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Abstract
For students in basic control theory, the concept of inverted pendulums could po-
tentially be more easily understood if properly demonstrated by a physical system.
By studying the whole system, the student will be able to observe common weak-
nesses and characteristics of mechatronic systems and components which can make
the difference from all theoretical concepts more obvious. For the more experienced
control engineer, such a machine may serve as an experimental setup for testing
different regulator concepts and pendulum configurations.

Here we report on the development of such a setup. Based on a mathematical
model of up to three pendulums on one single cart driven by a motor, the design
of the physical system is divided into selecting electronic components, creating a
mechanical rail-and-cart system, programming and electronics design as well as de-
veloping a control system that balances up to three pendulums at the same time.

Although the case of three pendulums proved to be too hard to achieve with the
constructed equipment in practice, several methods of systems control were inves-
tigated and simulated. In the end, the system was able to balance one pendulum.
Overall well constructed, the machine lives up to the expectations of serving as a
demonstrational equipment and experimental testbed for students and engineers. To
balance more than one pendulum, for example, verifying the stepper motor model,
improving the general model of the system or adjusting the construction is recom-
mended.

Keywords: Inverted pendulums, Systems control, Mechatronics, Unstable systems,
Balance, LQR
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1
Introduction

A controller is basically a device with the function of maintaining or steering a cer-
tain state of a system. Controllers have been around a long time and through the
ages in different forms. One famous controller dates to 300 B.C. and is called Cte-
sibios’ water clock. The mechanical controller held a certain water level in a tank
which created a constant pressure at the bottom of the tank. Due to the constant
pressure, water could flow through a hole at the bottom at a constant rate. This
outlet of water then filled a cup where the water level could be measured and rep-
resent passed time. Other mechanical controllers have been invented in later years
such as James Watt’s controller for the angular velocity of his steam engine in 1788
[2].

During the 1920s and 1930s, the area of control systems had a flourishing era with a
rapid development. Initially, the main user of controllers was electric power indus-
tries but later the technology became a significant part in other applications. They
started to play an important role in stabilizing ships in rough seas and made flying
aircrafts for pilots easier. At the same time, controllers started to expand their area
of usage to also stabilizing unstable systems. This also made analyzing unstable sys-
tems something of interest for some well-known researchers such as Harry Nyqvist
and Hendrik W. Bode, both having contributed with tools still used today [3].

The control of unstable systems can be found in many of today’s applications, such
as the aircraft Saab 39 Gripen [4], rockets [5] and, what is of interest in this project,
inverted pendulums [2]. Inverted pendulums come in various forms and methods of
stabilization such as on rail [6], wheels [7], and shaft [8]to name a few. The fasci-
nation of inverted pendulums has been commented by Ernesto Aranda-Escolástico
i.a., who gave the reason that it is a ”difficult and complex system to be controlled
that has been used as a benchmark to compare different control strategies” [9]. In
this project the control strategy is in focus but also the construction of an inverted
pendulum system.

This project, however, partly aims to investigate the situation in where three sep-
arate pendulums are mounted on one cart and are thereby controlled by one single
motor while still behaving as three separate bodies. There does not seem to be
any research done on this particular problem, which makes this project relevant to
investigate.
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1. Introduction

1.1 Aim

The purpose of this project was to construct a system with multiple inverted pen-
dulums mounted on a movable cart and make it so that the pendulums would au-
tomatically stand perpendicular to the base of the system.

Firstly, as the project embraces several equally important parts (mainly control
theory, programming, construction, design, and testing), a motivation for conduct-
ing the project was to get the opportunity to investigate as many of these subjects
as possible while also merging them together to form a final product.

Secondly, the system to be developed should be looked upon as a type of demon-
stration equipment, intended to be used in teaching control theory, or as a test bed
for investigating ideas concerning the control of inverted pendulums.

Lastly, while maintaining a solid and fairly under-the-hood design, the system should
offer the user a certain amount of freedom when it comes to what types of exper-
iments the user is able to conduct on the system. A modular approach to attach
multiple pendulums of different lengths and sizes, along with assigning and modify-
ing various regulators contributed to fulfilling the intentions of the project.

1.2 Specification of issue under investigation

As described in Section 1.1, several purposes set the bar for this project. Some of
them can directly be translated into goals that we had to satisfy to consider our-
selves finished.

Developing the mechanics to work as intended was the first goal. The system should
be able to move a platform back and forth along a linear path to be able to balance
one or several pendulums. This goal includes both hardware and software, which
brings us to the next objective, the user interface.

The user interface should offer the user as much freedom as possible within the
range of fundamental system (pendulum) control. The option to activate several
different regulators (P, PI, PD and PID) along with the possibility of tweaking each
regulator parameter should be available for the user, preferably without direct ac-
cess to the code on the microprocessor.

Regarding the theoretical part, namely the control theory problems that are to
be investigated, the goal was to be able to control at least one pendulum with the
system. While control over multiple (one or two) additional pendulums is interest-
ing, this was not considered a basic objective, but an advanced one.

Part of the investigation is about studying and investigating what methods of con-
trol work on our system, as well as shining light on some theories concerning control

2



1. Introduction

of multiple pendulums.

A problem that arises mainly in the control, multiple pendulums, is robustness.
How much, for example, is the angular difference in the starting position allowed to
differ between two pendulums while still maintaining balance in the whole system.
Robustness can of course also be evaluated on a system with only one pendulum, for
example, how much difference can we allow between our model and the real system.

These issues should be possible to address with the desired system; one that can
serve as a robust, valuable and versatile demo equipment for anyone interested in
practical pendulum control theory.

1.3 Limitations
With 20 weeks and 5000 SEK, time and budget for this project were limited. This
makes focusing on the predefined goals crucial. As a result, simplifications had to
be made to the design as well as to the research and construction process to ensure
the targets would be met.

The system model was made using some simplifying assumptions. The result from
simulating the model is presented in graphs rather than a live virtual simulation.
Furthermore, strength, solidity or other material properties have not been examined.
Regarding CAD drawings, the two main purposes were measurements and design;
textures and animations were of little importance here.

The material selection for the final product was based on workability, price and
ease of access rather than trying to find the optimal materials by doing an in-depth
research. Nor was materials chosen with appearance in mind.

As the target is to keep one or more pendulums stable, the software and design
assumes that the initial state of the pendulums is standing up vertically, to make
the problem easier.

3



1. Introduction

1.4 Outline of report
The whole report outline will reflect the process of constructing the system. The
chapters following introduction represents the different subsystems that the whole
system was divided into. Within each of these chapters the process of constructing
the subsystem will be described and in some, there will be a discussion about the
final subsystem, including possible future improvements.

The subsystems the whole system was divided into are:

• Modeling of System
The system was mathematically modelled to be able to simulate it. This
chapter describes the behaviour of a single pendulum on a cart and also the
behaviour of multiple pendulums on a single cart.

• Component Selection
This covers the process of choosing components for the system with focus on
finding parts with sufficient performance and compability while staying with-
ing budget.

• Simulation of System
This covers how the mathematical model from Modeling of System was imple-
mented and simulated as well as how all system parameters were determined
or approximated. How well the digital system actually simulates the real con-
structed system is also discussed.

• Construction of System
This covers how the mechanical design and construction of the system were
made. It includes early CAD-designs to the actual manufacturing of the de-
signed system.

• Electrical Construction & Programming
This covers how the electrical system and software were designed to run the
chosen controller design.

• Control of System
This covers how the models from Modeling of System were simplified and used
to design the controller was made to balance the pendulums. Also how the
controller later was simulated on the digital version of the system, that was
developed in Simulation of System.

Subsequent Chapter Results covers the system as a whole with all the previous
mentioned subsystems put together and evaluated in terms of how they perform
together. The later discussion will also focus on the system as a whole.

4



2
Modeling of System

To break down the modeling process, the first task was to model a single pendulum
on a moving cart. With that completed, three pendulums were modeled on a single
cart.

2.1 One pendulum
The following model for a single inverted pendulum on a cart was obtained from [2].
This model will later be expanded to also describe multiple pendulums.

Figure 1: A single pendulum on a cart.

Given the system in Figure 1, we have defined the following variables:
• xc - Position of the cart.
• θ - Angle of the pendulum relative to the vertical line.
• Fd - Force acting on the cart, in this case by the motor.
• F - Force acting on the pendulum
• m - Mass of the pendulum.

5



2. Modeling of System

• L - Length to the center of mass of the pendulum.
• M - Mass of the cart.
• kvv - Horizontal friction.
• ẋc = v - Speed of the cart

Analyzing the pendulum itself (m) we obtain the force equations

Figure 2: Forces acting on pendulum.

→: sin(θ)F = ẍmm

↑: cos(θ)F −mg = ÿmm

⇒ mẍm cos(θ)−mÿm sin(θ) = mg sin(θ) (1)

The position of the pendulum can be described as
xm = xc + sin(θ)L
ym = cos(θ)L

(2)

Taking the second derivative gives

ẍm = ẍ+ L d
dt

(ω cos(θ)) = ẍc + Lω̇ cos(θ)− Lω2 sin(θ)
ÿm = −L d

dt
(ω sin(θ)) = −Lω̇ sin(θ)− Lω2 cos(θ)

(3)

where we have defined the angular velocity ω = θ̇. Equation 1 and 3 combined
results in

Lω̇ + ẍc cos(θ) = g sin(θ). (4)

6



2. Modeling of System

Figure 3: Forces acting on cart.

Analyzing the forces (except the friction force kvv) acting on the cart horizontally
gives

→: Fd − F sin(θ) = Mẍc = {F sin(θ) = ẍmm} = Fd − ẍmm,

⇒ Fd = Mẍc +mẍm. (5)
Using the expression for ẍm from Equation 3 we get

Fd = (M +m)ẍc +mL(ω̇ cos(θ)− ω2 sin(θ)).
Defining the velocity of the cart as v = ẋc this can be written as

Fd = (M +m)v̇ +mL(ω̇ cos(θ)− ω2 sin(θ)). (6)
From Equation 4 we obtain following expressions for ω̇:

ω̇ = g sin(θ)− v̇ cos(θ)
L

. (7)

Using Equations 6 and 7 we obtain a new expression with v̇, without including ω̇,
i.e.

Fd = (M +m)v̇ +mL

([
g sin(θ)− v̇ cos(θ)

L

]
cos(θ)− ω2 sin(θ)

)
.

This can be rewritten as

Fd = (M +m)v̇ +mg sin(θ) cos(θ)−mv̇cos2(θ)−mLω2 sin(θ)
which gives

v̇ = Fd −mg sin(θ) cos(θ) +mLω2 sin(θ)
(M +m)−mcos2(θ) . (8)

Thereby the expression for the cart acceleration in Equation 8 can be used for future
simulation.
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2. Modeling of System

2.2 Friction
The model previously discussed in Section 2.1 does not include any friction or energy
losses in the system. To include this in the model, a friction torque depending on ω
is added to Equation 8 such that

ω̇ = g sin(θ)− v̇ cos(θ)
L

− kθω (9)

where kθ is a friction constant.

The horizontal friction is included as an external force acting on the cart. It is
proportional to the speed in which the cart is moving. This is then subtracted from
the force Fd in Equation 5 such that

Fd = Mẍc +mẍm + kvẋ. (10)

With this expression taken into account, the cart acceleration becomes

ẍc = Fd −mL(ω̇ cos(θ)− ω2 sin(θ))− kvẋ
(m+M) . (11)

8



2. Modeling of System

To visualize how different pendulum lengths and cart masses results in different
behaviour, Figure 4 shows multiple carts, each with a single pendulum and how they
act different. All wagons have a force applied during a short period and pendulums
start from standing vertical (0◦).

Figure 4: Different accelerations of the cart depending on the pendulum.
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2. Modeling of System

2.3 Three pendulums
The following section will describe how the formulas from Section 2.1 were modified
to describe a cart with multiple pendulums, as illustrated in Figure.

Figure 5: Pendulum on a cart.

For i = 1, ..., N pendulums, each will satisfy Equation 4, i.e.

Liω̇i + ẍc cos(θi) = g sin(θi) (12)

which gives the following expression for ω̇:

ω̇i = g sin(θi)− ẍc cos(θi)
Li

. (13)

Equation 5 can be rewritten as:

Fd = Mẍc +
N∑
i=1

miẍmi. (14)

As in Equation 10, the horizontal friction is subtracted from the driving force,
resulting in

Fd = Mẍc +
N∑
i=1

miẍmi + kvẋc. (15)

Equation 3 now becomes

10



2. Modeling of System

ẍmi = ẍc + Liω̇i cos(θi)− Liω2
i sin(θi). (16)

Inserting 16 into 15 gives

Fd = Mẍc +
N∑
i=1

[
mi

(
ẍc + Liω̇i cos(θi)− Liω2

i sin(θi)
)]

+ kvẋ

= ẍc(M +
N∑
i=1

mi) +
N∑
i=1

miLiω̇i cos(θi)−
N∑
i=1

miLiω
2
i sin(θi) + kvẋc

⇐⇒ ẍc(M +
N∑
i=1

mi) = Fd −
N∑
i=1

miLiω̇i cos(θi) +
N∑
i=1

miLiω
2
i sin(θi)− kvẋc (17)

Using the expression for ω̇i from Equation 13 in Equation 17 gives

ẍc(M +
N∑
i=1

mi) = Fd−
N∑
i=1

mi [g sin(θi)− ẍ cos(θi)] cos(θi) +
N∑
i=1

miLiω
2
i sin(θi)− kvẋc

ẍc(M+
N∑
i=1

mi) = Fd−
N∑
i=1

mig sin(θi) cos(θi)+
N∑
i=1

miẍccos
2(θi)+

N∑
i=1

miLiω
2
i sin(θi)−kvẋc

ẍc(M+
N∑
i=1

mi)−
N∑
i=1

miẍccos
2(θi) = Fd−

N∑
i=1

mig sin(θi) cos(θi)+
N∑
i=1

miLiω
2
i sin(θi)−kvẋc

ẍc

(
M +

N∑
i=1

mi(1− cos2(θi))
)

= Fd−
N∑
i=1

mig sin(θi) cos(θi)+
N∑
i=1

miLiω
2
i sin(θi)−kvẋc

and eventually

ẍc = Fd −
∑N
i=1 mig sin(θi) cos(θi) +∑N

i=1 miLiω
2
i sin(θi)− kvẋc

M +∑N
i=1 mi(1− cos2(θi))

(18)

Thereby we have obtained the expression for the cart acceleration for a cart with
N pendulums. An example simulation was done (see Figure 6), where a force is
applied during a short period of time and all pendulums start from hanging down
(180◦).
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2. Modeling of System

Figure 6: Three pendulums on the same cart.
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2. Modeling of System

2.4 Stepper motor characteristics
For enhanced control (compared to an ordinary DC motor) of the cart position, a
two phase stepper motor will be used. This part will cover the basic dynamics and
characteristics of the motor, along with an explanation of so-called microstepping.
A two phase stepper motor consists of a rotor and a permanent magnet with multiple
poles that sits inside a stator. When a phase winding in the stator is energized, a
magnetic dipole is created. By altering this energisation of the phases a rotation, or
positional change, in the rotor can be produced.
The stepper motor model used was found in [10].

Figure 7: Rotor and stator principle of a stepper motor.

With ns being the number of rotor pole pairs and ms being the number of stator
phases, the number of steps S per revolution can be calculated.

s = 2nsms (19)
Naturally, the stepping angle ∆Φ is given by

∆Φ = 360◦
s

= 360◦
2nsms

(20)

Each phase (j) generates a torque TMj that is dependent on the position of the rotor
in relation to the phase coil itself, i.e.

TMj = km sin(nsΦ(t) + Φ0j)Ij(t) (21)
Here, km is the motor constant, Φ(t) is the rotor position. Φ0j is the location of the
coil j in the stator and Ij(t) is the coil current.
Next, the relation between current and voltage for each phase is formulated as

13



2. Modeling of System

Uj = emfj +RI(t) + Ls
dI(t)
dt

(22)

Here, R is the resistance of the coils while Ls is the coil inductance. The induced
electromotive force per phase, emfj is expressed as

emfj = km sin(nsΦ(t) + Φ0j)ω (23)

ω being the angular velocity of the rotor. Now, the total torque produced by the
motor is the sum of the torque produced by all phases, i.e.

TM =
ms∑
j=1

TMj (24)

Defining the inner friction in the motor as a damper, which gives a friction torque
Dω, the rotational torque equation for the motor can be expressed as:

J
dω

dt
= TM − Tload −Dω. (25)

The torque that is delivered to the pendulum-cart is in this case Tload, which gives
the final equation representing the torque from the stepper motor.

Tload = TM − J
dω

dt
−Dω (26)

14



3
Component Selection

The components regarded as decisive for the performance of the final prototype are
listed in Table 1 and motivated later in this section. Their position is shown in Figure
8, those unmentioned are located inside the electrical cabinet. The motivations
are based on budgetary grounds and availability in terms of ordering and what
the Department of Electrical Engineering could provide. Components that can be
chosen more freely are motivated under Other components in Section 3.7.

Table 1: List of components.

Component Pieces Manufacturer Article number
Angular position sensor 2 Novotechnik P2501A202
Angular position sensor 1 Novotechnik P2501A502
Microcontroller 1 Arduino A000062
Stepper motor 1 Trinamic QSH5718-56-28-126
Stepper motor driver 1 - 3128S
Rotary encoder 1 Yumo E6B2-CWZ3E

Figure 8: CAD-model.
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3. Component Selection

3.1 Microcontroller

In earlier projects concerning inverted pendulums either an Arduino Mega2560 or an
Arduino DUE was used as the microcontroller. Both of these microcontrollers have
many digital I/O connections as well as analog inputs which make them modular
and the system easy to expand. To further support fast data input the Arduino
DUE, with its higher clock rate, is regarded as the best choice of microcontroller
in the Arduino family. However, the Arduino DUE comes with the disadvantage of
lower operation voltage, 3.3 V instead of Arduino Mega’s 5 V. In practice it will
affect the compatibility of the microcontroller. In this project it is possible to solve
the incompatibility with a voltage divider. Henceforth the Arduino DUE will be
referred to as the microcontroller. [11]

In Table 2 the most important specifications regarding the Arduino DUE (and its
microcontroller AT91SAM3X8E) can be found. The data was retrieved from [11]
and [12].

Table 2: Specifications of Arduino DUE.

Microcontroller AT91SAM3X8E
Operating Voltage 3.3V
Input Voltage (recommended) 7-12V
Analog Resolution 10 & 12 bit
Clock Speed 84 MHz
Input leak current ADC ±0.5µA

3.2 Angular sensor

The choice of angle sensor was mostly influenced by the limited budget and available
components. In previous projects two high-precision potentiometers were used [13]
with a repeatability of 0.01◦. These sensors had a dead zone of 15◦ (will be de-
scribed in 5.1) but this will not affect this system since the pendulums never make
full rotations. The cost of one similar angular sensor is less than three new ones
with lower, but still adequate tolerance. The angular sensors used in this project
are listed in Table 1 and have specifications that can be found in Table 3.

However, the usage of these angular sensors used in older projects [13] is not optimal
in terms of resolution. Here, a 10 bit reading is used although the internal Analog
to Digital Converter (ADC) of the microcontroller has a 12 bit reading resolution
[11]. No complaints were stated about the resolution of the angular sensors used in
[13] even though they could not have obtained a higher resolution than 0.33◦ with
the 10 bit reading resolution that was used.
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3. Component Selection

Table 3: Specifications of P2501A202, {P2501A502}.

Range 345 ± 2 ◦
Resistance value 2 kΩ {5 kΩ}
Repeatability 0.003%(0.01◦)
Recommended ≤ 1µAcurrent
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3. Component Selection

3.3 Rotary encoder
The purpose of the rotary encoder is to calculate the position of the cart, accurate
position determination is important when implementing the model. The resolution
of the rotary encoder left over from earlier work[6] and described in [14] is 1024
pulses per second. Based on the radius of the conveyor pulley, one rotational step of
the rotary encoder corresponds to 0.12 mm. This is evidently the smallest distance
that the encoder can measure.

The resolution, or repeatability, of the angular sensors described in Section 3.2
is 0.01◦. Herein lies a potential conflict between the angular sensors and the rotary
encoder. As illustrated in Figure 9, if the cart is hastily moved in any direction, the
initially upright pendulum will stand at an angle β and the cart will have moved a
distance d. The horizontal distance that the pendulum top has moved is assumed
to be zero. If the angle β is equal to the smallest angle that the angular sensor can
recognize, the distance d can be described by the angular sensor information if the
length of the pendulum is known. If the resolution of the rotary encoder is rougher
than the angular sensor, the estimation of d will be zero according to the rotary
encoder, but a value above zero according to the angular sensor. Even though it
can be regarded as a bottleneck, using this rotary encoder is advantageous in an
economic perspective, since it was left over from earlier work [6].

Figure 9: Movement interpretations of different sensors.

Table 4: Specifications of the rotary encoder.

Resolution 1024 P/R
Input voltage 5-12 V
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3.4 Motor
An important specification of the motor is the torque. An approximation of the
absolute minimum torque is to say that the force inflicted on the cart from falling
pendulums is what needs to be counteracted by the motor. The acceleration of a
cart with one pendulum of length 1 m is approximately 1.6 m/s2 according to Figure
4. For pendulums of 0.7 m and 0.4 m they are approximately 1.3 m/s2 and 0.7
m/s2 respectively. If they were on the same cart and dropped at the same time,
the acceleration would not exceed the sum of the three, i.e. a = 3.6 m/s2 . With
a pulley of radius r = 0.02 m and a cart with a mass of M = 2 kg the torque
needed to be generated is T = M · a · r = 0.14 Nm. If this torque was inflicted on
falling pendulums, the result would be that the pendulums stopped falling but they
would not rise up again. this is clearly insufficient and more torque than calculated
is needed. The chosen motor can provide 1.26 Nm and is considered large enough.

Table 5: Specifications of stepper motor.

Rated voltage 2.52 V
Max applicable voltage 75 V
Rated phase current 2.8 A
Holding torque 1.26 Nm
Step angle 1.8◦

Figure 10: Speed Torque curve of stepper from its datasheet [1].
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3. Component Selection

From the speed-torque curve it can be obtained that the maximum speed of the mo-
tor is approximately 10000 pulses/s. Using a half step of ∆Φ = 1.8◦ and converting
to rad/s gives.

10000∆Φ
2

π

180 = 10000(0.9) π

180 ≈ 157 rad/s (27)

3.5 Stepper motor driver
The stepper motor is able to handle voltages up to 72 V although a lower voltage
of 30 V is sufficient based on the speed-torque characteristics of chosen motor [1].
Even though the chosen driver has more than enough voltage to deliver, 40 V, it
was best in respect to cost and supplier [15].
Another important specification is with what precision the stepper motor driver can
controll the motor. The chosen motor has a step angle of 1.8◦ but with microstepping
enabled, the motor can be instructed to move parts of those steps e.g. 1/4th of a
step. To match the rotary encoder which detects difference of 360◦

1024 = 0.35◦ the
stepper motor driver have to support microstepping of at least 0.35

1.8 ≈ 1/5. The
chosen stepper motor driver supports microstepping up to 1/128

Table 6: Specifications of stepper motor driver.

Nominal voltage 40 V
Nominal current 3 A
Microstepping Up to 1/128

3.6 Power supply
In this project, two different power supplies are used. One for powering the micro-
controller and one for the stepper motor driver. For the microcontroller a regular
micro-USB charger with 12 V and 0.5 mA output is used. The power supply that
best suited the stepper motor driver, in terms of cost, manufacturer and specifi-
cations, is able to deliver a voltage of 36 V and current of 9.3 A. Although it is
oversized for this application it could be bought from a supplier from which other
components were ordered and therefore at a lower cost [16].

Table 7: Specifications of power supply of stepper motor driver.

Nominal voltage 36 V
Nominal current 9.7 A
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3. Component Selection

3.7 Other components
The primary focus for choosing the remaining components were to minimize the cost
in order to stay within budget. Therefore, a minimum amount of orders were made
in order to reduce shipping costs. Another focus was to minimize environmental
impact where it was possible. This was achieved partly by reusing old components,
and also by trying to construct the system with a minimal size but yet large enough
to be suitable for demonstration in e.g. a lecture hall.
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4
Simulation of System

The whole system model given in Section 2 was implemented in Simulink to have a
digital version of the whole system to conduct tests on during the development of
the control system. This chapter will describe how the first simulations were imple-
mented from previous formulas and which parameters were used. Some parameters
are from arbitrary components since the simulation is implemented before the actual
system is built.

4.1 Stepper motor
The used stepper motor in the simulation is the one chosen in Section 3. All parame-
ters will be explained how they are calculated from the parameters in the datasheet.
All relevant parameters from the datasheet can be found in Table 8.

Table 8: Parameters from the datasheet of stepper motor [1].

Parameter Variable Value
No. of phases ms 2
Rated phase current Imax 2.8 A
Holding torque Thold 1.65 Nm
Max applicable voltage Umax 75 V
Step angle ∆Φ 1.8◦
Rotor inertia J 300 gcm2

Phase resistance R 0.9 Ω
Phase inductance L 2.5 mH

4.1.1 Motor constant
The motor constant km is determined from the holding torque and rated phase cur-
rent. Assuming that only one phase is active, microstepping is disabled and that the
rotor is static and aligned with the active phase so that maximum possible torque
is generated.

If the rotor is aligned with the active phase then the sinus function equals 1. This
results in the following simplified version of Equation 21.

TMj = kmIj(t)
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4. Simulation of System

Since we assumed that only one phase is active, TMj is also the total torque produced
by the motor, i.e.

T = kmIj(t)

Assuming that the rated phase current is flowing through the phase and that the
torque produced is the holding torque makes it possible to determine the motor
constant km from the parameters from Table 8, i.e.

km = Thold
Imax

= 1.65
2.8 ≈ 0.59

4.1.2 Number of rotor pole pairs
The number of rotor pole pairs can be calculated from the step resolution ∆Φ.

Rewriting Equation 20 as:

ns = 360
2ms∆Φ

Which gives the following expression for ns:

ns = 360
4(1.8) = 50 (28)
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4.1.3 Damping constant
The damping constant was determined experimentally by studying the speed re-
sponse while applying a ramp as speed input to the stepper. It was noticed that a
high damping constant makes the speed collapse earlier, while a too low damping
constant introduces resonances and makes the speed collapse even earlier. The op-
timal constant was found to be D = 0.02, which gives the speed response in Figure
11.

Figure 11: Speed response of stepper.

The simulation plotted in Figure 11 shows the resulting speed while applying a ramp
input to the stepper driver. There occurs resonances at lower speeds and as can be
seen, the speed collapses at around 120 rad/s, which is below the maximum speed
of 157 rad/s, found in Equation 27.
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4.1.4 Simulation of stepper driver
The model for a stepper motor previously given does only describe the motor re-
sponse given the phase voltages, but a driver must be implemented to generate the
phase voltages shown in Figure 12.

Figure 12: Relation between step pulse input and the phase voltages.

Implementing a driver following the repeating sequence shown in Figure 12 results
in the following angle response of the stepper motor.

Figure 13: Angle response of the implemented driver.
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As expected, the rotor moves one ∆Φ - step at each rising edge of the STEP PULSE
signal. For this motor ∆Φ = 1.8◦ and matches the increment shown in Figure 13,
thereby this simulated driver is considered good enough for further simulation use.

4.1.5 Simulation of microstepping
A function shared by many stepper drivers is microstepping. Applying partly full
phase voltages results in that each mechanical step is divided into sub-steps. An
example of how this could look is shown in Figure 14.

Figure 14: Voltages of microstepping.

However, to keep simplicity within the model and avoid creating a more complex
driver, the number of rotor pole pairs is increased. Basically decreasing the motors
mechanical step size to the chosen microstep. This could be a problem due to that
this method would mean that the simulated torque could be larger than what would
be produced by the real microstepped motor.

Thus, the number of rotor pole pairs nnew will be calculated from the real number
of pole pairs nreal and number of microsteps ∆nmicros, i.e.

nnew = nreal∆nmicros (29)
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Applying microstep of 2 (∆nmicros = 2) upon the previously simulated stepper from
Figure 13 results in the following step response:

Figure 15: Angle response of microstepped driver.

As can be seen in Figure 15 the step angle is 0.9◦ which means that Equation 29 is
correct regarding the step size.

4.2 Parameters of cart and pendulums
This section describes how the parameters for the cart and pendulums were obtained
and approximated.

4.2.1 Determination of average operation speed
The friction for the cart and pendulum both have been approximated to be linear
with respect to the velocity of the cart and the pendulum. To approximate this
constant a typical operating speed is required to approximate these.

The typical speed is calculated from the scenario that the cart need to match the
horizontal speed of a falling pendulum, that have accelerated from angle θ = 0◦ to
θf = 10◦, and assuming the pendulum is of length 1 m (L = 1).

The total vertical distance to fall, is then

δy = L(1− cos(θf )) ≈ 0.015 [m]

and the time it takes to fall δy from stationary can be calculated as

δy = at2f ⇒ tf =
√
δy

a
,
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where the acceleration a here is the gravitational acceleration g. Given the total fall
time tf , we can calculate the vertical speed vy at θf :

vy = gtf = g

√
δy

g
=
√
gδy

Given the vertical speed and the angle of the pendulum we can calculate the hori-
zontal speed vx as:

vx = vy
tan(θ)

This gives the following expression for vx:

vx =
√
gδy

tan(θf )
=

√
9.81(0.015)
tan(10◦) ≈ 2.18 [m/s] (30)

4.2.2 Friction constants
In a document from SKF [17] it is shown that linear ball bearing rails (LBBR) typ-
ically have a static friction force and a dynamic friction force. It will be assumed
that the motor used in this project will overcome the static friction and because of
that we use the given dynamic force to approximate the friction constant for the
pendulum model.

From Table 3.8 in [17] the dynamic friction force for 12 mm diameter shaft bearing is
1.5 N. Assumed that this force is measured at this system’s typical speed, Equation
30, gives the following expression:

ẋkv = vxkv = Ff ⇒ kv = Ff
vx

= 1.5
2.18 ≈ 0.69 [N/(m/s)]

The friction constant kθ for the pendulums axis is arbitrarily chosen to 0.5. This
rough estimate is acceptable due to its small influence to the rest of the system.

4.2.3 Masses and lengths
The masses and lengths of the mechanical components were chosen arbitrarily.
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4.3 Complete list of parameters for simulation
The previously given and calculated parameters gives the following tables of param-
eters used to simulate a cart with a single pendulum (Table 9) and with extended
parameters for a cart with three pendulums (Table 10).

Table 9: Complete parameter list for simulation.

Parameter Variable Value
No. of phases ms 2
No. of rotor pole pairs ns 50
Phase voltage U 75 V
Rotor inertia J 300 gcm2 = (0.3)10−4kgm3

Phase resistance R 0.9 Ω
Phase inductance Ls 2.5 mH
Damping constant stepper D 0.02 Nm/(rad/s)
Pendulum length L 1 m
Pendulum mass m 1 kg
Pendulum friction constant kθ 0.5 Nm/(rad/s)
Cart mass M 2 kg
Cart friction constant kv 0.69 N/(m/s)
Radius of belt pulley r 0.02 m

4.4 Simulation of unregulated model
The simulations for a single pendulum and multiple pendulums, will use a similar
input signal to their stepper drivers (see Figure 16).

Figure 16: Input signal to simulations.
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The following variables will be plotted for each simulation.
• Cart position - xc
• Cart velocity - ẋc
• Pendulum angle - θ

4.4.1 One pendulum on a cart
In figures 17, 18 & 19 the resulting behaviour of the simulated system is presented.
The pendulum is hanging down in its stable position at 180◦, the cart is stationary
and the stepper motor is given the input signal previously specified.
The plots will show how the system physically behaves and how the discrete nature
of the stepper affects the pendulum and cart.

Figure 17: Cart position.

Figure 18: Cart velocity.
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Figure 19: Pendulum angle.
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4.4.2 Three pendulums on a cart
The simulations of three pendulums, the parameters can be found in Table 10.
The response from the simulated system is presented in figures 20, 21 & 22.The
pendulums and wagon starts stationary, and all pendulums begins at 180◦.

Table 10: Extended parameters for three pendulums.

Parameter Variable Value
Pendulum 1 length L1 0.5 m
Pendulum 2 length L2 1 m
Pendulum 3 length L3 2 m
Pendulum 2 mass m1 0.5 kg
Pendulum 2 mass m2 0.5 kg
Pendulum 3 mass m3 0.5 kg

Figure 20: Cart position.
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Figure 21: Cart velocity.

Figure 22: Pendulum angles.

4.5 Limitations due to stepper motor
As mentioned in Section 4.1.3 it was problematic to simulate the stepper motor at
high speeds, where the speed collapses far to early compared to its rated speed. It is
currently unknown what caused these problems but it might be the discrete nature
of the stepper motor or a simulation issue with the stepper driver.
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5
Construction of System

Before constructing the physical system, some literature review was conducted. Af-
ter that the system was designed and constructed. Lastly, components were chosen
to fulfill the system requirements.

5.1 Previous work
A mechanical construction for pendulum experiments has previously been built at
Chalmers and this construction along with its components were accessible for reuse.
When considering construction issues, some reports associated with this construc-
tion were examined to gain knowledge from their experiences of either constructing
or using the existing system. One report stated that the linear bearings in the old
construction needed replacement due to increased friction[13]. According to that
report, the major problem they had was friction throughout the whole system.

Further on it is recommended that a stepper motor should be used for enhanced
position detection. Also the encoder with a resolution of 1024P/R was causing
problems for the Arduino Due by sending data with a higher frequency than the
board could handle. The timing belt for the cart was stretchable which also affected
the measured position of the cart and seemed to be a problem.

Mentioned in another report is also the fact that the position of the cart was inexact
and that the angular sensors had a dead zone in which no measuring occurred[6].

5.2 Design of mechanical construction
This section describes how the system was constructed mechanically. First by laying
out the outline specifications of the construction and then describing how it was
made along with discussing the result.
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5.2.1 Construction
Initially, a specification stating the desired size of the system was created (see Table
11).

Table 11: Construction specifications.

Length 1 m
Height irrelevant
Width 0.2 m
Weight of cart max 2 kg
Total weight max 10 kg
Length of a pendulum max 1 m

A solution-selection matrix, (see Appendix C), was created to help sort out the best
way to construct each component. Solutions chosen are marked in boldface and
were mainly chosen with performance, time and budget in mind. The CAD model
presented in Figure 23 was developed and used as a guide for what was aimed to be
built.

Figure 23: CAD-model.

In the bottom of the construction a base plate made of birch was created, onto
which everything else would be mounted. Upon that four aluminum spacings were
fastened to make room for the motor and cart movement. Two precision shafts were
mounted at each side on top of aluminum blocks to allow the cart to move along
with low friction using linear bearings. At the opposite side of the motor, a movable
end-wheel was constructed to allow tightening of the timing belt. A rotary encoder
(for cart position input) was mounted on the motor side and connected to the motor
and timing pulley shaft through a bushing.
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Three shafts were mounted on the cart with angular sensors (for pendulum angle
measurement) connected to each one. Plastic T-connectors were used for mounting
the pendulums to allow a modular design. Ball bearings were used for the shafts on
the cart and for the end-wheel to minimize friction. Regarding materials, a goal was
to make the system lightweight but still robust. Parts with precision requirements
were constructed with high-grade aluminum, but for the base plate wood was more
lightweight and robust enough. Parts with lower demands on weight and tolerance
were 3D-printed in plastic to stay within budget and to keep the system lightweight.

Three pendulums were built in different lengths with weights at their very top to
help differentiate the center of mass between the three for control purposes.

5.2.2 Results & Discussion
Figure 24 shows how the final construction turned out and a drawing of the whole
system can be found in Appendix A. In Table 11 the specifications of the mechanical
construction are defined. The measurements regarding the mechanical parts, includ-
ing the aluminum spacings, plates and shafts, meet the requirements. The birch base
however had to be extended in both length and width to house the electronics.

Figure 24: Mechanical construction.

The solution-selection matrix (see Appendix C) was followed thoroughly with the
exception that the rubber cart stop was replaced by a software implementation
making the cart stop before running out of space. Regarding functionality, the cart
moved along the shafts with reasonably low friction, the timing belt was able to be
tightened and the pendulums could swing in a wide enough zone with low friction.
The overall build was robust, stable and did not twist or shake during operation.
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The weight of the cart met the requirements. However, it should be noted that
the weight of the pendulums was not included in this calculation as their weight
was not specified at the time. The total weight of the system was not measured
but the system was convenient enough to handle. Any pendulum could be mounted
so the specification of max pendulum length (1 m) should just be seen as a safety
recommendation if one would fall unexpectedly.

The movable end-wheel design was changed during construction due to alternate
design choices found. However, this was not optimal as the bolts for fastening it
were placed tightly below the pulley and in that way unable to be fastened. Mask-
ing tape was used as a temporary fix, but a better method would be suggested as a
permanent solution.

The metal plate on which the angular sensors were mounted had some precision
issues due to inaccurate sheet metal bending. Even the slightest misalignment of
the angular sensor position created a springy effect on the shaft which the pendulums
were attached to. Some mechanical adjustments were made to reduce the problem
to an acceptable level, but a more accurate method than sheet metal bending would
have been preferred.

Regarding the 3D-printed components, a problem that arose was that the actual
measurements were smaller than the planned ones. To get the right size of the
components, adjustments had to be made to the CAD models. Furthermore, the
3D-printed linear bearing housings suffered from the same problem. When fastened
to the base plate of the cart the bearings were fixed in a slightly offset position,
resulting in a considerable increase in friction when running along the shafts. This
was solved by loosening the bolts slightly to give the housings some leeway. More-
over, the T-connectors were not as flexible as expected, which made the attachment
of the pendulums harder. Also, this was temporarily solved using masking tape.
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Electrical Construction &

Programming

In order to achieve a demonstrative equipment and a product possible to act as
a test bed for control systems, certain requirements on the electrical construction
and software design need to be met. The electrical construction must both be well
documented and expandable to facilitate future projects. This means drawings of
electrical circuits and room for more components/wires. The software, as well, has
to enable extensions and that is achieved by clearly splitting up the software in
different parts. This is described more thoroughly in Section 6.2.

A demonstrative equipment requires an intuitive user interface and easy interac-
tive design. Further reading will explain how this is handled in the implementation.

6.1 Hardware design

Although the system consists of several components, its main function is fairly sim-
ple. The, in control theory, frequently used block diagrams easily describe the var-
ious uses of the selected components. To explain the basic functions of each part,
they are divided into categories based on their field of operation. As illustrated in
Figure 25 for this system.

The first category, power supply, consists of a main power supply connected to the
external powerline. Internally, the connection to the external powerline is divided in
two; the purpose of which is to connect the smaller microcontroller 12V DC power
supply adapter while still providing a higher voltage (36V DC) to the stepper driver.

The microcontroller serves as the system hub. Here, sensor feedback from the rotary
encoder and the angular sensors are manipulated by the user in order to calculate
the control signal. The control signal generates a series of voltage pulses in the
stepper driver, essentially producing a rotation in the motor based on the sensor
input.

The different parts of the system illustrated in Figure 25 and commented above,
will be more thoroughly described.
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Figure 25: Hardware Principle Map.

6.1.1 Stepper motor

The detailed description concerning the chosen stepper motor is found in Section
3.4, while an in-depth study of the basic mechanism of it was given in Section 4.1.
Here, the main focus will lie on how to connect it to the system.

As mentioned earlier (Section 4.1), the rotational motion of the rotor is the product
of directing a current through the different stator phases, and thus creating a mag-
netic dipole in the stator that opposes the pole position of the rotor. By applying a
voltage over each phase in series, enough electromagnetic force is produced to move
the rotor one step.

This stepper motor is of the bipolar type, meaning it has two phases and thus
two voltage phases need connectivity. Basically, two wires per phase are required in
order to run a current through each phase. These wires are A+, A-, B+ and B- for
the phases A and B. An illustration of this can be seen in Figure 26.

Figure 26: Stepper Motor.

40



6. Electrical Construction & Programming

6.1.2 Stepper motor driver
Stepper motors that operate on higher voltages than a microprocessor can provide,
need external power supply. The voltage also needs to be distributed over the dif-
ferent phases in the correct order to move one step; a stepper driver acts as an
interface between the motor and the user. By only giving the driver a low voltage
step signal, (Pulse in Figure 27) from the microprocessor, a direction signal (Dir)
and a higher terminal voltage from the power supply (Vcc & GND), the driver has
enough to convert the information into square wave voltage pulses that the stepper
motor phases need to produce a rotational step.

The selected driver also provides the possibility to use so called microstepping. This
is a method to increase the number of steps per revolution by simply modifying
the pulses sent to the stepper motor phases. However, this is not given as an in-
put from the microcontroller, but set via a DIP-switch on the actual driver hardware.

The driver also has an input labeled Inactivate which sets the voltage on the out-
going phases (A+, A-, B+, B-) to 0 V. Furthermore, the driver needs an operating
voltage of 5 V DC, which is delivered from the microcontroller.

Figure 27: Stepper Driver.
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6.1.3 Rotary encoder
The rotary encoder uses 5 V DC [14], which is delivered from the microcontroller,
and outputs two phases A and B, (see Figure 28), and a phase Z which is not used
in this project and therefore not illustrated. Both A and B send out 1024 pulses
per revolution in a square wave form. By incrementing a counter with zero as initial
value upon clockwise signals and decrementing it on counter clockwise pulses, the
microcontroller can keep track of the position of the cart.

As described in the Component selection (see Chapter 3), the microcontroller oper-
ates at a lower voltage, 3.3 V in comparison to the 5 V of the rotary encoder, and
can be damaged if connected directly to either of the three phases. Therefore, the
voltage is lowered using a voltage divider, as shown in Figure 28.

Figure 28: Rotary encoder circuit.

6.2 Software design

The software is designed with the user in mind; there is no point in building a sys-
tem that cannot be understood by the general user. Simplicity and structure is also
important for future project groups, should they wish to optimize or make changes
to the system. Therefore, the software is designed to be as intuitive and clear as
possible. One way of acheiving this is to try and mirror the physical system in the
software (see Figure 29) which is easily done in an object oriented programming lan-
guage such as C++, which is also advantageous, since the microprocessor runs C++.
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To the largest extent possible, every physical component in the system has a soft-
ware object twin. However, this is of course only true for components that play an
active part in controlling and running the system; power supply units and simpler
electronic components are either not included in the software system, or expressed
in simpler terms than objects.

In this system, most components are one of a kind. The angular sensors are the
only complex components that there are several of. This is an argument against
using objects in the software, because one of the points of object orientation is to
easily construct several instances of the same object. This software could perhaps
be slightly more efficient if physical objects were only seen as inputs and outputs
from the control loop, which is explained later. On the other hand, this would not
be an intuitive and easily understood structure.

Next, every program file will be described in detail.

Figure 29: Software principle map.
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6.2.1 The design of the software
The software, as can be seen in Appendix B, is designed to have the three states Init,
Calibrated, Running. The system’s initial state transits to the state Calibrated by
the push of the Calibrate button on the panel (see Figure 30). Only when the system
is calibrated the control sequence, Running, can start when pressing the Start/stop
switch. However in order to make a correct calibration the cart has to be pushed as
close to the electric box as possible, and the pendulums tilted in the same direction
before pressing the Calibrate button. The reason for this is to let the system know
where the boundaries of the rail are and what voltage over the angular sensors that
correspond to the angle at which each pendulum is calibrated. After the system has
been calibrated, the cart moves to the center of the rail.

Figure 30: Photo of the panel.

The function of the program is described in the flow chart in Figure 31. The control
loop starts and runs continuously when the Start/stop switch is pressed from the
calibrated state. It stops again when the button is pressed once more. The state
can also be forced to Calibrated if the cart is too close to the edges of the rail as
a safety precaution to protect the mechanical construction. In the state Running
several operations are made. First, sensor data is collected from the angular sensors
and the rotary encoder. The information from the rotary encoder is firstly used
to determine if the cart has moved too far in one direction and if so, terminates
the control sequence. If not, the sensor data is passed to the control objects which
calculates the new speed of the motor. Lastly the motor speed is updated and the
program jumps back to collecting sensor data. Following sections will cover how the
motor is controlled and how sensor data is generated.
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Figure 31: Flow Chart describing the function of the software.

6.2.2 Motor and stepper driver software interface
The main focus in the motor software is to create an interface between the user,
who only communicates with the system via the control loop, and the system.

The motor is represented by an instance of the Motor class, and takes a velocity
parameter expressed in m/s as an input parameter. It then converts this parameter
to a pulse time expression which can be used by the stepper driver software. The
stepper motor is designed to move a certain angle per step, not continuously rotate
at a given rotational velocity. The distance the cart travels and the time it takes to
perform one step is expressed as

dstep = 2πrpulley

steps/rot
[m]

tstep = dstep

vcart
[m/s]

(31)

To make the cart travel at a specific velocity, it needs to travel a certain distance,
dstep, in a certain amount of time, tstep. If the step is taken repeatedly at the rate of
the step time, the resulting cart motion will correspond to the desired cart velocity,
vcart. The time per step value is

tstep = dstep
vcart

= 2πrpulley
(steps/rot)vcart

(32)

However, there is also a need to differentiate between pulses. For a signal to go high
for a specific time interval, it also needs to go low again for it to be able to repeat
the cycle. The easiest way to divide this is to simply partition the cycle in two, one
high part and one low (called Cooldown in Figure 32). This means that a pulse time
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equals half the time of a step time. Therefore, the pulse time is calculated in the
following way:

tpulse = tstep
2 = πrpulley

(steps/rot)vcart
(33)

In Figure 32, tstep is visualized as the step cycle time while the actual pulse time is
described as the width of the step signal, which is equal to the cooldown time. The
angle represents the rotational movement that corresponds to the described step
signal.

Figure 32: Step visualisation.

The software representation of the stepper driver is an object described as a class
instance of the class StepperDriver, responsible for distributing the step pulses and
directions to the physical stepper driver. This makes it the last part of the software
communications chain.

The stepper driver object receives its pulse time and direction information from
the motor object mentioned in Equation 33. When called upon from the control
loop, the stepper driver object forces the microcontroller to distribute pulses to the
physical stepper driver at the even time intervals of tpulse.

The stepper driver object uses the internal timer of the microcontroller to deter-
mine when to send out the step pulses. The command is executed in every cycle
of the control loop, but it only sends out a pulse directive if the time since the last
step is equal or greater than the desired pulse time. After this, the timer is reset,
setting the reference point for the next step cycle.

6.2.3 Software representation of rotary encoder
As discussed in Section 6.1.3, the rotary encoder distributes 1024 pulses per rota-
tion, which it sends out from two separate phases that also determine in which way
it is rotating. The rotary encoder always sends out these pulses, so if the system is
supposed to calculate a cart position from this, every pulse needs to be accounted for.

This is done by using what is known in the Arduino library as ’attachInterrupt’.
There are pins on the microcontroller that are ’interruptable’, that is, pins that are
programmed to make the system jump to a subroutine when given a signal.
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The calculation of the position is done by comparing the two phase signals, A and
B, from the rotary encoder. Only the phase A triggers interrupts, and it does this
on both rising and falling flank. In Figure 33, both clockwise and counter clockwise
rotation are depicted. The phase B is always offset from the phase A.

Figure 33: Rotary encoder phase pulses.

For every change in the A phase (rising, falling), there are two possible B states
(high or low). Figure 33 shows that two of the four combined states of A and B are
characterized as clockwise: (A rising, B low) or (A falling, B high). The opposite
(A rising, B high) or (A falling, B low) are seen as a counter clockwise rotation
[14]. From this, the cart position is derived in a way similar to the method in
Equation 31. Counter clockwise rotation is represented by increasing the position,
whereas clockwise rotation means decreasing the same variable. The position is
update is accordingly

Poscart =


Poscart + 2πrpulley

pulses per rotation
(A rising, B high) or (A falling, B low)

Poscart − 2πrpulley

pulses per rotation
(A rising, B low) or (A falling, B high)

(34)

There is a concern that the rotary encoder may send out too many interruptions
for the processor to handle. There is currently no calculated value for how many
interruptions this application can handle before the main application becomes too
slow to control the pendulums. If the encoder can handle 1024 interruptions per
rotation, and there are approximately eight encoder rotations for one meter that the
cart travels in one direction, at a rate of for example 2 m/s, the encoder will trigger
about 16500 times per second.

6.2.4 Angular sensor software
As mentioned in Section 3.2, the angular sensors are of two different kinds, one with
a resistance of 5 kΩ and two with 2 kΩ. In terms of programming and determining
the angle of the pendulums there are no differences between the two. This is due to
that it is the voltage over the angular sensors that is measured and not the resis-
tor value. The voltage goes from 0 V to 3.3 V no matter the resistance of the sensor.
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The voltage is measured by an internal ADC in the microcontroller with a resolu-
tion of 12 bits. The value that is return from the ADC is a number between 0 and
4096 (= 212) where 0 corresponds to 0 V and 4096 to 3.3 V .

To translate the value from the ADC, x, to degrees, x needs to be interpolated
between a known angle y0 with a corresponding voltage, x0 and maximum angle
345◦ = y1 and maximum voltage 3.3 V = x1. Any given angle y ∈ [y0, y1] is then
given by the following expression

y(x) = y0 + (y1 − y0) x− x0

x1 − x0
(35)

where x is the voltage at a given point and x0 and y0 are variables that have to be
calibrated to obtain a correct angle.

The angular velocity is simply determined by taking the angular difference at to
points and divide it by the difference in time between the two. The angle and the
angular velocity are what is communicated between the Sensor object and the rest
of the program.

Due to signal noise it was also of interest to be able to include digital LP-filter
in the software, the structure used is

y[n+ 1] = (1− hωc)y[n] +K(hωc)x[n] (36)

where x[n] is the input signal, y[n] is the output, ωc is the cutoff frequency and K
is the filter gain.
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6.3 Results & Discussion
When the electrical system and programming were assembled, a few adjustments
from the original plan were made. The wiring from the stepper driver, marked in
Figure 34, had a high enough current to generate a electromagnetic field to disturb
other components. Most sensitive was the angular sensors and the rotary encoder
even though they were shielded. To solve this issue the cables to these components
were wired outside the electrical cabinet. The buttons on the panel (Calibration
button and Start/stop button) were also severely affected by the high currents in
nearby wires and was interpreted as pressed when they were not and were therefore
not implemented in the program.

Figure 34: Electrical cabinet with wiring principle.

As the system is built the maximum performance of the angular sensors in terms
of repeatability is not achieved for unknown reasons. Figure 35 represent the noise
from one of the angular sensors. The noise level of the sensor is ≈ ±0.5◦ which is
100 times greater than specified in the data sheet of the angular sensor. To decrease
the noise both an analog low pass filter and a digital low pass filter was designed to
remove frequencies over 4.8 Hz, which is low enough to cut most of the noise but
leave the signal representing the movement of the pendulum unaffected. The same
problem existed with the other two angular sensors and solved the same way.
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Figure 35: FFT-analysis of the signal with noise from an angular sensor.

When running the motor at the same time as reading the angular sensors, the set
speed was not the same as the actual speed. The reason for this is that to rotate the
motor a pulse has to be sent at a high frequency, every 78th microsecond at 1 m/s
and 1/8th in microstepping. Reading the angular sensors takes approximately 100
microseconds each [11] which means that if the time since last step is checked every
cycle of the control loop, as described earlier, the speed will be severely limited.
Only one pulse every 300 microseconds can be sent. Instead, a timer interrupt was
implemented. In this way the speed was maintained and it was possible to plot
values of the system in real time.
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This chapter will describe the process of choosing and designing the control system.

7.1 Simplification of system
Because some parts takes place in the Laplace domain and to ease the process of
transforming the system to the Laplace domain, several assumptions are made which
simplifies the equations and the system described in Section 2.

7.1.1 Stepper model
The biggest assumption is made regarding the dynamics of the stepper motor, which
are completely neglected. If the load torque never exceeds the motors rated holding
torque, there should never be any slip or missed steps in the motor. This assumption
results in that the stepper can be described as a constant that is determined from
step resolution (∆Φ) and radius of the pulley (r).

Gstepper(s) = Kstepper = ∆Φ π

180r (37)

Figure 36: Stepper described as a constant gain.

To keep the controller design and simulation simple, the output of the controller is
set to be the speed of the cart in [m/s].

7.1.2 Pendulum
The motion of any of the pendulums can be described by Equation 13. To be able to
use Laplace transform, a linearization is done. The pendulums will operate around
θi = 0. Hence, the assumptions

sin(θi) ≈ θi (38)
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and
cos(θi) ≈ 1 (39)

are made. This results in the linearized system

ω̇i = gθi − ẍc
Li

. (40)

Taking the Laplace transform gives

sΩi = gΘi − s2Xc

Li
. (41)

This equation can be rewritten to describe the process by Gi(s), which is then the
transfer function from the velocity of the cart V to the angle of the pendulum Θi.
Using Ωi = sΘi and sX = V , we get

s2Θi = gΘi − sV
Li

⇒

⇒ gΘi − Lis2Θi = sV

and consequently
Gi = Θi

V
= s

g − Lis2 . (42)
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7.2 Classic control

This section will describe the approach taken to control the system with classical
controllers such as P, PI, PD, PID. The letters stand for the three different parts
of a PID-controller, i.e. the Proportional part, the Integral part and the Derivative
part. The different parts treat the deviation of the system in their respective ways,
either proportionally, by integrating the control error or by differentiating it. All to
create different control effects.

7.2.1 One pendulum

Using the Routh-Hurwitz’ stability criterium, it can be shown that the system will
be stable using a PI-controller. To keep simplicity, PID-controller is not investigated.

Figure 37: Control structure for one pendulum.

The open-loop transfer function is defined as:

L(s) = F (s)G(s) = (Kp + Ki

s
) s

g − Ls2 (43)

This gives the following characteristic equation:

Ls2 −Kp − (Ki + g) = 0 (44)

Which gives the Routh-Hurwitz’ matrix as:

 L −(Ki + g)
−Kp 0

−(Ki + g) 0


That gives the stability margins for Kp and Ki as:

−Kp > 0⇒ Kp < 0 − (Ki + g) > 0⇒ Ki < −g

Running the simplified simulation with a pendulum of length 1 m and Kp = −20,
Ki = −20 gives the following response of the pendulum.
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Figure 38: Control of a single pendulum using PI-controller.

7.2.2 Two pendulums
To control two pendulums a cascaded structure is used, where the second controller
controls the inner loop’s reference signal.

Figure 39: Control structure for two pendulums.

Ignoring the coupling between the two pendulums through the cart the inner loop’s
transfer function is

Gloop1 = V

Θr1
= F1(s)

(1 +G1(s)F1(s)) .

Simplifying the block scheme using Gloop1 gives the block scheme in Figure 40.

Figure 40: Simplified control structure for two pendulums.
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Instead of analytically determine the parameters of the second loop, an attempt
was made to determine them numerically in MATLAB, since the magnitude of the
equations escalates when trying to apply the Routh-Hurwitz’ criterium to the outer
loop with a PID controller. However no stable combination of parameters were
found. In Figure 41 one of the better results is presented and as can be seen, the
system starts to stabilise but cannot keep the pendulums balanced for long.

Figure 41: Simulation with numerically determined parameters for the second
loop.

It may, however, still be possible to control the system this way, but it will require
more advanced analysis of the system, which was not conducted in this project.
Instead the possibilities of state feedback control was investigated.
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7.3 State feedback control
This section shows the process of finding a state-feedback controller suited to balance
the pendulums.

7.3.1 State-space representation of the system
The variables that need to be kept track of are the pendulum angles θi, their deriva-
tives θ̇i, and the cart position xc. The first variable for the state vector is θi. The
second variable is not only θ̇i. Instead, given that the derivative of the angle velocity
θ̇i includes the cart acceleration ẍ (see Equation 40) minor modifications had to be
made. Consider that the control signal is the cart velocity:

u(t) = v(t) (45)

Then, a state variable which includes the angle velocity that is also appropriate for
this state-space model is Lθi + v. Furthermore, if position control is included, the
state variable xc is needed as well.

So to summarize the state vector:
A unique set of the first two variables is needed for each pendulum and on top of
this the last state variable is the position xc.

For example, the state-space model for a system with one pendulum and without
position control is

ẋ(t) = Ax(t) +Bu(t) =
[
0 1/L
g 0

]
x(t) +

[
−1/L

0

]
u(t) (46)

where the state vector is

x =
[

θ

Lθ̇ + v

]
(47)

56



7. Control of System

If instead, one would like to control three pendulums with position control, the
state-space model becomes

ẋ(t) = Ax(t)+Bu(t) =



0 1/L1 0 0 0 0 0
g 0 0 0 0 0 0
0 0 0 1/L2 0 0 0
0 0 g 0 0 0 0
0 0 0 0 0 1/L3 0
0 0 0 0 g 0 0
0 0 0 0 0 0 0


x(t)+



−1/L1
0

−1/L2
0

−1/L3
0
1


u(t) (48)

where

x =



θ1
L1θ̇1 + v

θ2
L2θ̇2 + v

θ3
L3θ̇3 + v

xc


(49)

Both systems were verified to be controllable by calculating the ranks of their con-
trollability matrices Ç, i.e. verifying that:

rank(ç) = n (50)

where A is an n× n matrix, and the controllability matrix

ç =
[
B AB . . . An−1B

]
(51)

7.3.2 Linear-quadratic regulator
This method requires a linear or linearized system and has a quadratic cost function.
The cost function is minimized by the feedback control law

u(t) = −Kx(t) (52)
where x(t) is the state vector.
To find the feedback gain K, two other design matrices needs to be defined; Qx and
Qu. Qx is on the form:

Qx =


qx1 . . . . . . 0
... qx2

...
... . . . ...
0 . . . . . . qxn


qx1 defines the cost of variations in x1, qx2 the cost of variations in x2 and so forth.
Qu works in the same way but for the control signal.
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To get the feedback vector K for the chosen Q-matrices the MATLAB-command:
K=lqr(A,B,Qx,Qu) was used. The resulting gain then minimizes the cost function

J =
∫ ∞

0
(xTQxx+ uTQuu)dt . (53)

7.3.3 One pendulum

The system was simulated in Simulink with the specifications given in Table 12.
Note that the weights for the different variables are equal in order to keep it simple.

Table 12: Parameter values, one pendulum.

Parameter Value
qx1 1
qx2 1
Qu 1
L 0.4 m
Kstepper 2π 10−4

Figure 42: θ, one pendulum.

The resulting angle θ in Figure 42 shows that the pendulum is balanced from a 10◦
starting position without complications.
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Figure 43: Motor speed, one pendulum.

The speed of the motor, (see Figure 43), does not exceed ~ 600 rpm which is well
below the specified value for the motor and, therefore, the simulation shows promise
for the control of one pendulum.
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7.3.4 Three pendulums with positioning
Simulating three pendulums with parameter values in Table 13.

Table 13: Parameter values in simulation of three pendulums and positioning
control activated.

Parameter Value
qx1 1000
qx2 1
qx3 1
qx4 1
qx5 1
qx6 1
qx7 10
Qu 100
L1 0.4 m
L2 1 m
L3 1.5 m
Kstepper 2π 10−4

In order to minimize motor speed, pendulum angles, and cart position their respec-
tive weights qx1, Qu, and qx7 were increased until the further improvements were
minor.

Figure 44: Motor speed, three pendulums and positioning control activated.
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Figure 45: Pendulum angles, three pendulums and positioning control activated.

Figure 46: Cart position, three pendulums and positioning control activated.

To compare the results with the simulation of one pendulum using an LQ-regulator,
the starting angles were set to 10◦ here as well. The results show that balancing
three pendulums from a certain angle requires a lot more from the system (see
figures 44-46). This with regard to motor speed, longer path of the cart, and time
to converge to upright position.
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8
Results & Discussion

This chapter will discuss the final system, reflect on its performance and its func-
tionality as well as what was successfully implemented and what was not.

8.1 Physical system
The final physical system that was built is presented in Figure 47. The firmware of
the Arduino DUE have made it possible to: control the motor, use the encoder as
position measurement and use the potentiometers as angular sensors. Thereby all
the basic functionality of the system has been fulfilled. More detailed specifications
and drawings can be found in Appendix A.

Figure 47: Final physical system.
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8.2 Balancing one pendulum using LQR
One pendulum was successfully balanced with an LQR controller implemented. It
uses a similar state-space model as in Section 7.3.3. However, the position was added
to achieve positioning control, i.e. the following state space model was used:

d

dt

 θ

(Lθ̇ + v)
xc

 =

0 1/L 0
g 0 0
0 0 0

x+

−1/L
0
1

u (54)

Using the following Q-matrices:

Qx =

1 0 0
0 1 0
0 0 10000

 and Qu = 1000000 (55)

results in the following feedback gain:

K =

−4.887
−2.049
−0.100

 (56)

Due to signal noise in the measurment signals, severe filtering was necessary. A
physical LP-filter was therefore created and several internal digital LP-filters were
also created in the software to filter the input signals. Another LP-filter was applied
to the control signal to smoothen the dynamics and avoid slipping of the stepper
motor. The successful control structure for one pendulum is presented in Figure 48.

Figure 48: Control design for one pendulum.
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8.3 Model validation

To verify the simulation and the model, an experiment was conducted where a given
input signal was given to both the physical system and the simulated. The input
signal is presented in Figure 49. Parameters measured from the real system and
used in the simulation are presented in Table 14. Note that some parameters has
been changed from Table 9.

Figure 49: Input signal used for verification.

Table 14: Parameter list for simulation verification.

Parameter Variable Value
No. of phases ms 2
No. of rotor pole pairs ns 50
Phase voltage U 75 V
Rotor inertia J 300 gcm2 = 0.3 · 10−4kgm3

Phase resistance R 0.9 Ω
Phase inductance Ls 2.5 mH
Damping constant stepper D 0.3 Nm/(rad/s)
Pendulum length L 0.35 m
Pendulum mass m 0.3 kg
Pendulum friction constant kθ 0.2 Nm/(rad/s)
Cart mass M 1.6 kg
Cart friction constant kv 0.1 N/(m/s)
Radius of belt pulley r 0.02 m

It is worth noticing that due to problems within the simulation not every parameter
matches what was used in the real system. The phase voltage was 40 V and the
friction constants had to be changed to avoid problems with the simulated stepper
motor.
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Figure 50: Angle of pendulum in simulation.

Figure 51: Angle of pendulum in real system.

It is important to note that both the simulated (Figure 50) and the real system
(Figure 51) plot of the pendulum angle are initiated at 180◦ but the real system was
calibrated so it starts from 0◦. As can be seen, both has an amplitude of approx-
imately 40◦, however their frequencies does not match and neither does the initial
behaviour. Furthermore the simulated system seems to have a larger friction con-
stant than the real system since its amplitude decays faster. The major differences
are probably cased by a bad approximation of the pendulum length and friction
constant.
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Figure 52: Position of cart in simulation.

Figure 53: Position of cart in real system.

The position plots from the simulated (see Figure 52) and real (see Figure 53)
systems seem to match pretty well. Both have the same shape and approximately
the same maximum 0.15m. The main difference is the discrete characteristics of the
real system due to the rotary encoder not being included in the simulation. Except
for the rotary encoder the model is considered accurate enough in this aspect.
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Figure 54: Speed of cart in simulation.

Figure 55: Speed of cart in real system.

The speed plots from the simulated (see Figure 54) and real (see Figure 55) systems
seems at first very different, however the overall shape and amplitude matches. The
plot from the real system has more noise, which is likely to be caused by the dif-
ferentiation of the discrete positioning signal. The noise in the simulated system at
lower speeds is the main difference and could possibly be caused by not including
the timing belt’s properties in the model, which probably would have cancelled out
some of the vibrations. For this aspect, the accuracy of the model is not considered
accurate, mainly because of the large spikes in the simulated system.

Concluding the verification, the simulation is in its current state not to be consid-
ered trustworthy, mainly because of problems when the stepper motor is simulated
at greater speeds. Since time was limited there has not been much work done on
debugging and refining the simulation.
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8.4 Future work
This section will mainly discuss possible future work of the system and what remains
to be implemented and analyzed to achieve the project’s original goals.

8.4.1 Modeling and simulation
The simulation of the model needs general refinement and validation. Some of these
issues are:

• Verify stepper model. It would be beneficial to do some verification tests for
the stepper motor alone, mainly to be able to better approximate the param-
eters not given in the datasheet and to verify the expected behaviour.

• Implement a better stepper driver in the simulation. As described in Section
4.1.5 the driver used in the simulation increases the number of pole pairs in
the rotor instead of changing the voltage sequence for the phases. A better
choice could be to implement a driver that acts like the real system driver,
that generates similar voltage sequences as those presented in Section 4.1.5.

• Include timing belt characteristics in model. The large resonances in the speed
curves are thought to be caused by the lack of vibration dampening in the
model. In the real system this would mainly be done by the timing belt so it
would seem beneficial to include it in the simulation.

• Change friction model for cart. In this model the friction for the linear bearings
is assumed to be linear to the speed of the cart and any static friction was
completely neglected. It was found that the static friction possibly was the
biggest contribution to friction in the linear bearings, as the dynamic friction
was much lower than the static.

8.4.2 Electrical construction
Possible future changes to the electrical wiring configuration include:

• Better isolation and shielding of wires from sensors and switches to the micro-
controller. The impact that high current conductors has on these connections
is obvious and should have been taken into consideration already from the
start.

• Establishing maximum distance between wires of high and low current. An
example of this would be placing the power supply, stepper motor and stepper
driver on one side of the machine and wire the sensors from the other side,
with the microcontroller in the center. This way, the risk of wires interfering
with each other would be minimized.
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• Applying well planned filters such as the low pass filters, both digital and
analog, on the angular sensors in order to reduce disturbances.

8.4.3 Control
As previously mentioned, only one pendulum was successfully controlled, due to
lack of time it was not possible to control multiple pendulums. Possible measures
to take into consideration are:

• A Kalman filter could be implemented to mitigate the effects of disturbances
on the calculated state variable Lθ̇+v. Both θ̇ and v are affected by this since
both variables are discrete derivatives of sensor input signals.

• Change to a DC-motor. Since the state-space model used to describe the
inverted pendulum system were based on velocity as the input, as opposed
to acceleration, a ramp function had to be made in the software. Without
this ramp function the cart had lower maximum speeds. Due to the fact that
this software was not part of the state-space model it could not be simulated
beforehand, thereby worsening the agreement between simulation and reality.
Meanwhile, by modeling a DC-motor it is possible to see the spectrum of input
signals, i.e. currents, that are possible already in the simulation stage. What
this means is that some simulations of balancing the inverted pendulums using
an LQ-regulator makes it look like the LQ-regulator could actually balance the
actual system. Still, the control signal given by this regulator might be too
high for the motor, causing it to slip. So if the DC-motor option could prove
to be viable it would take care of these problems.
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Conclusion

Concluding the project while reviewing the original goals set in Section 1.2, some of
them have been achieved and unfortunately, some have not. Regarding the mechan-
ics all the basic functionality works and as described in Section 8.1 and Chapter 5 the
cart can be programmed to move and all input sensors can be read through software.

The user interface goal was partly reached. It is possible to change controller pa-
rameters trough the code but in no other way. However, the system is ready to be
used for demonstration purposes in its current state if the user has knowledge about
this field.

Regarding the control the simplified state-space simulations in Chapter 7 were suc-
cessful, where an LQR controller was able to balance three pendulums simultane-
ously with position control. However, this was never successfully realised in the real
system or in the simulation developed in Chapter 4 during the time frame of the
project.

The investigation of controllers to be used to control the system will hopefully shed
some light on the control problem of multiple inverted pendulums. The investiga-
tion has, however, not been as substantial as initially intended but did nonetheless
show that for this system there was no success in controlling it using classic control
as explained in Chapter 7, where it was found that it was at best only possible to
control a single pendulum using a PI-controller, but not multiple pendulums.

Unfortunately, the properties of the system have not been investigated to the ex-
tent originally desired. For example, the questions "how much must the pendulum
lengths differ to be able to control the system?" and "what effect does the choice of
system parameters have on the component selection" has not been fully investigated
due to the limited time frame of the project.

As a final word, the entire project can be seen as a semi-success. A mechani-
cally complete system with all the basic functionality has been created which could
act as a possible platform to build upon for future work, which can investigate fur-
ther issues. All software functionality have been successfully implemented and it
was shown by simulation that it is indeed possible to control three pendulums si-
multaneously on the same cart using an LQR controller. Also, one pendulum was
successfully balanced with an LQR controller.
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Figure 56: Drawing of the complete system.
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A. Drawings

Figure 57: Wiring diagram of the complete electrical system.
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A. Drawings

Figure 58: Wiring diagram of the circuits under the electrical cabinet.
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B
Code

Following files are included:
• main.ino
• IOConfig.h
• LGR.h
• LQR.cpp
• rotaryEncoder.h
• rotaryEncoder.cpp
• sensor.h
• sensor.cpp
• DueTimer.h
• DueTimer.cpp

V



1 /*main.ino*/
2 /*      Include files       */
3 #include "sensor.h"
4 #include "IOConfig.h"
5 #include "rotaryEncoder.h"
6 #include "LQR.h"
7 #include "DueTimer.h"
8
9 /*

10 pin7 Port C 23
11 pin6 Port C 24
12
13 PIO_SODR
14 PIO_CODR
15 */
16
17 #define factor 6.3611*pow(10,-5)
18
19 #define S_TO_MS 1000000
20 #define PORT PIOC
21
22 #define DIR_PIN 5
23 #define STEP_PIN 7
24
25 #define MAX_PERIOD 8388480
26 #define PULLY_RADIUS 0.02
27 #define STEP_RES 1.8
28 #define NO_OF_MICRO_STEPS 8
29
30 #define MAX_ROTATION 345    //degrees
31 #define CAL_ANGLE_DEG 10    //degrees
32 #define MAX_VOLTAGE 3.3     //Volts
33
34 #define MAX_POS 100
35 #define MIN_POS 0
36
37 #define Kp -7
38 #define Ki -15
39
40 #define Kp2 0.08
41 #define Ki2 0.3
42
43      
44
45 #define K1 -4.8873       
46 #define K2 -2.0491
47 #define K3 -0.1000
48
49 /*
50 #define K1 -4.8080      
51 #define K2 -2.0159
52 #define K3 -0.0316
53 */
54 long startTime = 0;
55 bool stepActive = false;
56 bool timerStopped = false;
57
58 double lastU = 0;
59 double lastXR = 0;
60 long lastCall = 0;
61
62 double i_part = 0;
63 double i_part2 = 0;
64  
65 /*      Declaring Controllers       */
66 LQR sture = LQR(K1,K2,K3);
67
68 /*      Declaring Sensors       */
69 Sensor left_sensor(1,345,5,0);
70
71 /*      Declaring Stop/Start      */
72 bool go = false;
73
74 /*      Declaring Rotary Encoder      */
75 rotaryEncoder cart = rotaryEncoder();
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76
77 void setup() {
78     Serial.begin(115200);
79     attachInterrupt(digitalPinToInterrupt(PHASE_A), updatePos, RISING); //deklarera interruptet i main 

(innan reglerloopen)
80     
81     Serial.println("Calibrating in 5s");
82     
83     for(int i = 0;i<5000;i++){
84       left_sensor.update();
85       delay(1);
86     }
87
88     left_sensor.calibrate();
89     cart.calibrate();
90
91     Serial.println("Calibrated!");
92     Timer1.attachInterrupt(timerIsr).setPeriod(8000000).start();
93     Serial.println("TSTART");
94     delay(1000);
95     pinMode(DIR_PIN, OUTPUT);
96     pinMode(STEP_PIN, OUTPUT);
97   
98     Serial.println("Init completed!");
99     startTime = millis();

100     lastCall = micros();
101 }
102
103 void loop() {
104   control_Loop_LQR();
105 }
106
107 void testP2(){
108   setSpeed(0.1);
109   delay(1000);
110   setSpeed(0);
111   Serial.println(cart.getPos(),5);
112   while(1){
113     Serial.println("DONE");
114     delay(10000);
115   }
116 }
117
118 //Called when Encpoder increments
119 void updatePos(){
120   cart.calculateDistance();
121 }
122
123
124 void control_Loop_PI(){
125   
126   left_sensor.update();
127   //State vector
128   double theta = left_sensor.getAngleRad();
129   double pos = cart.getPos();
130   double speed = cart.getSpeed();
131
132   double h = (micros() - lastCall)/1000000.0;
133   lastCall = micros();
134   
135   double ref = -pos*Kp2 + (i_part2*Ki2);
136
137   double error = ref - theta;
138   double uC = Kp*error + Ki*i_part;
139   
140   i_part += h*error; 
141   i_part2 += h*(-pos);
142   Serial.print(theta);
143   Serial.print("\t");
144   Serial.print(ref,4);
145   Serial.print("\t");
146   Serial.print(pos);
147   Serial.println("");
148
149   if(millis() > startTime + 1500){
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150     //Serial.println(uC);
151     setSpeed(uC);
152   }
153   
154   if(cart.tooFar){
155     setSpeed(0);
156     Serial.println("CART TOO FAR!");
157     delay(1000);
158   }
159   //delay(1);
160
161 }
162
163 /*
164 pin7 Port C 23
165 pin6 Port C 24
166
167 PIO_SODR
168 PIO_CODR
169
170 #define PORT PIOC
171
172 */
173 double lpFilter2(double oldX, double oldY, double h, double cutOff){
174   return (1-h*cutOff)*oldY + h*cutOff*oldX;
175 }
176
177 /*
178  Called peridicaly by the timer interupt (perido set by 'Timer1.setPeriod()')
179 */
180 void timerIsr(){
181   //Serial.println("*");
182   
183  if(stepActive){
184     PIOC->PIO_CODR |= (1<<23);
185     //digitalWrite(6,LOW);
186  }else{
187     PIOC->PIO_SODR |= (1<<23);
188     //digitalWrite(6,HIGH);
189  }
190  stepActive = !stepActive;
191   
192 }
193 //Testprogramm
194 void maxAcc(){
195 double maxSpeed = 0.5;
196  int axDel = 10;
197  double inc = 0.03;
198  
199  for(double i  = 0;i<maxSpeed;i+=inc){
200   setSpeed(i);
201   delay(axDel);
202  }
203  for(double i  = maxSpeed;i>0;i-=inc){
204   setSpeed(i);
205   delay(axDel);
206  }
207  for(double i  = 0;i<maxSpeed;i+=inc){
208   setSpeed(-i);
209   delay(axDel);
210  }
211  for(double i  = maxSpeed;i>0;i-=inc){
212   setSpeed(-i);
213   delay(axDel);
214  }
215  setSpeed(0);
216  
217  /*
218  setSpeed(5);
219  delay(5000);
220  setSpeed(-5);
221  delay(5000);
222  setSpeed(0);
223  */
224  while(1){
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225   Serial.println("DONE");
226  }
227 }
228
229 void setSpeed(double speed){
230   long stepsPerSec = convertToStepsPerSec(speed);
231   setSteps(stepsPerSec);
232 }
233
234 /*
235  Set nr of steps per second to pulse the stepper, maximum is ~ 10^6 steps per sec.
236 */
237 void setSteps(double stepsPerSec){
238  if (stepsPerSec == 0){
239   Timer1.stop();
240  }else{
241     Timer1.stop();
242   bool dir = 0 < stepsPerSec;
243   unsigned long reqDelay = (1.0/abs(stepsPerSec))*1000000.0;
244   reqDelay = reqDelay/2.0;
245
246   if(reqDelay > MAX_PERIOD){
247    reqDelay = MAX_PERIOD;
248   }
249
250   if(dir){ 
251         PIOC->PIO_SODR |= (1<<25);
252       }else{
253         PIOC->PIO_CODR |= (1<<25);
254       }
255
256   Timer1.setPeriod(reqDelay).start();
257  }
258 } 
259
260 void testStep(){
261   while(1){
262     Serial.println("High speed");
263     setSpeed(0.3);
264     delay(5000);
265     Serial.println("Reverse low speed");
266     setSpeed(-0.1);
267     delay(5000);
268   }
269 }
270
271 double convertToStepsPerSec(double speedM_S){
272   return speedM_S/((factor/1024.0)* 200 ) * NO_OF_MICRO_STEPS  * (1.0/54) ;
273  
274 }
275
276
277 void control_Loop_LQR(){
278   
279   left_sensor.update();
280   //State vector
281   double theta = left_sensor.getAngleRad();
282   double omega = left_sensor.getAngularVelocity();
283
284   double pos = cart.getPos();
285   double speed = cart.getSpeed();
286
287   double h = (micros() - lastCall)/1000000.0;
288   lastU = lpFilter2(lastXR,lastU,h,10);
289   lastCall = micros();
290   lastXR = -sture.getU(pos,speed,theta,omega); 
291
292   Serial.print(theta);
293   Serial.print("\t");
294   Serial.print(omega);
295   //Serial.print("\t");
296   //Serial.print(pos);
297   //Serial.print("\t");
298   //Serial.print(speed);
299   //Serial.print("\t");
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300   //Serial.print(lastU);
301   Serial.println("");
302
303   if(millis() > startTime + 1500){
304     setSpeed(lastU);
305   }
306   
307   if(cart.tooFar){
308     setSpeed(0);
309     Serial.println("CART TOO FAR!");
310     delay(1000);
311   }
312   //delay(1);
313
314 }
315
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1 /*IOConfig.h*/
2 #ifndef _IOConfig_h
3 #define _IOConfig_h
4   /*
5    * These Channels are connected to the angular sensors via a LP-filter at sepecified IO-port
6    */
7   #define CHANNEL_1 10
8   #define CHANNEL_2 2
9   #define CHANNEL_3 4

10
11  /*
12   * These pins are connected to calibrate button and start/stop button on the panel
13   */
14   
15   #define START_BUTTON_PIN 2
16   #define CALIBRATE_PIN  4
17
18  /*
19   * Dir pin and step pin are connected to the stepper driver.
20   */
21
22   #define DIR_PIN 31
23   #define STEP_PIN 33
24  
25  /*
26   * Phase A,B,Z are connected to the rotary encoder via a voltage divider
27   */
28
29   #define PHASE_A 9 //change if necessary
30   #define PHASE_B 11
31   #define PHASE_Z 3
32 #endif
33
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1 /*LQR.h*/
2 #ifndef LQR_H
3 #define LQR_H
4
5
6 #define L1 0.35
7 #define L2 0.58
8 #define L3 0.91
9

10 class LQR { 
11
12   public:
13     LQR(double par1, double par2, double par3);
14     double getU(double pos, double velocity, double angle_1, double omega_1);
15
16   private:
17     double k1;
18     double k2;
19     double k3;
20     double k4;
21     double k5;
22     double k6;
23     double k7;
24   };
25 #endif
26
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1 /*LQR.cpp*/
2 #include "LQR.h"
3
4 LQR::LQR(double par1, double par2, double par3){
5   this->k1 = par1;
6   this->k2 = par2;
7   this->k3 = par3;
8 }
9

10 /*
11 * getU returns the controlsignal based on current states of cart and pendulum
12 */
13
14 double LQR::getU(double pos, double velocity, double angle_1, double omega_1){
15   double u1 = this->k1 * angle_1;
16   double u2 = this->k2 * (omega_1 * L2 + velocity);
17   double u3 = this->k7 * pos;
18   return (u1 + u2 + u3);
19 }
20
21
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1 /*rotaryEncoder.h*/
2 #ifndef ROTARYENCODER_H
3 #define ROTARYENCODER_H
4
5
6 #define WHEEL_RADIUS 0.02688 //m
7 #define STEPS_PER_REV_PHASE_A 1024.0
8 #define factor 6.4516129032258064516129032258065*pow(10,-5)*2  
9 //calibrated factor, corrsponds to number of meters of one pulse from the rotary encoder

10
11 /*Rotary Encoder software representation.
12  *Most parameters and methods need public access. 
13  *In the MAIN file, an interrupt is defined, attatched to the A Phase of the encoder.
14  *When rotating one step, the encoder sends a pulse through phase A.
15  *This triggers the Interrupt Subroutine (ISR), a void wrapper function in main
16  *that ultimately triggers the class method claculateDistance in the
17  *rotary encoder object.
18  *calculateDistance calculates the linear distance that the cart has travelled
19  *and adds or subtracts it to the paramter "pos" [m].
20  *pos is given an initial value upon calibration.
21 */
22
23
24 class rotaryEncoder{
25   
26   public:
27   rotaryEncoder();
28   void calibrate();
29   void calculateDistance();
30   double getPos();
31   double getSpeed();
32   bool tooFar = false;
33
34   private:
35   double pos;
36   double oldPos;
37   double lastCall = 0;
38   
39  
40   
41 };
42
43
44 #endif
45
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1 /*rotaryEncoder.cpp*/
2 #include "rotaryEncoder.h"
3 #include "Arduino.h"
4 #include "IOConfig.h"
5
6
7
8 /*Constructor for the rotary encoder object.
9  * Defines physical pins as inputs; pulses will be sent to these

10  * from the physical rotary encoder.
11 */
12 rotaryEncoder::rotaryEncoder() { //set pins as input for the two phases of the rotary encoder
13 pinMode(PHASE_A, INPUT);
14 pinMode(PHASE_B, INPUT);
15 }
16
17 /*this will be triggered from a void method in main. When a pulse is detected in Phase A,
18  *the position variable will increase or decrease depending on the other phase (B).
19  */
20 void rotaryEncoder::calculateDistance(){  
21
22       if (digitalRead(PHASE_A)) 
23         digitalRead(PHASE_B) ? pos = pos + factor : pos = pos - factor;
24       else 
25         digitalRead(PHASE_B) ? pos = pos - factor : pos = pos + factor;
26   
27   tooFar = abs(pos) > 0.35;
28
29 }
30
31
32
33 /*
34  *Calibration method on ground level.
35  *Given that the cart is in the intended calibration position (any end),
36  *the reference position value will be set here.
37 */
38 void rotaryEncoder::calibrate(){
39   pos = 0; //center
40   }
41
42 /*common getter too keep the pos variable private.
43 */
44 double rotaryEncoder::getPos(){
45   return pos;
46 }
47
48 double rotaryEncoder::getSpeed(){
49   double currentCall = micros();
50   double h = (currentCall - lastCall)/(1000000.0);
51   double speed = (pos - oldPos)/h;
52   oldPos = pos;
53   lastCall = currentCall;
54   return speed;
55 }  
56
57
58
59
60
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1 /*sensor.h*/
2 #ifndef _sensor_h
3 #define _sensor_h
4
5 #include "Arduino.h"
6 #include "IOConfig.h"
7
8 class Sensor {
9   

10   public:
11
12     Sensor(char channel, int max_angle_rotation, char max_voltage, int cal_angle);
13     void update();     //updates the value to retrun by bypassing it through a LP-filter
14     double getAngleDeg();   //return current angle in degrees
15     double getAngleRad();   //return current angle in rad
16     void calibrate();    //Calibrates sensor
17     double getAngularVelocity();    //return angular velocity in rad/s
18     bool isCalibrated;    //True if calibrated, false as default
19
20  /*
21   * Below are private variable used internaly in the Sensor class.
22   */
23   private:   
24     char channel;
25     int lBound_angle;
26     int uBound_angle;
27     int lBound_voltage;
28     int uBound_voltage;
29     int IO_pin;
30     const static char numberOfSamples = 10;
31     double angleRaw[numberOfSamples];
32     double angleRawData;
33     char pointer = 0;
34     double angleRad;
35     double angleDeg;
36     long lastCall = 0;
37     
38     
39 };
40
41 #endif /* sensor.h */
42
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1 /*sensor.cpp*/
2 #include "sensor.h"
3
4 /*
5  * defines used in file, change if needed
6  */
7
8 #define RESOLUTION 16
9 #define CONTINOUS_MODE 1

10 #define ONE-SHOOT_MODE 0
11 #define GAIN 1
12
13 //#ifdef ADC_IN_USE
14 //MCP3428* sensor = NULL;    //Creats a communication with the Analog-Digital Converter
15 //#endif
16
17 double oldVal = 0;
18 double currentVal = 0;
19 double currentRaw = 0;
20 double lastX = 0;
21 unsigned long lastCall_lp = 0;;
22 double m = 0;
23 double speed = 0;
24 double nonFilteredSpeed = 0;
25
26 Sensor::Sensor(char channel, int max_angle_rotation, char max_voltage, int cal_angle) {
27   
28   this->channel = channel;            //Stores channel sensor is connected to (1..4)
29   lBound_angle = cal_angle;           //Stores at which angle the sensor is calibrated along
30   uBound_angle = max_angle_rotation;  //Stores the maximum rotation possible, for P2501A502 and P2501A202

 its 345 deg.
31   uBound_voltage = max_voltage;       //Stores voltage sent from Arduino, preferably 3.3V
32   lBound_voltage = 0;                 //default, use 'calibrate()' for correct value
33   isCalibrated = false;
34
35   analogReadResolution(12);
36
37     switch(channel){
38     case 1:
39       IO_pin = CHANNEL_1;
40       break;
41     case 2:
42       IO_pin = CHANNEL_2;
43       break;
44     case 3:
45       IO_pin = CHANNEL_3;
46       break;
47   }
48 }
49
50
51
52 double getRadFromReading(double x){ 
53   return (((1/16.45)*x)+m)*(PI/180);
54 }
55
56 double getRadFromReadingNoOffs(double x){ 
57   return (((1/16.45)*x))*(PI/180);
58 }
59
60 void Sensor::calibrate() {
61   isCalibrated = true;
62   double sum = 0;
63   int noOfSamples = 70;
64   int nr = 0;
65   for(int i = 0;i<noOfSamples;i++){
66     update();
67     delay(20);
68     if(i>20){
69       sum += currentVal;
70       nr++;
71     }
72     
73   }
74   angleRawData = sum/nr;
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75   m = -(angleRawData/16.45);
76 }
77
78
79 double Sensor::getAngleDeg(){
80  return getRadFromReading(currentVal) * 180/PI;
81 }
82 double Sensor::getAngleRad(){
83  return getRadFromReading(currentVal);
84 }
85
86 double Sensor::getRaw(){
87  return currentRaw;
88 }
89
90 double Sensor::getAngularVelocity(){
91   return speed;
92 }
93
94 double lpFilter(double oldX, double oldY, double h, double cutOff){
95   return (1-h*cutOff)*oldY + h*cutOff*oldX;
96 }
97
98 //Read sensor and update internal variables
99 void Sensor::update(){

100   double w = 10;
101   double h = (micros() - (double)lastCall_lp)/1000000.0;
102   lastCall_lp = micros();
103   oldVal = currentVal;
104  currentVal = lpFilter(lastX,currentVal,h,60);
105  currentRaw = analogRead(IO_pin);
106  lastX = currentRaw;
107   
108   speed = lpFilter(nonFilteredSpeed, speed,h,60);
109   nonFilteredSpeed = getRadFromReadingNoOffs((currentVal - oldVal)/h);
110 }
111
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1 /*
2   DueTimer.h - DueTimer header file, definition of methods and attributes...
3   For instructions, go to https://github.com/ivanseidel/DueTimer
4
5   Created by Ivan Seidel Gomes, March, 2013.
6   Modified by Philipp Klaus, June 2013.
7   Released into the public domain.
8 */
9

10 #ifdef __arm__
11
12 #ifndef DueTimer_h
13 #define DueTimer_h
14
15 #include "Arduino.h"
16
17 #include <inttypes.h>
18
19 /*
20  This fixes compatibility for Arduono Servo Library.
21  Uncomment to make it compatible.
22
23  Note that:
24   + Timers: 0,2,3,4,5 WILL NOT WORK, and will
25       neither be accessible by Timer0,...
26 */
27 // #define USING_SERVO_LIB true
28
29 #ifdef USING_SERVO_LIB
30  #warning "HEY! You have set flag USING_SERVO_LIB. Timer0, 2,3,4 and 5 are not available"
31 #endif
32
33
34 #define NUM_TIMERS  9
35
36 class DueTimer
37 {
38 protected:
39
40  // Represents the timer id (index for the array of Timer structs)
41  const unsigned short timer;
42
43  // Stores the object timer frequency
44  // (allows to access current timer period and frequency):
45  static double _frequency[NUM_TIMERS];
46
47  // Picks the best clock to lower the error
48  static uint8_t bestClock(double frequency, uint32_t& retRC);
49
50   // Make Interrupt handlers friends, so they can use callbacks
51   friend void TC0_Handler(void);
52   friend void TC1_Handler(void);
53   friend void TC2_Handler(void);
54   friend void TC3_Handler(void);
55   friend void TC4_Handler(void);
56   friend void TC5_Handler(void);
57   friend void TC6_Handler(void);
58   friend void TC7_Handler(void);
59   friend void TC8_Handler(void);
60
61  static void (*callbacks[NUM_TIMERS])();
62
63  struct Timer
64  {
65   Tc *tc;
66   uint32_t channel;
67   IRQn_Type irq;
68  };
69
70  // Store timer configuration (static, as it's fixed for every object)
71  static const Timer Timers[NUM_TIMERS];
72
73 public:
74
75  static DueTimer getAvailable(void);

B. Code

XIX



76
77  DueTimer(unsigned short _timer);
78  DueTimer& attachInterrupt(void (*isr)());
79  DueTimer& detachInterrupt(void);
80  DueTimer& start(long microseconds = -1);
81  DueTimer& stop(void);
82  DueTimer& setFrequency(double frequency);
83  DueTimer& setPeriod(unsigned long microseconds);
84
85  double getFrequency(void) const;
86  long getPeriod(void) const;
87 };
88
89 // Just to call Timer.getAvailable instead of Timer::getAvailable() :
90 extern DueTimer Timer;
91
92 extern DueTimer Timer1;
93 // Fix for compatibility with Servo library
94 #ifndef USING_SERVO_LIB
95  extern DueTimer Timer0;
96  extern DueTimer Timer2;
97  extern DueTimer Timer3;
98  extern DueTimer Timer4;
99  extern DueTimer Timer5;

100 #endif
101 extern DueTimer Timer6;
102 extern DueTimer Timer7;
103 extern DueTimer Timer8;
104
105 #endif
106
107 #else
108  #error Oops! Trying to include DueTimer on another device?
109 #endif
110
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1 /*
2   DueTimer.cpp - Implementation of Timers defined on DueTimer.h
3   For instructions, go to https://github.com/ivanseidel/DueTimer
4
5   Created by Ivan Seidel Gomes, March, 2013.
6   Modified by Philipp Klaus, June 2013.
7   Thanks to stimmer (from Arduino forum), for coding the "timer soul" (Register stuff)
8   Released into the public domain.
9 */

10
11 #include <Arduino.h>
12 #if defined(_SAM3XA_)
13 #include "DueTimer.h"
14
15 const DueTimer::Timer DueTimer::Timers[NUM_TIMERS] = {
16  {TC0,0,TC0_IRQn},
17  {TC0,1,TC1_IRQn},
18  {TC0,2,TC2_IRQn},
19  {TC1,0,TC3_IRQn},
20  {TC1,1,TC4_IRQn},
21  {TC1,2,TC5_IRQn},
22  {TC2,0,TC6_IRQn},
23  {TC2,1,TC7_IRQn},
24  {TC2,2,TC8_IRQn},
25 };
26
27 // Fix for compatibility with Servo library
28 #ifdef USING_SERVO_LIB
29  // Set callbacks as used, allowing DueTimer::getAvailable() to work
30  void (*DueTimer::callbacks[NUM_TIMERS])() = {
31   (void (*)()) 1, // Timer 0 - Occupied
32   (void (*)()) 0, // Timer 1
33   (void (*)()) 1, // Timer 2 - Occupied
34   (void (*)()) 1, // Timer 3 - Occupied
35   (void (*)()) 1, // Timer 4 - Occupied
36   (void (*)()) 1, // Timer 5 - Occupied
37   (void (*)()) 0, // Timer 6
38   (void (*)()) 0, // Timer 7
39   (void (*)()) 0  // Timer 8
40  };
41 #else
42  void (*DueTimer::callbacks[NUM_TIMERS])() = {};
43 #endif
44 double DueTimer::_frequency[NUM_TIMERS] = {-1,-1,-1,-1,-1,-1,-1,-1,-1};
45
46 /*
47  Initializing all timers, so you can use them like this: Timer0.start();
48 */
49 DueTimer Timer(0);
50
51 DueTimer Timer1(1);
52 // Fix for compatibility with Servo library
53 #ifndef USING_SERVO_LIB
54  DueTimer Timer0(0);
55  DueTimer Timer2(2);
56  DueTimer Timer3(3);
57  DueTimer Timer4(4);
58  DueTimer Timer5(5);
59 #endif
60 DueTimer Timer6(6);
61 DueTimer Timer7(7);
62 DueTimer Timer8(8);
63
64 DueTimer::DueTimer(unsigned short _timer) : timer(_timer){
65  /*
66   The constructor of the class DueTimer 
67  */
68 }
69
70 DueTimer DueTimer::getAvailable(void){
71  /*
72   Return the first timer with no callback set
73  */
74
75  for(int i = 0; i < NUM_TIMERS; i++){
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76   if(!callbacks[i])
77    return DueTimer(i);
78  }
79  // Default, return Timer0;
80  return DueTimer(0);
81 }
82
83 DueTimer& DueTimer::attachInterrupt(void (*isr)()){
84  /*
85   Links the function passed as argument to the timer of the object
86  */
87
88  callbacks[timer] = isr;
89
90  return *this;
91 }
92
93 DueTimer& DueTimer::detachInterrupt(void){
94  /*
95   Links the function passed as argument to the timer of the object
96  */
97
98  stop(); // Stop the currently running timer
99

100  callbacks[timer] = NULL;
101
102  return *this;
103 }
104
105 DueTimer& DueTimer::start(long microseconds){
106  /*
107   Start the timer
108   If a period is set, then sets the period and start the timer
109  */
110
111  if(microseconds > 0)
112   setPeriod(microseconds);
113  
114  if(_frequency[timer] <= 0)
115   setFrequency(1);
116
117  NVIC_ClearPendingIRQ(Timers[timer].irq);
118  NVIC_EnableIRQ(Timers[timer].irq);
119  
120  TC_Start(Timers[timer].tc, Timers[timer].channel);
121
122  return *this;
123 }
124
125 DueTimer& DueTimer::stop(void){
126  /*
127   Stop the timer
128  */
129
130  NVIC_DisableIRQ(Timers[timer].irq);
131  
132  TC_Stop(Timers[timer].tc, Timers[timer].channel);
133
134  return *this;
135 }
136
137 uint8_t DueTimer::bestClock(double frequency, uint32_t& retRC){
138  /*
139   Pick the best Clock, thanks to Ogle Basil Hall!
140
141   Timer  Definition
142   TIMER_CLOCK1 MCK /  2
143   TIMER_CLOCK2 MCK /  8
144   TIMER_CLOCK3 MCK / 32
145   TIMER_CLOCK4 MCK /128
146  */
147  const struct {
148   uint8_t flag;
149   uint8_t divisor;
150  } clockConfig[] = {
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151   { TC_CMR_TCCLKS_TIMER_CLOCK1,   2 },
152   { TC_CMR_TCCLKS_TIMER_CLOCK2,   8 },
153   { TC_CMR_TCCLKS_TIMER_CLOCK3,  32 },
154   { TC_CMR_TCCLKS_TIMER_CLOCK4, 128 }
155  };
156  float ticks;
157  float error;
158  int clkId = 3;
159  int bestClock = 3;
160  float bestError = 9.999e99;
161  do
162  {
163   ticks = (float) VARIANT_MCK / frequency / (float) clockConfig[clkId].divisor;
164   // error = abs(ticks - round(ticks));
165   error = clockConfig[clkId].divisor * abs(ticks - round(ticks)); // Error comparison needs scaling
166   if (error < bestError)
167   {
168    bestClock = clkId;
169    bestError = error;
170   }
171  } while (clkId-- > 0);
172  ticks = (float) VARIANT_MCK / frequency / (float) clockConfig[bestClock].divisor;
173  retRC = (uint32_t) round(ticks);
174  return clockConfig[bestClock].flag;
175 }
176
177
178 DueTimer& DueTimer::setFrequency(double frequency){
179  /*
180   Set the timer frequency (in Hz)
181  */
182
183  // Prevent negative frequencies
184  if(frequency <= 0) { frequency = 1; }
185
186  // Remember the frequency — see below how the exact frequency is reported instead
187  //_frequency[timer] = frequency;
188
189  // Get current timer configuration
190  Timer t = Timers[timer];
191
192  uint32_t rc = 0;
193  uint8_t clock;
194
195  // Tell the Power Management Controller to disable 
196  // the write protection of the (Timer/Counter) registers:
197  pmc_set_writeprotect(false);
198
199  // Enable clock for the timer
200  pmc_enable_periph_clk((uint32_t)t.irq);
201
202  // Find the best clock for the wanted frequency
203  clock = bestClock(frequency, rc);
204
205  switch (clock) {
206    case TC_CMR_TCCLKS_TIMER_CLOCK1:
207      _frequency[timer] = (double)VARIANT_MCK / 2.0 / (double)rc;
208      break;
209    case TC_CMR_TCCLKS_TIMER_CLOCK2:
210      _frequency[timer] = (double)VARIANT_MCK / 8.0 / (double)rc;
211      break;
212    case TC_CMR_TCCLKS_TIMER_CLOCK3:
213      _frequency[timer] = (double)VARIANT_MCK / 32.0 / (double)rc;
214      break;
215    default: // TC_CMR_TCCLKS_TIMER_CLOCK4
216      _frequency[timer] = (double)VARIANT_MCK / 128.0 / (double)rc;
217      break;
218  }
219
220  // Set up the Timer in waveform mode which creates a PWM
221  // in UP mode with automatic trigger on RC Compare
222  // and sets it up with the determined internal clock as clock input.
223  TC_Configure(t.tc, t.channel, TC_CMR_WAVE | TC_CMR_WAVSEL_UP_RC | clock);
224  // Reset counter and fire interrupt when RC value is matched:
225  TC_SetRC(t.tc, t.channel, rc);

B. Code

XXIII



226  // Enable the RC Compare Interrupt...
227  t.tc->TC_CHANNEL[t.channel].TC_IER=TC_IER_CPCS;
228  // ... and disable all others.
229  t.tc->TC_CHANNEL[t.channel].TC_IDR=~TC_IER_CPCS;
230
231  return *this;
232 }
233
234 DueTimer& DueTimer::setPeriod(unsigned long microseconds){
235  /*
236   Set the period of the timer (in microseconds)
237  */
238
239  // Convert period in microseconds to frequency in Hz
240  double frequency = 1000000.0 / microseconds; 
241  setFrequency(frequency);
242  return *this;
243 }
244
245 double DueTimer::getFrequency(void) const {
246  /*
247   Get current time frequency
248  */
249
250  return _frequency[timer];
251 }
252
253 long DueTimer::getPeriod(void) const {
254  /*
255   Get current time period
256  */
257
258  return 1.0/getFrequency()*1000000;
259 }
260
261
262 /*
263  Implementation of the timer callbacks defined in 
264  arduino-1.5.2/hardware/arduino/sam/system/CMSIS/Device/ATMEL/sam3xa/include/sam3x8e.h
265 */
266 // Fix for compatibility with Servo library
267 #ifndef USING_SERVO_LIB
268 void TC0_Handler(void){
269  TC_GetStatus(TC0, 0);
270  DueTimer::callbacks[0]();
271 }
272 #endif
273 void TC1_Handler(void){
274  TC_GetStatus(TC0, 1);
275  DueTimer::callbacks[1]();
276 }
277 // Fix for compatibility with Servo library
278 #ifndef USING_SERVO_LIB
279 void TC2_Handler(void){
280  TC_GetStatus(TC0, 2);
281  DueTimer::callbacks[2]();
282 }
283 void TC3_Handler(void){
284  TC_GetStatus(TC1, 0);
285  DueTimer::callbacks[3]();
286 }
287 void TC4_Handler(void){
288  TC_GetStatus(TC1, 1);
289  DueTimer::callbacks[4]();
290 }
291 void TC5_Handler(void){
292  TC_GetStatus(TC1, 2);
293  DueTimer::callbacks[5]();
294 }
295 #endif
296 void TC6_Handler(void){
297  TC_GetStatus(TC2, 0);
298  DueTimer::callbacks[6]();
299 }
300 void TC7_Handler(void){
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301  TC_GetStatus(TC2, 1);
302  DueTimer::callbacks[7]();
303 }
304 void TC8_Handler(void){
305  TC_GetStatus(TC2, 2);
306  DueTimer::callbacks[8]();
307 }
308 #endif
309
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