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Gunnar Örn Gunnarsson
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Abstract
Due to recent security breaches in today’s common applications, privacy require-
ments for modern applications have become stricter. To fulfill these requirements,
more and more research has been put into producing methods that preserve the
privacy of users while retaining the same degree of functionality and efficiency.

In this thesis, based on the privacy-preserving ridesharing model PrivatePool, two
novel models are presented for preserving user’s privacy in a ridesharing application.
The former model optimizes the algorithm of PrivatePool to increase its efficiency,
while the latter model takes additional parameters into consideration when per-
forming its computations. Finally, we conclude that an ad-hoc privacy-preserving
algorithm outperforms a general solution and that the addition of more parameters
to the ad-hoc model has a significant negative effect on its efficiency.

Keywords: ridesharing, privacy, optimization, security, matching, secure mulity-
party computation, private set intersection, endpoint, intersection, PrivatePool.
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1
Introduction

In recent years, security requirements for modern applications have increased sig-
nificantly, due to the amount of sensitive data which they process. What can be
categorized as sensitive data, depends on the context. However, the term generally
refers to data that is not publicly available and can be associated to a specific person
or a group of people. Applications are used on a daily basis, that often process and
handle private information. Credit card numbers, locations of users and/or social
security numbers are some examples, that are required by applications to fulfill their
purposes. However, this also increases the risk of users’ data being abused or falling
into the wrong hands, which could reveal more information about the user than the
user has explicitly agreed to. Despite the fact that third party applications should
handle their customers’ data with care, this is not always the case. It turns out that
customers’ data could be used for privacy-violating activities. Up until now, there
have been several cases of service providers abusing their customers’ data in such a
manner [16, 28, 43].

Ridesharing applications are examples of privacy-sensitive applications. The intu-
ition behind ridesharing is that two or more parties are willing to share a ride, given
the condition that they intend to travel similar routes or between similar endpoints.
Benefits of ridesharing include the ability to commute without having access to a
personal motorized vehicle and reduction of travel cost and the environmental foot-
print. Uber [20], Lyft [19] and Blablacar [2] are examples of ridesharing applications,
with Uber being the most prominent application in the western markets [53].

Several methods are available to enhance the security in privacy-sensitive applica-
tions [5, 3, 15, 14, 17, 38, 26, 37, 52]. In this thesis, improvements are made to a
decentralized and distributed model that provides a strict security protocol for a
ridesharing application.
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1. Introduction

1.1 Background
Abuse cases in ridesharing applications are in part what motivated Hallgren et al. to
develop PrivatePool [15], which is a model for privacy-preserving ridesharing. The
goal of PrivatePool is to reveal to its users a commonly shared part of the routes
they intend to traverse, only if the routes are similar enough and fulfill the user’s
requirements, and no information otherwise. By utilizing secure multi-party com-
putations (SMC) [51], which is a subfield of cryptography, participants can jointly
compute a function based on private inputs. SMC protocols can be used to enable
users to detect whether other users have similar routes, in order to share a ride with
them, without revealing their positional information. In order to determine the de-
gree of similarity between two routes, PrivatePool utilizes a variant of a private set
intersection (PSI) protocol [17]. A PSI protocol computes the intersection between
two sets, which makes it possible to determine whether they include two identical
data points. The variant of PSI used by PrivatePool is called threshold private set
intersection (T-PSI), which makes it possible to determine whether the two routes
overlap above a given threshold.

The implementation of a real case usage of the PrivatePool model requires the ability
to scale for many users and also to match them based on the time of their ride. In a
scalable application with many end-users, the security aspects of the application is of
utmost importance. Therefore, the privacy of each user is critical, and a dependable
and privacy-preserving authentication method should be investigated. The time
and location of a ride are essential parameters that are required to detect a possible
rideshare. However, the time of the ride was not included in the PrivatePool model.
The exclusion of the parameter results in a model with limited capabilities, which
needed to be addressed for further progress towards a production-ready application.
Additionally, the current model makes the assumption that all parties are aware of
each other’s existence and that they can trust that other parties are authenticated
users.

The most significant drawback of PrivatePool is the solution’s worst-case compu-
tational overhead, indicated in running time. Running time is defined as the time
it takes for an application or a part of an application to fulfill its predetermined
tasks. In this thesis, two models are proposed called Optimized PrivatePool (O-
PrivatePool) and Time-extended PrivatePool (T-PrivatePool). This thesis is a con-
tinuation of and based on PrivatePool [15], where the aforementioned limitations are
addressed. The scope includes optimizing the worst-case running time, adding time
as a matching parameter and providing suggestions for authentication methods.

Since PrivatePool is designed in the context of ridesharing, it is logical to continue
the research in the same context. By comparing PrivatePool with O-PrivatePool
and T-PrivatePool under identical conditions, a reliable and fair comparison can be
made. The objective is to provide a solution that can be generalized and applied
to any number of contexts where the goal is to group entities together that share
similar routes.

2



1. Introduction

1.2 Purpose and Objectives
The purpose of this thesis is to further research and develop two new models, O-
PrivatePool and T-PrivatePool, which address the limitations of its predecessor,
PrivatePool. The main focal point is to investigate whether the alternative special-
ized solution O-PrivatePool based on a PSI protocol, presented in Chapter 4, can
outperform the T-PSI based solution which utilizes a threshold key encapsulation
mechanism (T-KEM) presented in PrivatePool [15]. The optimization is expected
to reduce the computational overhead and decrease the worst-case time complexity
of the model’s so-called intersection-based matching method (from O(n3) to O(n)).
More precisely, the running time of the method is expected to be significantly less
than the former. Furthermore, it is expected that the model will suffer no loss in
effectiveness, where effectiveness is the degree to which the model can detect all
available ridesharing opportunities.

Based on the aforementioned statements, the following research questions are pre-
sented:

RQ1: Will the new proposed O-PrivatePool’s intersection-based matching method
have less time complexity (denoted by T(n)) than PrivatePool’s corresponding method
based on T-KEM, which is bounded by O(n3)? I.e.:

T (n) < O(n3)

RQ2: Will the implementation of O-PrivatePool’s intersection-based matching method
result in a significantly lower running time, when running benchmarking tests, com-
pared to PrivatePool’s corresponding method?

Requesting a rideshare requires the matching of trajectories and the time the ride
is expected to take place. Introducing a parameter that represents time into O-
PrivatePool is addressed further in Chapter 5. A potential solution, called T-
PrivatePool, involves the user’s routes being represented as routes in both space
and time. Currently, the parties have a threshold parameter for how much they are
willing to deviate from their route, in terms of spatial distance. A similar temporal
deviance parameter would also be taken into consideration when redesigning the
protocol. Therefore, the following research question is proposed:

RQ3: Is it possible to match entities using an additional threshold, representing
deviation in time, without significantly impairing the protocol’s efficiency?

In PrivatePool, it is assumed that all users utilizing the service are authorized and
verified. However, the reality is different; data breaches [27] and unauthorized ac-
cesses [22] are well known issues of these types of applications. Since PrivatePool is
intended to be utilized in a decentralized and distributed system, there is the po-
tential of applying a decentralized and distributed authentication service to address
some of the limitations of the protocol [32]. In Chapter 6, authentication services
and their cryptographic principles are discussed at a high level and how they can
be applied to the model.

3



1. Introduction

1.3 Delimitations
In regards to SMC protocols, other potential alternatives than the new proposed
protocols are not investigated, including the possibility of extending the former T-
KEM protocol. This is due to the fact that other protocols have not been reported
to provide the same degree of improvements.

Since all research surrounding the authentication aspect is open ended, only a high
level description regarding its applications in this context is presented. The descrip-
tion is limited to the possibility of authenticating the user in a decentralized and/or
distributed system. An implementation of the recommended authentication method
is not presented in this thesis.

1.4 Contribution
The novel contributions of this thesis are two privacy-preserving ridesharing mod-
els, O-PrivatePool and T-PrivatePool. Both models are optimized versions of Pri-
vatePool, while T-PrivatePool includes additional parameters for matching entities
according to the time of their ride and the users’ willingness to deviate from that
time.

The theoretical evaluation of the algorithm given in Section 4.1.1 shows that O-
PrivatePool achieves a significant decrease in worst-case time complexity, from
O(n3) to O(n). Furthermore, our practical evaluation of the computational over-
head measurements, given in Appendix A and analyzed Section 4.4, showed that
O-PrivatePool can produce significantly lower computational overhead than its pre-
decessor, while retaining the exact same degree of effectiveness, see Section 4.4.1.1.
Furthermore, theoretical evaluations of the algorithmic solutions of T-PrivatePool,
provided in Section 5.1.1, showed that the worst-case complexity of one of the
model’s main functions is increased from O(n) to O(n×m). Additionally, practical
evaluations of measurements of the computational overhead, given in Appendices B
through D and analyzed in Section 5.2, show that the model is indeed impaired to
a statistically significant extent.

1.5 Outline
In Chapter 2, fundamental concepts and work in the related field are presented,
such as PrivatePool. Chapter 3 discusses the research method used throughout the
project and its phases, in addition to the terminology used for statistical hypothesis
testing and analyses. The procedure performed whilst developing the first novel
model, O-PrivatePool, is presented in Chapter 4, as well as the results and analyses
of its efficiency and effectiveness tests. In Chapter 5, a similar process as in its
preceding chapter is conducted, in order to develop and evaluate T-PrivatePool,
by applying analogous experimental methods and analysis methods. Chapter 6
provides the reader with a high-level description of authentication methods and

4



1. Introduction

recommendations for a method that could potentially be applied to PrivatePool or
its variants. In Chapter 7, the hypotheses presented for both O-PrivatePool and
T-PrivatePool are evaluated. Finally, in Chapter 8, the novel contributions are
evaluated in a broader context and potential future work is presented.

5





2
Theoretical Background and

Related Work

2.1 Secure Multi-Party Computation
SMC is a subfield of cryptography which has the aim of enabling a set of par-
ties p = p1, . . . , pn with private inputs x1. . . xn, to compute a public joint function
f(x1, . . . , xn) on their inputs while retaining their private characteristics [51]. By
utilizing SMC protocols, the reliance on an outside party to keep a secret is mini-
mized or eliminated. Parties exchange messages between each other and can only
interpret the output and their own input.

Despite the fact that SMC protocols have existed since the early 1970’s, the pro-
tocols have been considered impractical in production level applications. However,
according to Claudio Orlandi [35], applications using ad-hoc SMC solutions are con-
stantly moving towards what can be considered realistic production level, in terms
of efficiency.

2.2 Private Set Intersection
PSI is a branch of SMC which allows two parties, S and S ′, to compute the intersec-
tion of their private inputs I = S

⋂
S ′, while revealing no information other than the

intersection itself. Several different types of PSI protocols have been proposed over
the years, categorized as generic or customized for the specific application. Generic
PSI protocols work over garbled circuits (a cryptographic protocol, described as a
Boolean circuit) [52, 38, 37] to compute the intersection, meanwhile, custom PSI pro-
tocols work over homomorphic encryption and other public-key techniques [5, 3, 26].
The state-of-the-art protocols which have shown the most advancements are custom
protocols. However, recent research has been made on generic PSI protocols by
Pinkas et al., concerning a new Efficient Circuit-based PSI via Cuckoo Hashing,
whose efficiency is concretely better than other existing constructions [38]. As pre-
viously mentioned, custom protocols have made great progress, where batched obliv-
ious prf (BaRK-OPRF) is one of the fastest state-of-the-art custom PSI protocols
[26].

7



2. Theoretical Background and Related Work

2.2.1 Threshold Private Set Intersection
A standard PSI protocol reveals the intersection as soon there is a match. T-PSI,
on the other hand, is a variant of PSI which determines whether the two users’ sets
overlap, over a given threshold t [15]. If that requirement is fulfilled, the overlapping
subset is revealed, otherwise nothing is revealed. In the context of ridesharing, T-PSI
can be used to detect whether two routes overlap and if the length of the overlap
exceeds the threshold t. In that case, both users are notified that they have the
possibility of sharing a ride for that segment of the route.

2.2.2 Threshold Key Encapsulation Mechanism
T-KEM is a cryptographic tool which was used in PrivatePool [15] to construct a T-
PSI protocol. T-KEM only reveals the intersection of two datasets if the number of
intersecting elements exceeds a given threshold. The protocol is based on Shamir’s
secret sharing scheme [41], where participants are only able to generate a key if a
certain number of valid points along a specific path are provided. The key which is
released by T-KEM is then used to decrypt the intersecting values. Shamir’s secret
sharing has a complexity of O(n3) which T-KEM inherits and is considered to be
the most significant drawback of the tool. It should be emphasized that T-KEM
can be applied to a wide range of contexts.

2.3 Symmetric and Asymmetric Encryption
In cryptography there are two variants of cryptosystems: symmetric and asymmetric
[49]. In the former, both encryption and decryption of the plaintext/ciphertext is
done by utilizing the same cryptographic key. For asymmetric systems, two different
keys are generated, one public and one private. The public key, in that case, is
publicly available and is used for encrypting a message, meanwhile the private key
is only held by its intended recipient and is used for decrypting the message.

2.4 Homomorphic Encryption
Homomorphic encryption is a form of encryption that allows the ciphertext to re-
tain the plaintext’s homomorphic properties [5]. Additionally, linear operations
performed on the ciphertext are reflected on its corresponding plaintext. After ap-
plying linear operations, e.g. additions and multiplications, to the ciphertext, it can
be decrypted in order to retrieve the plaintext with the applied operations [7].

There exist cryptosystems with fully and partially homomorphic encryption. Fully
homomorphic protocols allow unlimited amount of linear operations to be performed,
while partially homomorphic protocols limits the number of operations. However,
for practical use, the former is considered too computationally demanding. There-
fore, majority of today’s cryptosystems with homomorphic properties are based on
partially homomorphic encryption. Paillier [36] and ElGamal [6] are two well known
cryptosystems.

8



2. Theoretical Background and Related Work

2.5 Proximity Testing
It is common that applications use the location of their users for either supporting
core features or to enhance the user experience. A common case, which is of partic-
ular interest for this research, is when the user checks whether their associates are
nearby [14].

Proximity Testing in a privacy-preserving environment involves computing whether
users fulfill the proximity requirement without revealing their distance and rel-
ative positions to each other or to any third party. There are several privacy-
preserving solutions for proximity testing with different strengths and weaknesses
[42, 9, 31, 10, 54, 29, 47, 39, 14].

2.6 PrivatePool
PrivatePool is a novel model for privacy-preserving ridesharing [15]. The goal of
the model is to provide a fully functional ridesharing application without compro-
mising the privacy of its users. Coordinates are encrypted and SMC is applied over
the encrypted inputs to detect ridesharing opportunities. Whenever two users ful-
fill the following requirements, a ridesharing opportunity emerges: Both users are
travelling similar routes or between similar endpoints and they are willing to share
a ride together. From the perspective of detecting whether the first requirement
of a ridesharing opportunity is fulfilled, there are two patterns that are taken into
consideration, endpoint-based matching and intersection-based matching.

In PrivatePool, the method of generating routes (or trajectories) while preserv-
ing privacy are considered out of scope. However, an assumption is made that the
routing software computes the shortest path between the user’s origin and destina-
tion. In Section 1.1, attention is drawn to the drawbacks of PrivatePool. One of
those drawbacks is the fact that the time of the ride is not included in the model.
Therefore, when referring to the shortest path between two points, it indicates its
physical distance.

2.6.1 Ridesharing Patterns
A ridesharing pattern, called the endpoint-based matching pattern, has the goal of
matching two parties’ respective origins and destinations, without revealing their po-
sitions and distance to each other or any third party. In order to calculate whether
the two participants’ distance is within predetermined limits, a proximity test is
made with homomorphic encryption.

Another pattern in ridesharing, the intersection-based matching pattern, has the
goal of matching two parties only if there exists a sufficient overlap of their routes,
without revealing any sensitive information while computations are carried out. A
variant of PSI is applied to solve the intersection matching, since a regular PSI pro-
tocol reveals the intersection once there is a single match. Given that it is desired

9



2. Theoretical Background and Related Work

that two individuals share at least a minimum threshold length of the route, apply-
ing this protocol would not be optimal in a ridesharing context. It was, therefore,
determined to construct and utilize T-KEM for their solution.

Fig. 2.1 and 2.2 present examples of how ridesharing opportunities may occur
by applying endpoint-based matching and intersection-based matching. Fig. 2.1
depicts the scenario when both start- and endpoints are close to each other and the
routes do not intersect. In this case, the two parties might consider sharing their
trip instead of traversing two individual routes.

Figure 2.1: Two routes that have endpoints close to each other but do not intersect

Fig. 2.2 on the other hand, shows the scenario when the endpoints are not close to
each other. However, it can be shown that both users’ routes overlap to a certain
extent. This overlap makes up a large part of the trip which makes it appropriate
to share a ride.

10
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Figure 2.2: Two routes that intersect but their endpoints are far from each other

2.6.2 Ridesharing Modeling and Feasibility
In order to gain basic knowledge of the terminologies and concepts used in the
ridesharing model, a number of definitions extracted from PrivatePool [15] are pre-
sented. In addition, all definitions are based on the fact that users travel with
constant speed and that both the spatial and temporal cost of traversing a road
section is equivalent.

Trips are represented as undirected, unweighted graph G = (V,E), where V is
the set of vertices and E ⊆ V × V is the set of edges. Other synonyms for trips are
routes, paths and trajectories.

Definition 1 (Trip) Given a graph G = (V,E), a trip T is an acyclic sequence
of consecutive vertices vi ∈ V , where vs = v0 is the origin and vf = v|T |−1 is the
destination, such that (vi, vi+1) ∈ E for all i ∈ {0, ..., |T | − 2}.

Definition 2 (Segment) Given a graph G = (V,E), a segment S of a trip T in
G is an acyclic sequence of consecutive vertices v ∈ V , such that S is a subsequence
of T .
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Definition 3 (Segment length) Given a segment S for some trip through a graph
G = (V,E), let l(S) = ∑|S|−2

i=0 d(S[i], S[i+ 1]), where S[j] is the jth vertex in S and
dx(p1, p2) is the Euclidean distance between the two points p1 and p2.

A rideshare is considered feasible when there is a low enough cost and high enough
benefit for both parties. The feasibility of a rideshare can also be referred to as a
ridesharing opportunity and is modeled by two parameters. One parameter stands
for the upper limit of how much the user is willing to deviate from their trajectory,
before and after their shared ride. The second parameter stands for a lower limit,
or threshold, of the length of the ridesharing segment. A formal representation of
ridesharing feasibility is given in Definition 4. Note that the deviation function ∆ in
Definition 4 can be an arbitrary function, that represents the change in how much
an entity is willing to deviate from their route at a specific point.

Definition 4 (Ridesharing feasibility) For any fixed threshold t and deviation
function ∆, given two trajectories PA and PB for users A and B in G = (V,E),
ridesharing is feasible for A along a segment S = {ps, ..., pf} of PB if and only if
l(S) > t and there exist two points PA[i] and PA[j], with i < j, such that:

d(PA[i], ps) < ∆PA(PA[i])

∧ d(PA[j], pf ) < ∆PA(PA[j]).

12



3
Research Method

Several research methods are available when performing quantitative research in the
realm of Computer Science and Software Engineering [46, 24, 30, 50, 12]. Design
science research (DSR) in Information Systems is a research method that captures
the purpose of this thesis [46]. DSR involves two primary activities, where the first
is comprised of the creation of a novel or innovative artifact and the second is an
analysis of the artifact’s use and performance. The artifacts involved are the new
models O-PrivatePool and T-PrivatePool, and the analysis involves measuring the
efficiency of each protocol compared to its relative change in effectiveness and then
to analyze the results in different contexts.

A DSR is of iterative nature, where each iteration is made up of five phases: Aware-
ness of problem, Suggestion, Development, Evaluation and Conclusion. These phases
are iterated upon as many times as necessary. In this thesis, there are three iter-
ations in total, one iteration is reserved for Chapter 4 and then two iterations are
conducted in parallel, in Chapter 5 and Chapter 6.

In Section 3.1, the phases of DSR are explored in greater detail. Section 3.2 is
presented to help the reader understand the basic terms used in the subsequent
parts of the thesis. Advanced descriptions of methods used in statistical hypothesis
testing are considered out of scope.

3.1 Design Science Research
The Awareness of problem phase was considered a precursor to this thesis, where
a literature review was carried out. In general, the literature review involved in-
vestigating recent developments in the field. That is, the state of today’s privacy-
preserving applications, familiarizing with concepts in the ridesharing domain and
researching the potential of applying decentralized and distributed technologies
for the ridesharing scenario. Literature was discovered by systematically reading
through PrivatePool’s references and by utilizing Google Scholar [11] to search for
papers that have referenced PrivatePool. In addition, Google Scholar was used to
search for the most recent developments in the field by using keywords such as
SMC, PSI, T-PSI, Homomorphic encryption, Proximity Testing and other varia-
tions of those keywords. For each iteration, the relevant knowledge acquired from
the Awareness of problem phase was used to produce the design during the Sugges-
tion phase.
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During the Suggestion phase, from the motivation of the relevant research questions,
requirements were elicited and outlined. Subsequently, hypotheses were proposed
from their corresponding research questions, along with a detailed design for a sug-
gested solution and an experimental design.

Physical and virtual machines with the required software were set up for the Develop-
ment phase and subsequent simulations. By utilizing the detailed designs generated
from the Suggestion phase, an implementation was accomplished. That included
the development of necessary supplementary programs, such as test suites. In ad-
dition, benchmarks were made on a dedicated machine with the following system
information:

Manufacturer: Dell Inc.
Product Name: PowerEdge T20
Specifications: 16GB RAM and an Intel(R) Xeon(R) CPU E3-1225 v3 @ 3.20GHz.

During the Evaluation phase, tests were designed in accordance with the experi-
mental design and simulation data was gathered and prepared for testing. Evalua-
tions of the new models, O-PrivatePool and T-PrivatePool, were carried out using
the same methods. The evaluation methods included a worst-case algorithmic com-
plexity analysis, a statistical analysis on the running times of the intersection-based
matching method and an effectiveness test. T-PrivatePool was evaluated with a
supplementary statistical analysis to determine whether an additional parameter,
representing deviation in time, has a significant effect on the endpoint-based match-
ing method. Measurements of the model’s running times were made by utilizing the
same real-world data as in PrivatePool. The real-world data was publicly provided
by the New York City Taxi & Limousine Commission (TLC) on their website and
were believed to represent realistic activity of ridesharing in a densely populated
area.

During the Conclusion phase, the statistical analyses that were produced during
the preceding Evaluation phase were put into context and used to evaluate the
stated hypotheses.
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3.2 Terms for Statistical Hypothesis Testing
Statistical hypothesis testing, or simply hypothesis testing, was used as the method
of choice to answer the given research questions in Section 1.2. The purpose of
this section is to inform the reader about the fundamental terminology required, in
order to follow the reasoning behind hypothesis testing. All terms and procedures
described are derived from [23].

3.2.1 Parameters and Variables
While performing experiments, data is gathered by observing the response variable.
An experimental unit is the subject of the experiment. In addition to the response
variable, controlled independent variables are usually included in the experiment,
monitored and manipulated by the experimenter. These variables are referred to
as factors and are used to determine whether they have an effect on the response
variable. Factors assume pre-defined and limited number of possible values, which
are known as factor levels. Each factor has one or more levels and they can be seen
as number of variations of the factor that is used in the experiment. In addition,
combinations of factor levels are called treatments.

3.2.2 Statistical Hypotheses
Statistical hypotheses, or simply hypotheses, are statements that can be either re-
jected or failed to be rejected, by applying hypothesis testing. Hypotheses are often
formed from the specific goal, aim or purpose of the study being undertaken. For-
mally, a hypothesis is a statement about whether a specific treatment has an effect
on a measured value gathered from the sampled population. The population is often
assumed to be infinite or very large and is, therefore, sampled. Thus, the mean (µ)
of the gathered values from different samples are compared in order to answer the
hypothesis. In this thesis, for example, hypotheses can be formed from the research
questions given in Section 1.2.

Generally, hypotheses come in pairs, where one is called the null hypothesis and
the second one is called the alternative hypothesis. A null hypothesis is typically
the statement that the different factors, influencing the experimental unit, do not
have an effect on the response variable. This is denoted by:

H0 : µA = µB.

An alternative hypothesis is the counterargument to the null hypothesis. If the
intention is to measure whether there is a significant difference in the treatments,
no matter if the difference is negative or positive, then the alternative hypothesis is
denoted by:

HA : µA 6= µB.
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This is referred to as a two-tailed test. If the researchers have an indication that
one mean is either generally lower or higher than the other, a one-tailed test could
be applied. The alternative hypothesis is then denoted by:

HA : µA < µB.

3.2.3 Statistical Hypothesis Testing
Hypothesis testing is a statistical analysis method that applies an experimental
process in order to evaluate a given hypothesis. The experimental process takes
quantitative data into consideration when determining whether there is a statisti-
cally significant relationship between the means of two or more randomly sampled
populations. In most cases, the populations have been subjected to two different
treatments. In that case, if there is a significant difference, the treatment methods
can be said to have a statistically significant effect on the measured outcome.

When performing a hypothesis test, statistical significance is denoted by an alpha
level (α), where α indicates the maximum likelihood of there being a type I error
(i.e. rejecting a true null hypothesis). In standard practice, α is most commonly
set to 0.05 or 0.01. If α is set to 0.05 and a null hypothesis has been rejected, it
can be stated that it has been rejected with a confidence of 95%. Note that using
a one-tailed test means that the significance level α is decreased to be half of what
its corresponding two-tailed test would have. The rationale behind this behaviour
is beyond the scope of this thesis.

In the context of this thesis, hypothesis testing can be used to determine whether
the time it takes the application to compute a ridesharing opportunity is affected by
seemingly unrelated factors. These factors could include how far the user is willing
to deviate from their route, how willing they are to deviate from their estimated
time of departure or arrival and what the user require as the minimum length of
their shared route.

3.2.4 Experimental Design
The outline, or arrangement, of an experiment is called an experimental design.
Experimental design includes procedural instructions on what variables should be
measured and what statistical information should be gathered. Additionally, it
defines what treatments should be applied during each experiment, how many ex-
periments should be run and how many times the experiments should be repeated.
The experimental design of choice can vary depending on the purpose of the ex-
periment, the number of factors that could influence the experiment, the number
of levels of factors and whether some factors bring an unwanted source of variation
into the response variable. Examples of design choices include One-Factor designs,
Block designs, Nested designs and Factorial designs.
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A One-Factor design is used when there exists a single factor of desired variation.
The different levels of the factor are then applied to the experimental unit in se-
quence. A factorial design, however, is used when there exist multiple factors of
desired variation. The effect of each factor is then quantified either by measuring
each factor independently or by, additionally, measuring the interaction effects of
multiple factors.

In some cases, due to time or budget constraints, researchers can opt to a frac-
tional variant of their design. In a fractional design, a limited number of factors
and/or levels of factors are investigated. The levels of factors that are used are
carefully selected as representative values for those factors, while the factors that
are chosen are either interaction effects or considered particularly interesting for the
research.
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4
Matching Operation

This chapter aims to guide the reader through the methods used during the devel-
opment of O-PrivatePool. As mentioned in Section 1.2, the purpose was to provide
a model which addresses the limitations of its predecessor, PrivatePool. During this
iteration, a step was taken towards implementing a production-ready application,
which does not suffer from significantly high computational overhead, or running
times. The methods used during the iteration were carried out as outlined in Sec-
tion 3.1. Section 4.1 lays the foundation for an experiment, Section 4.2 describes the
development procedure, Section 4.3 encompasses the evaluation procedure. The re-
sults can be found in Section 4.4 and Section 4.5 explains the threats to the validity
of the experiment and their mitigation strategies.

4.1 Suggestion
As mentioned in Chapter 1.2, the main focal point of this thesis was to investigate
whether an alternative specialized PSI solution is more efficient than T-KEM, uti-
lized in PrivatePool. Two indicators of an efficient algorithm that are taken into
consideration include whether it has a polynomial solution and whether the running
times are efficient. According to Kleinberg and Tardos [25], algorithms that have
have a polynomial solution are considered as the most efficient and prominent ones.
However, in a realistic setting, an algorithm’s efficiency can be more precisely de-
termined by measuring its running time. PrivatePool, which utilizes T-KEM, has
a polynomial solution whose exponent is considered relatively high, given as O(n3).
Here, n is the number of segments that make up the total route. This high degree
in algorithmic complexity is reflected in the application’s running times, which con-
sequently increase according to a cubed function as the input sizes increase linearly.
To scale up and use this model in a realistic application, the exponent of the poly-
nomial needs to be reduced. That means the new proposed O-PrivatePool solution
has to have an exponent which is significantly lower. This draws the attention back
to the first two research questions in Chapter 1.2:

RQ1: Will the new proposed O-PrivatePool’s intersection-based matching method
have less time complexity (denoted by T(n)) than PrivatePool’s corresponding method
based on T-KEM, which is bounded by O(n3)? I.e.:

T (n) < O(n3)
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RQ2: Will the implementation of O-PrivatePool’s intersection-based matching method
result in a significantly lower running time, when running benchmarking tests, com-
pared to PrivatePool’s corresponding method?

The first research question, RQ1, can be answered by means of a worst-case time
complexity analysis, following a detailed solution design. Therefore, it is not deemed
necessary to perform a hypothesis test in this case. However, RQ2 indicates the
need to determine whether the new O-PrivatePool model provides a statistically
significantly lower running time than PrivatePool. Here, the experimental unit is
the ridesharing model and the response variable is the computational running time.
Therefore, the following hypotheses are presented:

H01 : The running times of both intersection-based matching methods are the same,

µO−PP = µPP .

HA1 : The running time of O-PrivatePool’s intersection-based matching method is
significantly lower than PrivatePool’s method,

µO−PP < µPP .

An additional requirement is that there is no loss in effectiveness when applying the
two methods.

4.1.1 Proposed Solution
As discussed in Section 1.1, PrivatePool makes the assumption that the computed
routes between two endpoints consist of the shortest distance between the two points.
Therefore, it can be assumed that each two intermediate points between the end-
points are connected by their shortest distance. Thus, it is obvious that if a point
i is present on both routes and the corresponding point i + t, at which the user
would exceed the required intersection threshold, is also present on both routes, all
intermediate points are guaranteed to be present in both routes. This indicates that
it is only necessary to check whether a pair (i, i+ t) exists on both routes. The steps
of the algorithm are presented in the Future work chapter in PrivatePool [13] (p.
203):

"[...]The simple scheme outlined in the following could outperform our solution based
on T-KEM, where Alice has trajectory TA size m and Bob a trajectory TB size n,
for any given threshold t.

Note that this solution only works when the input data is sorted as in our case
for ridesharing. We need that if ∃i, j : TAi = TBj ∧TAi+t = TBj+t then it also holds that
∀u ∈ {i, ..., i+ t}, v ∈ {j, ..., j + t} : TAu = TBv .∀u ∈ {0, ..., t} : TAi+u = TBj+u.
The construction proceeds as follows:

1. Alice prepares a set on the following form,

(TA1 , TAt ), (TA2 , TAt+1), ..., (TAm−t+1, T
A
m)
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2. Bob similarly prepares a set on the form

(TB1 , TBt ), (TB2 , TBt+1), ..., (TBn−t+1, T
B
n )

3. The parties run a standard PSI protocol on these sets."

This method is what has previously been referred to as O-PrivatePool’s intersection-
based method.

4.1.2 Experimental Design
This section provides the layout of the experimental design for testing hypotheses
H01 and HA1, which involve measuring the change in efficiency when applying dif-
ferent set intersection protocols. Additionally, a description of the supplementary
effectiveness test suite is provided.

4.1.2.1 Intersection-based Matching

Before it was determined which experimental design to apply, the variables involved
had to be defined.

Based on hypothesisHA1, it was decided to measure whether applying O-PrivatePool’s
intersection-based method would result in a significantly lower running time than
applying PrivatePool’s method. Thus, a one-tailed hypothesis test was applied. Us-
ing a one-tailed test, however, had the effect that α was reduced by half, from 0.05
to 0.025. This is due to the fact that the significance level α is most commonly set
to 0.05 in scientific research.

The experimental unit and response variable, as previously mentioned, are the
intersection-based method and computational running time, respectively. Given
that the tasks of constructing the datasets and running the set intersection protocol
(PSI or T-PSI) are completed in sequence, it was estimated that the running time is
primarily bounded by the task which has higher algorithmic complexity. Therefore,
the factors that were suspected to influence the response variable were the intersec-
tion based method that was applied and the length of the ride, where the length of
the ride is indicated as the dataset size. The first factor in the experiment had two
levels, a standard PSI protocol and T-KEM. The second factor had eight levels, i.e.
the integer values 5 through 12. The levels of the dataset size factor indicates the
exponent value n, which was used to compute the actual size 2n.

Since there were two factors with several alternatives, it was evident that a Fac-
torial design was appropriate. More precisely, given that the dataset size can take
an infinite number of alternatives, a variant of a Factorial designs called Fractional
Factorial design was applied. According to PrivatePool [15], the running times of
T-KEM grow in a cubed function according to a linearly growing input size. Due
to the magnitude of the estimated running times of T-KEM, the replications of
the experiment were limited to ten replications per intersection-based method. A
statistical regression tool was subsequently applied to analyze the measured data.
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4.1.2.2 Effectiveness

Given that there was an additional requirement that there should not be any loss
in effectiveness, a separate test was run in parallel to the efficiency tests. The
effectiveness of the model was defined as the degree to which the model can de-
tect all available ridesharing opportunities. The brute force algorithm, given by
Definition 4, in Section 2.6.2, was believed to capture all possible ridesharing op-
portunities. However, during the literature review, there was no indication that
there existed a privacy-preserving method that captured both endpoint-based and
intersection-based patterns simultaneously. Therefore, the patterns were to be mod-
eled individually and their efforts combined and compared to the total number of
captured opportunities by the brute force algorithm. By comparing the number of
detected ridesharing opportunities from both individual models to the correspond-
ing brute force algorithm, it was possible to acquire the model’s relative effectiveness.

Two primary variables that were used to model the ridesharing patterns were the
maximum radius r and minimum threshold t. The maximum radius value r indi-
cates the degree to which the user is willing to deviate from a specific point along
their route, in terms of meters. The minimum threshold t denotes the minimum
percentage of the user’s total route, that needs to be exceeded in order to make the
rideshare feasible.

4.2 Development
The goal of the development phase was twofold, firstly to collect measurements on
the running times when applying the two models’ intersection-based methods (i.e.
the model’s efficiency) and secondly to measure the difference in the models’ ability
to detect feasible ridesharing opportunities (i.e. the model’s effectiveness).

The proprietary source code of PrivatePool and T-KEM were provided by the author
of PrivatePool [15], along with their dependencies. The projects were initially set
up on a virtual machine with limited memory and CPU specifications, for local trial
experiments. The source code of PrivatePool came with a test suite for measuring
the effectiveness of the model, while T-KEM also came with its own efficiency test
suite for all the predetermined dataset sizes of the experimental design. Therefore,
no development was needed for generating those tests. The effectiveness test for Pri-
vatePool was reused as-is, in order to determine the effectiveness of O-PrivatePool.

Initially, the method of exporting the users’ routes as datasets was altered. When
considering a route or trajectory as a graph G = (V,E), each edge E represents
the individual paths of the routes and V represents the vertices or points along the
route at which the edges meet. This can be written as the trajectory TAi , where A is
a user and i is the ith point along the trajectory. Originally, PrivatePool exported
the route’s data in the following form:

(TA1 , TA2 , ..., TAm)
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where m is the number of coordinates along A’s trajectory. However, for the O-
PrivatePool model, this exportation method was altered to export pairs of coordi-
nates according to the solution given in Section 4.1:

(TA1 , TAt ), (TA2 , TAt+1), ..., (TAm−t+1, T
A
m)

The first coordinate of every pair represents each individual node along the graph
G and the second represents the coordinate of the node at which the segment would
exceed the given threshold.

Note that PrivatePool was written in Python, while T-KEM was written in C++.
Therefore, to minimize unfairness in both the models and the set intersection meth-
ods, it was determined to utilize the same programming languages for their respec-
tive replacements. As mentioned in Section 2.2, BaRK-OPRF is one of the fastest
state-of-the-art custom PSI protocols. Therefore, BaRK-OPRF was selected as the
PSI protocol for O-PrivatePool. Its source code was openly provided by the Cryp-
tography research team at Oregon State University from their GitHub account [45].
BaRK-OPRF was then altered, using Microsoft Visual Studio [4], to read and parse
the exported dataset and to return the result in an expected format. O-PrivatePool
was then made to run the altered version of BaRK-OPRF. In order to evaluate the
efficiency of the altered BaRK-OPRF protocol, an efficiency test suite, which was
analogous and comparable to the one used to evaluate T-KEM and fulfills the re-
quirements of the experimental design, was created.

In both efficiency tests, the protocols were made to perform the same tasks. In
the first task, the protocols generated two datasets of equal sizes, that was prede-
termined by the test case. Half of each dataset was guaranteed to include identical
elements, while the second half of each data set comprised of pseudo random ele-
ments. The second task was to mask the dataset with protocol-specific techniques,
making it inexplicable to outside parties. The third task was role specific, where
one party sent their data to the other and waited until the intersection had been
computed, while the other party received the data and computed the intersection.
The fourth task was to send the computed intersection to the waiting party. The
final step was to present the computed data in a human-readable form.

4.3 Evaluation
In order to answer the first research question, a worst-case time complexity analy-
sis of O-PrivatePool’s intersection-based method was performed. Results generated
by the time complexity analysis are displayed in Section 4.4. All tests suites, for
PrivatePool and O-PrivatePool, were initially run on a local machine with limited
specifications. The local runs were done in order to determine whether the test
suites run as expected. The test suite for PrivatePool’s efficiency was moved to
the dedicated machine and executed ten times without interruption, according to
the experimental design. Consequently, O-PrivatePool’s efficiency tests were run
under identical conditions on the dedicated machine. Results generated from the
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efficiency tests are provided in Appendix A and further analyzed in Section 4.4.1.
PrivatePool’s effectiveness tests were initially executed three times locally, from
which it was evident that the results of the effectiveness test suite were not affected
by the hardware specifications. Therefore, it was not deemed necessary to run the
test suite more than once on the dedicated machine. Corresponding test suites for
O-PrivatePool’s effectiveness were executed under the same conditions. The results
of the effectiveness tests are presented in Section 4.4.1.1.

As mentioned in Chapter 3, O-PrivatePool’s effectiveness was evaluated on real-
world data, publicly available from TLC’s website [33]. TLC provides a large amount
of data that can be used to generate endpoints of routes. However, the intermediate
points of the routes are not included. Therefore, the open source routing software
Routino [1], which uses open source mapping data from OpenStreetMap (OSM) [8],
was used to generate intermediate points. Due to the significantly large amount
of data provided by TLC, the data used for measuring effectiveness was limited to
1000 trips, from each even month of the year 2015. This same method of sampling
the TLC data was used to evaluate PrivatePool’s effectiveness. The r values of the
endpoints, r0, were set as 500 m, 1000 m and 2000 m, while the values of t were set
as 20%, 50% and 80%. The r value of intermediate points, i along an entity’s route
were computed using the deviation function ∆ given by Equation 4.1.

∆T (i) = 4i2 r0

|T |2
− 4i r0

|T |
+ r0 (4.1)

Equation 4.1 is an equation extracted from PrivatePool. The equation gives a
"happy-smiley-face" curve, where the endpoints’ radius values reach r0, while the
radius values for intermediate points decrease as the index of the point approaches
the median. The motivation for this function is that it is assumed that the user is
willing to deviate the most from their route at the endpoints of their trips and not
in the middle, due to the user being more familiar with the areas they come from
or intend to go to.

After each experimental measurement, the outputs of each test were added to a
Google Spreadsheet [18] document. Consequently, the regression tool called Statis-
tics for Google Sheets (SGS) [44] was used to perform a regression analysis, using
its built-in Regression feature. The results of the regression analysis and their eval-
uations are further presented in the subsequent chapter.

4.4 Results
The average running times of both T-KEM and the altered version of BaRK-OPRF
are presented in Table 4.1, while the full table of measurements can be found in
Appendix A. The first column of Table 4.1, Dataset size indicates the total number
of coordinates (or segments) in both routes that are compared during each mea-
surement. The supercolumn Intersection-based method indicates which method was
applied during the measurements. The possible values of Intersection-based method
can be seen by its subcolumns, T-KEM and Altered BaRK-OPRF. The role Sender
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indicates the instigator of the protocol, while the Receiver is the party which is
queried and carries out the comparison itself. Therefore, the total running time,
represented by Total, can be measured as the combined running time of both the
computation on the Sender ’s side and on the Receiver ’s side. A graphical represen-
tation of the Total running times, from Table 4.1, is given in Fig. 4.1, where the
vertical axis is represented as a logarithmic scale.

Intersection-based method
Dataset
size

T-KEM Altered BaRK-OPRF
Sender Receiver Total Sender Receiver Total

32 0.0127 0.0203 0.0329 0.0821 0.0048 0.0869
64 0.0488 0.1531 0.2019 0.0823 0.0048 0.0871
128 0.1933 1.1973 1.3906 0.0817 0.005 0.0867
256 0.7732 9.5163 10.2894 0.0851 0.006 0.0911
512 3.0861 75.9819 79.0680 0.0831 0.0067 0.0898
1024 12.3264 606.3483 618.6747 0.0827 0.0086 0.0913
2048 49.2486 4843.9960 4893.2446 0.0835 0.012 0.0955
4096 196.5826 38630.7200 38827.3026 0.0839 0.0147 0.0986

Table 4.1: Average running times from ten replication per test, displayed in seconds

Figure 4.1: Graphical representation of total running times, using T-KEM (blue
line) and the altered BaRK-OPRF protocol (red line) with varying input sizes
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As seen in the proposed solution, outlined in Section 4.1.1, the construction of the
two datasets in the first two steps can be carried out by looping linearly through
the points at the first n − t + 1 indices and pairing them with the corresponding
point at the indices t through n+1. The pairing activity consists of simple constant
operations and, therefore, the worst-case complexity of the first two steps are given
as

O(n+ n) = O(n).

Furthermore, the two building blocks of the matching operation, the dataset gen-
eration and the PSI protocol run in sequence. Thus, the lower time bound of the
operation is set at the data generator’s linear running time while the upper bound
is set by the complexity of the PSI protocol of choice. In this thesis, even though
the practical evaluations might indicate that the PSI protocol has a constant run-
ning time, the theoretical complexity of the protocol might be of a different nature.
However, PSI technology is constantly evolving and it is certainly possible that PSI
protocols with linear, sublinear or constant running time might appear in the future.
In the context of this evaluation, the complexity of the PSI protocol of choice can,
therefore, be abstracted. In this regard, it can be stated that the intersection-based
method’s worst-case complexity is bounded by the O(n) complexity of the dataset
generation method, while the choice of the PSI protocol could potentially influence
the boundary.

4.4.1 Statistical Analysis of Efficiency
By using SGS’ Regression feature on the data supplied in Appendix A, Tables 4.2
through 4.5 were generated. SGS attempts to generate a model that predicts the
value of the response variable, based on the values of the given factors. A prediction
model is generally described by Equation 4.2.

Ŷ = C0 + CAXA + CBXB + CABXAXB + e, (4.2)

where Ŷ is the response variable, the C variables are the coefficients, X are the
independent variables and e is the error, which the estimated value deviates from the
measured value. In this case, SGS has produced the coefficient table, as displayed
in Table 4.2. The first column of the table lists the factors that are included in
the model. The second column, Estimate, provides the estimated value of each
corresponding coefficient. The third column, Std. Error, gives the standard error
of the coefficient, indicating the statistical uncertainty in a statistic. The regression
tool takes the Estimate and Std. Error values into account when computing the
t value, presented in the fourth column. The t value tells the analyst how many
standard errors the estimated coefficient is from zero. If a coefficient is zero then
the corresponding factor does not have an effect on the response variable. The value
in the fifth column, p value, signifies the probability that a coefficient this large can
be observed if the factor does, in reality, have no effect. A way to read the p value is
to compare it to the α value of the experiment. If the p value is less then the value
of α, the coefficient can be evaluated as non-zero and, therefore, has a significant
effect on the response variable. Note that, for the coefficient Intercept, the p value
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is not above the given α level 0.025. However, the p values for the other coefficients
fulfill that requirement.

Name of coefficient Estimate Std. Error t value p value
Intercept 1 036.345 870.437 1.191 0.2356
Dataset Size 4.429 0.408 10.856 <0.0001
Protocol (T-KEM = false) -5 553.685 1 081.192 -5.137 <0.0001

Table 4.2: Coefficients and their corresponding standard error, t and p values
generated by running SGS on the running times

Table 4.3 displays values that can be used to evaluate the overall goodness of the
fit of the prediction model suggested by SGS. The R-square parameter is used to
describe how much variation in the measured value can be explained by the model,
which is in this case 47.9%. An adjustment can be made to the R-square by taking
the degrees of freedom into consideration. This value is generally considered a better
representation of how much of the variation can be explained by the model. The
adjusted R-square value is represented by the Adj R-square variable, which in this
case is 47.2%. Residual SD indicates the standard deviation of the residuals, where
residuals are the differences between a measured value and the estimated value.
Sample SD signifies the overall standard deviation of the measured values from
the sample’s mean. N observed and N missing represent the number of observed
measurements and the number of missing measurements, respectively.

Variable Value
R-square 0.0479
Adj R-square 0.472
Residual SD 6 838.056
Sample SD 9 411.991
N observed 160
N missing 0

Table 4.3: Parameters indicating the overall fit of the prediction model

The corresponding ANOVA table, generated by SGS, is presented as 4.4. An
ANOVA table compares the variance in residuals to the variance of the overall
data. Primarily, this table is used to determine whether the suggested prediction
model explains the variation in the response variable to a significant extent. The
first column represents the possible sources of variation, while the second column,
Df, represents the degrees of freedom. One degree of freedom is said to be generated
for each observed value and one degree is retracted for each estimated coefficient.
The Sum Sq presents the sum of squares of the deviations of all observations from
their mean. The Mean Sq indicates how much deviance can be explained per degree
of freedom or, more generally, the column gives the reader an intuition of how well
the model explains the variance. If the Mean Sq value is large, the model explains
a considerable amount of the variation. The F value normalizes the Mean Sq value
and helps the reader better evaluate the statistical significance of the model. If the F

27



4. Matching Operation

value is close to 1, it can not be determined whether the model does a useful amount
of explaining. However, if the F value is larger than 1, it can be concluded that the
model can explain a useful amount of the variance in the response variable. The p
value in the ANOVA table is applied in the same manner as for the coefficient table;
if it is lower than the given α level, the model can be said to explain a statistically
significant amount of the variance in the response variable. Note that in this case,
the p value is, indeed, lower than the α level 0.025.

ANOVA Table
Factors Df Sum Sq Mean Sq F value p value
Model 2 6.74× 109 3.37× 109 72.114 <0.0001
Residual 157 7.34× 109 4.68× 107

Total 159 1.41× 1010 8.86× 107

Table 4.4: ANOVA table derived from the measured data in Appendix A

The final table generated by SGS, displayed in 4.5, provides partial F tests for
each individual factor included in the prediction model. The columns of the table
are analogous to the columns of the ANOVA table. Partial F tests are used to
individually determine whether the factors can account for a significant amount of
the variance in the response variable, within the model. Observe that the p value
of both factors are lower than the α level of the experiment.

Partial F Tests
Factors Df Sum Sq Mean Sq F stat p value
Dataset Size 1 5.51× 109 5.51× 109 117.843 <0.0001
T-KEM = false 1 1.23× 109 1.23× 109 26.385 <0.0001

Table 4.5: Partial F tests for individual factors included in the prediction model

4.4.1.1 Analysis of Effectiveness

The results displayed in Tables 4.6 and 4.7, were produced from the protocols’ effec-
tiveness test suites. The values given represent the average percentage of matching
opportunities detected by the ridesharing patterns, compared to a brute force ap-
proach which compares each individual point along both respective routes, while
applying varying restriction parameters. Here, t represents the minimum threshold
length of how much of the driver’s route needs to be shared between both entities.
However, the r0 parameter, represents the maximum radius distance between the
two endpoints. The radius value of intermediate points are, as described in Equation
4.1, dynamically computed using the value r0 and the index of the point. Table 4.6
illustrates the effectiveness of PrivatePool while Table 4.7 represents the effective-
ness of O-PrivatePool. A simple observation shows that both effectiveness tables
are identical. The values in the columns IS and EP indicate the percentage of the
effectiveness of the intersection-based matching and endpoint-based matching pat-
terns, respectively. The columns PP and O-PP indicate the combined percentage
values of the individual patterns.
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t
r0 = 500 r0 = 1000 r0 = 2000

PP IS EP PP IS EP PP IS EP
20% 98.29 97.99 0.30 65.09 63.7 1.39 38.22 32.27 5.95
50% 80.33 79.42 0.91 48.14 44.55 3.59 26.72 15.88 10.84
80% 31.31 28.8 2.51 16.07 9.96 6.11 15.38 2.48 12.89

Table 4.6: Average percentages of detected ridesharing opportunities in Pri-
vatePool

t
r0 = 500 r0 = 1000 r0 = 2000

O-PP IS EP O-PP IS EP O-PP IS EP
20% 98.29 97.99 0.30 65.09 63.7 1.39 38.22 32.27 5.95
50% 80.33 79.42 0.91 48.14 44.55 3.59 26.72 15.88 10.84
80% 31.31 28.8 2.51 16.07 9.96 6.11 15.38 2.48 12.89

Table 4.7: Average percentages of detected ridesharing opportunities in O-
PrivatePool

4.5 Threats to Validity
In this section, potential unwanted aspects surrounding the experiment that might
threaten its validity, are discussed. Here, validity threats are defined and evaluated
according to Runeson and Höst [40]. The validity threats included in an experiment
are used to denote the trustworthiness of the results that are presented in Section
4.4. Additionally, they can be kept in consideration when replicating the experiment.
The validity threats are further discussed in Chapter 7.

4.5.1 Construct Validity
The term Construct validity refers to the degree to which the variables, used in the
experimental design, actually represent the variables of interest. In this research,
it is believed that computational running time correctly represents the efficiency
of the method under investigation and that dataset sizes represent the factor that
varies the most according to the user’s requirements. However, there are other
influencers that might have significant effects on the measured outcome, such as
system-, hardware- and transport-level variables. Such factors are considered to be
mitigated by performing all measurements on the same dedicated machine and using
the built in transportation mechanisms of the device.
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4.5.2 Internal Validity
Internal validity of an experiment is questioned when the factors involved in the
research have the potential of being under the influence of another external factor.
Similar aspects arise, as when discussing construct validity: Other influencers such
as system-, hardware- and transport-level variables could have an effect on, e.g.
the two protocols being compared. However, it is believed that such influencers,
in this case, are an inherent part of the nature of the protocols and are, therefore,
definitely taken into consideration over the duration of the experiment. The other
independent factor used in the experiment, dataset sizes, are set to fixed variables
and are considered uninfluenced by internal validity threats.

4.5.3 External Validity
When analyzing the external validity of an experiment, the potential of generalizing
its findings are explored. In this experiment, it is argued whether an ad-hoc PSI
method can outperform a general threshold private set intersection. This thesis
has the potential of being used as either qualitative or quantitative measure in
future experiments or statistical analyses. Furthermore, this research can be used
to motivate whether ad-hoc solutions can outperform general solutions and what
restrictions are set on a model when applying those solutions.

4.5.4 Reliability
Reliability is referred to as the ability to replicate the experiment and retrieve the
same or similar result. As discussed in Section 4.3, the routing software Routino was
utilized. In order to create routes, Routino first retrieves the most recent locational
data from OSM. Therefore, if this experiment should be recreated, the routes will be
computed using more recent data. This is considered the greatest reliability threat
in this experiment. However, by running all test cases the relative efficiency and
effectiveness are believed to be correctly represented.
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5
Introduction of Time

As of yet, the time of a ride has not been considered as a factor in the O-PrivatePool
model. In this chapter, an extended version of O-PrivatePool is presented, where
the nodes along a route are given an additional coordinate on a temporal scale.
Consequently, a new threshold parameter that represents the degree to which a
user is willing to deviate from the time of their ride, is introduced and added to
the model. This version of the model is identified as Time-extended PrivatePool
(T-PrivatePool). By adding the temporal parameter and threshold to the model,
its ability to imitate reality is increased and yet another step is taken towards a
production-ready application. This chapter follows the same structure as in Chapter
4 and the same methods, as outlined in Section 3.1, are applied here. In addition,
analogous efficiency and effectiveness tests are performed on T-PrivatePool.

5.1 Suggestion
Previous models mentioned in this thesis, i.e. PrivatePool and O-PrivatePool, only
consider matching operations in terms of spatial coordinates. However, in a realistic
context, in order for a rideshare to be considered feasible, two users are required
to be at approximately the same place and time. Therefore, it is required that an
additional test is included for determining whether a user can be present at a given
spatial coordinate at a similar time as another user, by comparing additional tem-
poral coordinates. To accommodate for the addition of time, Definitions 3 and 4
from Section 2.6.2 were reviewed and updated, which is presented more in depth
in Section 5.1.1. The following research question from Section 1.2 was of interest
during this iteration:

RQ3: Is it possible to match entities using an additional threshold, representing
deviation in time, without significantly impairing the protocol’s efficiency?

Deduced from RQ3, the requirements were twofold; to prove that it is, in fact,
possible to match two entities using an additional temporal coordinate and thresh-
old, and to examine whether the addition of the threshold impairs T-PrivatePool’s
efficiency. Given that a proposed solution was considered sufficient to be able to
fulfill the first requirement of RQ3, a hypothesis was not formulated for that pur-
pose. However, in addition to the feasibility of being able to match entities using
an additional threshold, it was critical to examine whether the task of performing
the temporal proximity test has a significant effect on the efficiency, the running
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time, of the protocol’s matching methods. Therefore, the following hypotheses were
motivated:

H02 : The running times are the same for the endpoint-based matching methods
of T-PrivatePool and O-PrivatePool,

µT−PP = µO−PP .

HA2 : The running time of the endpoint-based matching method of T-PrivatePool
is significantly higher than the corresponding method of O-PrivatePool,

µT−PP > µO−PP .

H03 : The running times are the same for the intersection-based matching meth-
ods of T-PrivatePool and O-PrivatePool,

µT−PP = µO−PP .

HA3 : The running times of the intersection-based matching method of T-PrivatePool
is significantly higher than the corresponding method of O-PrivatePool,

µT−PP > µO−PP .

These hypotheses were consequently subjected to hypothesis testing. The data gen-
erated from the hypothesis tests were used as additional motivations when answering
the proposed research question. Due to the fact that the new matching methods of
T-PrivatePool consider the fundamental aspects of matching according to the time
of the ride, which are not included in O-PrivatePool, they are not considered com-
parable in terms of effectiveness. Therefore, there was no specific requirement for
evaluating the effectiveness of T-PrivatePool. Nevertheless, in order to make general
assumptions on how such a model might be affected by adding another matching
parameter, an effectiveness test was carried out.

5.1.1 Proposed Solution
In accordance with the requirements in the previous section, the definitions given in
Section 2.6.2 were reviewed and updated to accommodate for the addition of time.
While Definitions 1 and 2 remain unchanged, Definitions 3 and 4 from Section 2.6.2
have been reconstructed and redefined as Definitions 5 and 6, respectively. Defi-
nition 5 now defines the length of a segment as the spatial distance between two
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points, while Definition 6 sets the condition at which a ridesharing opportunity can
be deemed feasible. The two new definitions laid the foundation for the new T-
PrivatePool model. T-PrivatePool now has two additional independent variables
that need to be taken into consideration during the matching operation, the pre-
ferred time of the ride (represented on an axis that indicates the temporal dimension)
and a deviation limit that dictates the lower and upper limits of the range, which
the user can be present at a specific point in space. Thus, Definition 6 indicates that
a rideshare is feasible between two users if there exist two subsequent and distinct
points along two users’ routes that are within either user’s deviation limits and the
length of the shareable segment exceeds a given threshold. Note that the deviance
functions ∆xy and ∆time can be arbitrary functions that represent how much an
entity is willing to deviate from their route at a specific point in space and time,
respectively.

Definition 5 (Segment length) Given a segment S for some trip through a graph
G = (V,E), let l(S) = ∑|S|−2

i=0 d(S[i], S[i+ 1]), where S[j] is the jth vertex in S and
dxy(p1, p2) is the Euclidean distance between the two points p1 and p2 in a two-
dimensional plane.

Definition 6 (Ridesharing feasibility) For any fixed threshold t and deviation
function ∆xy (deviance in space) and ∆time (deviance in time), given two trajectories
PA and PB for users A and B in G = (V,E), ridesharing is feasible for A along a
segment S = {ps, ..., pf} of PB if and only if
l(S) > t and there exist two points PA[i] and PA[j], with i < j, such that:

dxy(PA[i], ps) < ∆PA
xy (PA[i]) ∧ dtime(PA[i], ps) < ∆PA

time(PA[i])

∧dxy(PA[j], pf ) < ∆PA
xy (PA[j]) ∧ dtime(PA[j], pf ) < ∆PA

time(PA[j])

and dtime(p1, p2) is the distance between the two points p1 and p2 in time.

In the scope of this thesis, users are assumed to have constant speed when traversing
their routes. This implies that, if a passenger at some time matches with a driver
at the origin of the shareable segment, it is implicitly guaranteed that the passenger
will reach the end of the shareable segment at an expected time. Consequently, the
deviance in time, denoted by ∆time, is considered to be static for every given point
along a route. The construction of a dynamic temporal deviance function that takes
into account non-constant speed is left for future work. Additionally, the construc-
tion of the traversable graph and individual user’s trajectories are considered out of
scope. The spatial deviance function ∆xy remains the same, as given by Equation
4.1.

Based on the new definitions, the time-sensitive endpoint-based and intersection-
based matching patterns, are presented in the subsequent sections.
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5.1.1.1 Endpoint-based Matching

User A, who holds a pair of asymmetric cryptographic keys, makes one key publicly
available. Given a threshold of maximum time deviance as τmax, A initiates the
proximity test by querying B with the variables ((xA, yA, x2

A, y
2
A), zA). B uses these

variables, along with its own values, to compute the euclidean distance between
them as:

Dxy = x2
A + y2

A + x2
B + y2

B − 2(xAxB + yAyB).
B then computes the temporal distance as:

Dτ = zB − zA

Given that these computations performed by B are all linear operations, they can
be performed in an encrypted domain, using homomorphic encryption. B can then
compare the value Dxy with the spatial radius value r, by constructing a set in the
following manner:

{(Dxy − i)%i|i = x× y|x, y ∈ {0..r}}.
Similarly, B constructs the set of temporal comparisons:

{(Dτ − j)%j|j ∈ {−τmax...τmax}}.

Where r and τmax are generated from their respective deviance functions and each
% is an independent random number in the plaintext space. The contents of the
sets are then sent to A in a random order. Hence, A can only conclude whether
∃i < r2,−τmax < j < τmax : i = Dxy ∧ j = Dτ , which is the equivalent of D <
r2 ∧ |j| < τmax, by multiplying together the values within each set and then adding
those values together to acquire the final result. If the result is a zero value, it
has been deduced that the two parties are closer together than the value r. If the
distance between the two users is not within the limits, the resulting value will be a
random non-zero value.

5.1.1.2 Intersection-based Matching

As with the O-PrivatePool intersection-based matching method, it is required that
the two compared datasets are sorted. Furthermore, it is given that Alice has a
trajectory TA of size m and Bob a trajectory TB of size n, for any given threshold
t. Additionally, Txyi is defined as the spatial coordinate at the ith point along the
trip T . Similarly, Tτi,p is defined as the pth possible temporal coordinate at the ith
point along the trip T . Moreover, θ is defined as the fixed interval size between two
given temporal coordinates at an arbitrary spatial coordinate. The parameter k is
then defined as the number of time slots available for that point. To determine the
value of k, Equation 5.1 is applied:

k = 1 + τ

θ
(5.1)
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Logically, if the driver’s velocity is assumed constant and there exist a point on both
routes, whose temporal and spatial coordinates fall within the deviation limits of
the driver, then it is guaranteed that the passenger will reach all other consequent
points along the shared segment in due time. Therefore, we need that if

∃i, j, p, q : TAxyi = TBxyj ∧ T
A
xyi+t

= TBxyj+t
∧ TAτi,p = TBτj,q ,

then it also holds that

∀u ∈ {i, ..., i+1}, v ∈ {j, ..., j+t},∃p ∈ {1, ..., kA},∃q ∈ {1, ..., kB} : TAxyu = TBxyv∧T
B
τi,p

= TBτj,q ,

∀u ∈ {0, ..., t},∃p ∈ {1, ..., kA}, q ∈ {1, ..., θB} : TAxyi+u = TBxyj+u
∧ TAτi+u,p = TBτj+u,q

.

The time-sensitive intersection-based method is outlined as follows:

1. Alice prepares a set on the following form,

(TAxy1
, TAxyt , T

A
τ1,1), (TAxy1

, TAxyt , T
A
τ1,θ

), ..., (TAxy1
, TAxyt , T

A
τ1,k

),

(TAxy2
, TAxyt+1

, TAτ2,1), (TAxy2
, TAxyt+1

, TAτ2,θ
), ..., (TAxy2

, TAxyt+1
, TAτ2,k

),

...,
(TAxym−t+1

, TAxym , T
A
τm−t+1,1), (TAxym−t+1

, TAxym , T
A
τm−t+1,θ

), ..., (TAxym−t+1
, TAxym , T

A
τm−t+1,k

)

2. Bob similarly prepares a set on the form,

(TBxy1
, TBxyt , T

B
τ1,1), (TBxy1

, TBxyt , T
B
τ1,θ

), ..., (TBxy1
, TBxyt , T

B
τ1,k

),

(TBxy2
, TBxyt+1

, TBτ2,1), (TBxy2
, TBxyt+1

, TBτ2,θ
), ..., (TBxy2

, TBxyt+1
, TBτ2,k

),

...,
(TBxym−t+1

, TBxym , T
B
τm−t+1,1), (TBxym−t+1

, TBxym , T
B
τm−t+1,θ

), ..., (TBxym−t+1
, TBxym , T

B
τm−t+1,k

)

3. The parties run a standard PSI protocol on these sets.
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5.1.2 Experimental Design
In this chapter, two pairs of hypotheses are presented. Therefore, two indepen-
dent hypothesis tests were designed. The experimental design for each respective
hypothesis test is presented in Sections 5.1.2.1 and 5.1.2.1, followed by an experi-
mental design for the supplementary effectiveness test.

5.1.2.1 Endpoint-based Matching

The experimental design presented here was constructed for the purpose of test-
ing hypotheses H02 and HA2, where HA2 indicates an underlying suspicion that the
running times of the endpoint-based method of T-PrivatePool will be significantly
higher than that of O-PrivatePool. Therefore, it was determined to apply a one-
tailed hypothesis test, giving a corresponding α level as 0.025.

Due to resource constraints, it was determined that it would suffice to test the
effects of adding an additional threshold parameter on the method by measuring
the running times while either applying the threshold parameter or not. Therefore,
the sole factor involved in this experiment was the usage of a time parameter when
matching and its levels set to either true or false. Given this information, a simple
one-factor experimental design, with paired comparisons was deemed appropriate.
It was determined that 25 measurements per factor level would suffice in reducing
any noise in the experiment.

5.1.2.2 Intersection-based Matching

For the final two hypotheses, H03 and HA3, it was determined to reuse pre-existing
test suites, from Chapter 4, with minor modifications. That decision lead to the
same experimental design being applied, with three total factors. The factors in-
volved in this experiment are the following: dataset size, maximum time deviation
and time deviation precision. The dataset size indicates the number of nodes within
each route being compared. Maximum time deviation determines how much the
user is willing to deviate in time, from any given point along their route, in terms
of minutes. The time deviation precision factor determines the intervals, which the
maximum deviation should be divided into, given in minutes.

Due to the biased nature of the alternative hypothesis, HA3, a one-tailed test was
applied. Additionally, due to the infinite number of possible levels for each factor
in the experiment, a Fractional Factorial design was applied, with the α level as
0.025. The experimental unit, in this case, was the intersection-based method of
T-PrivatePool, while the response variable was the running time of the method.
The dataset size, as in Chapter 4, had eight levels, i.e. the integer values 5 through
12. The levels of the dataset size factor indicate the exponent value n, which was
used to compute the actual size 2n. Maximum time deviation was restricted to six
levels ranging from 0 to 12 hours, with 2 hour intervals. The motivation behind the
determined range, is that users generally search for available rides the same day as
they intend to make use of it. The levels of time deviation precision were set to 30,
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45 and 60 minutes. Since the number of possible treatments were still considered
large, the number of replications were limited to 10 per treatment.

5.1.2.3 Effectiveness

The effectiveness of T-PrivatePool was measured by independently applying the
endpoint- and intersection-based matching patterns, with an additional temporal
proximity test. In the temporal proximity test, the two points that are investigated
may not exceed the temporal distance value d. The possible values of d are set
as 30, 45 and 60 minutes. The maximum spatial distance, determined by r, and
the minimum shareable threshold value, determined by t, are defined in the same
manner as for Chapter 4. The results from the two effectiveness tests are then
combined and compared to the total number of ridesharing opportunities, found by
implementing and applying the brute force algorithm as outlined in Definition 6.

5.1.3 Development
The development phase was divided into three parts; the first two parts involved
extending O-PrivatePool to include the algorithms given in Section 5.1, while the
third part involved adding additional proximity tests to the effectiveness test suite.
The extended O-PrivatePool model with additional variables for temporal matching
is referred to as T-PrivatePool.

Initially, a point along a user’s route was redefined. A point was given an addi-
tional dimension, so that it does not only refer to a point in space but also in time.
T-PrivatePool was then made to export the route according to the first two steps of
the new intersection-based matching pattern, in Section 5.1.2.2. Each triplet rep-
resents each independent time at which the user is willing to be present at a given
spatial coordinate:

(TAxy1
, TAxyt , T

A
τ1,1), (TAxy1

, TAxyt , T
A
τ1,θ

), ..., (TAxy1
, TAxyt , T

A
τ1,k

),

(TAxy2
, TAxyt+1

, TAτ2,1), (TAxy2
, TAxyt+1

, TAτ2,θ
), ..., (TAxy2

, TAxyt+1
, TAτ2,k

),

...,
(TAxym−t+1

, TAxym , T
A
τm−t+1,1), (TAxym−t+1

, TAxym , T
A
τm−t+1,θ

), ..., (TAxym−t+1
, TAxym , T

A
τm−t+1,k

)

Given that O-PrivatePool was written in Python, the same programming language
was used during the development of T-PrivatePool. The temporal proximity test
was implemented according to the proposed solution in Section 5.1.1.1. To measure
the running times of the model, an automatic timer was made to record the elapsed
time from when the endpoint-based matching method was called, until the method
finished its computation.
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To make T-PrivatePool compatible with BaRK-OPRF, the PSI protocol was changed
so that the exported data from T-PrivatePool is parsed correctly. This change was
made in the programming language C++, using Microsoft Visual Studio. The effi-
ciency test suite for the intersection-based matching method, comprises of the same
tasks as were performed in the test suite for Chapter 4. However, the datasets were
randomly generated according to the new method outlined in Section 5.1.1.2.

The effectiveness test, that was used in Chapter 4, was altered according to the
prescribed changes given in Section 5.1.2.3.

5.1.4 Evaluation
Initially, a worst-case time complexity analysis was carried out. The results of this
analysis are displayed in Section 5.2. Both efficiency tests were moved to the dedi-
cated machine and executed uninterrupted. The total number of replications were 25
and 10 for endpoint-based matching and intersection-based matching, respectively,
with factors set to the levels specified in their corresponding experimental designs.

The routes used to evaluate the efficiency of the endpoint-based method were gen-
erated from two starting points on different ends of Chalmers University of Tech-
nology’s Johanneberg campus, Doktor Forselius Backe 17 and Maskingränd 2, while
the endpoints were set to Chalmers’ Lindholmen campus. For this experiment, τ
was fixed to 15 minutes, with interval sizes θ = 1 minute. Using Equation 5.1, the
total number of time slots for each point along the path, k, was determined to be
15. Measurements from the endpoint-based method’s efficiency test can be found in
Appendices B and C.

As mentioned in Section 5.1.3, the datasets for evaluating the intersection-based
method’s efficiency were randomly generated, while the data given by TLC was
used to evaluate the effectiveness of model. More specifically, 1000 rides from every
even month of 2015 were used, in order to be analogous to the effectiveness test used
in Chapter 4.

The full list of measurements from the intersection-based method’s efficiency tests
can be found in Appendix D. The regression analyses performed on the efficiency
data, using the regression tool SGS, are presented in Section 5.2.1. Results of the
effectiveness tests and their analysis is presented in Section 5.2.2.

5.2 Results
Before presenting the statistical analyses, the worst-case algorithmic complexity of
the individual solutions are evaluated.

The solution given in Section 5.1.1.1, indicates that all operations of the algorithm,
until the construction of the masking sets, can be performed in constant time. The
aforementioned is true, given that the complexity of the homomorphic encryption
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method is excluded from the analysis. Furthermore, the construction of the masking
set of the spatial proximity test is performed in O(n2) time, where n is the number
of possible distance values from the user. However, the masking set of the temporal
proximity test can be constructed in O(m) time, where m is the number of possi-
ble temporal deviation values from the user. Furthermore, the individual proximity
tests are performed in sequence and mark the procedures with the highest degree
of complexity compared to all consequent operations. Therefore, the algorithm is
determined to be bounded by the highest exponent:

O(n2 +m) = O(n2).

Note that, when analyzing the complexity of the intersection-based method of T-
PrivatePool, the complexity of the PSI method of choice is abstracted away, as
previously elaborated in Chapter 4. According to the solution given in Section
5.1.1.2, the construction of the two datasets in the first two steps can be carried
out in two intermediate tasks. The first task consists of looping linearly through
the points at the first n − t + 1 indices and pairing them with the corresponding
point at the indices t through n+1. The pairing activity consists of simple constant
operations. The second task consists of running through all available times m for
each pair and adding the given temporal coordinate to the pair, constructing an
m number of triplets. Both intermediate tasks are performed in nested loops and,
therefore, the worst-case complexity of the first two steps are given as

O(n×m).

The results of the regression analyses of the measurements in efficiency are presented
in Section 5.2.1. Effectiveness results are presented in the succeeding section, Section
5.2.2.

5.2.1 Statistical Analysis of Efficiency
Given that there were two separate experiments that were run in parallel, two
sets of statistical results were generated. Statistical analyses of the endpoint-based
method’s measurements presented in Appendices B and C are displayed in Section
5.2.1.1, while statistical analyses of the intersection-based method’s measurements
in Appendix D are presented in Section 5.2.1.2. Each table presented in the subse-
quent sections will not be explained in great detail, since they resemble the tables
presented in Section 4.4.1.
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5.2.1.1 Endpoint-based Matching

By applying SGS’s Regression feature on the data given in Appendices B and C,
possible coefficients for the prediction model, given by Equation 4.2, were gener-
ated. The coefficient table that represents the change in efficiency when utilizing
a time and maximum time deviance parameters are displayed in Table 5.1. Note
that according to Table 5.1, both the Intercept coefficient and the coefficient Time,
indicating the application of a time deviation parameter, both have p values under
the given α level 0.025. In Table 5.2, the overall goodness of the fit of the model,
suggested by SGS is presented. The parameter R-square, which describes how much
variation in the measured value can be explained by the model, is given as 98.7%.
Additionally, the Adj R-square is given as 98.6%.

Name of coefficient Estimate Std. Error t value p value
Intercept 0.382 0.013 29.908 <0.0001
Time = true 1.076 0.018 59.513 <0.0001

Table 5.1: Coefficients and their corresponding standard error, t and p values
generated by running SGS on the running times of an endpoint-based matching
with time included

Variable Value
R-square 0.987
Adj R-square 0.986
Residual SD 0.064
Sample SD 0.547
N observed 50
N missing 0

Table 5.2: Parameters indicating the overall fit of the prediction model for
endpoint-based matching with time

The ANOVA table for the prediction model is presented in Table 5.3. It can be
observed that the F value of the model is considerably high, giving the impression
that the model explains a large amount of the variation in the observed measurement.
Additionally, the p value is shown to be lower than the set α level of 0.025.

ANOVA Table
Factors Df Sum Sq Mean Sq F value p value
Model 1 14.471 14.471 3 541.750 <0.0001
Residual 48 0.196 0.004
Total 49 14.667 0.299

Table 5.3: ANOVA table derived from the measured data in Appendices B and C
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In Table 5.4, the factor of applying a comparison of time coordinates is subjected to
a partial F test. A partial F test can help to determine how much of the variance in
the response variable can be explained by the individual factors. In this case, the F
and p values are the same as in Table 5.3, given that it is the only factor considered
in the experiment. Special attention is brought to the p value, which is lower than
the α level 0.025.

Partial F Tests
Factors Df Sum Sq Mean Sq F stat p value
Time 1 14.471 14.471 3 541.750 <0.0001

Table 5.4: Partial F tests for individual factors included in the prediction model

5.2.1.2 Intersection-based Matching

By applying SGS’s Regression feature on the efficiency measurements of the intersection-
based method, given in Appendix D, possible coefficients for the prediction model
are generated. The coefficient table is given in Table 5.5. In can be observed that
the Intercept coefficient, along with all the coefficients representing the independent
factors have p values lower than the α level 0.025.

Name of coefficient Estimate Std. Error t value p value
Intercept 0.089 0.005 19.308 <0.0001
Trajectory size 0.000 0.000 35.394 <0.0001
Max time deviation 0.004 0.000 14.868 <0.0001
Time deviation precision -0.001 0.000 -6.091 <0.0001

Table 5.5: Coefficients and their corresponding standard error, t and p values
generated by running SGS on the running times of an intersection-based matching
with time included

Data representing the overall fitness of the prediction model is given in Table 5.6.
R-square indicates that the model explains 47.7% of the variance in running times
of the intersection-based matching method. However, Adj R-square indicates that
the model can account for 47.3% of the variance in the response variable.

Variable Value
R-square 0.474
Adj R-square 0.473
Residual SD 0.046
Sample SD 0.063
N observed 1 680
N missing 0

Table 5.6: Parameters indicating the overall fit of the prediction model for
intersection-based matching with time
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The ANOVA table for the prediction model is presented in Table 5.7. As in the
previous section, the F value of the model is considerably high. It should also be
noted that the p value is lower than the α level 0.025.

ANOVA Table
Factors Df Sum Sq Mean Sq F value p value
Model 3 3.142 1.047 503.625 <0.0001
Residual 1676 3.486 0.002
Total 1679 6.628 0.004

Table 5.7: ANOVA table derived from the measured data in Appendix D

5.2.2 Analysis of Effectiveness
The results of testing the effectiveness of the T-PrivatePool protocol are presented
in Table 5.8. The values in the column IS represent the average percentage of
matching opportunities detected by the updated intersection pattern compared to
a brute force approach. The values in the column EP represent the percentage of
opportunities detected by the endpoint-based matching pattern. The brute force
approach compares each individual point along both respective routes, while ap-
plying varying restriction parameters. The column T-PP combines the efforts of
the individual patterns. The restriction parameters include the threshold t and r0
from the effectiveness tests in the previous chapter, with an additional d parameter
that represents the maximum temporal distance between two points, in minutes.
The spatial radius value of intermediate points are, as described in Equation 4.1,
dynamically computed using the value r0 and the index of the point.

r0 = 500 r0 = 1000 r0 = 2000
t d T-PP IS EP T-PP IS EP T-PP IS EP

20%
30 88.84 0.00 88.84 60.51 0.76 59.75 35.23 3.63 31.60
45 94.69 1.42 93.26 62.34 1.39 60.95 35.38 3.47 31.91
60 96.92 1.03 95.90 64.97 1.36 63.61 37.31 3.97 33.34

50%
30 76.58 0.00 76.58 42.97 1.52 41.46 22.03 6.31 15.72
45 79.96 3.81 76.15 44.48 2.89 41.59 21.35 5.84 15.51
60 79.33 3.12 76.22 45.93 3.03 42.90 23.68 6.95 16.72

80%
30 34.03 0.00 34.03 11.79 2.38 9.40 9.58 7.28 2.30
45 42.87 9.72 33.14 16.23 5.03 11.21 9.80 7.00 2.81
60 39.55 7.04 32.51 16.07 4.97 11.10 11.23 8.24 2.99

Table 5.8: Average percentages of detected ridesharing opportunities in T-
PrivatePool
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5.3 Threats to Validity
This chapter addresses potential threats to validity concerning the experiments car-
ried out when measuring the efficiency and effectiveness of T-PrivatePool. By
addressing the experiment’s validity threats and discussing their mitigations, the
trustworthiness of the results presented in Section 5.2 is believed to be reinforced.
Furthermore, the contents of this section is taken into consideration when discussing
the results in Section 7.2.

5.3.1 Construct Validity
Whenever measuring the change in efficiency in the endpoint-based matching method,
it is a possibility that not all relevant factors were taken into consideration. Due to
time constraints, the test suites were limited to a one-factor design. Other possible
factors, such as varying levels in temporal deviance can affect the model. By keep-
ing the range of possible temporal coordinates relatively low it is believed that, if
the factor has a significant effect on the response variable, its influence should still
appear systematically in the measured value.

The same can be stated for the intersection-based matching, that additional fac-
tors should certainly be taken into account. This suspicion is founded on the basis
that, according to the Adj R-square in Table 5.6, the model can not account for
more than half of the variation in the response variable. Nevertheless, the p value
in Table 5.7 indicates that the model can, indeed, explain a significant amount of
the variation. This will be explored further in Section 7.2.2.

5.3.2 Internal Validity
Similar to the internal validity threats as in Chapter 4, additional sources of variation
such as system-, hardware- and transport-level variables could have an effect on the
measurements. However, this is believed to be effectively mitigated by the usage of
almost identical test cases and the same simulation setup.

5.3.3 External Validity
It is believed that the findings can be generalized, such that the effects of incorporat-
ing additional matching factors on the running times of current privacy-preserving
models can be observed. More precisely, given that it is a fundamental challenge
of software development to make tradeoffs between functionality and efficiency, the
results of this thesis can help give the reader an intuition of how efficiency is affected
when applying supplementary functionality to a privacy-preserving applications.
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5.3.4 Reliability
The test suites used for measuring the effectiveness of the model suffer from the same
drawback, in terms of replication, as in Chapter 4. I.e. the results are depended
on the current version of the OSM data. Therefore, if this experiment should be
recreated, the routes will be computed using more recent data. However, this threat
can be mitigated by running all test cases locally, since the results are believed to
give the same relative changes in efficiency and effectiveness, independent of the
time of the experiment’s execution.
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Authentication of End-users

In previous chapters, it is generally assumed that the users of the model are both
aware of each other and that the other party is an authenticated user. However,
neither has a secure authentication method been suggested nor implemented. In
this chapter, the option of introducing an authentication method for end-users is
investigated, that could additionally be used to identify the users. As mentioned in
Section 1.3, all research regarding the authentication of end-users was open ended.
Given that, there was neither a research question to answer nor any commitment
to implementing the authentication methods, there was no need for a statistical
hypothesis test. Therefore, the structure of this chapter differs from the previous
ones.

An investigation was carried out on two common authentication systems built on
cryptography that are used in distributed and decentralized systems. Based on their
pros and cons, an evaluation was made to ascertain what type of authentication sys-
tem is preferred to utilize in an application, such as PrivatePool. An application
with many distributed users face challenges such as choice of cryptographic algo-
rithms, synchronization and the amount of trust that has to be placed on a third
party. An authentication protocol builds on cryptographic paradigms and the two
most common ones are symmetric key and asymmetric algorithms.

6.1 Exploring Authentication Methods
Traditional authentication systems tend to store users’ knowledge factors, such as
username and password, in a centralized manner. Such centralized authentication
systems are generally assumed to be trusted. However, it cannot be expected that its
security is unbreachable. In 2017, a password manager and a single sign-on provider
OneLogin suffered a breach of security [48], where the attackers had the ability to de-
crypt their encrypted data. PrivatePool, its successors and other privacy-preserving
applications are no exceptions, should they be implemented with authentication
systems. Therefore, recommendations are provided for two different authentication
technologies for distributed and decentralized systems that, either to some extent
or completely, remove the the need for a centralized entity.
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6.2 Kerberos
Kerberos is a well known authentication protocol, developed by Massachusetts Insti-
tute of Technology, that is used in distributed systems and depends on the existence
of a dedicated and trusted authentication server [34]. Kerberos builds on symmet-
ric key cryptography, where a dedicated server handles the security aspects and is
in charge of user and session authentication, name and password administration.
The objective is to make it possible for nodes that communicate over a non-secure
network to prove their identity to others in a secure manner.

6.3 Blockchain
The software platform for digital assets, or blockchain, is a decentralized system that
allows digital information to be distributed and tracked without the involvement of
third parties [21]. The blockchain is a digital distributed ledger which can be seen
as a database that holds a list of records which are linked together and secured with
cryptography. A blockchain is considered immutable and tamper-proof when it is
shared among a large number of hosts. It is updated independently by each partici-
pant (node) in a large network. Opposite to a traditional client-server architecture,
updates are not communicated to various nodes by a central entity. Rather, all
updates within the network are broadcasted to and processed by every single node,
which adds the update to their blockchain and submits its chain as the most recent
one. All other nodes perform the same task and vote for their version of the chain.
After all votes have been received, a consensus is reached among the nodes through
majority voting.

The decentralized nature of the blockchain network and its transparency charac-
teristic provides the opportunity to develop a secure identity management system.
However, instead of leveraging the blockchain as a database, it can be used as a
independent source of truth for identity certification. Since the blockchain holds the
property of being immutable, it is resistant to attacks such as information leakage,
modification or deletion. By either utilizing an identity management application or
having it integrated in the ridesharing application, users can store their personally
identifiable information (PII) on their personal mobile device, which they manage
and share on their own terms. PII can be represented as biometrics like fingerprints
and iris patterns. For the sake of clarification, the PII is independently verified with
one way digital signatures of hashes and the blockchain holds no PII. Identity cer-
tifications are instead stored on the blockchain to use them to independently verify
a user and with the help of leveraging hashes, salts, and digital signatures, it is not
possible to reverse engineer them to their original form.
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Discussion

Discussions for the result of each individual iteration are carried out in their corre-
sponding sections of this chapter. For every section, the findings presented in the
Results section of Chapters 4 and 5 are reviewed and evaluated. The findings are
put into context and consequently used to evaluate relevant hypotheses and answer
the research questions presented in Section 1.2. Additionally, an evaluation of the
authentication methods presented in Chapter 6 is carried out.

7.1 Matching Operation
According to the time complexity analysis carried out in Section 4.4, the worst-case
time complexity of O-PrivatePool’s intersection-based matching method is deter-
mined as O(n). With T-KEM’s complexity given as O(n3), the first hypothesis,
H01, is rejected in favor of the alternative hypothesis, HA1. The running time of
O-PrivatePool’s intersection-based matching method is significantly lower than Pri-
vatePool’s method,

µO−PP < µPP .

Furthermore, the results given in Section 4.4 show that T-KEM performs better for
dataset sizes 32 an under, then the method’s running times continue to grow accord-
ing to a cubed function. The altered version of BaRK-OPRF, however, seems to
produce running times that follow an almost constant trend, maintaining a running
time of approximately 0.1 second independent of the input size for section numbers
4096 and under. This was, therefore, interpreted as a preliminary indication that
the intersection-based matching method of O-PrivatePool performs generally better
than the intersection-based matching method of PrivatePool.

To confirm these results, we look to the statistical analyses. Results of the ANOVA
test in Table 4.4 show that the prediction model, which applies the coefficients given
in Table 4.2, has a p value lower than 0.0001. Considering that the p value is lower
than the set α value (0.025), it was determined that the model can account for a
statistically significant amount of the variation in the running times. Hypothesis
H02 was, therefore, rejected in favor of the alternative hypothesis, HA2, with 97.5%
confidence. Furthermore, it can be determined from the partial F tests in Table 4.5
that, since the p values of both factors (the size of the dataset and the protocol
used) are below α, both factors have a statistically significant effect on the running
times. Additionally, the Adj R-squared value in Table 4.3 shows that 47.2% of the
variance in the running times can be described by the varying levels of both factors.
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Given that the results in Tables 4.6 and 4.7 are identical, it can be determined
that there is exactly no loss in effectiveness when applying the new intersection-
based method. Additionally, the threats discussed in Section 4.5 are assessed to be
sufficiently mitigated and, therefore, are not assumed to have any particular effect
on the results of this experiment.

7.2 Introduction of Time
The discussion of the effects of the additional matching parameter, the time of the
ride, on T-PrivatePool’s efficiency is carried out in two separate sections. The former
takes the resulting effects of adding time and time deviance to the endpoint-based
method of O-PrivatePool into consideration, while the latter discusses the effects
of adding the same parameters to the intersection-based method. Following the
discussion of change in efficiency, the effectiveness of the T-PrivatePool model is
examined.

7.2.1 Endpoint-based Matching
By reading Table 5.1, it can be seen that the p value of both coefficients, the In-
tercept and Time, are below the α level of 0.025. Therefore, they have a significant
effect on the model. Furthermore, according to the ANOVA table in Table 5.3, the p
value of the model is also below the α level. This means that the model can account
for a significant amount of the variance in the response variable. Taking that into
consideration, hypothesis H03 is rejected in favor of the alternative hypothesis, HA3,
with 97.5% confidence.

Table 5.2 shows that the model can account for 98.6% of the variance, given by
the Adj R-square value. Furthermore, the partial F test given in Table 5.4 provides
additional evidence that the Time factor does have a significant effect on the re-
sponse variable. This is determined by the fact that the p value is lower than the
given α level.

The greatest threat to the validity of this experiment is that the only factor that
was involved was the binary variable of whether a temporal deviation threshold was
used in the computation of the endpoint-based matching or not. The problem is
that the computation itself is reliant on other factors, such as the varying levels of
possible temporal deviance and the precision to which the deviance is divided into.
However, it is believed that all of these factors have been correctly combined and
isolated by restricting the deviance and deviance precision to fixed and relatively
small values.
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7.2.2 Intersection-based Matching
By reading the p values of the coefficients in Table 5.5, it is evident that all individ-
ual coefficients can do a useful amount of explaining within the model, given that
they are all below the α level 0.025. Additionally, according to the ANOVA table in
Table 5.7, the p value is below the α, which indicates that the model can account
for a statistically significant amount of the variance in the running times of the
intersection-based matching method. More precisely, according to the Adj R-square
value in Table 5.6, the model can account 47.3% of the variance. Hypothesis H03 is,
therefore, rejected in favor of the alternative hypothesis, HA3, with 97.5% confidence.

The most notable drawback of this experiment, as mentioned before in Section
5.3.1, is that Adj R-square in Table 5.6 indicates that the prediction model can only
account for 47.3% of the variance in the running times. However, the fact that the
p value of the model, seen in Table 5.7, is lower than α suffices to relieve that sus-
picion. Despite that fact, it would be interesting for future work to investigate and
include other potential factors that could be accountable for the rest of the variance.

7.2.3 Effectiveness
From the column T-PP in Table 5.8, it can be observed that the matching methods
of T-PrivatePool are able to detect a relatively high percentage of the total matching
opportunities, when r0 is restricted to 500 and t is restricted to 20%. However, the
proportion of detected opportunities decrease rather dramatically when the spatial
deviance threshold is extended and the minimum intersection threshold is extended.
This total percentage holds hand in hand with the opportunities detected by the
endpoint-based matching method. However, the opposite trend seems to be for the
intersection-based method. Furthermore, for both matching methods, the percent-
age of detected opportunities generally increase as the temporal deviance threshold
is increased. The usefulness of the intersection-based method can be argued at this
point, given that it the relative number of detected ridesharing opportunities only
increase substantially when the conditions of the opportunity are severely restricted.

7.3 Authentication of End-users
By comparing the two authentication systems, it can be seen that a Kerberos system
is still dependent of a central server. This type of architecture is still prone to single
points of failure and central repositories that need to maintain credentials such
as usernames and passwords, which makes it vulnerable to breaches by attackers.
On the other hand, utilizing a blockchain will eliminate a centralized server and
its downsides. However, as mentioned in Section 6.3, every single node runs the
blockchain in order to reach consensus. This could be considered wasteful, since it
is slower and more expensive, compared to a traditional single computer.
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8
Conclusion

This chapter presents conclusions based on the results in the preceding chapters.
Subsequently, the perspective is moved away from the ridesharing context to a
broader view of the findings.

Following the discussion in Section 7.1, it is clear from the worst-case complex-
ity analysis and the rejection of H01 and H02, that the research questions RQ1
and RQ2 are both answered positively. This means that the new proposed O-
PrivatePool’s intersection based matching method has both less time complexity
than PrivatePool’s corresponding method based on T-KEM and lower running time
when running benchmarking tests. If we were to generalize these findings it could
be said that, by applying ad-hoc solutions, it is definitely possible to decrease the
overhead of privacy-preserving models. However, the hope for the future is that
SMC protocols can perform well enough to be considered at production-level qual-
ity, while retaining a great deal of generality such that they can be applied to a wide
range of contexts.

The results and discussions of Chapter 5 show that both null hypotheses in this
iteration were rejected. Therefore, we conclude that by applying additional pa-
rameters, the efficiency of the method is impaired. The research question RQ3 is,
thus, answered negatively: It is not possible to match entities using an additional
threshold, representing deviation in time, without impairing the protocol’s efficiency.
However, since the introduction of additional matching parameters can be seen as
additional work for the method to carry out, this behaviour was expected. Gen-
erally, the effects of adding more work for the privacy-preserving methods to carry
out seem to increase their running times to a certain degree. Although, the run-
ning times are still relatively low and further research could reveal whether they are
within the actual acceptance limits of users.

The research during the authentication phase revealed that, since the desire is to
eliminate the third party centralized system, which handles their customer’s data,
we estimate that a Kerberos system would not be optimal and go against the pur-
pose of a decentralized system. It should, however, be noted that blockchain is still
a very new technology and it does present quite a few challenges that need to be
overcome before it can be used in practical applications.
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In today’s increasingly digital world, awareness and concerns related to data pri-
vacy and security is growing and becoming more critical. General Data Protection
Regulation (GDPR) is being implemented to protect the data of EU citizens from
data breaches and other form of misuse [27]. Thus, PSI could perhaps be a possible
solution and make it possible to still find intersections of sets that now consists of
private data.

Even though SMC protocols (such as PSI) suffer from additional computational
overhead compared to their naïve counterparts, the techniques used in the field are
constantly decreasing the divide and moving their capabilities closer to something
that could be considered production level. Despite the fact that language-based se-
curity is gaining more traction, more attention is needed on other levels of security.
Information such as the number of requests to the open source mapping software,
their frequencies and their response sizes (to take OSM as an example) can still
reveal a significant amount of information.

8.1 Future Work
The models presented in this thesis do not take factors, such as the varying lengths
of the segments in a route or that entities travel their routes with a non-constant
velocity, into consideration. By taking these factors into consideration, users would
be able to match with each other according to the respective route’s length and a
more precise match could be made according to a non-constant temporal deviation
function. Furthermore, in reality, there is a fundamental relationship between devi-
ation in time and deviation in space. If a user were to deviate in time, the tolerance
for deviating any further in space should change accordingly. This relationship can
potentially be expressed as a combined function of the two devation functions men-
tioned in this thesis, by e.g. represent it as an ellipsoid. When computing the radius
value along the temporal axis, we estimate that a left-modal curve would best suit
a driver who is restricted to be present at a specific time at the end of their ride.
Otherwise, if the driver is restricted to depart from their origin at a specific time,
we estimate that a right-modal curve would be best suited. Should the passenger
be restricted in a similar manner, an additional check could be made to ensure that
both parties depart at times which fall within their limitations. Time deviance func-
tions could also be used to reflect an estimated encounter with congestion or other
changes in traffic.

Further investigative research needs to be carried out into what possible authen-
tication methods are available for distributed and decentralized systems, that take
privacy preservation into consideration. Currently, there is no implementation of an
authentication method in the models that we have presented. However, that would
require the previously mentioned investigative research to be carried out.
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A
Efficiency Results (T-KEM vs. Altered

BaRK-OPRF)

Dataset sizes
32 64 128 256 512 1024 2048 4096

P
ro
to
co
l

T
-K

E
M

0.035962 0.202503 1.394349 10.365839 79.646090 619.613000 4897.286800 38829.0150
0.032389 0.201888 1.390940 10.280580 78.995720 618.534600 4892.787300 38827.4810
0.032644 0.201616 1.390088 10.277747 78.998090 618.419300 4891.913900 38823.6920
0.032551 0.202045 1.390780 10.282961 79.001580 618.490900 4892.681800 38823.9400
0.032598 0.201728 1.390011 10.281397 78.986390 618.538000 4892.829800 38826.9120
0.032670 0.202148 1.389531 10.276165 78.998100 618.474100 4892.362000 38827.1370
0.032487 0.201775 1.390250 10.287111 79.015190 618.769400 4892.853500 38827.4580
0.032676 0.201692 1.389943 10.279575 79.026600 618.746500 4893.816700 38834.0220
0.032535 0.201807 1.389680 10.285779 79.009670 618.621100 4893.577700 38824.8820
0.032755 0.202005 1.390871 10.277218 79.002650 618.539600 4892.336500 38828.4870

A
lt
er
ed

-B
aR

K

0.089000 0.087000 0.087000 0.087000 0.087000 0.091000 0.095000 0.099000
0.087000 0.086000 0.084000 0.098000 0.089000 0.092000 0.093000 0.096000
0.088000 0.086000 0.086000 0.088000 0.089000 0.092000 0.095000 0.100000
0.087000 0.087000 0.087000 0.103000 0.090000 0.091000 0.094000 0.098000
0.088000 0.097000 0.087000 0.090000 0.090000 0.093000 0.094000 0.097000
0.086000 0.085000 0.088000 0.089000 0.088000 0.090000 0.105000 0.098000
0.087000 0.085000 0.086000 0.091000 0.088000 0.093000 0.097000 0.099000
0.086000 0.086000 0.088000 0.089000 0.099000 0.091000 0.092000 0.102000
0.086000 0.085000 0.087000 0.088000 0.090000 0.089000 0.095000 0.099000
0.085000 0.087000 0.087000 0.088000 0.088000 0.091000 0.095000 0.098000
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B
Endpoint Method Efficiency (Without

Time)

Measurement First Second
Total# endpoint endpoint

computed computed
1 0.1902 0.1962 0.3864
2 0.1908 0.1979 0.3887
3 0.1942 0.1965 0.3908
4 0.1845 0.1836 0.3681
5 0.2028 0.1853 0.3881
6 0.1952 0.1901 0.3853
7 0.1921 0.1904 0.3825
8 0.1891 0.1888 0.3778
9 0.1844 0.1876 0.3720
10 0.1875 0.1937 0.3812
11 0.1977 0.2010 0.3987
12 0.1872 0.1901 0.3774
13 0.1981 0.1958 0.3939
14 0.1882 0.1907 0.3789
15 0.1928 0.1836 0.3764
16 0.1971 0.1920 0.3891
17 0.1875 0.1936 0.3811
18 0.1885 0.1920 0.3805
19 0.1864 0.1914 0.3777
20 0.1915 0.1895 0.3810
21 0.2009 0.1932 0.3941
22 0.1982 0.1827 0.3809
23 0.1863 0.1806 0.3670
24 0.1996 0.1800 0.3796
25 0.1864 0.1951 0.3815
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C
Endpoint Method Efficiency (With Time)

Measurement First Second
Total# endpoint endpoint

computed computed
1 0.3306 0.5982 0.9288
2 0.3350 0.6105 0.9455
3 0.3211 0.5768 0.8979
4 0.3193 0.5721 0.8914
5 0.7348 0.6176 1.3524
6 0.3228 0.5550 0.8778
7 0.3243 0.5920 0.9163
8 0.3358 0.5805 0.9163
9 0.3298 0.5930 0.9228
10 0.3381 0.5938 0.9319
11 0.3209 0.6125 0.9333
12 0.3347 0.5878 0.9226
13 0.3355 0.5962 0.9317
14 0.3310 0.5788 0.9098
15 0.3323 0.5918 0.9241
16 0.3250 0.6037 0.9287
17 0.3265 0.5885 0.9149
18 0.3361 0.5755 0.9116
19 0.3304 0.6092 0.9396
20 0.3379 0.5772 0.9151
21 0.3276 0.6199 0.9474
22 0.3254 0.5805 0.9059
23 0.3248 0.5991 0.9239
24 0.3259 0.6167 0.9426
25 0.3245 0.5771 0.9016
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D
Intersection Method Efficiency (With

Time)

Measurement nr.
Data- Max Time

1 2 3 4 5 6 7 8 9 10set Time Dev.
size Dev. Prec.
32 0 60 0.089 0.086 0.088 0.089 0.094 0.085 0.087 0.087 0.087 0.087
32 0 45 0.102 0.099 0.086 0.096 0.086 0.087 0.087 0.086 0.087 0.091
32 0 30 0.087 0.085 0.087 0.086 0.092 0.087 0.097 0.096 0.086 0.087
32 2 60 0.088 0.086 0.088 0.104 0.086 0.086 0.085 0.085 0.088 0.087
32 2 45 0.088 0.098 0.087 0.097 0.086 0.089 0.086 0.093 0.091 0.097
32 2 30 0.087 0.088 0.088 0.087 0.087 0.095 0.086 0.096 0.088 0.088
32 4 60 0.100 0.086 0.089 0.087 0.087 0.088 0.085 0.087 0.089 0.088
32 4 45 0.089 0.089 0.098 0.088 0.100 0.088 0.100 0.087 0.088 0.086
32 4 30 0.087 0.090 0.088 0.090 0.096 0.097 0.091 0.088 0.089 0.091
32 6 60 0.088 0.093 0.099 0.092 0.089 0.089 0.088 0.088 0.089 0.090
32 6 45 0.088 0.088 0.090 0.091 0.088 0.091 0.089 0.088 0.086 0.089
32 6 30 0.091 0.088 0.088 0.091 0.087 0.089 0.089 0.086 0.090 0.089
32 8 60 0.087 0.087 0.088 0.091 0.088 0.089 0.088 0.091 0.088 0.088
32 8 45 0.088 0.089 0.100 0.089 0.088 0.089 0.089 0.095 0.087 0.087
32 8 30 0.089 0.092 0.091 0.089 0.091 0.088 0.088 0.091 0.102 0.102
32 10 60 0.090 0.088 0.101 0.087 0.093 0.090 0.089 0.087 0.091 0.091
32 10 45 0.098 0.090 0.092 0.089 0.089 0.117 0.095 0.091 0.090 0.089
32 10 30 0.104 0.090 0.090 0.092 0.090 0.092 0.090 0.090 0.089 0.090
32 12 60 0.086 0.088 0.088 0.087 0.088 0.088 0.093 0.088 0.092 0.088
32 12 45 0.092 0.087 0.090 0.091 0.091 0.090 0.102 0.088 0.102 0.089
32 12 30 0.090 0.101 0.090 0.092 0.091 0.094 0.090 0.100 0.104 0.090
64 0 60 0.089 0.087 0.085 0.085 0.086 0.087 0.087 0.088 0.088 0.087
64 0 45 0.088 0.088 0.096 0.087 0.086 0.090 0.097 0.086 0.098 0.089
64 0 30 0.085 0.089 0.088 0.105 0.087 0.089 0.103 0.090 0.087 0.088
64 2 60 0.088 0.088 0.087 0.089 0.100 0.090 0.089 0.087 0.090 0.088
64 2 45 0.102 0.088 0.091 0.090 0.098 0.088 0.088 0.094 0.088 0.107
64 2 30 0.089 0.089 0.090 0.090 0.088 0.088 0.089 0.087 0.091 0.093
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D. Intersection Method Efficiency (With Time)

Measurement nr.
Data- Max Time

1 2 3 4 5 6 7 8 9 10set Time Dev.
size Dev. Prec.
64 4 60 0.089 0.092 0.087 0.089 0.088 0.090 0.089 0.089 0.099 0.097
64 4 45 0.089 0.088 0.090 0.090 0.089 0.087 0.090 0.089 0.101 0.089
64 4 30 0.101 0.090 0.098 0.092 0.100 0.089 0.090 0.090 0.090 0.091
64 6 60 0.101 0.089 0.089 0.089 0.088 0.089 0.090 0.086 0.092 0.098
64 6 45 0.090 0.088 0.089 0.099 0.092 0.090 0.088 0.089 0.089 0.088
64 6 30 0.090 0.091 0.093 0.092 0.091 0.091 0.102 0.091 0.091 0.089
64 8 60 0.090 0.091 0.090 0.090 0.087 0.089 0.088 0.091 0.091 0.094
64 8 45 0.091 0.091 0.089 0.092 0.091 0.090 0.093 0.090 0.091 0.088
64 8 30 0.101 0.096 0.091 0.092 0.092 0.093 0.092 0.094 0.092 0.091
64 10 60 0.091 0.089 0.088 0.089 0.103 0.092 0.101 0.102 0.090 0.090
64 10 45 0.102 0.089 0.100 0.093 0.098 0.090 0.090 0.090 0.089 0.090
64 10 30 0.094 0.094 0.095 0.095 0.093 0.094 0.101 0.093 0.093 0.105
64 12 60 0.105 0.094 0.090 0.090 0.090 0.091 0.091 0.095 0.090 0.091
64 12 45 0.090 0.099 0.091 0.091 0.090 0.092 0.098 0.093 0.091 0.091
64 12 30 0.104 0.095 0.096 0.094 0.093 0.093 0.096 0.103 0.107 0.093
128 0 60 0.091 0.088 0.091 0.089 0.088 0.089 0.088 0.095 0.088 0.086
128 0 45 0.091 0.087 0.087 0.086 0.087 0.089 0.088 0.087 0.087 0.088
128 0 30 0.088 0.087 0.089 0.097 0.089 0.088 0.102 0.098 0.086 0.089
128 2 60 0.088 0.087 0.087 0.090 0.088 0.087 0.086 0.086 0.088 0.089
128 2 45 0.090 0.089 0.100 0.098 0.087 0.089 0.089 0.095 0.089 0.151
128 2 30 0.089 0.089 0.093 0.089 0.097 0.088 0.087 0.089 0.091 0.101
128 4 60 0.092 0.087 0.089 0.090 0.102 0.100 0.089 0.088 0.092 0.095
128 4 45 0.093 0.092 0.100 0.090 0.089 0.101 0.091 0.102 0.090 0.090
128 4 30 0.090 0.102 0.105 0.093 0.090 0.091 0.092 0.091 0.091 0.092
128 6 60 0.093 0.091 0.091 0.090 0.094 0.092 0.090 0.090 0.090 0.091
128 6 45 0.092 0.093 0.092 0.093 0.091 0.093 0.105 0.093 0.091 0.094
128 6 30 0.105 0.094 0.092 0.093 0.093 0.095 0.094 0.101 0.096 0.103
128 8 60 0.090 0.094 0.103 0.104 0.092 0.091 0.090 0.091 0.090 0.091
128 8 45 0.094 0.092 0.092 0.095 0.092 0.092 0.095 0.093 0.091 0.092
128 8 30 0.096 0.099 0.094 0.093 0.094 0.097 0.099 0.105 0.101 0.099
128 10 60 0.106 0.095 0.093 0.091 0.093 0.093 0.093 0.099 0.092 0.093
128 10 45 0.094 0.095 0.095 0.097 0.097 0.097 0.097 0.095 0.096 0.095
128 10 30 0.099 0.097 0.096 0.097 0.098 0.109 0.096 0.098 0.098 0.096
128 12 60 0.104 0.093 0.093 0.094 0.094 0.103 0.093 0.093 0.093 0.101
128 12 45 0.099 0.106 0.100 0.097 0.108 0.095 0.096 0.096 0.096 0.093
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D. Intersection Method Efficiency (With Time)

Measurement nr.
Data- Max Time

1 2 3 4 5 6 7 8 9 10set Time Dev.
size Dev. Prec.
128 12 30 0.101 0.112 0.097 0.100 0.101 0.099 0.097 0.101 0.102 0.100
256 0 60 0.090 0.087 0.088 0.085 0.098 0.086 0.087 0.087 0.089 0.089
256 0 45 0.088 0.090 0.088 0.088 0.087 0.089 0.085 0.088 0.088 0.090
256 0 30 0.087 0.089 0.090 0.087 0.087 0.089 0.091 0.088 0.088 0.090
256 2 60 0.090 0.090 0.101 0.091 0.093 0.089 0.089 0.090 0.091 0.090
256 2 45 0.101 0.089 0.091 0.091 0.093 0.092 0.093 0.090 0.100 0.103
256 2 30 0.094 0.093 0.096 0.093 0.104 0.092 0.093 0.090 0.093 0.095
256 4 60 0.092 0.095 0.093 0.094 0.093 0.093 0.094 0.095 0.095 0.093
256 4 45 0.093 0.105 0.092 0.095 0.095 0.107 0.095 0.098 0.095 0.094
256 4 30 0.107 0.096 0.098 0.095 0.098 0.096 0.096 0.106 0.095 0.099
256 6 60 0.096 0.097 0.096 0.111 0.093 0.095 0.095 0.096 0.095 0.096
256 6 45 0.098 0.097 0.096 0.096 0.098 0.099 0.097 0.098 0.096 0.095
256 6 30 0.099 0.101 0.113 0.099 0.099 0.102 0.099 0.100 0.099 0.098
256 8 60 0.095 0.100 0.106 0.096 0.093 0.097 0.096 0.097 0.099 0.098
256 8 45 0.099 0.100 0.097 0.110 0.101 0.103 0.101 0.100 0.099 0.100
256 8 30 0.098 0.109 0.110 0.098 0.098 0.101 0.098 0.097 0.098 0.097
256 10 60 0.099 0.097 0.098 0.099 0.099 0.100 0.100 0.097 0.099 0.099
256 10 45 0.102 0.104 0.105 0.103 0.114 0.109 0.103 0.100 0.099 0.102
256 10 30 0.102 0.101 0.100 0.101 0.099 0.100 0.113 0.102 0.101 0.101
256 12 60 0.107 0.101 0.102 0.100 0.099 0.099 0.101 0.109 0.102 0.100
256 12 45 0.111 0.101 0.098 0.097 0.097 0.101 0.101 0.100 0.099 0.101
256 12 30 0.106 0.102 0.104 0.102 0.110 0.102 0.107 0.111 0.105 0.105
512 0 60 0.091 0.089 0.089 0.090 0.089 0.088 0.088 0.090 0.089 0.088
512 0 45 0.090 0.090 0.089 0.088 0.088 0.088 0.091 0.087 0.087 0.089
512 0 30 0.097 0.087 0.090 0.088 0.911 0.091 0.091 0.090 0.088 0.092
512 2 60 0.092 0.092 0.093 0.092 0.093 0.092 0.092 0.092 0.090 0.094
512 2 45 0.096 0.093 0.093 0.103 0.094 0.096 0.105 0.094 0.101 0.091
512 2 30 0.097 0.097 0.099 0.098 0.097 0.098 0.096 0.109 0.099 0.096
512 4 60 0.097 0.094 0.111 0.101 0.101 0.099 0.096 0.096 0.098 0.098
512 4 45 0.101 0.100 0.098 0.099 0.108 0.098 0.099 0.109 0.100 0.099
512 4 30 0.098 0.098 0.100 0.102 0.098 0.099 0.108 0.100 0.099 0.100
512 6 60 0.101 0.101 0.102 0.099 0.113 0.102 0.101 0.105 0.102 0.100
512 6 45 0.100 0.115 0.100 0.099 0.108 0.100 0.099 0.099 0.113 0.099
512 6 30 0.104 0.113 0.103 0.114 0.108 0.106 0.104 0.103 0.104 0.103
512 8 60 0.097 0.098 0.098 0.101 0.102 0.098 0.097 0.097 0.097 0.099
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D. Intersection Method Efficiency (With Time)

Measurement nr.
Data- Max Time

1 2 3 4 5 6 7 8 9 10set Time Dev.
size Dev. Prec.
512 8 45 0.104 0.102 0.112 0.104 0.111 0.102 0.116 0.102 0.100 0.103
512 8 30 0.109 0.112 0.109 0.118 0.110 0.109 0.109 0.108 0.109 0.112
512 10 60 0.102 0.102 0.103 0.101 0.107 0.105 0.104 0.103 0.103 0.102
512 10 45 0.106 0.104 0.108 0.107 0.105 0.107 0.118 0.107 0.107 0.107
512 10 30 0.116 0.116 0.124 0.128 0.123 0.116 0.123 0.126 0.124 0.118
512 12 60 0.106 0.104 0.105 0.104 0.105 0.103 0.115 0.116 0.105 0.104
512 12 45 0.113 0.109 0.112 0.108 0.111 0.112 0.109 0.109 0.110 0.108
512 12 30 0.120 0.121 0.121 0.121 0.124 0.120 0.119 0.122 0.122 0.121
1024 0 60 0.091 0.090 0.090 0.090 0.100 0.090 0.090 0.094 0.102 0.092
1024 0 45 0.098 0.092 0.090 0.090 0.100 0.093 0.090 0.102 0.093 0.093
1024 0 30 0.090 0.091 0.092 0.089 0.093 0.100 0.102 0.093 0.090 0.101
1024 2 60 0.099 0.100 0.099 0.100 0.107 0.100 0.098 0.108 0.110 0.109
1024 2 45 0.114 0.100 0.104 0.101 0.102 0.101 0.102 0.100 0.113 0.101
1024 2 30 0.107 0.100 0.100 0.101 0.099 0.099 0.100 0.098 0.114 0.102
1024 4 60 0.102 0.104 0.100 0.100 0.099 0.111 0.101 0.101 0.101 0.112
1024 4 45 0.104 0.107 0.112 0.106 0.107 0.114 0.105 0.106 0.104 0.106
1024 4 30 0.110 0.109 0.120 0.111 0.126 0.111 0.111 0.112 0.110 0.112
1024 6 60 0.106 0.105 0.117 0.107 0.115 0.106 0.106 0.103 0.105 0.108
1024 6 45 0.111 0.110 0.112 0.109 0.113 0.114 0.114 0.124 0.111 0.110
1024 6 30 0.123 0.123 0.131 0.121 0.123 0.122 0.124 0.122 0.124 0.120
1024 8 60 0.113 0.113 0.109 0.112 0.108 0.110 0.122 0.111 0.111 0.114
1024 8 45 0.117 0.118 0.131 0.123 0.127 0.120 0.119 0.119 0.120 0.117
1024 8 30 0.134 0.134 0.145 0.135 0.134 0.136 0.135 0.134 0.135 0.132
1024 10 60 0.118 0.115 0.132 0.116 0.124 0.117 0.125 0.115 0.116 0.127
1024 10 45 0.134 0.125 0.126 0.126 0.136 0.134 0.126 0.125 0.124 0.144
1024 10 30 0.144 0.148 0.147 0.148 0.146 0.145 0.145 0.146 0.146 0.145
1024 12 60 0.132 0.120 0.123 0.123 0.122 0.135 0.122 0.121 0.120 0.132
1024 12 45 0.132 0.135 0.134 0.143 0.141 0.134 0.133 0.135 0.133 0.133
1024 12 30 0.157 0.156 0.166 0.167 0.164 0.159 0.159 0.157 0.168 0.157
2048 0 60 0.097 0.096 0.097 0.097 0.099 0.096 0.100 0.095 0.097 0.095
2048 0 45 0.106 0.105 0.094 0.094 0.094 0.094 0.100 0.094 0.095 0.095
2048 0 30 0.094 0.096 0.095 0.095 0.104 0.096 0.097 0.095 0.094 0.095
2048 2 60 0.106 0.104 0.102 0.103 0.102 0.111 0.101 0.103 0.103 0.104
2048 2 45 0.112 0.105 0.115 0.107 0.106 0.107 0.106 0.115 0.109 0.104
2048 2 30 0.115 0.114 0.119 0.115 0.116 0.112 0.114 0.114 0.112 0.114
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D. Intersection Method Efficiency (With Time)

Measurement nr.
Data- Max Time

1 2 3 4 5 6 7 8 9 10set Time Dev.
size Dev. Prec.
2048 4 60 0.116 0.113 0.113 0.124 0.113 0.114 0.116 0.114 0.127 0.114
2048 4 45 0.124 0.120 0.135 0.122 0.123 0.120 0.130 0.124 0.131 0.129
2048 4 30 0.136 0.138 0.138 0.138 0.136 0.149 0.151 0.136 0.136 0.139
2048 6 60 0.137 0.130 0.126 0.126 0.138 0.127 0.138 0.134 0.129 0.126
2048 6 45 0.138 0.146 0.136 0.139 0.135 0.149 0.138 0.136 0.137 0.148
2048 6 30 0.165 0.162 0.163 0.168 0.163 0.162 0.162 0.173 0.164 0.167
2048 8 60 0.138 0.139 0.141 0.141 0.139 0.138 0.136 0.139 0.136 0.138
2048 8 45 0.154 0.155 0.160 0.152 0.158 0.153 0.153 0.153 0.934 0.153
2048 8 30 0.188 0.189 0.192 0.188 0.186 0.187 0.187 0.187 0.190 0.187
2048 10 60 0.151 0.150 0.148 0.149 0.151 0.152 0.149 0.152 0.150 0.163
2048 10 45 0.168 0.169 0.171 0.179 0.168 0.171 0.172 0.178 0.168 0.171
2048 10 30 0.215 0.210 0.210 0.215 0.218 0.219 0.212 0.215 0.224 0.215
2048 12 60 0.177 0.172 0.163 0.162 0.162 0.161 0.163 0.161 0.161 0.160
2048 12 45 0.190 0.201 0.189 0.194 0.188 0.186 0.186 0.196 0.189 0.185
2048 12 30 0.240 0.245 0.248 0.244 0.241 0.248 0.242 0.243 0.245 0.241
4096 0 60 0.099 0.098 0.099 0.098 0.109 0.097 0.098 0.098 0.111 0.101
4096 0 45 0.097 0.097 0.102 0.098 0.098 0.099 0.094 0.098 0.098 0.110
4096 0 30 0.098 0.101 0.100 0.097 0.097 0.099 0.109 0.114 0.107 0.101
4096 2 60 0.122 0.123 0.121 0.122 0.121 0.122 0.119 0.120 0.131 0.120
4096 2 45 0.135 0.127 0.134 0.141 0.128 0.129 0.140 0.130 0.127 0.133
4096 2 30 0.144 0.147 0.156 0.145 0.153 0.161 0.146 0.143 0.145 0.156
4096 4 60 0.157 0.145 0.144 0.144 0.147 0.144 0.157 0.144 0.146 0.146
4096 4 45 0.177 0.163 0.173 0.165 0.165 0.158 0.166 0.161 0.159 0.170
4096 4 30 0.201 0.192 0.193 0.194 0.191 0.197 0.195 0.192 0.194 0.193
4096 6 60 0.177 0.172 0.174 0.174 0.178 0.184 0.174 0.918 0.175 0.932
4096 6 45 0.198 0.195 0.195 0.194 0.194 0.204 0.203 0.193 0.193 0.200
4096 6 30 0.256 0.247 0.248 0.249 0.247 0.251 0.251 0.249 0.248 0.250
4096 8 60 0.199 0.197 0.200 0.212 0.199 0.193 0.197 0.201 0.193 0.207
4096 8 45 0.232 0.231 0.230 0.229 0.234 0.235 0.231 0.231 0.229 0.250
4096 8 30 0.289 0.283 0.284 0.284 0.294 0.286 0.286 0.282 0.288 0.284
4096 10 60 0.221 0.224 0.221 0.219 0.220 0.228 0.219 0.219 0.221 0.218
4096 10 45 0.266 0.267 0.273 0.270 0.268 0.266 0.267 0.267 0.270 0.282
4096 10 30 0.336 0.341 0.336 0.343 0.344 0.329 0.339 0.337 0.339 0.335
4096 12 60 0.249 0.253 0.248 0.248 0.252 0.250 0.252 0.247 0.250 0.248
4096 12 45 0.278 0.294 0.286 0.281 0.290 0.283 0.283 0.280 0.278 0.281
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D. Intersection Method Efficiency (With Time)

Measurement nr.
Data- Max Time

1 2 3 4 5 6 7 8 9 10set Time Dev.
size Dev. Prec.
4096 12 30 0.398 0.399 0.389 0.391 0.395 0.395 0.389 0.388 0.383 0.385
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