13 where the models predict un-
desired turns. In the top row, all networks want to take a left turn into a building.
The intention direction at this time step was left, but the distance to the turn was
more than 100 m.

In the bottom row it can be seen how the networks predict an early right turn, where
the intention indeed is a right turn. Just before the turn, there is a red traffic light
which the car slows down for, presumably causing the network to predict the early
turn.

69

5. Results

Pure regression idea
Ba

d
Ba

d
Cluster idea PCA idea Sem. seg. idea

Figure 5.13: Another vehicle is driving in front of the car, and thus the ego-vehicle
in the recorded data is slowing down. This scenario causes the predictions to behave
undesirable. Top: wanting to turn when it in fact should continue straight ahead.
Bottom: wanting to turn when it in fact should stop for a traffic light. A reasonable
explanation for this behaviour is that slowing down near a crossroads usually means
that the vehicle will soon be turning. In the scenario shown, the turn is expected,
but more than ten meters ahead of the predicted trajectory.

As could be seen in Figure 5.12, the networks incorrectly predicted movement while
waiting for some of the traffic lights. More interestingly, in some situations, the
networks showed to behave as desired when a traffic light changed from red to
green, see Figure 5.14. No movement is predicted while waiting. As soon as the
traffic light turns green, i.e., at the first time step with green light, the network
predicts a small movement and continues to increase the length of the trajectory for
each time step. At the time the car starts moving, the predicted trajectory aligns
remarkably well with the ground truth. Figure 5.14 displays this behaviour only for
the pure regression network More layers 1, but similar behaviour was found for the
other networks as well, although minimal for the semantic segmentation network.

70

5. Results

Red light
G
oo

d
Green light No acceleration Small acceleration

Figure 5.14: Series of images depicting how the pure regression network More
layers 1 predicts movement as soon as the traffic light turns green. First image:
Car is waiting for a traffic light to turn green, predicting no movement. Second
image: Traffic light changed from red to green, predicting a small movement even
though the acceleration is zero. Third image: Predicted trajectory grows longer,
still with no acceleration present. Fourth image: Finally, the car starts moving and
the predicted trajectory aligns with the ground truth.

In contrast to the ability discussed above, where the network clearly predicts ac-
celeration before initial movements of the car, the following example demonstrates
a more inconclusive behaviour. In the situation of a right turn without intention,
the network seems to predict turning too late, see Figure 5.15. The acceleration
and steering angle have been plotted for the same time period in Figure 5.16. It
can be seen in Figure 5.15 that the predicted turn is initiated at time step 2147
but then aborted at time step 2149. Between time steps 2149 and 2157, the trajec-
tory becomes better and better. However, the turn is initiated when there is little
change in acceleration and steering angle (during time steps 2150-2155). It then
rapidly changes (during time steps 2156-2157) into the more accurate prediction at
time step 2157, for which the acceleration and steering rate are considerably higher.
Thus, the network seems to take initiative without prior turning movement, but
that it benefits heavily from it.

71

5. Results

Time step 2147
Ba

d
Time step 2149 Time step 2157 Time step 2190

Figure 5.15: Series of predictions in a turn without intention, using the pure
regression network More layers 1. The first (left) image shows how the turn is
being initiated in the prediction of time step 2147, although too slowly compared to
the ground truth. Just two time steps later, at time step 2149, the turn has been
aborted and the predicted trajectory continues straight off the road. Between steps
2150 and 2157, the predictions become better and better and finally align quite
well with the ground truth. The network continues to predict with about the same
accuracy, however with some overshooting, until the curve has ended.

Figure 5.16: The total acceleration and the steering angle have been plotted over
the time series depicted in Figure 5.15. The four vertical lines in each plot mark
the time steps corresponding to the images in Figure 5.15. It seems like the network
predicts turning trajectories based on these signals rather than the lidar image,
although it is unclear to what degree.

The car should stop when approaching another car which is standing still. As seen in
the bottom row of Figure 5.17, the models do not capture this, and instead predicts
driving through a car which has stopped. This can be seen by comparing the ground
truth trajectory with the predicted one, as the predicted is about twice as long. On
the other hand, when the other car is having some speed, the future trajectory could
possibly go through it. The models seem to behave accordingly, although it should
also be mentioned that it is impossible to know the speed of other objects without
at least one top view lidar image from another time step. For this reason, it is not
surprising that the networks do not take the speed of other cars into account.

72

5. Results

Pure regression idea
G
oo

d
Ba

d
Cluster idea PCA idea Sem. seg. idea

Figure 5.17: Networks predict trajectories intersecting other vehicle. Top: The
other car is moving and the predicted trajectory is correctly going through it. Bot-
tom: Other car is standing still but the network incorrectly wants the car to go
through it. Note that more lidar images are required for the network to figure out
if the car in front is moving or not.

The network More layers 2 which was trained for a total of 63 hours did reach a
lower test loss, but seems to make the same kind of errors as when trained for 14
hours only. Some examples can be seen in Figure 5.18, where the major improvement
seems to be the smoothness of trajectories. In column three of the same figure, the
network seems to be better at correcting for the perturbed steering signal.

73

5. Results

Left with intention
14

ho
ur
s

63
ho

ur
s

Left with intention Perturbation Straight ahead

Figure 5.18: Comparison between predictions by More layers 2 with different
training times. Top: Trained for 14 hours. Bottom: Trained for 63 hours. The
networks seems to be making the same mistakes, although predicting smoother
trajectories in general.

A final note on the semantic segmentation network is that its MSE is much larger
compared to the other networks, but that it still seems to learn something mean-
ingful. Figure 5.19 shows how the predictions farther into the future are moving
forward with respect to the car and that turning left seems to be more likely, as the
high probability area tends to extend to the left.

5.3 Benchmarking
One of the benefits of using CARLA is the ability to benchmark driving models using
the same metrics. Although the MPC by itself worked as expected, controlling the
car in CARLA did not work. When testing the MPC on the ground truth trajectories
(which by definition are correct), it very rarely predicted positive throttle values
and more often positive brake values. This resulted in the car not driving anywhere.
CARLA is implemented in such a way that during the first two to three seconds of
driving, the car is unable to apply control signals. To overcome any possible issues
related to this, it was also tested to drive using some initial positive throttle values,
as to not lag in the beginning. This did not help in any way, and the car stopped
as soon as the throttle signal was controlled by the MPC again. As the MPC did
not function in CARLA on the ground truth trajectories, the performance of the
models could not be measured in the simulator. See Section 6.4 for a discussion on
possible causes.

74

5. Results

Figure 5.19: Predicted segmentation map from the semantic segmentation network
at different time steps (5, 10, 15, 20, 25 and 30) into the future. Bright yellow means
high probability and purple means low probability. The probability values control
the transparency of the segmentation map, making the top view lidar image visible
in the background. As for the other prediction plots, the green dot is the ground
truth position and the blue dot is the predicted position, calculated as the center of
mass of the semantic segmentation map.

75

6
Discussion

This chapter will analyze and debate the results, which unfortunately performed
poorer than hoped. The architecture of the networks and the ideas in general will
be discussed in light of the results. Moreover, other factors which might have con-
tributed to the result will also be examined and discussed.

In Section 6.1, 6.2, and 6.3 are the structure of the neural networks and the results
presented. It is followed by a discussion about the difficulties integrating the MPC
in the CARLA benchmark in Section 6.4, and finally the direction for future work
is treated in Section 6.5.

6.1 Predictions

The models presented in Section 5 (Results) did not perform as good as expected.
Because of the promising results in [6], which could predict future vehicle positions,
the leap to predicting future positions at specific time steps did not seem very large.
In contrast, the results show that this problem is much more difficult and requires
further investigation.

One of the most prominent problems is that the predictions often are too far from
the ground truth. It is not necessary for the predictions to perfectly align with the
ground truth, as human drivers do not drive along the exact same path every time
they take a turn. However, the visual inspection of predicted trajectories indicate
that none of the networks reach acceptable performance. It is surprising that even
the most simple situations, such as following the road as it turns, is a big issue for
all networks. The main cause for this seems to be the fact that the networks do not
rely on the lidar images as much as the IMU-data. It is possible for a human to look
at the lidar images and tell that the road is turning, meaning that the necessary
information is there.

In Figure 5.14 one can see that the network seems to ”take initiative” and starts to
predict movement as the traffic light status changes. In contrast to simply predict-
ing to follow the current trajectory with the current speed and acceleration, which
is an easy problem, this shows a deeper understanding of the environment. However
this ”initiative” is somewhat lacking in turns without intention, i.e., where the road
is curved. As seen in Figure 5.15, until the turn is noticeable in the input steering
angle, the predictions are unstable and might shift greatly and suddenly. Once the

77

6. Discussion

car has started to turn, the predictions quickly change towards the correct trajec-
tory. But as mentioned before, following a trajectory is a simple task compared to
taking the initiative to turn.

It also seems like the models do not infer enough information from the lidar images,
but instead depend excessively on the IMU data. They mostly prefer to follow the
trajectory inferred from the IMU data. This is visible in Figure 5.13 where the
ground truth is driving slower than usual due to a vehicle in front. The model seem
to infer a turn from the lowered velocity, even though the intention and lidar image
says otherwise. Perhaps would more examples of these kinds of scenarios in the data
counteract this wrongful inference.

6.2 Data
When working with machine learning tasks in general, it is reasonable to ask the
question whether the amount of training data is sufficient and if it covers all the
cases expected to be handled by the model? As the training data was balanced so
that the major situations (turning left, approaching traffic light, etc.) where rep-
resented in equal amounts, some effort was put into making the ratios more even.
However, the models would most certainly benefit from having larger amounts of the
situations occurring more seldom in the simulator. It is possible to start driving and
recording close to left turns and right turns specifically, although the recorded data
would have to be trimmed as the exact starting location cannot be set in CARLA.
Furthermore, it is not possible to control the traffic lights, pedestrians or other ve-
hicles, making the data collection of specific situations hard.

Another question relevant for this project is whether lidar and IMU data contains
enough information to properly control the vehicle. Unlike most autonomous driv-
ing systems, a camera was not used which is an unusual decision. However, [6] used
lidar as a main source of information (without any additional cameras) and obtained
good results. Furthermore, it is possible for a human to identify the road and most
other objects using the lidar top view images. Thus, it is reasonable to believe the
input used contained enough information to derive good driving decisions. Nonethe-
less, it is probable that an additional, traditional, camera would improve the results,
as more data and other types of features usually yield better performance in neural
networks.

The data was also very tainted by noise. As the data was recorded, uniform noise
was added to the steering signal of the autopilot, which affected all collected data.
This was done with the motivation to not only make the model noise resistant and
robust, but also make the model learn how to correct for bad positioning on the
road. By intentionally feeding the models with slightly zigzag driving data, the
model would hopefully be a more sturdy driver and be able to correct the trajec-
tory if it was a little bit off. A natural consequence of adding noise would be an
increased difficulty in filtering out the essential information, increasing the needed
training time.

78

6. Discussion

Another concern has been the size of the cities in CARLA. While Town01 (used
to create the training set) is clearly the larger one, both are very small. As such,
the data was highly limited to the few scenarios offered in the towns. Even if the
actions and positions of the dynamic objects, i.e., other vehicles and pedestrians,
varied, the scenes remained the same, making the data ”easier” than real data. A
natural implication of this would be overfitting of the models — but this is not
observed. The somewhat unexpected lack of overfitting is believed to occur due to
the architecture of the neural networks.

6.3 Architectures and Ideas
Judging from the validation plots, none of the networks seems to overfit. This is also
true for the training loss, indicating that further training will improve performance,
although at a slower and slower pace. Why the models do not overfit even though the
small towns facilitate overfitting, is believed to be because of spatial dropout. It is
used throughout all the networks, which leading purpose is to counteract overfitting.

Nevertheless, it is also possible the network architectures simply lack enough com-
plexity to fully capture the essence of predicting correct trajectories. This suggestion
is supported by the fact that the networks More Layers 1 and More Layers 2, which
have deeper architectures, produce a lower loss. On the other hand, the networks
consist of parameters in the order of 10 millions, which seem to be enough for [4]
and [6], although these solve slightly different tasks.

Another common issue in machine learning projects is the amount of training time.
How much is enough to get the desired results and when is it reasonable to stop? Ex-
cept for the experimentation phase, where the training time differed vastly between
architectures, the set training time was 7 or 14 hours. In the context of autonomous
driving, this is very meager. It was observed that training More layers 2 (which had
the smallest test loss) for a total of 63 hours did not make any significant difference
in the problematic situations. This indicates that the major problem does not lie in
the amount of training time, but that there is some other information required to
produce better predictions.

For all networks except the semantic segmentation idea networks, np = nf = 30. It
is possible that predicting 30 time steps (i.e., three seconds) into the future is to
ask to much of the networks. On the other hand, it seems like the networks do not
struggle with the number of time steps, but rather the overall type of trajectory.
For example, as seen in Figure 5.13, the trajectories look rather realistic, but are
not close to the ground truth, indicating that the number of predicted time steps is
within reasonable limits.

Moving on to discuss the specific architectures, the RNNs did seem to learn, but
not to the point where the predictions could be considered useful. This is clear
since the validation loss is well over the baseline. It is possible that further training

79

6. Discussion

would result in useful models, although the slow training speed did not motivate
continuing. It is not clear why the recurrent networks perform worse than the rest,
although it could be due to the different way of training. It could also be that there
is something wrong with the implementation of the networks, as much time was
spent on making them trainable at all.

The implementation of the semantic segmentation idea does have a disadvantage
against the other ideas, which is that predictions can only be made within the re-
gion of interest. This means that locations along the ground truth trajectories which
occur more than 30 m ahead of the vehicle will not be present in the ground truth
semantic map, as the width and height dimensions of the semantic maps are fixed.
This is a possible cause for the high test loss observed. The problem can be allevi-
ated using ground truth semantic maps that stretch outside the region of interest.
However, the lidar images are cropped to the region of interest, forcing the network
to then make uninformed guesses of future locations.

The inferior performance of the cluster idea was surprising, as the idea behind it
seemed very promising (explained in Section 3.3.3). One reason it learns slower than
the other neural networks seems to be its more complex backpropagation. It learns
two tasks simultaneously, one classification task and one regression task. The back-
propagation is also class specific, i.e., trains on only the correct class. In contrast
to class agnostic backpropagation, i.e., training on all classes simultaneously, a class
specific approach is likely less efficient.

Next, the performance of the PCA idea and the pure regression idea will be dis-
cussed. Both are regression problems but with different number of outputs. As
fewer outputs were thought to be easier, their performance do not match the ex-
pectations. It might be that the PCA idea with fewer variables are more sensitive
to small differences. Getting only one variable wrong offsets all points instead of
just one. However, despite the slightly better loss in the pure regression idea, the
performance of the PCA idea is superior. It produces nice and smooth curves which
are much more useful than the cluttered predictions made using pure regression.

In conclusion, no network architecture seems to outperform the others significantly
and no network is close to overfitting. Therefore there is no reason to believe another
type of architecture or idea would solve the current problem. The problem is most
likely in one of the other mentioned factors, primarily the amount of training time,
the amount of data, and the amount of desired scenarios present in the data.

6.4 Benchmarking Problems
The models could not be benchmarked in CARLA, due to problems using the MPC.
Note that the MPC could in fact follow a given trajectory with great precision, using
its internal bicycle model. One of the possible causes for not working in the simula-
tor could be that the neural network constructing throttle and brake signals, given
a desired acceleration, may not work as desired. It can be seen in figure 4.13 that,

80

6. Discussion

although prediction accuracy varies between different time steps, the network seems
to respond with throttle when acceleration is desired and brake when deceleration
is desired. Hence, it is not very likely that this is the main cause of failure.

A more likely cause of failure may be that there was something wrong with the
integration of the MPC into CARLA. However, no such faults could be discovered
during the project. It is unfortunate that the benchmarking could not take place, as
much time and effort was spent by Juliano and Dapeng on constructing the MPC.
Also, a lot of time was spent on discussing the possibilities and options for the MPC,
constructing the object distance maps, and so on.

6.5 Future Work
It is evident that the results can be improved. One possible key to better perfor-
mance is using lidar readings from multiple time steps as input. This was tested
during the project, but as the training time was increased substantially, while main-
taining similar performance, it was not investigated further. However, training for
a longer period of time might increase performance and should help the network
get a better sense of dynamic objects in the environment. Moreover, adding camera
images to the input might help alleviating the same problem, although the training
speed would decrease even more. The networks might then learn when to slow down,
stop and start using visual input instead of relying on the acceleration measurements.

A large portion of the data was recorded while driving along straight roads and
waiting for traffic lights to turn green. Although the data was balanced according
to the different situations, the training data could be improved by recording more
turns specifically. Also, the critical scenario of stopping for other vehicles in front
of the ego-vehicle could be extracted as another category and balanced accordingly.
It would also have been reassuring to get the network to overfit to the training
data. This would confirm that the network learns correctly and that there is noth-
ing inherently wrong with the network. By training on a very small fraction of the
training data, one should be able to force the network to overfit.

The system could not be tested in CARLA, which would be one of the most inter-
esting things to accomplish in the future. This would enable the direct perception
approach used in the project to be compared with other approaches and systems,
using the same benchmarking suite.

As only the best pure regression idea network was trained for 63 hours, it would also
be interesting to see how the other network ideas would perform when given more
training time.

Finally, we hope our work will inspire others to explore different techniques in com-
bination with direct perception to control self-driving cars.

81

7
Conclusion

The purpose of the thesis was to evaluate the performance of different deep neural
network architectures as they control a self-driving car. Their inputs are top view
lidar images of the surroundings, IMU-values and other sensors values of a simulated
car. Their output is a trajectory which can be used by other control mechanisms,
while still allowing for human interpretation. This is referred to as direct perception.

Four different main ideas were tested, incorporating regression, clustering, principal
component analysis and semantic segmentation. Multiple networks belonging to
each idea were implemented with variations. One of the major findings was that the
best network architecture of each idea perform similarly good, with the exception
of the semantic segmentation idea, which did not perform as good as the rest.

The results indicate the networks learned, to some degree, to predict feasible tra-
jectories. However, the trajectories are not satisfactory and are far from usable in
real vehicles. On the other hand, the trajectories are easily interpretable by humans
and could thus be used to reason about what the networks struggle to learn. The
problematic scenarios include predicting trajectories for taking turns where no inten-
tion is given, i.e., the road turns and the car must simply follow it, driving straight
ahead when turning directions are present but intended for crossroads farther away,
stopping for traffic lights, and avoiding other vehicles. Scenarios which the networks
do seem to handle better, yet not completely satisfactory, are predicting trajecto-
ries near crossroads where the turning direction is given, beginning to move after
waiting at traffic lights and driving on a straight road. The networks implementing
the PCA idea have somewhat higher test loss compared to the overall best network,
which is a pure regression network. On the other hand, the trajectories of the PCA
idea networks are more realistic and are thus preferable. The performance of the
networks is likely to increase from further training, although the results indicate
that insufficient predictions are prominent even after 60 hours of training. More
training data, specifically of the problematic situations mentioned, could help in-
crease the performance further. Changing the network architectures does not seem
to yield vastly different results, but could provide some fine tuning, should these
major issues be solved. It cannot be concluded from the results whether lidar and
GNSS-IMU sensors provide enough information to successfully perform the direct
perception task.

In consequence of the findings, obtaining satisfactory performance of a neural net-
work for direct perception systems seems harder than expected. However, we con-

83

7. Conclusion

clude that the techniques in this project have great potential and that future research
might yield positive results.

84

7. Conclusion

85

Bibliography

[1] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning affor-
dance for direct perception in autonomous driving,” in 2015 IEEE International
Conference on Computer Vision (ICCV), Dec 2015, pp. 2722–2730.

[2] J. Janai, F. Güney, A. Behl, and A. Geiger, “Computer vision for autonomous
vehicles: Problems, datasets and state-of-the-art,” CoRR, vol. abs/1704.05519,
2017. [Online]. Available: http://arxiv.org/abs/1704.05519

[3] H. Zhu, K. Yuen, L. Mihaylova, and H. Leung, “Overview of environment per-
ception for intelligent vehicles,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 18, no. 10, pp. 2584–2601, Oct 2017.

[4] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.
Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba,
“End to end learning for self-driving cars,” CoRR, vol. abs/1604.07316, 2016.
[Online]. Available: http://arxiv.org/abs/1604.07316

[5] P. Drews, G. Williams, B. Goldfain, E. A. Theodorou, and J. M. Rehg, “Ag-
gressive deep driving: Combining convolutional neural networks and model
predictive control,” in Conference on Robot Learning, 2017, pp. 133–142.

[6] L. Caltagirone, M. Bellone, L. Svensson, and M. Wahde, “LIDAR-based driving
path generation using fully convolutional neural networks,” in 2017 IEEE 20th
International Conference on Intelligent Transportation Systems (ITSC), Oct
2017, pp. 1–6.

[7] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous localization and
mapping: A survey of current trends in autonomous driving,” IEEE Transac-
tions on Intelligent Vehicles, vol. 2, no. 3, pp. 194–220, Sept 2017.

[8] J. Aulinas, Y. Petillot, J. Salvi, and X. Lladó, “The SLAM problem: A
survey,” in Proceedings of the 2008 Conference on Artificial Intelligence
Research and Development: Proceedings of the 11th International Conference
of the Catalan Association for Artificial Intelligence. Amsterdam, The
Netherlands: IOS Press, 2008, pp. 363–371. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1566899.1566949

[9] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An
open urban driving simulator,” in Proceedings of the 1st Annual Conference on
Robot Learning, 2017, pp. 1–16.

87

http://arxiv.org/abs/1704.05519
http://arxiv.org/abs/1604.07316
http://dl.acm.org/citation.cfm?id=1566899.1566949
http://dl.acm.org/citation.cfm?id=1566899.1566949

Bibliography

[10] K. Schmid, K. Waters, L. Dingerson, B. Hadley, R. Mataosky, J. Carter, and
J. Dare, “Lidar 101: An introduction to lidar technology, data, and applica-
tions,” NOAA Coastal Services Center, 2012, revised.

[11] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 1998.

[12] S. Haykin, Neural Networks and Learning Machines, ser. Pearson International
Edition. Pearson, 2009. [Online]. Available: https://books.google.se/books?
id=KCwWOAAACAAJ

[13] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[14] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep net-
work learning by exponential linear units (ELUs),” in International Conference
on Learning Representations (ICLR), 2016.

[15] S. Ruder, “An overview of gradient descent optimization algorithms,” CoRR,
vol. abs/1609.04747, 2016. [Online]. Available: http://arxiv.org/abs/1609.
04747

[16] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in In-
ternational Conference on Learning Representations (ICLR), 2015.

[17] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, “Object recognition with
gradient-based learning,” in Shape, Contour and Grouping in Computer
Vision. London, UK, UK: Springer-Verlag, 1999, pp. 319–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646469.691875

[18] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,”
in International Conference on Learning Representations (ICLR), 2016.

[19] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated
recurrent neural networks on sequence modeling,” CoRR, vol. abs/1412.3555,
2014. [Online]. Available: http://arxiv.org/abs/1412.3555

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural compu-
tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[21] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE
Transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, Nov 1997.

[22] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly
learning to align and translate,” in International Conference on Learning Rep-
resentations (ICLR), 2015.

[23] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” The
Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

88

https://books.google.se/books?id=KCwWOAAACAAJ
https://books.google.se/books?id=KCwWOAAACAAJ
http://www.deeplearningbook.org
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
http://dl.acm.org/citation.cfm?id=646469.691875
http://arxiv.org/abs/1412.3555

Bibliography

[24] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, “Efficient object
localization using convolutional networks,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2015, pp. 648–656.

[25] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,” IEEE
Transactions on Intelligent Vehicles, vol. 1, no. 1, pp. 33–55, March 2016.

[26] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and dynamic
vehicle models for autonomous driving control design.” in Intelligent Vehicles
Symposium, 2015, pp. 1094–1099.

[27] S. Rogers and M. Girolami, A First Course in Machine Learning, 2nd ed.
Chapman & Hall/CRC, 2016.

[28] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks for se-
mantic segmentation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 39, no. 4, pp. 640–651, April 2017.

[29] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic
segmentation,” in 2015 IEEE International Conference on Computer Vision
(ICCV), Dec 2015, pp. 1520–1528.

[30] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected crfs,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 40, no. 4, pp. 834–848, April 2018.

[31] D. Barnes, W. Maddern, and I. Posner, “Find your own way: Weakly-supervised
segmentation of path proposals for urban autonomy,” in 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), May 2017, pp. 203–210.

[32] F.-F. Li, A. Karpathy, and J. Johnson, “Lecture notes 8 in convolutional neural
networks for visual recognition,” February 2016.

[33] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in 2014 IEEE Confer-
ence on Computer Vision and Pattern Recognition, June 2014, pp. 580–587.

[34] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time
object detection with region proposal networks,” in Advances in neural infor-
mation processing systems, 2015, pp. 91–99.

[35] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 779–788.

[36] S. Gugger, “The 1cycle policy,” accessed 2018, July 9. [Online]. Available:
https://sgugger.github.io/the-1cycle-policy.html#the-1cycle-policy

89

https://sgugger.github.io/the-1cycle-policy.html#the-1cycle-policy

Bibliography

[37] ——, “How do you find a good learning rate,” accessed 2018, Apr. 18. [Online].
Available: https://sgugger.github.io/how-do-you-find-a-good-learning-rate.
html

90

https://sgugger.github.io/how-do-you-find-a-good-learning-rate.html
https://sgugger.github.io/how-do-you-find-a-good-learning-rate.html

Bibliography

91

A
Lidar implementation in CARLA

At the beginning of this project CARLA did not support any lidar functionality. As
the main data intended to be lidar, a system was implemented to extract lidar data
from the existing sensors in CARLA. About half-way through the project CARLA
released their own lidar solution, a ray-cast based lidar sensor available natively in
the simulator. As their implementation was both faster and more true to the nature
of real lidar systems than ours, it was used throughout the remainder of the project.
However, since a lot of time and energy was put into this functionality, the process
will be described here.

A.1 CARLA’s depth maps
Before their lidar sensors, CARLA used depth cameras to record the distance to
objects. The images called depth maps used the RGB values to encode a distance
value to each pixel. In Figure A.1 a depth map from CARLA can be seen. Even
though the colors are distorted one can easily perceive the settings. Four of these
depth cameras were placed above the car facing forwards, right, left and backwards,
which together covered 360 degrees. The value in a pixel of the image captured by
a depth camera corresponds to the distance between the camera and the nearest
object point seen through that pixel in the near near clip plane. The near clip plane
is the gray plane which can be seen in Figure A.3.

A.1.1 Sampling the relevant points
With the recorded depth maps it is not possible to convert the 2D data into a
3D point cloud. In order to convert the four depth maps into a lidar point cloud,
the relevant pixels need to be known. The relevant pixels is which pixels on the
depth map the lidar rays would have hit. Furthermore, the angle of the ray to each
respective pixel must also be known to create a 3D point cloud.
The relevant pixels and their respective angle is calculated by simulating a lidar,
which in retrospect sweeps over the recorded depth images. An imagined lidar and
it’s rays is put in front of a depth map. The lidar rays is set to mimic a Velodyne
HDL-32. The Lidar starts at the left side and sweeps horizontally over the image by
rotating around the y-axis. For every 0.016°the intersecting pixels (and correspond-
ing angles) are saved. In Figure A.2 one can see the positions of the relevant pixels
together with the desired curvature.

I

A. Lidar implementation in CARLA

Figure A.1: Depth map recorded by the CARLA depth cameras. The RGB values
represent the distance to each pixel.

Figure A.2: The blue dots is the relevant pixels which should be extracted from
each depth map in order to recreate a lidar point cloud. The curvature arises when
a ray sweep a perpendicular plane.

II

A. Lidar implementation in CARLA

Figure A.3: The image shows which point of an object each pixel "sees". Tra-
ditionally the distance to an object is measured between the pixel and the object,
red line in the left image. Instead the depth value in CARLA is decided by the
perpendicular distance between the object and the pixel, the red line in the right
image.

A.2 converting to a 3D point cloud
For every depth map, the depth values are recorded in the RGB image at the
positions of the relevant pixels. The depth values together with the angles can
then be used to define 3D points in a polar coordinate system. These are then
converted to cartesian coordinates and a final correction is applied, namely

[x, y, z] = [x, y, x]
cos(h)cos(v) , (A.1)

where h is the horizontal angle and v is the vertical angle in the polar coordinates.
The resulting point cloud can be seen in A.4. The last correction is needed because
CARLA’s depth cameras measure depth in an unorthodox fashion. In contrast to
how depth cameras work in general, each pixel of the CARLA depth map contains
the perpendicular distance between the object point, seen through that pixel, and
the xz-plane in which the camera is positioned. An illustration of this can be seen
in Figure A.3.

A.3 Interpolation
An artifact of the depth camera to lidar conversion was that the resolution in the
height and width dimensions affected the outcome of the point cloud. As the reso-
lution shrunk smaller, the quantization error grew larger. This problem protruded
especially for low resolutions in the height of the image, i.e. one pixel in height rep-
resented several meters in depth far away. To remedy this, values in the points of
interest were linearly interpolated, producing smoother results. However, as a side
effect, neighbouring pixel values with great difference resulted scattered the point

III

A. Lidar implementation in CARLA

Figure A.4: The final result of the lidar extraction form the depth cameras. The
colors represent which camera the points are recorded with.

cloud. In turn, interpolation was only applied where the value difference between
neighbouring pixels was smaller than some threshold t, resulting in more realistic
points clouds.

IV

A. Lidar implementation in CARLA

Figure A.5: A depth camera with resolution 400x300 was used. The difference in
smoothness of the lines between not using interpolation (left) and using interpolation
with a threshold of 1 meter (middle) and using a threshold of 2 meters (right) is
clearly visible.

V

B
Pure Pursuit

Pure pursuit is a control technique, like MPC, which was first considered due to its
simplicity. However, it is used for path stabilization rather than trajectory stabi-
lization, thus it does not control the velocity of the vehicle. This restriction does
not match the aim of the project and was only used initially to get a fully working
pipeline from input to steering signals.

[25] evaluate the performance of different path stabilization techniques and show
that other path stabilization techniques are superior to pure pursuit in terms of
performance, but pure pursuit is considerably simpler than the other techniques.
In order to calculate the steering signals along a given path, pure pursuit makes
use of the vehicle’s (rear wheel) position (x, y) in the global coordinate system, the
vehicle’s heading angle (yaw) θ and a predefined look ahead distance L from the
vehicle position to find a reference position along the path. By fitting a semicircle
(see Figure B.1) through the vehicle position and the reference position, the desired
steering rate ω is calculated for the current velocity v of the vehicle [25], using the
formula

ω = 2v sin(α)
L

, (B.1)

where the angle α is found through

α = arctan
(
yref − y
xref − x

)
− θ. (B.2)

VII

B. Pure Pursuit

Figure B.1: A semi circle is fitted between the current position of the rear wheel
and the look ahead distance L. The steering rate ω is decided by eq. B.1.

VIII

C
Recorded measurements from

CARLA - an Example

IX

C. Recorded measurements from CARLA - an Example

pl
at
fo
rm

_
ti
m
es
ta
m
p

ga
m
e_

ti
m
es
ta
m
p

lo
ca
ti
on

_
x

lo
ca
ti
on

_
y

lo
ca
ti
on

_
z

ac
ce
le
ra
ti
on

_
x

ac
ce
le
ra
ti
on

_
y

ac
ce
le
ra
ti
on

_
z

12
69

70
77

50
.0
00

00
00

0
10

0.
00

00
00

00
33

8.
97

99
80

47
30

1.
25

99
79

25
40

.0
90

62
57

6
0.
00

00
00

00
0.
00

00
00

00
0.
00

00
00

00
12

69
70

81
25

.0
00

00
00

0
20

0.
00

00
00

00
33

8.
97

99
80

47
30

1.
25

99
79

25
40

.0
33

48
54

1
-0
.0
00
00

00
0

-0
.0
00

00
00

1
0.
00

00
00

00
12

69
70

85
00

.0
00

00
00

0
30

0.
00

00
00

00
33

8.
97

99
80

47
30

1.
25

99
79

25
39

.8
78

45
99

3
-0
.0
00
00

00
0

-0
.0
00

00
00

1
0.
00

00
00

00
12

69
70

87
50

.0
00

00
00

0
40

0.
00

00
00

00
33

8.
97

99
80

47
30

1.
25

99
79

25
39

.6
25

64
46

8
-0
.0
00
00

00
0

-0
.0
00

00
00

1
0.
00

00
00

00
12

69
70

91
25

.0
00

00
00

0
50

0.
00

00
00

00
33

8.
97

99
80

47
30

1.
25

99
79

25
39

.2
75

13
88

5
-0
.0
00
00

00
0

-0
.0
00

00
00

1
0.
00

00
00

00
12

69
70

93
75

.0
00

00
00

0
60

0.
00

00
00

00
33

8.
97

99
80

47
30

1.
25

99
79

25
38

.8
30

83
34

4
0.
00

00
00

00
0.
00

02
57

59
-0
.0
00

00
00

0
12

69
70

97
50

.0
00

00
00

0
70

0.
00

00
00

00
33

8.
97

94
92

19
30

1.
26

02
84

42
38

.6
71

61
17

9
0.
00

00
00

72
0.
17

34
33

78
-0
.0
00

15
49

2
12

69
71

00
00

.0
00

00
00

0
80

0.
00

00
00

00
33

8.
97

83
63

04
30

1.
26

09
25

29
38

.6
92

30
65

2
-0
.0
00
00

06
8

-0
.1
68

34
58

2
0.
00

01
39

94
12

69
71

03
75

.0
00

00
00

0
90

0.
00

00
00

00
33

8.
97

83
02

00
30

1.
26

08
03

22
38

.7
16

49
17

0
-0
.0
00
00

02
2

-0
.0
32

98
73

9
0.
00

00
82

13
12

69
71

06
25

.0
00

00
00

0
10

00
.0
00

00
00

0
33

8.
97

86
37

70
30

1.
26

05
59

08
38

.7
35

67
58

1
0.
00

00
00

09
0.
00

22
58

59
-0
.0
00

02
30

3
12

69
71

08
75

.0
00

00
00

0
11

00
.0
00

00
00

0
33

8.
97

88
51

32
30

1.
26

03
14

94
38

.7
48

88
61

1
0.
00

00
00

06
0.
00

74
51

06
-0
.0
00

02
31

8
12

69
71

12
50

.0
00

00
00

0
12

00
.0
00

00
00

0
33

8.
97

90
95

46
30

1.
26

02
23

39
38

.7
57

33
18

5
0.
00

00
00

02
0.
00

56
71

19
-0
.0
00

01
15

4
12

69
71

15
00

.0
00

00
00

0
13

00
.0
00

00
00

0
33

8.
97

92
78

56
30

1.
26

01
01

32
38

.7
62

48
55

0
0.
00

00
00

01
0.
00

45
50

19
-0
.0
00

00
55

5
12

69
71

18
75

.0
00

00
00

0
14

00
.0
00

00
00

0
33

8.
97

94
92

19
30

1.
26

00
40

28
38

.7
65

54
10

8
-0
.0
00
00

00
0

0.
00

28
92

66
-0
.0
00

00
22

8
12

69
71

21
25

.0
00

00
00

0
15

00
.0
00

00
00

0
33

8.
97

94
92

19
30

1.
26

00
40

28
38

.7
67

30
34

7
0.
00

00
00

00
0.
00

15
92

05
-0
.0
00

00
08

8
12

69
71

25
00

.0
00

00
00

0
16

00
.0
00

00
00

0
33

8.
97

94
31

15
30

1.
26

00
40

28
38

.7
68

30
29

2
0.
00

00
00

00
0.
00

11
72

35
-0
.0
00

00
04

0
12

69
71

27
50

.0
00

00
00

0
17

00
.0
00

00
00

0
33

8.
97

94
92

19
30

1.
26

00
40

28
38

.7
68

57
37

6
0.
00

00
00

00
0.
00

10
79

97
-0
.0
00

00
01

8
12

69
71

31
25

.0
00

00
00

0
18

00
.0
00

00
00

0
33

8.
97

94
31

15
30

1.
26

00
40

28
38

.7
68

85
22

3
0.
00

00
00

00
0.
00

00
18

29
-0
.0
00

00
00

3
12

69
71

33
75

.0
00

00
00

0
19

00
.0
00

00
00

0
33

8.
97

94
92

19
30

1.
26

00
40

28
38

.7
69

09
63

7
0.
00

00
00

00
0.
00

02
67

71
-0
.0
00

00
00

4
12

69
71

37
50

.0
00

00
00

0
20

00
.0
00

00
00

0
33

8.
97

94
31

15
30

1.
26

00
40

28
38

.7
69

27
18

5
0.
00

00
00

00
0.
00

02
18

16
-0
.0
00

00
00

2
12

69
71

40
00

.0
00

00
00

0
21

00
.0
00

00
00

0
33

8.
97

94
31

15
30

1.
26

00
40

28
38

.7
69

33
67

0
0.
00

00
00

00
0.
00

02
60

90
-0
.0
00

00
00

1
12

69
71

42
50

.0
00

00
00

0
22

00
.0
00

00
00

0
33

8.
97

94
92

19
30

1.
26

00
40

28
38

.7
69

39
39

2
-0
.0
00
00

00
0

-0
.0
00

01
27

4
-0
.0
00

00
00

0
12

69
71

46
25

.0
00

00
00

0
23

00
.0
00

00
00

0
33

8.
97

94
92

19
30

1.
26

00
40

28
38

.7
69

44
35

1
0.
00

00
00

00
0.
00

00
44

10
-0
.0
00

00
00

0
12

69
71

48
75

.0
00

00
00

0
24

00
.0
00

00
00

0
33

8.
97

94
92

19
30

1.
26

00
40

28
38

.7
69

48
16

6
0.
00

00
00

00
0.
00

00
40

49
-0
.0
00

00
00

0
12

69
71

52
50

.0
00

00
00

0
25

00
.0
00

00
00

0
33

8.
97

94
92

19
30

1.
26

00
40

28
38

.7
69

50
07

3
0.
00

00
00

00
0.
00

00
99

21
-0
.0
00

00
00

0

X

C. Recorded measurements from CARLA - an Example

fo
rw

ar
d_

sp
ee
d

pi
tc
h

ro
ll

ya
w

co
lli
si
on

_
ve
hi
cl
es

co
lli
si
on

_
pe

de
st
ri
an

s
co
lli
si
on

_
ot
he

r
in
te
rs
ec
ti
on

_
ot
he

rl
an

e
0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-9
0.
00
02
97
55

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-9
0.
00
02
97
55

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-9
0.
00
02
97
55

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-9
0.
00
02
97
55

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-9
0.
00
02
97
55

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-0
.0
00
02
57
6

0.
00
03
21
02

0.
00
00
00
00

-9
0.
00
02
97
55

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-0
.0
17
36
91
4

0.
05
11
03
47

-0
.0
31
73
82
8

-9
0.
00
02
36
51

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-0
.0
00
53
45
5

0.
16
05
23
10

-0
.1
43
67
67
4

-9
0.
00
04
27
25

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
27
64
20

0.
13
91
85
59

-0
.1
38
33
62
3

-9
0.
00
03
81
47

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
25
38
33

0.
09
95
90
98

-0
.1
06
68
94
5

-9
0.
00
02
13
62

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
17
93
22

0.
06
68
94
87

-0
.0
75
22
58
1

-9
0.
00
01
06
81

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
12
26
10

0.
04
39
31
77

-0
.0
51
05
59
1

-9
0.
00
00
61
04

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
07
71
09

0.
02
86
25
32

-0
.0
33
75
24
3

-9
0.
00
00
07
63

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
04
81
82

0.
01
86
94
23

-0
.0
21
75
90
4

-9
0.
00
00
61
04

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
03
22
61

0.
01
23
21
66

-0
.0
14
06
86
1

-9
0.
00
00
53
41

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
02
05
38

0.
00
82
37
21

-0
.0
09
03
32
0

-9
0.
00
00
53
41

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
97
38

0.
00
67
96
04

-0
.0
07
17
16
3

-9
0.
00
00
53
41

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
95
55

0.
00
51
02
15

-0
.0
05
18
79
9

-9
0.
00
00
53
41

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
68
78

0.
00
37
42
94

-0
.0
03
60
10
7

-9
0.
00
00
53
41

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
46
97

0.
00
27
86
72

-0
.0
02
44
14
1

-9
0.
00
00
53
41

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
20
88

0.
00
23
83
74

-0
.0
01
98
36
4

-9
0.
00
00
53
41

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
22
15

0.
00
19
80
75

-0
.0
01
46
48
4

-9
0.
00
00
53
41

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
17
74

0.
00
16
66
57

-0
.0
01
00
70
8

-9
0.
00
00
53
41

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
13
69

0.
00
14
34
34

-0
.0
00
67
13
9

-9
0.
00
00
53
41

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
03
77

0.
00
13
31
89

-0
.0
00
51
88
0

-9
0.
00
00
53
41

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

XI

C. Recorded measurements from CARLA - an Example

in
te
rs
ec
ti
on

_
off

ro
ad

st
ee
r

th
ro
tt
le

br
ak
e

ha
nd

br
ak
e

re
ve
rs
e

0.
00
00
00
00

-0
.0
00
23
11
7

1.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-0
.0
00
23
11
7

1.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-0
.0
00
23
11
7

1.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-0
.0
00
23
11
7

1.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-0
.0
00
23
11
7

1.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-0
.0
00
23
11
7

1.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-0
.0
00
23
20
4

1.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-0
.0
00
22
93
2

1.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-0
.0
00
22
99
7

1.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-0
.0
00
23
22
6

1.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-0
.0
00
23
39
0

1.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-0
.0
00
23
45
5

1.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-0
.0
00
23
52
0

1.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-0
.0
00
23
45
5

1.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-0
.0
00
23
46
6

1.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-0
.0
00
23
46
6

1.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-0
.0
00
23
46
6

1.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-0
.0
00
23
46
6

1.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-0
.0
00
23
46
6

1.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-0
.0
00
23
46
6

1.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-0
.0
00
23
46
6

1.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-0
.0
00
23
46
6

1.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-0
.0
00
23
46
6

1.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-0
.0
00
23
46
6

1.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

-0
.0
00
23
46
6

1.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

0.
00
00
00
00

XII

	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Background
	Mediated Perception vs Behaviour Reflex
	SLAM vs see-and-drive

	Objective
	Data
	Lidar
	GNSS-IMU
	Intentions

	Scope
	Contribution
	Thesis Outline

	Theory
	Machine Learning and Neural Networks
	Feed-Forward Neural Networks
	Training a Network

	Activation Function
	Loss Function
	Optimization Methods for Gradient Descent
	Minibatch SGD Optimization
	Adam Optimization

	Networks
	Convolutional Neural Networks
	Recurrent Neural Networks
	Long Short-Term Memory
	Gated Recurrent Unit

	Regularization
	Dropout and Spatial Dropout
	Weight Decay

	Control module
	Model Predictive Control

	Clustering Algorithm
	K-means

	Principal Component Analysis
	Semantic Segmentation
	Object Classification, Localization and Detection

	System Overview
	Online system (test driving)
	Training a network
	Our Main Ideas
	Pure Regression Idea
	PCA Regression Idea
	Cluster Idea
	Semantic Segmentation Idea

	Method
	Tools and Equipment
	CARLA

	Gathering data for training
	Gathering Intentions

	Data Preprocessing
	Balancing the data set
	Lidar
	Rest of the Values

	Network Architectures
	Pure Regression Networks
	CNN Fully Connected (FCNet1, FCNet2)
	CNN Only (CNNOnly)
	CNN with Bias (CNNBiasFirst, CNNBiasLast, CNNBiasAll)
	CNN with LSTM (CNNLSTM)
	LSTM (LSTMNet)
	LSTM Bidirectional (LSTMNetBi)
	GRU (GRUNet)

	PCA Regression Networks
	Clustering Networks
	Semantic Segmentation Networks

	Training
	Control Technique
	Network evaluation

	Results
	Network Loss
	Experimentation Phase
	Pure Regression Idea
	PCA Idea
	Cluster Idea
	Semantic Segmentation Idea

	Visual Inspection
	Benchmarking

	Discussion
	Predictions
	Data
	Architectures and Ideas
	Benchmarking Problems
	Future Work

	Conclusion
	References
	Lidar implementation in CARLA
	CARLA's depth maps
	Sampling the relevant points

	converting to a 3D point cloud
	Interpolation

	Pure Pursuit
	Recorded measurements from CARLA - an Example

