

Decentralized Cryptocurrency Exchange
A Proof-of-Concept based on Hashed Timelock Contracts

Bachelor of Science Thesis in Computer Science and Engineering

Magnus Andersson
Kevin Chen Trieu
Petros Debesay
Jesper Persson
Jacob Torrång
Samuel Utbult

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG

Gothenburg, Sweden 2018

Bachelor’s thesis 2018:05

Decentralized Cryptocurrency Exchange

A Proof-of-Concept based on Hashed Timelock Contracts

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018

Decentralized Cryptocurreny Exchange
A Proof-of-Concept based on Hashed Timelock Contracts
Magnus Andersson
Kevin Chen Trieu
Petros Debesay
Jesper Persson
Jacob Torrång
Samuel Utbult

© MAGNUS ANDERSSON, KEVIN CHEN TRIEU, PETROS DEBESAY,
JESPER PERSSON, JACOB TORRÅNG, SAMUEL UTBULT 2018.

Supervisor: Magnus Almgren, Computer Science and Engineering, Chalmers Uni-
versity of Technology
Examiner: Arne Linde, Department of Computer Science and Engineering

Bachelor of Science Thesis 2018:05
Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: David McBee. Licensed under CC0 1.0.

Gothenburg, Sweden 2018

III

Abstract
In recent years, cryptocurrencies have grown rapidly to a market capitalization of
400 billion US dollars. As the value of cryptocurrencies has increased, several ex-
changes have emerged. Some of these exchanges have been targets of attacks leading
to losses of cryptocurrency worth hundreds of millions of dollars. The attacks have
been made possible as a result of exchanges keeping track of the cryptocurrency in
circulation on the exchange by storing their users’ funds. A successful attack puts
not only the exchange, but all its users at risk.

This bachelor’s thesis explores an alternative to a centralized cryptocurrency ex-
change by trading directly on the blockchain using peer-to-peer technology. This
decentralized approach eliminates the risk for attacks with far-reaching consequences
as users’ funds are not stored in a central location. A protocol for exchange between
cryptocurrencies is proposed and a prototype based on this protocol is implemented.
An evaluation is done to ensure the quality of the prototype and protocol based on
three parameters - delay, cost and trading pairs.

The protocol is proven to be a possible alternative to the solutions offered today.
The prototype displays a proof-of-concept of a decentralized platform that imple-
ments this protocol.

Keywords: Blockchain, Decentralized, Cryptocurrency, Bitcoin, Ethereum, OrbitDB,
IPFS, Atomic Swap, Smart Contract

IV

Sammandrag
De senaste åren har kryptovalutor ökat i popularitatet till ett sammanlagt börsvärde
på 400 miljarder amerikanska dollar. Allt eftersom värdet har ökat har ett flertal
handelsplatser för kryptovalutor utsatts för cyberattacker, där kryptovalutor till ett
värde av flera hundra miljoner dollar gått förlorade. Attackerna har varit möjliga
till följd av att handelsplatserna hanterar allt kapital i cirkulation genom att förvara
användarnas tillgångar i ett centraliserat system. En lyckad attack utsätter både
handelsplatsen och dess användare för risker.

Den här kandidatuppsatsen utforskar ett alternativ till centraliserade handelsplatser
för växling av kryptovalutor genom att genomföra byten direkt på blockkedjor med
hjälp av P2P-teknologi. Detta tillvägagångssätt minskar incitament för att genom-
föra hackerattacker eftersom tillgångarna inte lagras på en central plats. Ett pro-
tokoll för växling mellan kryptovalutor föreslås och en prototyp baserat på detta pro-
tokoll implementeras. Därefter utvärderas prototypen för att säkerställa kvaliteten
på både prototypen och protokollet efter tre parametrar: fördröjning, kostnad samt
antalet möjliga växlingspar.

Protokollet visar sig vara ett möjligt alternativ till de lösningar som erbjuds idag.
Prototypen visar ett konceptbevis på en decentraliserad plattform som implementerar
detta protokoll.

V

General terms and abbreviations
Atomic swap/Atomic exchange An exchange between two parties that either
succeeds or reverts to its original state. It cannot stop in an intermediate state.

Bitcoin Bitcoin with a lowercase b refers to the currency in the Bitcoin network.

Blockchain A public digital ledger in which transactions are recorded chronologi-
cally in cryptographically hashed blocks. A blockchain in this text has a cryptocur-
rency associated with it.

BTC An abbreviation for Bitcoin, which is a blockchain.

Centralized (system) A system where instructions are issued and delegated by
a top-level entity.

Cryptographic hash function A one-way function used to map data of arbitrary
length to data of fixed length and is suitable to use in cryptography.

Decentralized (system) A system where complex behaviour emerges from local
computations and consensus by several low-level entities.

Ether Refers to the currency of the Ethereum network.

ETC An abbreviation for Ethereum Classic, which is a blockchain.

ETH An abbreviation for Ethereum, which is a blockchain branched off from
Ethereum Classic.

HTLC An abbreviation for “Hashed Timelock Contract”, and it is a way of exe-
cuting secure exchanges.

P2PKH Pay To Public Key Hash is the standard transaction in the Bitcoin net-
work.

P2SH Pay To Script Hash is a transaction in the Bitcoin network that allows
arbitrary code for spending and verifying a transaction.

Peer-to-peer A system of nodes where clients communicate directly with each
other without the need of a server.

Pre-image The original value used to create a hash.

Proof-of-concept An implementation that demonstrates that a theoretical con-
cept has practical potential.

VI

Proof-of-work A piece of data that is difficult to acquire but easy to verify.

Smart contract A piece of deterministic code, run on the blockchain, with which
various entities can interact.

Transpiling The process of converting source code written in a certain program-
ming language into the equivalent source code in another programming language.

UTXO Unspent Transaction Ouput in the Bitcoin network.

VII

VIII

Contents

1 Introduction 3
1.1 Outline . 3
1.2 Background . 3
1.3 Purpose . 4
1.4 Problem . 5

1.4.1 Secure cryptocurrency exchange 5
1.4.2 Decentralized communication 5
1.4.3 Decentralized storage . 6

1.5 Scope . 6

2 Technical background 7
2.1 Blockchains explained . 7
2.2 The Bitcoin blockchain . 8
2.3 The Ethereum blockchain . 9

2.3.1 Transaction costs . 9
2.3.2 Ethereum and Ethereum Classic 9

2.4 Security of blockchains . 10
2.5 Smart contracts . 11
2.6 Atomic swaps . 11
2.7 Cryptocurrency exchanges . 12
2.8 Network communication . 12

2.8.1 WebSocket . 12
2.8.2 NAT and relaying . 13
2.8.3 IPFS . 14

2.9 Distributed database . 15
2.10 Test automation . 15

3 Methods 17
3.1 Development . 17
3.2 Requirements . 17

3.2.1 Exchange method . 17
3.2.2 Bid database . 18
3.2.3 Message passing . 18
3.2.4 User interface . 19

3.3 Design . 19
3.3.1 Exchange method . 19

IX

Contents

3.3.2 Smart contracts . 21
3.3.3 Contract validation . 21
3.3.4 Design of bid database . 21
3.3.5 Design of message passing . 22
3.3.6 User interface . 22
3.3.7 Test automation . 23

3.4 Implementation . 23
3.4.1 Exchange method and atomic swaps 23
3.4.2 Atomic swaps on the Ethereum platform 23
3.4.3 Atomic swaps on the Bitcoin network 25
3.4.4 Bid database . 26
3.4.5 Message passing . 27
3.4.6 Blockchain software . 28
3.4.7 User interface . 29
3.4.8 Test automation . 30

4 Evaluation and Results 31
4.1 Quantitative Evaluation . 31

4.1.1 Test A : Success rate . 31
4.1.2 Test B : Delay . 31
4.1.3 Test C : Cost . 32

4.2 Qualitative Evaluation . 33
4.2.1 Test D : Trading pairs . 33

4.3 Testing environment . 33
4.3.1 Hardware specification . 33
4.3.2 Network specification . 34

4.4 Results . 34
4.4.1 Test A : Success rate . 35
4.4.2 Test B : Delay . 35
4.4.3 Test C : Cost . 35
4.4.4 Test D : Trading pairs . 36

5 Discussion 37
5.1 Discussion on the development process 37
5.2 Discussion on testing and results . 38

5.2.1 Method for measuring performance 38
5.2.2 Testing on Ethereum . 38
5.2.3 Testing on Bitcoin . 39

5.3 Discussion of the prototype . 39
5.3.1 API server . 40
5.3.2 The bid database . 40
5.3.3 Exchange method . 41
5.3.4 Message passing . 41
5.3.5 User interface . 41
5.3.6 Extension for additional cryptocurrencies 42
5.3.7 Reliability . 42
5.3.8 Scalability issues . 42

X

Contents

5.3.9 Security of the exchange method 43
5.4 Societal and ethical aspects . 43

5.4.1 Societal advantages . 44
5.4.2 Ethical issues and societal disadvantages 44
5.4.3 General discussion on Social and Ethical aspects 45

6 Conclusion 47

Bibliography 49

A Source code 55

B User interface 57

1

Contents

2

1
Introduction

In recent years, the increased popularity of cryptocurrencies has been hard to ig-
nore. The total market capitalization of all cryptocurrencies is, as of May 2018, 400
billion US dollars. Also, between 2016 and 2018, the increase in the number of cryp-
tocurrencies was roughly threefold, growing from 551 to 1551 cryptocurrencies [1, 2].

Blockchains and cryptocurrencies are rapidly gaining adoption in mainstream soci-
ety, with the Bitcoin network leading the way. Cryptocurrencies are often touted
as an alternative to government issued currencies, however they are not limited to
that field of application. For example the cryptocurrency ether, in the Ethereum
network, can be used in combination with programmable contracts deployed on the
blockchain. This has gained a lot of traction over the years as can be seen by the
increasing value of ether [3].

As cryptocurrencies with different fields of application increase in popularity, so has
the demand to exchange between them. It is not surprising that such a demand has
lead to the creation of several cryptocurrency exchanges.

1.1 Outline
Chapter 1, Introduction, explains the problems that currency exchanges are currently
facing and what the goals of the thesis is.
Chapter 2, Technical background, briefly summarizes the technical concepts that are
necessary to understand the rest of the thesis.
Chapter 3, Methods, describes the requirements, design, and implementation of the
prototype.
Chapter 4, Evaluation and Results, describes how the prototype is evaluated and
then presents the results.
Chapter 5, Discussion, gives a qualitative discussion of the project.
Chapter 6, Conclusion, concludes the report with a brief summary.

1.2 Background
Cryptocurrency is a new technology that is quickly gaining popularity as an alter-
native to currencies issued by central banks, commonly referred to as fiat money [4].
Two examples of fiat currencies are the Swedish krona, which is issued by Sveriges

3

1. Introduction

Riksbank [5], and the United States dollar, which is issued by the Federal Reserve [6].

At any given point in time, there exists a limited number of cryptocurrency coins
whose owners are specified in a decentralized blockchain. The cryptocurrency coins
have intrinsic value as one has to spend physical resources to acquire them [7]. The
concept of cryptocurrencies was coined in 1998 and the first full specification of a
cryptocurrency was published in 2009 when Satoshi Nakamoto released his white
paper for Bitcoin [8]. Bitcoin is not the only cryptocurrency. A large number of
cryptocurrencies exist and each currency is used in different markets. An actor in
a specific market has to exchange cryptocurrencies to purchase goods or services in
another market where the cryptocurrency that they are in possession of is unusable.

Exchange of currencies is essentially trading one currency for another. An individ-
ual wishing to make an exchange has two options. The first is to ask a centralized
financial institution that offers the service of exchanging a currency for another, i.e.
a currency exchange [9]. The other option is to trade directly with another individ-
ual wishing to make the opposite trade, thereby bypassing the centralized exchange
and making a decentralized exchange.

In today’s cryptocurrency world, centralized exchanges are prevalent [10, 11]. In a
centralized exchange, the user typically relinquishes control over the cryptocurrency
by placing it in the internal wallet of the centralized exchange. The exchange es-
sentially acts as a bank. This has advantages as it allows for fast trades within the
exchange. The exchange can also assure that both parties receive their part of the
trade. Once the user is satisfied with the trades made, the money can be extracted,
and control returns to the user.

However, there are also disadvantages with centralized exchanges. It is easier for
attackers to steal large amount of funds stored in an exchange. An exchange might
also fold before you get a chance to withdraw the currency [12]. Additionally, nothing
prevents a centralized exchange from abusing its powers by blocking specific users
or even halting trades arbitrarily [13]. Yet another factor is that users of centralized
exchanges cannot be fully anonymous as information about them has to be stored in
a centralized system. Clearly, an alternative approach is needed for users looking to
trade cryptocurrencies, and a decentralized exchange platform might be the answer
to the aforementioned issues.

1.3 Purpose

The purpose of this project is to investigate the possibility of performing a cryptocur-
rency exchange without the need of a middleman, specify a number of requirements
that a decentralized exchange should fulfill and develop a prototype based on these
requirements. The prototype should have comparable features to its centralized
counterparts. One of the main focus points will be to eliminate the risk of users
getting scammed by the second part in the exchange.

4

1. Introduction

1.4 Problem

To develop a functional decentralized prototype, three main problems need to be
addressed:

• How to execute a secure, as defined in section 1.4.1, decentralized cryptocur-
rency exchange between two users?

• How to facilitate decentralized communication between users?
• How to decentralize the data storage?

These problems come with challenges that will be further discussed below.

1.4.1 Secure cryptocurrency exchange

The measure of security is defined in this thesis as the risk of getting scammed when
using the prototype. Two existing solutions to ensure a secure exchange exist today.
The first solution is to use a middleman, usually a trading platform that both users
can trust. However, such a solution leads to centralization, which is not desirable in
an otherwise decentralized platform. The second solution is to have the users meet
physically to conduct an exchange. The problem with this solution is that the users
are physically restricted, and intercontinental transfers would be difficult to carry
out.

For these reasons, a solution that facilitates exchanges without the need of mid-
dlemen or physical presence is needed. For such a solution, it is required that
an exchange is done under an agreement without the possibility of this agreement
changing during or after the exchange. Such an exchange needs to be atomic, which
means that an exchange is indivisible, irreducible, and either happens or reverts to
its original state [14].

1.4.2 Decentralized communication

In a centralized platform, communication between users occurs through a commu-
nication channel that goes through a central server. A solution that utilizes this
method to manage communication is certainly not decentralized. Nevertheless, de-
centralized communication is a mature area and there exists a large number of
methods to communicate in a decentralized manner. BitTorrent is an example of a
protocol that achieves this [15].

A decentralized cryptocurrency exchange should use a decentralized protocol to cre-
ate communication channels between users so they can find each other and exchange
information. This protocol has to address these issues:

• Connectivity – The nodes need to be able to find and connect to the network.
• Routing – The nodes need to be able to find each other in the network.
• Security – Malicious nodes should not be able to jeopardize the transaction.

5

1. Introduction

1.4.3 Decentralized storage
In order to retrieve user bids and other data stored in the platform, the information
needs to be stored in a physical location. Two common ways of storing data today
is either through the traditional solution, where the data is stored in one central
location [16], or through a distributed system, where the data is stored in several
locations and linked through a data communication network. The first solution is
clearly not suitable for a decentralized platform, but the second solution is. Before
such a system can be considered fully decentralized, the following issues need to be
addressed:

• Independency – The nodes storing data should not be reliant on each other.
• Security – The data should only be manipulated by the owner.
• Reliability - The data should immediately be replicated when added.

1.5 Scope
The scope of this thesis is to make a prototype that will facilitate decentralized ex-
changes between a subset of cryptocurrencies. This includes bitcoin on the Bitcoin
(BTC) network, and ether on the Ethereum (ETH) and Ethereum Classic (ETC)
networks. In terms of security, the focus will be on making a protocol executing
atomic exchanges making it difficult to scam the counterpart on their funds.

The project will run on test networks as well as private networks. Using private
networks allows for the prototype to be tested in a controlled environment. This
controlled environment allows for the accumulation of an unlimited amount of cryp-
tocurrency units. Transactions can also be performed almost instantly, which re-
moves monetary and time-related constraints on the test runs. By using test net-
works, which have the same functionality as the main networks, it allows the proto-
type to be tested in an environment that is as close to the main network as possible
without the risk of losing funds.

6

2
Technical background

This chapter aims to introduce the reader to the technical knowledge needed to
understand the following chapters. The chapter begins by describing blockchains
in general and features in the two blockchains used in the project. Thereafter, the
current state of cryptocurrency trading will be summarized and following that is
a description how network communication works today. The chapter concludes by
introducing the concept of decentralized storage.

2.1 Blockchains explained

Blockchains are the most fundamental parts of this project. A blockchain is a public
ledger, or more simply a database, of all transactions stored on a decentralized
network of nodes [17]. This database is called a blockchain because the transactions
included in the database are stored in linearly consecutive blocks where all blocks
have a reference to the earlier block as can be seen in figure 2.1. To create new
blocks, nodes gather up a set of transactions not included in any previous block and
apply a cryptographic hashing function to solve a challenging cryptographic puzzle.
This process is called mining [18] and when a new block has been created, the node
that was able to first mine and distribute the new block into the network is rewarded
with new coins. A fee has to be paid for every transaction and this is transferred
to the miner of the block when the transaction is included in a new block. This fee
and the rewards gained through mining a new block give extra incentives for miners
of cryptocurrencies to continue with their activity [19].

Figure 2.1: Visualization of a blockchain

7

2. Technical background

2.2 The Bitcoin blockchain
Bitcoin is a peer-to-peer electronic cash system [20] and it currently has the largest
market cap among all cryptocurrencies [21]. It was created by Satoshi Nakamoto
in 2009 and has since paved the way for many other blockchain technologies and
cryptocurrencies, especially a set of derivative cryptocurrencies that are commonly
known as altcoins [22]. Some of these altcoins include Litecoin, Dogecoin and Peer-
coin [23].

Every Bitcoin transaction is processed through a simple scripting system called
Script [24]. Script is based on a stack-like machine without any loops, intentionally
making it not Turing complete. A language that is Turing complete is capable of
performing any possible calculation or computer program [25]. Every Bitcoin trans-
action is performed with a script that validates the transaction. The transactions
consist of one or more inputs and one or more outputs. For every transaction input,
the bitcoin that will be sent must be taken from one or more existing outputs that
have not been spent. These unspent outputs are called Unspent Transaction Out-
puts (UTXO).

The most common Bitcoin transactions are called Pay to Public Key Hash (P2PKH) [26].
In a P2PKH transaction, as seen in figure 2.2, if Alice wants to receive bitcoin from
Bob, Alice hashes one of her private keys into a public key hash, creating an ad-
dress. Bob then combines one or more of his available UTXOs as an input for a
new transaction, which restricts further spending to Alice. The new transaction is
locked by a script that states that the transaction can only be spent further if pro-
vided a key that when hashed will result in the public key hash that Alice provided.
This gives Alice the bitcoins, as only she knows the key. When the transaction is
confirmed, the input transactions are considered spent, and cannot be included in
other transactions. Alice can later on spend the transaction in the same fashion.

Figure 2.2: Visualization of a P2PKH

Another kind of transaction is called Pay To Script Hash (P2SH) [26]. Unlike
P2PKH that creates a public key hash address that the bitcoin is transferred to,
P2SH generates a script hash address that the bitcoin is instead transferred to. This

8

2. Technical background

script hash address contains a set of rules allowing anyone who can fulfill these rules
and also give a proof of how to the script was created, through what is called a
redeem script, possibility to spend from this transaction.

2.3 The Ethereum blockchain
The decentralized network Ethereum and its cryptocurrency ether is Bitcoin’s main
competitor. Ethereum was released in 2014 [27] and ether now has a market cap that
is only surpassed by Bitcoin [21]. While ether is the native currency of Ethereum, the
network also allows for deployment of so-called tokens [28]. Tokens can be compared
to casino tokens in that they can be utilized as currency in a specific domain. Tokens
do not replace ether, but can allow for additional functionality and provide added
value. Ethereum is also a general purpose blockchain meaning that it provides a
Turing-complete language [29] for programming smart contracts (for explanation of
smart contracts see section 2.5) on the blockchain. Ethereum enables developed
applications to run on the network with no downtime. Once a smart contract is
executed by a node in the Ethereum network, the result is validated by the other
nodes in the network [30].

2.3.1 Transaction costs
Since Ethereum is a public blockchain, measures have to be taken to prevent mali-
cious users from slowing down the whole network by overflowing it. Ethereum solves
this by having a set cost for each computational step in a transaction. A transaction
could be simply sending ether to another account, deploying a contract or running
a function on a contract. The cost for a computational step is measured in the
unit gas, used internally in the Ethereum network [31]. A user proposes, in their
transaction, a price for how much ether they are willing to pay for the unit of gas,
and each miner decides if they are willing to accept that price. The user also sets
a maximum limit on the amount of ether they are willing to pay. If the gas used
by the transaction exceeds that limit, the executed code automatically fails and any
changes made by the transaction are rolled back. However, the miner still gets all
the ether provided for computing the transaction. If the gas amount used does not
consume all the ether provided, the remaining ether is returned to the user. This
effectively stops spam on the network as it would be too costly.

2.3.2 Ethereum and Ethereum Classic
Ethereum is a hard fork of Ethereum Classic, meaning they have the same genesis
(first) block and partial history as can be seen in figure 2.3. But at one point there
were changes to the chain leading to a fork of it. Nodes running the old version, now
named Ethereum Classic, were no longer accepted [32]. The Ethereum hard fork
was done as a response to a big attack where one person or organization got hold
of 15% of the existing ether at the time [33]. Most nodes agreed that this should
be reversed, so a hard fork was performed which took all the involved money and

9

2. Technical background

allowed users to withdraw them [34]. So today both Ethereum and Ethereum classic
exists and they still share many similarities.

Figure 2.3: Visualization of a hard fork

2.4 Security of blockchains
Since blockchains are distributed among a set of peers, ensuring the security of the
chain is of great significance. A particularly big issue that had to be tackled was
the problem of double spending, which is when an actor is able to spend the same
coins several times [20]. Blockchains solve this problem by a cryptograhic hashing
method called proof-of-work, which requires the solving of cryptographic puzzles as
outlined in section 2.1. These puzzles in practice combine all transactions to be
included in a block, add a cryptographic nonce (arbitrary number used once [35])
to it and calculate a hash that start with a certain number of zeros, usually referred
to as the difficulty of the block. The difficulty can be raised or lowered to make
sure only a small subset of all possible values generated by the hash function fulfill
the requirements. Since this subset can be quite small, in comparison to all possi-
ble hash values, lots of nonces need to be hashed before finding one that succeeds,
requiring large amounts of computing power. However, trying to recreate the hash
when verifying the new block can be done by already knowing the nonce, so verifi-
cation is much faster. This results in that the creation of new blocks require a lot
of computing power in comparison to the verification, and this should theoretically
ensure a network without double spending [36].

However, the security of a blockchain cannot be deterministically guaranteed. If a
single miner, or group of miners, control 51% of the computing power in the net-
work, they could theoretically double spend in the network and cause other users
to lose money. This has come to be known as a 51% attack [37]. After having sent
funds to a different account, in order to accomplish a double spend, the miners could
fork off the blockchain at a previous point and recreate one or several of the blocks
by replacing the transaction to an address owned by someone else, by a transaction
sending the same amount to an address owned by the attacker. When eventually the

10

2. Technical background

length of the blockchain in the forked network surpasses the length of the main net-
work, the malicious miners could then merge their network with the main network
and have their blockchain be the consensus blockchain. In theory, it is also possible
to rewrite the entire blockchain history, through an attack called a Genesis Attack.
It is also worth noting that an attacker having control of a proportion of the network
that is lower than 51%, could perform a 51% attack. The risk of this happening gets
lower the smaller the portion of the network that the attacker controls is [20, page 6].

Forking the blockchain and then trying to catch up with the length of the main
blockchain have very high demands on computing power. And for each additional
block, that demand increases. Therefore, after a block containing a transaction is
mined, one would usually wait a certain amount of blocks until that transaction is
deemed secure. For example, on the Bitcoin blockchain this number is 6 [38].

2.5 Smart contracts

Smart contracts, as outlined by Szabo [39], is an electronically executed contract
with rules, requirements, and execution described in code. Szabo makes the com-
parison to a vending machine. A client inputs coins and receives goods according
to the vending machine’s programmed logic. Smart contracts are often an integral
part of a the logic of a Blockchain and allows for programming involving currency,
without the involvement of a central third party. The functionality of smart con-
tracts widely differs depending on the blockchain they are deployed on. ETH offers
programming smart contracts in a Turing complete language called Solidity while
BTC offers much lower functionality in their Turing incomplete language Bitcoin
Script.

2.6 Atomic swaps

An atomic swap is an exchange method, using smart contracts, that removes the
need for third parties. This method also removes the need to trust the other part.
The only part requiring trust is the decentralized network used to execute the smart
contract.

This type of solution that uses smart contracts can also be useful in other cases
where trust to one or more parts is required to make a system work as planned.
As an example, this can be used to trade virtual goods safely if these goods are
connected to some kind of token that can be managed like a currency. Another
example could be a charity that can create a smart contract with a specification of
what the collected funds should be used for. Using this, donators can be ensured
that the collected funds is used for its intended purpose.

Another advantage of managing money with smart contracts is that a third party
cannot steal money from or shut down the service as simply as a centralized service.

11

2. Technical background

Malicious individuals or groups do not have a single point they can attack; they
must attack the entire network to affect the service.

2.7 Cryptocurrency exchanges
There are a number of services that exchange cryptocurrencies for fiat money and
vice versa. BTCX is an example of this. However, this particular service only sells
bitcoin and ether [40]. This limitation where a user is only able to exchange fiat cur-
rencies for a limited set of cryptocurrencies is common for many existing exchanges.

Another type of exchange allows for exchange between different cryptocurrencies.
One such exchange is ShapeShift [41]. To use ShapeShift, or any similar service,
the users need to trust the service itself. However, it is easy for criminals to scam
customers by pretending to run a similar service and not return any cryptocur-
rency to the customers that have already transferred their part of the transaction.
Nevertheless, if an exchange service would start a contract of sale by first sending
cryptocurrency to the customers, it is simple for a malicious customer to not return
any cryptocurrency and thereby committing fraud.

2.8 Network communication
In the late 1960s, the creation of the Advanced Research Projects Agency Network
(ARPANET) [42] became the first working prototype of the internet. Later in 1990,
the first web browser was made which led to the modern World Wide Web as we
know today.

The protocol known as Hypertext Transfer Protocol (HTTP) [43] quickly became the
foundation of communication between clients and web servers on the World Wide
Web. HTTP works by having the client, i.e. a web browser send requests to web
servers that in turn returns information back to the client. This client-server men-
tality means that the clients must rely on the servers to get the information it wants.

Today, with the evolution of the World Wide Web, development of new technolo-
gies such as WebSocket has allowed for two-way communication between clients and
the server. The traditional client-server mentality is no longer required, making it
possible for clients to communicate directly with each other. This made it possible
for new ways of distribution with interesting technologies such as IPFS (see section
2.8.3).

2.8.1 WebSocket
WebSocket is a communication protocol that was standardized in 2011 [44]. The
WebSocket protocol enables a two-way communication between a client and a server.

12

2. Technical background

This is done by keeping a persistent connection where the client and server can facil-
itate real-time data transfer between each other essentially making it a conversation.
Both sides can close the connection when wanted [44]. Figure 2.4 illustrates a web-
socket session from start to finish.

Figure 2.4: The flow of a communication channel using websocket.

2.8.2 NAT and relaying
The explosion of the internet led to a depletion of public IP addresses. A short-term
solution to tackle this problem was the introduction of Network Address Translation
(NAT). NAT works by having a router act as a middleman between the internet and
a private network. It works by assigning the clients in a private network a unique
private IP address which is used inside the private network. When a client wants
to talk to the internet, it will go through the router, which uses a public IP address
to communicate with the internet [45]. Therefore, the use of NAT leads to a slower
depletion of public IP addresses as clients in a private network can use the same
public IP address to communicate with the internet. Figure 2.5 illustrates the usage
of NAT.

Figure 2.5: Example usage of NAT

The use of NAT has led to problems when two peers behind different poorly behaved
NATs decide to establish a direct communication channel [46]. Due to various mul-

13

2. Technical background

timedia and peer-to-peer applications requiring a direct communication channel a
solution had to be found.

A solution to this problem is using relaying and a protocol made for this is Traversal
Using Relays around NAT (TURN). When a direct communication path cannot be
found between two clients they can opt to use a TURN server as a relay. The TURN
server will then forward the data sent from one client to the other as seen in figure
2.6 [46].

Figure 2.6: Two computers connecting through a TURN server

2.8.3 IPFS

IPFS is a new technology that provides a solution for information access where
servers do not have to distribute content to clients. Instead, it makes it possible
for the content to directly be stored in clients and allows clients to retrieve content
from each other. In other words, IPFS is a peer-to-peer distributed file sharing
system that combines popular concepts, such as distributed hash tables, from other
peer-to-peer systems like BitTorrent and Git [47].

Because IPFS is a peer-to-peer network, it consists of clients also known as the nodes
of the network. These nodes need to be identifiable by each other. IPFS solves this
by generating a key pair consisting of a public and private key. The public key is
hashed and used to identify the node. When two nodes want to communicate with
each other, they exchange their public keys, which are then hashed and checked with
the node [47].

Nodes in the IPFS network can communicate with any transport protocol avail-
able [47]. I.e. it can use WebSockets to connect to other peers. For nodes to be
able to find other nodes and share data, IPFS uses a Distributed Hash Table (DHT).
DHT is essentially a key-value store that is distributed in a network [48]. It allows
nodes to find other nodes through the hash table. If a direct connection cannot be
established between two nodes, IPFS will use a third node to establish a connection.
The third node will act as a TURN server [49].

14

2. Technical background

2.9 Distributed database
With the evolution of the internet, organizations have an easier time growing in-
ternationally, which means that there are benefits to have data stored in multiple
locations, providing a good alternative to the traditional database solution with a
central server [50]. The solution to this problem is to make a Distributed Database
System (DDBS) where the database is stored on multiple servers that can be located
in different places and then connected together through a network [51]. To ensure
that a database is up to date, it can rely on a technology called replication. It works
by having every server replicate every change that happens in another server. By
doing this, the distributed database can ensure that it is consistent throughout all
servers.

Today, there are many advanced solutions for distributed databases making it pos-
sible for the DDBS to work in an independent network. An example of this is the
blockchain technology as explained above.

2.10 Test automation
Test automation is a tool that can be used to reduce the introduction of new bugs.
As soon as new functionality is added, the new code is automatically run against a
set of tests to make sure that it does not break already functioning parts. However,
this tool is difficult to use with APIs as their dependency on outside actors makes
it impossible to predict the exact results given certain parameters.

A common metric for test automation is code coverage. It is a measure for the
amount of program code that is executed by the tests. The optimal code coverage
is when all code is executed during the automatic tests. It should be noted that
having optimal code coverage does not guarantee that the code is bug-free; it simply
expresses that all code has been tested. The code might still fail on some input that
is not tested.

15

2. Technical background

16

3
Methods

This chapter details the methods used for creating the prototype. The chapter is
divided into four sections: development, requirements, design, and implementation.
The development section covers the development process and rest of the sections
roughly cover the same main topics, though the implementation will go more in-
depth in what methods were used. The choices made in the implementation section
will be motivated by what is mentioned in the requirements section, whereas the
design section lays an outline of how the requirements are to be met.

3.1 Development
The development of the project consists of two parts, deciding a protocol and im-
plementing a prototype using the protocol. Requirements are first set and explained
further in section 3.2.

Based on research in the blockchain domain, a choice is made for a protocol that
complies with the requirements. Then a minimal-viable-product is built to ensure
that the protocol works and meets the requirements.

When a working implementation of the protocol is complete, the development of the
prototype begins. The development of the prototype is divided into four categories:
database, communication, blockchain and user interface.

3.2 Requirements
The platform is the proof-of-concept prototype that is developed during the course of
the project. The platform is divided into two different areas: the user interface and
the actual exchange that allows for placing and accepting bids as well as executing
exchanges.

3.2.1 Exchange method
The platform will support a method of exchanging cryptocurrencies between two
parties. The exchange method should at a minimum fulfill the following require-
ments:

• It should be atomic.
• It should be decentralized.

17

3. Methods

• It should work for exchanges between different cryptocurrencies.

It should be atomic, meaning that neither party should be at risk of losing their
funds. In any realized exchange, both parties should receive their respective funds.
If the exchange is not realized, the funds should instead be returned to their respec-
tive owner.

For a secure exchange to take place, the transactions need to occur simultaneously
or rely on a third party ensuring the validity of the exchange. A third party is
typically a person or a company that both parties trust. Since the premise of the
platform is that it should be decentralized, the exchange method needs to fulfill that
requirement as well.

Lastly, the method will need to work across blockchains. It is not required to work
across the set of all blockchains, it should, however, be possible to make an exchange
across at least two unconnected blockchains.

3.2.2 Bid database
The platform will support a way of publicizing bids as a mechanism to find potential
trading partners in the form of a publicly available database. The bid database
should at minimum fulfill the following requirements:

• It should allow users to post bids.
• It should allow users to accept bids.
• It should be decentralized.

Bids that are posted to the database should be accessible by all users using the
prototype. When a bid gets accepted it should no longer be accessible by other users.
Ensuring that the database is decentralized is required for building a decentralized
prototype.

3.2.3 Message passing
To support the exchange method, users need some way to communicate with each
other to exchange the data necessary to complete a transaction. The requirements
for message passing that need to be fulfilled are:

• It should be automatic.
• It should not be dependent on any blockchain network.
• It should be decentralized.

That the message passing should be automatic means that a user should only have
to accept or post a bid and type in their private key to complete an exchange. The
user should not have to care about technical exchange details such as creating and
validating the smart contracts. To allow for the extension of support for other cryp-
tocurrencies, the message passing should not depend on any blockchain network.

18

3. Methods

The same implementation of message passing should work for all implemented cryp-
tocurrencies. The message passing also needs to fulfill the requirement of being
decentralized as not to compromise the decentralization of the prototype.

3.2.4 User interface
The user interface should be designed in a way that makes it user-friendly and fault
tolerant. The user interface should at a minimum fulfill the following requirements:

• It should use real world concepts.
• It should prevent the user from performing common errors.
• It should display errors in a clear manner and the user has to be able to recover

from them easily.

These requirements are based on Nielsen and Molich’s 10 User Interface Design
Guidelines [52]. It makes it easier to interact with the prototype if the user can
apply real world experiences. Therefore, the user interface should incorporate real
world concepts into the design.

If problems that are easy to predict are prevented from happening, the user will not
have to deal with these problems. Therefore, the user interface should prevent the
user from performing common errors. Nevertheless, if any errors occur, they should
be displayed in a clear manner so that it is easier for the user to find out what went
wrong. The user should also be able to recover from the errors easily, so that a
single mistake will not have any far-reaching consequences.

3.3 Design
In the immediately preceding section 3.2, the requirements of the platform are de-
scribed. The approach to fulfill these requirements are explained in this section.
The structure follows a similar pattern as section 3.2, and for each requirement, a
design is outlined and explained.

The general design of an exchange in the prototype is visualized in figure 3.1. This
design is based on using the exchange method outlined in 3.2.1. The users should
only have to be concerned about posting, finding and accepting bids while the actual
exchange is done automatically by the client.

3.3.1 Exchange method
The implementation of the exchange method is based on atomic swaps. To facilitate
atomic swaps, it is possible to use Hashed Timelock Contracts (HTLC) [53]. Such a
contract needs to be able to specify a destination, a hashed password, a time limit
and hold funds. It also needs to have two functions: ’claim’ and ’refund’. The funds
in the contract will be sent to its destination if ’claim’ is called with a password, that
when hashed, matches the hashed password in the contract. If the time limit passes,
the creator of the contract may call ’refund’ to return the funds. These contracts

19

3. Methods

Figure 3.1: Visualization of an exchange using the prototype

can be used for atomic swaps, as outlined in the example below.

HTLC example
1. Alice decides on a password and hashes it
2. Alice creates a HTLC with Bob as its destination

(a) With the hashed password
(b) With the specified amount Bob wants
(c) With a reclaim time limit

3. Bob validates Alice’s HTLC
4. Bob creates a HTLC with Alice as its destination

(a) With the same hashed password as on Alice’s contract
(b) With the specified amount Alice wants
(c) With a reclaim time limit

5. Alice validates Bob’s HTLC
6. Alice claims Bob’s funds from his HTLC by entering her password
7. Bob now knows Alice’s password and claims the funds from her

HTLC
8. Alternatively enough time passes and they reclaim their money

If Bob is able to guess Alice’s hashed password then Bob can claim Alice’s funds
without putting up his own contract. As such this type of exchange relies on the

20

3. Methods

difficulty of the hash function, since the hash is visible for anyone to try and brute
force. Furthermore, if Bob and Alice cannot trust each other, they will need a third
party to mediate the exchange. The third party in this instance is the respective
blockchains of the cryptocurrencies being exchanged. Thus, it also fulfills the re-
quirement of being decentralized. HTLC does not work for all cryptocurrencies, it
is however proven for both Bitcoin [54] and Ethereum [55], which is enough to fulfill
the last requirement. The last requirement is covered in more detail in the following
section 3.3.2.

3.3.2 Smart contracts

To be able to exchange cryptocurrencies between two blockchains, using the method
described in the previous section 3.3.1, it requires the blockchains to support smart
contracts. An HTLC has very basic functionality that most smart contract imple-
mentations support. The most important function is the ability to hash, which must
be the same between the two blockchains where cryptocurrency is being exchanged.
While Ethereum supports several hashing algorithms, Bitcoin’s Script Opcodes only
supports SHA-256, RIPEMD160 and SHA-1 [56], which makes it necessary to use
one of those three to hash the password when performing exchanges between the
blockchains. SHA-256 is the stronger algorithm of the three [57] and therefore it is
the one used in the prototype.

3.3.3 Contract validation

Because smart contracts are public information, it is only necessary to know the
address of the contract or the transaction holding the contract to get enough in-
formation to validate it. By creating the same contract locally, in the shape that
you expect it to be, it is possible to compare it to the contract deployed on the
blockchain and thereby validate it.

3.3.4 Design of bid database

The database system in the prototype consists of three different databases: Glob-
alDB, StatusDB and LocalDB. The GlobalDB is used to store bids from the
users and it can be accessed by anyone using the prototype. The bids stored in
GlobalDB include data about the currencies involved as well as the proposed ex-
change rate, along with the address to the communication channel over which the
message passing will take place, as detailed in section 3.3.5. StatusDB is another
globally accessible database used to store the state of a bid. There are three states
a bid can have, active, pending, and finished. The third database, LocalDB, is a
locally accessible database used to store the user’s own bids and bids the user has
accepted. The reasoning behind using three databases is discussed in section 3.4.
Figure 3.2 shows how the database is designed.

21

3. Methods

Figure 3.2: Design of the database including data stored in each of them.

3.3.5 Design of message passing

As a user publicizes a bid, a new communication channel is created. The communi-
cation channel is essentially a new database that both users involved in the exchange
listen to. This means that any message written in the channel is read by both users.
The second party in the exchange starts listening to the new channel as soon as the
user accepts the bid. The motivation is to ensure that the exchange is automatic,
as laid out by the requirements. As soon as both users listen to the same channel,
information necessary to complete the exchange is passed through the channel as
JSON objects mapping the values so they can be parsed by the second part. The
message passing can be generalized as the only difference between different cryp-
tocurrencies is the information sent out via these JSON objects, but the general
steps are the same.

3.3.6 User interface

The user interface uses real world concepts by displaying bids in a way that cor-
responds to how a bid is traditionally represented. It will prevent the user from
performing common errors by enforcing form validation. The user interface will
manage errors by displaying a description of them in a clearly visible error message
box. It will also roll back any progress that has been made in the action that caused
the error so that the user can try to perform the same action again or perform an-
other action in the user interface.

A number of views should be included in the user interface. Each view should
correspond to a specific functionality that the user can use. These should include
a view for adding new bids, a view to browse among other users’ bids and views
for displaying bids that have been added and accepted by the user. It should also
contain a view that displays the current balance of the wallets contained within the
user’s blockchain software. Additionally, there should be a settings view to specify
the paths to the blockchain software that the prototype supports.

22

3. Methods

3.3.7 Test automation
Test automation is used to ensure that the compilation works after an update. The
automatic tests run after a new feature is added into the program to make sure that
it does not break any existing code. Due to the limitations that test automation
has on testing code with external APIs, the tests will run only in the user interface
and other parts of the code that do not use external APIs.

3.4 Implementation
This section gives a detailed view of the implementation choices made based on the
requirements in section 3.2 as well as the design detailed in section 3.3. The develop-
ment starts on a private Ethereum network and as the prototype develops, it is also
deployed on the public test networks of Ethereum. Priority lies in having exchanges
work within a single network and then make an exchange across different networks.
The exchange across different networks will also start as an exchange between two
Ethereum networks and then expand into cross-chain swaps between the Ethereum
and Ethereum Classic test networks.

Although steps are taken towards implementing support for exchange with Bitcoin,
no testing is done since the integration with the rest of the platform is incomplete
at the time of writing.

3.4.1 Exchange method and atomic swaps
The exchange method, as mentioned in section 3.3.1, is based on HTLC. Due to
the several different types of cryptocurrencies, a unique implementation is possibly
required for each and every cryptocurrency. However, a central trade handler, to ease
the integration, is implemented. In the following two sections, the implementation
for Ethereum and Bitcoin is explained.

3.4.2 Atomic swaps on the Ethereum platform
The HTLC in Ethereum is implemented using smart contracts written in Solidity,
which is the only stable option [58]. A contract is deployed on the blockchain with
ether, or tokens, and has the two functions: ’claim’ and ’refund’. To successfully run
the ’claim’ function, the user has to provide the secret that the contract is locked
with. The ’refund’ function cannot be executed until the timeout has expired. If a
contract is claimed or refunded, the contract self-destructs and is removed from the
blockchain and sends the funds to its respective destination targets. The destina-
tions are predetermined and recorded on the contract.

If the contract is claimed, an event with the secret is also emitted and recorded on
the blockchain. To access the event, blocks from the point of deployment forward
are searched looking for the event. An execution of HTLC on Ethereum can be seen
in figure 3.3 and figure 3.4.

23

3. Methods

Figure 3.3: Example of a successful HTLC in Ethereum

Figure 3.4: Example of a refunded HTLC in Ethereum

The HTLC works slightly different when handling tokens of the Ethereum network
as it requires an intermediate step. The tokens have to be sent to the contract after
its creation and instead of the self-destruct sequence, where the tokens on the con-
tract is sent afterwards, the tokens must be sent before self-destructing. The reason
why the contract still self-destructs is that it makes the function less costly, as some
ether is refunded when the contract self-destructs. This is to incentivize users to
self-destruct contracts they do not use, as otherwise they take up needless space on
the blockchain [59].

24

3. Methods

Validation of contracts deployed on the Ethereum network is done to deny malicious
users. The validation checks that the runtime bytecode of the deployed contract
matches a previously saved runtime bytecode. This ensures that the deployed con-
tract is indeed a HTLC. The next step of the validation is to check that all the
variables of the contract are assigned with correct data. These variables include
the destination, amount of funds, and the hashed secret. This is to ensure that the
correct user receives their entitled part of the transaction. In the case of a token
contract, it will also validate that the contract is of the predetermined token type.

3.4.3 Atomic swaps on the Bitcoin network
The HTLC is implemented in Bitcoin using Script as it is the only option for cre-
ating smart contracts on Bitcoin. Every transaction has a script embedded into it
that dictates the conditions for spending the funds further. The scripts are written
using Script. For more complex transactions, it is possible to output transactions
to a P2SH. A transaction outputted to a P2SH can only be spent further by a user
if provided a script that has a hash value equal to the P2SH as well as a stack that
resolves the script to true as seen in figure 3.5 in the case of a user claiming the
funds, and figure 3.6 in the case of a refund.

As the spending of a transaction is up to the spender, the contract needs to ensure
that the claiming and refunding operations are exclusive to the respective parties.
This is done similarly to how standard transactions are done in Bitcoin, by requir-
ing a signature that has a hash value that evaluates to a public key recorded in the
script. The signature needed is different depending on if one is claiming or refund-
ing, split by an if-statement in the script. If a claim is issued, the provided secret
will be put in the transaction. Starting from the block where the HTLC transaction
was included, every transaction is searched to find the secret.

Figure 3.5: Example of a successful HTLC in Bitcoin

25

3. Methods

Figure 3.6: Example of a refunded HTLC in Bitcoin

Validation of the contracts is done by sharing the transaction id, and other informa-
tion necessary to recreate the P2SH, to the other party. The transaction id can be
used to request the transaction information from the blockchain, which can then be
used to validate that the value and the destination address is correct, and that it is
currently unspent. The party wanting to validate the contract recreates the HTLC
by the specifications provided in the prototype and compares the P2SH to confirm
that the contract is valid.

3.4.4 Bid database
The implementation of the database system is based on the framework OrbitDB. It
is a distributed, peer-to-peer database that is built on top of IPFS [60]. OrbitDB
supports various kinds of databases including key-value and log databases. This
makes OrbitDB an excellent choice for the decentralized prototype.

The bids are stored in GlobalDB as JSON objects for simple parsing to extract
the data. The databases also have listeners implemented that triggers when the
databases are replicating. Thereafter, the listeners trigger the user interface to up-
date. This ensures that the users will always have the most recent bids available.
In figure 3.7 the database architecture is shown.

While implementing OrbitDB, two critical issues were noted and had to be dealt
with. The first one is that OrbitDB does not completely support Windows leading to
an error when initializing a database. The solution to resolve this was to implement
a database creator that runs on a Google Chrome instance. The database creator
initializes the database before being used in the prototype for Windows machines.

The second issue is that write access to a database cannot be restricted to a spe-
cific set of data in OrbitDB. If all users were given write access, it would result in
malicious users being able to manipulate other users’ bids. Therefore the database
system consists of three databases as told in section 3.3.

To solve the issue it was decided to make the database GlobalDB an append-only
log. By having GlobalDB as append-only, data cannot be removed or changed which
means that a separate database is needed for keeping track of the state of a bid and
this is why the key-value database StatusDB was made. When a user accepts a bid,

26

3. Methods

Figure 3.7: The architecture of the database using OrbitDB.

it also needs to be stored to ensure that the exchange works between different ses-
sions in case an exchange cannot happen immediately. It also does not make sense
to share this data with uninvolved peers, which is why the local database LocalDB
was made.

3.4.5 Message passing
As a bid has been accepted by a user, the two parties involved in the exchange need
to be able to communicate with each other to complete the steps defined in section
3.3.1. For this, OrbitDB is also used as it is judged to be an effective enough tool
and would work well as it has already been implemented for the bid database.

As explained in section 3.3.5, as soon as a user publicizes a bid, a new communica-
tion channel is created. The communication channel has been implemented as a new
database that both users involved in the exchange listen to. As soon as both users
listen to the same channel, the information necessary to complete the exchange is
passed through the channel as JSON objects. The values are mapped so that they
can be parsed by the second party in the exchange.

There is a three step process involved to complete the message passing, as shown in

27

3. Methods

figure 3.8. In the first step Bob, who accepts the bid, sends the address of where
he wants to receive the funds. Alice then receives Bob’s address and sends over her
address, the hash as well as the contract address to the smart contract she set up
on her network. Bob completes the last step by sending the contract address to the
smart contract on his network.

Figure 3.8: Message passing to complete an exchange.

3.4.6 Blockchain software
To participate in, send and receive coins in a blockchain network, a blockchain soft-
ware tool needs to be used. To connect to the Ethereum network there are several
alternatives. The command line interface Geth [61] is used in our prototype, and
the users of our prototype are required to do the same. Bitcoin Core is an example
of such a software in the Bitcoin network and it also is the reference implementa-
tion [62]. Bitcoin Core consists of both node software that validates the blockchain
and a wallet software which allows a user to keep track of their transactions.

Because of the cost of downloading and maintaining a node, in terms of memory
size and bandwidth, some networks have clients that allow users to download a
lightweight node. Geth provides three options for synchronizing with the blockchain:
full (default), fast and light. In terms of size these correspond to a local database of
about 300 GB, 30 GB, and 0.5 GB respectively. While a light node is more lenient
on the computer, there are several drawbacks. As it does not store all information
locally, it has to query other full nodes for information. It is therefore much less
secure, as there is a risk of getting information from malicious nodes. It is up to the
user to contemplate the risks. Also, it is not possible to solo mine using a light node,
as it does not have enough information to do so. To speed up the development, light
and fast nodes where used when connected to the test network and full nodes where
used on private networks.

28

3. Methods

3.4.7 User interface

The user interface is implemented as a desktop application as seen in figure 3.9. It is
developed as an HTML5 web application and executed as an Electron application.
It would be possible to run the user interface through a browser but Electron is used
as it makes the user interface behave like a desktop application.

Most parts of the client are implemented in Elm, which is a purely functional, type
safe, and exception free programming language with a syntax similar to Haskell.
The Elm code is run by first being transpiled into Javascript before Electron exe-
cutes it. Elm was chosen instead of plain Javascript as its features help to easier
fulfill the requirements of the user interface regarding error handling [63].

Javascript running through Node.js has been chosen as implementation language for
the communication between the user interface and the decentralized networks as it
has a large ecosystem of libraries for communication with different blockchains [64].

Electron executes on a legacy version of Node.js. This means that certain language
features available in recent versions of Node.js are unavailable for Javascript pro-
grams executing through Electron. This issue led to the separation of the prototype
into a user interface process and a server process that manages communication to
the decentralized networks. This server will henceforth be called the API server.

Communication from the user interface to the API server is modeled as a set of
actions where each action corresponds to a HTTP request that the user interface
can perform. This means that it is possible to test the API server without the user
interface by using an arbitrary HTTP client, such as a web browser.

Figure 3.9: The implemented user interface.

29

3. Methods

3.4.8 Test automation
For the user interface, the automatic tests first transpiles the elm code to Javascript.
Elm’s transpiler is relatively strict, so it catches a larger portion of errors compared
to most other compilers [65]. After the code has been transpiled, the actual unit
tests are run. The testing framework elm-test is used to write and run these unit
tests.

The parts of the API server that manages local user data are also tested. These
parts are tested because they do rely on a certain amount of logic to handle com-
munication with the user’s file system that has to work correctly while at the same
time they do not rely on any external API. The testing framework jest is used to
write and run these unit tests.

The user interface and API server tests are executed in parallel. This is not an issue
because the testing frameworks do not interfere with each other. The automatic
tests are performed whenever new code is included to ensure that new features do
not break the parts of the code that have already been tested.

30

4
Evaluation and Results

This chapter presents the evaluation and results. The evaluation sections describes
how the prototype is evaluated and the results section presents the results from the
evaluation. Table 4.1 offers a summary of all the tests.

Table 4.1: Summary of tests

Name Evaluation Result Type Description
Test A 4.1.1 4.4.1 Quantitative Success rate of exchanges
Test B 4.1.2 4.4.2 Quantitative Delay of an exchange
Test C 4.1.3 4.4.3 Quantitative Cost of issuing an exchange
Test D 4.2.1 4.4.4 Qualitative Trading pairs available

4.1 Quantitative Evaluation
The quantitative evaluation is done by executing tests on the prototype. The tests
are performed by executing exchanges on the client and deriving information about
their state by using blockchain software on the respective cryptocurrency involved
in the exchange [66, page 41-42][67].

4.1.1 Test A : Success rate
The success rate is the amount of successful exchanges compared to failed ones. A
successful exchange is an exchange where both parties end up with the predefined
funds as outlined in the bid. Any other result is considered a failed exchange, in-
cluding bids that need to be refunded.

The test is conducted by performing several exchanges between Ethereum ether and
Ethereum Classic ether on the test networks Ropsten and Morden using the Geth
client, along with 3 exchanges between two private Bitcoin chains. The result is
then checked on the accounts to see if the trade succeeded or failed.

4.1.2 Test B : Delay
The delay is measured as the time it takes for a transaction to transpire after it has
been accepted. If the exchange is issued through smart contracts, this is equivalent

31

4. Evaluation and Results

to the time it takes to execute the contracts on the blockchain and any delay associ-
ated with the database, which results in the time it takes for the different contract
transactions to be included in blocks.

The delay is measured as the average in the relative time between two blocks, mea-
sured as the later block’s timestamp subtracted by the former one’s. For an ex-
change, two relative block heights are counted; one for the buyer and one for the
seller.

The test is conducted by simulating several exchanges on the client and then record-
ing the first block and last block respectively for the contracts deployed on the
blockchains as shown in figure 4.1.

Figure 4.1: Delay visualized

4.1.3 Test C : Cost
The cost refers to the cost required to activate, accept, or cancel a bid. As part of
the exchange is made through smart contracts, there is a significant cost involved. A
low cost allows for the users to engage in more trades, which in turn can increase the
liquidity of the exchange. This cost is however fixed in terms of gas and therefore
only one test run is needed to confirm the cost and an estimate is made on what
the equivalent is in American dollars.

32

4. Evaluation and Results

For transactions and deploying contracts on Ethereum and Ethereum Classic a gas
price needs to be decided on. While the gas used is constant, the gas price can
fluctuate depending on what miners are willing to accept. To estimate the gas price
on the main network, Gas tracker [68] and ETH Gas Station [69] is used. They are
two websites that list up to date information about how much users are currently
paying for gas. The tests’ gas cost is decided on the day of the tests based off on
what is recommended on the websites.

4.2 Qualitative Evaluation
Only one qualitative test is performed on the prototype, and that is to confirm the
possible trading pairs. Of the possible trading pairs, only one test iteration needs
to be executed to confirm that it works as the success rate is not measured in this
section.

4.2.1 Test D : Trading pairs
Trading pairs refer to the different currencies that you can exchange for and with.
Exchanging within a network is not interesting, so therefore the total amount of
possible trading pairs is not the interesting part. Rather exchanging cryptocurren-
cies between different blockchain networks is what is interesting as it makes the
cryptocurrencies more accessible.

The test is done by making at least one successful exchange between two different
cryptocurrencies to confirm that it works between those two. As this is mostly a
qualitative measurement, a discussion is followed on how difficult it would be to put
cryptocurrencies in new trading pairs or add new cryptocurrencies.

4.3 Testing environment
The tests are conducted by exchanging cryptocurrencies using the prototype and
then deriving information about them using node software connected to the respec-
tive blockchains involved in the trade.

The two blockchains used to perform the tests between ETH and ETC are Ropsten
(Ethereum test network) and Morden (Ethereum Classic test network). Fast nodes
were used on both chains. For the the Bitcoin tests, private networks connected on
a single computer were used, running full nodes with the Bitcoin Core software.

4.3.1 Hardware specification
The tests for ETH-ETC are run using two separate computers that perform the
trades between them. The choice of computers is limited since OrbitDB has proven
unreliable or outright incompatible with cross-platform databases. Furthermore,
requirements on storage capacity exist since the chains involved in the tests have

33

4. Evaluation and Results

to be stored on both computers. In table 4.2 the hardware specifications of the
computers are displayed.

Table 4.2: Hardware specification of the computer used for ETH-ETC.

Specification Computer 1 Computer 2
Storage 206 GB 240 GB
CPU I5-6300U I7-4690K
RAM 8 GB 16 GB

Operating System Windows 10 Windows 10

The tests for BTC-BTC are run using only one computer that performs the ex-
change. The hardware specifications are detailed in table 4.3.

Table 4.3: Hardware specification of the computer used for BTC-BTC.

Specification Computer 1
Storage 227 GB
CPU I7-3610QM
RAM 8 GB

Operating System Ubuntu 16.04

4.3.2 Network specification
Network requirements exist when testing on private test networks. Ethereum’s node
manager Geth cannot find IPv6 peers. So two peers both on IPv6 will not be able
to find each other. This is a non-issue on public networks since there are other peers
to connect to in that case.

The computers used to execute the tests on ETH-ETC was connected to the same
private network. A VPN provider was used on one computer to simulate trades
between two different networks.

4.4 Results
In this section, the evaluated results are presented. In total, six tests were executed
on the test networks of Ethereum and Ethereum Classic. This number was the
result of time constraint. Although more tests had previously been run on private
networks to ensure that the prototype works. Therefore, it was deemed to be enough
to verify that the prototype works as desired.

On the Bitcoin network, 3 tests were executed. This was also due to time constraints
and several less rigorous tests having been performed, showing similar results.

34

4. Evaluation and Results

4.4.1 Test A : Success rate
After performing the 6 tests between Ethereum and Ethereum Classic all were proven
to be successful. This yields a success rate of 100%.

Between the two Bitcoin networks, 3 tests were performed. 1 test passed with both
parties being able to claim their fund. However the other 2 tests only partially
succeeded in that only the first claimer was able to claim, yielding a succees rate of
33%.

4.4.2 Test B : Delay
The average delay for the seller was measured to 123 seconds and the average delay
for the buyer was 322 seconds. The full data is outlined in table 4.4. The estimated
total time is our own time measurement, using the computer clock, from the time of
pressing accept bid on the buyer side to the time of the last contract being claimed.

Table 4.4: Summary of delays in MM:SS.

Exchange Delay Seller Delay Buyer Estimated Total Time
ETH - ETC 00:33 04:47 05:44
ETH - ETC 00:27 02:04 04:35
ETH - ETC 01:17 05:42 06:34
ETC - ETH 00:22 02:11 04:10
ETC - ETH 00:46 03:37 04:37
ETC - ETH 05:00 08:20 09:40

For the BTC-BTC tests, the delay was less than 1 second due to the tests not
going through the OrbitDB database and messaging. However, in order for the first
claimer to redeem, one block was generated on the first chain, and in order for the
second claimer to redeem, a second block was generated on the first chain. This
delay is considered to be acceptable for the prototype since it is a proof-of-concept.

4.4.3 Test C : Cost

Table 4.5: Summary of costs for performing a trade rounded to three significant
digits. Prices for gas [70, 71] and USD [72, 73] are set as of 2018-05-13.

Blockchain Action Gas used Gas cost Cost(Ether) Cost(USD)
Ethereum Submit 404715 3 GWei 0.00121 0.816
Ethereum Claim 15976 3 GWei 0.0000479 0.0326
Ethereum Classic Submit 404715 18.318 MWei 0.00000741 0.000135
Ethereum Classic Claim 15976 18.318 MWei 0.000000293 0.00000534

35

4. Evaluation and Results

The user that wants to exchange ETH to ETC would have to submit a contract on
ETH and claim funds from ETC. This means that the total cost would be:

0.816 + 0.00000534 = 0.816 USD. (4.1)

The second user exchanging from ETC to ETH would instead have to pay a cost of:

0.000135 + 0.0326 = 0.0327 USD. (4.2)

This is a huge difference, with the first user paying 25.0 times more for the trade.
This is due to that submitting a contract on Ethereum is significantly more expen-
sive than claiming on Ethereum or doing any of the above on Ethereum Classic. As
such, this is not an issue originating from the prototype.

For the Bitcoin to Bitcoin tests, several values were tried on the platform, with using
different amounts of satoshi for the claiming party. The lowest amount achieved was
400 satoshi where the transactions continually went through. For the sender, the
value was averaged over all sending transactions.

Table 4.6: Summary of costs for performing a trade on BTC-BTC. Price for sender
and receiver in bitcon, and total price in USD 2018-05-13

Action Cost(Bitcoin) Cost(USD)
Send 0.0000363 0.310
Claim 0.00000400 0.0340

4.4.4 Test D : Trading pairs
The only interesting trading pair, as defined in section 4.2.1, that was tested was
ETH-ETC. A BTC-BTC crosschain swap was also performed without the integra-
tion with the rest of the platform and the database. This swap was done in order
to establish proof of the functionality, without having to integrate it fully. With the
current implementation, all the cryptocurrencies in the prototype can be included
in a trading pair, as the solutions for each cryptocurrency is isolated from each
other. Any new blockchain has to include a library that fits the interface given in
currency.js, to fit the function calls from the API. It would also require everyone
trading with that cryptocurrency to have that type of functionality implemented as
well.

Currently, there is functionality in the Ethereum library, that both Ethereum and
Ethereum Classic uses, to add ERC20 tokens as available cryptocurrencies. The call
to the library is similar as the call to ether on Ethereum, though it also needs an
address to the contract of the token that is to be added. This would increase the
amount of available trading pairs significantly as there are numerous ERC20 tokens
on Ethereum [74].

36

5
Discussion

In this chapter, a qualitative discussion on to what extent the requirements were met
as well as alternative paths that could have been taken will be discussed. Throughout
the project, many decisions were made that altered the final product. Reflecting back
on them, certain paths taken proved to be non-optimal. This shows that despite
thorough investigating early on, non-optimal decisions can still be made. In this
chapter, an attempt is done to reflect and evaluate over these and try to identify
what could have been improved.

5.1 Discussion on the development process
The reasoning to split the development into the four categories database, commu-
nication, blockchain and, user interface was to make the development more efficient
as one could specialize in one specific area. When the time came for the integration
of the different parts, it took more time than expected due to the design and imple-
mentation being influenced by the person developing a specific part individually. A
better approach could have been to spend more time on designing the architecture
as a team which may have led to better integration.

To show that a decentralized cryptocurrency exchange is possible, a proof-of-concept
approach was taken to develop a prototype. Since a full prototype was developed,
the issues that come with developing a functioning product were also encountered
in this prototype. One could ask if it would have been more productive to focus on
simply developing the exchange method and trying to incorporate as many cryp-
tocurrencies as possible instead of creating the surrounding platform.

Focus and time were largely put on developing the user interface and a model to
make the exchange process automatic. This was to ensure that the requirements
of message passing and the user interface were met. Instead, considering that the
purpose was to achieve a secure exchange of cryptocurrencies, the focus could have
been shifted towards incorporating more currencies rather than focusing on making
the process automatic or the prototype more user friendly.

However, there is a difficult choice to be made here, whether one prioritizes a pro-
totype that is easy to show what progress has been made or one that has made
more progress with respect to incorporating more cryptocurrencies but is less user-
friendly. The first path was clearly chosen for this prototype. The reason for this is

37

5. Discussion

that it lays a clearer path towards the incorporation of more currencies as well as
being closer to a full specification.

It is now evident that this was not the preferred choice. In terms of quantitative
results measured, the latter would have certainly yielded better and more signifi-
cant results since the quality of the user experience was not measured outside the
development team.

5.2 Discussion on testing and results
In this section, the results measured from the tests in Chapter 4 will be discussed.
Although Chapter 4 provides its own evaluation, this section will delve more in-depth
to try to understand the negative results in particular.

5.2.1 Method for measuring performance
Due to the high cost of trading on the main network of each blockchain, testing
was done exclusively on test networks and private networks. The main network
is considerably slower for completing transactions and therefore complete accurate
data regarding performance of the prototype was not measured. The reason for
not testing on the main network was due to time constraints and limited hardware.
Testing on main networks require significant hardware space that was not attainable
on the resources or budget present. Nevertheless, the procedure on the test networks
are the same and the tests performed verify that the prototype is functional.

5.2.2 Testing on Ethereum
Throughout the testing process, several problems were encountered. The most sub-
stantial of these being problems relating to the test networks. Unreliable connections
on both the Ethereum and Ethereum Classic public test networks have increased
the difficulty of testing. On the private networks, the discovery protocol has also
been unreliable, resulting in that two peers were sometimes unable to find each other.

During validation of the contracts, another issue was discovered; Ethereum networks
previously thought of, and described as, having no differences did in fact have some
non-apparent differences. For example, on the private networks, a certain function
returned a non-case-sensitive string while the same function on public test networks
returned a case-sensitive string.

These issues have limited our ability to continuously make tested increments to the
prototype. This has in turn led to the continuous introduction of new bugs which
considerably slowed down the development process. The differences between the
different networks ought to have been noted earlier and the testing efforts should
then have been focused on the test network that resembles the main network to the
greatest extent.

38

5. Discussion

5.2.3 Testing on Bitcoin
When executing the tests on the Bitcoin network, a few problems were encountered.
The most troubling of these was the following error message:

code: -26,
message: ’16: mandatory-script-verify-flag-failed

(Script evaluated without error but finished with a false/empty top
stack element)
Which was encountered when trying to claim from an HTLC address. This was the
reason for the success rate being lower than 100%.

Extensive debugging was done to find out what caused this problem since it had
been an issue in development of the Bitcoin solution from the start. However, since
this appears to be generic error that can have a lot of causes, a solution to this
issue is yet to be found and the problem does not seem to be directly related to the
code. It does, however, seem to have something to do with the stack on the Bitcoin
network that verifies transactions. Despite removing elements from the stack to try
to pinpoint the problem, the error intermittently pops up no matter what elements
are removed.

As for the delays on the Bitcoin network, the transactions were measured to be vir-
tually instantaneous due to them not going through the database, and due to using
the option to generate a block directly with Bitcoin Core’s RPC method generate.
This is, however, not a realistic scenario on the Bitcoin main network where new
blocks are generated on average every 10 minutes. Having to generate two blocks,
as was done in the tests, would result in it taking around 20 minutes for the full
transaction to go through. Furthermore, with Bitcoin’s convention to wait 6 blocks
before a transaction is considered secure, the wait could be well over an hour.

When it comes to the costs, transactions that spend lower amounts of satoshi might
take longer to be included in a block. Throughout the developing process, 400
satoshi were consistently shown to be enough to be accepted by the network, while
lower amounts did not consistently get accepted. 3625 satoshi were spent on the
submit transaction. Since the new blocks on the networks only contained the submit
and claim transaction, the 400 satoshi for the claim transaction were enough to get
the transactions accepted on the test network. However, 400 satoshi might not be
enough on the main network. This might result in the timelock expiring before the
claim transaction is added to a block, giving an opportunity for the other party to
refund with a higher fee. For a more detailed explanation, see section 5.3.9. Since
no tests were run on the main network, it is difficult to estimate the right fee but
that is outside the scope of this thesis.

5.3 Discussion of the prototype
As the development process of the prototype is now finished, it can be concluded
that it did not perform to all the expectations and there are several reason as to

39

5. Discussion

why that was the case. In this section, a qualitative discussion on each part of the
prototype takes place in order to identify the issues. The prototype will be compared
to the requirements specified in section 3.2.

5.3.1 API server
The server designed to manage communication between the user interface and the
decentralized networks has a lot of issues regarding reliability and portability. These
issues have appeared in both compilation and during runtime.

These issues have been pinpointed due to the development team lacking experience in
Javascript. The libraries used for communication with the decentralized networks
are also available in Python. This means that if the API server was written in
Python, there could potentially have been less issues with these aspects as Python
has a somewhat stronger type system and has a different compilation process than
Javascript.

5.3.2 The bid database
The first two requirements of the database, allowing users to post and accept bids,
were met and tested to work on both Windows and Linux. The last requirement,
the database should be decentralized, was not fully met. OrbitDB markets itself as
a decentralized database and it was believed to be the case. However, most of these
technologies in use are mostly new and not fully developed and that proved to be
the case with OrbitDB as well.

OrbitDB depends on the underlying infrastructure of IPFS, which is still in its early
stages of development and some key functionalities, such as Circuit Relay, are not
fully developed yet meaning that IPFS must rely on a TURN server to connect
nodes to each other. This is a centralized point of failure which breaks the purpose
of decentralization. This means that for the database to work, it needs to rely on
a centralized point. It should be noted that a lot of work is in progress to fix this
problem and that the team behind IPFS claims to be close to a solution [75].

Regarding the implementation of the database it has not been an optimal solution.
Even though the integrity of the bids was ensured, the database holding the states
of bids can still be manipulated to show faulty bids to users. Something that could
be worked on in the future is ensuring that the users are only able to remove their
own bids. This would eliminate the problem, and using several databases, as was
done in the prototype, would not be needed. Users are also able to post bids they
do not have the required funds for. The choice for not adding a local validation
was decided on as malicious users would be able to simply remove it and add faulty
bids. In a future implementation, a validation using the blockchain could be done
to ensure that both parties have the required funds before executing a transaction.

The lack of complete support for Windows was unforeseen and resulted in a lot of

40

5. Discussion

overhead in finding a solution. Although the problem was ultimately solved, using
another framework instead of OrbitDB may have been a wiser choice.

5.3.3 Exchange method
The first requirement for the exchange method was that it should be atomic. The
chosen exchange method was HTLC, and it was specifically designed with the
purpose of allowing for decentralized exchange of cryptocurrencies through atomic
swaps [76]. As such, this requirement is fulfilled.

The second requirement was that it should be decentralized. Because HTLC is
implemented to work directly in a blockchain, it is decentralized. The last require-
ment was that it should work for exchanges between several cryptocurrencies. This
requirement has also been fulfilled since it was tested to work for ether on both
Ethereum and Ethereum Classic, and bitcoin on the Bitcoin Network. In addition
to that, HTLC is a proven technique that is supported by most cryptocurrencies.

5.3.4 Message passing
The first requirement was that the message passing should be automatic. To com-
plete an exchange, a user should only have to either accept or push a bid as well as
type in their password. This requirement has been fulfilled and was tested to work
on both Ethereum and Ethereum Classic.

The second requirement was that message passing should not be dependent on any
blockchain network, could not be fully tested. Although message passing did work
on both Ethereum and Ethereum Classic, those platforms are too similar to con-
clude that the requirement has been met. The atomic swap that was performed
on the Bitcoin network did not use the message passing. However, OrbitDB, which
message passing uses, works independently of any blockchain platform and therefore
the message passing system can be considered to also work that way.

The last requirement that the message passing should be decentralized, cannot, sim-
ilarly to the bid database, be considered to be fully met. Since message passing is
simply peer-to-peer communication, using OrbitDB was not necessary. The last re-
quirement could have been met by using any peer-to-peer communication technology
of which there are an abundance.

5.3.5 User interface
The first requirement, to use real world concepts in the prototype, is fulfilled through
word choice and the approach used to display bids is easy to understand for any
target group. The second requirement, to prevent users from performing common
errors, is fulfilled by strong from validation including the use of drop-down lists to
display the currencies that are available to the user.

41

5. Discussion

However, the third requirement, to display errors in a clear manner and that the
user should be able to recover from them easily, has not fully been met. Issues
deemed to originate from the API server makes it impossible to predict all possible
exceptions that may be thrown and write user-friendly error message for every spe-
cific exception. This results not only in a prototype that is not user-friendly but also
a prototype that is difficult to debug. Therefore, the issues with the user interface
has further far-reaching consequences than simply affecting what is seen despite the
user interface being decoupled from the back end.

5.3.6 Extension for additional cryptocurrencies

Although only a simple prototype was developed, the aim was to leave the design
open for extension for supporting other cryptocurrencies. Initially, the idea was
to limit the prototype to the Ethereum platform but towards the end support for
Bitcoin was added as well. Considering that the integration with Bitcoin was a
rather arduous process that could not be tested in conjunction with the prototype,
it could be concluded that the prototype did not fully achieve the goal of being easy
to integrate with other cryptocurrencies. However, with the Bitcoin integration in
place, the prototype would be easy to extend to support many of the altcoins that
build on Bitcoin technology.

5.3.7 Reliability

Reliability of the prototype has consistently been an issue in the development pro-
cess and continues to be. Working at the forefront of blockchain technology, most
of the frameworks and platforms that are used in our prototype are in their early
stages. Considering this, they also tend to be rather unreliable resulting in that our
prototype is unreliable as well. The prototype has a plethora of dependencies which
increases the difficulty of debugging, and causes reliability issues cross-platform.

As reliability has not been a focus in the prototype, it remains an issue that needs
to be solved to create a full-fledged application. It was deemed that reliability was
not necessary for a proof-of-concept prototype, but unfortunately, this did affect the
development process.

5.3.8 Scalability issues

Issues pertaining to the scalability of our prototype is limited to the database since
all exchanges will remain between two individuals peer-to-peer. OrbitDB is set-up so
that all information is stored on all nodes. Due to the decision of using an append-
only database to ensure the integrity of bids, it means that the database will keep
growing. This results in unnecessary space used to store bids that are finished. It
is therefore not a practical solution for the long term.

42

5. Discussion

5.3.9 Security of the exchange method

Security is in this section defined as the possibility of a user losing funds due to an
action by another malicious part. The exchange method has been tailored around
the concept of atomic swaps and thereby the security of the prototype relies on how
safe the protocol is. Therefore, no tests have been run to test the security. Below is
an example where one user loses his funds:

1. Alice opens a payment channel to Bob
(a) With a digest of a hashed password
(b) With the specified amount Bob wants
(c) With a reclaim time limit

2. Bob validates Alice’s payment channel
3. Bob creates a payment channel to Alice

(a) With the same digest
(b) With the specified amount Alice wants
(c) With a reclaim time limit

4. Alice secures Bob’s payment channel by entering her password
5. Up to here everything is normal, for now. Bob now has access to Alice’s

password, and tries to secure her payment, but Alice’s network is so clogged
that the claim transaction cannot be processed before the contract time-lock
opens.

6. Alice sees that the contract time-lock is up and Bob has not claimed the money,
and so Alice send a refund transaction with a tip so that it is processed faster
in the clogged network.

7. Alice get both hers and Bob’s money.

As seen in the example, the exchange method is not completely foolproof. This is
why it is important that the refund time and transaction cost is taken into careful
consideration. In addition to this, the user loses funds when a contract is created.
Malicious users accept posted bids with no intention of completing them. The
counterpart then loses funds as the user creates and runs the contract. Doing this
systematically can lead to great loss of cryptocurrencies.

5.4 Societal and ethical aspects

The prototype has the purpose of enabling cryptocurrency exchange. In this section
however, the general implications of blockchain technology and the prototype, or
the development of it, can have on the societal and ethical aspects will be discussed.
Throughout the project, it has been known that there are both positive and negative
societal and ethical aspects. These will be brought up in this section as well as the
paths taken to minimize the negative impacts. The section concludes with a general
discussion.

43

5. Discussion

5.4.1 Societal advantages

Cryptocurrencies add several positive societal aspects ranging from more freedom
to opening new technological possibilities. Cryptocurrencies particularly finds its
use in countries with a restricted market. The issuing of new coins is predefined in
the specification of cryptocurrencies so the same type of value manipulation of the
currency as is seen with fiat money is not possible [77]. In countries with a volatile
currency, such as Zimbabwe in 2008, cryptocurrencies could potentially have a posi-
tive impact simply by their potential ability to maintain a stable value [78]. However,
cryptocurrencies today do not have a stable value.

Decentralized platforms avoids the necessity of trusting a central organization to
handle your money. In the event of bankruptcy, a central organization would lose
all your money, meanwhile a decentralized system is undisturbed as its risks are
spread out on several nodes. It also frees up the market by enabling unrestricted
trading without needing approval of a centralized third party and it also has the po-
tential of reducing transaction costs due to it not being arbitrarily decided anymore.

Another example of what this technology could be used for has been shown by the
Swedish government agency Lantmäteriet. The agency uses blockchain technology
to verify real estate transactions and to avoid fraud. In their report they describe
that blockchains can be used as a digital representation of signatures on paper and
thereby reduce paper consumption [79].

5.4.2 Ethical issues and societal disadvantages

Despite the overall positive aspects of blockchain technology, the fact that the
transactions are mostly anonymous leads to some negative consequences. Cryp-
tocurrencies have been used to buy illegal goods such as narcotics and unlicensed
weapons [80]. They have also been forbidden in certain countries and in others there
are no regulations at all [81].

This project is limited to the development of a prototype. In a full-fledged decen-
tralized platform, there is no effective way to prevent its usage in specific countries,
such as countries where cryptocurrencies are forbidden. However, the platform is
only used to facilitate decentralized exchange of cryptocurrencies, and a user first
needs to own cryptocurrency to use the platform. A user in a country where these
cryptocurrencies are forbidden must therefore already have committed a crime be-
fore using the platform. Having said that, trading of these currencies is regulated
and taxable in several countries, such as in Sweden [82]. The prototype intends to
allow for anonymous trading of these currencies, unlike centralized exchanges, which
may result in that it is used to avoid tax payments.

Another unavoidable issue with the platform is that it allows for anonymous money
laundering. When a transaction with the platform occurs, the ability to track the
cryptocurrencies involved in the transaction are lost.

44

5. Discussion

5.4.3 General discussion on Social and Ethical aspects
The implementation of the project has a minimal impact on the environment and
society. That is however not true for using the prototype. It is estimated that the
transaction of one bitcoin corresponds to the energy consumption for one house in
one month [83]. Our prototype involves two transfers for every agreed upon trans-
action, and this energy expenditure is therefore doubled. New solutions, such as the
Raiden Network, have been developed with the intention of reducing this environ-
mental impact [84]. During the development, the aim is to reduce the total impact
by limiting the testing to test networks. The energy expenditure is considerably less
on test networks because the difficulty to break new blocks is much easier due to
lower security demands.

What can be said is that cryptocurrencies and blockchains are both new technologies
and it is too early to say what the long term consequences will be. However, it is
clear that change is on the way. In addition to the countries that have forbidden
cryptocurrencies, several other countries have introduced new laws and restrictions
on it [85]. If cryptocurrencies continue to gain in popularity at the same rate [86]
the probability that states introduce new regulations also increases. Blockchain
technology is in its development phase, and new applications of it will likely arise
such as the aforementioned example with Lantmäteriet. Therefore it is hard to
predict what consequences the technology will have and what role our prototype
will play.

45

5. Discussion

46

6
Conclusion

The core purpose of this thesis, which was to research how to perform atomic swaps
and develop a prototype for doing so, has been accomplished with a system that
can exchange Ethereum and Ethereum Classic. The target was not to build a
perfect system but instead to show that this is possible by utilizing a proof-of-
concept approach. The results allow for the possibility to further investigate the
area and reach the goal of developing a fully functional system that can be used
in production. Possible future improvements could be to troubleshoot the code
and remove bugs, enhance user interface portability and to improve handling of the
decentralized database. Working with experimental technologies is exciting but they
tend to have their own unsolved issues. However, the groundwork built in this thesis
opens up opportunities for others to extend and improve.

47

6. Conclusion

48

Bibliography

[1] CoinMarketCap.Historical Snapshot - Janury 03, 2016. url: https://coinmarketcap.
com/historical/20160103/ (visited on 2018-03-26).

[2] CoinMarketCap.Historical Snapshot - March 25, 2018. url: https://coinmarketcap.
com/historical/20180325/ (visited on 2018-03-26).

[3] CoinMarketCap. Ethereum Charts. url: https : / / coinmarketcap . com /
currencies/ethereum/#charts (visited on 2018-05-10).

[4] Encyclopædia Britannica. Fiat Money. url: https://www.britannica.com/
topic/fiat-money (visited on 2018-02-20).

[5] Encyclopædia Britannica. Crown. url: https : / / www . britannica . com /
topic/crown-monetary-unit (visited on 2018-04-25).

[6] Encyclopædia Britannica. Federal Reserve System. url: https://www.britannica.
com/topic/Federal-Reserve-System (visited on 2018-04-25).

[7] M. Rees. You Say Bitcoin Has No Intrinsic Value? Twenty-two Reasons to
Think Again. url: https://bitcoinmagazine.com/articles/you-say-
bitcoin- has- no- intrinsic- value- twenty- two- reasons- to- think-
again-1399454061/ (visited on 2018-04-27).

[8] Bitcoin.org. FAQ, Who created Bitcoin? url: https://bitcoin.org/en/
faq#who-created-bitcoin (visited on 2018-01-26).

[9] Investopedia. Currency Exchange. url: https://www.investopedia.com/
terms/c/currency-exchange.asp (visited on 2018-03-29).

[10] Cryptoincome. The Ultimate Guide to Centralized Cryptocurrency Exchanges.
url: http://cryptoincome.io/ultimate-guide-centralized-cryptocurrency-
exchanges/ (visited on 2018-03-05).

[11] S. Khatwani. Decentralized Crypto Exchanges vs Centralized Exchanges Like
Binance, Bittrex. url: https://coinsutra.com/decentralized-vs-centralized-
crypto-exchange/ (visited on 2018-03-05).

[12] Reuters. Cryptocurrency Exchanges Are Increasingly Roiled by Hackings and
Chaos. url: http://fortune.com/2017/09/29/cryptocurrency-exchanges-
hackings-chaos/ (visited on 2018-03-05).

[13] F. Chaparro. Some of the biggest crypto exchanges are shutting out new users
because they can’t keep up with demand. url: http://nordic.businessinsider.
com/crypto-exchanges-are-shutting-out-new-users-because-they-
cant-keep-up-with-demand-2017-12?r=US&IR=T (visited on 2018-03-05).

[14] CryptoCompare.What Are Atomic Swaps? url: https://www.cryptocompare.
com/coins/guides/what-are-atomic-swaps/ (visited on 2018-02-02).

[15] B. Cohen. The BitTorrent Protocol Specification. url: http://www.bittorrent.
org/beps/bep_0003.html (visited on 2018-04-25).

49

https://coinmarketcap.com/historical/20160103/
https://coinmarketcap.com/historical/20160103/
https://coinmarketcap.com/historical/20180325/
https://coinmarketcap.com/historical/20180325/
https://coinmarketcap.com/currencies/ethereum/#charts
https://coinmarketcap.com/currencies/ethereum/#charts
https://www.britannica.com/topic/fiat-money
https://www.britannica.com/topic/fiat-money
https://www.britannica.com/topic/crown-monetary-unit
https://www.britannica.com/topic/crown-monetary-unit
https://www.britannica.com/topic/Federal-Reserve-System
https://www.britannica.com/topic/Federal-Reserve-System
https://bitcoinmagazine.com/articles/you-say-bitcoin-has-no-intrinsic-value-twenty-two-reasons-to-think-again-1399454061/
https://bitcoinmagazine.com/articles/you-say-bitcoin-has-no-intrinsic-value-twenty-two-reasons-to-think-again-1399454061/
https://bitcoinmagazine.com/articles/you-say-bitcoin-has-no-intrinsic-value-twenty-two-reasons-to-think-again-1399454061/
https://bitcoin.org/en/faq#who-created-bitcoin
https://bitcoin.org/en/faq#who-created-bitcoin
https://www.investopedia.com/terms/c/currency-exchange.asp
https://www.investopedia.com/terms/c/currency-exchange.asp
http://cryptoincome.io/ultimate-guide-centralized-cryptocurrency-exchanges/
http://cryptoincome.io/ultimate-guide-centralized-cryptocurrency-exchanges/
https://coinsutra.com/decentralized-vs-centralized-crypto-exchange/
https://coinsutra.com/decentralized-vs-centralized-crypto-exchange/
http://fortune.com/2017/09/29/cryptocurrency-exchanges-hackings-chaos/
http://fortune.com/2017/09/29/cryptocurrency-exchanges-hackings-chaos/
http://nordic.businessinsider.com/crypto-exchanges-are-shutting-out-new-users-because-they-cant-keep-up-with-demand-2017-12?r=US&IR=T
http://nordic.businessinsider.com/crypto-exchanges-are-shutting-out-new-users-because-they-cant-keep-up-with-demand-2017-12?r=US&IR=T
http://nordic.businessinsider.com/crypto-exchanges-are-shutting-out-new-users-because-they-cant-keep-up-with-demand-2017-12?r=US&IR=T
https://www.cryptocompare.com/coins/guides/what-are-atomic-swaps/
https://www.cryptocompare.com/coins/guides/what-are-atomic-swaps/
http://www.bittorrent.org/beps/bep_0003.html
http://www.bittorrent.org/beps/bep_0003.html

Bibliography

[16] Omsar. Centralized databases. url: http://www.omsar.gov.lb/ICTSG/
104DB/6.1_Centralized_Databases.htm (visited on 2018-02-09).

[17] Investopedia. Definition of blockchain. url: https://www.investopedia.
com/terms/b/blockchain.asp (visited on 2018-05-07).

[18] Bitcoin.org. FAQ, How does bitcoin work? url: https://bitcoin.org/en/
faq#how-does-bitcoin-work (visited on 2018-02-02).

[19] OddsShark. Bitcoin trading fees explained. url: http://www.oddsshark.
com/bitcoin/transaction-costs (visited on 2018-02-02).

[20] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. url: https:
//bitcoin.org/bitcoin.pdf (visited on 2018-04-27).

[21] CoinMarketCap. Cryptocurrency Market Capitalizations. url: https://coinmarketcap.
com/ (visited on 2018-05-10).

[22] Investopedia. Bitcoin definition. url: https : / / www . investopedia . com /
terms/b/bitcoin.asp (visited on 2018-05-01).

[23] Investopedia. Altcoin definition. url: https : / / www . investopedia . com /
terms/a/altcoin.asp (visited on 2018-05-01).

[24] Bitcoin wiki. Bitcoin Script. url: https://en.bitcoin.it/wiki/Script
(visited on 2018-05-01).

[25] Computer Hope. Turing completeness. url: https://www.computerhope.
com/jargon/t/turing-completeness.htm (visited on 2018-03-08).

[26] Bitcoin Project. Bitcoin developer guide. url: https://bitcoin.org/en/
developer-guide#block-chain (visited on 2018-05-01).

[27] R. Aitken. Digital Gold ’Done Right’ With DigixDAO Crypto-Trading On
OpenLedger. 2016-04. url: https://www.forbes.com/sites/rogeraitken/
2016 / 04 / 23 / digital - gold - done - right - with - digixdao - crypto -
trading-on-openledger/ (visited on 2018-01-26).

[28] Ethereum foundation. Create your own crypto-currency with Ethereum. url:
https://www.ethereum.org/token (visited on 2018-05-28).

[29] Ethereum foundation. computation and turing completeness. url: https :
//github.com/ethereum/wiki/wiki/White- Paper#computation- and-
turing-completeness (visited on 2018-04-27).

[30] P. Bajpai. Bitcoin Vs Ethereum: Driven by Different Purposes. url: https:
//www.investopedia.com/articles/investing/031416/bitcoin- vs-
ethereum-driven-different-purposes.asp (visited on 2018-03-08).

[31] Ethereum community. What is gas? url: http://www.ethdocs.org/en/
latest/contracts-and-transactions/account-types-gas-and-transactions.
html#what-is-gas (visited on 2018-04-24).

[32] Investopedia. Hard Fork Definition. url: https://www.investopedia.com/
terms/h/hard-fork.asp (visited on 2018-04-27).

[33] D. Siegel. Understanding The DAO Attack. url: https://www.coindesk.
com/understanding-dao-hack-journalists/ (visited on 2018-05-10).

[34] V. Buterin. Hard Fork Completed. url: https://blog.ethereum.org/2016/
07/20/hard-fork-completed/ (visited on 2018-05-10).

[35] M. Rouse. nonce (number used once or number once). url: https://searchsecurity.
techtarget.com/definition/nonce (visited on 2018-05-12).

50

http://www.omsar.gov.lb/ICTSG/104DB/6.1_Centralized_Databases.htm
http://www.omsar.gov.lb/ICTSG/104DB/6.1_Centralized_Databases.htm
https://www.investopedia.com/terms/b/blockchain.asp
https://www.investopedia.com/terms/b/blockchain.asp
https://bitcoin.org/en/faq#how-does-bitcoin-work
https://bitcoin.org/en/faq#how-does-bitcoin-work
http://www.oddsshark.com/bitcoin/transaction-costs
http://www.oddsshark.com/bitcoin/transaction-costs
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://coinmarketcap.com/
https://coinmarketcap.com/
https://www.investopedia.com/terms/b/bitcoin.asp
https://www.investopedia.com/terms/b/bitcoin.asp
https://www.investopedia.com/terms/a/altcoin.asp
https://www.investopedia.com/terms/a/altcoin.asp
https://en.bitcoin.it/wiki/Script
https://www.computerhope.com/jargon/t/turing-completeness.htm
https://www.computerhope.com/jargon/t/turing-completeness.htm
https://bitcoin.org/en/developer-guide#block-chain
https://bitcoin.org/en/developer-guide#block-chain
https://www.forbes.com/sites/rogeraitken/2016/04/23/digital-gold-done-right-with-digixdao-crypto-trading-on-openledger/
https://www.forbes.com/sites/rogeraitken/2016/04/23/digital-gold-done-right-with-digixdao-crypto-trading-on-openledger/
https://www.forbes.com/sites/rogeraitken/2016/04/23/digital-gold-done-right-with-digixdao-crypto-trading-on-openledger/
https://www.ethereum.org/token
https://github.com/ethereum/wiki/wiki/White-Paper#computation-and-turing-completeness
https://github.com/ethereum/wiki/wiki/White-Paper#computation-and-turing-completeness
https://github.com/ethereum/wiki/wiki/White-Paper#computation-and-turing-completeness
https://www.investopedia.com/articles/investing/031416/bitcoin-vs-ethereum-driven-different-purposes.asp
https://www.investopedia.com/articles/investing/031416/bitcoin-vs-ethereum-driven-different-purposes.asp
https://www.investopedia.com/articles/investing/031416/bitcoin-vs-ethereum-driven-different-purposes.asp
http://www.ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html#what-is-gas
http://www.ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html#what-is-gas
http://www.ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html#what-is-gas
https://www.investopedia.com/terms/h/hard-fork.asp
https://www.investopedia.com/terms/h/hard-fork.asp
https://www.coindesk.com/understanding-dao-hack-journalists/
https://www.coindesk.com/understanding-dao-hack-journalists/
https://blog.ethereum.org/2016/07/20/hard-fork-completed/
https://blog.ethereum.org/2016/07/20/hard-fork-completed/
https://searchsecurity.techtarget.com/definition/nonce
https://searchsecurity.techtarget.com/definition/nonce

Bibliography

[36] Investopedia. Proof-of-work definition. url: https://www.investopedia.
com/terms/p/proof-work.asp (visited on 2018-04-30).

[37] Investopedia. 51% attack definition. url: https://www.investopedia.com/
terms/1/51-attack.asp (visited on 2018-04-30).

[38] Bitcoin wiki. Confirmation on the Bitcoin network. url: https://en.bitcoin.
it/wiki/Confirmation (visited on 2018-05-28).

[39] N. Szabo. Smart Contracts: Building Blocks for Digital Markets. url: http:
/ / www . fon . hum . uva . nl / rob / Courses / InformationInSpeech / CDROM /
Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_
2.html (visited on 2018-04-30).

[40] BTCX. btcx. url: https://bt.cx (visited on 2018-01-26).
[41] ShapeShift. ShapeShift. url: https://shapeshift.io/#/coins (visited on

2018-01-26).
[42] C. S. Carr. Arpanet protocol. url: https://tools.ietf.org/pdf/rfc33.pdf

(visited on 2018-05-07).
[43] R. Fielding et al. HTTP 1.1. url: https://tools.ietf.org/html/rfc2068

(visited on 2018-05-07).
[44] I. Fette and A. Melnikov. The WebSocket Protocol. url: https://tools.

ietf.org/html/rfc6455 (visited on 2018-04-27).
[45] P. Srisuresh and K. Egevang. Traditional IP Network Address Translator (Tra-

ditional NAT). url: https://tools.ietf.org/html/rfc3022 (visited on
2018-05-08).

[46] P. Matthews R. Mahy and J. Rosenberg. Traversal Using Relays around NAT
(TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN).
url: https://tools.ietf.org/html/rfc5766 (visited on 2018-05-09).

[47] J. Benet. IPFS - Content Addressed, Versioned, P2P File System. url: https:
//ipfs.io/ (visited on 2018-04-27).

[48] A. Béraud. What are Distributed Hash Tables ? url: https://github.com/
savoirfairelinux/opendht/wiki/What-are-Distributed-Hash-Tables-
%3F (visited on 2018-05-12).

[49] IPFS. Tutorial - Understanding Circuit Relay. url: https://github.com/
ipfs / js - ipfs / tree / master / examples / circuit - relaying (visited on
2018-05-14).

[50] P. Lake and P. Crowther. Concise Guide to Databases. url: https://www.
springer.com/gp/book/9781447156000#aboutAuthors (visited on 2018-04-
27).

[51] ITS. Distributed Database. url: https://www.its.bldrdoc.gov/fs-1037/
dir-012/_1750.htm (visited on 2018-04-27).

[52] E. Wong. User Interface Design Guidelines: 10 Rules of Thumb. url: https:
//www.interaction-design.org/literature/article/user-interface-
design-guidelines-10-rules-of-thumb (visited on 2018-05-10).

[53] M. Herlihy. “Atomic Cross-Chain Swaps”. In: ArXiv e-prints (2018-01). arXiv:
1801.09515 [cs.DC].

[54] BitcoinWiki.Hashed Timelock Contracts. 2017-09. url: https://en.bitcoin.
it/wiki/Hashed_Timelock_Contracts (visited on 2018-05-13).

51

https://www.investopedia.com/terms/p/proof-work.asp
https://www.investopedia.com/terms/p/proof-work.asp
https://www.investopedia.com/terms/1/51-attack.asp
https://www.investopedia.com/terms/1/51-attack.asp
https://en.bitcoin.it/wiki/Confirmation
https://en.bitcoin.it/wiki/Confirmation
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://bt.cx
https://shapeshift.io/#/coins
https://tools.ietf.org/pdf/rfc33.pdf
https://tools.ietf.org/html/rfc2068
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc3022
https://tools.ietf.org/html/rfc5766
https://ipfs.io/
https://ipfs.io/
https://github.com/savoirfairelinux/opendht/wiki/What-are-Distributed-Hash-Tables-%3F
https://github.com/savoirfairelinux/opendht/wiki/What-are-Distributed-Hash-Tables-%3F
https://github.com/savoirfairelinux/opendht/wiki/What-are-Distributed-Hash-Tables-%3F
https://github.com/ipfs/js-ipfs/tree/master/examples/circuit-relaying
https://github.com/ipfs/js-ipfs/tree/master/examples/circuit-relaying
https://www.springer.com/gp/book/9781447156000#aboutAuthors
https://www.springer.com/gp/book/9781447156000#aboutAuthors
https://www.its.bldrdoc.gov/fs-1037/dir-012/_1750.htm
https://www.its.bldrdoc.gov/fs-1037/dir-012/_1750.htm
https://www.interaction-design.org/literature/article/user-interface-design-guidelines-10-rules-of-thumb
https://www.interaction-design.org/literature/article/user-interface-design-guidelines-10-rules-of-thumb
https://www.interaction-design.org/literature/article/user-interface-design-guidelines-10-rules-of-thumb
http://arxiv.org/abs/1801.09515
https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts
https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts

Bibliography

[55] C. Hatch. An implementation of a Hashed Timelock Contract on Ethereum.
2017-01. url: https://github.com/chatch/hashed-timelock-contract-
ethereum (visited on 2018-05-13).

[56] Bitcoin wiki. Bitcoin opcodes. url: https://en.bitcoin.it/wiki/Script#
Opcodes (visited on 2018-05-13).

[57] B. Clauss. Comparing hashing algorithms. url: https://blog.novatec-
gmbh . de / choosing - right - hashing - algorithm - slowness/ (visited on
2018-05-13).

[58] A. Castor. One of Ethereum’s Earliest Smart Contract Languages Is Headed
for Retirement. url: https://www.coindesk.com/one- of- ethereums-
earliest-smart-contract-languages-is-headed-for-retirement/ (vis-
ited on 2018-05-13).

[59] Ethereum Foundation. Building a smart contract using the command line. url:
https://www.ethereum.org/greeter (visited on 2018-05-13).

[60] OrbitDB. OrbitDB. url: https://github.com/orbitdb/orbit-db/ (visited
on 2018-05-12).

[61] J. Wilcke V. Trón and F. Lange. Geth. url: https://github.com/ethereum/
go-ethereum/wiki/geth (visited on 2018-03-28).

[62] Bitcoin Core. About Bitcoin Core. url: https://bitcoincore.org/en/
about/ (visited on 2018-05-10).

[63] E. Czaplicki. Error Handling and Tasks. url: https://guide.elm-lang.
org/error_handling/ (visited on 2018-05-13).

[64] M. Kotewicz and F. Vogelsteller. Ethereum JavaScript API. url: https://
github.com/ethereum/web3.js (visited on 2018-05-13).

[65] O. Hanhinen. Elm in the real world. url: https://futurice.com/blog/elm-
in-the-real-world (visited on 2018-05-13).

[66] Komodo Platform.Komodo. An Advanced Blockchain Technology. url: https:
//www.komodoplatform.com/en/technology/whitepaper/2018-02-03-
Komodo-White-Paper-Full.pdf (visited on 2018-02-09).

[67] CryptoCoinNews. What Bitcoin Exchanges Won’t Tell You About Fees. 2015-
07. url: https://www.ccn.com/what-bitcoin-exchanges-wont-tell-
you-about-fees/ (visited on 2018-02-09).

[68] Gas tracker. Ethereum Classic Block Explorer. url: https://gastracker.io/
(visited on 2018-05-13).

[69] ETH Gas Station. Token Tracker. url: https : / / ethgasstation . info/
(visited on 2018-05-13).

[70] ETH Gas Station. Estimates over last 1,500 blocks. url: https://ethgasstation.
info/index.php (visited on 2018-05-13).

[71] Gastracker.io. Ethereum Classic Block Explorer. url: https://gastracker.
io/ (visited on 2018-05-13).

[72] CoinGecko. Ethereum Price Chart US Dollar (ETH/USD). url: https://
www.coingecko.com/en/price_charts/ethereum/usd (visited on 2018-05-
13).

[73] CoinGecko. Ethereum Classic Price Chart US Dollar (ETC/USD). url: https:
//www.coingecko.com/en/price_charts/ethereum-classic/usd (visited
on 2018-05-13).

52

https://github.com/chatch/hashed-timelock-contract-ethereum
https://github.com/chatch/hashed-timelock-contract-ethereum
https://en.bitcoin.it/wiki/Script#Opcodes
https://en.bitcoin.it/wiki/Script#Opcodes
https://blog.novatec-gmbh.de/choosing-right-hashing-algorithm-slowness/
https://blog.novatec-gmbh.de/choosing-right-hashing-algorithm-slowness/
https://www.coindesk.com/one-of-ethereums-earliest-smart-contract-languages-is-headed-for-retirement/
https://www.coindesk.com/one-of-ethereums-earliest-smart-contract-languages-is-headed-for-retirement/
https://www.ethereum.org/greeter
https://github.com/orbitdb/orbit-db/
https://github.com/ethereum/go-ethereum/wiki/geth
https://github.com/ethereum/go-ethereum/wiki/geth
https://bitcoincore.org/en/about/
https://bitcoincore.org/en/about/
https://guide.elm-lang.org/error_handling/
https://guide.elm-lang.org/error_handling/
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://futurice.com/blog/elm-in-the-real-world
https://futurice.com/blog/elm-in-the-real-world
https://www.komodoplatform.com/en/technology/whitepaper/2018-02-03-Komodo-White-Paper-Full.pdf
https://www.komodoplatform.com/en/technology/whitepaper/2018-02-03-Komodo-White-Paper-Full.pdf
https://www.komodoplatform.com/en/technology/whitepaper/2018-02-03-Komodo-White-Paper-Full.pdf
https://www.ccn.com/what-bitcoin-exchanges-wont-tell-you-about-fees/
https://www.ccn.com/what-bitcoin-exchanges-wont-tell-you-about-fees/
https://gastracker.io/
https://ethgasstation.info/
https://ethgasstation.info/index.php
https://ethgasstation.info/index.php
https://gastracker.io/
https://gastracker.io/
https://www.coingecko.com/en/price_charts/ethereum/usd
https://www.coingecko.com/en/price_charts/ethereum/usd
https://www.coingecko.com/en/price_charts/ethereum-classic/usd
https://www.coingecko.com/en/price_charts/ethereum-classic/usd

Bibliography

[74] Etherscan. Token Tracker. url: https://etherscan.io/tokens (visited on
2018-05-13).

[75] D. Dias. Removing the Central Rendezvous Points for the *-star transports.
url: https://github.com/libp2p/js- libp2p/issues/134 (visited on
2018-05-13).

[76] P. Traugott. What is a Hashed Timelock Contract (HTLC)? – A Beginner’s
Guide. url: https://captainaltcoin.com/hashed-timelock-contract-
htlc/ (visited on 2018-05-11).

[77] Bitcoin.org. FAQ, How are bitcoins created? url: https://bitcoin.org/en/
faq#how-are-bitcoins-created (visited on 2018-02-02).

[78] S. H. Hanke and A. K. F. Kwok. “On the Measurement of Zimbabwe’s Hyper-
inflation”. In: Cato Journal 29.2 (2009). url: https://object.cato.org/
sites/cato.org/files/serials/files/cato-journal/2009/5/cj29n2-
8.pdf (visited on 2018-02-09).

[79] Kairos Future. The Land Registry in the blockchain - testbed. Tech. rep. The
Swedish Mapping, Cadastre and Land Registration Authority, 2017-03. url:
https : / / chromaway . com / papers / Blockchain _ Landregistry _ Report _
2017.pdf (visited on 2018-02-02).

[80] C. Albanesius. What Was Silk Road and How Did It Work? 2013-10. url:
http://uk.pcmag.com/internet-products/12660/news/what-was-silk-
road-and-how-did-it-work (visited on 2018-02-02).

[81] U. Chohan. “Accessing the Differences in Bitcoin & Other Cryptocurrency
Legality Across National Jurisdictions”. 2017-09. url: https : / / papers .
ssrn.com/sol3/papers.cfm?abstract_id=3042248 (visited on 2018-02-09).

[82] Skatteverket. Virtuella valutor. 2017-10. url: https://www.skatteverket.
se/privat/skatter/vardepapper/andratillgangar/virtuellavalutor.
4.15532c7b1442f256bae11b60.html (visited on 2018-02-02).

[83] T. Brosens. Why Bitcoin transactions are more expensive than you think. url:
https://think.ing.com/opinions/why- bitcoin- transactions- are-
more-expensive-than-you-think/ (visited on 2018-02-02).

[84] mooncryption. Scaling Cryptos: Bitcoin Lightning Network vs Ethereum Raiden
Network. 2017-09. url: https://steemit.com/bitcoin/@mooncryption/
scaling-cryptos-bitcoin-lightning-network-vs-ethereum-raiden-
network (visited on 2018-02-02).

[85] F. McKenna. Here’s how the U.S. and the world regulate bitcoin and other
cryptocurrencies. 2017-12. url: https://www.marketwatch.com/story/
heres- how- the- us- and- the- world- are- regulating- bitcoin- and-
cryptocurrency-2017-12-18 (visited on 2018-02-02).

[86] CoinMarketCap. Total Market Capitalization. url: https://coinmarketcap.
com/charts (visited on 2018-02-02).

53

https://etherscan.io/tokens
https://github.com/libp2p/js-libp2p/issues/134
https://captainaltcoin.com/hashed-timelock-contract-htlc/
https://captainaltcoin.com/hashed-timelock-contract-htlc/
https://bitcoin.org/en/faq#how-are-bitcoins-created
https://bitcoin.org/en/faq#how-are-bitcoins-created
https://object.cato.org/sites/cato.org/files/serials/files/cato-journal/2009/5/cj29n2-8.pdf
https://object.cato.org/sites/cato.org/files/serials/files/cato-journal/2009/5/cj29n2-8.pdf
https://object.cato.org/sites/cato.org/files/serials/files/cato-journal/2009/5/cj29n2-8.pdf
https://chromaway.com/papers/Blockchain_Landregistry_Report_2017.pdf
https://chromaway.com/papers/Blockchain_Landregistry_Report_2017.pdf
http://uk.pcmag.com/internet-products/12660/news/what-was-silk-road-and-how-did-it-work
http://uk.pcmag.com/internet-products/12660/news/what-was-silk-road-and-how-did-it-work
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3042248
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3042248
https://www.skatteverket.se/privat/skatter/vardepapper/andratillgangar/virtuellavalutor.4.15532c7b1442f256bae11b60.html
https://www.skatteverket.se/privat/skatter/vardepapper/andratillgangar/virtuellavalutor.4.15532c7b1442f256bae11b60.html
https://www.skatteverket.se/privat/skatter/vardepapper/andratillgangar/virtuellavalutor.4.15532c7b1442f256bae11b60.html
https://think.ing.com/opinions/why-bitcoin-transactions-are-more-expensive-than-you-think/
https://think.ing.com/opinions/why-bitcoin-transactions-are-more-expensive-than-you-think/
https://steemit.com/bitcoin/@mooncryption/scaling-cryptos-bitcoin-lightning-network-vs-ethereum-raiden-network
https://steemit.com/bitcoin/@mooncryption/scaling-cryptos-bitcoin-lightning-network-vs-ethereum-raiden-network
https://steemit.com/bitcoin/@mooncryption/scaling-cryptos-bitcoin-lightning-network-vs-ethereum-raiden-network
https://www.marketwatch.com/story/heres-how-the-us-and-the-world-are-regulating-bitcoin-and-cryptocurrency-2017-12-18
https://www.marketwatch.com/story/heres-how-the-us-and-the-world-are-regulating-bitcoin-and-cryptocurrency-2017-12-18
https://www.marketwatch.com/story/heres-how-the-us-and-the-world-are-regulating-bitcoin-and-cryptocurrency-2017-12-18
https://coinmarketcap.com/charts
https://coinmarketcap.com/charts

Bibliography

54

A
Source code

The prototype is licensed under the MIT license and its source code is available at
https://github.com/sutbult/DATX02-18-07.

55

A. Source code

56

B
User interface

Figure B.1: Add bid.

Figure B.2: Browse bids.

57

B. User interface

Figure B.3: Your wallet.

Figure B.4: Your bids.

58

B. User interface

Figure B.5: Accepted bids.

Figure B.6: Settings.

59

	Introduction
	Outline
	Background
	Purpose
	Problem
	Secure cryptocurrency exchange
	Decentralized communication
	Decentralized storage

	Scope

	Technical background
	Blockchains explained
	The Bitcoin blockchain
	The Ethereum blockchain
	Transaction costs
	Ethereum and Ethereum Classic

	Security of blockchains
	Smart contracts
	Atomic swaps
	Cryptocurrency exchanges
	Network communication
	WebSocket
	NAT and relaying
	IPFS

	Distributed database
	Test automation

	Methods
	Development
	Requirements
	Exchange method
	Bid database
	Message passing
	User interface

	Design
	Exchange method
	Smart contracts
	Contract validation
	Design of bid database
	Design of message passing
	User interface
	Test automation

	Implementation
	Exchange method and atomic swaps
	Atomic swaps on the Ethereum platform
	Atomic swaps on the Bitcoin network
	Bid database
	Message passing
	Blockchain software
	User interface
	Test automation

	Evaluation and Results
	Quantitative Evaluation
	Test A : Success rate
	Test B : Delay
	Test C : Cost

	Qualitative Evaluation
	Test D : Trading pairs

	Testing environment
	Hardware specification
	Network specification

	Results
	Test A : Success rate
	Test B : Delay
	Test C : Cost
	Test D : Trading pairs

	Discussion
	Discussion on the development process
	Discussion on testing and results
	Method for measuring performance
	Testing on Ethereum
	Testing on Bitcoin

	Discussion of the prototype
	API server
	The bid database
	Exchange method
	Message passing
	User interface
	Extension for additional cryptocurrencies
	Reliability
	Scalability issues
	Security of the exchange method

	Societal and ethical aspects
	Societal advantages
	Ethical issues and societal disadvantages
	General discussion on Social and Ethical aspects

	Conclusion
	Bibliography
	Source code
	User interface

