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Tactical Decision-Making for Highway Driving
Decision-Making in a Partially Observable Environment Using Monte Carlo Tree
Search Methods
Anders Nordmark
Oliver Sundell
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
This thesis investigates three different Monte Carlo tree search (MCTS) algorithms
for optimizing tactical decision-making during highway driving. The optimization
problem was expressed in a partially observable Markov decision process (POMDP)
framework, where the behaviors of the surrounding vehicles were modeled as non-
observable variables. The motion of the vehicles were governed by a generative
model, which used two conventional driver models; the intelligent driver model
(IDM) and minimizing overall braking induced by lane changes (MOBIL). These
models together contain eight parameters for each vehicle which estimate a vehicle’s
behaviour with respect to its longitudinal motion and lane changes. These eight
non-observable parameters were inferred by a particle filter. The algorithms were
tested in a simulated environment, where the objective was to change lanes to reach
an exit ramp in dense highway traffic. The results show that the partially observ-
able Monte Carlo planning (POMCP) based algorithms require more computational
effort to reach the same performance as the MCTS based one, due to the inherent
complexity of the history node trees. However, both methods are feasible to imple-
ment as an online tactical decision-making algorithm, where the less complex MCTS
method performs best during simulations with limited resources.

Keywords: automation, decision-making, AutoFreight, highway driving, articulated
vehicle, POMDP, particle filter, POMCP, online optimization, MCTS, lane chang-
ing.
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Chapter 1

Introduction

This chapter introduces the concept of autonomous vehicles. It describes what is
meant by tactical decision-making in autonomous vehicles, and motivates why it is
a research area that is worth to investigate. It proceeds by presenting the academic
background as a selection of relevant articles and literature that has been used in this
thesis. Lastly, it presents the thesis’ objectives, the limitations, and an outline of
the thesis’ structure.

1.1 Background

During recent decades the field of driver assistance and active safety systems has
been steadily growing. A subset of the state-of-the-art technologies that exists in
vehicles today are adaptive cruise control, blind spot detection, and automatic brak-
ing systems. This advancement is due to a lot of factors, such as road safety aspects,
and economic and environmental benefits.

The concept of autonomous vehicles is not a new thing. Already in 1926 a phantom
motor car was mentioned in the newspaper The Milwaukee Sentinel ([Pha18], p. 4).
The ’self driving’ car was controlled via radio signals from another vehicle behind
to scare people into thinking it was a ghost car. Since 1926 technology has come a
long way, and today it is not uncommon to encounter semi-automated vehicles on
public roads, which solely rely on the information gained from its sensors.

The development of autonomous vehicles does not only apply to passenger cars, but
also to commercial vehicles, such as articulated vehicles. Approximately a third of
the total transportation cost for an articulated vehicle is due to the driver’s salary
[Bar13]. The regulations concerning the driver’s work hours also greatly restrict the
amount of time that the truck is able to be in service compared to an autonomous
vehicle. Thus, driverless trucks would imply economic gains.
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1. Introduction

There exists many challenges in the context of an autonomous vehicle, one example
being how to ensure a safe interaction with human drivers. The behaviour of human
drivers can be unpredictable, and in order for the automated vehicle to drive safe
it is essential to be able to predict the surrounding traffic. This thesis is a collabo-
ration with Volvo Trucks, with the aim to develop a decision-making algorithm for
autonomous trucks during highway driving. The work is also made in association
with the project AutoFreight, where the goal is to establish an automated truck
capable of transporting goods from the port of Gothenburg to an inland harbor in
Borås. The level of automation of this truck will be SAE 4 [Int14], which means
that the vehicle is fully automated on predetermined scenarios (for example highway
driving).

1.2 Decision-making in autonomous vehicles

In an automated vehicle there is the need of decision-making for a wide range of
different applications, which can be classified into different groups, illustrated by
the pyramid Figure 1.1. At the top, the strategic planner takes long term decisions,
such as what route to take, or what velocity to keep in order to be as fuel efficient as
possible. The time between decisions in this layer is in the order of 100 seconds. The
trajectory planner, at the bottom of the pyramid, is quite the opposite. It takes low
level decisions, i.e., what steering angle and actuation to have in order to execute a
certain maneuver. This layer has to be updated about 50 times per second in order
for the maneuvers to be as safe and smooth as possible.

Strategic 
planning 

Tactical planning 

Trajectory planning 

Figure 1.1: Different levels of decision-making in an automated vehicle.

A key challenge for automated vehicles is the tactical decision-making. Somewhat
simplified, tactical decision-making refers to selecting a high-level maneuver (such
as maintain lane or lane change) that fulfill tactical and possibly also strategical
driving goals. The update frequency of this layer needs to be about once per second,
and typically considers a future time horizon of about 10–20 seconds. At the tactical
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1. Introduction

Figure 1.2: Illustration of a typical highway traffic situation for a long articulated
heavy combination vehicle.

decision layer an optimal decision can be taken with respect to a variety of criteria,
such as the properties of the road and traffic safety, and should fulfill the requests
from the strategic planning layer. Decisions on the tactical level should also, to
some extent (it doesn’t need as good dynamical models as the Trajectory planner),
be done with respect to the vehicle’s dynamics and motion capabilities, which can
be very complex for a heavy articulated combination vehicle [Nil17].

The goal of this thesis is to investigate algorithms that are able to take tactical
decisions for a heavy articulated combination vehicle. As an example consider the
traffic situation in Figure 1.2. In this scenario the truck is driving on a three-lane
highway and is surrounded by other vehicles in both the current and neighboring
lanes. To accomplish a lane change in this scenario the truck must either wait for a
sufficiently large gap to emerge, or indicate a lane change and rely on the cooperation
from the surrounding traffic.

1.3 Previous work

The articles reviewed in this section are presented in the order which they appeared
during the literature study. Thus, the articles presented in the latter paragraphs are
of more weight to the report.

In an article by Ardelt et al. [ACK12] they present an approach for modelling lane
changes during highway driving using a deterministic state machine. The method
uses a hierarchical decision process tree that validates maneuvers given their current
feasibility.

Brechtel et al. [BGD11] modelled decision-making during highway driving as a
Markov decision process (MDP), where the states are based directly upon the con-
tinuous traffic variables, such as the vehicles’ positions and velocities. The same
authors also show in [BGD14] by reformulating the problem as a partially observable
Markov decision process (POMDP) that they are able to model sensor uncertainties.
To render the problem feasible to solve, the continuous state problem is discretized
and solved by a learning algorithm.

Ulbrich & Maurer [UM13] show how to efficiently model sensor limitations by using
a signal processing network. The network projects the continuous state variables
onto a discrete high-level state space. The state transition matrices are modelled

3



1. Introduction

to fit real data. The resulting POMDP is then solved by a branch-and-bound tree
search algorithm. In another paper by the same authors ([UM15b]) they extend their
work by using an uncertain mixed-integer state space combined with a sophisticated
Bayesian network that provides a rigorous situation assessment. This measurement
model is explained in further detail in the article [UM15a].

Silver & Veness [SV10] propose an iterative algorithm called Partially Observable
Monte Carlo Planning (POMCP), which is an extension of the Monte Carlo tree
search (MCTS) algorithm to partially observable problems. The authors show that
the POMCP algorithm is able to better solve POMDPs defined over large discrete
state spaces. A strength of the MCTS algorithms is that they only rely on a gen-
erative model of the underlying MDP. This relaxes the dependency of compact
representations of the transition and observation functions. Bouton et al. [BCK17]
use POMCP to solve the decision-making problem of navigating through an urban
intersection environment. To formulate the POMDP the transition and observation
noise are modelled as Gaussian processes. To accommodate for the continuous obser-
vation space they combine the POMCP algorithm with Progressive Widening (PW),
that forces revisitation of already explored nodes in order to reduce the exponential
growth of the search tree. The same method is used in an article by Sunberg &
Kochenderfer [SHK17], where they model a lane changing-problem during highway
driving. However, this article studies the importance of inferring a driver’s inten-
tions in order to make accurate traffic predictions, and as a result act less impeding
on the traffic flow. To model the drivers they combine the Intelligent Driver Model
(IDM) [THH00] and the Minimizing Overall Braking decelerations Induced by Lane
changes-model (MOBIL) [KTH07], and estimate driver intentions with a weighted
particle filter.

In an article by Sunberg & Kochenderfer [SK17] they extend the POMCP-algorithm
to partially observable Monte Carlo planning with observational widening (POM-
CPOW) in order to be able to better solve problems defined on continuous obser-
vation spaces. They show that weighing the observation nodes in the POMCP tree
results in a more powerful tree search. The algorithm is evaluated on three different
benchmarking problems containing continuous observation spaces, and is compared
to other similar algorithms, where the POMCPOW algorithm performs the best.

1.4 Thesis objectives

As previously mentioned, the goal of the AutoFreight project is to be able to drive
autonomously from Gothenburg to Borås. This route consists mainly of highway
driving, including entry and exit ramps. This thesis therefore aims at aiding the
AutoFreight project in formulating and solving the tactical decision-making prob-
lem during highway driving. A request from Volvo was to solve the decision-making
problem without the use of any machine learning techniques. Therefore, the meth-
ods used during the thesis is inspired by the articles [SHK17] and [SK17]. Here
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1. Introduction

the problem is formulated as a POMDP, since it provides a rigorous and flexible
framework able to account for sensor uncertainties and non-observable variables,
such as the intent of other drivers, which they establish to be crucial to model in
order to make accurate predictions. The problem is then solved by using various
Monte Carlo tree search algorithms. Another property of a tactical decision-making
algorithm is that it has to be computationally efficient, since a traffic situation can
change rapidly. Thus it is of interest in the AutoFreight project to have an algorithm
able to evaluate decisions online, i.e., take decisions in real-time. This is possible
to do with an MCTS-algorithm and it is often used in applications where time is of
the essence1. In the article [SHK17] a simulation model was used, which considers
an action space containing a set of accelerations and decelerations. However, in this
thesis we want the algorithm to output high level actions, which is why the action
space will consist of control inputs to an adaptive cruise control (ACC).

The thesis objectives can be summarised as follows:

• Formulate tactical decision making for an articulated heavy vehicle in highway
operation as a partially observable Markov decision process (POMDP).

• Solve the POMDP formulation mathematically2.

• Acquire a policy through online optimisation.

1.5 Limitations

This work is presented, subject to the following limitations:

• Only decision-making during highway driving is considered.

• Due to the difficulty of verifying the solutions from black box techniques, the
problem formulation is solved without the use of machine learning.

• The surrounding vehicles were not using, or reacting to turn indicator lights.

• During simulation, road curvature and road incline was neglected.

• No external/commercial simulation environment has been used for traffic sim-
ulation.

• The truck has a full visibility range of 100 meters (a modern Tesla car has a
visibility range at up to 250 meters [Tab17]).

1The MCTS-algorithm has been used to program AI’s in board games such as chess and Go,
and also real-time applications such as Atari computer games.

2In this context ’mathematically’ refers to the use of comprehensible and transparent optimi-
sation methods, i.e. avoiding the use of any black-box techniques.
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1. Introduction

• The inputs to the decision-making algorithm are classified objects with posi-
tions and velocities.

• There is no sensor noise in the positions and velocities of all other traffic
participants. This is since typical sensor errors are relatively small compared
to the errors generated when predicting vehicle motion.

1.6 Outline

This is a brief outline of the five remaining chapters of this thesis: (The most
essential parts of the theory is being referenced).

• Theory shows how a decision-making problem can be divided into two parts,
where the first part is the environment. To model the environment, two frame-
works are presented: the Markov decision process (MDP), and the partially
observable Markov decision process (POMDP). During the implementation,
later in the thesis, only the the POMDP framework (2.2.2) will be used.
The second part of a decision-making problem is the agent, which can be di-
vided into two smaller components as well: the interpreter, and the solver.
Two different interpreters are presented: a Bayesian update, and a particle
filter (2.3.1). A number of possible solvers are presented, where the imple-
mentation consists of different versions of the commonly used Monte Carlo
tree search (MCTS) (2.4).

• Methodology presents how to formulate highway driving as a decision mak-
ing problem, and a POMDP. The chapter then presents the different algo-
rithms that will be used as tactical decision-makers. Lastly the highway driv-
ing scenario is presented, which were used to compare the performance of the
algorithms.

• Results presents how the performance of a MCTS scales with the number
of searches. It then compares the results from all the algorithms from the
scenario. Lastly the chapter shows an analysis of the time complexity of the
different algorithms.

• Discussion analyses the results from the previous chapter. It also discusses
the advantages and disadvantages of our implementation of the problem.

• Conclusion and future work connects the results to the thesis’ objectives,
and concludes what should be investigated in order to further develop the
method.
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Chapter 2

Theory

This chapter introduces the concept of decision-making and its key components—
the environment and the agent. The chapter also presents a variety of methods
that are related to solving decision making problems. A lot of the content aims at
familiarizing the reader with decision making problems, and for readers with much
knowledge about POMDPs it might be possible to skip directly to Section 2.4, where
the methods used in this thesis is presented. Lastly, at the end of the chapter there
is a short summary of the proposed methods and a justification of our choice of
methodology.

2.1 Decision-making

Decision-making can be seen as the process of selecting a course of actions among
several alternative possibilities. In decision-making the entity that executes the
action is referred to as the agent. The agent may represent something physical,
like a human or a robot, or it may be a nonphysical entity, like a support system
in a vehicle. A decision-making problem is usually defined as finding the most
beneficial action to execute based on the situation and how the agent interacts
with its environment. Generally the solution to a decision-making problem can be
divided into two sub-processes: the Environment and the Agent. The agent can be
divided further into two parts: the Interpreter and the Solver. (See Figure 2.1). The
Environment contains a model of the agent’s surroundings, how the agent interact
with it, and the rewards the agent receives for selecting different actions. In order
for the agent to observe and process its surroundings the agent has an Interpreter
that models the agent’s sensors. Lastly the Solver constitutes the brain in the agent,
and is responsible for taking decisions about what actions to execute. These three
concepts will be explained in detail during the next two sections.

7



2. Theory

Environment
Model of the world

Interpreter
Vision and sensors

Solver
The brain of the agent

Agent

Observation

Interpretation
Action

Figure 2.1: A visualization of a decision-making problem and how an agent in-
teracts with it. The environment models the agent’s surroundings, the interpreter
models how the agent reasons about its observations and sensor systems, and the
solver represents the agent’s brain and how it evaluates the different decisions.

2.2 Frameworks for modelling the agent’s envi-
ronment

Environment
Model of the world

The problem of finding an optimal policy can be arbitrarily
complex depending on the problem. As an example con-
sider modelling chess. In chess, all the information that the
agent needs in order to decide on what piece to move is
given by the current state of the chess board, meaning that
there is no noise or hidden variables involved. This means
that the interpreter is superfluous, since the observations
contain all the available information. In most real world applications, though, some
information about the environment is not observable. As an example consider mod-
elling highway driving with manually driven vehicles. There are presumably a lot
of underlying non-measurable variables that are responsible for the reactions of a
surrounding vehicle (such as for example the skill, the mood, and the intentions of
the driver). These variables might prove to be very important to model in order
to make accurate predictions. Thus, in order to model tactical decision-making, it
is important to have a general mathematical framework that is able to account for
non observable information. This section present the widely used Markov decision
process- framework (MDP), used for modelling decision-making problems similar to

8



2. Theory

chess, and its extension to noisy and partially observable variables called partially
observable Markov decision processes (POMDP).

2.2.1 Markov decision processes

An MDP is a mathematical framework for modelling decision-making under uncer-
tainty. It provides a simple and easily applicable framework able to model any-
thing from simple discrete problems to more abstract and continuous real life prob-
lems [Koc15].

Definition

An MDP is governed by the following 5-tuple:

• S defines a set of states.

• A defines a set of actions that an agent can take.

• T(s′, a, s) = P (s′|a, s) defines the probability to end up in state s′ when taking
action a in state s.

• R(s, a) ∈ R defines a scalar-valued reward for taking a specific action in a
specific state.

• γ ∈ [0, 1) is a discount factor that takes into account that actions taken now
are more important than actions taken in the future.

An MDP defines a time discrete decision-making process where an agent is located
in one of the states, which are seen as elements of the state space S: a set of all
possible states. In each time step the agent can choose to perform an action from the
action space A. After selecting an action the agent’s state is updated—a process
governed by the state transition function T. The state transitions are defined as
conditional probabilities of the current state and an action, which means that a
certain action a1 taken in a specific state s1 might not always lead to the same
state s2. The transition function in an MDP is memoryless and doesn’t need any
information about the past, only the current state and action. It means that it
assumes the so called Markov property; the future is only dependent on the present.

The main objective when studying MDPs is to find the optimal action given that
the agent is currently in state s. Such a mapping is referred to as a policy π(s). The
optimal policy π∗(s) is defined as the policy that maximizes the expected accumu-
lated rewards from state s. By using the elements of the previously defined tuple
the reward returned by following an arbitrary policy can be expressed as:

9



2. Theory

R =
∞∑
t=0

γtR(st, π(st)), (2.1)

which converges over an infinite time horizon since γ ∈ [0, 1). However, in most
applications it’s better to consider a finite time horizon, T . The optimal policy for
this horizon can be defined as:

π∗T = argmax
π

E
[
T∑
t=0

γtR(st, π(st))
]
, (2.2)

where E[·] denotes the expected value, and π∗T is the optimal policy for time horizon
T .

Grid world example

Imagine a game where an agent is placed somewhere on a discrete finite grid, like in
Figure 2.2. Within this grid there is a treasure, indicated by a golden square. There
are also obstacles in the form of trees and walls, which are depicted as green squares
and thick black lines, respectively. The purpose of the game is for the agent to reach
the treasure as fast as possible by traversing the grid. The agent can only travel
to one of the adjacent squares and there is noise added to its movement, meaning
that there is a small probability that the agent ends up in a random neighbouring
square. The game ends either when the agent reaches the treasure or accidentally
steps into one of the deadly red squares. Thus the agent has to plan its actions to
not inflict too much danger. Let’s formulate this problem as an MPD:

• The state space S consists of all the squares in the grid.

• The action space A is made up by 4 actions: up, down, left, right, that defines
the actions the agent can select in each time step.

• The transition function T governs the probabilistic movement of the agent.
Let’s say, for example, that if the agent wants to move in a direction (e.g.,
up), there is a 1/10 probability that it will instead move in another.

• The reward function for the problem consists of 3 different objectives: avoid
the red squares, find the treasure, and do so as quickly as possible. An example
of a reward function could be that the agent gets +100 points if it finds the
treasure, and is penalized by −10 points for stepping on a red square. To
model the importance of reaching the treasure as quickly as possible each step
penalizes the agent with -1 points.

By a quick inspection of the problem there are two possible solutions to this problem.
Either the agent decides to enter next to the red squares. In this strategy the path to

10



2. Theory

Figure 2.2: An example of a decision-making problem which can be described by
an MDP. The agent is located in a grid world where the goal is to reach the golden
square. The agent moves probabilistically on the grid and has to avoid stepping onto
one of the red squares. How should the agent act in order to reach the treasure?

the treasure chest is the shortest, but at the same time it is also risky—the transitions
are probabilistic, and thus the agent might unwillingly stumble off its path and step
onto a red square. The other strategy is to simply walk around the wall, which is a
longer path, but one that almost guarantees finding the chest. Which strategy is the
best one, meaning what policy π maximizes RT (π) according to (2.2), depends on
the parameters of the transition- and reward functions. Methods for solving these
kinds of problems will be presented later in the Solver section 2.3.2.

2.2.2 Partially observable Markov decision processes

The previously described problem was a decision-making problem where the only
uncertainty involved was based on the transition function. However, in this problem
the agent had perfect observability, i.e., complete certainty about its environment
and thus also its current state. This is rarely the case when modelling real world
problems, since they often contain some measurement errors or non-observable vari-
ables. A POMDP is an extension of the MDP where the agent does not have perfect
knowledge about the current state [Koc15].

Definition

A POMDP is governed by a 7-tuple, which expands the MDP model with two
additional elements:

11



2. Theory

• Z defines a set of observations z (e.g environment measurements).

• O(s′, a, z) = P (z|s′, a) defines the probability of receiving the observation z
given that the system ended up in state s′ after the agent performed the action
a.

The observations contain information about the agent’s current state. This informa-
tion is interpreted by the agent to create a distribution over what possible states it
might be in, called a belief state b(s). Thus the POMDP incorporates a belief space
B, a continuous space that defines a set of all possible belief distributions. Thus, the
belief state representation provides a framework for modelling decision-making pro-
cesses under uncertainty. The optimization of POMDPs are thus computationally
complex; the number of possible belief states are by definition infinite. However,
there are analytical methods to solve POMDPs, but they have a complexity propor-
tional to the size of the state space which often makes them infeasible ([SV10]).

A partially observable grid world example

As an example of a POMDP we extend the previous grid world example (see Sec-
tion 2.2.1) with partial observability by modelling an agent that uses sensors to
observe its environment. These sensors have a limited range, and thus the agent
can only observe the neighbouring squares of the grid. For simplicity assume that
the agent’s sensors does not contain any noise, which means that the observation
function is deterministic. This problem formulation implies that the agent is rarely
sure of where it is, and to solve the problem it has to maintain and update a belief
distribution over its possible states.

The problem is visualized in Figure 2.3 where the agent was initialized same as
before. The small 3x3 picture in the middle shows an example of what an observation
might look like, and by solely using this information it’s not possible to determine
where on the grid the agent is located. But, since the observation function is not
probabilistic it can only be located at four different places: the four squares that
are located below a green square. In this case the agent’s belief distribution is zero
over all states except for when the agent is located on these fours squares. This
belief state is depicted in the right panel, where the grey agents indicate the belief
distribution. Given no previous history the probability over these states should be
equal, i.e., pi = 1

4 . At some point the agent may observe something that makes it
completely sure of where it is, and similarly since the transition function is noisy
the agent can actually lose track of its position again. In a POMDP-representation
it is thus much more difficult to find an optimal policy, since a good solution also
involves taking steps just to improve the belief distribution.
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Figure 2.3: An example of a partially observable decision-making problem which
can be described by an POMDP. The agent is located in a grid world where the goal
is to reach the golden square. The agent moves probabilistically on the grid and has
to avoid stepping onto one of the red squares. The square in the middle represents
the agents observation given from its sensors, and by interpreting this observation
the agent can create a distribution of possible states seen in the right picture. To
update its belief distribution the agent can use this information together with its prior
knowledge. How should the agent act in order to reach the treasure?

2.3 The agent

This section presents the two key components that compose an agent: the Interpreter
and the Solver.

2.3.1 Interpretation and belief states

Interpreter
Vision and sensors

In order to maintain a realistic depiction of the un-
derlying state, the agent in a POMDP must rely
on its observations, and by using this information
construct a belief distribution over the state space.
When a new observation is gained the agent may
combine this knowledge with the prior belief distribution and create a posterior
distribution, a process referred to as filtering. Filtering has the nice property that
the more observations the agent has received the more accurate the posterior distri-
bution becomes. In this section two filtering methods are considered; the analytical
Bayesian belief update ([RPPCd08]) and the stochastic particle filtering method
([SHK17]).

13
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Bayesian belief update

The Bayesian rule states the following:

P (Ai|B) = P (B|Ai)P (Ai)
P (B) = P (B|Ai)P (Ai)∑

j P (B|Aj)P (Aj)
, (2.3)

where P(Ai) is the prior probability of event Ai being true, P(Ai|B) is the posterior
probability of Ai being true if event B was observed, and P(B|Ai) is the conditional
probability of event B occurring given that Ai is true. This method computes the
posterior probability of observing event Ai given that event B occurred.

This method can also be used to update the belief in the context of POMDPs. For
a belief update this is expressed as

bt+1(s′) = O(s′, at, zt+1)∑s∈S T(s, at, s′)bt(s)∑
s′′∈SO(s′′, at, zt+1)∑s∈S T(s, at, s′′)bt(s)

, (2.4)

where O(s′, a, z) is the observation function, T(s, at, s′) is the transition function,
and bt(s) and bt+1(s) are the prior and posterior belief distributions respectively.
The sum in the numerator shifts the previous belief distribution with the transition
function, and this is then multiplied by the how likely the belief is with respect to
the most recent observation. To create the posterior distribution this quantity is
normalized by the denominator which sums over all possible outcomes.

This posterior distribution provides the most accurate belief state. However, since
the formula needs to sum over all possible states, it is a method that is highly
dependent on the size of the state space. Therefore it might be computationally
infeasible ([SV10]). Moreover in complex problems it might be impossible to find
compact observation and transition functions that represent the dynamics of the
problem.

Particle filter methods

Particle filters are Monte Carlo-sampling based algorithms used in signal processing
and Bayesian statistical inference in order to solve filtering problems. There are a
lot of different particle filters, but the one explained in this section is based on the
one used in [SV10]. The authors present a method of solving POMDPs defined over
large state spaces where an analytical filtering method is computationally infeasible.
The particle filter relies on a black box simulator of the process, called a generative
model. The generative model (r, s′, o′) ∼ G(a, s) simulates the dynamics of the
underlying process, where s is a state, a an action, s′ is one of the possible resulting
states, r is the reward for selecting the action, and o′ is the observation from state s′.
This is one of the main benefits of the particle filter—it doesn’t require any explicit
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observation and transition functions, but rather a way to simulate them, which is
less constraining.

The method approximates the belief distribution by a finite set of particles, where
each particle represents an independent state. Denote particle i at time t by θti ∈ S,
the approximated belief distribution can then be expressed as

b̂(s, ht) = 1
M

M∑
i=1

δsθti , (2.5)

where δij is the Kronecker delta function which is 1 whenever s = θti and 0 otherwise,
M is the total number of particles and ht is the history of actions and observations
in time step t. Given an initial belief distribution I an approximated belief can
be constructed by sampling M particles, i.e., θt=0

i ∼ I, 1 ≤ i ≤ M . The initial
distribution can either be set by using prior knowledge or be set uniformly. Each
time a real action ã is executed and a real observation õ is obtained the particle
filter can be updated. The posterior particle distribution is created iteratively with
Monte Carlo simulations by using the generative model to replicate the observed
action-observation pair. This is done by randomly sampling from the particle set,
which corresponds to sampling states ŝ from the approximate belief distribution. A
sampled state is then input to the generative model which performs the action ã and
produces an observation ô′, (r, ŝ′, ô′) ∼ G(ã, ŝ). If ô′ = õ the particle õ is added to
the posterior belief, since if o′ = õ the sampled particle described one of the possible
states. This process is repeated until M particles have been added to the new belief
which then represents an updated posterior belief.

Like all Monte Carlo algorithms the more samples that are produced the better the
approximation. It can be shown that the particle filter has asymptotic properties,
meaning that b̂(s, ht) → b(s, ht), as M → ∞. However, a common problem with
particle filters is something called particle deprivation. This is a result from the
fact that the number of states contained in the particle filter may decrease; during
a single update the same particle might be selected multiple times. Thus there is
a probability that as t → ∞ the particle collection may collapse to a belief state
containing a single particle that in turn contains an incorrect state. This problem
is solved by introducing noise in the resampling procedure (similar to the mutation
operator used in genetic algorithms). Each time that the algorithm selects a particle
from the set it has a small probability of adding some noise to it, and thus changing
the particle’s state. New particles will therefore continuously be added to the particle
filter, which if tuned correctly will result in a much more efficient algorithm able to
find a good approximate belief states given a history ht.

However, this resampling procedure will only work in a discrete state and obser-
vation - space because the probability of sampling the same observation twice in a
continuous space is zero. This means that the procedure described above will not
converge; P (o′ = õ) = 0. But, by slightly modifying the resampling procedure one
can still use this method in continuous observation spaces. One way to do this is to
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keep an approximate belief distribution in the form of a weighted particle collection.
The weights indicate the conditional probability of observing the real observation
given the particles’ state, which can be expressed as

wi = P (o|ŝi, a), (2.6)

where ŝi is the state given by particle θi and wi is its weight. The weights are
best set by using the observation function [SK17], since this is explicitly defined as
O(o, s, a) = P (o|s, a). But as previously mentioned the observation function might
not always have a compact representation. If this is the case one can perform Monte-
Carlo sampling from the generative model and combine this with a relevant measure
of distance between observations. Let ‖.‖obs denote such a measure, then the weight
of a particle given an observation is given by

wi = exp
(
−‖o− ôi‖

2
obs

2σ2
obs

)
≈ P (o|ŝi, a), (2.7)

where ô ∼ G(ŝ, a) and ŝ is the state given by particle θi and σobs is a normalization
constant. These weights can be interpret as how likely the state was to have gener-
ated the real observation, which in the POMDP formalism roughly corresponds to
the interpretation of a belief state. This procedure is used in the article [SHK17] to
weigh the relative likelihood of drivers’ intentions given their acceleration outputs.

2.3.2 Methods for solving decision-making problems

Solver
The brain of the agent

The solver’s role in the agent is to use the informa-
tion given by the interpreter to find the best possible
policy to execute. In some cases calculations can be
done in advance, i.e., offline. In a chess game for
example, some decision-makers engines are able to
train offline and then use the gained knowledge to
find good actions online ([SHS+17]). Another way for the solver to find a good
policy is by doing the calculations purely online. There are lots of different ways to
design a decision maker in an agent. In this section a couple of different methods
and approaches is presented, which can all be found in the book [Koc15].

Dynamic Programming

A common way to find an optimal policy in MDPs and POMDPs is dynamic pro-
gramming. Within this area there are two popular methods: value iteration and
policy iteration. Value iteration uses a utility function (2.8) to find the expected
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reward for following an arbitrary policy π(s), and to find the optimal policy it max-
imizes the equation via dynamic programming of the Bellman equation:

Uπ
t (s) = R (s, π(s)) + γ

∑
s′
T (s′, π(s), s, )Uπ

t−1(s′). (2.8)

The optimal value of the utility function is gained by following the optimal policy,
which for time horizon n can be formulated as

Un(s) = max
a

(
R(s, a) + γ

∑
s′
T (s′ | s, a)Un−1(s′)

)
. (2.9)

Since this equation satisfies the Bellman equation (which is a necessary condition
for optimality in dynamic programming) it can be solved. The problem when trying
to apply the algorithm to solve an MDP is that the computational complexity is
proportional to the size of the state space. Thus a problem defined over large or
infinite state space would render these algorithms inapplicable, a problem which also
applies to policy iteration [SV10].

Direct Policy Searches

Another approach when solving a decision-making problem is to search through the
space of all possible decision strategies and utilize a performance measure to find the
optimal policy. Even though the state space might be huge, the space of possible
policies might be low dimensional. The main objective in direct policy search is to
maximize the objective function,

V (λ) =
∑
s

b(s)Uπλ(s), (2.10)

where λ is a parametrized policy, b(s) is a distribution over the initial state, and
Uπλ is the expected value for following policy πλ.

There exist a lot of different methods for maximizing the objective function, such as
for example gradient descent or evolutionary algorithms. Generally the performance
of a direct policy search is dependent on the size of the space of decision strategies,
and the amount of local optima there exists in the performance measure. And
thus for the same reasons as with policy and value iteration these methods wont be
applied.
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Machine Learning

Machine learning covers a wide range of computer science methods where the goal
is to ’learn’ and find patterns in data. In recent times machine learning has had
a lot of applications in decision-making problems (for example in the board game
GO [SHS+17]), where this generally involves training a neural network based on
simulation data. In online, real time applications this is a smart approach, since the
vast majority of computational effort is used offline during training.

Supervised learning is an example of machine learning where the agent is im-
proving over time, on a specified task, by training on a set of provided data. This
is a widely used method for problems such as classification problems and pattern
recognition. For decision-making applications the data on which the agent is train-
ing on is based on how an expert would handle different situations, and the agent
gets reward for being as close to the expert’s behaviour as possible. However, there
are some drawbacks with this method. For example, it’s not always possible to get
hold of an expert’s judgment, and it might be hard to know if the training data is
actually based on optimal play. This method also implies that the skill of the agent
can not surpass that of the expert. Furthermore, it’s also difficult to determine
whether the agent only performs well on the data used for training and validation,
or if the agent has developed a general understanding for the problem at hand.

Another machine learning technique is reinforcement learning, where the agent
instead learns while interacting with the world. The only thing the agent needs
during training is a reward function to measure its performance. The agent learns
what actions are optimal in a given situation without having to consult an expert.
This can be extremely useful if there exists limited knowledge of how to act optimally.
The previously mentioned chess engine that well surpassed human capabilities uses
this type of machine learning ([SHS+17]).

Probably the biggest drawbacks of using these methods is that it is practically im-
possible to verify why the agent behaves in a certain manner. The system is basically
a black box, and even if the agent performs really well in the test environment, it
is hard to know its shortcomings when tested in a real environment. Thus, due to
our limitation not to use any type of black-box techniques, this method will not be
used.

Online methods

Most of the methods presented so far have been methods that partially need to
be executed offline. In large and complex state spaces this might be impractical
since to calculate the optimal policy for every possible state beforehand is too time
demanding. In these cases it might be better to find the optimal policy directly
from only the current state. Below, four tree search methods, often used in online
applications, are introduced.
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A tree search method evaluates actions by constructing a tree graph from the agent’s
current state. The nodes in the tree represent previously visited states, and the
vertices connecting the nodes represents the action taken to get there. A forward
search is a simple tree search algorithm that builds up the entire search tree up to
a time horizon d. The algorithm searches depth-first, and chooses actions from state
nodes recursively until the horizon is reached. During the search the state-action
pairs gets assigned values, defined by a reward function. When the whole tree has
been constructed the optimal action is the vertex from the root node with the highest
value. Since the whole tree must be constructed the computational complexity is
O((|S| × |A|)d) which is very time consuming.

The branch and bound- algorithm is an improvement of the forward search. The
difference between the two is that Branch and Bound uses domain knowledge to find
upper and lower bounds on the value function. With the use of these the algorithm
is able the prune the search tree. If the upper bound for a state-action pair, for
example, is lower than a previously found value, then it is pointless to continue the
expansion in that direction. In order to be able to prune that part a state–action pair
with a higher value must already be known, and thus the order of choosing actions is
important. However, in the worst-case scenario the computational complexity is the
same as for forward search, and therefore this method is heavily reliant on domain
knowledge.

In order to escape the high computational complexity from forward search and
branch and bound, sparse sampling uses a specified number of children, n, that
each node can have. This means that the time complexity for the algorithm is
O((n× |A|)d), which is still exponential in the horizon, but does not depend on the
size of the state space. Sparse sampling uses a generative model G to simulate the
transition- and reward functions. One advantage of this is that it’s easier to sample
from such a function instead of having to find explicit probabilities of the transition
between states. However, since the number of children that each action node can
have is limited by n, the whole search tree is not spanned. Therefore the algorithm
can’t be guaranteed to find an optimal solution for horizon d. This means that we
are in need of some way to direct our search more efficiently through the tree, and
leads us to the last method.

TheMonte Carlo tree search (MCTS) is a powerful search method. It is an online
sampling-based method, that just as sparse sampling uses a generative function. It
has the possibility to weigh the importance of exploration and exploitation, the
algorithm is run for a predetermined number of searches, and the time complexity
is not exponential in the time horizon. The method is quite extensive and includes
many different variations, and thus the next chapter is completely dedicated to it.
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2.4 Monte Carlo tree search methods

In 2016, the computer program AlphaGo became the first program ever to beat a hu-
man professional player in the game Go ([SHM+16]). Because of its huge branching-
factor Go is considered to be a much more difficult game than chess for a computer
AI, and was long considered as impossible for a computer to master. What makes
AlphaGo so powerful is that it combines state of the art machine learning techniques
with a robust tree search algorithm—the MCTS-algorithm. This chapter is based
on information from the article [BPW+12].

Selection  Expansion  Simulation  Update 

Figure 2.4: The four sub-processes of the Monte Carlo tree search algorithm. The
selection process steps through the search tree until it reaches a leaf node. The
expansion step expands the tree from the leaf node found in the selection step. The
simulation step then evaluates the new node by simulating a game using a rollout
policy. The new results are then propagated through the branch of the tree back to
the root node.

The MCTS-algorithm uses simulations governed by the generative function, that
has previously been described in the Monte Carlo belief state update section 2.3.1,
to construct a search tree of possible outcomes. The generative function simulates
the transition function, and is from a state and action able to output a new state
and a reward. The nodes in the search tree represents previously simulated states,
and the vertices represents the transition of the system when an action is chosen
from a state. The root node at the top of the graph represents the current state in
the decision making problem. This can be seen in Figure 2.4 where the root node is
connected by three vertices to the nodes directly below. What that means is that
in this particular decision problem there are only three possible actions to execute
from the start state. The MCTS-algorithm consists of four sub-processes, which are
performed in the following order; selection (select an action from a node), expansion
(create a new node by using the transition function), simulation (calculate the value
of the new node) and update (update the value of the nodes connected to the new
node using back-propagation). These four steps are explained in more detail below.

The selection algorithm determines what action to explore given a state node in
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the search tree. The selection of an action can be made with respect to a couple dif-
ferent criteria. First the algorithm check if all possible actions have been explored,
if this is not the case one of the remaining actions is randomly selected. If all ac-
tions have already been tested, the next action can be chosen by using a weighted
selection. The simplest method to do this is to choose an action greedily, meaning
that the algorithm always chooses the most successful child node. This strategy
might sometimes work, but there is a high risk of getting stuck in a local minimum.
A more sophisticated algorithm (like the upper confidence bound described below)
would instead explore options by factoring in additional conditions, like the number
of times an action has already been explored. The selection step is repeated recur-
sively until it has either reached a leaf node or a state node where all actions has
not yet been tried. When the selection algorithm has found such a node a new state
node is created with the generative function by selecting an action. Each such step
is an expansion of the search tree, which creates one new leaf node.

The next simulation step evaluates the newly expanded node. This is done by
simulating into the future using a predetermined policy, a so called rollout policy.
The actions in the rollout policy can either be chosen at random or by some prior
domain knowledge. The simulations are continued either until the game is finished,
or the time horizon in reached. The accumulated reward from this simulation can
either be binary (win/loss), or a real number.

When a rollout is done and the accumulated reward for new node has been computed
the search tree needs to be updated. To do this the value of this node is back
propagated through the search tree, where the value of every every state encountered
on the path back to the root node is effected. This means that if a good result is
achieved from the new state node it will be more likely for future selection steps to
return and continue to expand this branch.

Upper confidence bound algorithm

The size of the search tree is dependent on the number of state-action pairs that
the underlying system consists of, and to search through the whole tree is usually
computationally infeasible. To avoid this situation MCTS is often combined with
the Upper Confidence Bound algorithm (UCB1). This combination is called the
Upper Confidence Tree (UCT), which provides an efficient search towards the more
promising branches of the search tree.

Imagine a set of slot machines with different expected payoff. You want to maximize
your total cumulative winnings, but you have no prior information about which
machine that might be the best one. In each time step you get to choose a new
machine, and without any insight your opening moves would naturally be to just
try them all to examine which ones that seem the most promising. However, it
is impossible to know if the winnings you got from a machine were because of it
having a high expected payoff, or if you were just being lucky. This is an example
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of a problem where the UCB1-algorithm provides a good solution. It balances the
exploitation of promising regions with the exploration of more unknown parts. First
denote playing on a machine i by action ai (Note that in this particular example
there is only one state s). Then in each time step the UCB1-algorithm selects the
action which maximizes the UCB-value, given by the following equation

UCB(s, ai) = Q̃(s, ai) + c

√√√√ lnN(s)
N(s, ai)

, (2.11)

where Q̃(s, ai) is the estimated value of a state-action pair, N(s, ai) is the amount
of times that action ai has been tried from state s, N(s) = ∑

aN(s, ai) is how many
times the state has been visited, and c is an exploration constant. This algorithms
ensures that the first step is to sample each action once, since UCB(s, ai)→∞ as
N(s, ai)→ 0. The value of c is usually determined empirically, but a rule of thumb
is to set it to the same order of magnitude as the expected value of Q̃ ([Koc15]).
The more actions are spent on action ai, the larger the term N(s, ai) will be, which
in turn decreases the exploration term for that specific action. Respectively if an
action has not been tried as much, the value of N(s, ai) will be small, and thus makes
the exploration term for that action larger. Therefore, as the agent chooses actions
based on maximizing the UCB-value the algorithm balances exploration against
exploitation. See figure 2.5 for a visualization of the UCB1 algorithm. There are
alternative expansions of UCB1 that also incorporate the variance of a machine’s
returns to estimate Q̃(s, ai) [BPW+12]. However, this will not be used during the
thesis.

a1 a2

Q1 = 0.9 
N(s,a1) = 220 
UCB1 = 1.06 

N(s) = 250 

ak 

Q2 = 0.7 
N(s,a2) = 30 
UCB2 = 1.13 

Figure 2.5: The UCB-value of two nodes in a search tree. The most successful
action so far is a1, however, action a2 has been sampled fewer times and might not
be properly represented by its Q- value. The UCB1 algorithm uses this information
and (with exploration constant, c = 2) would in this cases select the action a2, even
though it has a lower expected return.
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Rollout policy and heuristics

The rollout policy plays a crucial role in a MCTS algorithm. Since the purpose of
the algorithm is to avoid searching through the entire state space one needs a good
way to evaluate new nodes in the search tree. If there is limited knowledge about the
underlying system one can simply use a rollout policy consisting of random actions.
However, this will usually result in poor estimation of the nodes, and computational
effort can be wasted. The better option would be to use heuristic knowledge when
constructing a rollout policy - meaning that it would consist of action patterns that
are more likely to show realistic behaviour.

There are also other methods to apply heuristics to MCTS. Before the graph is
constructed one could for example view the tree as a large set of nodes where the
number of visits in each node, Ninit, and the value, Qinit, set to zero. Given some
prior knowledge about the current state the nodes may instead be initialized to
other values, i.e setting 〈Qinit, Ninit〉 6= 〈0, 0〉. An example where this could be used
is during the first moves in chess. Here a MCTS solver could use a tables of good
opening moves to avoid evaluating and spending computational power on known
bad moves.

Progressive widening for continuous spaces

The so far considered examples have contained a finite discrete action space, but
this is not necessarily the case. As an example, consider a decision-maker that’s
in charge of the steering in an autonomous vehicle. The possible rotation of the
steering wheel may be arbitrary small, which makes the action space large. If one
would construct a MCTS-algorithm of such a problem one would never be able to
reach a depth larger than one action, since there for each new iteration of MCTS
always is a steering angle that has not yet been tested. To solve this problem
there is an algorithm called progressive widening (PW) [CD11], which evaluates the
following inequality

k < k′N(s, a)α, (2.12)

where k′ and α are constants, k is the number of children of the node considered,
and N(s, a) is the number of times the node has been visited. If this equation holds
no new node will be sampled and instead one of the existing nodes will be sampled
by using the UCB1 formula. Thus, a MCTS using this algorithm will result in a
progressive widening of the action space.
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a1 a2 a3 a4 a1 aN

Figure 2.6: Illustration of the progressive widening of a search tree containing an
infinite action space. The right search tree will never sample the same action twice
and will become very shallow. However, the search tree to the left is progressively
widened and is limited to only sampling k = 4 child nodes. The number of child
nodes for each state is one of the parameters of the progressive widening algorithm.

As a demonstration return to the considered steering example with k′ = 4 and
α = 0. Before any nodes have been sampled the right hand side evaluates to zero,
since the number of children is zero. Thus, an action is sampled from the action
space and a node is created. This process will be repeated until the MCTS sample
a node for the fifth time. This time when equation 2.12 is evaluated the expression
will not hold, and no new node is sampled. Instead a previously tried action will be
chosen, and the algorithm continues expanding the tree from here. This example
is depicted in Figure 2.6, where the left tree shows a tree search with progressive
widening. With these settings one can see that each node will get a maximum of
4 child nodes. By setting α 6= 0 (usually α ≈ 0.1) new nodes will be sampled once
N(s, a) is large enough. Resulting in a slow but sure expansion of the promising
regions of the action space.

2.4.1 Using Monte Carlo tree search to solve POMDPs

The nature of POMDPs makes them computationally complex to solve using a regu-
lar MCTS. For each possible action the generative model will output an observation.
This results in a search tree with an increased exponential growth, which is propor-
tional to the size of the observation space. Furthermore, the states in a POMDP are
represented by belief distributions. And to take a decision from a belief state, the
MCTS algorithm would have to construct a tree search for all the states contained
in the belief distribution. This means that the MCTS algorithm is computationally
intractable if the problem is defined over a large state space.
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Partially observable Monte Carlo planning

Partially observable Monte Carlo planning (POMCP) is an algorithm that expand
the MCTS to handle partial observability. It solves both the problem of belief
states, as well as the complication of observations in a POMDP. As an interpreter
the POMCP-algorithm uses a particle filter like the one described in section 2.3.1.
The belief state is thus made up by M weighted particles with weights depending
on how probable they are given a recent observation [SV10].

To deal with observations during the tree search the state nodes in the POMCP-tree
consist of histories, see Figure 2.7. A history is a sequence of action and observation
pairs, which just as in the MCTS, has a counter of how many times that history
has previously been visited. The action nodes also has a value that describes the
average amount of reward that has been returned by selecting that history branch.

a1 a2

o1 o2

a1 a2

o1 o2

a1 a2

o1 o2

b = {1, 2, 5, 9, 11, 25, 30}

b = {4}
b = {3, 5, 10}

b = {1, 6, 9, 11}
b = {9}
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Figure 2.7: The POMCP algorithm uses histories to reason about the action obser-
vation pairs obtained when simulating the POMDP. The belief states are represented
by Monte Carlo sampling from a set of particles, which approximates the belief dis-
tribution.

The tree search in a POMCP is similar to a MCTS. It starts by sampling a state-
particle from the belief distribution. If all actions have not yet been explored from
the root node of the tree, an action is chosen at random. Else an action is chosen
based on their UCB- values. The state and action is passed through the generative
function, which outputs a new state, a reward and an observation. From the obser-
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vation, a new observation node can be created, and in this node the new state is
placed. To attain a value of these action-observation nodes, a rollout from the new
state is made, and finally that value is back propagated up to the root node. In the
next step, the algorithm samples a new particle from the belief state, and the exact
same procedure is done for this state-particle. If the same history is encountered
by this particle, it is appended to that observation node. Therefore a history can
contain a set of state-particles, and to proceed further down in the tree from this
history, a state-particle is sampled from its collection.

Partially observable Monte Carlo planning with double pro-
gressive widening

As previously mentioned the POMCP algorithm reasons about history nodes, which
contains action and observation pairs. Thus, the width of the search tree will grow
exponentially with respect to the size of both these spaces. Similarly as before
one can limit this growth by progressive widening, which enables solving decision
processes defined over large or even infinite action- and observation spaces (in the
case when both these spaces are restricted it is refereed to as double progressive
widening (DPW)).

However, the progressive widening of an infinite observation space can be shown to
have sub optimal properties. This is because of that the probability of getting the
same observation twice is zero, and therefore the same history can never be created
twice. The progressive widening process thus replaces the collection of state-particles
in the observation nodes with a single particle. This results in an overconfidence
in the search tree which might result in a vague exploration of the search space.
This is illustrated in Figure 2.8 where the left search tree has been generated by the
POMCP-DPW algorithm.

Partially observable Monte Carlo planning with observational
widening

Monte-Carlo planning with observational widening [SK17] (POMCPOW) is an ex-
tension to POMCP-DPW that solves the single particle belief-problem. In this
algorithm when the DPW-condition forces the search algorithm to pick an already
created observation node, the algorithm adds the new state particle to that node’s
particle collection even if the generated observation doesn’t match that observation
node. To justify this the particle must first be weighted based on the conditional
probability of the state-particle obtaining that observation. Thus this algorithm
creates an approximate belief state in each observation node, where the weight of a
particle is the probability of the particle observing that observation, see Figure 2.8.
To compute these weights the algorithm can use the observation function. However,
for some problems the observation probabilities might not be known, or impossible
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to formulate in a compact form. In these cases the probabilities can be approxi-
mated with some observation measure, as used in the particle filter, (see particle
filter methods in section 2.3).

a1 a2

o1 o2

a1 a2

o1 o2

Figure 2.8: Two search trees generated when solving a problem with infinite ob-
servation space solved by two different algorithms; POMCP-DPW to the left and
POMCPOW to the right. The history nodes in the POMCP-DPW search tree con-
tains single particles, since the probability of generating the same observation twice is
zero. The POMCPOW algorithm uses a weighted particle collection in each history
node, where the weights are indicated by the particles’ size.

2.5 Motivation of the methodology

This section motivates the chosen methods used to model tactical decision-making
during highway driving as the three parts of a decision-making process: the frame-
work, the interpreter and the solver. (A lot of inspiration will be taken from the
article [SHK17]).
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Framework:
POMDP

Interpreter:
Particle filter

Solver:
MCTS

POMCP-DPW
POMCPOW

Agent

Observation

Belief state
Action

Figure 2.9: The same structure of a decision-making problem as proposed earlier
in Figure 2.1. The framework used for modelling the tactical decision-making is a
POMDP. The filtering process is performed by a particle filter, and the problem is
solved with the use of MCTS, POMCP-DPW, and POMCPOW.

Framework

The problem considered in this thesis is tactical decision-making during highway
driving—a problem which contains a lot of difficulties. Firstly the state space is
described by continuous data, i.e., the position and velocities of the vehicles involved.
Furthermore to make accurate traffic predictions the model must incorporate the
intentions of other drivers, which will be modelled as a non-observable variable
contained in the state space. Thus, the natural choice of mathematical framework
used to model this problem would be as a POMDP with a continuous state space.

Another difficulty is that the possible accelerations and decelerations of a vehicle
are more or less infinite, meaning that the POMDP would have to be modelled
by an infinite action space. Since tactical decision-making refers to the selection
of high-level maneuvers, the action space can be reduced to a finite set of high-
level actions, such as ’Change lane to the right’ or ’reduce the gap to the preceding
vehicle’. The actual acceleration is instead found by using an adaptive cruise control
(ACC). There is a trade-off when selecting the number of actions in the action space
since more actions will provide a larger search space and thus increase the possibility
to find an optimal sequence of actions. However, a larger search space also means
that the probability of finding a good solution decreases.
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Interpreter

The input to the tactical decision making program will be processed sensor data,
containing the physical states of the other vehicles (i.e., their position and velocities).
A sensor input corresponds to an observation in the POMDP framework, and since
the physical data is continuous the observations space is infinite. The behaviours
of the other drivers will be estimated by a particle filter, which has been shown
to provide an accurate yet computationally efficient method [SHK17]. Furthermore,
the implementation will not include any sensor errors, since these are typically small
compared to the standard errors generated when predicting a vehicles motion, which
include incorrect lane changes or accelerations in the wrong longitudinal direction
(examples of prediction errors can be seen later in Chapter 4 and Figure 4.6).

Solver

The continuous state and observation space, and the non-observability of the drivers’
intentions, imply that the algorithms best fit to solve this problem would (based on
the theory thus far) probably be POMCP-DPW or POMCPOW. However, since
the exact conditional probabilities of the observations are unknown these will be
estimated by using a distance measure, similar to that of a particle filter. In addi-
tion to POMCP-DPW and POMCPOW another tree search algorithm is included.
This algorithm will only consider the single best particle in the particle filter when
creating the tree (i.e., the particle with the largest weight). We call it a most likely
Markov decision process (MLMDP), since it solves the current MDP-problem, where
all the other drivers’ intentions are set to the most likely behaviour, with a MCTS.
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Chapter 3

Methodology

In this chapter highway driving is formulated as a POMDP. Three different algo-
rithms, able to solve the POMDP problem, are investigated: MLMDP, POMCP-
DPW and POMCPOW. Two additional solvers are implemented, to provide upper
and lower bounds. Lastly the highway scenario is presented, where the problem is to
maneuver through dense highway traffic in order to reach an exit ramp.

3.1 Decision-making during highway driving

Autonomous driving involves various challenges, Figure 3.1 shows a simplified sketch
of the different processes involved. Firstly the agent must be able to perceive its
environment, which is done via multiple sensors that are mounted on the vehicle,
and through sensor fusion the relevant data can be extracted and interpreted. This
interpretation should include all important visible information, such as, for example,
the total number of lanes, where the road markings are, and the positions and
velocities of all participating vehicles (such as cars or trucks). This process is denoted
in the picture by sensor fusion. The next step analyses this data, and determines
how to best act. This is the tactical decision-maker-module. As we have discussed
previously, not all the information needed to take a decision are visible to the sensors.
Therefore it is crucial to have a robust framework that can account for this: the
POMDP. The details of how this is done are shown during the next section. The
decisions taken by the tactical decision-maker are ‘high level maneuvers’, such as
to change the gap to the preceding vehicle, or to change lane. This information is
sent to a trajectory planner, which calculates what actuations to execute in order to
fulfill the requests from the tactical decision-maker.
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Sensor fusion

Tactical decision making

Trajectory planner

Action

Actuation

Traffic
scenario

Sensor
data

Figure 3.1: A rough sketch of the architecture in a fully automated truck. Sensor
fusion is where the sensor data is interpret, Tactical decision-making is where a
high level decision about how to maneuver is taken, and in Trajectory planner the
maneuver request is translated to actuations.

3.2 Formulating highway driving as a POMDP

This section formulates the main aspects of a self-driving vehicle as the 7-tuple of a
general POMDP. This includes:

• A state space describing the relevant physical properties of the highway sce-
nario, and also the driver behaviours.

• Observations from the sensors. These will contain all information that is
possible to measure with sensors, such as camera and LIDAR.

• An action space, which describes how the agent may act in each time frame.

• A transition function, which governs how a physical state transitions in
time based on the agent’s action.

• A reward model, that determines the reward received for transitioning from
one state to another, due to an action.

• An observation function, that, due to the lack of a compact representation,
will be approximated by a particle filter.

• To prioritize goals closer in the future the POMDP also includes a discount
factor γ = 0.95; see (2.2).

The items on this list will, during the rest of this section, be explained more thor-
ough. All numerical values of the parameters in the equations defined in this chapter
can be found in table 3.1. These are either set to similar values as the ones found
in the literature study, or empirically set to values that represent highway driving.
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State space and behaviours

The state space represents the underlying variables governing the dynamics of high-
way driving. It consists of two key components: the measurable physical properties
of the involved vehicles, and their intentions. Denote vehicle i’s physical variables
by pi = (xi, ẋi, yi, ẏi), where x and y denotes longitudinal and lateral position, re-
spectively. It is assumed that this information is noise-free, and perfectly known,
since the sensor noise is typically relatively small compared to prediction errors.

The second component of the state space, the behaviour of the other drivers, is
something that is important to consider in order to make accurate predictions. The
behaviour of vehicle i will be denoted by θi, which is a vector of eight scalars (this is
explained during the next two pages in Intelligent driver model and Modelling
lane changes). The behaviour will completely determine a vehicle’s lane changes,
and horizontal acceleration outputs, ẍi. These parameters cannot be directly ob-
served via the agents sensors, and are therefore a non-observable component of the
state space.

Thus, the state, s, of a traffic scenario is described by all the positions and behaviours
of the vehicles involved: s =

{
pe × {pi, θi}NVehicles

i

}
, where pe is the physical state of

the ego-vehicle, and Nvehicles denotes the number of involved vehicles.

Observation- and belief space

As mentioned previously, the behaviours of the surrounding vehicles are non-observable
sets of variables contained in the state space. The agent will only be able to per-
ceive the physical variables, z =

{
pe × {pi}NVehicles

i=1

}
, where z denotes an observation

of the state space. However, in order to make accurate predictions, the agent will
have to infer the underlying behaviour parameters. This is done by a particle filter,
that creates a pool of possible driver ’profiles’, and is explained in more detail in
Section 3.2.1.

Transition function

The transition function is a set of equations that maps the current state into a new
state. For the highway driving-problem, this is a function of the physical state,
the agent’s action, and the drivers’ behaviours. To reduce the complexity of the
transition function, the vehicles are modelled as point masses, and are updated by
the equations of motion. Each vehicle will also be seen as fixed to the centre of
its current lane. While in the lane, the driver will regulate its longitudinal and
lateral velocity separately. The equations of motion for the lateral and longitudinal
coordinates are given by
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xt+1 = xt + ẋt∆t+ ẍt

∆t2
2 ,

ẋt+1 = ẋt + ẍt∆t,
yt+1 = yt + ẏt∆t,
ẏt+1 = ẏt + ÿt∆t,

(3.1)

where the lateral updates neglects the instantaneous accelerations, and ∆t = ti+1−ti
(i.e., the integration time step size). The transition function can be formulated as
a linear system on the form

pt+1 =


xt+1
ẋt+1
yt+1
ẏt+1

 =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1



xt
ẋt
yt
ẏt

+


∆t2

2 0
∆t 0
0 0
0 ∆t


[
ẍt(at; θ)
ÿt(at; θ)

]
= T(p, θ, at), (3.2)

where (ẍt, ÿt) are the acceleration at time step t. For the ego vehicle these accelera-
tions will be given by an ACC, which is presented in the next section. For all other
vehicles, the longitudinal accelerations is modelled by the intelligent driver model
(IDM), and the lateral accelerations, corresponding to lane changes, are modelled
using minimize overall braking induced by lane changes (MOBIL). These two mod-
els are functions of the physical state, as well as a set of eight parameters. These
parameters are individual, and constant for each vehicle, and is what fully defines a
vehicle’s behaviour. This is explained in more detail below.

Intelligent driver model

The intelligent driver model is a microscopic model, that models longitudinal ac-
celeration, meaning that it is a model based on the interaction between individual
drivers ([THH00]). The model is given by

ẍIDM = a

1−
(
ẋ

ẋ∗

)δ
−
(
g∗

g

)2
 , (3.3)

where ẍIDM is the acceleration of the considered vehicle, δ > 0 is a parameter
modelling the importance of maintaining the desired speed ẋ∗, a is the vehicle’s
maximum acceleration, and g is the current gap to the preceding vehicle. The
desired gap, g∗, is given by

g∗ = g0 + T ẋ+ ẋ∆ẋ
2
√
ab
, (3.4)
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where T is the desired time gap (the time it would take to reach the preceding cars’
current position), b > 0 is the desired deceleration, and g0 is the minimum spacing
to the preceding vehicle. The relative velocity, ∆ẋ, is computed with respect to the
preceding vehicle, i.e., ∆ẋ = ẋPreceding − ẋEgo.

The acceleration output, ẍIDM, is not bounded from below as g → 0, meaning that it
may output an arbitrarily large deceleration. Therefore an artificial bound is added,
which can be done as follows:

ẍIDM ← max (ẍIDM,−bMax) , (3.5)

where bMax is the physical braking limit of the vehicle, and max(·) returns the largest
argument. The IDM-model determines a vehicle’s longitudinal acceleration solely
based on these five independent parameters: (a, b, T, g0, ẋ

∗), as well as the relative
velocity of the preceding vehicle. These five parameters are therefore part of the
behaviour of a vehicle. The three remaining parameters comes from the lateral
control model found below.

Modelling lane changes

Minimize overall braking induced by lane changes (MOBIL) is a model, which com-
putes whether a lane change maneuver is beneficial ([KTH07]). It takes into account
not only the ego vehicle, but also the surrounding drivers; see Figure 3.2. The model
is based on evaluating the following statements:

∆ẍe + p (∆ẍo + ∆ẍn) > aThresh,

max
(

¨̃xe, ¨̃xn
)
> −bSafe,

(3.6)

where the indices e, o, n denote: ego vehicle, the old follower (the follower of the
ego vehicle before the lane change maneuver), and the new follower (the follower
of the ego vehicle after the lane change maneuver) of the ego vehicle, respectively.
The acceleration differences ∆ẍ: are defined in relation to whether a lane change is
performed or not, i.e.:

∆ẍe = ¨̃xe − ẍe, (3.7)

where ¨̃xe is the longitudinal acceleration of the ego vehicle after a lane change. The
model involves three parameters: the politeness factor p, the safety braking limit
bsafe, and the beneficial threshold athresh. These three parameters are, in addition
to the five IDM-parameters above, included in the behaviour of a vehicle. If the
conditions in (3.6) are satisfied it means that a lane changing maneuver is beneficial
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Figure 3.2: A depiction of the different acceleration components used in the MO-
BIL model to evaluate whether a lane change is beneficial or not. a. is the current
acceleration of the vehicles, and ã. is the acceleration if the truck does a lane change.
The indices, e, o, and n denotes the ego vehicle, the old follower of the ego vehicle,
and the new follower of the ego vehicle, respectively

for the ego vehicle, and in the case when p > 0 it is usually beneficial for the other
involved drivers as well.

Reward model

The reward model governs the agent’s choice of action, since an optimal policy is
defined as the sequence of actions that returns the largest amount of reward possible.
The reward model is constructed as a mapping from the state space to the real
numbers, i.e., R(s) : S → [0, 1], and will be constructed to reflect some of the basic
goals that a driver of an articulated vehicle might strive to fulfill. Since the reward
model should factor in several different criteria, it can be seen as a combination of
several different goals.

The importance of reaching and maintaining a desired lane can be modelled as
following:

Rlane(ye) = 1− |ye − y
∗|

σy
, (3.8)

where y∗ is the lateral coordinates of the centre of the desired lane, ye is the lateral
coordinate of the ego vehicle, and σy is a normalization constant—it is set so that if
the ego vehicle is in the lane furthest away from the desired lane the returned reward
is zero, and thus Rlane(ye) ∈ [0, 1]. The reward models don’t have to be normalized,
but it simplifies the tuning later on.

When considering tactical decision-making in an autonomous vehicle it is important
to factor in that the other drivers have their own intentions and objectives too.
An agent only acting upon self-indulgent objectives could result in a dangerous
non-cooperative behaviour, especially for a heavy articulated vehicle. Therefore the
next reward function is designed to value actions that act less impeding on the other
drivers and the traffic flow. To model this one can use a measure that is similar to
the one used to evaluate good lane changes in the MOBIL model:
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aInduced = ∆ẍRear = ẍRear − ¨̃xRear, (3.9)

where ẍRear is the current acceleration of the vehicle located behind the ego, and
¨̃xRear would be the acceleration of the same vehicle given that the ego wasn’t located
in front of it—giving a measure of how much the ego blocks the rear vehicle. When
there is no vehicle behind the ego driver this difference is set to zero. A reward
function can be constructed from this quantity as follows:

Rflow =


1, if aInduced ≥ 0,
1− | aInduced

aThreshold
|, if aThreshold < aInduced < 0,

0, otherwise,
(3.10)

where aThreshold > 0 is a constant that defines a threshold from which further decel-
eration doesn’t produce more penalty.

The total reward is constructed by combining the rewards from the agent’s different
objectives, as well as a small penalty for being in a lane change:

RTot = RLane + λRFlow + CLC1(ẏEgo = 0)
1 + λ+ CLC

, (3.11)

where CLC is a constant corresponding to the penalty for being in a lane change,
and λ is a parameter that models the importance of the competing objectives. The
denominator is set this way to ensure that the reward is normalized, i.e., RTot ∈ [0, 1].
When considering a scenario where lane changes are important, for example to
quickly get across a wide highway, it might be beneficial to set the constant CLC = 0.

To get a better understanding of this reward model, consider the example in Fig-
ure 3.3. This figure shows a scenario where the goal is to get to the rightmost lane,
and there is a vehicle located behind the ego vehicle in the neighbouring lane. There
are two different policies that would fulfill this task, denoted by π1 and π2. The pol-
icy π1 entails a longer time to reach the lane, but it does so without disturbing any
traffic. The policy π2 is more aggressive and would result in a faster lane change
at the cost of inducing braking in the other vehicle. Depending on the parameter λ
in the reward model (3.11) the agent can be set to seek either solution, i.e., when
λ� 1 : R(π2) > R(π1) and when λ� 1 : R(π1) > R(π2).
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π1

 

π2

Figure 3.3: A scenario, where there are two different ways to get to the rightmost
lane, denoted by π1 and π2. Which one that is optimal depends on the parameter
λ in the reward model (3.11). Thus this parameter can be used to make the agent
prioritise different goals depending on the scenario.

Action space

There are many possible ways of constructing an action space, but one of the main
goals is to span a wide range of possible behaviours by using as few actions as
possible. The most direct approach would be an action space containing a wide
range of different longitudinal and lateral accelerations. But, since the Trajectory
planning module from Figure 3.1 has a more detailed description of the physical
model of an articulated vehicle than the Tactical decision-making module, it is
rather this module that should take decisions about low-level actuations. Therefore,
the action space in the Tactical decision-making module will contain this set of
high-level maneuvers:

A = [Accelerate,Maintain speed,Decelerate,LC-left,LC-right] , (3.12)

which only contains five different actions. The fact that this action space is small
means that the growth of the search tree will be kept minimal—the exponential
growth of the search tree is proportional to the size of the action space; see Sec-
tion 2.4.

Longitudinal action space

To translate the longitudinal components of the agent’s high-level action space into
low-level actuations, an adaptive cruise control (ACC) was implemented. The ACC
allows the agent to regulate its time gap to the preceding vehicle, and when there
are no vehicles in front of the agent, it instead regulates the agent’s velocity. The
ACC used in this thesis is an extension of IDM, with a few modifications. These
were made because the steady state velocity of the IDM model, i.e., ẍACC = 0,
does not occur when a vehicle is in a position where g = g∗ and ẋ = ẋ∗. Rather, a
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vehicle governed by IDM will never reach its desired gap if it has a preceding vehicle,
since the velocity term in (3.3) will always contribute to a deceleration. This can
be changed by changing the 1 in the equation to a 2. Then the steady state will be
when g = g∗ and ẋ = ẋ∗. The resulting ACC equation is thus the following:

ẍACC = a

2−
(
ẋ

ẋ∗

)2
−

tgẋ+ ẋ∆ẋ
2
√
ab

g

2
 , (3.13)

where the parameters have the same interpretation as in the IDM (3.3), and the
jam distance g0 has been removed, since this parameter only is relevant in a traffic
jam situation, which will not be included in the simulations.

As with the IDM model, the acceleration outputs from the ACC must be bounded
from above and below, which is done as:

ẍIDM ← max (ẍIDM,−bMax) ,
ẍIDM ← min (ẍIDM, aMax) ,

(3.14)

where bMax > 0 and aMax > 0 are parameters modelling the vehicles maximum
deceleration and acceleration, respectively.

The motion of the truck is governed by (3.13), and will be regulated by chang-
ing the desired speed parameter, ẋ∗ and the desired time gap, tg. To do this
while only having three longitudinal actions, introduce a discrete state variable,
ACCstate ∈ {1, 2, . . . , NACC}. The action space is then constructed around two
vectors containing relative velocities, vACC, and time gaps tACC

g . Using this, the
desired velocity and time gap in the ACC is given by:

ẋ∗ = ẋEgo + vACC (ACCstate) ,
tg = tACC

g (ACCstate) ,
(3.15)

where ẋEgo is the current speed of the ego vehicle. The agent controls the ego vehicle
by increasing or decreasing the ACCstate by selecting the different actions from the
action space, the ACC state is updated as follows:


Increase speed : ACCstate ← ACCstate + 1,
Maintain speed : ACCstate ← ACCstate,

Decrease speed : ACCstate ← ACCstate − 1.
(3.16)

The ACC should only model the ego vehicle’s desired speed given that the time gap
to the preceding vehicle is larger that the desired time gap. To accomplish this, the
time gap tg in equation 3.13 is continuously updated as follows:
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tg ← max
(
tg,

g

ẋ

)
, (3.17)

meaning that the ACC will set the time gap to g/ẋ when this quantity is larger
than the desired time gap. By inserting this quantity into (3.13) one gets that the
acceleration will only depend on the relative velocities between the ego and the
preceding vehicle.

One of the benefits of using this type of action space is that the ACC is collision
free, meaning that the agent would not be able to produce a longitudinal collision by
for example selecting the ’Accelerate’ action repeatedly. However, this method will
only work if there is an actual vehicle in front of the agent. This problem is solved
by adding a ’ghost vehicle’—a fictional vehicle placed in front of the ego vehicle at
a distance corresponding to the maximum range of the sensors. The ghost vehicle
is set to always keep the same speed as the ego vehicle.

Lateral action space

The lateral action space should control the lane changing maneuvers. In this study,
a simplified model was used, where the truck was given a constant lateral velocity
ẏe = ±ẏLC in the desired direction, and when the ego reached a neighbouring lane
it stopped. This is a simplification of a real lane changing maneuvers for a truck.
But, a more accurate lane change model would be computationally costly, and in the
context of a MCTS it is not sure that it in the end would result in a better prediction
model. Instead, the simplest way to account for the capabilities of a truck is to set
’realistic’ values of ẏLC, that results in 5–10 seconds long lane changes.

Pruning of the action space

The action space is pruned so that the agent may not choose a lane change maneuver
if it will undoubtedly produce a crash, see Figure 3.4. The lane change action is
removed if the ego vehicle arrives in a lane where the gap, g, or the time gap, tg, is
too small, i.e., tg < tpruneg or g < gprune, for some parameters tpruneg > 0, gprune > 0.
The pruning also reduces the time complexity of the searching algorithm, since it
decreases the size of the search tree. For more discussion about this, see Section 5.1.4.

3.2.1 Particle filter belief updates

The task of the particle filter is to find the driver behaviour that could have caused
the observed acceleration. The filter keeps a set of M particles, {si}Mi=1, where a
particle s̃ =

{
pe × {pi, θ̃i}Ni=1

}
consists of a physical state, and eight behavioural
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Accelerate

LC Right

LC Left

Decelerate Maintain

Figure 3.4: A depiction of the five actions in the action space. The option to
change lane to the left is in this instant pruned, since there is a vehicle currently
inhabiting this neighbouring lane. The action to accelerate means to increase the
value of the ACC state, and respectively to decelerate means to decrease it.

parameters, θ = (a, b, tg, g0, ẋ
∗, aThresh, bSafe, p). Each particle has a coupled weight,

w, where each weight is calculated to give a measure of how probable the behaviour
was to have generated the most recently observed acceleration. The particle filter
belief update is done as in Section 2.3.1, and consists of first sampling a particle
with probability proportional to its weight, and then perform the following update:

w := Pfilter(θ, z) = exp
(
−(az − aθ)2

2σ2
accel

)
, (3.18)

where az is the observed acceleration, aθ is the acceleration output from the IDM
model when inserting the behaviour parameters in the particle, and σaccel is a nor-
malisation constant. Thus the weight estimates how well the particle was able to
predict the longitudinal motion of the driver. To filter the lateral motion the weight
is modified by:

w ← wη, if yθ̂ 6= yz,

w ← w, if yθ̂ = yz,
(3.19)

where yθ̂ is the lateral coordinate in the particle, and yz is the observed lateral
coordinate, and lastly η ∈ [0, 1) is a penalty parameter. Thus the particle filter also
accounts for incorrect lane changes, i.e., it predicts the lateral motion of the vehicles.

This process is repeated M -times, resulting in M new particles weighted by the
most recent observation. By normalising the weights, i.e., wi ← wi∑M

j=1 wj
, this set

can be interpreted as a discrete distribution over the particles, which produces an
approximate belief distribution

b̂(s) =
{
pe × {pi}NVehicles

i=1 × {wj, θj}
}M
j=1
∈ B, (3.20)
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where b̂(s) denotes the approximated belief state, and B is the belief space.

3.2.2 Tactical decision-making using MCTS algorithms

Three different tree search algorithms was used to solve the tactical decision-making
POMDP. The first algorithm is called MLMDP, which solves a problem when only
the most likely particle is considered. The resulting MDP is solved with a stan-
dard MCTS. The other two algorithms, POMCP-DPW and POMCPOW, solves
the POMDP problem using the whole belief state (how these algorithms work in
more detail can be found in Section 2.4). All algorithms used UCB1, and the same
rollout policy. These algorithms were compared to a baseline and upper bound,
namely the static assumed behaviour- (SAB) and omniscient (OMNI) algorithms
(as done in [SHK17]). The algorithms are described below.

Rollout policy, generative model, and MCTS-hyperparameters

The simulation step in the MCTS algorithm evaluates a newly explored state by
following a predetermined rollout policy. The objective of the scenario considered
in this thesis is to maneuver across a highway. Thus a good rollout policy should
evaluate states based on their potential to change lanes. To accomplish this the
rollout was set to maintain the current speed, and as soon as possible change lane
towards the desired lane. Thus a good state corresponds to a state where the ego
can reach close to the target lane.

To generate a new state the selected action from the MCTS is input to the transition
function, which generates a new physical state, which also is the agents observation
of the new state. A reward is then returned by evaluating the new physical state
with the reward function. The generative model can be seen as a combination of
these steps, i.e., z, r, s′ ∼ G(s, a).

The exploration constant, c, in the UCB1 formula (2.11) was set to weight explo-
ration against exploitation. Generally it is set to c =

√
2 given that the reward

function has an output in the unit interval, i.e., R ∈ [0, 1], where it guarantees
asymptotic convergence in each branch [BPW+12]. However, we found that in our
application this setting resulted in too much exploration and thus given a limited
number of searches it was not optimal. By experimenting with this value we found
that c = 0.1 performed well.

The POMCP algorithms had the DPW node limit k = 3, meaning that there were
three observation nodes for each action node. A large value of k would result in a
shallow tree search, while a smaller value might result in an overconfidence solver.
The growth was set to α = 0.1, as in [SHK17]. This parameter is not as important
when running a small amount of searches.
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Figure 3.5: A visualisation of the five algorithms, where the arrows indicate their
predicted accelerations. The top-left panel shows the OMNI solver, which uses the
exact accelerations to predict the traffic. This should provide an upper bound for the
other algorithms in the simulations. In the lower left pane is the SAB algorithm,
which always uses the same behaviour to predict the vehicles, regardless of the previ-
ously observed accelerations. In the top-right panel is the prediction of the MLMDP
algorithm, which uses a particle filter to create a pool of behaviours. It only uses the
most likely behaviour when doing the predictions. The POMCP and POMCPOW
algorithms in the lower-right panel considers multiple particles at once.

Baseline and upper bound

The static assumed behaviour formulation (SAB) is defined by solving the MDP
that is derived by assuming that all vehicles drive according to a predetermined
behaviour. To get a realistic baseline the chosen behaviour is set to the expected
value of the behaviours used in the simulations, why all parameters θi in the driver
models are set to θi = θimin + (θimax − θimin)/2. To get an upper bound, one instead
uses the correct underlying behaviours of the vehicles. The resulting agent is thus
completely aware of the behaviours of the other driver, and therefore make the most
accurate predictions possible. This is something that is only possible to do in a
controlled simulation environment. In the left two panels of Figure 3.5 the upper
and lower bounds are visualised. The OMNI-algorithm knows exactly how much
both cars will accelerate or decelerate, while the SAB-algorithm thinks that they
will both behave equally.

Monte Carlo tree search with the most likely particle

The most likely MDP (MLMDP) is an algorithm that can use the POMDP for-
mulation of highway driving, and solve it as an MDP using MCTS. To do this it
performs particle filter belief state updates between each iteration, and solves the
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MDP-problem that results from only considering the most likely behaviour (i.e., the
behaviour with the highest weight). This algorithm can be expected to perform
quite well since the complexity of the MCTS-algorithm is lower than for the other
two algorithms below (this is mostly due to the lack of observations during the tree
search). However, it is not able to account for multiple possible behaviours, which
means that it can become overconfident. This can be seen in the upper right pane
in Figure 3.5, where the arrows represents what the MLMDP-algorithm thinks is
the most probable acceleration of both vehicles.

POMCP with a DPW particle collection

In each iteration, the POMCP-DPW algorithm samples states from the particle filter
and performs a tree search. The tree search is combined with DPW to compensate
for the large observation space. However, there are two different methods regarding
how to arrange the particles in the history nodes with DPW. The regular POMCP-
DPW algorithm would replace the current particle with the particle contained in the
history node, and then continue the tree search with that particle. This means that
as soon as DPW starts to reject new observations the problem becomes an MDP
(see Figure 2.8). However, the article [SHK17] solves this problem by keeping a set
of unweighted particles in each history node. In this case the algorithm proceeds
the tree search simulation by drawing a particle from this set uniformly.

At initialisation the belief state in the root node is approximated by a set of particles
and their corresponding weights, {wi, s̃i}Mi=1, where each particle consists of a phys-
ical state and a set of behaviour parameters. Denote the particle corresponding to
the behaviour θ̃ by s̃ =

{
pe × {pi, θ̃i}Ni

}
. The algorithm evaluates an action by sam-

pling particles and computing the generative function r, s̃′, z̃ ∼ G(s̃, a), where r is a
reward, s̃′ is a new state, and z̃ is an observation. The new state is a combination of
the observation z̃, and the behaviours of the vehicles, i.e., s̃′ =

{
z̃e × {z̃i, θ̃i}Ni

}
. The

result of this simulation is saved as a history: h = (a, z̃, θ̃). This process is repeated
until the action a is progressive widened by the DPW algorithm. Let ŝ denote the
particle for which this happens. In this case the algorithm doesn’t need to compute
the resulting state and observation via the generative function, rather it appends the
behaviour of the particle, θ̂, to the history node that the DPW-algorithm chooses,
i.e., h =

(
a, z̃, {θ̃, θ̂}

)
. This results in a pool of behaviours which all have reached

this node. The algorithm proceeds by selecting one of the behaviours uniformly and
combines it with the observation that was created by the first particle, i.e., it selects
one of the following states:

{
z̃e × {z̃i, θ̃i}Ni

}
or
{
z̃e × {z̃i, θ̂i}Ni

}
.

The history nodes could also have included the physical states (i.e., the observation)
of every particle, and not only the behaviours. But, since actions are pruned based
on the physical states, i.e., Tmin, gmin, different physical states could mean differ-
ent actions spaces for the particles. This could result in poorly evaluated states.
The lower right panel of Figure 3.5 visualise the POMCP-DPW algorithm, where
multiple accelerations are taken into account when predicting the drivers.
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POMCPOW

The POMCPOW algorithm is quite similar to the previously described POMCP-
DPW algorithm. The difference is that the behaviours in the history nodes are
weighted. The weighing should be done with respect to the probability of the ob-
servation function (i.e., w = P (z|θ)), which can be interpreted as how likely the
behaviour θ is to generate the observation z. However it becomes quite difficult to
formulate an exact analytical observation function in the context of this problem.
This is mainly due to the IDM and MOBIL models not having a unique solution,
i.e., there are an infinite number of behaviours that generate the same acceleration
and lane changing decisions. However, the method can still be applied by approxi-
mating the observation function (similarly as in the particle filter). When a particle
gets appended to a history node the weights are computed as

w = exp
(
−(az̃ − aθ)2

2σ2
accel

)
≈ P (z, θ) , (3.21)

where θ is the particle that is appended to the history node, and z̃ is the observation
that created the observation node. Just as for POMCP-DPW it is shown in the
right lower pane in Figure 3.5 that the algorithm takes a number of behaviours into
account.

3.3 Tactical decision-making in an exit lane sce-
nario

The algorithms are benchmarked as tactical decision-makers in a scenario where
the ego vehicle has to maneuver across a densely populated highway to reach an
exit; see the two left panels of Figure 3.6. The surrounding vehicles were randomly
initialized (with random positions, velocities, and behaviours), and the algorithms
were evaluated on 60 different variations of this scenario. All variations consisted
of ten vehicles, and four lanes. The scenarios lasted for 75 seconds in total, and a
decision was taken between each simulation time step, ∆t = 0.5 seconds, meaning
that the agent took 150 decisions in each scenario.

The time horizon during the tree search was 25s, and in order to reach further down
the tree a dynamic time horizon was used, meaning that the time between decisions
during the predictions was not constant—rather it increased further down in the tree.
The positions of the vehicles were updated in each time step by the transition func-
tion (3.2). As a reward function (3.11) was used for λ ∈ {0.001, 0.01, 0.1, 1, 10, 100}.
A small λ-value means that the agent should mainly focus on finding a path to the
objective lane, a large value means that the agent should try to minimize its negative
interactions with the traffic, and λ = 1 provides the most difficult task of solving
both these tasks at the same time.
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Figure 3.6 shows a traffic scenario, and some interesting aspects of the state space.
The lower left panel shows the true state of the traffic, while the panel above it
displays the agents belief state, which is based on the most recent observation.
Since the physical properties of the vehicles are assumed to be perfectly known
the only difference between these states are the behaviours, which are indicated by
different colors. The behaviours are vectors containing eight parameters: five IDM
parameters and three MOBIL parameters, which were set to be correlated with a
factor ρ = 0.75. This correlation means that a vehicle that maintains a high velocity
is more likely to also be ’aggressive’, meaning that it will keep a low time gap and
possibly accelerate faster. The colour of the vehicles indicate the desired velocity
parameter of their behaviour. A dark red colour indicates that the desired velocity
is high, and since the behaviours are correlated the vehicle will most likely behave
aggressively. Similarly a green colour represents a vehicle with a low desired velocity,
and it can be expected to act passively.

The right panels of Figure 3.6 show some properties of the ACC and the particle
filter during a simulation of 25 seconds. The upper right panel shows the acceleration
output from the ego vehicle, and below it one can see the current ACC state. The
parameters used in the ACC were set so that the ego would be slower than the
surrounding traffic. By comparing these figures one can see how the acceleration is
proportional to the ACCstate.

The lower right panel shows the root mean squared error of the behaviour parame-
ters, EFilter, which is computed as

EFilter = 1
NVehiclesNBehaviour

NVehicles∑
i=1

NBehaviour∑
j=1

(
θij − θ̂ij

)2
1/2

(3.22)

where θij is the j:th behavioural parameter for vehicle i, θ̂ij is the particle in the par-
ticle filter with the highest weight, Nvehicles is the number of vehicles, and Nbehaviour

is the number of behavioural parameters. This panel shows how the initial error
is quite small, and seems to gradually improve as the agent receives more observa-
tions. The reason why the error is quite low in the beginning is because of that the
behaviours are assumed to be correlated, and the believed behaviours of the vehi-
cles are initialised as fully correlated vectors (i.e., ρ = 1). This means that all the
parameters have the same value, and thus in the first time step the error is expected
to be quite low; EFilter ≈ 0.25 from the figure.
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Figure 3.6: A visualization of the different aspects of the state-space during one
of the scenarios that was used to test the algorithms. The left figures show the ego
vehicle as a the big blue square in the top lane. There are four lanes where the
red lane indicates the target lane. The squares represent different vehicles, where
their colour indicates their aggressiveness (which correspond to their behaviour), and
the number on top of each vehicle indicates their current velocity. The difference
between the two left pictures is that the top one shows the real state and the bottom
one shows the agents current belief, which explains why some of the vehicles have
different colour. The right panels in the order from top to bottom show the simulation
history of: the acceleration output from the ACC, the state of the ACC, and the filter
error, i.e., the accuracy of the agent’s belief. The red line in front of the ego vehicle
symbolises the safety time gap, meaning that if a vehicle enters this line then the
ego won’t regulate its speed; rather it starts to regulate the time gap to the preceding
vehicle. The black lines around the ego vehicle indicate the distances in which the
lane change option is pruned.
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Parameters used in the implementation of the highway driv-
ing scenario

Simulation parameters Symbol Value
Time step size [s] ∆t 0.5
Sensor range [m] 100
Number of lanes NLanes 4
Number of vehicles NVehicles 10
Minimum time gap prune [s] tpruneg 3
Minimum gap prune [m] gprune 10
Dynamic time steps [s] [0.5, 1, 1.5, 2, 2.5, 2.5, 2.5, 2.5, 5, 5]
Lane reward parameter σy 20
Flow reward parameter aThresh 2
Lane change penalty CLC 0

Tree search
Exploration constant c 0.1
Discount factor γ 0.95
DPW constant factor k 3
DPW exponential factor α 0.1

Truck capabilities
Maximum acceleration [m/s2] aMax 0.6
Maximum deceleration [m/s2] bMax 7
Maximum speed [m/s] vmax 30
Minimum speed [m/s] vmin 15
Lane change time [s] 5
ACC relative speed values vACC [−10, −5, −1, 0, 1, 5, 10]
ACC time gap values tACCg [3.5, 3, 2.5, 2, 1.5, 1, 0.5]

Particle filter
Number of particles i filter M 200
Correlation factor ρ 0.75
Observation standard deviation σaccel 0.1
Resample probability pr 0.12
Resample standard deviation σr 0.1
Incorrect lane change factor η 0.2

IDM and MOBIL Passive/Aggressive
Max acceleration [m/s2] a 0.8/2
Desired Speed [m/s] ẋ∗ 24/32
Desired Time Gap [s] tg 2/1
Desired Jam Distance [m] g0 4/0
Desired Deceleration [m/s2] b 1/3
Politeness p 1/0.1
Safe brake [m/s2] bSafe 1/3
Acceleration threshold aThresh 3/1
Maximum deceleration [m/s2] bMax 7

Table 3.1: Parameter values used during the simulations. 47



Chapter 4

Results

This chapter presents the results from the simulations, which first evaluates how
the different tree search-algorithms scale with the number of searches. Then three
different tree searching algorithms are compared to the upper and lower bounds.
Lastly, the algorithms’ relative time complexity is presented.

4.1 How the number of searches influences the
MCTS algorithm

It is not obvious that the simulation environment requires planning, and that more
searches results in a higher cumulative reward. Therefore we test how well these
types of algorithms scale with the number of tree queries, i.e., the number of sim-
ulations the algorithm use to construct the tree in order to find a solution. The
results can be seen in Figure 4.1, where the different lines correspond to the OMNI
algorithm being run for an increasing number of searches. The different amounts
of searches are: 1000, 100, 10, and rollout, where rollout means that there is no
planning involved: the agent rollout each of the allowed actions, and chooses the
one with the highest value. The left panel shows the results from the individual
reward functions where the points on the lines correspond to a specific value of λ
used in the reward function (3.11). The flow reward, denoted by Rflow in section 3.2,
plotted on the y-axis has been normalized by dividing the total reward accumulated
by the agent by λ. The reward has also been normalized by the simulation length,
and thus a reward of 1 corresponds to a perfect score with respect to that objective.
The figure show the results for the values λ ∈ {0.001, 0.01, 0.1, 1, 10, 100}, denoted
by the agent’s Traffic awareness.

In the left panel the resulting curves produces a Pareto front, indicating that it
is difficult to optimize both objectives at the same time. The top-left points on
the curves correspond to λ = 100, and during these simulation the reward function
mainly prioritizes the traffic flow. As λ is gradually set to smaller values a continuous
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convex curve is produced. As the search depth increases the Pareto front approaches
the top-right corner, meaning that the more time the agent is given to plan, the
better policies it is able to find. In the right panel one can see the total reward
plotted against the λ-values. This graph shows the same trend, that when the
searches increases the algorithm gets a higher reward.
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(b) Total reward against λ.

Figure 4.1: The accumulated rewards during highway simulation with the OMNI
algorithm. The algorithm is run with four different values of number of searches:
1000, 100, 10, and rollout, and are evaluated on different values of lambda λ ∈
{0.001, 0.01, 0.1, 1, 10, 100}. Panel (a) shows the competing objectives plotted against
each other, where the flow reward is divided by λ. The result is a convex Pareto
curve. Panel (b) shows how the total reward scales with respect to the number of
searches.

Figure 4.2 presents a different interpretation of the previous results. In panel (a)
the average time it took for the ego to reach the target lane as a function of λ is
shown. For small λ-values more searches results in a shorter time to reach the target
lane. For large values of λ the average time to reach the lane increases for all search
depths. When λ = 100 the truck is fastest to reach the lane when only searching
10 times, however, in these simulations the main objective is not to reach the target
lane, but rather to not disturb the traffic. Panel (b) shows the success rate of
traversing the highway and reaching the target lane during the 75 seconds that each
simulation lasted. The success rate can be seen to increase with more searches for all
values of λ. Panel (c) presents the physical results in a similar fashion as previously
with the reward functions. It displays the competing objectives plotted against each
other, i.e., the average time it took for the ego to reach the target lane as a function
of the average induced braking that occurred while doing so. The results are quite
similar to the ones in Figure 4.1 where the agent is able to prioritize either goal,
producing a Pareto front. Lastly panel (d) shows how the induced braking scales
with λ. The resulting curves are s-shaped, and as the searches increases the steeper
the slope of the s-curve gets. The curvature means that the algorithm is better able
to adapt and solve different objectives, which is modelled by the λ-value.
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(c) Induced deceleration against time to
target lane.
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(d) Induced deceleration against λ.

Figure 4.2: The results from Figure 4.1 presented in some relevant physi-
cal variables. The different panels show how the search depth affects the algo-
rithms possibility to optimize different objectives. For each line the nodes cor-
respond to different values of λ. These figures show the rewards for the values
λ ∈ {0.001, 0.01, 0.1, 1, 10, 100}.

4.2 Comparison of the algorithms’ performance
during simulations

Figure 4.3 shows how the different algorithms perform when run for 1000 searches
per decision. The results are presented in a similar way as for the search depth,
where the result from each solver is represented by a line, and each point on the line
corresponds to a value of λ ∈ {0.1, 1, 10}. The left panel shows the average amount
of returned reward from each objective. This panel shows that the MLMDP solver
outperform the POMCP and POMCPOW algorithms, since the nodes of its Pareto
curve is closer to the upper-right corner. The POMCP and POMCPOW perform
almost equal and manage to outperform the SAB, which provides a lower bound.
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The right panel shows the total reward, i.e., the total reward from the objective
function, for each algorithms plotted against the λ-values. Here it can be seen that
the MLMDP algorithm is performing well. For λ = 1 it even outperforms the OMNI-
solver, which is supposed to work as an upper bound. This may seem unreasonable,
and will be discussed in Section 5.1.2.
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(b) Total reward against λ.

Figure 4.3: Panel (a) shows how the different algorithms perform when run for
1000 searches during the exit lane scenario. The simulations are run for three differ-
ent values of λ ∈ {0.1, 1, 10}. The result is plotted with respect to the two objectives
denoted by the flow- and lane reward. Panel (b) shows the total reward from these
simulations plotted against λ.

In Figure 4.4 the different algorithms are compared. Panel (a) shows the average
time it took for the ego to reach the target lane as a function of λ. For small λ-
values the OMNI- and MLMDP-solvers reach the lane fastest. When λ = 1 the
MLMDP-solver is generally faster than all the other algorithms, and when λ =
10 the OMNI-solver is fastest. Panel (b) shows the success rate of reaching the
target lane. All algorithms perform well, except SAB when the value of λ is small.
This panel also show how the success rate decreases as λ is set to larger values. In
Panel (c) the physical results are presented in a similar fashion as for the reward
functions. The average time it took for the ego to reach the target lane is plotted as
a function of the average induced braking that occurred while doing so. The results
are very similar to those in Figure 4.3. Lastly, panel (d) shows how the induced
braking scales with λ. This figure shows that the OMNI-solver is inducing the least
amount of braking on the other participating vehicles. Furthermore, the MLMDP
outperforms both the POMCP and POMCPOW with respect to this objective.
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(c) Induced deceleration against time to
target lane.
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(d) Induced deceleration against λ.

Figure 4.4: The results from the algorithm comparison, presented in physical vari-
ables. The different panels show how the different algorithms perform when optimiz-
ing different objectives. For each line, the nodes correspond to different values of λ.
These figures show the rewards for the values λ ∈ {0.1, 1, 10}.

The error bars in Figure 4.1, 4.2, 4.3, and 4.4 show the standard deviations of the
mean, i.e., e = σresiduals/

√
Nsamples, where Nsamples is the number of evaluated simula-

tions, and σresiduals is the standard deviation of residuals of the samples. The resid-
uals were computed by partitioning the total variance into explained and residual
variance, i.e., SStotal = SSresiduals + SSexplained. The explained variance, SSexplained,
is the variance of the rewards which is resulting from switching between different
simulation cases.

4.3 Predictions using a particle filter

During the simulations a particle filter was used to estimate the behaviours of the
surrounding vehicles, i.e., their specific parameters used in the IDM- and MOBIL
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model. To examine how well the particle filter performed, a test scenario was set
up, depicted in panel (a) in Figure 4.5. A faster car is approaching the truck from
behind in the left lane. 10 seconds into the simulation the truck suddenly performs
a lane change to the left, and is thus forcing the car to brake. When the car has
been braking and adapting to the situation for about 20 seconds, the truck changes
lane back to the right lane. In panel (b) the acceleration profile of the car is plotted
together with the acceleration of the particle in the particle filter with the highest
weight. The red dotted line in the graph is a single step-prediction made by the
same particle. It predicts the acceleration of the car for the next time step, i.e. 0.5
seconds into the future.

tup = 10s tdown = 30s

(a) Traffic scenario (b) Acceleration of car

Figure 4.5: (a) The scenario used to test the particle filter. A faster vehicle is
located behind the ego in the neighbouring lane. 10 seconds into the simulation,
the ego vehicle is instructed to change lane in front of the vehicle, and then at 30
seconds, change back again. (b) The acceleration profile of the car. The black
curve represents the real acceleration, the blue curve represents the best acceleration
produced by the particle filter in the current time step. The red curve shows how the
particle with the highest weight in the particle filter predicts the acceleration for a
single time step forward.

Figure 4.6 shows how well the particle filter is able to predict the vehicle’s motion.
The acceleration profile is considered just before the truck makes the second lane
change (30 seconds into the simulation). The real acceleration of the car, and the
particle with the largest weight are plotted with thick black and red lines, respec-
tively. These are plotted together with the predictions of the rest of the particles
from the particle filter. In the middle panel, and the right panel in the same figure,
there are also predictions of the associated velocity and position of the car.
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(a) Acceleration (b) Velocity (c) Position

Figure 4.6: The acceleration, velocity and position of the car from the scenario in
Figure 4.5. The black dotted lines represents the real data, the red represents the
prediction of the particle with the highest weight at time t=25. These are compared
to the whole set of particles contained in the particle filter, plotted in grey.

4.4 Time complexity of the MCTS algorithms

In the upper panels of Figure 4.7 it is shown how the time complexity for the
different algorithms scales with the total number of tree searches. The time on the
y-axis is the time spent on the tree search algorithm, which includes creating the
search tree, and to compute the new belief update for the latest receives observation.
One important thing to have in mind when studying these graphs is that the time
is computed by using our implementation of the algorithms, which does not fully
represent the real time complexity of the algorithms (since little effort has been
made to optimize the run times). The graphs rather work as a comparison for the
relative times between the algorithms.

The lower panels in Figure 4.7 show the depths of the search trees that the algorithms
were able to create, which is based on the number of searches spent in the tree. The
depth is defined as the maximum number of decisions taken for one of the nodes
in the tree. The results show a clear logarithmic trend in the required number of
searches to reach a certain depth. Along with the data, a fitted a logarithmic trend
is shown by using the least squares error method. The POMCP solvers are very
similar, and reach about the same depth. However, the MLMDP algorithm shows
a much higher logarithmic growth.

The two left panes in Figure 4.7 where computed when using a dynamic time horizon
(this is briefly explained in section 3.3). The predictive time horizon was set to 25
seconds, and thus the maximum depth of the search tree was 10 nodes deep. The
two right panels on the other hand used a static time step at 0.5 seconds. With the
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same time horizon of 25 seconds, the maximum depth of that tree was instead 50
nodes deep. The implications of this are discussed further in section 5.1.4.
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Figure 4.7: The upper panels show the average run time complexity of our imple-
mentation of the different algorithms, and the lower shows the average depth that
the algorithms reached in their respective search tree. The error bars in the figure is
the standard deviations of the mean, i.e., e = σsample/

√
Nsamples, where σsample is the

standard deviation of the samples, and Nsamples is the number of simulations. The
panels to the left used a dynamic time horizon, the panels to the right used a linear
time horizon. The graphs show how the POMCP solvers are more time intensive
for larger searches, while also not reaching as deep down in the search tree as the
MLMDP.
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Chapter 5

Discussion

This chapter analyses the results of the simulations that were presented in the pre-
vious chapter, and discusses our implementation of the problem.

5.1 Analysis of the results

During the next subsections the results from Chapter 4 is discussed. The discussion
is performed in the same order as the results were presented, i.e., how the number
of searches influences the algorithms, comparison of the algorithms, analysis of the
particle filter, and the suitability of the algorithms as online optimization methods.

5.1.1 Effects on the performance of a MCTS depending on
the number of searches

By varying the number of searches in the Monte Carlo tree search the agent was
able to find much better solutions, i.e., solutions which returned a higher reward.
However, an interesting property of Figure 4.1 in Chapter 4 is that the difference
in reward between the different number of searches is larger for small λ-values,
compared to when λ is large. This difference indicates that the problem of reaching
the desired lane as fast as possible contains a lot of long term planning, compared to
the problem of avoiding to induce deceleration in the surrounding traffic. Another
interesting property is that there is a notable decrease in total reward when λ = 1,
i.e., when the objectives have equal weight. This means that it is very difficult to
solve both tasks simultaneously, which is known from the fact that the curves show
a Pareto front. An either very large, or small, value of λ means that the majority of
the reward is based on only solving one of the tasks. Thus we expect to see a higher
reward for these simulations. It is also interesting that in this particular case the
algorithm performs equal when run for 1000 and 100 searches (this is the point on

56



5. Discussion

the Pareto front in the left panel where 100 searches looks to have performed better
than the 1000 searches). This may be an indication of that there is a need of more
searches in the tree in order to find good policies in such a difficult scenario.

When the number of searches is large, panel (a) in Figure 4.2 shows that the ego
vehicle manages to arrive faster to the target lane, except for when λ is small. An
interesting fact is that when λ is really large, searching 10 or 100 times reaches the
lane faster than when searching 1000 times. But this does not necessarily indicate
that they performed better, since when λ is large the main objective is not to get
to the lane, but rather to avoid impeding the traffic.

The results in panel (d) in Figure 4.2 are promising, and one can see that when
the algorithm samples 1000 tree queries, it was able to better prioritize the different
objectives. This is determined by the steepness of the s-curve. The results from all
search depths are s-shaped, but as the searches increases, the steeper the curve gets.

5.1.2 Performance comparison of the algorithms

In Figure 4.3 the simulation results are compared when running all algorithms for
1000 searches per decision. In the figure it can be seen that the MLMDP algorithm
performs better than both POMCP and POMCPOW. The POMCP solvers con-
struct a graph that contains an observation node layer, and as can be seen in Figure
4.7 both POMCP-DPW and POMCPOW require more searches to reach the same
search depth compared to the MLMDP solver. As we previously discussed above,
since there are many ways to get to the target lane, the search depth plays a crucial
role in order to find a good policy. Due to the observational layer in the POMCP
algorithms, they use searches on exploring each action multiple times, and as a
result cannot find as many alternatives as the MLMDP. However, the observation
node layer means that the POMCP solver will be able to plan while taking several
different driver intentions into account, and therefore it should estimate the actions
better than an MDP solver. This means that as the number of searches increases the
POMCP-DPW and POMCPOW should technically reach an asymptotically higher
reward than what is possible for MLMDP, since the behaviours in the MLMDP will
never be completely correct. We only had the computational power to compare
these algorithms by sampling 1000 searches. However, to be fair one might want to
go much deeper than that in order to compare these algorithms. Other similar work
samples POMCP-DPW 2500 times and find that it outperforms an MLMDP that
only samples 500 searches [SHK17], however, these results can be a bit biased from
the difference in search tree sizes.

The results in Figure 4.3 were put into context by plotting them with an upper and
lower bound: the OMNI and SAB solvers. However, in the right panel we actually
see how the MLMDP beat the OMNI solver in the case when λ = 1. This should
not be possible, since the OMNI algorithm should theoretically be an upper bound
for these algorithms. Why this happened can be a result of a couple of different
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reasons. The simplest reason would be that the sample size was not large enough,
due to the computational demand of these simulations. This is also the reason
why there are only three λ-values in this test instead of six values as in Figure 4.1.
However, the most likely reason behind why the MLMDP-algorithm outperformed
the upper bound has to do with the time horizon. During the simulations the time
horizon of the algorithms’ predictions were 25s. However, the total length of the
simulation scenario was 75s. Thus a good policy during the first 25 seconds does
not necessarily mean a good policy when considering the whole scenario. The main
difference between the two algorithms is that the OMNI solver is much better to
account for the vehicles’ behaviours, which can be seen in panel (d) in Figure 4.4,
where OMNI beats MLMDP in this category. Since the MLMDP solver does not
exactly know how a vehicle would behave if the ego would change lane in front of
it, it sometimes misjudges the situation. Since there is no abort action in the set of
actions, once the truck has started a lane change, it has to complete it. This results
in the ego vehicle being closer to the target lane, a decision which should return
less reward on a 25s time scale, but is ultimately beneficial on a 75s time scale. If
the ego vehicle reaches the target lane, it is desired that it also stays there during
the rest of the simulation. Therefore the ego vehicle does not get any penalties for
inducing braking actions when it has reached the lane. As a result, the objective of
reaching the target lane is therefore implicitly more important compared to avoiding
inducing braking actions. Hence a misjudgment of the MLMPD-algorithm can lead
to a higher cumulative reward than for the OMNI-algorithm.

To support this argument, it can be seen in panel (a) in Figure 4.4, that when
λ = 1, the OMNI solver takes longer time getting to the target lane compared to
MLMDP, POMCP and POMCPOW. Additionally, in panel (d) it can be seen that
the OMNI solver induces less braking actions compared to all other algorithms, and
panel (b) shows the percentage of succeeded lane changes as a function of λ. Here
we can also see that the MLMDP succeeds in finding the target lane more often
than OMNI when λ = 1.

5.1.3 Analysis of the particle filter

Since there are infinite sets of parameters that can produce the same acceleration
when using the IDM and MOBIL model, it is a difficult task to find what behaviour
caused the observed acceleration. To simplify the problem of sampling behaviours
a correlation factor, ρ ∈ [0, 1], was introduced. A large correlation factor implies
that a vehicle with a high velocity also has the tendency to accelerate faster and
keep a smaller time gap to the preceding vehicle. The simulations were run with
ρ = 0.75, which means that the filter was able to roughly estimate the whole be-
haviour of a driver, even when there was no vehicle in front of the driver, so that
only two parameters are active. In this case the only measurable variables are the
maximum acceleration, a, and the desired speed parameters, ẋ∗, in the IDM. This
was visualized in panel (b) in Figure 4.5, where the particle filter predicted quite
accurately the deceleration of a vehicle at t = 10, even though these behaviour pa-
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rameters have not been observed. But, even though a particle’s acceleration is close
the observation, it does not necessarily mean that the particle’s behaviour contains
the real underlying parameters. A particle which predicted an acceleration close to
the observed value, could differ from the real accelerations only 0.5 s later.

In Figure 4.6 the whole particle filter is visualized. An interesting result here is
that there are actually other particles in the collection that perform better than the
particle with the highest weight, i.e., the particle with the most accurate prediction
at that time. However, this way of filtering, where the filter finds particles that fit
best compared to the current acceleration, may be sub-optimal. It can be better to
instead find a particle that is able to predict the five, or ten, most recent observations.
We did not use such a particle filter in this thesis and such methods are also left for
future works.

5.1.4 MCTS algorithm as an online optimization method

This section will evaluate the results connected to whether any of these algorithms
are possible to run online as a tactical decision making-algorithm in a heavy artic-
ulated vehicle.

Time complexity and search depth

The upper two panels of Figure 4.7 show how the time complexity of the different
algorithms scale with the number of searches. The left panel shows the complexity
for a dynamic time horizon that was 10 time steps deep with a total simulation
length of 25s. This plot shows quite an interesting trend, as for a small number of
searches the difference in run times between the algorithms was small. This is be-
cause the only computational difference between the algorithms is that the POMCP
solvers uses an additional observation layer which add a couple of computations,
and furthermore the POMCPOW algorithm also has to weigh the particles.

As the number of searches increases one can see how the MLMDP algorithm start
to deviate from the other algorithms. The reason behind this is not due to the
complexity of the algorithms, but rather it is an implication of the dynamic time
horizon. This phenomenon is due to the MCTS simulation step, where the algorithm
selects previously calculated states until it reaches a leaf node, and then performs a
rollout simulation for the rest of the time horizon. The computationally expensive
part of the MCTS simulation step is this rollout simulation, which simulates the
generative model, i.e., the traffic models, ego vehicle etc. Thus, the further the
simulation step can traverse the tree by using previously calculated nodes, the lower
the computational complexity becomes. In Figure 4.7 one can see that the MLMDP
algorithm reaches a depth of d ≈ 9 nodes, out of 10, and thus a majority of the time
spent in the MCTS simulation consists of selecting previously calculated nodes. One
can also see how this becomes more beneficial as the number of searches increases,
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since the depth of the tree increases. This also affects the other algorithms, but
compared to the MLMDP algorithm they do not reach as far down the tree and the
effect is not as noticeable.

The upper right panel in the same figure shows the same analysis, but, these sim-
ulations used a 50 nodes deep linear time horizon. The simulation time between
each node was ∆t = 0.5 meaning that the length of the horizon also was 25s. Here
it can be seen that the MLMDP does not divergence as much from the other algo-
rithms. This is because none of the algorithms reach a significant depth—the MCTS
simulation step mainly simulates the computationally expensive rollout policy.

The lower panels of Figure 4.7 show that there was a difference between the MLMDP
and POMCP algorithms in terms of the depth of the search trees. This was a result
of the history node tree used in the POMCP algorithms, where each action node has
k child observation nodes. Hence these algorithms require more searches before they
reach a significant depth in the search tree. The figures show how the logarithmic
growth for the MLMDP algorithm is about 3 times as large when compared the
POMCP solvers. This was expected from the DPW settings that were used (k′ = 3,
α = 0.1). This means that the POMCP solvers have at least 3 observation nodes
per action node, and should thus have a growth three times smaller.

The logarithmic growth of the depth plays a crucial role in how far the algorithms
are able to predict, since the depth is directly proportional to how far into the future
the algorithms are able to simulate. One could reason that when considering the
exit lane scenario it might be beneficial for an algorithm to plan past at least one
lane change, which with the settings in table 3.1 lasts for 5s if performed in the
initial time step. With the dynamic time horizon, this correspond to searching at
least d = 4 nodes deep in the search tree. In these figures it can be seen that
the only algorithm able to plan that deep in the tree is the MLMDP, where the
POMCP solvers barely reach a depth of 3 nodes. The required amount of searches
to reach a depth of d = 4 can be computed by using linear regression, see the
lower panels of Figure 4.7. The depth is calculated by d = −0.5 + 1log10(Nsearches),
which gives NCritical = 10dcritical+0.5. Thus one would have to sample somewhere
around NCritical = 30000 tree searches to be able to plan past an initial lane change
with a POMCP solver, when using these UCB1 and DPW settings. This could be
one of the main reasons why the MLMDP algorithm outperformed the POMCP
algorithms—the POMCP algorithm need more samples to perform well.

Online decision-making

The focus in this project was to examine different tree search methods, and evaluate
whether they are feasible to run online. All code used in the thesis was written in
Python, which was chosen because it is a relatively easy high level programming
language, and is thus efficient for rapid prototyping. However, Python is not a high
performance language, and to further improve the run times of this program one
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could consider writing the code in for example C++. Furthermore, MCTS is also a
parallelisable algorithm [CWvdH08]. In Figure 4.7 we see that our implementation
of MLMDP is able to sample 1000 searches in ∼3s. The results in Figure 4.1
also showed that 1000 searches could potentially be enough in the decision-making
algorithm in order to find good policies. This means that this implementation is
roughly a factor 3 too slow. Thus, a more efficient implementation running on
multiple threads would be feasible to run online, given a decision time of 1s.

5.2 Implementing a highway driving scenario

The physical models for the ego vehicle, as well as the surrounding traffic were
simplified. Simplified models means faster computations, and therefore there is a
trade-off between precision and speed. The decisions taken in the Tactical decision-
maker (see Figure 3.1) are supposed to work as a guide for the automated vehicle,
and as long as the models used in the decision-making algorithm is made with respect
to the capabilities of a truck, it should be enough. What is important is that the
Trajectory planner (from the same figure) gets reasonable suggestions, that it can
execute.

Reward model - Modelling objectives

It was showed in Chapter 4 how the value of λ in the reward function (3.11) effects
the agent’s decision making, and that λ can be used to prioritize different objectives.
For example, to prioritize getting off a highway, λ can be set to have an inverse
relationship with respect to the distance to an exit ramp. However, this reward
function showed to be sub-optimal when trying to model mandatory lane changes.
A mandatory lane change means that the ego must change lane in order not to
crash or break any laws, i.e., in the case when two different lanes merge or there
is an obstacle on the road. During the thesis we attempted to model this type
of lane changes by introducing large penalties or rewards at different locations on
the road, forcing the agent to seek policies that avoids, or collect these. However,
these modifications of the reward function showed to have bad properties on the
tree search, where it affected the UCB1 tuning, which resulted in deep and narrow
branches, and often sub-optimal policies. However, we avoided investigating these
cases further, and leave these questions for future work.

Driver models

The driver models that we chose to use when predicting the traffic were the IDM
and MOBIL model. The reasons for this were that they are simple to implement,
and that they are used frequently within traffic simulation applications. The IDM
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model has for example been shown to reproduce realistic collective dynamics, and
in smaller simulations it shows plausible microscopic accelerations of the single
drivers [THH00]. But, the prediction of human drivers has been shown to be a
difficult problem, and even though the models reproduce some observed traffic prop-
erties, they are not specifically made for predicting the behaviour of single drivers.
To model lane changes during highway driving, the predictions need to be in the
range 10–25s, which is a long time in vehicle prediction context, and there will
most likely be a discrepancy between the distribution of possible outcomes from the
models and real drivers. We have used these driver models as proof of concept, but
future work could be to replace these models by more accurate models, e.g., driver
models derived from learning from real data of human drivers.

5.3 Implementing a Monte Carlo tree search

The implementation of the problem uses the UCT, which is a Monte Carlo tree search
algorithm combined with the UCB1 algorithm. However, there are many other alter-
natives to handle the trade off between exploration and exploitation. In [BPW+12]
other methods are proposed, that expands the UCB1 bound to also incorporate the
variance of the different branches. However, this is not investigated in this thesis.

Another thing that has to be specified when implementing a MCTS is what branch
to select after the tree search is done. The alternatives is to either select the most
popular branch (i.e., based on the number of searches on that specific branch), or
the branch with the highest average reward. Both these methods have shown to be
effective, and which one is the best depends on the problem at hand. We tested
both alternatives, and did not find any significant difference between the resulting
decisions. Therefore we decided to select actions based on the most popular branch.
There are mainly two reasons behind this choice: if a branch is sampled enough so
that the second most popular branch will not be able to overtake it, then we can
stop the tree search and select this branch. In a lot of cases this improves the run
time of the code significantly. Another reason for selecting the most visited branch
is that it is more robust for a small number of searches. A branch containing a
relatively high number of searches corresponds to a branch that has been a good
option for a a lot of searches, and even though a bad decision is made far down in
the tree, that damages all action values up to the root node, the branch will be still
chosen as the best.

The method of selecting the most popular branch does also have its drawbacks.
Consider a case, where after NSearches/2 searches, one of the less visited branches
suddenly finds a policy that is receiving extremely good results. Then even though
the new branch starts to get more promising, the number of samples in this branch
can be so low that it is impossible for it to catch up. There are methods designed
to solve this problem [BPW+12], where, for example, if the Q values of the two
best actions are too similar, the tree search continues. But this was not useful in
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this implementation, since the benchmark ran all algorithms for an equal number
of searches.

Rollout policy

The best possible rollout policy should resemble an optimal highway driving strategy,
so that newly expanded nodes in the tree get evaluated as accurately as possible.
During simulations we wanted the ego to reach the exit of the highway. Therefore
the rollout policy was instructed to keep the ego vehicle’s desired speed and time
gap, and if there was a possibility of doing a lane change to the right, to do it. This
rollout policy therefore encouraged the ego vehicle to find multiple ways of reaching
the target lane, and thus promoted planning. One way to evaluate the rollout policy
is to try the root node’s allowed actions only once during the tree search, and let the
rollout policy evaluate them. This was done during the analysis of the number of
searches in Section 4.1, and can be found in Figure 4.1. Since the rollout performed
quite well, where it provided a convex Pareto curve, it can be concluded that it
at least resembles highway driving, and thus can work as a rollout policy for this
problem.

5.4 Hyperparameters and the simulation environ-
ment

The implementation of the program involved the determination of a lot of parame-
ters, such as the exploration constant in the UCB1-algorithm, the DPW-parameters,
particle filter size, and many more. Naturally these should be properly tuned in or-
der to draw any rigorous conclusions from the results. However, we concluded that
we did not have time to perform this analysis during the time frame of the thesis.
Therefore, we set a lot of parameters according to values found in the literature,
mostly from [SHK17]. The rest were determined experimentally by trial and error.
For future work this is something that needs to be investigated further.

The simulations were created to represent interesting, and relevant highway scenar-
ios, which also demanded a lot of planning in order to perform well. To accomplish
this, the scenarios had to be exaggerated compared to what a vehicle might normally
experience during highway driving. The scenario in Figure 3.6 for example involves
10 vehicles and four lanes, which is quite extreme compared to the expected scenar-
ios when driving on Swedish highways, which usually contains two lanes. However,
we assume that if the algorithms perform well in such extreme test cases it should
also perform well in more realistic and simpler ones.
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Conclusion and future work

This chapter summarizes the results and discussions of the previous chapters, and
answers the initially proposed thesis objectives. The thesis is ended with suggestions
on how to develop the proposed method further.

6.1 Formulating highway driving as a POMDP

The partial observability of the POMDP allows a general problem formulation, which
is necessary in order to model the uncertain aspects of highway driving, e.g., the
drivers’ intentions. During the trials of the investigated method, the MLMDP al-
gorithm proved to be the best solver, which outperformed the more sophisticated
POMCP-DPW and POMCPOW algorithms. It seemed like the added complexity
of the POMCP algorithms outweighed their benefits, at least when being sampled
for 1000 tree searches.

Furthermore, the mathematical model used in this thesis provides a transparent and
easily tunable method. If the agent for example makes a ’bad’ decision it is easy
to reenact the scenario, and backtrack precisely where things started to go wrong.
This is something that is quite attractive given the ethical aspects of autonomous
vehicles.

6.2 Finding an online policy using Monte Carlo
tree search

One of the objectives of this thesis was to find an algorithm suited for real time
decision-making in an automated vehicle. These experiments show that this is pos-
sible with a MCTS-method, and the MLMDP algorithm seems to be a suitable can-
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didate. This is because the MLMDP is capable of reaching larger search depths to
correctly evaluate lane changes and other high-level maneuvers. Furthermore, with
some code optimization, the proposed method can reach real time performance.

6.3 Future work

To proceed with this work, the next step would be to test the algorithms in a less
controlled simulation environment. Most interesting, though, would be to see how
well the algorithms performs in real traffic. Even though there would be a mismatch
between the simulated predictions and reality, the agent could possibly still be able
make good decisions.

The simulation environment should in the future include realistic road models, and
more accurate models of a heavy articulated vehicle. In order to make fair validations
of the algorithms they should also be evaluated on a larger set of scenarios, and,
furthermore, they could also include some sensor measurement errors into the belief
state.

The prediction model could in the future be completely disconnected from the tac-
tical decision making module. To make accurate predictions about the traffic flow is
a complex problem, and it is likely that the use of a traffic model learned from real
data could predict the future better than IDM and MOBIL, when compared to real
data. Since the predictions aim at describing human behaviour (something that can
be considered to be a black box), a black box solution might be the best way to go.

The reward function is essentially what governs the behaviour of the agent. This
means that it should be able to incorporate all the aspects about how to properly
drive an autonomous truck. For example, apart from the two objectives that we
chose to model in this thesis, it should also take the velocity of the ego vehicle into
account, and maybe include penalties for too rapid movements, since these might
be dangerous to perform with an articulated vehicle.

The idea of using a particle filter as a belief updater was taken from relevant lit-
erature. But, as discussed in Chapter 5, the implementation of this filter was not
optimal, mostly due to the complexity of the IDM and MOBIL model. Future work
would include to study alternative algorithms, such genetic algorithms or similar,
which can perform better for this task.

Furthermore, we did not perform any extensive tuning of the hyper parameters used
in the MCTS algorithms. We set them with inspiration from previous work within
the area, and what we found to work best for our own simulations. The same applies
to the rollout policies, as these are crucial for the MCTS algorithms performance.

The implementation of the proposed algorithms was made primarily to investigate
if they were able to solve the decision-making problem. Therefore, to make the code
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run in real time, and thus to be used as an online method, it should be thoroughly
optimized.
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