
	
	
	

	
	
	

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

	

					asdsds	
	

An Exploration of Procedural Content
Generation for Top-Down Level Design
Bachelor’s thesis in Computer Science and Engineering	
	
Johan Blomberg
Rasmus Jemth
August Lennar
Robin Lilius-Lundmark
Marcus Pettersson Johnsson
Tove Svensson

An Exploration of Procedural Content Generation for Top-Down Level Design

Johan Blomberg
Rasmus Jemth
August Lennar
Robin Lilius-Lundmark
Marcus Pettersson Johnsson
Tove Svensson

c© JOHAN BLOMBERG, 2018
c© RASMUS JEMTH, 2018
c© AUGUST LENNAR, 2018
c© ROBIN LILIUS-LUNDMARK, 2018
c© MARCUS PETTERSSON JOHNSSON, 2018
c© TOVE SVENSSON, 2018

Supervisor: Staffan Björk
Examiner: Olof Torgersson

Bachelor’s thesis DATX02-18-17
Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
SE-412 58 Göteborg
Sweden
Telephone +46 (0)31-772 10 00

Cover:
Four levels generated by four different PCG algorithms, in the game Fluky.
From top left to bottom right: cellular automata, cyclic, TK and agent-based.

Written in LATEX
Gothenburg, Sweden, 2018

i

Abstract
Procedural Content Generation (PCG) is widely used in the game development
industry to randomly generate various types of content. However, ensuring
quality PCG is very hard, because of its inherent subjectivity; defining exactly
what makes for enjoyable gameplay is difficult and depends on a wide range of
different factors. We have therefore explored the concept of PCG, specifically
procedural level generation, to gather observations and insights, and we present
these in the report. The exploration has been performed by creating a simple
game called Fluky and developing six different level generation algorithms for it.
Among these observations are the importance of identifying levels of abstraction
for an algorithm, and several aspects that may influence how enjoyable the
generated content can be. Our resulting conclusions are very subjective, but
not without merit, due to the extensive exploration and evaluation that has
taken place.

Page ii

Acknowledgements
We would like to thank Staffan Björk for his extensive help and support through-
out the project.

iii

Contents

1 Introduction 1
1.1 Purpose . 2
1.2 Method . 2
1.3 Scope . 3
1.4 Ethical and societal aspects . 3

2 Background 4
2.1 Games . 4
2.2 Earlier work and research . 6

3 Theory 8
3.1 PCG algorithms . 8

3.1.1 Agent-based dungeon generation 8
3.1.2 Cellular automata . 8
3.1.3 Cyclic PCG . 9
3.1.4 Grammar . 10
3.1.5 Search-based PCG . 10
3.1.6 Space partitioning . 11

3.2 Variations of PCG . 11
3.3 Methodology . 12

3.3.1 Software development processes 12
3.3.2 Tools . 13
3.3.3 System architecture . 14

4 Process 15
4.1 Design document . 15
4.2 Implementation milestones . 15
4.3 Time plan . 16
4.4 Development tools . 17
4.5 System architecture . 17
4.6 Working in an agile manner . 19
4.7 PCG algorithms . 20

4.7.1 Agent-based approach . 22
4.7.2 Cellular automata approach 24
4.7.3 Cyclic approach . 26
4.7.4 Grammar-based approach 28
4.7.5 Space partitioning approach 31
4.7.6 TK algorithm . 33

4.8 Evaluating the exploration of PCG 35

iv

CONTENTS

5 Result 37
5.1 The game: Fluky . 37

5.1.1 The player . 37
5.1.2 Enemies and items . 38
5.1.3 Menus and user interface 39

5.2 PCG algorithms . 40
5.2.1 Agent-based approach . 40
5.2.2 Cellular automata approach 45
5.2.3 Cyclic approach . 46
5.2.4 Grammar-based approach 49
5.2.5 Space partitioning approach 51
5.2.6 TK algorithm . 58

5.3 Observations and comparisons . 60
5.3.1 Working with the algorithms 60
5.3.2 Quality of the generated content 63
5.3.3 Summary of each algorithm 70

6 Discussion 74
6.1 Result . 74
6.2 Method . 74
6.3 Validity and generalization . 75
6.4 Ethical and societal aspects . 76
6.5 Future work . 76

7 Conclusion 78

References 81

A Design Document I

Page v

1. INTRODUCTION

1 Introduction
The approach of procedurally generating levels for games is fairly common, and
has been used in a lot of popular games during recent years. Procedural Content
Generation (PCG) means that the content, e.g. game levels, is not handmade by
a designer, but instead generated dynamically by a computer. This is achieved
through the use of various algorithms[1, p.1]. The use of PCG is not limited
to game levels – it can also be used to generate other kinds of content, such as
music and stories[1, p.1].

The idea behind PCG is to employ one or several algorithms to generate con-
tent. There are many different kinds of PCG algorithms, which fit different
kinds of games. These algorithms take some kind of input, which could be a
random number, or a set of parameters (e.g. difficulty) to generate a level. The
generation itself is done through a set of rules and functions which defines how
a level will be created, and what a desired level looks like.

PCG is used in games for several reasons. It can for example be used to increase
the replayability of a game, and it can be a way of not having to spend long
precious hours on level design when working with a tight budget[1, p.14]. PCG
can also be used for purely creative purposes, as it opens up new options for
game mechanics or level design.

One of the main challenges with PCG is not how much content one can gener-
ate, but the quality of it. A clear example of this is the recent game No Man’s
Sky (2016)[2], which advertised a procedurally generated universe so large that
one person would not in their lifetime have enough time to visit even a fraction
of all the available planets. Nevertheless, when the game was released, it was
met with fierce criticism on account of all the virtually infinite planets looking
almost exactly the same[3]. In other words, the amount of content created was
huge, but the quality – in this case sufficient variation – was deemed to be very
poor.

Other examples of what could be considered to be within the concept of quality
in PCG also include: whether a generated level can be completed as intended, if
it is challenging enough while not being impossibly difficult, and if it is simply
fun enough to play. Additionally, it would seem that the quality of procedurally
generated content is so dependent on the game it is generated for, that it is
impossible to evaluate separately.

While PCG has been used in the video game industry for about 40 years[4, 5],
and has become increasingly popular among game developers, this problem –
the insurance of good quality – is far from being resolved. And due to the very
subjective nature of the concept of quality content, perhaps it never will be.

Page 1

1. INTRODUCTION

1.1 Purpose
In this project, we explore the process of creating PCG systems for generating
game levels by implementing several known algorithms. This includes investi-
gating aspects of level generation that affect the quality of the final levels by
comparing the levels generated by the different algorithms. Our intention with
this project is to present the knowledge acquired during this exploration in a
way that can help others who are about to develop a game using PCG for level
generation to decide on what algorithm to use.

1.2 Method
To be able to explore PCG, we decided to create a basic game that would use
PCG to generate its levels. When deciding the elements and features of the
game, we tried to keep it as simple as possible to enable us to direct our focus
on the PCG. This was done because the purpose was to explore the process of
creating PCG systems. Nonetheless, the features of the game were still impor-
tant because without a variety of objects and features to choose from, a PCG
algorithm would not be able to create something interesting.

We decided on creating a game called Fluky, a two-dimensional dungeon crawler
seen from above, where the player descends through procedurally generated lev-
els of varying sizes. These levels contain different kinds of labyrinths, enemies,
items and puzzles.

To be able to explore PCG as thoroughly as possible, we decided to develop
multiple different PCG algorithms, all of which would have the same objectives
- to be able to generate a level for Fluky, and to utilize all the different game
objects and features. This would allow us to analyze and compare different
kinds of algorithms.

We decided to use an Agile software development approach in this project (Sec-
tion 3.3). This came naturally due to the fact that the project demanded work-
ing with the PCG and the game back and forth. A design document was cre-
ated where we specified as much of the game’s features as we could, which later
could be divided into small tasks. In addition, we planned to distribute the
development of the PCG algorithms so that each person in the group would be
responsible for one of the algorithms.

To summarize our results in order to make our gathered knowledge available, we
decided to discuss our experiences from the development of the PCG algorithms.
We agreed on a set of relevant attributes that would be interesting to investigate
in each PCG algorithm, and evaluated how well the different approaches worked.

Page 2

1. INTRODUCTION

1.3 Scope
Since our time was limited, we did not want to spend too much time on the game
itself but rather focus on the development of the PCG. We therefore decided
to make the game in 2D since that is simpler compared to working with 3D.
Similarly, our primary focus with the game was the core mechanics. As such,
we did not spend much time on the esthetics (i.e. the graphics and sounds). We
did not use any kind of sound in the game, and we did not create any graphics
of our own. We also realized that we would not be able to spend time on the
final testing, tweaking and bug fixing stage which is usually both necessary and
time-consuming when developing any kind of game intended to stand on its own
as an enjoyable product.

Another decision we made was to delve deep into one area of PCG, instead of
spending a little time on several areas. Therefore we focused on procedurally
generated level design, as we feel that is the most interesting part. In level
design it is easy to see the results, compared to things like story or music. As a
constraint for our level-design, the game was limited to only have finite levels,
which are not generated in real time.

1.4 Ethical and societal aspects
In essence, we were aware of two questions relevant to our project: is the player
of the game affected negatively, and does gaming have any impact on anyone
other than the player – and if so, does the quality of the game affect that?

Regarding the first question: if the procedurally generated elements in a game
make the game more immersive or fun, this could give rise to the issue of people
getting addicted to playing games to a higher degree. This will however depend
on a myriad of other different factors, leaving the PCG as only a small part of
a bigger potential issue.

To answer the second question, one could state that there might be an issue
of causing unemployment for game developers – level designers especially – as
the process is automated, although this will in turn open up jobs for developers
implementing the PCG. Nevertheless, the question of potentially higher unem-
ployment for designers is connected to the greater issue of increasing automation
throughout society.

On a positive note, further development of PCG tools is likely to empower
game developers – especially indie game developers, who often do not have the
resources to manually design all aspects of a game. It stands to reason that this
could lower the barrier to entry into the game development industry.

Page 3

2. BACKGROUND

2 Background
PCG can be used in various fields, for example in games, films or music. This
section will focus on the background of PCG in games and previous research on
that topic.

2.1 Games
PCG has been used since the early days of the gaming industry. Examples
of such early games include Rogue (1980)[4] and Elite (1984)[6]. In the case
of Elite, PCG was in fact necessary in order to circumvent the strict memory
limitations of early systems[1, p.4]. In Elite, the player can explore seemingly
endless galaxies including over 2000 stars, while only taking up just over 20
kilobytes of disk space[7, 8].

Rogue and the genre roguelike

Rogue is commonly known as the first game to use a procedural generation
system (though this might not technically be true[5]). In Rogue, the player is
an adventurer exploring a dungeon, searching for a rare artifact. Each level of
the dungeon is procedurally generated as the player advances through the game.
This gives the player a different set of levels on each playthrough. See Figure 1
for an example of a procedurally generated level in Rogue.

Figure 1: A procedurally generated dungeon in Rogue.

Rogue inspired the game genre roguelike, which is defined by a list of features
present in the original game, including the use of PCG to generate levels[9].

Page 4

2. BACKGROUND

Unexplored

Unexplored [10] (2017) is a roguelike game where the concept of dungeon explo-
ration is kept, but the levels are generated in a circular fashion (Figure 2). This
means that instead of the player only having one path to the goal, the level is
generated as a cycle, so the player can take at least two different distinct paths
to the goal. These paths are usually differentiated in some way. For instance,
one path might be longer while the other is more dangerous or difficult[11].

Figure 2: A procedurally generated level in Unexplored [11].

Dwarf Fortress

Dwarf Fortress (2006)[12] uses PCG very extensively to generate complex worlds.
The player can have some control over certain aspects of the process, for ex-
ample how large the world will be. Then a world is generated from multiple
randomly generated parameters, for example, what temperature an area has or
the average precipitation, and these parameters determine if an area will be a
forest, desert, swamp and so forth. The world is then populated and its history
simulated. This process creates unique and complex maps with mountains that
have rivers flowing from them into oceans, the forming of lakes, civilizations
that rise, build cities, wage wars and so forth until they perish and leave only
the ruins behind. The entire generation is done before the player enters the
world and the game starts.

Minecraft

Minecraft (2011)[13] is perhaps the most successful of modern games that make
extensive use of PCG (Figure 3). Minecraft uses Perlin Noise[14][1, p.61] to
generate a 3D environment with hills, plains, rivers and mountains, that corre-
spond to different environment biomes, such as: desert, tundra, jungle or forest.
The player can then explore this generated virtual world that is larger than the

Page 5

2. BACKGROUND

surface of the Earth[15]. A world of this size would be nearly impossible to
create without PCG.

Figure 3: Minecraft, a seemingly endless procedurally generated 3D world.

2.2 Earlier work and research
Most of the work on this subject have been on developing actual games, which is
brought up in the previous section. However, there have been numerous studies
and papers on this subject which have a similar approach to PCG as this report.

In some of the papers, the authors developed a game alongside the paper. An
example of this is the paper “PCG-Based Game Design: Enabling New Play
Experiences through Procedural Content Generation” [16]. In this paper, the
authors investigate how different PCG approaches impact games and the player’s
experience, and develop the game Rathenn which highlights PCG.

A paper that focuses more on just the PCG is the paper “Compositional proce-
dural content generation” [17], which describes the general strengths and weak-
nesses of various PCG methods, and how you can combine different methods to
avoid the weaknesses while maintaining the strengths of the methods.

The paper “Understanding Procedural Content Generation: A Design-Centric
Analysis of the Role of PCG in Games” [18] analyzes the role and purpose of
PCG in games. The authors present a framework for understanding PCG in
games, e.g. through giving the reader a proper vocabulary of PCG terms and a

Page 6

2. BACKGROUND

broad perspective on PCG. The purpose of this is for the reader to be able to dis-
cuss and analyze the role of the PCG in a game, with the help of the framework.

Furthermore, there has been a book written about the fundamentals of PCG in
games:“Procedural Content Generation in Games”[1], which is the first textbook
written about the use of PCG in games, according to the authors. The book
serves as an overview of this subject. It describes multiple different methods
and algorithms used in developing PCG for games. We used this book as the
basis for our research of PCG, since it gave a good overview of the subject.

Page 7

3. THEORY

3 Theory
This section contains the relevant theory needed to understand the following
chapters. Since this project is primarily about the exploration of PCG, all
the relevant PCG algorithms and approaches are explained. This exploration is
achieved by developing a small piece of software, which is why common practices
and tools in software development also are explained briefly.

3.1 PCG algorithms
Procedural content generation (PCG) is the process of a computer generating
content from different mathematical functions with random inputs[1, p.1]. Such
content can be game levels, music or even narratives. In procedural level design
in games specifically, there are several different algorithms that can be used to
generate different styles of levels.

3.1.1 Agent-based dungeon generation
Agent-based dungeon generation uses one or more agents to perform tasks that
will result in some kind of level. A classical approach is to let an agent move in
random directions, always creating a path behind it, with a probability in each
step to either change direction or place a room, see Figure 4. This approach can
generate chaotic dungeons with very random paths and possibly overlapping
rooms. If one takes care of these problems, though, the levels will tend to feel
organic, or even planned[1, p.38]. However, the purpose and behavior of an
agent can be very different from the above.

Figure 4: An agent (red square) is placed in a level filled with walls, seen on the
left image. The agent is digging through the level (middle image) and places
rooms (right image).

3.1.2 Cellular automata
Cellular automata-based content generation uses a grid which represents the
level[1, p.42]. At the start of the generation process, the grid can be either

Page 8

3. THEORY

randomly filled with different kinds of tiles, such as floors and walls, or have a
more ordered layout. A set of transition rules are established, describing what
happens to specific kinds of tiles in the grid at the next time step based on their
neighborhood, an area surrounding the tile that can be defined in a manner of
different ways. Time is then advanced to the next step, which changes the grid
according to the transition rules. This is repeated a few more times until the
grid has started to coalesce into something resembling a level. For an example
of how it could look, see Figure 5. It is worth noting that the result will lack
the coherency of the other approaches, making it harder to place quest items or
control the pace through the level.

Figure 5: Map generation with cellular automata[19].

3.1.3 Cyclic PCG
Cyclic PCG is supposed to limit the need for players to backtrack through
a level. Backtracking means that the player, usually after reaching a dead
end when exploring an area, retraces their steps to be able to move in other
directions. Instead of representing the main path through a level with a tree in
a graph, the cyclic approach uses cycles which never generate dead ends (Figure
6. If correctly implemented, this makes it feel like there is some human planning
behind it all and the level becomes more connected[11]. One example of a game
that uses cyclic PCG is Unexplored.

Page 9

3. THEORY

Figure 6: A cyclic level[11].

3.1.4 Grammar
Grammar-based content generation uses the concept of formal grammars, a sys-
tem of rules that determine how structures composed of discrete units (tradi-
tionally strings of characters) can be formed and expanded[1, p. 74]. Variations
include graph grammars that form graphs instead of strings[1, Chapter 5.5.1]
and grammars that operate on two-dimensional arrays[20]. The abstract na-
ture of grammars enables a lot of different approaches for level generation. For
instance, they can be used to model high-level concepts such as a sequence of
tasks the player has to perform[21], but also to directly form the structure of a
level[20].

3.1.5 Search-based PCG
Search-based PCG uses an evolutionary algorithm, which is similar to Darwin’s
theory of evolution, where the computer evaluates the quality of content poten-
tially generated by some other algorithm and removes the worst parts of it. The
removed content is then replaced by randomly modified copies of the surviving
content. This process repeats until the quality of the content is sufficiently high
or the maximum number of iterations has been reached (Figure 7). To evaluate
the quality, one can use AI that plays through the content and scores it, or some
kind of fitness function[1, p.18][22].

Page 10

3. THEORY

Figure 7: General schema of an evolutionary algorithm[23], image licensed under
Creative Commons (CC BY 3.0).

3.1.6 Space partitioning
Space partitioning generates a basic layout of rooms by recursively dividing a
given area into smaller disjoint areas along a random axis until they are small
enough to be rooms, and then connecting these using doors or corridors. The
most common method of space partitioning, called Binary Space Partitioning,
recursively divides an area into two new areas[1, p.33]. This method generates
a highly structured level with connected rooms. For an example of this type of
dungeon generation, see Figure 8.

Figure 8: Dungeon generation with space partitioning[24].

3.2 Variations of PCG
As mentioned above, there are multiple techniques and algorithms for gener-
ating content. But there are also several approaches to how these are applied,
for example: online or offline, deterministic or stochastic, generic or adaptive,
and mixed initiative or automatic. All of our algorithm implementations are

Page 11

3. THEORY

deterministic, offline, and automatic.

Online generation is when the world is generated continuously so that the player
never reaches an end. On the other hand, offline generation generates a world of
a specific size and will not make it larger if the player gets close to its border[1,
p.7].

The difference between deterministic and stochastic generation is that deter-
ministic generation generates exactly the same level if you use the same seed [1,
p.9], while stochastic generation does not guarantee any consistency.

Adaptive and generic generation refers to whether or not the player’s actions are
taken into account in the generation. Adaptive generation will create different
content depending on the choices the player makes while generic generation is
done independently of the player’s actions[1, p.7].

The concept of mixed initiative means that a user repeatedly is asked for input
or has a say in how the PCG algorithm may perform. This is often done during
level generation, where for example the algorithm and a developer take turns in
generating new generations of a level, until it satisfies the developer. Automatic
generation, on the other hand, is when an algorithm has full control and runs
from start to end without interruption[1, Chapter 11].

3.3 Methodology
This project is centered around the development of software. Therefore the
tools and working methods used have been carefully selected. This chapter
gives a brief overview of some different software development processes as well
as available tools.

3.3.1 Software development processes
There are multiple software development processes to choose from when de-
ciding how to work during a project. Some of the most common are Agile
and Waterfall. The Agile process is iterative and incremental, which makes it
very flexible[25]. It is also an umbrella term for methods that share the same
characteristics. Examples of these methods are Scrum, Kanban and Extreme
Programming(XP).

The Scrum method is based on collecting tasks: user stories, features and bugs,
into a product backlog[25]. The backlog is represented by a task board or Scrum
board, which can be either physical (a whiteboard or bulletin board with e.g.
post-it notes) or virtual (for example Trello[26]). The board contains multiple
sets of tasks, each set representing what state the task is in, with labels such
as “To do”, “In Progress” or “Done”[27]. The task board is used to structure

Page 12

3. THEORY

the work into smaller chunks, which are developed during a limited time frame
called sprints, usually between a couple of days to a month.

The Kanban method is similar to Scrum. It is based on three main principles:
visualize the work, limit the work in progress and enhance flow. The XP method
on the other hand, involves having continuous testing and planning, rapid feed-
back loops, close teamwork and dividing the work into short intervals[25].

The Waterfall process means that all phases of the development are planned
linearly, so that the entire development team is working on the same phase. A
team that uses theWaterfall process usually structures the project into these six
phases: Requirements, Analysis, Design, Coding, Testing and Operations. The
advantage of using the Waterfall process is that it makes the project structured
and it enables relatively easy addition of new development teams[28].

3.3.2 Tools
When developing any kind of software, it is necessary to choose what program-
ming language to use. The choice of language depends on what kind of software
you want to develop, and what kind of tools and frameworks you will need.
Common languages for game development include C++, Java and C# [29].

There are many different tools, game engines and frameworks for game develop-
ment to choose between. There is also the alternative to make it from scratch,
without any framework or game engine, although this can be very time con-
suming. When choosing tools, it is important to use something that is suitable
for the game being developed. Things to take into consideration when choosing
a framework or engine are for example the programming language, which plat-
forms are supported and if the game is in 2D or 3D.

A few examples of frameworks used in Java game development are LibGDX [30]
and LWJGL[31]. LibGDX supports both 2D and 3D games, and enables games
to support both phones and computers[32]. LWJGL, on the other hand, is a
library on a lower level, which gives the user more freedom, but also means that
a lot of functionality needs to be implemented by the developers themselves[31].

A version control system is often used for a software development team to be
able to manage the source code and track changes. One of the most popular
version control systems is Git [33], which is free and open-source[34]. Git is most
commonly used through GitHub[35], although BitBucket [36] also is very popu-
lar.

To document meetings and decisions as well as writing reports, there are various
different methods available. Examples of these are using pen and paper, normal
office software suites such as Microsoft Office, or document preparation systems
such as LaTeX, which allows authors to separate the content of a document

Page 13

3. THEORY

from its layout[37].

In regards to the creation of documents, another aspect which is important
for group work is the matter of collaboration, namely to be able to work with
the same document from different places, simultaneously. This could for exam-
ple by solved by using Google Docs[38] or hosting group documents on Google
Drive[39]. For collaborating in LaTeX, there is the web-based service ShareLa-
TeX [40].

To plan and structure the work a Gantt-chart[41] can be used. A Gantt chart
visually shows all tasks in a project, and when they start and end. The chart
is a grid with tasks on the Y-axis and time on the X-axis.

3.3.3 System architecture
When building any software of significant size, the architecture and structure
are important [42]. Thus, there are a large number of different design patterns
and models to use. The following is a small pick of patterns relevant to our
project.

Model-View-Controller (MVC) is a common architectural pattern[43, chap-
ter 8.4]. The code is divided into three parts; the Model describes the objects
and how they interact, the View contains everything related to presenting the
Model to the user, and the Controller lets the user make changes to the state
of the Model. This separation of functionality lets developers work in parallel
on these three parts of the project without causing compatibility conflicts.

TheModel-View-Presenter pattern, or Presenter-View for short, is derived from
the MVC pattern[44]. This version of MVC focuses more on the structure of
GUI design than its predecessor does, and is mostly used for just that.

The Client-Server model is based on dividing a system structure into two parts:
the servers that provide specific services, and the clients which request those
services[45, chapter 7]. The internet is perhaps the largest example of this model
being used, but one can implement this in simple software without network
connections as well.

Page 14

4. PROCESS

4 Process
This section summarizes how we have worked throughout the project, by ex-
plaining important choices that have been made and describing how we have
taken on different challenges. This includes the planning of the project, the im-
plementation of the game and the exploration and evaluation of different PCG
algorithms.

4.1 Design document
To be able to properly plan all parts of our implementation, and to have an agile
approach, we divided the game into small tasks in a Design Document. These
were in turn prioritized into three categories:

Priority 1: Needed for completion of the game. Without all of these features,
the game would be so simple that it would be difficult to sufficiently explore
PCG.

Priority 2: Desirable for added complexity. While none of these features were
essential for the game, the higher level of complexity they would provide
might help us with more thoroughly exploring our PCG.

Priority 3: Not necessary but interesting. We either felt like they would not
add much in terms of depth, or that they might be too time-consuming
to implement properly.

The benefits of such a document were manifold: it ensured that we all had a
common vision to work towards, it helped us agree on the game’s limitations,
and listing all of the features made it easy to set up a rough order of priorities (as
seen above). Using those priorities, we could agree on a minimum viable game
containing only the features we had deemed crucial so we could concentrate on
these.

4.2 Implementation milestones
We divided our work on the game into several milestones that could be eas-
ily evaluated, so that we would have clear goals to work towards during the
implementation. They were as follows:

1. Software structure and architecture, as well as assigning roles and respon-
sibilities.

2. Minimal playable version: to be able to start the game and interact with
some makeshift level.

3. Minimal basic PCG: some kind of clearly random element in the level
design.

Page 15

4. PROCESS

4. Finish with all priority 1 items described in the design document.

5. Finish with all priority 2 items described in the design document.

6. Make sure that the game is presentable, including debugging and testing.

When nearing upon the completion of milestone 4, we were forced to re-evaluate
our plan: In the beginning of the project, we had hoped that we would be able
to work with PCG in parallel to the game development. This did not work as
expected, however, and the exploration of PCG was being given less time and
effort than we estimated it would need for us to reach the project goals.

The solution to this was to revise our milestones. Instead of continuing to work
on new functionality in the game, we instead decided to focus wholeheartedly on
the development of different PCG algorithms, to be able to compare and evalu-
ate their differences and similarities afterwards. As we were just about to start
working on the fifth milestone, we decided to change this to reflect our new focus:

New milestone 5: Finish with PCG algorithm implementation

4.3 Time plan
There were two important implementation deadlines to keep track of. The first
was the halftime presentation in week 9. We kept this in mind when planning
the first milestones because we wanted to have something interesting to display
when we got there. The second and final implementation deadline was set three
weeks before our final report was due, to allow us to focus on the report.

An overview of our plans for implementing the game, the exploration of PCG,
the final report and several other important parts of the project, can be seen
in the Gantt chart in Figure 9. Note that the rows “Game development” and
“Milestones” include both implementation of all the needed game mechanics and
work on the different PCG algorithms.

Figure 9: Gantt chart of our time plan.

Page 16

4. PROCESS

4.4 Development tools
The following is a summary of all the tools we have used during the course of
this project, for reference.

Java We decided to use the programming language Java, since all team mem-
bers had some degree of experience with it. Thus, we would not need to
spend any extra time learning a new language.

LibGDX In addition, we decided to use the Java game development library
LibGDX, in order to save time compared to making a game from scratch or
using a more low-level game library such as LWJGL. A few group members
had prior experience with LibGDX and could vouch for its usefulness.

Git and GitHub For version control of our code, we used Git. The repository
was hosted on GitHub. Much like with Java, this decision came naturally
as all group members had experience with both Git and GitHub, and little
or no knowledge of any alternatives.

Google Drive To collaborate online, many of our working documents (includ-
ing, but not limited to: meeting protocols, project logbook, and design
documents) were hosted on Google Drive.

LaTeX The reports were written in LaTeX, using ShareLaTeX. As with Google
Drive, this allowed us to access them from anywhere, and simplified coop-
eration. The reason we chose LaTeX over Google Drive for the reports, is
the superior tools for layout and text formatting that LaTeX provides.

Trello We kept an agile taskboard in Trello, to keep track all the subtasks that
needed to be completed in order to reach our milestones.

Slack For easy day-to-day communication, we used the messaging agent Slack.
It worked well to have the ability to keep several conversations going on
in different topics at the same time, as well as being able to upload files,
inside a single project structure.

4.5 System architecture
The architecture of any computer program of significant size is of great impor-
tance. Software architecture include matters such as the structure and function-
ality of its classes, which design patterns to use as well as which ones to avoid,
and high-level program behavior. It is not possible to fully plan out every as-
pect of the system structure before writing any code, but that is all the more
reason as for why one should try to build an architecture that handles scaling
and extensibility in a relatively painless manner. The importance of architec-
ture in software engineering is the reason it was given a separate milestone in
our planning.

Page 17

4. PROCESS

One of the first things we discussed was if we should use any specific architec-
tural pattern for the entire application. Many in our group had worked with
Model-View-Controller before (Section 3.3.3), so this was the first pattern to be
suggested. We also considered a couple of other ones, including Presenter-View
and Client-Server, but we quickly agreed on using MVC. The main reasons for
this were that it provides a strong structure to the program and was a familiar
pattern to the majority of our group.

After a general architecture is decided upon, the details of this structure must
be worked out. This meant that we had to list all the important components
of the game, to determine where in the structure of MVC each component be-
longed. This is an iterative process, where adding additional components can
mean that one is forced to rethink previous decisions. We therefore had to re-
work the structure of the game several times to make everything fit together in
a sensible way.

In the end, we decided to move away from the architectural pattern MVC in
a few specific areas of the architecture. We did this because we deemed it un-
necessary to force certain design choices onto the system, when a much simpler
solution existed outside of the decided pattern. A typical example of this is
MVC’s separation of Model, View and Controller: rules which we decided to
break when modeling all game objects that were supposed to move around on
screen. At the same time, we have tried to keep to these guidelines in most
other aspects of the program.

When the architecture had been laid out as well defined as it was possible to
do before actually writing any code, we created a skeleton project and uploaded
it to our git repository. This means that empty Java classes were created to fit
the architecture model we agreed on, to make it easy for each team member to
start writing code, avoiding conflicts with the work of other team members.

The resulting architecture can be viewed in the class diagram in Figure 10.

Page 18

4. PROCESS

Figure 10: A class diagram showing the architecture of the game.

4.6 Working in an agile manner
Earlier in the project we talked about what kind of features that should be in-
cluded in our game, and prioritized which of these to create first, in our design
document (as described in Section 4.1). When starting the implementation of
the game in earnest, we took every feature with the highest priority and divided
these into manageable tasks, which we then put in the todo-list of our Trello
taskboard (Section 3.3.1). The life cycle of a task in our taskboard looked more
or less like the following:

First, a team member chose a task and tagged it with their name. The task was
then moved to another list labeled “In progress”, as the team member worked on
it. The amount of work and time it took for a task to be finished was up to the
team member, and depended on the size of the task or the grade of difficulty
for the team member to overcome. We had regular meetings several times per
week, and during these each team member got to explain how their work was

Page 19

4. PROCESS

proceeding and if any help was needed. In this way, we made sure that we kept
making progress on the active tasks.

When a team member felt that a task was finished, the task was moved to
another list labeled “Review/Verification”. During our previously mentioned
meetings, we also looked through this list. If everybody could agree that it
was finished, we moved the task to a weekly “Done” list. If anybody had some-
thing to remark upon, the task stayed in “Review” until any issues were resolved.

Most of the work on different tasks went on in parallel, but sometimes (especially
in the beginning) several team members had to cooperate on, or at least discuss
their respective tasks, to be able to solve conflicts or mutual problems. Several
times we realized that some tasks overlapped, and therefore had to reevaluate
exactly who should do what.

From time to time, we had to talk about which tasks to prioritize (among
the ones with highest priority from our design document), so that important
mechanics would be finished in time for other tasks to be able to be implemented.

4.7 PCG algorithms
In parallel with creating the game, we implemented a basic PCG algorithm to
generate the content for it. The idea was to create a structure for having mul-
tiple PCG algorithms, build an abstract model of the map with some useful
functionality and develop a method of translating it to a game level.

The basic algorithm created a number of randomly sized and positioned rooms.
Then all the rooms were connected by corridors, regardless of whether they were
already connected. We did not focus on trying to make the solution elegant, but
rather on quickly creating a connected map. The start and goal were simply put
on the far left and right borders of the map, respectively. As the game acquired
new features we added simple methods to generate them in the basic PCG. The
levels created by this algorithm are solvable, meaning that it is always possible
to reach the goal, but they are not very interesting as they often feature plenty
of overlapping rooms and unnecessarily long corridors (Figure 11). Although we
ended up not using this algorithm in the finished game, the work on it resulted
in a base structure for the PCG algorithms we would develop once the game
features were all implemented, as well as a fully functioning translator for them.

Page 20

4. PROCESS

Figure 11: A level created by our first rudimentary PCG algorithm.

As we are six members in the project group, we decided that each person would
take on a specific PCG algorithm approach. We tried to diversify as much as
we could when choosing what algorithms to explore, as it was impossible to
cover all available approaches in just six versions. We specifically chose not
to include the search-based algorithm, mainly because it is very complex and
therefore would demand more effort to implement than any of the other chosen
algorithms. In the end, we decided upon these PCG algorithm approaches:

• Agent based

• Cellular automata

• Cyclic

• Grammar based

• Space partitioning

• An adaption of the algorithm used in the game TinyKeep[46]

We chose the agent-based, cellular automata, grammar-based and space parti-
tioning algorithms because they are all well established methods for creating
this type of PCG, with a substantial amount of documentation available. The
cyclic approach was chosen because it actively tries to avoid some of the issues
we are investigating with PCG. We picked the TK-algorithm partly because it
is different from all the others, but also to have a less established method to
compare to the others.

The work done up until this point (namely, all the priority 1 elements from
our design document) was set as a baseline, to ensure that we all had the same
starting conditions. This meant that each of us, while working with different
algorithms, had exactly the same game elements and mechanics to work with
when generating content. The thought was that it would make it easier for us

Page 21

4. PROCESS

to see similarities and differences between the algorithms. This could benefit us
further on, when discussing the different algorithms’ characteristics, advantages
and disadvantages. In addition, it also helped us avoid collisions between our
respective algorithms.

After this, our work progressed almost completely individually and in parallel
to each other. We created our own branches in the git repository, to be able
to work on our algorithms without interfering with the other team members’
work. While working individually, we still met up at least once a week to make
sure everybody progressed. Now and then, someone would come up with new
functionality that could benefit other team members as well, but other than
that, our different areas of work rarely came in contact with each other.

The following sections describe interesting challenges or characteristics specific
to some of the algorithms. A detailed description of how the resulting algo-
rithms actually work can be found in Section 5.2.

We have focused on algorithms that are primarily used to generate the layout
of levels, so it may not be obvious why we chose to not place items and enemies
exactly the same way for each algorithm. This was done because the structure
of each algorithm varies and therefore the placement of these objects need to be
handled at different times during the generation.

4.7.1 Agent-based approach
The classical approach to agent-based PCG is to let one or several agents dig
their way through solid material in order to form the level (Section 3.1.1). How-
ever, the idea with this algorithm was rather the opposite: to let agents build
the walls in an otherwise open level, creating an intricate maze as a result.

The challenge of generating rooms

A great challenge was to generate a random number of rooms of random sizes,
inside a given level size, while also making sure that they did not overlap (Fig-
ure 12). When generating a small amount of rooms, there is no issue with just
checking for overlap with all other rooms, but when the room count rises, the
work needed grows exponentially and gets unmanageable very fast.

Fortunately, in line with the nature of this algorithm, only a small ratio of
the level area needs to be covered by rooms (because the rest will be covered
by a still traversable labyrinth). This sparsity means that an approach that
would be impossible to apply in other scenarios actually works pretty well here:
randomizing rooms until the target ratio is achieved without overlapping.

Page 22

4. PROCESS

Figure 12: A level generated with rooms (left) and without (right).

Designing interesting agents for wall creation

The initial idea was to let agents originate from each abstract, wall-less room,
but the problem with this turned out to be that the outer rim of the level would
end up as an obstacle-free corridor. Instead, it was decided that each agent
should start at the mentioned outer rim of the level, and instead work their way
in towards its middle. Not only did this solve the “outer corridor problem”, but
incidentally also made sure that there is always exactly one way to reach the
goal, making it easier to place locked doors and keys later.

While creating the behavior of these agents, it became obvious that they sooner
or later would reach an obstacle and not be able to continue. To remedy this,
a backtrack function was added, so that as soon as an agent reaches a dead
end, it can keep on going in another direction from an earlier position along its
previous path (Figure 13).

Figure 13: One wall agent traversing the map, with backtracking (left) and
without (right).

Page 23

4. PROCESS

Using agents for other purposes

For the placement of locked doors and their keys, another agent-based approach
was chosen: to let a single door agent make use of a previously created pathfind-
ing algorithm to distribute locked doors and keys (Figure 14). This second
agent-based approach was not decided upon from the beginning, yet it proved
to be a simple but powerful solution. In hindsight, it was also discovered that
this approach ensured that the player never would stand on one side of a locked
door, with the key on the other side. In other words, this approach makes sure
that the level is always solvable (in regards to the locked doors, at least).

Figure 14: The path an agent walks when placing locked doors and keys.

Solvable levels

When starting out on this algorithm, expectations were that it would need some
kind of mechanism that makes sure that the finished level is solvable, i.e. that
the player can always make it from the entrance to the goal. Contrary to these
expectations, it turns out that such a mechanism was not needed. Instead,
the solvability property was instead built into the different agents used in this
approach. More on this in Section 5.2.1: Launching wall-creating agents and
Launching locked-door-creating agents.

4.7.2 Cellular automata approach
The basic idea behind the cellular automata algorithm is to change individual
cells based on their neighboring cells and a set of state change rules (Section 3.1.2
for details). In our implementation, cellular automata was used only for terrain
generation and game objects were generated using other methods.

The initial terrain generation was rather straightforward. It took some experi-
menting to find a good range of settings, but the base algorithm did not require
much complexity to generate the sought after result: a map that we perceived

Page 24

4. PROCESS

as looking unstructured and natural, rather than man-made. This process was
very much one of trial and error; it was difficult to make any predictions about
the end result based on the settings, and small adjustments sometimes led to
considerable differences in the end result.

Lack of structure

Generating the map at the level of individual tiles resulted in a lack of structure.
This led to the problem of not being able to ensure the creation of connected
rooms. For some settings and some of the time, a map with sufficiently con-
nected rooms was created. However, at other times the map was divided into
several completely walled-off rooms. Attempts to avoid the latter problem by
changing settings tended to lead to very open maps, which made the path be-
tween two points much too straight and simple. For examples of these issues,
see Figure 15 below.

Figure 15: Terrain generated from different settings. In one map, several rooms
are walled off (left). In the other, all the rooms are connected but the map is
too open (right).

To be able to have levels with different rooms rather than one open space, the
decision was made to include corridor generation. This was decided even though
it often reduced the natural feel of the map which is one of the main advantages
of using cellular automata. This design decision results in maps that often look
like natural caves which have been excavated (Figure 16).

Page 25

4. PROCESS

Figure 16: Generated terrain, without corridors (left) and with (right). Coins
mark the corridors. Without corridors, several rooms on the right side of the
map cannot be reached.

Graph representation

In order to be able to ensure that the rooms were properly connected by digging
corridors, as well as ensure the placement of keys and doors in a solvable order, a
graph representation of the map was created. This step, along with the corridor
generation, took a lot more time than implementing the actual cellular automata
step. We felt that this higher-level abstraction was necessary to gain enough
control over the level design to be able to control the gameplay to a sufficient
degree.

4.7.3 Cyclic approach
The thought behind cyclic PCG is that each important point has at least two
paths leading to it with different attributes (Section 3.1.3). We chose to focus
on a model where to be able to progress, you need to take a side route to find
a key, but once it is found the path back is short.

First, a simple representation of the general layout and flow of the level is gener-
ated. This is done by creating paths between two points. To make cycles, each
node in a path has a chance of creating a new path originating from and ending
in that node. The first path is generated between the start and goal nodes.

One could argue that our version of cyclic PCG is not actually strictly cyclic
as we do not start with a cycle between the start and goal rooms. Instead we
have a linear path with cycles along it. This is because we felt that there was
no need to have a short return path from the goal to the start as the player is
unable return to previous levels.

Page 26

4. PROCESS

Translating the graph

After an abstract graph of the level had been created, the PCG needed to start
translating the nodes along the path to rooms. At first, it started by placing
the rooms along the main path in the lower part of the map. Any branching
paths were placed above and as far to the left as possible.

This proved not to be a very good way of placing rooms though, because if
there were two branching paths from the main one, both would place rooms in
the same area, making them overlap (Figure 17). This was fixed by generating
rooms along the main path in the middle of the map and allow for branched
paths to generate rooms both above and below the main path. By only allowing
for two branching paths from the main path, placing one above and one below,
and only letting branched paths branch again once, solved this problem as it
kept the paths separated.

Figure 17: Rooms with the bad placement (left) and rooms with the improved
placement (right).

However, this introduced the problem that the maximum number of branches
from the main path is bound to two. To fix this, we made sure that two nodes
could not branch in the same vertical direction unless there were at least three
nodes without branches in the same direction between them. This gave the
branches enough space to not interfere with each other, which enabled the al-
gorithm to generate more than two branches if the map is big enough.

Adding corridors

Generating corridors to rooms in another path was problematic, as they often
are located diagonally above or below the start room. If we were to generate a
normal corridor between two such rooms, this would in many cases cause the
corridor to cross other rooms, enabling the player to take shortcuts and ruining
the flow of the game.

Page 27

4. PROCESS

The solution was to make a special corridor between nodes in different paths
that first generates half the vertical part, then the horizontal part and then
the rest of the vertical. The horizontal part is therefore generated between the
paths and not crossing any rooms in either of them (Figure 18).

Figure 18: The difference between building normal corridors to branched paths
(left) and building special corridors (right).

4.7.4 Grammar-based approach
For grammar based level generation to work, two components needed to be
implemented: a system that would use grammar rules to generate an abstract
model which would represent the level, and a system that could translate said
model into an actual level. As such, the first step was to decide on what kind
of model to use.

Choosing a model

Grammars are typically used with one-dimensional strings of characters, but
could the level – a two-dimensional arrangement of rooms – be modeled properly
with a such a string, or would it require a more complex model of representation?
Since it would be preferable if the algorithm could generate levels with branching
paths, a graph model seemed more appropriate for representation, meaning that
the algorithm would be based on the concept of graph grammars (Section 3.1.4).
However, it turned out that even with one-dimensional character strings, it
would be possible to model branching paths through the use of special characters
which would signify the start and end of so-called side paths – sequences of rooms
which did not lead towards the level’s exit (Figure 19). Thus it was decided that
the grammar based approach would forego a graph grammar system in favor of
a less complex one-dimensional string grammar.

Page 28

4. PROCESS

Figure 19: The same level structure modeled as a graph (top) and a string of
characters (bottom).

Start of implementation

The algorithm was designed so that it went through the finished string character
by character, building a new room for each and making sure it was placed as
close to the previous room as possible (Figure 20).

While this initially appeared to work fine, an oversight soon revealed itself.
Since corridors could be placed anywhere, it was possible for them to intersect
earlier rooms. This could potentially break the intended order of progression
(Figure 21). To rectify this problem, corridors had to undergo the same checks
as rooms did before being placed.

Page 29

4. PROCESS

Figure 20: A long sequence of
rooms connected together. The
irregular shape of the level is
a result of how every room is
placed only with regards to its
predecessor.

Figure 21: A result of
placing corridors with-
out checking for intersec-
tion. The correct room
order has been indicated
with numbers.

Error handling

Ensuring that corridors followed the same rules as rooms led to the discovery
of a crucial flaw with the algorithm: since corridors could only be placed where
they did not overlap any rooms, the algorithm could now get stuck if a room
could not be placed and connected to the previous one. As an example, con-
sider Figure 21. Instead of placing room 6 far away from room 5 and bridging
the gap with an invalid corridor, the algorithm would now simply be unable to
progress after room 5. To make matters worse, the causes behind this problem
were deeply rooted in how the algorithm was constructed. For one, the string
used to represent the level contained no information about how the rooms were
arranged, only their sequence. This meant that there was no way to ensure a
properly constructed level layout before starting to build the rooms. Secondly,
the algorithm could not “look ahead”. Each room was only placed relative to its
predecessor, with no knowledge of whether it was heading into a dead end.

At this point, it was clear that unless the algorithm were to be fundamentally
rewritten, there needed to be some kind of error handling system in place. Since
the rooms were built in a sequence, it seemed sensible to take a step backwards
in the sequence when something went wrong. This prompted the creation of
a backtracking system that is initialized when reaching a dead end. It then
undoes the placement of each room until one can be placed in a direction that
leads away from the dead end, at which point the algorithm resumes as normal.

See Figure 22 for an example of a finished level.

Page 30

4. PROCESS

Figure 22: A complete level generated with the grammar-based algorithm.

4.7.5 Space partitioning approach
As briefly explained in Section 3.1, space partitioning is based on dividing an
area into a number of smaller areas that are disjoint to each other. This process
is repeated until the desired properties of the areas are met. We chose to
use binary space partitioning (Section 3.1.6) as the specific space partitioning
method (Figure 23).

Figure 23: Binary space partitioning with a binary search tree[24].

Generating a space-partitioning tree

The decision of the desired properties, i.e. the desired sizes of the areas, affects
the size of the final rooms (since rooms are generated within those areas). To
determine the appropriate settings for desired width and height of an area, a
series of space-partitioning trees were generated. The trees were generated with
different settings, and were then translated into tilemaps to investigate which
room sizes worked well with regards to gameplay.

Another aspect of implementing and generating a BSP tree is whether the re-
cursive dividing should stop as soon as an area has reached a desirable width
and height. That would create rooms that are generally closer to the upper

Page 31

4. PROCESS

size limit than to the lower size limit. The alternative to this would be to con-
tinue the recursive dividing somehow, for example continue dividing at a certain
probability, even though an area has a desired size. This was investigated with
a series of different implementations to conclude what was the best option. The
resulting partitioning can be seen in Figure 24.

Figure 24: Disjoint areas generated using BSP (left) and rooms generated within
those areas (right).

Connecting rooms

When connecting rooms with corridors, there are several choices to consider,
e.g. how the corridors should look like, where to place the corridors, between
which rooms etc. All these questions could be answered with the objective that
the corridors between rooms should be as short as possible. This was decided
because the corridors’ only purpose is for the player to go from one room to
another. If the corridors were too long, it would probably introduce a lot of
uneventful moments, which could be seen as boring.

Generating game objects

While space partitioning does not provide any rules on how to generate game
objects, there is one common method that space partitioning can provide which
can affect how the game objects are generated. That is to introduce various
themes, which are assigned to the areas. Themes are assigned when the BST
is generated. When a node is assigned a theme, all its children will inherit the
theme (Figure 25). The themes can determine where and at what probability
different game objects can be generated. This can thereby introduce different
environments, such as biomes in Minecraft [13], see Section 2.1. Due to the
small number of game objects and tiles in the game, it would be difficult to
introduce biomes. However, themes that change game objects’ probability of
being generated were possible, and thereby used in the implementation of the
space partitioning algorithm.

Page 32

4. PROCESS

First division Second division

Third division A BST representing the areas

Figure 25: An area dividing into smaller areas, with random theme assignment
(represented as a color, excluding white). A2 and B are assigned a theme, and
their children inherit the same theme.

4.7.6 TK algorithm
The TK algorithm is named as such because it is an adaption of the algorithm
used in the game TinyKeep[46, 47]. The basic idea was the same but the final
result is quite different as we adapted it to fit our game and the structures we
already had in place.

Creating the rooms

The first thing we did was to create a lot of rooms of varying sizes and adding
them all as nodes in a graph. This was easy. The tricky part was trying to
create them in a way that they did not overlap. Initially we tried spacing them
out one at a time, moving them out from the center of the graph until they had
no neighbors. However, this was very inefficient, and after trying a few different
approaches we in the end came up with another method.

Every room in the graph is placed at random positions, until the entire level
is filled. The decision to place the rooms randomly in the map rather than for
example systematically filling the map from one corner to another was made to

Page 33

4. PROCESS

create more diversity in the look of the map. However, sometimes this would
lead to areas not covered by rooms. To fix this, we simply create way more
rooms than needed to completely cover the map. Finally, we made sure that all
the rooms had some space between them, as entirely adjacent ones resulted in
too open maps (Figure 26).

Figure 26: The level generated with the random rooms directly adjacent to each
other (left) and with a small separation (right).

Connecting the rooms

The idea of how to connect the main rooms is to add in small 1×1 rooms be-
tween main rooms to form corridors. This turned out to be a little bit tricky as
well. The original algorithm does this by drawing edges in the graph between
all the nodes in such a way that none of edges cross each other. Then a min-
imal spanning tree[48] is created from those edges, representing the necessary
corridors, and the rest removed.

Since the graph structure we already had in place was unweighted and not well
suited for this approach, we took a different route: all the rooms are in a random
order connected to each other, until every room is reachable from the start. A
detailed description of how this works can be found in Section 5.2.6 and the
result can be seen in Figure 27.

Page 34

4. PROCESS

Figure 27: The level before (left) and after (right) corridors are added.

4.8 Evaluating the exploration of PCG
The goal of this project was to learn as much as we can, by getting hands-on
experience with the development of PCG in a game. A large and important
task has therefore been to evaluate what exactly we have learned throughout
the project.

As each team member has explored different algorithms individually, the amount
of resulting knowledge and revelations was extensive, but not shared between us.
Because of this, a first important step of the evaluation was to sit down and talk
about the different algorithms. We agreed on a list of different properties and
attributes that we thought could be relevant in such an evaluation. Mainly, we
focused on attributes that stood out among the six algorithms, and properties
that we all could agree on would influence the experience of a game, while still
being relevant to the development of PCG. These properties are listed here in
short, with no internal order:

• How hard is the algorithm to implement?

• How many levels of abstraction does it use?

• How easy is it to change or adjust it into something specific?

• How difficult or easy is to use? For whom?

• How easy is it to mix with other algorithms?

• How handmade does it feel? I.e, is it easy to detect that a human did not
build a specific level?

• How much variation does it allow? Can one easily see patterns?

• How well does it scale up or down?

Page 35

4. PROCESS

• How difficult or easy is the resulting level?

• How enjoyable is the result?

We made sure to have several discussions on this subject. At first, we con-
centrated on talking about each of the above aspects, to give a better feel for
how each of the algorithms worked. After that, we moved on to focus more
on the different significant connections between the explored PCG approaches,
and making sure that we did not miss anything. In the end, we distilled the
original list, by combining similar qualities or removing those that did not tell
us anything new. The result was the following list of key properties:

• What we learned from working with the algorithms

• Combination possibilities between them

• The ability to adjust the algorithms

• Quality of the generated content

• Variations in the generated content

• Difficulties of the resulting levels

• Enjoyment of the resulting levels

The resulting observations and insights about these topics are compiled in the
Result Section 5.3. This also includes a summary of our thoughts about each of
the six explored PCG algorithms specifically, for reference.

Page 36

5. RESULT

5 Result
This section presents the final game Fluky along with its features, as well as
the PCG algorithms and how they work. It also includes the analysis and
comparison of the PCG algorithms, as well as some thoughts on working with
them and how work on them could progress in the future.

5.1 The game: Fluky
The game is a tile-based dungeon crawler called Fluky, where the player has to
navigate a level of rooms and corridors to reach the goal. To make it harder,
there are enemies which hurt the player upon contact and doors that require
the player to find a key to progress. There are five types of tiles: wall and floor
(which both can have different colors), door, start and goal. Areas far away
from the player or on the other side of walls are darker, which gives the game
more atmosphere (Figure 28).

Figure 28: A screenshot from the game.

5.1.1 The player
The player (Figure 29) can walk in eight directions: up, down, left, right and
diagonally. They can also attack in four directions independently of the direction
they move in, so they can for example walk right while attacking left. The player
has an inventory which can hold any amount of keys and up to two weapons
at the same time. To pick up keys, the player simply walks over them, while
weapons have to be manually picked up. If the player already has two weapons
while trying to pick up another, the currently equipped weapon will be tossed
to the ground and replaced with the new. If the player comes in contact with an
enemy, they will be pushed back, lose one health point and become invincible
for a short period of time so that they have time to run away or counterattack.

Page 37

5. RESULT

Figure 29: The sprite used for the player[49], image licensed under Creative
Commons (CC BY-SA 3.0).

5.1.2 Enemies and items
Fluky has three types of enemies (Figure 30). The most basic is the patrolling
enemy who walks back and forth along a straight path. Then there is the ran-
domly walking enemy who walks in a random direction for a certain time, then
chooses another random direction to walk in, and so on. The most difficult type
of enemy is the following enemy. If the player is close enough, the following
enemy will start to chase them.

Figure 30: The sprite used for following enemies (left) and the sprite used for
both patrolling and randomly walking enemies (right)[50].

Collectibles are items that are non-essential to the progression of a level and
are used to give the player an incentive to explore. Whenever the player walks
over a collectible it is picked up and the player’s score is increased. There are
three different tiers of collectibles, worth 10, 50 and 100 points respectively (Fig-
ure 31). Also, if the player has taken damage, they can pick up apples which
restore one health point each until they are at full health.

Page 38

5. RESULT

Figure 31: The graphics for the collectibles[51]. The left one is worth 10 points,
the middle one is worth 50 points and the right one is worth 100 points. The
red apple represent a health item.

Fluky also has weapons (Figure 32), which are divided into five weapon classes:
daggers, spears, swords, axes and maces, each favoring different stats. The
stats are: damage, attack duration, range, attack angle and durability. Daggers
tend to have fast attack duration at the cost of damage, spears have long range
but low attack angle, swords are a jack of all trades, axes tend to have high
damage but can have low durability and maces have high durability at the cost
of damage.

Figure 32: The graphics used for the weapons[51]. Weapon types, from the left:
Axes, Daggers, Maces, Spears and Swords.

5.1.3 Menus and user interface
When launching Fluky the player is first faced with the main menu which has
four options: Quit, Credits, Choose PCG and Play (Figure 33). If the player
selects Play, a text field appears where they can enter a seed which will be used
to generate the level, and the game will randomize which PCG algorithm will
be used to create each map. If the player chooses to not enter a seed, the seed
will be randomized. If the player selects Choose PCG, they will instead be able
to select which PCG algorithm will be used to generate the levels.

Page 39

5. RESULT

Figure 33: The main menu.

When the player is in the game, there is a heads-up display (HUD) that shows
the player important information about the state of the game (Figure 28). It
shows how many keys the player has collected, how much health is left, the
score and the currently equipped weapon’s damage and durability. The HUD
uses icons instead of text where suitable to make it easier for players to quickly
get the information. Health, for example, is represented by icons of an apple.

5.2 PCG algorithms
The game’s levels can be generated with one of six different PCG algorithms.

5.2.1 Agent-based approach
As mentioned in Section 4.7.1, this version of the agent-based approach differs
from the classical version by using agents mainly to build walls, rather than
tunnels. This results in a level design that is very similar to that of a two-
dimensional maze. Because of these choices, the way this algorithm works may
differ from how the agent-based approach is described in Section 3.1.1.

The following is a short summary of how this algorithm works.

1. Generate random rooms that do not overlap.

2. Assign entrance and goal rooms, as far away from each other as possible.

3. If necessary, assign a third room to hold the key to the goal, as far away
from both the entrance and goal as possible.

4. Translate the abstract model to an actual map.

5. Create and launch a number of wall-generating agents onto this empty
map.

Page 40

5. RESULT

6. Create and launch a number of locked-doors-generating agents into the
maze created in (5).

7. Randomly populate rooms first with valuable items, and then generate
enemies guarding these items.

8. Randomly populate maze corridors sparsely with treasure and enemies.

Generating rooms

The rooms in question are represented as two two-dimensional coordinates that
mark the lower left and upper right corner of a rectangle. To generate these, the
area size of the level to generate is calculated, and then randomly sized rooms
are generated (within certain parameters) until a set ratio of the calculated level
area is covered by the total area of all rooms together.

Each time a new room is generated, it must be verified with all other accepted
rooms that they do not overlap. If they do, the new room is thrown away, and
otherwise it is added to the total as another accepted one. This verification
process is very inefficient, since it has to do a lot of iterations over all created
rooms. However, it still runs fast enough to not impede the game. This is
because this specific algorithm only needs a relatively small ratio of the total
level area to be covered, resulting in few rooms and few passes before the sought
after ratio is achieved.

Assigning entrance, goal and goal-key rooms

Again, a fairly inefficient method is used to find the two rooms farthest away
from each other. The distance between every pair of rooms is calculated and
then each pair and the distance between them are put in a list and sorted by the
distance. The inefficiency of this method does not cause problems in this case
either, for the same reasons as in the previous section: the amount of rooms is
relatively small.

After assigning entrance and goal rooms, a similar method is used to find a
room for the key to the goal. The aim here is to find a third room that is as
far from both the entrance and goal as possible. However, as the entrance and
goal rooms have already been found, this can be done fast.

Translating the abstract model to a map

There are few concrete attributes to translate at this point. Since the subsequent
steps in the algorithm require an empty map, only the specific tiles for the
entrance, goal and goal key are placed in an otherwise empty map. The only
other thing that is added to the level at this point is an outer wall, to ensure
that the level is contained. See Figure 34 for an example.

Page 41

5. RESULT

Figure 34: The virtual rooms in the agent-based approach (marked with darker
floor tiles) translated to a map, including entrance, goal and key.

Launching wall-creating agents

This is the very core of the agent-based approach. A number of agents are
created, based on the size of the map. These agents are then launched from the
outer wall of the otherwise empty level, moving across the level in tandem.

A number of rules guide their movement, in combination with a random gen-
erator, to make sure each generated map is different. The rules of each agent’s
movement make sure that no agent moves in a direction that would connect it
to any wall or room. Each agent has a direction and in every step it randomly
changes direction. In addition, a backtracking mechanism is in place so that if
an agent reaches a dead end it can move backwards along its path, and branch
out in other directions as soon as there is room. For snapshots from different
iterations of the agents at work, see Figure 35.

Wall agents will never connect with each other, so the only connections between
them are via the outer wall. And because no agent starts in the middle of the
level, but at the outer rim, the resulting corridors between them will all be
connected. This property of the algorithm happens to be very important, as it
ensures beyond a doubt that every level can be solved. In other words, it does
not need to be verified after construction, because the verification is built into
the mechanism of the level design.

Page 42

5. RESULT

Figure 35: Snapshots from different iterations of the wall-creating agent’s pro-
cess.

Launching locked-door-creating agents

Even though they are both based on the same idea, these agents are very differ-
ent from the wall-creating ones. A single agent is launched from the goal, using
pathfinding algorithms to find its way back to the entrance of the level. As soon
as it finds a suitable place (two walls on either side, but none behind or in front
of it), it has a chance to place a locked door. When this happens, a smaller util-
ity agent holding a key is launched from that spot, on the entrance side of the
door. This agent in turn tries to run as far away as possible from the locked door
(up to an upper limit based on level size, to not complicate things too much),
and then places the key before terminating. The result can be seen in Figure 36.

The level is in this manner populated with locked doors and keys somewhere on
the player side of the door. This means that for the wall-creating agents, there
does not exist a scenario where the player cannot reach a key to unlock a door.

Page 43

5. RESULT

Figure 36: An example of doors generated by the door-creating agents.

Populating rooms and corridors

When populating rooms with content, it is done in two passes. First, valuable
things like treasure, health or weapons are generated to make a room interest-
ing. Secondly, the value of these items are evaluated, and according to a specific
scale, a fitting number of enemies are generated to guard the treasure. So the
more treasure there is, the more dangerous the room is.

When populating corridors, on the other hand, the process is less complicated.
Valuable items and enemies are simply thrown out into the corridors at random,
but sparsely enough to make the actual rooms interesting in comparison.

After this step, the level is ready to be played. The result of one generation can
be seen in Figure 37.

Figure 37: Treasure and enemies have been added to the rooms (left) as well
as the corridors (right). In the final version of the agent-based approach, the
rooms are not marked by different floor tiles.

Page 44

5. RESULT

5.2.2 Cellular automata approach
Our cellular automata implementation first uses a simple terrain generation
algorithm, which makes up the actual cellular automata component. The result
of this algorithm is then parsed into a graph representation, which is used to dig
corridors and place doors and keys. Finally, items and enemies are randomly
placed using probability values. The main steps of the algorithm are listed
below:

1. A map is randomly filled with wall and floor tiles, depending on the spec-
ified chance for each tile to be a wall tile.

2. The cellular automata step is performed for each tile, for a number of iter-
ations. In every iteration, the algorithm looks at the tile’s neighborhood,
defined in our implementation as the tile itself and its eight immediate
neighbors. Based on the neighborhood and the tile-change settings, the
status of the tile in the next generation is then decided. Results of these
tile changes are saved in a new map, so that each iteration is based only
on the previous map. This step concludes the cellular automata step of
our implementation.

3. A graph representation of the tile map is constructed using a flood fill
algorithm[52]. This means that we choose a random floor tile, and recur-
sively try to move in each direction, adding connected floor tiles to a list
of tiles for the current room. A room is for this purpose considered to
be any set of tiles which are connected horizontally or vertically. We use
a variable to determine the minimum number of tiles which are required
for a room to be added to the graph. This determines whether a room
will later be connected to the other rooms with a corridor. Each room is
represented in the graph by a node. In addition to the room, the node
keeps track of its immediate neighbors.

4. Starting with the smallest room in the graph, we try to dig corridors so
that there is a path between any two rooms. This is done by finding a
set of possible “dig sites” at the tiles at the edges of the room, each with
a dig direction of north, east, south or west. Increasingly longer corridors
are then tried for each dig site in the appropriate direction until a valid
corridor is found. At this point the corridor is created in the map, and
a new node representing the corridor is added to the graph, in between
the nodes of the rooms it just connected. This is done by updating the
neighbor list of each involved node.

5. The graph representation is used to place entrance and exit tiles as well
as keys and doors at positions which are sufficiently far from each other
and such that the level can be solved. We also consider physical distance,
which is useful for cases with very few total nodes.

6. Weapons, collectibles, health items and enemies are each placed through-
out the level based on a specified probability per tile. The items and

Page 45

5. RESULT

enemies each have individual probability variables, and there is a mas-
ter difficulty variable which affects all the probability variables. This
placement considers each tile and probability individually, i.e. there is
no high-level control of the total number of e.g. enemies per level.

Through some experimentation, we arrived at the following settings:

Wall probability: 38% - 43%
Iterations: 1 - 3
Minimum room size: 10
Tile step: if the sum of wall-tiles in the neighborhood including the middle tile
is less than 4: return floor. Else: return wall.

These settings give some variance in the character of the levels, as shown in
Figure 38 below; some levels have lots of rooms, thin walls and short corridors
while others have few rooms, thick walls and long corridors.

Figure 38: Different settings for wall probability and number of iterations give
very different results.

5.2.3 Cyclic approach
The thought behind cyclic PCG is to generate dungeons where the player never
encounters a dead end and has to backtrack. This is done by always generating
two ways to reach important points. To achieve this, our implementation of the
cyclic PCG algorithm generates paths. A path is an abstract representation of
a sequence of rooms. It has a list of nodes which represent rooms. The nodes
are sorted in the list after the order in which they are supposed to be visited.
The algorithm starts by generating a main path consisting of 3-6 nodes. It then
traverses the list of nodes and for every node there is a chance of creating a new
path 2-4 nodes long. This new path is then traversed in the same manner. When
the algorithm reaches the last room of the main path the abstract representation
of the level is complete (Figure 39).

Page 46

5. RESULT

Figure 39: Visual representation of paths generated for a level. Blue circles
represent nodes. Start and End nodes are marked with S and E respectively.

After generating all the paths, the algorithm starts generating rooms. It follows
the main path and creates a room for each node at slightly random x and y
distances to the right of the previous node’s room. If there is another path
originating from the node it will instead start creating rooms right above or
below the room it originated from (Figure 40).

Figure 40: Room layout produced by Cyclic PCG.

After the rooms have been created, the algorithm generates corridors between
rooms in the paths, originating from somewhere along the right side of the
starting room and ending somewhere along the left side of the end room. A
starting point for the corridor is selected randomly along the right side of the
starting room and the end point of the corridor will always be in the lower
left corner of the end room. First it generates a straight corridor horizontally
between the starting point’s x coordinate and the end point’s x coordinate.
Then it generates a vertical corridor at the end point’s x coordinate, from the
end point’s y coordinate to the starting point’s y coordinate. When a branching

Page 47

5. RESULT

path is discovered, a special corridor is generated to it which first creates half of
the vertical part, then the horizontal part and after that the rest of the vertical
path. This makes a “zig-zag” corridor. Without this special corridor, there is a
high probability that the normal corridors would have intersected other rooms,
creating shortcuts and ruining the flow of the level. At this point the basic
layout of the map is complete (Figure 41).

Figure 41: Corridors now connect all the rooms.

Then the algorithm sets a starting point and a goal in the first and last room of
the main path so that the player needs to traverse the whole level to finish it. It
also generates two doors whenever it encounters a node with a branching path:
one door that blocks further progression along the main path and one door in
the corridor leading to the last room in the branched path so that player can’t
go directly there. Two keys are placed in the last room of the branched path so
that the player can open both doors (Figure 42).

Figure 42: Doors, keys, start and goal have now been generated.

Lastly the algorithm generates all of the game objects (Figure 43). Each room
has an importance value, which is used to determine the likelihood of items

Page 48

5. RESULT

and enemies being spawned there. The importance value is decided by how
far away from the main path the room has branched, so the main path has
importance 0, any path branching from the main path has importance 1 and
any path branching from that one has importance 2 and so on. Rooms of higher
importance have a higher chance of spawning high tier loot but also a higher
chance of spawning more enemies.

Figure 43: Rooms have now been filled with objects.

A brief summary of how the algorithm works:

1. Generate a main path between the start and goal nodes.

2. Let each node in the main path have a chance to generate a new cycle.

3. Translate the nodes in the paths to rooms on a map.

4. Connect the rooms with corridors, using special corridors when connecting
nodes in different paths.

5. Add two doors whenever a branching path is found and place the keys in
the last room of the branching path.

6. Fill the map with enemies and items.

5.2.4 Grammar-based approach
The grammar-based approach is named as such because it is based on the con-
cept of formal grammars (Section 3.1.4). The grammar consists of a collection
of terminal characters and variable characters as well as a set of rules, at least
one per variable, that determine how that variable can be replaced by other
characters. The algorithm starts from some initial string and goes through it
character by character. When it encounters a variable character, it replaces it
by randomly applying one of that variable’s rules. Eventually, the string only
consists of terminals. Every terminal character symbolizes some aspect of a

Page 49

5. RESULT

level’s structure (Table 1), and as such the finished, terminal-only string repre-
sents a level. At this point, the string goes through ”cleanup“ to improve the
flow of the level: empty rooms ([]) are removed, single keys behind a locked
door at the end of a side path (e.g. (d[k])) are replaced with an unlocked
treasure room and so on.

Terminal Description
s Level entrance room
g Level goal room
l Locked goal room
[Start of normal room
] End of normal room
(Start of side path
) End of side path
b Goal key
k Normal key
d Locked door
h Item that refills player health
w Weapon
1 Patrolling enemy
2 Randomly walking enemy
3 Enemy that follows player
ˆ Low-value treasure
+ Medium-value treasure
* High-value treasure

Table 1: The full list of terminals that are used to represent a level.

Once this step is done, the finished terminal string gets translated into a graph-
like structure of nodes representing rooms. These nodes contain references to
the preceding node (the parent) and any succeeding nodes (the children). The
algorithm then goes through this structure, and builds each node’s room. Start-
ing from the entrance room, the process works as follows:

1. Build the current node’s room close to the parent node’s room (if the
current node is the entrance, it does not matter where it is built).

2. If this node’s room is a normal room, fill it with the contents indicated by
the terminal characters between [and].

3. Build a corridor (in essence just a thin room) between this new room and
the parent node’s room.

4. Set the current node to the node’s child. If there are multiple children,
prioritize those that are on side paths. Continue from 1.
In case the current node does not have any children and the goal room
has not been built, the current node is the end of a side path. Then, set

Page 50

5. RESULT

the current node to the node that this side path forked from, and continue
from 1.

Thus, the rooms are placed in the sequence specified by the terminal string,
which ensures that keys can always be found before their doors etc.

See Figures 44 and 45 for a few examples of levels generated using this approach,
along with the strings that specify their layout and contents.

Figure 44: s[ˆˆˆ]([b*])l Figure 45: s[12]([13][b])[22h]([k])dl

5.2.5 Space partitioning approach
The implementation of the space partitioning algorithm was separated into mul-
tiple parts:

1. Generate a space-partitioning tree.

2. Generate rooms.

3. Connecting the rooms.

4. Decide start and goal room.

5. Generate game objects.

Generating a space-partitioning tree

This implementation of the space partitioning algorithm is based on the type
of space partitioning known as binary space partitioning (BSP). BSP generates
a binary search tree (BST), whose leaf nodes are used to generate rooms, see

Page 51

5. RESULT

Section 4.7.5.

As described in Section 4.7.5, the partitioning depends on desirable properties
of the areas. In the case of this approach, the desirable property is simply that
the area is of a certain size. The minimum size is constant for all levels, while
the maximum size depends on the level’s size. This ensures that rooms don’t
feel too small in larger levels.

Whenever an area’s size is within the desirable range, the recursive dividing can
continue with a certain probability, as long as the area can be divided into two
areas that are larger than the minimum size. See Section 4.7.5 for an explana-
tion.

As an example of how this implementation of space partitioning looks like (Fig-
ure 46). The leaf nodes were translated into rooms with adjacent walls, and
then combined into a whole level.

Figure 46: Generating rooms from the leaf nodes in an SP-tree. The adjacent
wall tiles are included in the leaf node’s area.

Generating rooms

When a BST has been generated from the space partitioning algorithm, the
leaves of the tree will be used for generating rooms since the leaves represent
disjoint areas. The rooms generated from the leaf nodes will be assigned a width
and a height so that the room’s size is smaller than its leaf node counterpart,
while not being smaller than the minimum room size (compare Figures 46 and
47). The room’s width and height have to be smaller than the node’s width
and height because otherwise there would be no walls for the room, which could
result in room collision. In addition, the room’s position will be random, while
not breaking the node’s boundary.

Page 52

5. RESULT

Figure 47: Generated rooms within leaf nodes in an SP-tree.

Connecting the rooms

The rooms are connected through corridors. Corridors are just regular rooms,
but with a width or height of one tile. A corridor is created between each
pair of children in the BST (Figure 48). The corridors are created as short
as possible, either through a straight corridor, or two connected corridors (one
vertical and one horizontal). This will result in a level where each room is
accessible (Figure 49).

Page 53

5. RESULT

Figure 48: Connecting rooms by connecting in the BST.

Page 54

5. RESULT

Figure 49: Connecting the rooms in a level.

Deciding start and goal rooms

The start and goal rooms are the pair of rooms with the highest number of
rooms between each other. This ensures that most of the level will be explored
by the player before they can find the exit. These rooms are selected by counting
the number of rooms between every pair of rooms, and picking the pair with
the highest number of rooms between them (Figure 50).

Figure 50: A level with start and goal.

Generating game objects

Generating items, enemies and locked doors is essentially arbitrary when using
space partitioning to create levels since the space partitioning algorithm only
creates the structure of a level. However, since the goal of each algorithm was
to be able to utilize all the different objects in the game, a method of generating
game objects in levels generated from space partitioning was created.

A set of rules govern the generation of certain game objects.

Page 55

5. RESULT

Locked goal and goal key: A locked door is generated on top of the regular
goal with a set probability. When that happens, a goal key is generated
in a random room, with priority given to blind alleys (rooms which do not
lead the player anywhere).

Locked door and key: Locked doors are added inside corridors with a set
probability. When that is done, a key is added to a room that is accessible
without having to pass that corridor, so that the key is not locked behind
the door. For a visual explanation, see Figure 51.

Enemies: There is a certain chance that enemies are allowed to be generated
in a room. If so, the number of enemies generated will be somewhere
between 0 and a maximum value. This maximum depends on the room; it
will be higher for rooms with a bigger area, and further increased if there
are any items in the room. The generation of an enemy itself is done by
randomly deciding the kind of enemy, and possibly adding a random item
to it as loot.

Apples: Apples, which restore the player’s health, are generated with a certain
chance in every room. A room can at most have one apple.

Collectibles: The probability and the amount of collectibles added to a room is
dependent on its area. The value of each collectible is completely random.

Weapons: As with apples, only one weapon can be generated per room. The
probability of generating a weapon in a room depends on what kind of
room it is. The different kinds of rooms are: blind alleys, secondary rooms
(rooms that aren’t on the shortest path between the start and goal rooms)
and rooms on the shortest path. The kind of weapon that is generated
and its properties are completely random.

Other: If a blind alley doesn’t have any items (excluding collectibles) when
all the game objects have been generated, a weapon, an apple or several
collectibles are added to the blind alley. This is done because the player
does not have an incentive to visit a room that neither leads anywhere nor
contains anything of value.

Page 56

5. RESULT

Figure 51: The red filled rectangle represents the corridor where the locked
door is placed. The key can be generated in the green rooms, but not in the red
rooms.

The probability of an item being generated in a specific room can be increased
if the room has a specific theme. Themes are assigned during the generation of
the space partitioning tree, see Section 4.7.5 for more. In this implementation,
the themes are assigned to each node at a set probability. There are five dif-
ferent themes: Apple, Collectible, Enemy, Weapon and None. The Apple and
Weapon themes increase the chance of generating the specified item (apple or
weapon). The Collectible and Enemy themes increase the potential number of
collectibles/enemies that can be generated in the room. The None theme does
nothing.

The result of all these steps is a fully generated level, such as the one seen in
Figure 52.

Figure 52: A complete level generated by space partitioning.

Page 57

5. RESULT

5.2.6 TK algorithm
In this approach, the map is modeled as an undirected, unweighted graph where
each node is a rectangular room and its neighbors are any other rooms in the
graph which it is either directly adjacent to or overlapping with. The algorithm
works as follows:

1. A lot of rooms of different sizes are generated. Then the rooms are posi-
tioned all over the map in such a way that they do not connect, as shown
in Figure 53.

2. Collectibles are generated in all the rooms. Each room can have at most
enough collectibles to cover half the room but the amount is random.

3. Enemies are generated in the rooms. Every room can have at most one
enemy per row or column of tiles, whichever is smaller. For example: in a
2×6 room there could be as many as two enemies. Each of these potential
enemies have a 1/2 chance of actually being generated. The type of enemy
is randomly chosen to be either patrolling, following or randomly walking
around.

4. To fill in the gaps between the rooms, the rest of the map is filled with
rooms of size 1× 1.

5. Up to six rooms with an area greater than a fifth of the total area of
the map are randomly selected. These rooms are the main rooms of the
map and from them two different rooms will contain the start and goal,
respectively. The remainder of the rooms are removed from the graph and
stored separately. This is shown in Figure 54.

Figure 53: Randomly sized rooms
spread out over the map.

Figure 54: Start and goal are
placed in two of the main rooms.

Page 58

5. RESULT

6. One random weapon and up to three apples are placed in random locations
in the main rooms.

7. The main rooms are connected to each other by putting back the small
rooms between them. This is done by taking one room not containing
the starting tile and putting back in small rooms forming a straight line
between it and the starting room. Then another room is selected and a
path is made between it and the room closest to it from the ones connected
to the starting room and so forth until all the rooms are connected as
shown in Figure 55.

8. When all the rooms are connected an additional path is added between
the starting room and one other random room, to create some diversity
in the map as well as make sure that there are always two paths to take
when entering the level.

9. The map is finished and the next task at hand is to add in locked doors.
The map is searched and every spot considered suitable for a door is saved.
Suitable door spots are any spaces with walls on two opposite sides and
floors on the remaining opposite sides. Doors are placed in up to three
randomly chosen spots from the suitable positions.

10. After the doors are added, keys to unlock them are placed in reachable
places. To spread them out in an interesting way, the first key is placed
in an area which is reachable from the start of the level, after which one
door is marked as unlocked in the model of the map, allowing the next key
to be placed behind a locked door. Lastly the goal is locked and a golden
key to unlock it is added to the map. The finished map can be seen in
Figure 56.

Figure 55: Corridors created from
the previously removed rooms are
added to connect the main rooms.

Figure 56: The goal is locked and
locked doors, keys for the doors
and a key for the goal are added.

Page 59

5. RESULT

5.3 Observations and comparisons
The aim of this project was to explore the process of creating PCG systems for
generating game levels, and more importantly, to present our findings so that
they may be of use to others. The following section is a compilation of what we
have learned by working with, and later comparing, different PCG algorithms.
The observations are divided into two main categories: notable features exhib-
ited by the different algorithms when working with them, and how the resulting
generated content may be experienced. At the end of this section, we will also
summarize what distinguishing characteristics each of the explored algorithms
appear to have.

Due to the nature of our evaluation, it is important to note that this section
contains subjective views, even though we have strived to anchor these views in
experiences, observations and previous studies.

5.3.1 Working with the algorithms
In this section we talk about what observations we have made about the process
of working with the algorithms during development. This covers what one can
expect when implementing different PCG systems, what can be challenging and
what to avoid.

Different algorithms cover very different areas in their generation. For example,
the grammar-based approach happens entirely in a high abstraction level, and
can later be translated to a map in many different ways that have nothing to do
with the actual generation. On the other hand, cellular automata needs to use
a map directly to be able to work. This leads us to conclude that when working
with PCG, it is important to be mindful of the adaptability or rigidity of each
considered algorithm, as this could heavily impact the upcoming work.

Algorithms that are tightly connected to low levels of the software structure
can be powerful, but hard to adapt to unforeseen turns in the development.
While the cellular automata algorithm was very easy to implement and gave
great results, it would probably have needed to be rebuilt if for example we de-
cided to add rivers and bridges into Fluky. Algorithms at very high abstraction
levels, however, may need considerable work to fit inside a specific game. Our
experience of both the grammar and cyclic approach showed us that most of
the work with these went into the translation from the abstract model to the
concrete game levels.

While there exist many well-documented theories and techniques when working
with PCG, it is fully possible to develop completely new PCG strategies or
algorithms. However, it is important to consider the extra work that might be
required due to the lack of well known and documented practices. As we worked
simultaneously on the different algorithms, a recurring issue with the custom

Page 60

5. RESULT

made TK-algorithm was that when problems occurred, there were no easily
accessible resources to use. This resulted in the work on that specific algorithm
progressing slower and being more tedious compared to the other algorithms.

Combination possibilities

Differences in both complexity and level of abstraction affect how easily various
PCG algorithms can be combined with each other. Algorithms that operate
on a high abstraction level are hard to use inside or even next to each other,
but instead lend themselves well to enclosing other, more low-level algorithms.
Conversely, low-level PCG algorithms are much easier to integrate into larger
or more complex algorithms, than the other way around.

For example, the agents in the agent-based approach that we implemented could
easily be used inside a single sufficiently large room in any of the space parti-
tioning, grammar-based, cyclic or TK algorithms (Figure 57). This is because
the latter all work with rooms as their smallest building blocks, while the agent-
based approach instead works with single map tiles. It would be difficult, how-
ever, to use our cellular automata algorithm inside the agent-based approach,
since both of these algorithms work with individual map tiles.

Figure 57: The agent-based PCG used inside a room from the grammar-based
approach.

Even though it is not one of our implemented algorithms, the search-based ap-
proach operates on even higher abstraction levels than those we have explored
in this project. This makes it possible in theory to use each of our algorithms
within the confines of a search-based one, further demonstrating the above con-
clusions (as described in [17]).

One should be careful to consider the above observations about combining al-
gorithms an absolute rule, however. Exceptions exist and can have tremendous
potential when exploited. As an example, with some adjustment we were able

Page 61

5. RESULT

to incorporate the space partitioning approach into the agent-based approach,
using it to set up some parts of the agent-based map. To use several large and
complex algorithms simultaneously can produce great results, provided that it is
possible to combine them. The combination of different PCG algorithms may in
truth even be instrumental when striving to create content of good quality[17].

Adjusting and adapting algorithms

When changing the base conditions of a game, such as adding new game me-
chanics, PCG algorithms will most likely need to be adapted along with these
changes. It is possible to avoid but only with great difficulty, according to
Kerssemakers[53]. It would therefore perhaps be more interesting to evaluate
how much PCG algorithms can be adjusted within their current implementa-
tions.

The easiest way of adjustment is to make constant values variable. When devel-
oping any algorithm, constant values will be decided to get a desired behavior.
If one instead could determine a range of working values to randomly choose
between, the variation of the algorithm could be hugely extended, and hopefully
for the better. If variation is not the goal but different behavior is, other values
could simply be chosen in the determined span, instead of randomizing them.
Such variations may introduce problems or bugs that need to be taken care of,
but if done carefully, this has the potential to enhance the result of PCG algo-
rithms.

The number of variable values will differ between algorithms. The cellular au-
tomata algorithm we explored showed great potential for adjustment, as changes
in its parameters gave very different results. The grammar-based approach also
has great inherent possibilities, since the grammar it uses can be changed fairly
easy with considerable impact. The space partitioning algorithm, however, can
be adjusted but with little visible impact, as the levels always will have a similar
look.

A much more complicated but potentially powerful way of adjustment is to
extend the algorithm to enlarge the span of variations to choose from. These
changes will be much more specific to each algorithm, making it harder to create
significant ones.

An example of the above is to create an entirely new agent in the agent based
approach, that builds walls with very different rules, thus changing the behavior
of the algorithm completely (Figure 58). In our experience of the agent-based
approach, it did not have much potential for adjustment within the given me-
chanics, but does on the other hand offer great possibilities in agent creation.
When looking for potential ways to adjust algorithms we therefore suggest that
it is important to try many different approaches on many different levels. What
works for one algorithm, may unfortunately be useless for another.

Page 62

5. RESULT

Figure 58: By simply removing the wall-creating agents’ ability to turn, the
agent-based levels will look very different.

5.3.2 Quality of the generated content
The concept of quality in PCG is subjective and hard to measure. In this sec-
tion, we present our observations about the resulting generated content. We do
this to figure out what to aim for when developing PCG, what to keep an eye
out for, and maybe offer a couple of valuable insights about the process.

Quality in PCG can mean many things; there are both technical and emotional
parameters to take into account. An example of a technical aspect is how well
an algorithm scales when the size of the wanted content grows to large propor-
tions. All of the explored algorithms behaved in undesired manners in these
cases, although this might be due to flaws in our implementations. Some of the
unwanted behaviors were very prominent, while others did not show as much.
However, the fact that every algorithm showed them tells us that it is important
to take this into account when developing PCG: make sure it works fine for all
intended sizes.

A very abstract aspect of PCG quality, on the other hand, is how “handmade”
a procedurally generated dungeon may feel. This relates a lot to the concept
of variety (discussed later), but has just as much to do with the architecture
and layout of a level. The handmade feel usually comes from the feeling that
whoever built the level had a plan, giving it a thought-out sequence of events
to be experienced.

Naturally, this handmade quality is very hard to accomplish. An attempt to
do this was made with the cyclic approach in the game Unexplored, creating a
large number of well thought-out possible cycles to extend the map with. The
result was considered a success. On the other hand, when we tried the cyclic
approach ourselves, the variation of the levels was so low that it became very
obvious that they were not handmade. This leads us to believe that a specific

Page 63

5. RESULT

algorithm is not the answer in itself, but rather that large amounts of energy
and thought need to be spent to be able to evoke the illusion of handmade PCG
levels. Of course, the cyclic PCG approach may very well be much more suited
to this than other algorithms, but we conclude that there is no such thing as
shortcuts to a handmade feel.

Variety

It is important that the levels our PCG algorithms generate feel varied enough,
so that they are able to keep a player’s interest for any meaningful amount of
time. While Fluky achieves noticeable level-to-level variety by randomly select-
ing an algorithm every time a new level is created, the variety between a single
algorithm’s levels is usually not as high.

Among our algorithms, it appears that the ones with a very clearly defined lay-
out characteristic – the cyclic and agent-based levels – are the ones with the
most similarity between levels, by virtue of this very characteristic. While the
mazes generated by the agents are technically different in every level, they still
end up providing a near-identical experience. The room cycles that make up
the core of the cyclic algorithm also feel very similar from level to level, despite
being built in different locations and with different frequency every time (Figure
59).

Page 64

5. RESULT

Figure 59: Four different levels of the same size generated by the cyclic approach
have very similar results.

Conversely, the other four algorithms, whose unique characteristics had more to
do with how the level was built rather than what the player would experience,
were perceived as having a higher degree of variety. Especially noteworthy here
is the cellular automata-based algorithm, which did not use the standard room-
and-corridor layout of the other algorithms, instead focusing on individual tiles.
This meant that its levels had very few limitations placed upon them, and as a
result could take on nearly any structure.

While not as varied as the cellular automata-based levels, the other three each
manage to achieve a certain degree of variety despite their more traditional
room-and-corridor layout. The grammar-based algorithm uses its “vocabulary”
of small-scale room structures to gradually build a full level independent of its
layout, and the TK and space partitioning algorithms are able to create varied
level layouts by simply building the rooms first and adding in the corridors
afterward.

Page 65

5. RESULT

Difficulty

In this context, the “difficulty” of a level refers to how challenging that level
is to complete for a player. Ideally, a PCG algorithm should be able to gen-
erate levels that manage to challenge the player without ever feeling too hard.
Unfortunately, difficulty was not a primary concern for any of us while we im-
plemented our algorithms for Fluky. As such, difficulty is not very consistent
between the different algorithms’ levels. After testing the finished algorithms
and discussing our findings, we are of the opinion that in Fluky, the difficulty
of a level is primarily determined by two factors: exploration and combat.

Exploration-related difficulty

Since the goal of every level is to arrive at the exit, the overall difficulty of a
level is naturally affected by how challenging this exit is to find. Our algorithms
differ considerably in this regard. It is important to note that although explo-
ration is an especially important factor in Fluky ’s difficulty, that does not mean
that it is irrelevant for games with other win conditions than finding an exit.
For example, a game where the objective of every level is to defeat all enemies
will be considered hard if finding the enemies is a challenge in itself.

The cyclic algorithm is the only one of the explored ones that generates truly
linear levels, due to its “no backtracking” design philosophy which opens up
new paths to the player one at a time (Section 3.1.3). This means that even for
larger levels, navigation is often a trivial matter for any player. On the opposite
end of the spectrum we find the open-ended cellular automata levels and the
maze-like agent-based levels. In the former, the irregular and unstructured level
layout can make it hard for the player to orient themself. In the latter, the
maze sections make it difficult to determine which of the many paths will lead
to the goal, even if one knows where it is. While this is the intended purpose
of a maze, those built in larger scale tend to become so complex that they are
often nigh-impossible to navigate successfully (Figure 60).

Page 66

5. RESULT

Figure 60: Very large maps generated by the agent- and cellular automata-based
approaches.

Between the two extremes of trivial and challenging exploration are the other
three algorithms we implemented. The levels generated by the TK, grammar-
based and space partitioning algorithms all have a similar structure of rooms
connected by corridors, with occasional branching paths. The random nature
of the TK algorithm’s corridor placement means that it is possible to generate
levels with more than one path to the goal, which could serve to reduce the
amount of backtracking a player has to do. Furthermore, the TK algorithm in-
herently packs rooms as tightly as possible, which means that the player never
has to cross great distances to get from one end of the level to the other.

In contrast, the space-partitioned levels are laid out in such a fashion that the
entrance and exit are always as many rooms apart as possible, which never
makes it trivially easy to find the exit. Such a property also means that fac-
tors such as level size and room amount can have considerable influence on
exploration-related difficulty.

Compared to the previous two, the grammar-based levels are significantly less
consistent in terms of exploration difficulty. These levels range from ones that
simply consist of only an entrance and an exit room, to a sprawling arrangement
of branching paths upon branching paths where it is easy to get lost (Figure 61).
This makes them a poor choice for situations where one might desire a sequence
of levels which follow some manner of difficulty progression.

Page 67

5. RESULT

Figure 61: Two levels generated by the grammar-based approach with very
different results.

Combat-related difficulty

Since enemies are the only thing that can put a permanent stop to the player’s
progress, their placement has a considerable impact on a level’s difficulty. All
algorithms except for the grammar-based one generate enemies in a somewhat
similar manner by placing them after the level’s layout is finished. This ap-
proach lets them have the number of enemies depend on specific elements of the
level. Of particular note here are the cyclic and agent-based algorithms, which
both try to balance enemy frequency against the value of the treasures that are
found in rooms, leading to a correlation between risk and reward.

Since the cellular automata-based levels do not contain rooms in the same way
that the other level types do, the algorithm cannot easily take the level struc-
ture into account when placing enemies. This can lead to narrow passages filled
with a large number of enemies, which can be tough to navigate for the player.
The grammar-based levels cannot employ the strategies used by the other levels
since rooms are designated to contain enemies before they are built. While this
can lead to oddities such as rooms having too few enemies for their size, it also
opens up possibilities for letting enemy rooms stand in the way of important
rooms further down the path, which can give levels a more “hand-crafted” feel.

Adding to the complexity of combat-related difficulty is the concept of weapons.
In Fluky, the player character needs to carry a weapon to be able to attack
enemies, and these weapons wear down and break with repeated use. This
means that if the player is unable to find new weapons on a regular basis, even
enemy encounters that are few and far between will eventually prove lethal.
Most of our algorithms simply generate weapons randomly, with no guarantee
that one shows up in a level at all. The only algorithm that handles weapons in
a different manner is TK, where every level is guaranteed to have exactly one
weapon.

Page 68

5. RESULT

Enjoyment of the generated content

To analyze and determine the enjoyment of content is basically like measuring
“fun”, which is difficult, intangible and highly subjective. Consequently, during
the analysis of the generated content, only the factors that were deemed suffi-
ciently concrete were included.

The enjoyment is connected to the other aspects already analyzed: variation
and difficulty. Generating levels with low variety decreases the replayability of
the game and cause the player to get bored faster. A level which is too difficult
makes the player frustrated, but if the level is instead too easy, the player will
not find the game challenging enough and therefore considers it to be boring.
As those factors have already been analyzed in the previous sections, they will
not be further discussed in this section.

One important factor in determining if a game or level is enjoyable is if it is
engaging. If a game is not, the player could feel bored and unmotivated. It
is difficult to procedurally generate engaging content consistently, since it is a
complex task to do even manually. There are multiple things that can make
a game engaging. One aspect discovered was how close the rooms are to each
other. For example, the grammar and TK algorithms generate rooms with little
space between them, which increases the pace of the gameplay and thereby keeps
the player engaged. The space partitioning PCG, on the other hand, generates
levels with a greater distance between the rooms, making the pace generally
slower. This causes some uneventful and boring moments. Another thing we
found to increase the engagement was the presence of enemies in all parts of the
level, like the levels generated by the cyclic PCG has.

Backtracking – when the player is forced to retrace their steps – is an aspect rel-
evant to most of the implemented PCGs because Fluky contained locked doors
and keys. This can introduce the element of having to return to earlier parts of
the level to try to find a key, to in turn be able to unlock a door and continue.
This is in some cases a good thing, and even important in puzzles, but can also
feel boring and like a waste of time if it is overused. The agent-based PCG
generates levels in a way that makes backtracking a vital part of the level, and
often necessary to be able complete a level. This is fun on smaller levels as the
backtracking does not take so much time, but on larger levels it can take a very
long time. The levels generated by the cyclic PCG are completely different,
never forcing the player to backtrack. While this eliminates the potentially long
and boring backtracking, it makes the levels linear and removes the element of
free exploration. The other four PCGs are somewhat similar to each other in
this regard, which is that backtracking is sometimes necessary. However, the
space partitioning and the cellular automata PCGs generally generate larger
levels, increasing the risk of a level having tedious backtracking.

Another important aspect is to have levels that are interesting and fun to ex-

Page 69

5. RESULT

plore. This is somewhat coupled with variety since if the variety of the content is
bad, there is not much to explore. Another important aspect of exploration is to
encounter and find new interesting things, which none of the explored PCGs can
provide due to the small number of game objects and tiles in Fluky. However,
the levels created by the cellular automata algorithm has a unique structure
that makes it interesting to explore. However, exploring these levels can some-
times be time-consuming, because it can be difficult to navigate through the
level due to their unpredictability and large size. The levels generated from
the agent based algorithm have a similar structure to cellular automata, but are
smaller and more narrow, thus limiting the space needed for proper exploration.

Among the algorithms we explored, the four not mentioned above generate lev-
els with quite uninteresting structures, since all of them are based on generating
rectangular rooms in some way. However, out of those four, the space parti-
tioning PCG generates levels that are somewhat explorable. This is due to the
fact that it creates large levels with a lot of rooms, and that it always generates
items in the blind alleys, which encourages the player to explore more. Also,
the TK algorithm generates levels where the player is often able to pick several
paths. This makes it easier and more engaging to explore since the player is
faced with multiple alternatives. But the exploration is still limited by the small
sizes of the levels.

5.3.3 Summary of each algorithm
We have learned a lot from the exploration of different PCG algorithms, as
described in previous sections. Our insights about each algorithm are therefore
summarized in the following subsections, to make it easily accessible.

Agent-based

The agent-based approach is seldom a complete solution. It may produce all of
the content, or only small parts of it, entirely depending on its agents’ implemen-
tation. We have learned that it is a very flexible approach, as the customization
of the agents is simple yet has much potential. It can also be used as part of
other larger, more complex algorithms: either as a means to that algorithm’s
end, or to fill in blind spots that the other algorithm cannot solve. See Section
5.3.1 for examples.

This approach is very dependent on its agents, and is therefore difficult to eval-
uate as a whole. But if one is careless, the resulting agents have a tendency to
be very rigid and hard to tweak, or use in other situations. Our implementation
showed a lack of variation and had scalability issues, so these problems should
be kept in mind when using the agent-based approach, since they could impact
the quality of the result negatively.

An interesting example of a possible area of use is to have agents simulate player

Page 70

5. RESULT

behavior, which might be a powerful tool when verifying playability. However,
these verified levels would still need to be checked for gameplay value, as the
levels can be solvable while still being tedious or even boring.

Nevertheless, agent-based PCG is a powerful approach with great potential, that
can allow for many different agents to work together towards a shared goal, or
even in concert to iterate towards complex solutions that would be hard to
attain in other ways.

Cellular Automata

Cellular automata can be useful in situations where an unstructured and natural-
looking element is desired. However, its low-level nature results in a lack of
structure, which can require a lot of work to parse into some kind of high-level
representation in order to gain more control over the level design, if this is nec-
essary.

Areas where this lack of control is not a problem could be more esthetic ele-
ments, like grass or any other element where the result should look unstructured
and natural, but where there is not a hard requirement for validation since the
result will not affect the playability of the level.

This algorithm requires a lot of trial and error to find appropriate settings – the
results of these settings can be hard to predict, and a difference in the number
of iterations can make the end results very different.

Cyclic

Cyclic PCG creates levels with high tempo as the player never has to backtrack,
always encountering new enemies and puzzles. It is an algorithm that needs a
lot of variation to avoid feeling repetitive and predictable, like our implementa-
tion does. This algorithm is therefore best implemented in a rather substantial
game with lots of features that can be used to increase the variety of cycles.
However, adding lots of different cycles would naturally increase the time it
takes to develop the algorithm.

A good thing about cyclic PCG is that it can easily represent a level as a graph
before all the heavy work of translating it to a map has begun. This way it
is easy to check the graph for major flaws or bad level design, and correct it
before too much time has been spent. The developers also need to build a good
system for placing rooms along the cycles that will not overlap with each other,
as well as smart corridor algorithms, as it can be hard to place rooms in a well-
structured manner when there can be cycles upon cycles of rooms in the map.

The algorithm seems to handle scaling pretty well. In larger maps, you can
simply allow the algorithm to generate larger cycles and add more cycles that

Page 71

5. RESULT

originate from these, but then again you need to watch out so that rooms and
corridors do not start to overlap.

Grammar-based

Grammar-based level generation is well-suited for situations where one wants
to build a level in terms of smaller-scale structures, with little or no regard to
the level as a whole. One of the primary challenges that needs to be overcome
for such an algorithm to work is the matter of constructing a suitable model
that is both able to properly represent a level and be used with a grammar sys-
tem. Provided a good model is used, it might even be possible to decouple the
level’s layout from the intended purposes of its components, as seen with our
implementation. When taken to its extreme, such a decoupling could enable a
grammar that is only expressed in terms of the player’s actions, which enables
a lot of interesting design possibilities.

The downsides of the grammar-based approach are the aforementioned lack of
control over the level as a whole, and the unpredictable manner in which it ap-
plies its rules. These factors mean that ultimately, the algorithm’s creator has
very little control over how a finished level will look, as seen in our approach.
These could be diminished by allowing different sets of rules to operate in dif-
ferent phases of the level generation process, or by letting certain rules have an
increased probability of being applied.

Space partitioning

The space partitioning approach is easy to grasp and generates consistent con-
tent. The algorithm itself is straightforward and does not have a lot of different
approaches and parameters that can be adjusted. This makes it easy to recreate
the space partitioning algorithm and get similar content. However, the content
generated by the algorithm is rather repetitive and predictable, since it consis-
tently generates rooms that look like each other.

Another problem is that space partitioning only provides a level with connected
disjoint rooms, which in itself is not enough for an enjoyable game. It would
probably be able to generate better and more diverse content if it were to be
combined with another PCG algorithm. The other algorithm might in that case
take the level generated by the space partitioning algorithm and make it more
interesting, unique and complete. For example some agent from the agent based
PCG could traverse the level and generate items. Another example idea is to
apply cellular automata to make the structure and shape of the rooms more
unique and natural.

TK algorithm

This approach creates a closely connected map, with many rooms and short
corridors. This in combination with the fact that there are often many ways

Page 72

5. RESULT

to reach different parts of the map keeps the tempo in the level high. In the
way our implementation works, it does not scale very well, as the rooms get too
large and the variety of content is too small. It is however possible to tweak
it in a number of ways to remedy this. The algorithm could in fact easily be
modified to create quite different maps. For example changing the size of the
rooms, the distance between them or the number of main rooms, could give the
map a very different look. This modular design allows it to easily be combined
with other algorithms at different stages. You could for example take a map of
unconnected rooms and use this algorithm to generate corridors between them,
creating a more interesting map than regular corridors perhaps would.

The algorithm could work well for a variety of games. However, the settings
have to be tailored to the game and the size of the level desired. One of the
major drawbacks with this approach, as it is quite unique and not widely used,
is the lack of resources available to the developer.

Page 73

6. DISCUSSION

6 Discussion
In this section we discuss our results and what they entail, as well as the va-
lidity of them and how they might have varied had we done things differently.
Furthermore, we bring up some of the issues we had along the way and how
they affected the project. We also consider the effects of our work and what can
be done to further explore this topic in the future.

6.1 Result
As we had limited time to develop the game and the different algorithms we
tested, the comparisons are based upon rather basic implementations of both
the game and the algorithms. This may have affected the results slightly as
some of the algorithms would have benefited from more development time and
a more content rich game to really show their full potential and to get rid of
some of their problems. The cyclic PCG is an example of an algorithm which
with more development time could have implemented more kinds of cycles, solv-
ing the problem of it being very predictable. With that said, we still feel like
we managed to develop all parts to a satisfactory level where we were able to
get a general feel for how the different algorithms differ and what their general
strengths and weaknesses are.

There is also the fact that our results from the comparison of the different
algorithms are based on subjective thoughts which others may disagree with,
since it is difficult to evaluate the quality of content in an objective way. Based
upon the fact that we are six people and all of us agreed on the results we got
when comparing the algorithms, we feel confident that the results are valuable
to others.

6.2 Method
Before we started development of Fluky, we considered another approach for
exploring PCG: developing one or several PCG algorithms for an existing game.
This would have allowed us to focus solely on the exploration of PCG, and as
such may have given us a deeper understanding of the field. However, such
an approach also carried with it certain drawbacks. For one, we would need
to spend time finding an appropriate game and familiarizing ourselves with its
codebase. It would be very difficult to accurately predict how much time we
would need for this step when making our time plan. Secondly, our PCG al-
gorithms would have to take the game’s features and mechanics into account
when generating levels, which could have made them significantly more complex
than we had time or need for. These drawbacks were what made us settle for
building a game of our own design, where we had full control over all systems
and mechanics.

Page 74

6. DISCUSSION

Our decision to begin implementing six different PCG algorithms halfway into
the implementation phase had a significant impact on the way our work pro-
gressed, and was the only notable departure from our initial plan. Ultimately, we
feel that this decision helped us gain a broader understanding of PCG. However,
there is a non-negligible possibility that our original plan – to work on the game
and a PCG algorithm in parallel – could have given us some other insight that
now eluded us, since it would have hopefully let us create a more complex game.

Throughout the implementation phase, we stayed true to our initial decision to
work in an agile manner. This felt like a very natural way to work, considering
that we implemented new features one by one on a priority basis. Even when
we started working on the PCG algorithms, the agile workflow of implementing
and testing parts of the algorithms piece by piece felt like the natural way to
structure our work.

Another aspect of our work that remained true throughout the implementa-
tion phase is that we usually programmed independently. This way of working
granted us a lot of flexibility and made it possible to implement many different
components and algorithms in parallel. However, it is possible that working on
tasks in groups or pairs could have let us solve certain problems faster.

Even though we programmed independently, our work was still very much of a
collaborative nature. We held meetings regularly and frequently, and commu-
nicated via Slack and various other collaboration tools. We are certain that the
ever-present focus on communication was crucial for our success.

6.3 Validity and generalization
The result of the development of our game Fluky and the included six PCG al-
gorithms is quite easy to measure objectively: we have clearly created a working
game and six different PCG systems for that game. We are also confident that
we have learned a lot from our exploration of PCG. The resulting knowledge,
on the other hand, is harder to verify. As mentioned in Section 6.1, most of our
evaluation results are very subjective. We have strived to base our conclusions
on sound argumentation, references and experience. Yet the results are still far
from facts due to the subjectivity.

Our project has been an exploration of PCG with the goal to benefit game de-
velopers, students, and researchers that want to explore similar areas. Whether
our work is beneficial to these groups or not is therefore the most important
question when considering the validity of our results.

We deem our resulting comparison to be very useful, primarily to those that
are interested in dungeon generation, or want to use some of the approaches we
have explored. To others that are looking for general insights about PCG, there

Page 75

6. DISCUSSION

might still be useful things to be found. However, the level of generalization in
this case is very high, and our work should therefore not remain the only, or even
the primary source of knowledge, but rather more of an additional reference.

6.4 Ethical and societal aspects
Early on in the project, we considered the effects that our work, as well as
PCG in general, could have on society. We came up with a few possible effects.
Firstly, that PCG could potentially put level designers out or work, and sec-
ondly, that it could allow indie game developers to create more content with less
resources. Furthermore we considered if there could be a connection between
PCG and video game addiction. However, we concluded that this is a far larger
issue where PCG is only one small factor. For this reason, we did not investigate
this issue any further.

It can be argued that PCG could lessen the need for content designers, causing
unemployment in the field. As content is generated automatically, far less time
is needed to create vasts amounts of it. However, it allows smaller companies
with fewer resources to easier get into the game industry. By this reasoning,
PCG would rather create opportunities.

Considering our project in particular, the risk of somebody losing their job on
account of our work is low. This is because our work has been exploratory in
its nature. We have not tried to create any new tools or improve PCG to take
it to a level where it could replace a designer. What we have done is try to map
some of the properties of different types of PCG. As we discovered during this
project, trying to figure out what algorithm will work well or provide a specific
result is no small task. We therefore believe that someone in the early stages of
developing a game could benefit from this report when implementing their own
PCG.

6.5 Future work
There are several aspects of our project that could easily be extended. There
are also many possible projects that could continue what we have started in this
project.

First off, the game itself is very rudimentary and it could therefore be interesting
to expand it with at least most of the features outlined in the Design Document,
if not even more. This would result in many more mechanisms to experiment on
with the different PCG algorithms, allowing a deeper exploration of the PCG
concepts.

Secondly, we have only scratched the surface of the vast subject that is PCG. We
think that to explore even more algorithms, as well as explore them more thor-

Page 76

6. DISCUSSION

oughly, would really benefit our research. More algorithms could add greater
insights and multifaceted views of how the concept of PCG works. Longer work
on each algorithm might also allow us to really figure out exactly what works
and what does not, try different approaches to the same algorithm, compare
additional aspects between algorithms, and other interesting venues.

Finally, our evaluation and comparison of the algorithms have followed a straight-
forward arrangement of discussing our experiences and then summarizing the
result. Additionally, one could perform user tests on the different algorithms
and gather feedback from the users. Another approach could be to do a much
more detailed study of each algorithm, that possibly could give us different or
additional realizations.

Taking a step away from this project and looking at the research area in general,
a similar study to ours but on a three-dimensional game instead would be really
interesting to see. Perhaps even with the exact same PCG algorithms, to allow
for useful comparisons between the projects. A completely different approach
could also be to start a project around trying to develop a completely new PCG
algorithm, that is sufficiently generic to benefit others.

Page 77

7. CONCLUSION

7 Conclusion
Procedural content generation is a powerful tool used frequently in game de-
velopment to randomly generate content that otherwise would take too long to
create or take up too much storage space. A significant problem with PCG,
however, is that it is very hard to ensure quality, or even to clearly define high-
quality content. This is because both the PCG system and the definition of its
quality depend largely on the game for which it is developed.

This project has therefore been about the exploration of PCG, through the gath-
ering of knowledge about different kinds of PCG algorithms and approaches. A
significant part of this exploration has been the creation of the small game Fluky
and the PCG that runs within it. The game is presented in two dimensions,
viewed from above and involves steering a boy with a sword through an endless
number of dungeons filled with monsters and treasure. The implemented PCG
is therefore focused on the generation of game levels.

We have explored PCG mainly by implementing six different algorithms, listed
here:

Agent-based
Lets agents move around and perform certain missions, such as building
corridors or placing items, until the result can be used as a level.

Cellular automata
Iterates through several generations in a grid of random tiles, where every
tile has a life cycle depending on its neighborhood. In this way, coherent
levels can emerge.

Cyclic
Creates a graph with cycles, and gradually expands it by adding new
cycles, which generates levels with uninterrupted flow.

Grammar-based
Uses the concept of formal grammars. A simple string of characters is
evolved by randomly exchanging different parts of it with other versions,
and then translating the abstract concept to concrete levels.

Space partitioning
Generates a dungeon by dividing a map a number of times, assigning each
part a room of random size and then connecting them.

TK algorithm
A large number of rooms are created and placed adjacent to each other.
Certain rooms are then chosen and connected, creating compact levels.

Our goal has been to accumulate all possible knowledge and insights about
the development of PCG, to help future game developers and others interested

Page 78

7. CONCLUSION

in PCG to make well-informed choices. To meet this goal, we have compiled
our observations and discussed our thoughts. The resulting summary of our
knowledge has then been presented in the following manner:

Working with the algorithms
Realizations about challenges during development of PCG.

Combination possibilities
How combining different PCG approaches with each other can benefit
a game.

Adjusting and adapting algorithms
Different ways to adjust and adapt algorithms, and what to keep in
mind when doing so.

Quality of the generated content
Our conclusions about what influences the quality of the generated result
of PCG algorithms.

Variety
How variety in procedurally generated content can be both good and
bad in different ways.

Difficulty
Observations about how difficulty can affect a player’s experience,
and different aspects that in turn affect difficulty.

Enjoyment of the generated content
The aspects of PCG which influence how enjoyable the content is.

Summary of the observations of each algorithm
Brief accounts of what to expect when using one of the six PCG approaches
that we have explored during this project.

As an example, we realized how much the level of abstraction in which an al-
gorithm primarily performed could influence how well it worked in combination
with other algorithms on different abstraction levels, as well as how easy or
hard it was to adapt the algorithm to new conditions. This means that it is an
important aspect to take into consideration when choosing PCG algorithms.

We also realized that when it comes to the enjoyment of levels generated by
PCG algorithms, many different aspects affect the result. The variety of the
level plays a big role, for example, as too little makes it feel very mechanical,
but too much can feel chaotic. You would rather want just the right amount
of variety in combination with an illusion of planning, to make the level feel
handmade.

The implementation of Fluky is rather simple, so the algorithms used in the
game did not have as much to interact with as we would have wished. Our
observations are of course also subjective and are therefore not entirely reliable

Page 79

7. CONCLUSION

in all situations. However, we believe that those with an interest in developing
or researching PCG algorithms may find this report and our observations ben-
eficial.

The area of general practices in procedural content generation could definitely
need more research, as we found few earlier papers covering it. We ourselves
have only scratched the surface; exploring additional algorithms, investigating
them more thoroughly and adding extensive user tests are all remaining avenues
to look into. One could also do a similar exploration of PCG but in three di-
mensions, or attempt to develop new and original PCG algorithms, to add to
the field.

Page 80

REFERENCES

References
[1] N. Shaker, J. Togelius, and M. J. Nelson, Procedural Content Generation

in Games. Springer, 2016.

[2] (2016) No Man’s Sky. Hello Games. [Online]. Available: https:
//www.nomanssky.com/

[3] (2016) Metacritic: No Man’s Sky reviews. [Online]. Available: http:
//www.metacritic.com/game/playstation-4/no-mans-sky/user-reviews

[4] (1980) Rogue. Epyx.

[5] (1978) Beneath Apple Manor. The Software Factory.

[6] David Braben, Ian Bell. (1984) Elite. Acornsoft. [Online]. Available:
http://acornsoft.co.uk/

[7] (2009) The History of Elite: Space, the Endless Frontier. Gamasutra.
[Online]. Available: https://www.gamasutra.com/view/feature/132375/
the_history_of_elite_space_the_.php

[8] (2014) Elite: the game that changed the world. The Telegraph.
[Online]. Available: http://www.telegraph.co.uk/technology/video-games/
11051122/Elite-the-game-that-changed-the-world.html

[9] (2013) Berlin Interpretation. [Online]. Available: http://www.roguebasin.
com/index.php?title=Berlin_Interpretation

[10] (2017) Unexplored. Ludomotion. [Online]. Available: http://store.
steampowered.com/app/506870/Unexplored/

[11] A Handcrafted Feel: ‘Unexplored’ Explores Cyclic Dun-
geon Generation. [Online]. Available: http://ctrl500.com/tech/
handcrafted-feel-dungeon-generation-unexplored-explores-cyclic-dungeon-generation/

[12] (2006) Dwarf Fortress. Bay 12 Games. [Online]. Available: http:
//www.bay12games.com/dwarves/

[13] (2011) Minecraft. Mojang. [Online]. Available: https://minecraft.net

[14] (2015) Here’s how ’Minecraft’ creates its gigantic worlds. En-
gadget. [Online]. Available: https://www.engadget.com/2015/03/04/
how-minecraft-worlds-are-made/

[15] Minecraft Wiki: World boundary. Mojang. [Online]. Available: https:
//minecraft.gamepedia.com/World_boundary

Page 81

https://www.nomanssky.com/
https://www.nomanssky.com/
http://www.metacritic.com/game/playstation-4/no-mans-sky/user-reviews
http://www.metacritic.com/game/playstation-4/no-mans-sky/user-reviews
http://acornsoft.co.uk/
https://www.gamasutra.com/view/feature/132375/the_history_of_elite_space_the_.php
https://www.gamasutra.com/view/feature/132375/the_history_of_elite_space_the_.php
http://www.telegraph.co.uk/technology/video-games/11051122/Elite-the-game-that-changed-the-world.html
http://www.telegraph.co.uk/technology/video-games/11051122/Elite-the-game-that-changed-the-world.html
http://www.roguebasin.com/index.php?title=Berlin_Interpretation
http://www.roguebasin.com/index.php?title=Berlin_Interpretation
http://store.steampowered.com/app/506870/Unexplored/
http://store.steampowered.com/app/506870/Unexplored/
http://ctrl500.com/tech/handcrafted-feel-dungeon-generation-unexplored-explores-cyclic-dungeon-generation/
http://ctrl500.com/tech/handcrafted-feel-dungeon-generation-unexplored-explores-cyclic-dungeon-generation/
http://www.bay12games.com/dwarves/
http://www.bay12games.com/dwarves/
https://minecraft.net
https://www.engadget.com/2015/03/04/how-minecraft-worlds-are-made/
https://www.engadget.com/2015/03/04/how-minecraft-worlds-are-made/
https://minecraft.gamepedia.com/World_boundary
https://minecraft.gamepedia.com/World_boundary

REFERENCES

[16] G. Smith, E. Gan, A. Othenin-Girard, and J. Whitehead, “PCG-based
Game Design: Enabling New Play Experiences Through Procedural
Content Generation,” in Proceedings of the 2Nd International Workshop
on Procedural Content Generation in Games, ser. PCGames ’11.
New York, NY, USA: ACM, 2011, pp. 7:1–7:4. [Online]. Available:
http://doi.acm.org/10.1145/2000919.2000926

[17] J.Togelius, T.Justinussen, and A.Hartzen, “Compositional Procedural Con-
tent Generation,” 2012.

[18] G. Smith, “Understanding Procedural Content Generation: A Design-
Centric Analysis of the Role of PCG in Games,” 2014.

[19] (2013) Generate Random Cave Levels Using Cellular Automata.
[Online]. Available: https://gamedevelopment.tutsplus.com/tutorials/
generate-random-cave-levels-using-cellular-automata--gamedev-9664

[20] D. Maung and R. Crawfis, “Applying Formal Picture Languages to Proce-
dural Content Generation,” in 2015 Computer Games: AI, Animation, Mo-
bile, Multimedia, Educational and Serious Games (CGAMES), July 2015,
pp. 58–64.

[21] R. Linden, R. Lopes, and R. Bidarra, “Designing Procedurally
Generated Levels,” in AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, 2013. [Online]. Available: https:
//www.aaai.org/ocs/index.php/AIIDE/AIIDE13/paper/view/7450

[22] V. Valtchanov and J. A. Brown, “Evolving Dungeon Crawler Levels
with Relative Placement,” in Proceedings of the Fifth International C*
Conference on Computer Science and Software Engineering, ser. C3S2E
’12. New York, NY, USA: ACM, 2012, pp. 27–35. [Online]. Available:
http://doi.acm.org/10.1145/2347583.2347587

[23] J. Maturana. (2009) General Schema of an Evolutionary Algorithm
(EA). [Online]. Available: https://commons.wikimedia.org/wiki/File:
Evolutionary_Algorithm.svg

[24] (2017) Basic BSP Dungeon generation. [Online]. Available: http://www.
roguebasin.com/index.php?title=Basic_BSP_Dungeon_generation

[25] M. McLaughlin, “What Is Agile Methodology?” 2018. [Online]. Available:
https://www.versionone.com/agile-101/agile-methodologies/

[26] Trello homepage. [Online]. Available: https://www.trello.com/

[27] “What is Scrum?” 2018. [Online]. Available: https://www.scrum.org/
resources/what-is-scrum

[28] A. Powell-Morse, “Waterfall Model: What Is It and When Should
You Use It?” 2016. [Online]. Available: https://airbrake.io/blog/sdlc/
waterfall-model

Page 82

http://doi.acm.org/10.1145/2000919.2000926
https://gamedevelopment.tutsplus.com/tutorials/generate-random-cave-levels-using-cellular-automata--gamedev-9664
https://gamedevelopment.tutsplus.com/tutorials/generate-random-cave-levels-using-cellular-automata--gamedev-9664
https://www.aaai.org/ocs/index.php/AIIDE/AIIDE13/paper/view/7450
https://www.aaai.org/ocs/index.php/AIIDE/AIIDE13/paper/view/7450
http://doi.acm.org/10.1145/2347583.2347587
https://commons.wikimedia.org/wiki/File:Evolutionary_Algorithm.svg
https://commons.wikimedia.org/wiki/File:Evolutionary_Algorithm.svg
http://www.roguebasin.com/index.php?title=Basic_BSP_Dungeon_generation
http://www.roguebasin.com/index.php?title=Basic_BSP_Dungeon_generation
https://www.versionone.com/agile-101/agile-methodologies/
https://www.trello.com/
https://www.scrum.org/resources/what-is-scrum
https://www.scrum.org/resources/what-is-scrum
https://airbrake.io/blog/sdlc/waterfall-model
https://airbrake.io/blog/sdlc/waterfall-model

REFERENCES

[29] C. Addis. (2018) What Are The Best Programming Lan-
guages For Game Design? [Online]. Available: https:
//www.gamasutra.com/blogs/ConnorAddis/20180411/316420/What_
Are_The_Best_Programming_Languages_For_Game_Design.php

[30] LibGDX homepage. [Online]. Available: https://libgdx.badlogicgames.
com/

[31] LWJGL homepage. [Online]. Available: https://www.lwjgl.org/

[32] LibGDX: Goals and Features. [Online]. Available: https://libgdx.
badlogicgames.com/features.html

[33] “What is version control,” 2018. [Online]. Available: https://www.
atlassian.com/git/tutorials/what-is-version-control

[34] Git homepage. [Online]. Available: https://git-scm.com/

[35] GitHub homepage. GitHub, Inc. [Online]. Available: https://github.com/

[36] BitBucket homepage. Atlassian. [Online]. Available: https://bitbucket.
org/product

[37] The LaTeX Project homepage. [Online]. Available: https://www.
latex-project.org/

[38] (2018) Google Docs homepage. Google. [Online]. Available: https:
//www.google.com/intl/en/docs/about/

[39] Google Drive homepage. [Online]. Available: https://www.google.com/
drive/

[40] ShareLaTeX homepage. [Online]. Available: https://www.sharelatex.com/

[41] Gantt.com. [Online]. Available: http://www.gantt.com/

[42] D. Garlan, “Software Architecture: A Roadmap,” in Proceedings of
the Conference on The Future of Software Engineering, ser. ICSE ’00.
New York, NY, USA: ACM, 2000, pp. 91–101. [Online]. Available:
http://doi.acm.org/10.1145/336512.336537

[43] D. Skrien, Object-Oriented Design Using Java. McGraw-Hill, 2009.

[44] GWT Project. [Online]. Available: http://www.gwtproject.org/articles/
testing_methodologies_using_gwt.html

[45] G. Reese, Database Programming with JDBC and Java, Second Edition.
O’Reilly & Associates, 2000.

[46] (2014) Tiny keep. Digital Tribe. [Online]. Available: https://store.
steampowered.com/app/278620/TinyKeep/

Page 83

https://www.gamasutra.com/blogs/ConnorAddis/20180411/316420/What_Are_The_Best_Programming_Languages_For_Game_Design.php
https://www.gamasutra.com/blogs/ConnorAddis/20180411/316420/What_Are_The_Best_Programming_Languages_For_Game_Design.php
https://www.gamasutra.com/blogs/ConnorAddis/20180411/316420/What_Are_The_Best_Programming_Languages_For_Game_Design.php
https://libgdx.badlogicgames.com/
https://libgdx.badlogicgames.com/
https://www.lwjgl.org/
https://libgdx.badlogicgames.com/features.html
https://libgdx.badlogicgames.com/features.html
https://www.atlassian.com/git/tutorials/what-is-version-control
https://www.atlassian.com/git/tutorials/what-is-version-control
https://git-scm.com/
https://github.com/
https://bitbucket.org/product
https://bitbucket.org/product
https://www.latex-project.org/
https://www.latex-project.org/
https://www.google.com/intl/en/docs/about/
https://www.google.com/intl/en/docs/about/
https://www.google.com/drive/
https://www.google.com/drive/
https://www.sharelatex.com/
http://www.gantt.com/
http://doi.acm.org/10.1145/336512.336537
http://www.gwtproject.org/articles/testing_methodologies_using_gwt.html
http://www.gwtproject.org/articles/testing_methodologies_using_gwt.html
https://store.steampowered.com/app/278620/TinyKeep/
https://store.steampowered.com/app/278620/TinyKeep/

REFERENCES

[47] (2013) Procedural Dungeon Generation Algorithm Explained. [On-
line]. Available: https://www.reddit.com/r/gamedev/comments/1dlwc4/
procedural_dungeon_generation_algorithm_explained/

[48] E. W. Weisstein. (2018) Minimum spanning tree. MathWorld–A Wolfram
Web Resource. [Online]. Available: http://mathworld.wolfram.com/
MinimumSpanningTree.html

[49] sheep @ opengameart.org. [Online]. Available: https://opengameart.org/
content/alternate-lpc-character-sprites-george

[50] mechaelite @ DeviantArt. [Online]. Avail-
able: https://mechaelite.deviantart.com/art/
RPG-Maker-Warhammer-40k-Assassins-Sprites-463389091

[51] Orteil. [Online]. Available: http://pixeljoint.com/pixelart/90714.htm

[52] V. Jaimini. (2017) Flood-fill algorithm. HackerEarth. [Online].
Available: https://www.hackerearth.com/practice/algorithms/graphs/
flood-fill-algorithm/tutorial/

[53] M. Kerssemakers, Procedural Adventure Generation: The Quest of
Meeting Shifting Design Goals with Flexible Algorithms. Cham:
Springer International Publishing, 2017, pp. 151–173. [Online]. Available:
https://doi.org/10.1007/978-3-319-53088-8_9

Page 84

https://www.reddit.com/r/gamedev/comments/1dlwc4/procedural_dungeon_generation_algorithm_explained/
https://www.reddit.com/r/gamedev/comments/1dlwc4/procedural_dungeon_generation_algorithm_explained/
http://mathworld.wolfram.com/MinimumSpanningTree.html
http://mathworld.wolfram.com/MinimumSpanningTree.html
https://opengameart.org/content/alternate-lpc-character-sprites-george
https://opengameart.org/content/alternate-lpc-character-sprites-george
https://mechaelite.deviantart.com/art/RPG-Maker-Warhammer-40k-Assassins-Sprites-463389091
https://mechaelite.deviantart.com/art/RPG-Maker-Warhammer-40k-Assassins-Sprites-463389091
http://pixeljoint.com/pixelart/90714.htm
https://www.hackerearth.com/practice/algorithms/graphs/flood-fill-algorithm/tutorial/
https://www.hackerearth.com/practice/algorithms/graphs/flood-fill-algorithm/tutorial/
https://doi.org/10.1007/978-3-319-53088-8_9

A. DESIGN DOCUMENT

A Design Document

Page I

Design Document (first draft)
Prio 1: Needs to be in
Prio 2: Really want
Prio 3: Not necessary
Other: General decisions

● (Story)
○ See PCG

● Characters

○ Main character
○ Enemies

■ Hazardous critters (damage on contact)
■ Melee
■ Ranged
■ Magical

● Level/environment design

○ Top-down
○ Finite levels
○ Rectangular levels (grids of some sort)
○ Increasing level size (to make it harder / more interesting)
○ Some kind of goal (maybe a door to stairs)
○ Some kind of labyrinth - must be solvable!!
○ collectibles (coins, health, weapons, experience, etc.)

■ weapons
■ experience
■ health
■ coins

○ May or may not be larger than the screen
○ Cannot revisit levels
○ Traps / dangerous parts of the environment (spikes, etc)
○ Holes/non-traversable sections that one can see across (and ranged attacks

reach past)
■ Bridges over these sections (activated by puzzles: switches, keys, put

a box in a hole, etc)

● Gameplay
○ Sometimes environmental puzzles that (maybe) needs to be solved to reach

the goal - must be solvable!!
■ Find a key + locked door (Variation: buttons that activate bridges)
■ Pushing boxes to specific locations

■ Multiple activation spots before progression (destroy stuff, push
buttons, etc) Variation: activation IN SEQUENCE (maybe with clues?)

■ Push boxes into holes to make bridges
○ Some kind of player progression (level ups, skills, weapons, etc.)
○ Non-static environment (parts of the map is replaced by other random

sections)
■ "Stick of randomness" → Randomize sections (or rules)

○ Weapons:
■ melee (swords, knuckles?)
■ projectile
■ magic? (ranged, area damage, etc.)
■ + default starting? No starting weapon?
■ Durability / charges of weapons (to balance the power of weapons)
■ Throwing weapons?

○ Only have one weapon at a time - and dropped weapons stay on the ground
○ Permadeath?
○ Reset key-ring between levels (and all other puzzle related items)
○ Line of sight => do not see through walls

■ Fog of war => see where one have been before

● PCG
○ Per level
○ Seed-based (deterministic)
○ Puzzles and labyrinth need to be solvable (multiple solutions?)
○ Difficulty as a parameter (explore the concept etc.)
○ Gameplay rules? => For the whole game? For each level?
○ Enemy stats
○ Player behaviour => PCG decisions
○ Generate chapter names for each level (that takes some detail of the level

into account)

● Art
○ Keep it simple!
○ Wall, floor, hole, door, stairs, main character, enemies, weapons, puzzle stuff,

keys, collectibles

● Sound of Music
○ Keep it even more simple!
○ Sounds > Music
○ VERY low priority

● User Interface

○ Health
○ How many / what kind of keys
○ Which weapon and its stats (power, durability, range?)
○ Counter for collectibles / puzzle items?

○ a minimap for larger levels (maybe as a (non-essential) collectible that points
to the goal etc.)

○ Pause? + seed indicator
○ Menus?

● Game Controls

○ 4 Direction movement + attack + interaction = 6 buttons
○ cycle button (for items) => + 1 button
○ 4 attack directions => + 3 buttons

	Introduction
	Purpose
	Method
	Scope
	Ethical and societal aspects

	Background
	Games
	Earlier work and research

	Theory
	PCG algorithms
	Agent-based dungeon generation
	Cellular automata
	Cyclic PCG
	Grammar
	Search-based PCG
	Space partitioning

	Variations of PCG
	Methodology
	Software development processes
	Tools
	System architecture

	Process
	Design document
	Implementation milestones
	Time plan
	Development tools
	System architecture
	Working in an agile manner
	PCG algorithms
	Agent-based approach
	Cellular automata approach
	Cyclic approach
	Grammar-based approach
	Space partitioning approach
	TK algorithm

	Evaluating the exploration of PCG

	Result
	The game: Fluky
	The player
	Enemies and items
	Menus and user interface

	PCG algorithms
	Agent-based approach
	Cellular automata approach
	Cyclic approach
	Grammar-based approach
	Space partitioning approach
	TK algorithm

	Observations and comparisons
	Working with the algorithms
	Quality of the generated content
	Summary of each algorithm

	Discussion
	Result
	Method
	Validity and generalization
	Ethical and societal aspects
	Future work

	Conclusion
	References
	Design Document

