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Abstract

In this thesis the authors have used three different neural network structures, Con-
volutional Neural Network (CNN), Capsule Network and Faster R-CNN, to detect
and classify traffic signs from the German Traffic Sign Recognition- and Detection
Benchmark (abbreviated GTSRB and GTSDB). The networks were implemented
using machine learning libraries for Python such as TensorFlow and Keras. The
results obtained were a classification accuracy of 98.61 % for the CNN and 99.62 %
for the Capsule Network. The aim was to attain results close to the results of the
best network listed at GTSRB, which is 99.71%. Another goal was to use a deep
learning networks to locate and classify a traffic sign within an image. This was done
with an implementation of a Faster R-CNN, which was able to successfully detect
and classify signs with an mAP of 0.56. It was noted that the network was able to
detect most of the signs, however it struggled with classification. For this reason a
version that combined Faster R-CNN with a Convolutional Neural Network trained
on GTSRB was created, which outperformed the Faster R-CNN.

Keywords: CNN, Capsule Network, Faster R-CNN, GTSRB, GTSDB, image recog-
nition, Artificial intelligence, deep learning

Sammandrag

I den har uppsatsen har forfattarna anvant tre olika neurala natverksstrukturer,
Convolutional Neural Network (CNN), Capsule Network och Faster R-CNN, for
att hitta och klassificera trafikskyltar fran German Traffic Sign Recognition- and
Detection Benchmark (forkortat GTSRB och GTSDB). Nétverken implementerades
med maskininldrningsbibliotek for Python, som TensorFlow och Keras. Resultaten
var en klassificeringsprecision pa 98.61 % for CNN och 99.62 % for Capsule Network.
Malet var att fa ett resultat nira resultatet av det bésta listade nidtverket pa GTSRB,
vilket ar 99.71%. Ett annat mal var att anvinda djup maskininlarning for att
lokalisera och klassificera skyltar i en bild. Det gjordes med en implementation
av Faster R-CNN som klarade av att framgangsrikt hitta och klassificera skylter
med mAP pa 0.56. Det noterades att nétverket klarade av att lokalisera de flesta
skyltarna, men hade problem med klassificeringen. Av den anledningen skapades
en variant som kombinerade Faster R-CNN med ett CNN tridnat pa GTSRB, som
overtraffade Faster R-CNN

Nyckelord: CNN, Capsule Network, Faster R-CNN, GTSRB, GTSDB, bildigenkan-
ning, artificiell intelligens, djup maskininlarning
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Abbreviations

ANN Artificial Neural Network

CNN Convolutional Neural Network

conv layer convolutional layer

GTSDB German Traffic Sign Detection Benchmark

GTSRB German Traffic Sign Recognition Benchmark

mAP Mean Average Precision

MNIST Modified National Institute of Standards and Technology
R-CNN Regions with CNN features

SGD Stochastic Gradient Descent
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Introduction

Recent advances in the field of deep learning have made it possible to solve many
previously difficult problems. The most well known examples are perhaps image
and speech recognition, where this method has beaten the previous records set by
other techniques, however the possible applications are many more. Deep learning
has already been successfully applied to such different tasks as predicting the effect
of mutations in DNA and analyzing particle accelerator data [1]. With so many
applications already demonstrated it is evident that this technique has a huge po-
tential and could be applied to a variety of different problems. Another benefit is
that deep learning methods are able to find solutions to problems that are too large
and complex for us humans to understand and solve.

One of the strengths of deep learning methods is that they are good at learning
from large amounts of data, which has been a challenge for other machine learning
models. For deep learning the problem is reversed, a large data set is needed to
get a good performance from the network. Larger amounts of data tend to lead to
better performance. Jeff Dean, head of the Google Brain team, has said that deep
learning methods really starts working well when you have about 100000 examples
or more [2]. A serious challenge associated with large data sets is an increasing
computational load. Recent improvements to especially graphic processing units
(GPUs) and special processing units defined specifically for machine learning, such
as Google’s TPUs, have contributed to great breakthroughs in this area.

When Geoffrey Hinton et al. published a paper [3] in 2006 that showed how to train
a deep neural network with state-of-the-art precision on classifying handwritten
digits, the field started to develop rapidly. Today focus has turned to more complex
problems, for example developing autonomous vehicles. One of the challenges this
industry faces is to reliably interpret information from its surroundings, interpreting
traffic signs is one such fundamental task. Deep learning has since 2010 continuously
set pioneering records both on the ability to detect [4] and classify [5] traffic signs.
Because of their proven strength in the field, this work will investigate and compare
several of these methods. Firstly convolutional neural networks that are the current
state of the art technique for this problem will be discussed, before moving on
to analyzing a new model called Capsule Network that works in a fundamentally
different way:.
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1.1 Aim

The overall aim is to investigate different deep learning models and their appli-
cations. The focus is on implementing neural network algorithms to classify road
signs from the German Traffic Sign Recognition Benchmark (GTSRB) since sign
recognition is an important part for autonomous vehicles. By studying the machine
learning field of neural networks we hope to achieve the goal to reach an accuracy
close to the current highest results. The best result published on the GTSRB data
set is 99.71 % accuracy [6], achieved in 2017. In comparison human performance
corresponds to an accuracy of 98.84 % [7]. More results are available at the GTSRB
web page [8]. In addition to classification, the report also aims to explore road sign
detection on the German Traffic Sign Detection Benchmark (GTSDB).

1.2 Constraints

While it is possible to apply deep learning to detect and classify many types of
objects such as cars and pedestrians, we have decided to only work with traffic
signs. The main reason for this is the availability of a big labelled data set for
this task. We also deem detecting and classifying traffic signs as a task that seems
interesting and sufficiently challenging. The classification task that we will work on
is a single image multi-class classification problem with 43 different classes.

We have decided to only use the GTSRB and GTSDB data sets for validating and
testing our models, since they are sufficient for our purposes. Due to this we are
limited to detection and classification of signs from color images. It is possible to
apply similar techniques for detection and classification of objects from video data
but we have excluded this from the task.

We have decided to only use deep learning methods, even if there are many other
methods that can be used for solving image classification problems, such as Deci-
sion Tree Classifications, Nearest Neighbour and Support Vector Machines [9]. The
reason for this decision is that using deep learning is the current state of the art
method for image recognition tasks.

1.3 Social and ethical aspects

The social and ethical implications of this project is not particularly evident at first
sight. Implementing an algorithm using deep learning methods does not directly
hurt any person nor does it restrict the integrity of anyone. Therefore the question
is rather what the intended use of these methods are, what these implementations
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can be expected to achieve and what raw data is used. For instance, using deep
learning methods to diagnose disease should be beneficial to society, but if it is done
using a persons entire DNA it could be viewed as a breach of privacy. Likewise,
implementing an algorithm that can identify a person by their face or voice could
be beneficial in some cases, but it could also be used as a tool of surveillance. So
in conclusion, as the power of deep learning methods increases so does its potential
to do both good and bad. It should be mentioned that the networks and data sets
used in this project fall in the category of autonomous vehicles, an area which indeed
presents some ethical aspects partly due to the fact that accidents in traffic are bound
to happen. The networks controlling the vehicle would then directly or indirectly be
responsible for the accident, an issue which must be addressed. However, since the
scope of this project does not go to such lengths this is not something which must
be considered in this thesis, but merely if this work were to be developed further in
the future.

One possible societal problem with traffic sign recognition is the possibility for ma-
nipulation and tampering with traffic signs that could lead to networks misclassifying
the traffic signs. Eykholt et al. showed in their paper [10] that it is possible to trick
a deep neural network that a stop sign was a 45 mph-sign with an 85 % accuracy
using just strips of white and black tape. Sitawarin et al. wrote in their paper [11]
that it is possible, using different pixel transformations, to create an adversarial sign
that in a real world scenario would lead to the network classifying the sign with the
adversarial label with an accuracy above 95 %. This shows that it could be possible
to manipulate traffic signs on a large scale so that self driving cars miss-classify them
and take inappropriate decisions. Therefore it is of high importance to develop more
robust and secure systems that are resilient to these kinds of adversarial attacks. It
can also be possible to reach this effect by just manipulating a small subset of the
pixels in a picture, which gives the effect that the picture for a human still clearly
represents the original object but the neural network interprets it as something com-
pletely different. One way to counteract this is to include adversarial images in the
training of the network so that the network can learn how to detect these special
types of manipulated images.

1.4 Disposition

The report has been divided into theory, methods, results, discussion and conclusion.
The theory contains the background needed for understanding the problem and the
implementation. The method explains the specific approach to solving the problem
and the findings are presented in the results chapter. The last two chapters contain
a discussion of the results in relation to the theory and also the final conclusions.
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Theory

In this chapter the theory that this project is built on is presented. First with a
general introduction to how artificial neural networks (ANNs) work and how reg-
ularization methods and preprocessing can be used to improve their performance.
Then the specific network structures used, CNN, Capsule networks and R-CNN, are
introduced. Finally we will present how to evaluate the results.

2.1 Artificial neural networks

An ANN is a computational model intended to resemble a simplified biological brain
[12]. As the name suggests, the model consists of a network of neurons, which can be
thought of as nodes. The nodes in the network are connected with weights, through
which they communicate. Like the neurons in the brain, artificial neurons can learn
information and the learning is related to adjusting the weights in the network [13].

2.1.1 Neurons

Each neuron has one or more inputs and produces after calculations one output.
There are several ways to perform these calculations, the most basic being the
perceptron [14], see figure 2.1. Let the inputs be represented as ; for input number
1, which for a perceptron is binary. Each input is then multiplied by a weight w;
and summed together. After that a bias b is added. A perceptron delivers a binary
output and this is achieved trough the introduction of the Heaviside step function
(2.1).
0 if Y &w;+b<0

= 2.1

where ( is the output of the neuron. The perceptron uses a step function to create
a binary output but another useful function that Nielsen mentions is the sigmoid

4
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@\ Activation
W> | function

Figure 2.1: A schematic drawing of the perceptron. & and w;,i = 1,2,...,n are
the input values and their corresponding weights, b is the bias and ( is the output.

function

1
C:U(2)2@7

where z = Y, &w; +0b, from (2.1). This is a continuous function delivering an output
between 0 and 1. Both the sigmoid function and the Heaviside step function are in
this context called activation functions and introduce a non-linearity to the model

[15]. Another activation function that is commonly used is the rectified linear unit,
ReLU [16]

(2.2)

9(&) = max(0, ), (2.3)

where ¢(£) is the neuron’s output, and ¢ is the input to the neuron from the previ-
ous layer. When combining multiple neurons, the linear combination of non-linear
modules can be thought of as a single multidimensional function. The structure of
the network plays a large role in defining the function.

2.1.2 Network structure

The neurons of a network can be combined in different ways. A common structure
of a neural network is called feedforward network [1]. Tt consists of multiple layers
of neurons, see figure 2.2. The input to the network is processed by the neurons in
the first layer, which then feed their calculated results forward to the next layer, and
so on. The first and last layers are called the input and output layers. Any layer
in between is called a hidden layer. By adding more hidden layers the network can
more efficiently solve more complex problems.

Defining a relevant network structure is however not the only problem that must be
solved. The weights and biases, or simply parameters, must be assigned in a manner
so that the network is able to solve a specific problem. For simple problems in few
dimensions, this can be done by hand. However, when dealing with more complex
problems another approach of finding the correct parameters is needed. One way is
to use supervised learning to let the model adjust its weights .
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Hidden layer

Input Layer

Qutput Layer

Figure 2.2: Basic feed forward artificial neural network, with an input layer, a
hidden layer and an ouput layer. The information travels from left to right.

2.1.3 Supervised learning

Supervised learning is a data driven learning process. The purpose of the learning
process is that the model itself should alter its internal parameters, weights and
biases, to learn the task at hand [1]. The learning is done by training the model
on a data set. In other words, the model is shown data samples together with their
desired output. The model is continuously changing its parameters in order learn
how to predict the correct output associated with each data sample. In order for
the network to evaluate its performance it is necessary to define a measurement of
how well the network is performing. This measurement is called the cost function
or objective function and is described by Nielsen in his deep learning book as the
distance or error between the desired output and the actual output of the network
[14].

2.1.4 Cost function

Multiple choices of cost functions are available, one of which is the quadratic cost
function [14], also known as the mean squared error. The mean squared error is
defined in equation (2.4).

C= o Y- de)P (2.4)
3

where n is the total number of training data, ¢ is the output vector for input &
and d(§) is the desired output [14, 17]. As will be discussed in paragraph 2.1.5, the
gradient of the cost functions plays an important role when updating the weights
and biases and that updates will be proportional to the gradient. A problem is that
when using the quadratic cost function, equation (2.4), and the sigmoid activation
function, equation (2.2), the partial derivatives will be proportional to ¢’(z) where

6



2. Theory

z = > &w; +b. This is an issue since 0’(z) tends to zero quite rapidly when |z| gets

large, which will slow down the learning process [14].

The problem with the quadratic cost function can be combated with another choice
of cost function. One common choice is the cross-entropy cost function [14], which
is defined in equation (2.5).

€= LY [d(Em¢+ (1 —dE) (1 Q). (2.5)
'3

The benefit of this cost function is that the partial derivatives will not be propor-
tional to the derivative of the activation function but rather to o(z) —d(&), the error
in the output [14].

2.1.5 Optimizers

Once the cost has been defined the goal of the learning process is to minimize the
error for the training data. The most common way of optimizing the cost function
is by using gradient descent algorithms. These methods are implemented by step
wise updates of the weight and biases. It starts at some initial point along the cost
function and then moves in a direction determined with the use of the gradient.
Equation 2.6 shows one way of updating the parameters

0 =6—nvC, (2.6)

where ¢ is a vector of the updated weights and biases, 0 is the previous vector of
weights and biases, VC' is the gradient of the cost function with respect to weights
and biases and 7 is a positive parameter called learning rate [14]. These steps are
updated until some convergence criterion is met. For example until the parameter
updates are small. The gradient is either calculated for a subset of data points, this
is called stochastic gradient descent (SGD) or for the whole data set at once, called
batch gradient descent [18]. The choice of batch size is an important parameter
in deep learning optimization. The stochastic gradient descent has the advantage
of being easy to implement and it is fast for problems with a large training set.
However, it also requires a lot of manual tuning and there is often a problem of
finding the right training rate or convergence criteria [19].

The batch gradient have the reverse properties. On the downside it is slower and
require more memory and on the upside it is more stable to compute and it is easier
to find a good convergence criterion. One significant limitation with batch gradient
descent is that the model can get stuck in local minima [20]. The reason is that
the method has guaranteed convergence, which means that an update never leads
to the cost function increasing.

There are a lot of variations that can be used to improve the gradient descent algo-
rithms. The alterations are used to either improve speed or performance. Examples

7
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of improvements is momentum. This accelerates the algorithm by adding a part of
the previous parameter update to the next. It might however decrease performance,
so to counteract this one can use something called Nesterov accelerated momentum
where the gradient is calculated based on previous parameter values. Another com-
mon improvement is to change the learning rate in between the parameter updates.
This is done in optimizers such as AdaGrad, AdaDelta, RMSProp and Adam [20].

2.1.6 Backpropagation

In order to train a neural network using gradient descent it is necessary to compute
the gradient of the cost function, VC'. There are multiple ways to do this, however
the computation must be sufficiently fast in order to be useful. A fast algorithm that
compute the gradient is called backpropagation. In modern applications of neural
networks backpropagation is the dominating method to compute the gradient. The
backpropagation algorithm is in essence just an application of the chain rule for
derivatives. At the core of the algorithm is the insight that the gradient of each
layer can be expressed in terms of the gradient of the next layer [17]. This means
that if we are able to determine the gradient in the last layer we can recursively
propagate back to compute the gradient of the entire network.

First we start by defining the input to a specific neuron, j, as
Tj = Zyiwji> (2.7)

where y; are the output of the neurons connected to j and wj are the weights
associated to these connections. Biases can also be introduced to this input in the
form of an extra connection which always have the output 1 [17]. However, in the
rest of this section biases will be omitted for the sake of simplicity.

Further, we define the output of neuron j as

1

- 2.8
14+e %’ (28)

Yj
known as the sigmoid function. It is possible to choose another function in equation
(2.8), any function with bounded derivative will suffice [17]. The sigmoid function
will remain the definition of the output in this section, but the steps that follow are
easy to generalize to other choices.

With these definitions in place we are ready to proceed to calculate the partial
derivatives of the cost function, as defined in equation (2.4). The first step is to
calculate the partial derivative with respect to each neuron in the output layer,
which yields

oCc

— =y, —d;, 2.9
ayj J J ( )
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where j is a index over all neurons in the output layer and d is the desired output.
Applying the chain rule the partial derivative of the cost function with respect to
the input can be expressed as

oC  aC oy,
L ==.24 2.1
61’]' ay] 833]' ( 0)

Using equation (2.8) to compute Jy;/0x; and inserting the result in equation 2.10
the following expression is reached

oc  oC

D = ay,; Y (1 = y;)- (2.11)
Equation 2.11 describes how the cost function is affected by changes in the input
xj. However, the input is a function of the outputs in the previous layer and the
weights associated to these connections. Consequently is is possible to calculate how
the cost function changes depending on these weights and outputs. Using the chain
rule and definition in equation (2.7) the following holds.

oC  9C dx;  9C
N _817]' y]

and
oc _oC Ox;  OC
Oy;  Ox; Oy Oxy

It is clear from the calculations how to compute the partial derivative, 9C'/dy, for
each neuron in the second last layer given dC'/Jy in the output layer. By repeating
this process for each preceding layer until reaching the input layer and applying
equation (2.12) for each weight in the network, an expression is obtained for the
gradient of the cost function, VC.

2.2 Regularization

One of the main challenges in machine learning is overfitting, which is when a model
adapts too much to the training set and loses its ability to generalize to data [21].
The model learns to find patterns in the noise that can only be found in the training
data and therefore learn things that do not help it generalize to new data [22]. An
example of overfitting can be seen in figure 2.3. There are three main ways to reduce
overfitting, which are using more data, reducing the noise in the training data and
lastly, constraining the model so that it becomes simpler. Constraining the model
in this way is called regularization [21]. Two regularization methods that are often
used in deep learning are dropout and batch normalization [23].
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Figure 2.3: The figure shows two models that have been trained on the data
points. The green line represents an overfitted model and the black line represents
a regularized model. While the green line best follows the training data, it is likely
that the black line will better generalize to new unseen data. From [24]. CC BY-SA
4.0

2.2.1 Dropout

To implement dropout means to randomly ”kill” some neurons, i.e. temporarily
set the output value to 0, during training. The killed neuron will not be able to
pass information, visualized in figure 2.4. This has the effect that the network
cannot depend too heavily on individual neurons since they sometimes do not work
properly. This has been proven to increase networks ability to generalize and thereby
decreasing overfitting [25].

Hidden layer

Input Layer

QOutput Layer

Figure 2.4: Visualization of how dropout works. Two neurons in the hidden layer
are dead, which means they are set to zero. Thus no information will be able to
pass through these neurons and the network has to use other paths.

10
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2.2.2 Batch normalization

A problem with image recognition is the fact that the picture may vary in intensity,
which would be noticeable all through the network. The phenomenon when the
distribution of input changes but the distribution of the output remains the same
is called covariate shift [26]. A way to handle these different input distributions
is using Batch Normalization [27]. Since each mini-batch is different, so are their
distributions. Batch Normalization takes an input, usually a defined batch size,
calculates the variance and the mean and normalizes the data such that the mean
is 0 and the variance is 1. Batch Normalization can be used between different layers
inside of the network.

2.3 Image preprocessing and data augmentation

In order to improve a data set for machine learning purposes, data augmentation
can be used [28]. Data augmentation is based on increasing the size of a data set by
generating new examples from existing ones. The new examples can be generated by
adding different transformations, for example rotation, pixel value shifting, mirroring
and shading, to the original examples. Data augmentation can counteract overfitting
by working as a regularizer.

A preprocessing tool is cropping, which is removing the background of the image by
only retaining the object of interest itself. This reduces the amount of noise in the
image, which can make it easier to classify. A combination of cropping and resizing
makes the data set consist of equally sized images, which only portraits the relevant
object.

2.4 Convolutional Neural Networks

A neural network architecture that has proven very effective at classifying images
is the convolutional neural network [29], and example is shown in figure 2.5. One
motivation for using CNN is that they are invariant to scaling and translation of
features, to some extent. It is achieved by their ability to use the knowledge the
network has learned at all locations in the image. Another reason is that they are
able to combine basic features such as oriented edges and corners into higher level
features.

11
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Input

" Max Pool
Convolution

Fully connected

Figure 2.5: A visualization of the structure of a CNN with a conv layer containing
4 filters, followed by a max pooling layer and a fully connected output layer with 10
neurons.

2.4.1 Convolutional layers

The characteristic building block is the convolutional layer [30]. The convolutional
layer, or conv layer, consists of a number of small filters. A filter is a rectangular
block of weights. Each filter has its own set of weights and bias. The calculations are
performed by letting the filter slide over the input and for each position calculate
an output value, see figure 2.6a. The output is produced as described in section
2.1.1 by summing the element-wise multiplications and possibly adding a bias. An
activation function is then applied where the ReLU function, see equation 2.3, is a
common choice [16]. A reason is that the ReLU activation function provides faster
learning and is cheaper to compute than e.g. the sigmoid function [31].

Apply to
matrix

Result of conv laver

(a) Stride (1,1) (b) Stride (2,2)

Figure 2.6: Depictions of the application of a (2,2) filter to an input, which rep-
resents the operations of a convolutional layer. The activation map is composed
of the output values, which are calculated for each filter position by performing
element wise multiplications and summing the results. Figure 2.6a and figure 2.6b
corresponds to stride (1,1) and (2,2).

12
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The output for each filter will be a two-dimensional activation map. Thus the total
output is three-dimensional if there is more than one filter. The size of the output
can vary depending on how how many steps, or strides, the filter is moved after each
calculation. In figure 2.6a a (1,1)-stride is used, which means that filter is shifted
one step at a time. A (2,2)-stride would result in the filter moving two steps instead,
which can be seen in figure 2.6b.

After successful supervised training the filters will start to react to certain features
[30]. For example one filter might create large outputs when covering straight edges
in an image, while another might react to the color blue.

2.4.2 Max pooling

Another building block that is used in convolutional layers is the max pooling layer
[30]. It works similarly to the conv layer in the sense that it consists of a filter.
However this filter does not perform any matrix calculations. It simply outputs the
largest value of the input that the filter covers, as can be seen in figure 2.7. The
filter is then applied to the rest of the input step by step. This technique makes
the convolutional network less sensitive to where in the image a feature is presented
[32]. At the same time a lot of information is lost.

Figure 2.7: Max pooling done with a (2,2) filter and a (2,2) stride. The max
pooling will take the highest value in each stride and create a new down sampled
matrix.

2.4.3 Fully connected layers

Convolutional networks usually start with conv layers and max pooling layers fol-
lowed by fully connected layers [30], which have the structure of an ordinary feed
forward network. The last layer, or output layer, of a network with the task to
classify an image will have as many output neurons as there are possible classes.
The activation function for the last layer is the softmax function [33],

9(x); j=1.,N (2.14)

= 422‘\[:1 exk Y
where g(x); is the output of the j:th neuron, and x; is the input to the j:th neuron.
The softmax function produces a vector with values between 0 and 1 for each class
with the total sum of 1. This value can be interpreted as how confident the network
is that the input belongs to each class [34].
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2.4.4 Capsule Network

Capsule Networks are a new network architecture that was first introduced in Octo-
ber 2017 by Sabour et al. [35]. The theory for the networks was developed further
in a paper published by the same authors in the beginning of 2018 [36]. One of
the main difference between Capsule networks and earlier network architectures is
that they contain a new building block called capsules [37]. A simple way to de-
scribe capsules are to say that they are a group of neurons. Capsules add another
dimension of structure in the network. Neurons build capsules, capsules build layers
and layers build networks. As mentioned in section 2.1.1, a neuron takes multiple
scalars as input and outputs one scalar. This is different in the capsules since they
handle vectors instead of scalars. Similarly to the neuron, the capsule can for ex-
ample represent an entity in an image. As the capsule has vectors, the dimensions
of the vectors can encode poses of the entity [35]. The poses can for example be
position, contrast or deformation. One common way of visualizing the advantages
of a capsule network is by looking at an image of a face with the eyes placed on the
chin and the mouth placed on the forehead. A basic CNN has no built in structure
that cares about the relation between the eyes, mouth and face. A capsule network
handles these relations. Consider the case when a specific capsule in a layer repre-
sents the nose entity and a capsule in the next layer represents the face entity. The
face capsule then predicts where the face should be in relation to the nose. If that
prediction agrees with the actual position of the face, and all other face entities also
agree, then the capsule activates. Capsule networks also handle different viewpoints
this way and that is one of the reasons that capsule networks generalizes better than
CNN [35].

W; A Capsule j
Uy —— U; Cqj
1 1 1]
Coj
. A ]
Uy _Wzl_., Uj|2 —»| Sum Squash —_—
(33]
W3; A

ug —3 5 U3

Figure 2.8: Calculations in a capsule. The input vector u is multiplied with
a transformation matrix W;; thus producing a prediction vector @;;,. Then the
prediction vector is multiplied with the scalar coupling coefficient ¢;;. The vectors
are then summed and the squash function is applied to produce an output with
length between 0 and 1.

The mathematical implementation of the capsules is shown in figure 2.8. The total
input s; is calculated as a weighted sum of the prediction vectors 1i;; from the
previous layers. The prediction vectors are calculated by multiplying the output
vector u; from the previous layer with a weight matrix W;;,

Sj = Zcijﬁﬂi, w;; = Wiju,. (2.15)
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where ¢;; are coupling coefficients that are calculated by something called dynamic
routing, which will be explained later. The weight matrices W;; are learned by
performing back-propagation. A non-linear activation function is applied to the
total input to the capsule to make sure that the output vector from the capsule has
a length that can be interpreted as a probability. The function that is used is a
squashing function that ensures that short vectors get their length transformed to
be close to zero while long vectors get their size transformed to be slightly under 1,
as follows
sl s
L+ syl lIs; 1

where v; is a vector output from capsule j and s as described in equation (2.15).

; (2.16)

In conventional CNNs the pooling layers are used to ensure invariance in the network,
i.e. a small change in input does not change the output [37]. The capsule network
does not implement pooling. This is due to the fact that the pooling looses valuable
information about the pose of the entities. To solve the problem of invariance,
dynamic routing is introduced. Dynamic routing is an algorithm resulting in the
coupling coefficients ¢;; seen in figure 2.8. Max pooling in CNN essentially means
that the neurons in a deeper layer looks at a group of neurons in the previous layer
and takes into account the ones that produce the highest output and disregarding all
other. In comparison, the dynamic routing sends the information from a lower layer
capsule to the capsule in the next layer that can account for that information. To
give an intuition behind this the following example can be examined. A circle shape
can be sent to a capsule for a bicycle but it is not going to be sent to a boat capsule.
This is done by the coupling coefficients that are trained by the dynamic routing
algorithm. In short, the algorithm looks at what lower lever capsules that agree
tightly, i.e. has the same direction of the output vector, and assigns large values of
the coupling coefficients to those input vectors that have the same direction [35].
The capsule network shown in figure 2.9 consists of one convolutional layer and two
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Figure 2.9: Example of a Capsule Network structure used to classify digits. It
consists of one initial conv layer, two capsule layers and a decoder network at the
end. From [35]. Reproduced with permission.

capsule layers, PrimaryCaps and DigitCaps, and is designed for classification. The
convolutional layer extracts features which the first capsule layer then combine to be
able to detect more complicated structures. The dynamic routing algorithm is run
between the two capsule layers. It is the length of the output vectors from the final

15



2. Theory

capsule layer that describe the probability that the input belongs to the different
classes and the direction of the vector describes the different poses of the image.

One regularization technique usually used in Capsule Networks is to use the activity
vector from the correct digit capsule to reconstruct the input image [35]. This is done
by using a decoder that consists of fully connected layers that try to reproduce the
image from the activity vector. This reconstructed image is then used to calculate
a reconstruction loss, this loss is scaled down to ensure that it does not dominate
the classification loss while training. The reason for introducing this reconstruction
loss is to encourage the capsules in the last layer to encode the information needed
to recreate the digit.

One restriction with Capsule networks is that they take longer time to train than
CNN and other more conventional network structures, but this can in some cases
be outweighed by the benefit they give by being able to produce better results with
less training data [35].

2.5 Networks for object detection

For tasks that only involves classification using networks, such as CNNs and Capsule
Networks, works well. However, for tasks that involve detection, that is predicting
the location of an object, as well as classifications there is a need for other designs.
This section introduces new types of networks that meet these requirements.

classifier

Rol pooling

2 &

AN
proposalsj v ;

Region Proposal Network,

feature maps

conv layers /

77—

Figure 2.10: Illustration over the structure of Faster R-CNN showing how the
classification and region proposal networks shares the same feature map. From [38].
©2017, IEEE. Reproduced with permission.
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The most straight forward way to tackle the object detection problem would be to
take advantage of the CNN and feed that CNN with a bunch of random regions
from the original image. The proposed regions could either be hard coded or chosen
by some object proposal algorithm, for instance selective search [39]. This is the
foundation behind the method called Regions with CNN features (R-CNN). In ad-
dition to a CNN the R-CNN uses a couple of non-ANN techniques for classification
and tightens the bounding box, namely a support vector machine (SVM) and linear
regression [39]. R-CNN fulfills all requirements mentioned above, the only problem
is that this model is rather slow.

To increase the speed a modified version called Fast R-CNN was introduced in a
paper from 2015 [40]. As described by this paper a Fast R-CNN mainly differs
from a regular R-CNN in two ways. First of all, instead of passing each proposed
region separately through the CNN the image is just passed once as a whole and
then all region proposals shares the same feature map. For each proposed region the
features are then extracted by selecting the corresponding region from the shared
feature map. The SVM is also replaced with a softmax layer after the CNN and
the linear regressor is replaced with an ANN regressor layer. This means that all
outputs are computed by a single network, instead of three different parts as with
the R-CNN [40].

| 2k scores | | 4k coordinates | <mm  kanchor boxes
cls layer ‘ t reg layer
| 256-d |
t intermediate layer

=

sliding window:

conv feature map

Figure 2.11: Figure illustrating how sliding windows and anchors are used in
the region proposal network to generate proposed regions of interest. The cls layer
scores each proposal and the reg layer regresses the bounding box. From [38]. ©2017,
[EEE. Reproduced with permission.

Another improvement to the R-CNN-based networks is called Faster R-CNN, which
removes the selective search used by the earlier version [38]. By using the features al-
ready calculated by the CNN to make region proposals, instead of a separate method
looking at the original picture, speed was increased further. This means that Faster
R-CNN uses the same feature map for both region proposals and classifications. The
general structure is illustrated in figure 2.10. The region proposals are generated
by what is called a Region proposal network (RPN) that both generates suggested
bounding boxes and scores how likely each box is to contain an object. The RPN is
a fully convolutional network that slides a window over the feature map and for each
window position the network gives k possible bounding boxes. These k proposals
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for each position are predefined and called anchors. Each anchor is centered in the
middle of the sliding window and is defined by an aspect ratio and a scale. This
means that each of the k£ anchors is a box with a specific aspect ratio and size, se-
lected to match what shapes the object of interest are expected to have. The region
proposal network is illustrated in figure 2.11. For each proposed box from the entire
feature map there is an associated score, indicating how likely the network thinks it
is that this box will contain an object of interest. These suggested regions are then
passed to a Fast R-CNN that will give the final output, bounding boxes, classes and
confidence scores.

2.6 Evaluating the results

There are several ways to evaluate the results from a neural network. One way is
to define a performance metric which assigns a number to the performance of the
network. Several common performance metrics will be introduced as well as two
ways of visually evaluating the performance of a network.

2.6.1 Precision, Recall and F}-score

For data sets with class imbalance, large variations of the number of examples for
each class, it can be problematic to use accuracy as the only performance metric
[41]. The reason for this is that it tends to undervalue how well classifiers are
doing on smaller classes. The reason for this is that it is calculated by dividing
the total number of correct classifications with the total number of classifications,
and therefore doesn’t take into consideration that the size of the classes can differ.
To counteract this the two performance metrics precision and recall can be used to
calculate how well the model performs on each class. Precision is defined as the
percentage of predictions that are correct and recall is defined as the percentage of
positive instances that are correctly classified. Increasing one of these measures leads
to the other one being reduced, so a suitable balance between these two measures
has to be found. A convenient way to do this is to combine them into a single metric
called the Fi-score. The Fj-score is defined as the harmonic mean of precision and
recall, using the harmonic mean ensures that a large Fj-score is only achieved when
both recall and precision are high. It is defined as

recision - recall
F=2.7F

precision + recall”
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2.6.2 Mean average precision

When working on a task that involves both segmentation as well as classification it is
not as clear how the performance of the network should be measured. For instance,
it is not self evident how a percentage of correct classifications should be defined.
One measurement often used for classification and segmentation networks is called
mean average precision (mAP). The exact definition can vary slightly, however in
this report the definition from Pascal VOC is used and it is described below [42].

Precision and recall are two measurements used to compute mAP and the definition
is presented in section 2.6.1 with the addition that in a classification and detec-
tion task it is not enough that the predicted class is correct. The overlap between
the predicted and actual bounding boxes must also be sufficiently large. The ac-
tual bounding box of an object within an image is usually called the ground truth
bounding box. Intersection over union (IoU) is the measurement used in the Pascal
VOC definition and it must be larger than 0.5 for a prediction to be considered true.
The mathematical definition of IoU is as follows

IoU — area(B, N By) | (2.17)
area(B, U By)

where B, is the predicted bounding box and B, is the ground truth box.

The average precision (AP) is then defined as the mean precision at eleven different

recall levels. 1

AP = ﬁ Z pinterpol(r)a (218)
re{0.0, 0.1, ..., 1.0}

where pinterpor is the interpolated precision of a given recall level, that is if there is
a higher recall level with better precision that value is used instead. The definition
of this is

Pinterpol (") = max p(7), Y7 > r (2.19)

where p(7) is the precision corresponding to recall 7.

The average precision is computed for each class in the test set and our desired
measurement, mAP, is simply the mean of the average precision for each class.

2.6.3 Confusion matrix

In a machine learning problem with many classes to classify it can be a good idea to
see if a class is recurrently mistaken for another. This is visualized by the confusion
matrix [41]. The confusion matrix is a n by n matrix, where n is the number of
classes. It shows for each column which output is correct and for each row the output
of the network. In a perfectly trained network, one would expect every element of
the confusion matrix to be zero expect the non-zero diagonal elements. This would
mean that all data had been correctly classified [43].
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2.6.4 Class clustering

There are numerous problems with evaluating and visualising a neural network.
A neural network normally has a lot of parameters. To visualize how a network
classifies is thus a multidimensional problem. For example: To be able to visualize
the content of a 1000 dimensional vector, one needs to de-dimensionalize the 1000-
element vector into a 2- or 3-D vector. There are several methods for doing this
e.g. principal component analysis [44] (PCA) and t-distributed stochastic neighbor
embedding (t-sne), the latter requires that PCA has been used first to reduce the
number of dimensions partially to be able to converge [45]. Using a dimensionality
reduction technique allows the user to cluster an intangible amount of information
into something interpretable.

It is also possible to gain some intuition on the information in a high dimensional
room by using a K-Nearest Neighbor classifier (K being an arbitrary positive num-
ber). This technique calculates the norm of the difference between a given input
vector and every other vector in the data set. The K vectors corresponding to the
lowest norm - the so called nearest neighbors - are then used for predicting the class
of the input vector. The predicted class is calculated as the mode of the classes of
the nearest neighbors [15].
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Methods

In this chapter our approach to solving the problems is presented starting with a
description of how our networks were designed. The software and computational
resources used are later described. While trying to obtain good results for the GT-
SRB data two different network structures, a regular CNN and a Capsule Network
were implemented. Each network had its own preprocessing and data augmentation
developed. Furthermore this chapter also describes the implementation of a Faster
R-~-CNN to solve the detection problem.

3.1 Optimizing the conventional CNN structure

In order to find a network structure well suited for the GTSRB data set we decided to
start with a simple model architecture, which would be improved iteratively part by
part. The CNN MNIST Classifier! is a network that has been proven to work on the
MNIST data set, a set of grey scaled handwritten digits [46]. With regularization
the CNN MNIST Classifier has achieved over 97% accuracy on the test data set
from MNIST. The architecture of the network is based on the following pattern:
C5(32) — P2 — C5(64) — P53 — D(1024) — D(10), the notation is described in section
3.1.1. The network was trained on the GTSRB data set in order to confirm that
it is able to learn how to classify traffic signs. The result was a 91.6% accuracy on
the test set after 40 epochs training and with a batch size of 200, which lead us to
believe that a similar structure could perform well after tuning. When training a
CNN, 20% of the training set was randomly selected to be used as validation set.

!TensorFlow Tutorial describing the network: https://www.tensorflow.org/tutorials/
layers (available May 14 2018)

21


https://www.tensorflow.org/tutorials/layers
https://www.tensorflow.org/tutorials/layers

3. Methods

3.1.1 Network structure notations

To be able to write the structure of the networks in a compact manner, we have
created a notation that describes each layer.

Cnumber of strides
flter size (number of filters/neurons)

The letter indicates what kind of layers it is: C-convolutional, P-Pooling, D-dense
(fully-connected). The superscript is omitted if number of strides is equal to one.
The filter size is always quadratic with same depth as the depth of the input to the
layer. The number of filters/neurons is the number of filters used for a conv layer
and the number of neurons used for a dense layer.

A simple example can be visualized in figure 2.5. A structure of a CNN can be
denoted C5(4) — P? — D(10). It is a network with a convolutional layer as the first
layer with a (5,5) filter, with stride (1,1) and 4 different filters. Followed up by
a pooling layer with a stride (2,2) and (2,2) filter. The last layer is a dense layer
(fully-connected) with 10 neurons.

3.1.2 Used network architectures

Eight different networks similar to the CNN MNIST Classifier were created (see
Table 3.1). Due to limited computing resources deeper neural networks with even
more convolutional layers could not be trained efficiently. Network structures with
more than four conv layers were consequently refrained from. Since some of these
networks still are larger than the CNN MNIST classifier they are more computa-
tionally expensive. In order to avoid memory issues smaller batch sizes were used
during training. Every network was trained three times with different batch sizes;
5, 10 and 20. The reason for this was to receive more information of the networks
performed. The chosen optimizer was SGD with a learn rate of 0.01 and the loss
function used was categorical cross-entropy. Each training was interrupted when
the validation loss stopped decreasing.

Network 4 in table 3.1 performed the best out of the eight different networks and
was selected for further improvement.

3.1.3 Regularization to mitigate overfitting

Our intention was to increase the ability of the network to learn how to generalize,
i.e. learn the features of the different classes rather than features beloning to the
training set. For that reason batch normalization and dropout were implemented in
network 4. Each regularization method was allowed to be used on either the conv
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Table 3.1: Different variations to the architecture of the CNN MNIST Classifier.
Specifically there are variations to filter sizes and layer configurations.

Network number | Architecture

C5(16)-P2-C5(32)-P2-D(1000)-D(500)-D(43)
C5(16)-P2-D(500)-D(43)
Cs5(16)-Cs(32)-P2-Cs (64)-C5(128)-P2-D(1000)-D(500)-D(43)
C;(16)-C;5(32)-P2-C5(64)-C;(128)-P2-D(1000)-D(500)-D(43)
C3(16)-C5(32)-P2-Cs5(64)-C5(128)-P2-D(1000)-D(500)-D(43)
C5(16)-Cs5(32)-P2-Cs(64)-C5(128)-D(1000)-D(500)-D (43)
16)-C4(32)-P2-C4(64)-C4(128)-D(1000)-D(500)-D(43)
16)-C3/(32)-P2-C5(64)-C3(128)-D(1000)-D(500)-D(43)

00 ~1 O UL A W N —

Cy(
Cs(

layers, the fully connected layers, the whole network or not at all. In order to find
the best combinations 16 different networks covering all possible structure variations
were defined. Each network was trained repeatedly with different dropout rates (see
Table 3.2).

Table 3.2: Parameter values for training different iterations of network 4 from
Table 3.1.

Batch size | Epochs | Optimizer | Learn rate | Loss function | Dropout rate

10/15 |30 SGD 0.01 Categorical 145 0.4 /0.6
cross-entropy

Following the patterns observed more tests were conducted. The two different reg-
ularization techniques seemed to have different effects on the performance of the
network depending on where in the network they were applied. We chose to restrict
how the regularization methods could be applied and focused on the configurations
that performed best in the previous test. On that account batch normalization was
limited to the conv layers and dropout was only allowed in the fully connected layers.
The four network variations that are viable with these constraints were trained with
batch size 15 for 10 epochs, first using 50% dropout with 0.01 learn rate and then
40% drop out with 0.02 learn rate. No other change was made to optimizer or loss
function. The next step would be to chose one model and train it extensively using
a smaller learn rate, in order to let the learning process carefully try to find optimal
values of the parameters of the network. We decided to use the model which made
use of both batch normalization and dropout. The reasoning behind this was that
prolonged training can lead to the model overfitting [47]. Since the application of
these methods did not seem to lower the overall performance of the network, other
than decreasing the learning speed, there was no disadvantage in using it.

A comprehensive training was then performed on the network with both batch nor-
malization and dropout active. The training time was increased to 100 epochs and
the learn rate was lowered to 0.005. The batch size was kept at 15 and the dropout
rate was slightly lowered to 37%. The reason for lowering the dropout rate was that
a previous network, which was trained with a dropout rate of 40%, did not show
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Figure 3.1: The structure of the final network. Each box represents the dimension
of the data at every layer and the arrows refer to the operations done by the layers
of the network. Dropout and batch normalization has not been visualized.

signs of overfitting. Therefore we decided to lower the strength of the regularization
used.

Results showed that among the missclassified images some classes were over-represented.
In order to further increase the performance we started using data augmentation to
enlarge the training set and provide the network with more data, especially of the
classes with fewer original images. The network was trained using the extended data
set, see section 3.4.1. Due to more data per epoch, the training time was lowered to

50 epochs. Remaining parameters were unchanged.

Since the model was training on a larger data set, the risk of it overfitting was
reduced [21]. Therefore we tried to increased the size of the network to see if it
was able to generalize better with the help of more neurons. Additional filters were
added to some conv layers and the number of neurons in the fully connected layers
was increased. This network, see figure 3.1, can be expressed as

C5(16) — C5(32) — P2 — C5(96) — C3(256) — P2 — D(2048) — D(1024) — D(43).

Batch normalization is applied after each conv layer and dropout is present before
every fully connected layer. Information regarding the training of this network can
be seen in Table 3.3. Lastly, the model was trained several times in order to obtain
multiple results. Consistent results would strengthen the argument that the model
performs well on the data.

Table 3.3: Parameter values for training different iterations of a C5(16)-Cs5(32)-
P2-Cy(96)-C(256)-P2-D(2048)-D(1024)-D(43) network

Batch size | Epochs | Optimizer | Learn rate | Loss function | Dropout rate

15 75 SGD 0.005 Categorical
cross-entropy

0.37
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3.2 Implementing Capsule Network

A Capsule Network implementation in Keras made for MNIST[46] and based on
Hinton’s paper [35] was used as a starting point?>. The only difference is that the
size of the input images is changed to fit the GTSRB dataset and that there now is
43 digit capsules to handle the 43 different classes. This meant in the encoder having
one initial convolutional layer followed by two capsule layers, as well as a decoder
network with three fully connected layers to handle reconstruction regularization.
The architecture is displayed in figure 2.9. To be able to systematically validate the
results of our network, 20% of the training data was taken to be used as a validation
set. The used network needed all input images to be of the same size, so since the
images in GTSRB had varying sizes they had to all be re-sized to the same size.
By taking into account the distribution of image sizes and computational load it
was decided to resize all images to 32x32. There were large contrast differences
in the images. To counteract the negative effects this has on the result contrast
normalization was used.

To increase the performance of the network different changes were systematically
done to the network, changing one part at a time, to ensure that the reason for
the increased result could be clearly understood. The training time was between 4-6
hours, mainly since the network had approximately 21 million learnable parameters,
which restricted the number of changes that could be tested. It was decided to not
perform any initial data augmentation. The main reason was to investigate the
property that Capsule Networks are supposed to be able to better generalize from
smaller data sets than conventional methods.

The first thing examined was mini batch sizes and number of epochs. By trying
different batch sizes it was found that an optimal batch size was around 30, for
following training runs a batch size of 30 was used. Running 40 epochs ensured
that the network had converged, but it might lead to overfitting so if the validation
accuracy was higher for an earlier epoch this result was used instead. In some cases
we reduced the number of epochs to reduce training times, by running multiple
different settings with lower number of epochs it is still possible to test their relative
performance. By then running the best alternative for higher number of epochs it
is still possible to get the optimal result.

Initially there was a small difference between the validation accuracy and the training
accuracy. The performance on the test set was however significantly lower than on
the validation set. A way to reduce the gap between the validation and test accuracy
can be to increase the size of the validation set. Since the gap between the validation
and test accuracy was the largest we started by trying to increase the size of the
validation set by doing 40/60 and 25/75 validation/training splits, but both of these
led to lowering the test accuracy.

2GitHub repository for the implementation. https://github.com/XifengGuo/CapsNet-Keras
(available May 14 2018)
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The optimization algorithm used at the start was Adam. We decided to try differ-
ent optimization algorithms since this leads to different speeds of convergence and
finding minimas with different accuracies. To find the optimal one the optimization
algorithm was changed but everything else was kept exactly the same. The differ-
ent optimization algorithms that were tried were SGD, SGD with momentum, SGD
with nesterov momentum, Adam, AdaGrad, AdaDelta, RMS-prop and Nadam. The
one that gave the highest test accuracy was RMS-prop.

Our network still overfitted, the best ways to counteract this is to use regular-
ization techniques. Regularization techniques work especially well to reduce the
gap between training and validation accuracy. The main techniques that were im-
plemented initially were batch normalization and dropout at different places in the
network. We started by introducing a 50% dropout after both fully connected layers
but this lead to a small reduction in the test accuracy. Introducing batch normal-
ization after the first convolutional layer, and after two first fully connected layers
lead to an improved result.

We then performed improved preprocessing in MATLAB instead of in Python. We
still only performed normalization but were able to implement it more effectively.
Then it was tested to use ELU [23] and SELU [48] activation functions instead of
using the ReLLU activation function.

Finally it was decided to perform more data augmentation to try and increase the
performance even further. One of the benefits with Capsule Networks is that they
are supposed to be able to perform better with lower amounts of data, but the goal
is now really pushing the network and wanting to reduce in essence almost all errors.
Since the distribution of classes was skewed it was decided to look at the F1-score to
see which model performed better. By looking at the F1-score for the different classes
it was possible to see which of the classes that were most commonly misclassified.
Using data augmentation to bolster the number of instances of these classes was
attempted to improve the performance for these classes. The data augmentation we
used was by rotating all weak classes as well as horizontal and vertical flipping for
classes with fitting symmetries. To improve the results even further the average of
the output over different training runs using different data augmentation. This is
called ensemble learning [5] and often increases the accuracy of the classifier as long
as the predictors are independent, meaning that they make different types of errors.

3.3 Faster R-CNN retraining an existing network

While our Capsule Network and conventional CNN are good at classifying specific
classes they lack the ability to find an object within an image and mediate the
objects position. For this reason a different kind of network, namely the Faster
R-CNN, was selected for implementation. Since the Faster R-CNN is a complicated
neural network, it was decided to use an API provided by Tensorflow, the Tensorflow
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Object Detection API, which provides scripts for training and evaluation as well as
predefined and pretrained networks®. For the GTSDB task an implementation called
"Faster R-CNN inception v2 coco”, which is a Faster R-CNN trained on the COCO
data set, was chosen. This means that the network initially was able to detect and
give positions and classes for the objects that belong to the classes included in the
COCO data set, e.g. cats and humans [49]. For the network to be able to detect and
classify the traffic signs, it had to be retrained on the GTSDB data set, this is called
transfer learning [50]. The main reason for selecting this particular implementation
is that it is the fastest implementation available from TensorFlow’s object detection
API. Very few alterations were made to the hyperparameters of the network as we
expected that our task was similar enough to the COCO task. However, since all
bounding boxes in our task are approximately squares, we removed all other aspects
ratios when generating anchors. It was also necessary to change the number of
classes to match our task, that is the number of neurons in the output layer. The
entire configuration file is included in appendix A.

The network was initially trained on the original training set up to 150000 steps.
Because of the relative small size of the original training set it was decided not to
split the training set into training and validation sets. Therefore evaluation was
only performed on the test set.

After 150000 steps we could draw two conclusions, the mAP appeared to be saturat-
ing and we could determine from the evaluation that the detection of signs worked
very well but the classification often was incorrect. We therefore decided to take
two actions to improve the performance. The training set was extended using the
method described in section 3.4.2 and in order to preserve what the network had
learned so far, the training was continued with the extended set on the network
that was saved after 150000 steps. The network was trained on the extended set for
an additional 100000 steps. As another effort to improve the performance a variant
that combined Faster R-CNN with the best performing CNN network trained on the
GTSRB set was created. This variant used the Faster R-CNN to generate bounding
boxes and cropped that part of the image for classification by the CNN.

3.4 Explanation of used data sets

The data we have used comes from two different data sets, GTSRB and GTSDB.
Both of which contains images of German traffic signs, where the difference is that
GTSRB only contains cropped images of the actual signs whereas the GTSDB set
contains images of the entire road and surroundings.

3Github repository for the Object Detection API: https://github.com/tensorflow/models/
tree/master/research/object_detection (Available May 14 2018)

“The model can be downloaded from Tensorflow detection model zoo. https:
//github.com/tensorflow/models/blob/master/research/object_detection/g3doc/
detection_model_zoo.md (available May 14 2018)
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3. Methods

3.4.1 The GTSRB data set for classification

GTSRB contains images of road signs belonging to 43 different classes. The set is
divided into a training set, containing 39209 images and a test set containing 12630
images. The image size is ranging from 15x15 pixels to 250x250 pixels, and to each
picture coordinates on the exact location of the sign is provided [51].

The classes of the GTSRB data set are unevenly distributed. A histogram of the
occurrence of the different classes is shown in figure 3.2a [51].
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(a) Distribution before augmentation (b) Distribution after augmentation

Figure 3.2: Figure 3.2a shows the histogram of the classes for the original training
data attained from GTSRB webpage. Figure 3.2b shows the histogram of the classes
after augmentation where all elements of a corner in the RBG matrices were set to
zero. More images were created if the class was underrepresented, added to the
original data-set.

An uneven data set could lead to biased results in the network, since predicting a
often recurrent class will yield a better result no average than a class that is un-
derrepresented. To smooth the distribution of the different classes we implemented
a function that set all elements of the RBG matrices in a corner that is a quarter
of the picture to zero. This operation makes that one quarter of the image black.
For classes that are underrepresented (below 800 images) four images were created,
each picture with a different corner where the pixels were set to zero. If the class
had an acceptable number of images (between 800 and 1300), two new images were
created, one with the upper left corner and one with bottom right corner blackened.
Lastly, the category with too many classes (more than 1300 original pictures) got
one random corner blackened. This implementation increased the training data set
from 39209 to 113425 images. This smoothed the distribution as seen in 3.2b and
was the extended data set used in the CNN.
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3.4.2 The GTSDB data set for object detection

GTSDB contains 900 pictures, divided into 600 training images and 300 test images.
Each picture is 1360x800 pixels in size and contains between 0 and 6 traffic signs,
all of which belongs to the same classes as GTSRB. As the name reveals the focus
on this data set is to detect where in the image a sign is located. The original focus
on this data set was only to be able to detect the signs and not classify them [52].
For each picture in the data set there are information of the signs position given as
a 4-tuple (position upper left corner, position lower right corner) and to which class
the sign belongs. The images in the data set also includes traffic signs belonging
to classes not included in the set and our algorithm will therefore not be trained to
detect them [52].

As with the GTSRB data set the GTSDB data set is also unevenly distributed, with
regard to classes, as can be seen in the histogram of figure 3.3a [52].
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Figure 3.3: Histogram of the classes occuring in the used data sets for object
detection. Figure 3.3a shows the distribution of the original GTSDB data set and
figure 3.3b shows the distribution after augmentation.

In order to smoothen the distribution of the classes of the GTSDB data set we
decided to created new images containing traffic signs. Each picture including the
same information as the original images i.e. a 4-tuple with the position of each
traffic sign in the picture and also which class the traffic sign belongs to. A pool
of 25 background pictures none of whom contains any traffic signs was used to
create the new images. One of these background are chosen randomly together with
an integer 0 to 6, which decides how many traffic sign should be included in each
picture. The classes of the chosen traffic signs were then randomly selected from a
probability distribution designed to get an even final distribution of occurrences for
all classes, in contrast to the very uneven distribution seen in 3.3a. More explicitly
this distribution gave a probability of class n being chosen as P, = ﬁ, where
O,, stands for the total number of occurrences of class n in the original data set.

The images of traffic signs were all taken from the GTSRB data set. The traffic
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signs were then randomly distributed in the background image. To prevent traffic
signs to be positioned in the sky of the background image, this random position was
only permitted to be chosen from a manually predefined accepted area. Lastly, the
sharp edges between the traffic sign-crop and the background picture is smoothed
by multiple Gaussian blurres. More explicitly a small Gaussian blur filter was used
along the edges of the cropped traffic sign. This procedure was then done multiple
times for incrementally bigger filter sizes, until the background and the edges of
the cropped traffic sign at least visually seemed to blend together. We created 600
images and added to the original training data set, thus doubling the training set
to 1200 pictures with a class distribution shown in figure 3.3b.

3.5 Software and setup

To implement the neural networks Python libraries Tensorflow and Keras were used.
Tensorflow and Keras are specifically developed for implementing machine learning
algorithms. A few additional Python libraries as well as MATLAB are used for
preprocessing, augmentation and evaluating the results.

The CNN and Capsule Networks used for classification of the GTSRB images we
trained on a computer with a GeForce GTX 1060 with 3 GB GDDR5 GPU, while
the faster R-CNN is trained on Google Cloud’s Machine Learning Engine®. When
training on Google Cloud no GPU is used as CPU proved to be more cost efficient.
Exact clock speed is not provided but the memory capacity is 15 GB. The main
reasons to use Google Cloud when training the Faster R-CNN was that a graphic
memory of 3 GB would have been insufficient.

SWebpage for Google’s Cloud Machine Learning Engine: https://cloud.google.com/ml-
engine/ (available May 14 2018)
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4

Results

In this section the results from the three different networks, CNN, Capsule Network
and Faster R-CNN are presented. The best accuracy on the test set for the CNN
was 98.61 % and 99.62 % for the Capsule Network. The Faster R-CNN proved to be
good at finding signs while struggling with classification. The combined classifier
improved the performance compared to the pure Faster R-CNN.

4.1 CNN on par with human accuracy

Upon training the eight different models in table 3.1 to find the best architecture,
every model managed to achieve more than 98% accuracy on the validation set for
at least one of the three batch sizes used, see table 4.1. Network 4 achieved the
highest validation accuracy on all three tests.

Table 4.1: The validation accuracy of eight different network structures, see table
3.1, after training using different batch sizes. All other parameters are fixed.

Network | 5 10 20

1 0.9487 0.9886 0.9751
2 0.9870 09770 0.9739
3 0.9910 0.9801 0.9862
4 0.9935 0.9901 0.9867
5 0.9837 0.9860 0.9828
6 0.9910 0.9872  0.9625
7 0.9861 09704 0.9707
8 0.9921  0.8977  0.9807

Observations from tests using different regularization techniques show mainly that
dropout works best on the fully connected layers. The three best performing net-
works for each dropout rate do not implement dropout on the convolutional layers,
see table 4.2. The results also show that batch normalization provides good results
when applied to the conv layers.
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Table 4.2: Different use of regularization on network 4 from table 3.1 ranked by best
performance on the validation set with a batch size of 15. The interpretation being:
the architecture for the best performing network with a dropout rate of 20 % is when
dropout is used on the fully connected layers together with batch normalization on
the convolutional layers.

Ranking | Dropout rate | 20 % 40 % 60 %
1 Dropout Fully connected | None None
Batch norm. | Convolutional Convolutional Convolutional
2 Dropout None Fully connected | Fully connected
Batch norm. | Convolutional Convolutional Convolutional
3 Dropout None Fully connected | None
Batch norm. | None Everywhere None

Further testing on the four selected architectures, with more restrictions on how
regularization is used, show that any of the allowed combination of these techniques
perform better than the network without any regularization. This is easiest seen in
figure 4.1b and 4.1a, which shows the loss function and validation accuracy of the
network after each epoch of training. There is a distinct gap between the network
without any regularization, represented by the blue line, and the other three net-
works. This gap can not be seen as clearly in figure 4.2 but it is noticeable that the
dropout takes more time to train compared to other network without dropout and
that batch normalization speeds up training.
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Figure 4.1: Graph showing the validation accuracy and loss of the four different
models after each epoch of training. The networks were trained with batch size 15,
a learn rate of 0.02 and dropout rate of 40%.

The training process of the selected network with batch normalization on the convo-
lutional layers and dropout on the fully connected layers can be seen in figures 4.3a
and 4.3b. The results when evaluated on the test set can be found in table 4.3. The
confusion matrix containing the predictions of the network is visualized in figure
4.4. The network had problems accurately classifying class 27, Caution Pedestrian,
which it classified as class 1, Speed Limit 30, almost half the time. Training the
same network on the extended data set increased its performance. After increasing
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Training results
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Figure 4.2: Graph showing the validation accuracy of the four different models
after each epoch of training. The networks were trained with batch size 15, a
learning rate of 0.01 and a dropout rate of 50%.

the size of the network and once again training it on the extended data set the test
accuracy was slightly increased, see third row in table 4.3. The final network now
classifies class 27 correctly, as can be seen in appendix B figure B.1. A comparison
between the training and validation results, see figures 4.5a and 4.5b, show insignifi-
cant levels of overfitting. Performing seven additional separate trainings of the final
network showed that the model consistently achieves similar scores. This average

score is however slightly lower than that of the first iteration, see fourth row in table
4.3.
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Figure 4.3: Training and validation accuracy and loss of the regularized network.
The network was trained with batch size 15, a learn rate of 0.005 and dropout rate
of 37%.

Table 4.3: Test accuracy and loss of the regularized and the final network. The
average result of an ensemble of eight retrained instances of the final networks is
also shown. The networks were trained with batch size 15, a learn rate of 0.005 and
dropout rate of 37%.

Network Data set  Epochs Test Accuracy Test Loss
Regularized Original 100 98.14 % 0.0891
Regularized Extended 50 98.58 % 0.0616
Final Extended 75 98.61 % 0.0763
Final (average of 8 networks) Extended 75 98.49 % 0.0962
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Figure 4.4: Confusion matrix of the regularized network. Each row represents the
predicted class and the columns indicate the true label. The network was trained
with batch size 15, a learn rate of 0.005 and dropout rate of 37% for 100 epochs.
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Figure 4.5: Training and validation loss and accuracy of the final model. The
network was trained with batch size 15, a learn rate of 0.005 and dropout rate of

37%.

34



4. Results

Besides accuracy and loss, it is of interest to analyze what the network is learning
to conclude if it is robust. Figure 4.6 shows the 1024-dimensional vectors of the last
dense layers, after PCA and t-sne was applied. The figure seems to show evidence
that the network is performing clustering by class in this layer. Supporting evidence
of this is given in table 4.4.
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Figure 4.6: Visualization of the 1024-dimensional dense layer vectors correspond-
ing to every image in the test set, color coded according to the image class. The
dimensions were reduced using PCA and t-sne. The scatter plot suggests that the
network manages to cluster the traffic signs according to their classes, a fact that
could help explain why the prediction accuracy is relatively high.

Table 4.4: K-Nearest neighbor prediction accuracy in the 1024-dimensional feature
space after the last dense layer, using all images in the GTSRB test set. The results
supports the class clustering hypothesis, see figure 4.6.

Accuracy, L1-norm | Accuracy, L2-norm
1-Nearest neighbor | 99.64% 99.63%
5-Nearest neighbor | 99.48% 99.45%
10-Nearest neighbor | 99.04% 98.92%

Another important result is to look at how certain the network is when predicting
classes. As can be see in figure 4.7 the network is often close to 100% certain of its
choice, including the times where it incorrectly predicted a class. Another metric
that gives some sense on how close the network was to predict the right class in cases
where it failed is top-X accuracy, see table 4.5. The results in the table suggests
that the network manages to find important information about the true class even
for misclassified images.
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Table 4.5: Top-X test accuracy for X=2, 3, 4 and 5. At least for some instances it
seems that the network is close to predicting correctly, even thought it misclassified
the image.

Test accuracy
Top-2 | 99.29 %
Top-3 | 99.57 %
Top-4 | 99.66 %
Top-5 | 99.74 %
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Figure 4.7: Graph (a) shows the predicted class score for every correctly classified
image (observe the logarithmic scale). Almost every correct classification is done
with close to 100% certainty. Graph (b) shows the incorrectly classified images.
When the network misclassifies an image, it does it with a slightly lower certainty
between 50-100%. Graph (c) shows the prediction score for the correct class for
every misclassified image. It seems that the network is certain in its predictions, no
matter if it ends up being correct or incorrect.
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The distribution of the weights in each layer is shown in figure 4.8. Due to batch
normalization the weights in the network should not grow large, which the figure
also suggests is the case. All weights seems to follow a Gaussian distribution.
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Figure 4.8: The normalized weight distribution for each layer in the CNN. Each
layer’s normalization is calculated independent from the next. The figure seems to

suggest that all weights follow a Gaussian distribution.

Striving for an efficient network includes that all neurons should be active at least
once, with the definition of active as any number larger than 0. The distribution of
how often neurons in layers are active is shown in figure 4.10. A further investigation
of the dead neuron phenomena shows that there are only 17 out of 68736 neurons
in the model that never activate for any of the 12630 test images - less than 0.025%
- and every neuron is inactive at least once. All the inactive neurons arise from the
same filter in the first conv layer, see figure 4.9.

Number of times each neuron has been activated

0

5

10

15

20

25
0 5 10 15 20 25

Figure 4.9: Number of times each neuron was activated given all 12630 images,
shown for the activation map containing all 17 dead neurons.
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Figure 4.10: Histogram of how often the neurons are active when feeding the test
set of 12630 images. Active is defined as any number larger than 0. In all layers
except the first conv layer most of the neurons are active between 1000 and 10000
times. In the first conv layer the majority of neurons are active less than 1000 times.
The only neurons that never activate, and thus are considered dead, all lie in conv
layer 1.

By looking at a specific neuron’s receptive field for those images that maximizes its
output, one can see what features activates the neuron. In figure 4.11 five neurons’
receptive fields in four different layers of the CNN are shown. It is evident that the
given neuron activates for images that contain similar information, which strength-
ens the conclusion that the convolutional filters are looking for specific features. It is
also clear that filters deeper in the network are looking for bigger structures (which
is implied by the fact that the receptive field enlarges) with more complex features,
which is what the theory predicts.

It is also possible to learn what explicit features in an image are crucial for classifi-
cation by iteratively occluding parts of the image and trying to classify the image
after each occlusion, an example from this procedure is shown in figure 4.12. The
heat map on the right hand side of the image correspond to the prediction score as
a function of what part of the image was occluded. The occlusion tests consistently
showed that distinct parts of the traffic signs are crucial for classification.
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Figure 4.11: The five patches of an image within a certain neurons receptive field
that maximally activated said neuron. The top row corresponds to a neuron in
the activation map after the first convolutional layer, the second row to the second
convolutional layer and so on down to the fourth layer. Each column represents a
different picture.

Original Image Maximal occlusion Prediction score with occlusion
— ] ] [ B

20 204

Figure 4.12: A representative example from the occlusion tests performed to in-
vestigate which features are crucial for classification of images. The figure seems to
suggest that the image gets misclassified as soon as the road worker is occluded. If
only the background, or parts of the traffic sign’s edge, is covered then the prediction
score does not change at all.
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4.2 Capsule Network state of the art performance

The result using the initial implementation explained in 3.2 was a training accuracy
of 99.99%, validation accuracy of 99.86% and a test accuracy of 98.47%. The result
after each epoch of training can be seen in figure 4.13. This was with a 20/80
validation /training split. Since this already gave a training accuracy close to 100%
it was concluded that the architecture of the network was suitable since it could be
seen that it gave the network the ability to learn the relevant features.
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Figure 4.13: Accuracy and loss after each epoch of training for the initial imple-

mentation. This gave a final training accuracy of 99.99%, validation accuracy of
99.86% and test accuracy of 98.47%.

Different optimization algorithms were tested and RMSprop achieved the best vali-
dation accuracy as can be seen in table 4.6. Then batch normalization was used after
the first convolutional layer and the two first fully connected layers in the decoder
which gave the result seen in figure 4.14.

Table 4.6: Comparing different optimization algorithms for Capsule Network. RM-
Sprop gave the best performance, shown in bold.

Training Accuracy | Validation Accuracy
Adam 99.99% 99.86%
Nadam 99.97% 99.83%
Adagrad | 90.25% 95.23%
RMSprop | 99.99% 99.92%

After implementing improved contrast normalization a test accuracy of 99.35% was
achieved, displayed in figure 4.15. The SELU activation function lead to a reduced
test accuracy while the ELU activation function lead to a small increase to a test
accuracy of 99.36%.
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Figure 4.14: Accuracy and loss after each epoch of training when using RMSprop
and batch normalization. This gave a final training accuracy of 100%, a validation
accuracy of 99.94% and a test accuracy of 99.02%
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Figure 4.15: Accuracy and loss after each epoch of training after applying improved
contrast normalization. This gave a final training accuracy of 100%, a validation
accuracy of 99.98% and a test accuracy of 99.35%
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By performing data augmentation and using an ensemble method, where the average
of networks with individual Fl-scores of 99.33%, 99.35% and 99.52% was taken, it
was possible to reach a final F1-score and test accuracy of 99.62%, which means that
only about 50 of the 12630 test images where wrongly classified, with the accuracy
for many of the classes being 100%. Table 4.7 and figure 4.16 displays the result.

Table 4.7: Accuracies with different augmentation and with an ensemble method.

Training Acc. | Validation Acc. | Test Acc.
Augmentation 1 100% 99.99% 99.33%
Augmentation 2 100% 99.99% 99.35%
Augmentation 3 100% 99.99% 99.52%
Ensemble method | 100% 99.99% 99.62%
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Figure 4.16: Accuracy and loss after each epoch of training for the network that
achieved highest accuracy without using an ensemble method. This gave a final
training accuracy of 100%, a validation accuracy of 99.99% and a test accuracy of
99.52%

For the version that gave a test accuracy of 99.52% of our Capsule Network, the
weights in the different layers where distributed as shown in figure 4.17. The result
of the reconstruction part of the network is shown in figure 4.18, where fifty traffic
signs were run through the decoder. The figure provides some evidence for that the
network has learnt to synthesise the most important class features in the DigitCaps,
since the decoder manages to recreate recognizable images. Lastly, another thing
to analyze in the Capsule Network is what each dimension of a capsule output
represents. To do this for the capsules in the DigitCaps layer, the decoder is fed
with a vector that is shifted one dimension at a time. The reconstructed images will
then show what the different dimensions encode. Figure 4.19 shows the result of the
manipulated vectors. The result seems to suggest that different dimensions control
e.g. contrast, sharpness and brightness. The confusion matrix for the network with
test accuracy of 99.62% is displayed in figure 4.20.
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Convolutional layer First capsule layer Second capsule layer
9 9
8 8 - 8
7 7 - 7
6 6 - 6
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Figure 4.17: Weight distribution of the first 3 layers of the capsule network.

Figure 4.18: Input traffic signs and the corresponding reconstructed images by the
decoder network. The real are on the upper half of the image and the reconstructed
on the lower half.
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Figure 4.19: Manipulated images created by the decoder part of the network. The
images are created by manipulating each of the 16 dimensions in the input vector
to the decoder part of the network. One dimension is shifted by ten different values
ranging from -0.25 to 0.25. The original reconstruction is in the middle and the
negative shift is on the left and the positive are on the right.
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Figure 4.20: Confusion matrix for the final version of Capsule network that gave
99.62% test accuracy. Each row represents the predicted class and the columns
indicate the true label.
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4.3 Faster R-CNN shows promising detection but
classification proved harder

The most important measurement of the performance of the Faster R-CNN is mean
average precision (mAP) and figure 4.21a shows mAP as a function of training steps.
When training on the original GTSDB training set the mAP increased continuously
up to 100000 steps and decreased slightly at 150000 steps. Given that this corre-
sponds to a 50 % increase of training this indicates that the network is close to its
maximum performance. After 150000 steps training was continued on the extended
set and mAP increased once again and showed no sign of flattening when training
was terminated at 250000 steps with a mAP of 0.56.
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Figure 4.21: (a) mAP values for Faster R-CNN trained on the original and ex-
tended GTSDB training set. (b) Precision-Recall (PR) curves for faster R-CNN
trained on the original and extended GTSDB training set respectively. PR curves
for two combined networks that use our GTSRB CNN for classification are also
displayed in the figure.

To illustrate what mistakes the network is making three example output are shown
in figures 4.22 and 4.23. To generate this output, a confidence score threshold of 0.5
was used and the maximum numbers of predictions included for each input picture
is limited to 20. As can be seen in figure 4.22, the network makes all three types
of possible errors: incorrectly predicts the presence of a sign where there is none,
fails to find signs in the picture and predicts the wrong class when it finds a correct
bounding box. When going through a larger sample of outputs it is clear that the
network finds most of the signs and the dominating issue is that the predicted class is
incorrect. It is also evident that the network performs much better on some classes,
for instance Priority road and Give way, than it does on others, such as the different
speed signs. It should also be noted that this corresponds in some extent to the
distribution of the training set. The same pattern is repeated when going through
the output after training on the extended set, exemplified in figure 4.23. The main
issue is still that the network finds most signs but assigns incorrect classes. However,

45



4. Results

given the increased mAP-score the issue is evidently smaller.

In order to compare the performance of Faster R-CNN with our combined classifier,
Precision-Recall (PR) curves for both methods were created and are displayed in
figure 4.21b. Ideally the PR-curve should enclose an area equal to one, which would
correspond to the network never making any false prediction while simultaneously
finding and classifying all signs in the test set correctly. As can be seen in the
figure, precision as a function of recall is higher for the combined classifiers except
for the lowest and highest recall levels. In total the curve for the combined classifiers
encloses a significantly larger area then the corresponding Faster R-CNN. It is also
worth noting that the curve for the Faster R-CNN trained on the extended set is
higher as expected given the higher mAP. It is also clear from the figure that the
combined classifier increased the performance to approximately the same extent,
when based on the networks trained on the original and extended set respectively.
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Figure 4.22: Example output from the test set after training the Faster R-CNN
model for 150000 steps on the original training set. In the top image it can be seen
that the network makes a correct prediction of the Priority road sign and it does
find both 70-signs. However the speed signs are wrongly classified as 60 and 30. In
the middle picture the network does not find the 50-sign. In the bottom picture the
stop-sign and keep right-sign are both predicted correctly, however in the left part
of the picture the presence of a sign is wrongly predicted.
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Figure 4.23: Example output from the test set after training the Faster R-CNN
model on the extended training set. In the top image the model incorrectly predicts
the Volkswagen-logo as a sign. In the middle image the Priority road sign is correct,
but the network classifies the 70-sign as a 50-sign. In the bottom image the network
fails to find and classify the left stop sign.
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Discussion

In this section the results are discussed. We set out to implement neural networks
that should perform close to the best listed accuracies for GTSRB and both networks
achieved good results. We also had an aim to explore object detection and we
managed to implement a working detection network, using a Faster R-CNN.

5.1 The simple CNN structure is able to find com-
plex features

The process of improving our network started with altering the structure and tuning
the hyperparameters. Upon reaching a satisfactory model we implemented data
augmentation as described in section 3.4.1. As can be seen in table 4.3, training
on an extended data set significantly reduced the test error. The gap between the
training and validation curves presented in figure 4.3 suggests slight overfitting on
the training set. When training the final model using the extended set this gap
greatly reduced, see figure 4.5. A conclusion that can be made is that by increasing
the amount of data we managed to reduce overfitting, which consequently led to
higher general performance of our model.

The way we augmented the training set might not have been the most efficient. By
trying out different methods the results might have been improved further. The
augmentation we used, in which we removed one corner of the picture, might train
the network to find sharp edges that are non-existent in the test set. Other data
augmentation that could have been used is flipping some signs that are symmetrical,
rotate the picture or use some whitening transformation. To analyze the network
more in depth we visualized every misclassified image, together with its predicted
class and confidence level. 25 out of the misclassified images are illustrated in figure
B.2. The first observation that can be seen is that most of the misclassified images
seems to have a very high or a very low contrast. This implies that we would
probably be able to increase our test accuracy if we had used contrast normalization
as a preprocessing method. It is also evident that many of the misclassified images
are very alike, for example the three Priority road signs illustrated in figure B.2. A
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reasonable assumption thus is that of the misclassified images, it is only a fraction
that correspond to distinct flaws - the majority is just more instances of the same
issue.

Another important step in our networks architecture was the implementation of
batch normalization, which reduced both the training time and the risk of the model
diverging. The result of this is that the updates of weights remain small. A Gaussian
distribution of the weight values, seen in figure 4.8, indicates that the network uses
all of its parts. A distribution centered around a negative value would indicate that
most of the neurons, since we are using the ReLU activation function, would be
dead i.e. equal to 0. This is not the case for us, which is confirmed when we look at
how often the neurons were active when feeding the network the 12630 images from
the test set, see figure 4.10. From the distribution it is clear that our network does
not suffer from a dead neuron issue, since most of the neurons are active for about
half of the inputs and only 0.025% are dead. All dead neurons are all caused by the
same filter in the first convolutional layer, see figure 4.9. In this case the filter seems
to look for features that never exist in the middle of any traffic sign, but relatively
often in the corners - which suggests that it might be looking for round edges or
other peripheral details. No neuron in the feature map was active for more than
3% of the input images, suggesting that the searched feature is rather rare as well.
Lastly, another interesting phenomena is that a majority of the neurons in the first
conv layer only activate a few times, as can be seen in figure 4.10. According to the
theory this first layer should be searching for sixteen low level features - one feature
for each filter - such as straight lines or curves of different colors, a statement that is
supported by looking at figure 4.11. An explanation to the distribution for the first
layer is thus that these sixteen low level features only cover a small part of the input
images. This is not surprising, since a traffic sign consist of a lot more than just -
for example - a red surrounding circle. Taking this one step further it might even
be possible to conclude from the distribution for the first layer that only a small
portion of the pixel information in the traffic signs are relevant for classification.
This statement is supported by the observations from the occlusion test, see figure
4.12, which will be discussed further in a later paragraph.

The final network is on par with human performance, 98.84% [7], which is strongly
verified when examining the misclassified images. It is evident that the average
human eye would have a hard time doing a better job than our classifier on most
of those images, since many of them are severely blurred. However, some images
are very easily classified manually but missed by our network. Once again the three
Priority road signs can be used as an example, see figure B.2. In these cases we
can suspect that the classifier has a hard time due to that parts of the sign is
blocked or partly shaded. This is supported by the occlusion test performed on a
correctly classified Priority road sign, which clearly showed that the most important
feature for classification of this class is the big yellow patch. This fact in itself is not
surprising because only a few classes have any yellow features at all which means
that this corresponds to a distinct trait for the Priority road class.

50



5. Discussion

It is also interesting to analyze the distribution of the networks prediction score, as
seen in figure 4.7. From it we can clearly see that every time the network correctly
classifies an image it does so with a very high (close to 100%) certainty. To some
extent this seems to be the case for misclassified images as well. However, we can
clearly see that there are instances where a misclassification was accompanied with
a low certainty score, sometimes as low as 20%. This could mean that the network
in those cases might be almost equally certain on another - possibly correct - class.
However, the rightmost graph in figure 4.7 clearly shows that this in fact is not the
case - since for most of the misclassified images the network gave a very low (close
to 0%) prediction score for the correct class. In short: The classifier almost every
time claims to be very confident, no matter if it is correct or incorrect. With that
said there are some instances that were incorrectly classified but nevertheless got a
high score for the correct class - the most extreme case gave a prediction score of
49% on the correct class and 51% on the incorrect class. Another indication that
the network might have learnt and found important features even in cases where
it ended up misclassifying an image is given by table 4.5. The fact that the top-3
accuracy score is as high as 99.57% suggest that the network is not too far from
performing on par with the state-of-the-art networks.

To get a understanding for what the network is learning at the last dense layer we can
analyze the meaning of figure 4.6 and table 4.4. The strong evidence of clustering
given in the figure suggests that the layer is synthesizing core characteristics for
each class, which is not an unrealistic conclusion since it is this vector that precedes
classification. Further evidence that clustering in this layer is crucial for classification
can be found by interpreting what the last weight matrix does. This is because it is
a linear matrix operation, which could in some sense be interpreted as dividing the
1024 dimensional room into 43 subspaces with hyperplanes. Bad clustering would
thus mean that images corresponding to a certain class would end up in the wrong
subspace which would lead to them being misclassified. Lastly, the high classification
scores given in table 4.4 indicates that this clustering is not only present, but also
effective.

To visualize what features the convolutional filters have learned to detect we used
multiple approaches. The results were consistent and proved that the filters are
indeed trained to look for very well-defined features, as shown in figure 4.11. It
was also very consistently shown that deeper layers are looking for more complex
structures, whilst the first convolutional filters are looking for mostly edges and
straight lines of different colors. Figure 4.11 suggests for example that the first
filter chosen in this illustration seems to be looking for red upward sloping lines,
the second filter is looking for red arches and the third and fourth filter are looking
for parts of white circles, enclosed by a red arch with black digits in them. The
third filter seems to only look for the number 8, whilst the last layer searches for
the number 80. Figure 4.12 further strenghtens the conclusion that the filters are
extracting valuable information from features. In this case it is evident that the
existance of the road worker seems to be the deciding factor in the classification of
the image. It is also interesting that the prediction score does not lower if any other
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parts of the traffic sign is occluded, suggesting that the network is robust against
partial occlusion from shade or other objects. Overall the occlusion test gave results
that implied that the network has learned to look for the same features as the human
eye, such as the numbers on a speed sign or the explanatory object in the middle of
a warning sign.

5.2 Capsule Network performs well outside of the
simple MNIST data set

The main goal with our capsule network implementation was to reach an accuracy
close to the current highest accuracy for GTSRB. This was accomplished by getting
an test accuracy of 99.62% which is only 0.09% lower than the current highest
accuracy which of May 13 2018 is 99.71% [8].

Another interesting result was how well the initial implementation performed, by
using a network originally created for MNIST we were able to achieve a training
accuracy of 99.99% and a validation accuracy of 99.86%. One reason for this is the
similarities in the two data sets, many similar features can be found in both data
sets, especially for the traffic signs which contain numbers. This also shows Capsule
Networks ability to generalize and that the same network structure can give good
results on different data sets. One reason for this might be that Capsule Networks
take in regard both features and pose.

The first results had a gap of 0.13% between the training and validation accuracy,
this shows that the network to a small extent overfitted to the training set. Since
the network has a high number of learnable parameters, about 21 million, it is not
unexpected that it is able to overfit to the training set. We assume that the main
reasons that it does not overfit more to the training set is the decoder loss which
gives the network a built in regularization and that the training is run for a suitable
number of epochs. By finding a optimization algorithm that is better suited for our
data set and by introducing additional regularization through batch normalization
and data augmentation it was possible to remove the overfitting and get a validation
accuracy that converged to approximately the same level as the test accuracy, as
can be seen in figure 4.16. Figure 4.17 shows that the weights in the layers dose not
diverge indicating a stable network.

As the theory section on capsule networks explains, the capsules learns poses as well
as features. This fact becomes clear from our results. If we look at the triangular
signs in figure 4.18 then we see that the reconstructed images are rotated to the same
position indicating that the network handles different viewpoints. By examining
figure 4.19 we see that there are dimensions of the capsule vectors handling poses
such as contrast, color intensity and blurriness. Since the data set consists of image
classes that are similar in shape and vary more in color shifts, i.e the background
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is different or the image is overall darker or brighter, then we can expect that these
poses are going to be represented more in the capsules. Figure 5.1 is from Hintons
paper on dynamic routing [35]. It shows how the corresponding manipulations are
done on a capsule network trained on the MNIST [46] data set.
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Stroke thickness 5 5 5 5 5 5 5 E\) L’) :“ <

Width and translation , ) ) } } 3 3 } 3 3 3
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Figure 5.1: Image from Hintons paper on dynamic routing. The letters are cre-
ated by the decoder part of a capsule network trained on the MNIST data set. It
displays the different poses that the network encodes. From [35]. Reproduced with
permission.

Here we see that the poses like bending, rotation and thickness is represented more.
Because the MNIST data set tends to vary more in those features it is understandable
that that will be shown in the poses. The conclusion is that the poses of the capsules
are being determined based on the varying poses in the data set. This means that
the Capsule Network is able to extract and learn different types of poses that are
important to differentiate the classes in the data set.

5.3 Capsule Network outperforms CNN at the
expense of training time

The obtained results clearly show that our implemented Capsule network which gave
a test accuracy of 99.62% outperformed our implemented CNN which gave a test
accuracy of 98.61%. The main challenge with implementing a good CNN for our
problem was finding an optimal network architecture and hyperparameters. For the
Capsule network the initial architecture and hyperparameters tuned for the MNIST
data set worked well for GTSRB as well, so there the main challenge was instead to
counteract overfitting. This shows that the capsule network needed less tuning of
network architecture and hyperparameters to perform well on the GTSRB data set.

We also saw that the Capsule Network took approximately 6 hours to train which
was significantly longer than the 1.5 hours it approximately took to train the CNN
network. One main reason for this is that the Capsule network had approximately
20700000 trainable parameters while the CNN had approximately 10000000 train-
able parameters. This shows that one of the main problems with Capsule Networks
are the significantly longer training times. In this case we were still able to train the
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network in a reasonable amount of time, but for larger data sets this higher time
complexity can severely limit the ability to train the network. This demonstrates
the need for increasing the efficiency of Capsule Networks, finding ways to optimize
the network structure and reduce the number of learnable parameters but still giv-
ing good performance. This work has been started by Hinton et. al in [36] where
they implement an alternative representation of the pose of an entity as a matrix
with n elements instead of a vector with length n and therefore reduce the number
of parameters in the transformation matrices from n? to n.

5.4 Intraclass homogenity of GTSRB could con-
tribute to the high accuracy

The complexity of classification depends, amongst other things, on intraclass ho-
mogenity and interclass heterogenity. The former more simply put means that all
images of traffic signs with the same class should look rather similar. An example
where this would not be the case would be if the data set also had a class called
"Dogs”, since a dog can lie down, stand, jump, look right/left etcetera and still be
considered a dog. Even though they all are dogs, to a computer they would look
very different because the pixel values are completely different. The dog class would
thus have low intraclass homogenity. However, a traffic sign is specifically designed
to always look the same, suggesting that the intraclass homogenity of the GTSRB
data set is high.

To test this property quantitatively we calculated the five nearest neighbors in L1
and L2 norm to a all images in the GTSRB test set. We also saved the classes of
those neighbors, information which will be used later in this section. The result of
this analysis is illustrated in figure 5.2 and shows that the intraclass homogenity is
very high - in some cases it is even hard to see with the naked eye that the original
image and the nearest neighbors are not the same image. This is a consequence of the
fact that the GTSRB data set consists of multiple images of the same physical traffic
sign but with small differences in rotation, contrast or other minor transformations.

Studying the interclass heterogenity, which in other words means that images from
different classes should look different, is not as straight forward. However it is
possible to give a qualitative understanding by looking at the relative intra- versus
interclass differences. Or simply: we do not concern ourselves with exactly how big
difference it is between different classes, as long as the difference between classes
is bigger than the differences within a single class. To some extent the nearest
neighbor approach illustrated in figure 5.2 already provides proof of this, since all
nearest neighbors are of the same class as the original image. However, we can take
this one step further by trying to actually classify an image based on the classes of
its K nearest neighbors. This was done for all images in the GTSRB test. The total
accuracy for this approach is presented in table 5.1.
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Original The 5 nearest neighbors

Figure 5.2: The 5 nearest neighbors of three randomly chosen images in the GT-
SRB test set, calculated in L1-norm. All other observed images gave equivalent
results, as well as when calculating nearest neighbors in L2-norm. It is evident that
many images in the test set are very alike, suggesting that the intraclass homogenity
is high - which is what to expect since traffic signs of a specific class are specifically
created to resemble each other perfectly.

Table 5.1: Accuracy for a K-Nearest neighbor classifier on the 12630 images in the
GTSRB test set, using L1 or L.2 norm.

Accuracy, L1-norm | Accuracy, L2-norm
1-Nearest neighbor | 98.66% 95.95%
5-Nearest neighbor | 96.77% 93.06%
10-Nearest neighbor | 94.48% 89.62%

As can be seen from table 5.1 a 1-Nearest neighbor classifier, although being very
primitive, performs on par with the optimized CNN-model found in this study, and
is not far from the state of the art models. Even though this is very interesting,
since it tells us that the intraclass differences indeed is smaller than the interclass
differences, it is worth mentioning that this is only part of the truth. To be properly
compared to those models the K-Nearest neighbor classifier would have to classify
images from the test set based on its nearest neighbors in the training set, since
the used classifier can not have access to test data during classification. The reason
why this more correct approach was not used is due to the second flaw with this
classifier - it is very computationally expensive. Every time it is to classify a single
image, it needs to look at all images in the training set. Meaning that a four times
larger training set takes four times longer to classify with (however, it might mean
that the classification becomes more accurate - but we will not go into that here).
Neither is the model able to generalize well to images that are too different from
the once it has already seen - in contrast to more sophisticated models that tries to
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learn characteristic features.

In conclusion we have seen that the GTSRB data set contains rather small differences
within each class, at least smaller than relative to other classes. This means that it
should be possible to find distinct, well-defined features corresponding to each class
that are as good as non-existing in all other classes. In other words it is a data set
that would suit a network with convolutional layers perfectly, which we have already
seen.

What is more concerning if applied to a real world data is that the K-nearest neighbor
classifier gave such good results, since this implies that we are dealing with a very
two-dimensional data set. The meaning of this is that the majority of all traffic
signs are shown head on. It would thus probably be hard for at least our CNN
model to generalize well to traffic signs in different perspectives, such as viewed
from below, above or from the side. It is possible that this issue could be mitigated
by including perspective augmented images in the training data set, something that
most definitely must be considered before implementing our model in any real life
application. To put in other words: an autonomous car whose cameras always have
to be head on the traffic signs is not ideal! The Capsule network is however designed
to handle this multi-perspective scenario so is should in theory be more robust to
this than the CNN.

5.5 Augmented data lead to great improvement
of the Faster R-CNN

A major issue during the detection and classification task of GTSDB was a lack of
sufficient computing power. As Faster R-CNN is an advanced network and the input
pictures are large the training was very slow. Using our setup training up to 200000
steps took approximately little over a week in total. This prohibited us from training
beyond 250000 steps as well as exploring different choices of hyperparameters. The
issue of long training times is not unique to our task and will be an issue when
applying this or similar designs to real world problems.

As mentioned in the result section after training on the original GTSDB up to
150000 steps the network was able to find most of the signs, but had a hard time
correctly predicting which class they belong to. The issue was the same, although
to an lower extent, after training for an additional 100000 steps on the extended
set. It was also clear that it was rare for the network to predict the presence of a
sign in regions without a sign belonging to one of the classes. A strong evidence
for this is the PR-curve in figure 4.21b. Both versions of the combined network
performed significantly better than their corresponding Faster R-CNN. Since the
combined classifier uses a Faster R-CNN to generate bounding boxes, this shows
that most of the predicted boxes are of actual signs, otherwise the CNN would not
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be able to improve the results.

Another important result is the fact that the performance of the Faster R-CNN
trained on the original set reaches its maximum around 100000 steps, while still
having issues with classifications as discussed above. This can be interpreted as the
training set being too small, with some classes underrepresented to such an extent
that the network is unable to learn how to classify these classes correctly. It is
always important when working with deep learning techniques to have a data set
that is large enough and if that is not the case it can be very challenging to train
the network to generalize properly.

When training on the extended set the performance improved further and reached
an mAP-score above 0.56 when training was terminated. The fact that extending
the set improved the performance to such an extent is another indication that the
GTSDB training set is to small to work well for Faster R-CNN. This should not be
very surprising as the set was not created for a detection and classification task, but
for a pure detection task as mentioned in the method.

Our main conclusion from the results of GTSDB task is that the hardest part was
the classification rather than detection. One could speculate that the reason for this
is that many of the signs look rather similar. That is the interclass heterogenity is
low, at least with regard to how many images there is in the training set. Had the
task involved classes that are more different, for instance finding cars, humans and
cats in pictures the classification might have been a smaller issue.

We have also drawn conclusions about how the result could have been improved and
we have identified four different approaches. First of all, when training on the the
extended set we never reached a point when the performance stopped improving.
Therefore training should be continued until reaching a point where the mAP-score
stops improving. Secondly, even though it is clear that extending the set helped
improve the performance it is not clear the method used for extending the set is
optimal. After training on the extended set the network still struggles with the same
issue as before, only to a lower extent. Therefore it is possible that the performance
had benefited from extending the set further and not just doubling it. Without
actually testing the impact of a more aggressively extended set it is very hard to
give any confident predictions, but given the success of making the set twice as large
it seems likely that it would help. It would also be of interest to investigate further
how the new images should be generated to yield the best results. In this report
we only tested one way of extending the training set and most likely the algorithm
could be improved to generate images more true to the originals. We think this is a
very promising approach for further work on improving the performance. The third
possible method is to investigate how different choices of hyperparameters could
have improved our results. As stated in the discussion chapter the time constraint
and limited computing power prohibited us from testing more than a single set of
hyperparameters so this area is completely uninvestigated by us. The last approach
that we would like to propose is to test other models than the specific Faster R-
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CNN model that we decided to use. TensorFlow Detection Model Zoo provides
many other models, including alternative implementations of Faster R-CNN.

Most of the proposed improvement above requires increased computing power. One
solution would be to further investigate the possibilities of Google Cloud comput-
ing. As of now, we only used the CPU, since it was the the cheapest and easiest
computing instance. We were not able to get Tensorflow to run efficiently with GPU-
instructions on Google cloud. If we had, the training time would have decreased
substantially.
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Conclusion

We achieved our aim to implement neural networks capable of detecting and classi-
fying traffic signs. The main focus was the classification task where we implemented
two different networks, namely a conventional CNN and a Capsule Network. With
these we achieved test accuracies of 98.61% for the CNN and 99.62% for the Cap-
sule Network. Our results would have placed us in the second and fifth place of
the results table corresponding to the official challenge on GTSRB, the best result
being 99.71%. We were able to beat human performance on the benchmark, which
corresponds to an accuracy of 98.84% [7]. Our results show that Capsule Networks
are able to achieve state of the art performance on GTSRB, which in several aspects
is more complex than the MNIST set which was the main data set used in the orig-
inal paper by Hinton [35]. This shows that Capsule Networks are able to perform
well on data sets with larger number of classes, 43 instead of 10, and with images
that have more complex features as well as different resolutions and contrasts. For
the Faster R-CNN we were able to train an existing network structure, pretrained
on the COCO data set, to detect and classify pictures from the GTSDB data set
- showing that transfer learning is a useful tool when taking on new tasks. The
model achieved an mAP of 0.56. It provided good detection, but lacked satisfactory
classification accuracy. Because of this we combined this network with our CNN
to improve the classification part which gave even better results. It would further
probably be possible to increase this score if training was to be continued, since it
did not show any signs of being saturated.

One thing worth mentioning is that our results highlight the importance of having
good data when training machine learning models. The great improvement of the
Faster R-CNN after enlarging the GTSDB data set is a prime example of this. With
the data society we are living in, large amounts of data is gathered in more and more
fields which is a main reason for the rapid increase of machine learning applications.
There is still a lot more ground to cover, especially in finding ways to efficiently use
the designed models in practice.

The next step of our work could have been to try using a Capsule Network for
object detection. This could be a good idea since capsules are designed to keep
track of properties like position of the entities in a picture. While Faster R-CNN is
frequently used for this purpose, the newer Capsule Network has not been studied
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deeper regarding this task. Another suggestion would be to integrate the networks
into a real world application, e.g a system which can register the coordinates of all
traffic signs along a route from street view.
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Configuration file for Faster
R-CNN

# Faster R-CNN with Inception v2, configuration for MSCOCO Dataset.

# Users should configure the fine_tune_checkpoint field in the train config as

# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.

model {
faster_rcnn {
num_classes: 43 #changed to number of classes in GTSDB task
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 600
max_dimension: 1024
}
}
feature_extractor {
type: ’faster_rcnn_inception_v2’
first_stage_features_stride: 16
}
first_stage_anchor_generator {
grid_anchor_generator {
scales: [0.25, 0.5, 1.0, 2.0]
aspect_ratios: [1.0]
height_stride: 16
width_stride: 16

}
X
first_stage_box_predictor_conv_hyperparams {
op: CONV

regularizer {
12_regularizer {
weight: 0.0
}
}
initializer {
truncated_normal_initializer {
stddev: 0.01
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}
}
}
first_stage_nms_score_threshold: 0.0
first_stage_nms_iou_threshold: 0.7
first_stage_max_proposals: 300
first_stage_localization_loss_weight: 2.0
first_stage_objectness_loss_weight: 1.0
initial_crop_size: 14
maxpool_kernel_size: 2
maxpool_stride: 2
second_stage_box_predictor {
mask_rcnn_box_predictor {
use_dropout: false
dropout_keep_probability: 1.0
fc_hyperparams {
op: FC
regularizer {
12_regularizer {
weight: 0.0
}
}
initializer {
variance_scaling_initializer {
factor: 1.0
uniform: true
mode: FAN_AVG
}
}
}
}
}
second_stage_post_processing {
batch_non_max_suppression {
score_threshold: 0.0
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 300
}
score_converter: SOFTMAX
}
second_stage_localization_loss_weight: 2.0
second_stage_classification_loss_weight: 1.0
}
}

train_config: {
batch_size: 1
optimizer {
momentum_optimizer: {
learning_rate: {
manual_step_learning_rate {
initial_learning_rate: 0.0002
schedule {
step: O
learning_rate: .0002

IT
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X
schedule {
step: 900000
learning_rate: .0002
}
schedule {
step: 1200000
learning_rate: .0002

by
b
}
momentum_optimizer_value: 0.9
X
use_moving_average: false
3

gradient_clipping_by_norm: 10.0
fine_tune_checkpoint: "gs://bachelor-belgium/models/model.ckpt"
from_detection_checkpoint: true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the COCO dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps: 250000
data_augmentation_options {
random_horizontal_flip {
¥
}
X

train_input_reader: {
tf_record_input_reader {
input_path: "gs://bachelor-belgium/data/TrainGTSDB_ext.record"
}
label_map_path: "gs://bachelor-belgium/data/GTSDB_label_map.pbtxt"
3

eval_config: {
num_examples: 235
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals: 10

}

eval_input_reader: {
tf_record_input_reader {
input_path: "gs://bachelor-belgium/data/TestGTSDB.record"
}
label_map_path: "gs://bachelor-belgium/data/GTSDB_label_map.pbtxt"
shuffle: false
num_readers: 1

ITT
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Figure B.1: Confusion matrix of the final model. Each row represents the predicted
class and the columns indicate the true label. The network was trained on the
extended data set with batch size 15, a learn rate of 0.005 and dropout rate of

0.37% for 75 epochs.
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Figure B.2: 25 randomly selected images from the set of misclassified images of
the final CNN, each with its predicted class and the accuracy score on how certain
the network is on that prediction.
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