
CONCEPTUAL MODELLING OF CIVIL AND

MILITARY AERO-ENGINES

Master of Science Thesis in Applied Mechanics

SUBRAMANYAM NATARAJAN

Department of Applied Mechanics,
Division of Fluid Dynamics,
CHALMERS UNIVERSITY OF TECHNOLOGY
GÖTEBORG, SWEDEN, 2013
Master's thesis 2013:14

MASTER'S THESIS 2013:14

CONCEPTUAL MODELLING OF CIVIL AND
MILITARY AERO-ENGINES

Master of Science Thesis in Applied Mechanics

SUBRAMANYAM NATARAJAN

Department of Applied Mechanics

Division of Fluid Dynamics,

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden, 2013

Numerical modelling of a turbofan engine components and
optimization of its running parameters.

Master of Science Thesis in Applied Mechanics
SUBRAMANYAM NATARAJAN

© SUBRAMANYAM NATARAJAN, 2013

Master's Thesis 2013:14
ISSN : 1652-8557
Department of Applied Mechanics
Division of Fluid Dynamics
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone: + 46 (0)31-772 1000

Cover:
Fan of IAE V2500-A1 engine �tted to a Thomas Cook Airlines Airbus A320
Image© 2008, SempreVolando, http://en.wikipedia.org/wiki/User:SempreVolando
Used under the Creative Commons Attribution 3.0 Unported license.

Chalmers Reposervice Göteborg,
Sweden 2013

Dedicated to my parents

Contents

1 Introduction 2

2 Modelling 4

2.1 Normalized e�ciency . 4
2.2 Entry Into Service Correction . 5
2.3 Mass Flow Correction . 5
2.4 Reynolds Number Index Correction 6
2.5 The Sigmoid . 8
2.6 Polytropic E�ciency - Fan . 8
2.7 Polytropic E�ciency - Low speed boosters and Intermediate pres-

sure compressors . 10
2.8 Polytropic E�ciency - High pressure compressors 12
2.9 Polytropic E�ciency - High and intermediate pressure turbines . 14
2.10 Polytropic E�ciency - Low pressure turbines 15

3 Optimization of running conditions 18

3.1 Optimizer code . 18

4 Results 21

5 Future Work 28

6 References 29

A optimizer.c 30

B plotter.m 44

Acknowledgements

I would like to thank the Department of Applied Mechanics, Division of Fluid
Dynamics, Chalmers University of Technology, for providing this opportunity
to pursue my master thesis work. I also thank Konstantinos Kyprianidis for
letting me use the simulation software EVA to help during development of the
optimizer code and his continuous support through mentoring.

Special thanks to Vinay Shastry of Copyleft Solutions for his support with
advanced C programming.

Finally I am ever grateful to my supervisor Tomas Grönstedt for his immense
support and guidance since the very beginning of this thesis work.

Abstract

Statistical research has been performed on available turbofan engine
con�gurations up to 1995 and documented by Grieb. A mathematical
model is developed as a part of this thesis work to utilize the research
data into predicting the parameters for 2015 and 2020 engines. This the-
sis work mainly focuses on modelling the polytropic e�ciencies of the
various components that constitute a 3-spool turbofan engine: fan, in-
termediate pressure compressor, high pressure compressor, high pressure
turbine, intermediate pressure turbine and the low pressure turbine.

An optimizer code is developed in the C programming language as a
second part of this project to feed the modelled values as input to the gas
turbine analysis software EVA. It then varies the design parameters like
inlet mass �ow, velocity ratio, pressure ratios and turbine inlet temper-
ature continuously between two arbitrary �xed points. The speci�c fuel
consumption at mid-cruise conditions is read from the output of EVA.
Installed SFC is then calculated by taking nacelle inputs from Weico (a
program to calculate engine dimensions) to get the minimal value. Design
parameters at this value of installed SFC are returned into the input of
EVA. Successive iterations are performed to get a global minimum value
of installed SFC.

Nomenclature

ψ̄ Average stage loading parameter

ηpol Polytropic E�ciency

γ Ratio of speci�c heats

µ Dynamic viscosity of air

π Pressure Ratio

ρ Density of air

C Cruise velocity

Cd Drag coe�cient

dnac Nacelle diameter

EIS Entry Into Service

HPC High Pressure Compressor

HPT High Pressure Turbine

IPC Intermediate Pressure Compressor

IPT Intermediate Pressure Turbine

l Nacelle length

LPC Low Pressure Compressor

LPT Low Pressure Turbine

M Mass �ow

M0 Mach number

meng Mass of engine

P Pressure

R Gas constant

Re Reynolds Number

RNI Reynolds Number Index

RPM Revolutions Per Minute

S Exposed surface area

SFC Speci�c Fuel Consumption

T Temperature

TOC Top Of Climb

U Blade speed at mid-area

1

1 Introduction

Gas turbine engines are widely used for their high power to weight ratio and
speci�c output. Power can be harnessed out of a gas turbine engine either
as thrust or as torque at a shaft. Applications are seen as power sources for
aircraft, helicopters, marine engines and power generating stations. Considering
its application as an aero-engine, the gas turbine engine can be classi�ed into
four types: Turbojet, Turbofan, Turboprop and the Ramjet. Turbojet engines
are relatively low mass �ow, high speci�c power engines �nding applications
in military �ghters and other supersonic aircraft. Turbofan engines are high
mass �ow high power engines and are employed in civilian aircraft of medium
to high capacity. These engines are designed to cruise just below the sonic
limit. Turboprop engines host a propeller. These are employed in micro-light to
light civilian aircraft. The ramjet is an engine which involves no moving parts.
This engine is used in tandem with usually a turbojet engine, and is used to
accelerate the aircraft beyond supersonic speeds.

The turbofan engine is again classi�ed, based on its bypass ratio into high
bypass and low bypass ratio turbofans. The civil aircraft use the high bypass
ratio turbofan engine as its power source due to its high mass �ows.

Figure 1.1: Parts of a turbofan engine.

Depending on the size and capacity of an aircraft, a suitable engine is de-
signed to cater to peak requirements of power at take-o� and top of climb and
good fuel economy at mid cruise. The life cycle of an engine starts with con-
ceptual modelling and heads to designing, manufacturing, testing and serial
production.

2

The input to the conceptual design phase is the layout of the engine and its
physical limitations like maximum pressure ratio and maximum temperature of
any component. Using various models, optimal operating conditions are derived
and these conditions serve as input to the design phase. In the design phase,
solid modelling and analysis is done on the geometry of the components consid-
ering manufacturing feasibility. Expensive technology, materials and processes
are used to manufacture the components and design veri�cation and production
validation tests. Tests for functionality are performed in the testing phase be-
fore an engine is commissioned. The below graphic illustrates the cost incurred
during the di�erent phases of product design.

Figure 1.2: Costs incurred through the design process. [6]

It is clear from this illustration that any small design changes performed ear-
lier in the design process incurs a smaller cost compared to changes downstream.
Conceptual modelling is almost the �rst stage of the design phase and thus of
the highest importance. This thesis work focuses on conceptual modelling alone
and provides models built on statistical data to determine the polytropic e�-
ciency of various components of a turbofan engine. The realistic values are then
plugged into a performance analyser code along with starting values of operat-
ing conditions like pressure ratio, maximum temperature and nacelle size. The
analyzer code used in this case is EVA, written in Fortran 2003 [5]. The speci�c
fuel consumption is calculated and optimized varying other parameters to get a
minimum value using an optimizer algorithm.

3

2 Modelling

Before starting the task of modelling, polytropic e�ciencies for various engine
components are obtained from previous experience. However, it ignores aero-
dynamic developments and also fails to include corrections due to them. Grieb
has performed an extensive study on the various correction factors that could
in�uence the initial assumption for these e�ciencies and this study helps derive
a strong starting point. His work is based on statistical data collected up to the
year 1995 for various engine con�gurations.

We will be considering the data for civil turbofan engines and building math-
ematical models for each of the engine components, to extrapolate this data for
the future. The output of these models will be the polytropic e�ciency of each
component. The various correction factors that are taken into consideration are
indicated by:

ηpol = η∗∗∗pol + ∆ηpol,EIS −∆ηpol,Re −∆ηpol,M (2.1)

η∗∗∗pol = normalized e�ciency
∆ηpol,EIS= Entry into service correction
∆ηpol,Re= Reynolds number correction
∆ηpol,M= Mass �ow correction

This code is calibrated for 1995 Entry into service engines. Further improve-
ment through aerodynamic progresses is captured through the ∆ηpol,EIS term.
Changes in e�ciencies due to the e�ect of Reynolds Number Index is modelled
through ∆ηpol,Re. E�ects of change in e�ciencies due to size variation not as-
sociated with Reynolds Number e�ects is captured by the ∆ηpol,M . Thus in
the above equation, for a 1995 engine with RNI=1.0 and M=70 kg/s,

ηpol = η∗∗∗pol (2.2)

The data from the print is read using the open source software 'Digitizer'
and converted into digital data for creating the models.

2.1 Normalized e�ciency

The term η∗∗∗pol in the above equation is dependent on the aerodynamic loading
of the turbomachinery component. For fans, the model relates pressure ratio
to normalized e�ciency whereas for the other turbomachinery average stage
loading is used. This stage loading parameter is given by:

ψ̄ =
2∆H

Σall rotorsU2
atmid area

(2.3)

where ∆H is the speci�c work for the respective turbomachinery component.
The blade speeds should be taken at mid area as it is the average value.

4

Figure 2.1: Modelling �ow chart

2.2 Entry Into Service Correction

Aerodynamic, raw material and manufacturing developments are captured by
the Entry Into Service (EIS) term. Based on this model, EIS correction for a
1995 engine is zero.

Figure 2.2: EIS v/s ∆ηpol,EIS [1]

2.3 Mass Flow Correction

The e�ects of size on boosters and intermediate pressure compressors are cap-
tured by the Mass Flow correction term ∆ηpol,M . It is captured for various

5

engine con�gurations in the statistical study done by Grieb.

Figure 2.3: Mass �ow v/s ∆ηpol [1]

The Mcorr term in the models for the various components is de�ned as:

Mcorr =
M
√

T0,entrance

288.15√
P0,entrance

101325

(2.4)

M∗
corr = 70 kg/s . The above correction must hence be applied to compo-

nents with Mcorr < 70 kg/s. For larger components, Mcorr = 0 is used. The
need for having a size correction other than the Reynolds number term indicated
below, is because the following factors are considered in the size correction term:

� Blade manufacturing tolerances and pro�le surface quality in relation to
size

� Turbomachinery blade aspect ratios.

� Relative size of blade tip gaps.

� Aerodynamic quality of end walls.

2.4 Reynolds Number Index Correction

Reynolds Number Index is the ratio of actual Reynolds number to a reference
Reynolds number at a constant Mach number [?].

RNI =
Re

Reref
=

ρLU
µ

ρrefLrefUref

µref

(2.5)

Since there are no length changes between actual and reference conditions, L =
Lref . Density is given by:

ρ =
Ps

R ∗ Ts
(2.6)

6

Figure 2.4: RNI v/s ∆ηpol [1]

Ps is the static pressure.
Ts is the static temperature.
R is the gas constant.

Substituting,

RNI =
Ps

R ∗ Ts
∗ Rref ∗ Ts,ref

Ps,ref
∗ V

Vref
∗ µref

µ
(2.7)

RNI =
Ps

Ps,ref
∗ V√

γ ∗R ∗ Ts
∗
√
γ

√
R ∗ Ts

∗
√
γref ∗Rref ∗ Ts,ref

Vref
∗
√
Rref ∗ Ts,ref
√
γref

∗µref
µ

(2.8)
RNI compares conditions at the same Mach number:

M =
V√

γ ∗R ∗ Ts
=

Vref√
γref ∗Rref ∗ Ts,ref

(2.9)

=⇒ RNI =
Ps

Ps,ref
∗
√
Ts,ref
Ts

∗

√
Rref
R
∗ γ

γref
∗ µref

µ
(2.10)

Introducing total pressure Pt and total temperature Tt,

RNI =
Ps/Pt

Ps,ref/Pt,ref
∗ Pt
Pt,ref

∗

√
Ts,ref/Tt,ref

Ts/Tt
∗ Tt,ref

Tt
∗

√
Rref
R
∗ γ

γref
∗ µref

µ

(2.11)
Since the Mach number is the same, the ratio of static and total pressures and
temperatures are the same for actual and reference conditions. Thus the ratio
of actual and reference Reynolds numbers becomes:

RNI =
Pt

Pt,ref
∗
√
Rref ∗ Tt,ref

R ∗ Tt
∗ µref

µ
(2.12)

Reference conditions are taken as Pt,ref = 101.325kPa, Tt,ref288.15K and
Rref = 288J/(kg ∗K). Thus at ISA sea level conditions, RNI = 1.

7

2.5 The Sigmoid

The statistical study conducted by Grieb is time based. Like many natural
processes, they start with small beginnings that accelerates and approaches a
steady state over time. To model this, the Sigmoid curve is best suited. The
general form is represented by:

P (x) =
A

B + eCx+D
(2.13)

Figure 2.5: The sigmoid

2.6 Polytropic E�ciency - Fan

The fan is the �rst component in the turbofan engine along the air stream. It
accelerates air and a fraction of this air �ows into the engine downstream to
burn fuel to run compressors and provide hot stream thrust. The rest of it �ows
around the engine core and converges to provide cold stream thrust.

Engines are classi�ed as high-bypass ratio and low-bypass ratio turbofans
depending on the amount of air that travels into the engine and around it.
This ratio is called the bypass ratio. Generally, military aircraft engines are
low-bypass ratio and civil aircraft use high bypass ratio ones. The fan derives
mechanical energy from the low pressure turbine of a two or three spool engine
con�guration. The Revolutions Per Minute (RPM) of a fan is nearly one order
lower in magnitude compared to the other compressor stages. This is mainly to
reduce shock waves at the blade tips due to its large diameter.

The fan con�guration considered here is a single stage fan with a mass �ow
rate > 70 kg/s. No size variation correction is applied due to this. The relation
between aerodynamic loading and the normalized e�ciency η∗∗∗ is based on the

8

Figure 2.6: Fan rotor

fan pressure ratio at mid cruise (π). The following model was arrived at for the
normalized e�ciency:

η∗∗∗ =
0.3721

0.4004 + e12.08Π−25.94
(2.14)

Figure 2.7: Pressure ratio (π) v/s ηpol

The choice of pressure ratio for a fan depends on various parameters. Based
on prior experience, the starting point for our iteration process would be to
assume a fan pressure ratio π = 1.6.
The EIS correction for a one stage fan is modelled by:

∆ηpol,EIS =
−0.8400

0.8658 + e−0.2428∗EIS+45.52
+ 0.9130 (2.15)

9

Figure 2.8: EIS v/s ∆ηpol

The Reynolds Number Index variation is computed from :

∆ηpol,Re = 0.095 ∗
(
1− 1

RNI0.14

)
(2.16)

2.7 Polytropic E�ciency - Low speed boosters and Inter-

mediate pressure compressors

Intermediate pressure compressors form the �rst set of components inside the
engine core. As the name suggests, they develop compression values in the
order of a fan up to that of a high pressure compressor. IPCs are found in three
spool con�gurations. They derive their energy from the Intermediate pressure
turbines.

Figure 2.9: Intermediate Pressure Compressor

10

The relation between aerodynamic loading and the normalized e�ciency η∗∗∗

is based on the average stage loading parameter ψ̄ at mid cruise. Normalized
e�ciency is modelled by:

η∗∗∗pol =
0.3227

0.3516 + e1.448ψ̄−4.252
(2.17)

Figure 2.10: ψ v/s ηpol

A typical value assumed to start the conceptual design process is ψ̄ = 0.8
for low speed boosters and ψ̄ = 0.6 for high speed boosters.

The EIS correction for low speed boosters and intermediate pressure com-
pressors is modelled by:

∆ηpol,EIS =
−0.1600

0.1700 + e−0.02297∗EIS+43.08
+ 0.9073 (2.18)

The Reynolds number index variation is modelled by:

∆ηpol,Re = 0.095 ∗
(
1− 1

RNI0.12

)
(2.19)

The e�ect of size on boosters and intermediate pressure compressors are
captured by the expression:

∆ηpol,M = 0.095 ∗
(
1− 1(

Mcorr

M∗
corr

)0.063

)
(2.20)

whereMcorr is the normalized mid cruise mass �ow de�ned asMcorr = M

√
T0,entrance

288.15√
P0,entrance

101325

.

M∗
corr = 70 kg/s. For �ow greater than 70 kg/s, ∆ηpol,M = 0.

11

Figure 2.11: EIS v/s ∆ηpol

2.8 Polytropic E�ciency - High pressure compressors

The high pressure compressor constitutes the third compression step along the
air stream in a 3-spool turbofan engine. This is the �nal stage of compression
and output is fed to the combustor where fuel is injected for the combustion
process. Pressure ratios of the high pressure compressor ranges from 10-15. The
HPC is driven by the High Pressure Turbine.

Figure 2.12: High Pressure Compressor

For high pressure compressors the relation between aerodynamic loading and
the normalized e�ciency η∗∗∗ is based on the average stage loading parameter
ψ̄ at mid cruise. Normalized e�ciency is modelled by:

η∗∗∗pol =
0.2492

0.2643 + e1.353ψ̄−4.183
(2.21)

Based on experience, a typical value to start the conceptual design process
is ψ̄ = 0.8.

12

Figure 2.13: ψ v/s ηpol

The EIS correction parameter is modelled by:

∆ηpol,EIS =
1.800

1.860 + e−0.01463EIS+27.00
− 0.9131 (2.22)

Figure 2.14: EIS v/s ∆ηpol

The Reynolds Number Index variation is modelled by:

∆ηpol,Re = 0.095
(
1− 1

RNI0.10

)
(2.23)

13

The e�ect of size on high pressure compressors is captured by:

∆ηpol,M = 0.095
(
1− 1(

Mcorr

M∗
corr

)0.063

)
(2.24)

2.9 Polytropic E�ciency - High and intermediate pressure

turbines

The high pressure turbine is the �rst stage of turbines. It's function is to only
drive the high pressure compressor in a three spool con�guration.

Figure 2.15: High Pressure Turbine

For high pressure turbines the relation between aerodynamic loading and
the normalized e�ciency η∗∗∗ is based on the average stage loading parameter
ψ̄ at mid cruise. Normalized e�ciency is modelled by:

η∗∗∗pol =
1.785

1.859 + e1.303ψ̄−6.678
(2.25)

Based on experience, a typical value to start the conceptual design process is
ψ̄ = 3.5.

The EIS parameter is modelled by:

∆ηpol,EIS =
−0.05001

0.05265 + e−0.06720EIS+126.6
+ 0.9400 (2.26)

The RNI correction is modelled by:

∆ηpol,Re = 0.055 ∗
(
1− 1

RNI0.18

)
(2.27)

The e�ect of size on high and intermediate pressure turbines is modelled by:

∆ηpol,M = 0.055 ∗
(
1− 1(

Mcorr

M∗
corr

)0.236

)
(2.28)

14

Figure 2.16: ψ v/s ηpol

Figure 2.17: EIS v/s ∆ηpol

E�ciency corrections based on cooling �ows is modelled as:

∆ηcooling = 0.00467φ+ 0.006936φ2 (2.29)

The parameter φ is determined as:

φ =
ṁrotor+stator

ṁcompressorExit
(2.30)

2.10 Polytropic E�ciency - Low pressure turbines

This forms the last step of the turbine expansion in a 3-spool con�guration (in
a civil aircraft engine) and outputs to the nozzle. Its functional requirement is

15

to drive the fan.

Figure 2.18: Low Pressure Turbine

For low pressure turbines the relation between aerodynamic loading and the
normalized e�ciency η∗∗∗ is based on the average stage loading parameter ψ̄ at
mid cruise. Normalized e�ciency is modelled by:

η∗∗∗pol =
1.785

1.859 + e1.403ψ̄−8.103
(2.31)

Based on experience, a typical value to start the conceptual design process is
ψ̄ = 4.5.

Figure 2.19: ψ v/s ηpol

The EIS parameter is modelled by:

∆ηpol,EIS =
−1.2745

1.2952 + e−0.026598EIS+49.87 + 0.9538
(2.32)

16

The RNI correction is modelled using:

∆ηpol,Re = 0.055 ∗
(
1− 1

RNI0.18

)
(2.33)

The e�ect on size for low pressure turbines is modelled using:

∆ηpol,M = 0.055 ∗
(
1− 1(

Mcorr

M∗
corr

)0.236

)
(2.34)

∆ηpol,M = 0 for Mcorr > 70 kg/s.

17

3 Optimization of running conditions

Power output of an engine increases with pressure ratios and turbine inlet tem-
peratures. This is limited by factors like material limitations and loading pa-
rameters. Speci�c fuel consumption (SFC) is inversely proportional to pressure
ratios. Thus it becomes essential to optimize the operating conditions so that
we obtain a minimal SFC. Since the design considerations are taken at three
points: take-o�, top of climb and mid cruise, we limit turbine temperatures for
peak power demand points and limit SFC for mid cruise which lasts for the
longest duration in a �ight.

3.1 Optimizer code

Optimization is achieved using 'Optimizer.exe' which is an optimizer code built
in the C language as a part of this thesis work. It uses the brute-force algo-
rithm to give a full picture of performance at equally spaced intervals and is
compiled for Intel 64-bit machines on Microsoft Windows 7. The graphic below
demonstrates the steps performed by the code.

Figure 3.1: Optimizer code algorithm

18

EVA [5] is the gas turbine performance analyzer code compatible with the
Microsoft Windows operating system. Input is provided in the form of operat-
ing conditions, like pressure ratios, turbine operating temperatures, correction
factors, polytropic e�ciencies and e�ciencies of mechanical components. These
are fed through the Engine_dp.dat �le for the design point and Engine_od.dat
for o� design conditions respectively, located in the installation directory.

The optimization is done for two di�erent engine models: 2015 and 2020.
The �rst task would be to set default values for all independent variables and
create a roll back copy of the input �le as a back up in case of an error down-
stream. The Engine_dp.dat �le is as shown in Appendix A. The polytropic
e�ciencies for components in the �le are calculated from the models for respec-
tive engine models, in the previous section. However, the scope of this project is
limited to optimizing the fan, HPC pressure ratio and HPT inlet temperature,
which contribute most strongly to the engine performance. Similar procedures
can be extended to other components to get a better performance.

Based on statistical data of existing engines, the mass �ow rate captured by
the variable windes in the input �le is varied between 450− 550 kg/s at a step
size of 20 kg/s and velocity ratio shown by the variable V coldQhotDes. It is
varied between 0.68 and 0.99 at a step size of 0.02. The pressure ratio of the
High Pressure Compressor denoted by the term PRdes is varied between 4 and
5.5 in steps of 0.1. The High Pressure Turbine inlet temperature denoted by
Tmdes is varied at a step size of 2 from a minimum of 1170K to an upper limit
de�ned by:

Tmdes = 1370− (2020− EIS) ∗ 10K (3.1)

This empirical formula correlates the advancements in material and manufac-
turing technology as a function of the Entry Into Service term, resulting in an
increased metal temperature. Again modelled based on statistical data, it ap-
proximates to nearly 10K rise in the upper limit of inlet temperature every year.
Thus on this basis, a 2020 EIS engine would have a turbine inlet temperature
of 1370K.

Mass �ow rate and velocity ratio are optimized in the �rst block of the code.
For every combination of Mass �ow rate and velocity ratio, the executable �le
of EVA is called using the system command. The output of the simulation is
written to the PerformanceResults.txt �le in the installation directory. Spe-
ci�c Fuel Consumption and Velocity ratios are read at take-o� and top-of-climb
conditions. This output �le is read using Weico.

Weico is a software to calculate engine dimensions based on parameters like
SFC, net thrust and pressure ratios. The input to this code is the output �le
of EVA. The executable �le is Weico.exe, called using the system command.
Output of the code is present in the weightAircraft.txt and weightOutput.txt
�les. As part of this project we would be interested in nacelle dimensions and
engine weight.

Installed SFC literally means the actual SFC of the engine after installing
on aircraft. It is the speci�c fuel consumption after considering all adverse
e�ects after installing the engine like compressed air bleeding losses for cabin
pressurization, nacelle drag etc.

Reynolds Number for �ow through the Nacelle is given by:

Renac =
C0lnacρ0

µ0
(3.2)

19

C0 is the cruise velocity in m/s.
lnac is the nacelle length in m.
ρ0 is air density at cruise altitude.
µ0 is the dynamic viscosity of air at cruise altitude.

Nacelle drag is calculated using:

Dnac =
ρ0C

2
0SrefCd

2
(3.3)

Sref is area exposed assumed to be 363 m2.
Cd is the drag coe�cient given by:

Cd =
Cf ∗ FF ∗ IF ∗Awet

Sref
(3.4)

Cf =
0.455

(log10Renac)2.58 ∗ (1 + 0.144 ∗M2
0)0.65

(3.5)

where, M0 is the Mach number
FF = 1.25
IF = 1.0

Awet = π ∗ lnac ∗ dnac (3.6)

dnacbeing the nacelle diameter read from weightAircraft.txt.
Momentum drag is calculated as:

Dm,eng =
meng ∗ g
L/D

kN (3.7)

meng is the engine weight in kg and g = 9.81 m/s2.
L/D is the length to diameter ratio.

Installed SFC is now calculated using the relation:

SFCinstalled =
SFC ∗ FN

FN − (Dnac +Dm,eng)
g/kNs (3.8)

Installed SFC is calculated in every iteration varying one parameter at the
chosen step size at a time. Local minima of installed SFC is identi�ed per
parameter and recorded in the respective result �les.

20

4 Results

The code simulates two engine con�gurations based on Entry Into Service: 2015
and 2020. Results of the various iterations are stored under the following �les:

� 'WindesValue'.dat: Contains Velocity ratio at Top Of Climb, Mid Cruise
and Take-O� against SFC and installed SFC.

� HPC_Prdes.dat: Contains HPC Pressure ratio against SFC and installed
SFC.

� T41M.dat: Contains High pressure turbine inlet temperature against SFC
and installed SFC.

The improvement achieved using these models is re�ected in the form of increase
in SFC after optimising the operating conditions. Thus we shall compare the
results achieved for the 2015 EIS engine con�guration, by using the conventional
method to that achieved using the above models. We shall also make a com-
parison between the operating conditions and engine dimensions for the 2015
and 2020 EIS engine con�gurations to see the improvement using these models.
plotter.m as given in Appendix B, is a Matlab code to plot these various data
as graphs.

Figures 4.1, 4.2 and 4.3 represent variation of SFC and installed SFC by vary-
ing velocity ratios for six di�erent mass �ow rates achieved using conventional
and calculated polytropic e�ciencies for 2015 and 2020 engine con�gurations.
Comparing SFC and installed SFC values for subsequent velocity ratios, val-
ues obtained using the calculated method are lower than those obtained using
the conventional method. We get better polytropic e�ciencies for individual
components using the models compared to the conventional assumptions. Since
polytropic e�ciency is inversely proportional to SFC, it is re�ected as lowered
SFC.

Figure 4.4 represents variation of SFC and installed SFC with variation in
pressure ratio of the HPC for a 2015 engine con�guration, using conventional
assumption of polytropic e�ciencies. Figure 4.5 represent variation of SFC and
installed SFC with variation in pressure ratio of the HPC for 2015 and 2020
engine con�gurations, using predicted polytropic e�ciencies. SFC values for
the pressure ratios indicate a better value in the calculated method compared
to the conventional method. Optimal operating pressure ratios have been found
from running the optimizer code. Designing the component for optimal pressure
ratio considering the system is most important to get the best SFC.

Figures 4.6 and 4.7 represent variation of SFC and installed SFC with vari-
ation in turbine inlet temperature of HPT, for 2015 and 2020 engine con�g-
urations, using conventional and calculated polytropic e�ciencies. It is seen
that we are able to obtain higher SFC and installed SFC values at a given tem-
perature with the use of the models and it is seen to better with time. This
is attributed to the various developments in materials technology resulting in
higher operating temperatures given by the empirical equation 3.1. Since higher
operating temperatures improves work output, smaller dimensions are possible
to derive the same output. This reduces overall weight of the system.

Figures 4.6 and 4.7 plot the engine weight for 2015 EIS engines based on
conventional and calculated methods and 2020 EIS engines with corresponding
SFC values.

21

Figures 4.9 and 4.10 are a plot of engine dimensions obtained through weico
[4] and it can be seen that the engine dimensions and thus weight get smaller
with the use of these models and get better with time.

It can thus be inferred that it is possible to start the conceptual modelling
phase with better assumptions of polytropic e�ciency of the components with
the aid of Grieb's work than to stick with conventional method of assumptions
based on experience. This can help the designer to derive the best out of what
is physically possible.

Figure 4.1: SFC and installed SFC for 2015 engines using the conventional
method

22

Figure 4.2: SFC and installed SFC for 2015 engines predicted using models

23

Figure 4.3: SFC and installed SFC for 2020 engines predicted using models

24

Figure 4.4: SFC vs. HPC pressure ratio for 2015 engines based on conventional
assumption.

Figure 4.5: SFC vs. HPC pressure ratio for 2015 and 2020 engines based on
prediction using models.

25

Figure 4.6: SFC vs Engine weight for 2015 EIS obtained by calculated method.

Figure 4.7: SFC vs Engine weight for 2020 EIS obtained by calculated method.

26

Figure 4.8: Engine dimensions for 2015 EIS using conventional method

Figure 4.9: Engine dimensions for 2015 EIS using predicted method

Figure 4.10: Engine dimensions for 2020 EIS using predicted method

27

5 Future Work

It has been established from this thesis work that the models behave in the
expected manner to improve the SFC. Four key parameters have been varied
and optimized to see the behaviour. More parameters can be optimized with
the developed models to get a better accuracy of the conceptual model of an
engine.

This exercise can be performed on a existing engine say a 2010 EIS engine
to calibrate the models and �ne tune the factors if needed. This can take care
of linear bias in the model behaviour if found.

This exercise uses brute-force algorithm for optimization. Optimization algo-
rithm like the Simplexmethod can be implemented for faster and more accurate
simulations.

28

6 References

[1] Grieb, H., 2004, �Projektierung von Turbo�ugtriebwerken�, Birkhäuser ver-
lag

[2] Saravanamuttoo, HIH et al., 2009, �Gas Turbine Theory�, Pearson Education

[3] Gronstedt, T., 2011, �Conceptual aero engine design modeling- E�ciency
modeling�

[4] Gronstedt, T., 2011, �Turbofan sizing and aerodynamics�

[5] Kyprianidis, K., 2011, �EVA Short manual�

[6] Pawlowski, F., 2009, �Smooth Transition�,
www.pddnet.com/articles/2009/07/smooth-transition

[7] SempreVolando, 2008, �File:V2500.jpg�, http://en.wikipedia.org/wiki/File:V2500.jpg

29

A optimizer.c

/*===
Optimizer code for EVA
Author: Subramanyam Natarajan
Dept. of Fluid Dynamics, Chalmers University of Technology, Gothenburg
==*/
//Integrates Weico and PSI AND minimises based on SFC_installed and also writes all output

to one file
// Separates velrat and windes calculations
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<string.h>
// If an error occurs in EVA, the Engine_DP.dat is restored to initial values
void rollback() {
int linCount;
char bufferLine[1000];
FILE *in;
FILE *out;

printf("\nEngine_DP.dat Roll-back in progress...\n");
in = fopen("Engine_DP_Rollback.dat","r");
out = fopen("Engine_DP.dat","w");
linCount=1;

while (linCount!=1647)
{
fgets(bufferLine,200,in);
fputs(bufferLine,out);
linCount++;
}
fclose(in); fclose(out);

}
/* // ******************************** EFFICIENCY MODELS ***********************************
void fanEta(float PR, int EIS)
{
FILE *in;

FILE *out;
float e = 2.7182818;
float etaNorm, deltaEtaEIS, etaPol;

char bufferLine[1000];
int linCount;
etaNorm = 0.3721 / (0.4004+ pow(e,((12.08*PR) - 25.94)));

deltaEtaEIS = (0.84 / (0.8658+ pow(e,((-0.0242428*EIS) + 45.52)))) - 0.9130;
etaPol = etaNorm + deltaEtaEIS;
// update in Engine_DP.dat
in = fopen("Engine_DP.dat","r");
if (in==NULL
{
printf("\n6. File Engine_DP.dat not found. Please check!\n");
fclose(in);
exit(1);

}
out = fopen ("bufferFile","w");
linCount=1;

// Reset linCount for rewrite
// Start writing the buffer file
while (linCount < 317)
{
fgets(bufferLine,200,in);
fputs(bufferLine,out);
linCount ++;
}

// Update ETApol
fputs("ETApol = ",out);
fprintf(out,"%f [-] ! Polytropic Efficiency <�<�<�< EDITED AUTOMATICALLY\n",etaPol);
fgets(bufferLine,200,in);

// Moves the seek by one line in 'in'
linCount++;
while (linCount < 1647)

{
fgets(bufferLine,200,in);
fputs(bufferLine,out);
linCount ++;
}

30

fclose(in);
fclose(out);
printf("\n Fan etaPol = %f\n",etaPol);
}

void hpcEta(EIS)b
{
FILE *in; FILE *out;
float e = 2.7182818;
float etaNorm, deltaEtaEIS, deltaEtaRNI=0, etaPol, RNI=0.37397359, psi=0.8;
char bufferLine[1000];
int linCount;
// etaNorm = 0.2492 / (0.2643+ pow(e,((1.353*psi) - 4.183)));

//printf("\nEtaNormHPC = %f\n",etaNorm);
//deltaEtaEIS = (0.05001 / (0.05265+ pow(e,((-0.0672*EIS) + 126.6)))) - 0.94;
//deltaEtaRNI = 0.055 * (1-(1/pow(RNI,0.18)));
//printf("\ndeltaEtaRNI = %f\n",deltaEtaRNI);
//etaPol = 0.9;
etaPol = etaNorm + deltaEtaEIS - deltaEtaRNI;
// update in Engine_DP.dat
in = fopen("Engine_DP.dat","r");
if (in==NULL) {

printf("\n6. File Engine_DP.dat not found. Please check!\n");
fclose(in);

exit(1);
}
out = fopen ("bufferFile","w");
linCount=1;

// Reset linCount for rewrite
// Start writing the buffer file
while (linCount < 490)
{
fgets(bufferLine,200,in);
fputs(bufferLine,out);
linCount ++;
}
// Update ETApol
fputs("ETApol = ",out);
fprintf(out,"%f [-] ! Polytropic Efficiency <�<�<�< EDITED AUTOMATICALLY\n",etaPol);
fgets(bufferLine,200,in);

// Moves the seek by one line in 'in'
linCount++;
while (linCount < 1647)
{
fgets(bufferLine,200,in);
fputs(bufferLine,out);
linCount ++;
}
fclose(in);
fclose(out);
printf("\nHPC etaPol = %f\n",etaPol);
}

// ** */
// Executes EVA and checks PerformanceLog.out for error-free execution
void execEVA()
{
char bufferLine[1000];
int x=1, linCount, logErrorCheck;
FILE *in;
// BLOCK TO EXECUTE performance.exe HERE and check for errorfree execution
system("Performance.exe");
in = fopen("PerformanceLog.out","r");
if (in==NULL)

{
printf("\nPerformanceLog.out not found! Exiting.\n");
fclose(in);
rollback();
exit(1);
}
logErrorCheck=1;
bufferLine[200]='a';
linCount=1;
x=1;
while (x!=0 && linCount!=500)
{

31

// printf("now here %d\n",strncmp(bufferLine," ERROR: Code (0)",15));
x=strncmp(bufferLine," ERROR: Code (0)",16);
fgets(bufferLine,500,in);
if(x==0) logErrorCheck=0;
linCount++;

// if (strncmp(bufferLine," ERROR: Code (0)",16)==0)
{
logErrorCheck=0;
printf("\nJust read log\n");
}
}
if(logErrorCheck==1)

{
printf("\nPerformance.exe failed. Check PerformanceLog\n");
fclose(in);
rollback();
exit(1);
}
fclose(in);

// close PerformanceLog.out
printf("\nExecEva");

}
void execWeico()
{
system("weico.exe");
printf("\nExecWeico");

}
// Grabs and returns SFC data from PerformanceResults.txt
double readSFC()
{
char bufferLine[1000];
char MC_SFCstr[50];

int linCount, charCount;
double MC_SFC;
FILE *in;
// Open PerformanceResults.txt
in = fopen("PerformanceResults.txt","r");
if (in==NULL)

{
printf("\nFile PerformanceResults.txt not found. Please check!\n");
fclose(in);
exit(1);
}
linCount =1; // Reset
// Check for presence of 'cruise' section in the PerformanceResults.txt
while (linCount<372)
{
fgets(bufferLine,1000,in);
linCount++;
}
if(strncmp(bufferLine,"Point Name: Cruise",18)!=0)
{
printf("\nCruise data absent in PerformanceResults.txt. Exiting optimizer!\n");
fclose(in);
exit(1);
}
// Grab SFC value

while (linCount<554)
{

fgets(bufferLine,1000,in);
linCount++;

}
// Get to position
while (fgetc(in)!='0');
// Scans the SFC value character wise and loads into MC_SFCstr array
charCount=0;
while ((MC_SFCstr[charCount]=fgetc(in))!=' ')
charCount++;
MC_SFCstr[charCount]='\0';
//printf("\n%s",MC_SFCstr);
// Convert string into a floating point value
MC_SFC = atof(MC_SFCstr);
//printf("\n%5.10G",MC_SFC);
fclose(in);

32

// Close PerformanceResults.txt
return MC_SFC;

}
// Write the results of final iteration to respective files
void outputFile(char filename[20], float value1, float value2, float value3, float value4,

double SFC, double INST_SFC, int firstWriteFlag)
{
FILE *out;
//char location[20]="optimizerResults\\";

//strcat(location,filename);
if (firstWriteFlag==1)
out = fopen(filename,"w");
else
out = fopen(filename,"a");

//printf("%f\t%G\t%G\n",value1,value2,SFC);
fprintf(out,"%f\t\t%f\t\t%f\t\t%f\t\t%G\t\t%G\n",value1,value2,value3,value4,SFC,INST_SFC);

printf("\n%s\n", filename);
fclose(out);

}
// PSI // Grab engine weight, Nacelle Length and Nacelle Dia from weightOutput.txt
double SFCinst(double SFC, int flag)
{
char bufferLine[1000];
char engineWeightStr[50], nacelleDiaStr[50], nacelleLenStr[50];
int linCount, charCount;
float S_ref, FF, IF, C_0, rho_0, mu_0, pi, LtoD, Re_nac, C_f, Mach_0, A_wet, C_d, F_N, D_mEng,

g;
double engineWeight, nacelleDia, nacelleLen, SFC_installed, nacelleDrag;
FILE *in;
// Open weightAircraft.txt
in = fopen("weightAircraft.txt","r");
if (in==NULL)

{
printf("\nFile weightAircraft.txt not found. Please check!\n");
fclose(in);
exit(1);
}
linCount=1;
while (linCount<4)
{
fgets(bufferLine,1000,in);
linCount++;

}

// Grab Weight
// Get to position
while (fgetc(in)!='0');
// Scans the engineWeight value character wise and loads into engineWeightStr array
charCount=0;
while ((engineWeightStr[charCount]=fgetc(in))!='\n')
charCount++;
engineWeightStr[charCount]='\0';
engineWeight = atof(engineWeightStr);
linCount++;
printf("Engine Weight : %f", engineWeight);
// skip next line fgets(bufferLine,1000,in);
linCount++;
//Grab Eng Nacelle Dia
while (fgetc(in)!='0');
// Scans the nacelleDia value character wise and loads into nacelleDiaStr array
charCount=0;
while ((nacelleDiaStr[charCount]=fgetc(in))!='\n')

charCount++;
nacelleDiaStr[charCount]='\0';
nacelleDia = atof(nacelleDiaStr);
linCount++;
printf("\nnacelleDia : %f",nacelleDia);
//Grab Eng Nacelle Len
while (fgetc(in)!='0');
// Scans the nacelleDia value character wise and loads into nacelleDiaStr array
charCount=0;
while ((nacelleLenStr[charCount]=fgetc(in))!='\n')
charCount++;
nacelleLenStr[charCount]='\0';

33

nacelleLen = atof(nacelleLenStr);
linCount++;
// Assumptions:
S_ref = 363; //m2
FF = 1.25;
IF = 1.0;
C_0 = 243.2;

// cruise velocity
rho_0 = 0.38;
mu_0 = 0.000014;
pi = 3.141592654;
LtoD = 18;
F_N=51000; // Thrust in N

g = 9.81;
printf("\nnacelleLength : %f",nacelleLen);
Re_nac = (C_0 * nacelleLen * rho_0)/ mu_0;
printf("\nRe_nac : %f",Re_nac);
C_f = 0.455/ (pow(log(Re_nac)/log(10),2.58) * pow((1 + 0.144*Mach_0*Mach_0),0.65));
printf("\nC_f : %f",C_f);
A_wet = pi * nacelleLen * nacelleDia; // surface area
printf("\nA_wet : %f",A_wet);
C_d = (C_f * FF * IF * A_wet) / S_ref; // Drag co-efficient
printf("\nC_d : %f",C_d);
nacelleDrag = rho_0 * C_0*C_0 * S_ref * C_d/2;
printf("\nnacelleDrag : %f", nacelleDrag);
D_mEng = (engineWeight * g) / (LtoD);
printf("\nD_mEng : %f",D_mEng);
SFC_installed = SFC*F_N / (F_N - (nacelleDia + D_mEng));
// printf("\nSFC_installed : %G\n",SFC_installed);
// outputFile("DNac_DmEng",nacelleDrag,D_mEng,0,SFC,SFC_installed,flag); //printf("\n%5.10G",totalEngineWeight);
fclose(in); // Close weightAircraft.txt
return SFC_installed;

}
/* readTestVariables(int flag)
{
int linCount, charCount;
char BPR_MCStr[50], OPR_MCStr[50], bufferLine[1000];
double BPR_MC, OPR_MC;
FILE *in;

in = fopen("PerformanceResults.txt","r");
if (in==NULL)

{
printf("\nFile weightAircraft.txt not found. Please check!\n");
fclose(in);
exit(1);
}

linCount=1;
while (linCount<404)
{
fgets(bufferLine,1000,in);
linCount++;

}
// Grab BPR_MC from PerformanceResults.txt
// Get to position
while (fgetc(in)!='0');
// Scans the BPR_MC value character wise and loads into BPR_MCStr array
charCount=0;
while ((BPR_MCStr[charCount]=fgetc(in))!='\n')
charCount++;
BPR_MCStr[charCount]='\0';
BPR_MC = atof(BPR_MCStr);
linCount++;
printf("BPR_MC : %f", BPR_MC);
while (linCount<552)
{
fgets(bufferLine,1000,in);
linCount++;

}
// Grab OPR_MC from PerformanceResults.txt
// Get to position
while (fgetc(in)!='0');
// Scans the OPR_MC value character wise and loads into OPR_MCStr array
charCount=0;

34

while ((OPR_MCStr[charCount]=fgetc(in))!='\n')
charCount++;
OPR_MCStr[charCount]='\0';
OPR_MC = atof(OPR_MCStr);
linCount++;
printf("OPR_MC : %f", OPR_MC);
fclose(in);
outputFile("BPR_OPR",BPR_MC,OPR_MC,0,0,0,flag);
} */

int main() {
// Global
int EIS=2020, x, firstWriteFlag=1;
int linCount=1, charCount, iteCount=1, oneWriteFlag=0, logErrorCheck=1;
double MC_SFC=1000, minSFC=1000, minInstalledSFC=1000, installedSFC=1000, minInstalledSFCPrev=0,

minSFCPrev=0, SFCInit=1;
double res=1;
char PRdesString[3], bufferLine[1000], MC_SFCstr[50];
char testString[100];
// FAN
float fan_PR=1.6;
// W2 & V18/V8
float Windes=450, Velrat_TOC=0.58, Velrat_MC, Velrat_TO;

// W2 & Velocity Ratio V18/V8
float optWindes=450, optVelrat_TOC=0.58, optVelrat_MC, optVelrat_TO, BPR_MC, OPR_MC;

//optimum values
char WindesString[3], WindesFilenameChar[8], VelratStr[50], engineWeightStr[50], BPR_MCStr[50],

OPR_MCStr[50];
double engineWeight;
// HPC float HPC_PRdes=4;
// HPC Pressure ratio float optHPC_PRdes=4; // optimum
// T41M_TOC
float upperTemp=1370-(2020-EIS)*10;
float lowerTemp=upperTemp-200;
float T41M_TOC;
float optT41M_TOC=lowerTemp;
FILE *in1;
FILE *in;
FILE *out;
// Back up Engine_DP.dat to rollback
linCount=1;
in = fopen("Engine_DP.dat","r");
if (in==NULL)

{
printf("\n1. File Engine_DP.dat not found. Please check!\n");
fclose(in);
exit(1);
}
out = fopen("Engine_DP_Rollback.dat","w");
while (linCount!=1647)
{
fgets(bufferLine,500,in);
fputs(bufferLine,out);
linCount++;
}
fclose(in);
fclose(out);
// Reset Engine_DP.dat to initial values
linCount=1;
in = fopen("Engine_DP_init.dat","r");
if (in==NULL)

{
printf("\n2. File Engine_DP_init.dat not found. Please check!\n");
fclose(in);
exit(1);
}
out = fopen("Engine_DP.dat","w");
while (linCount!=1647)
{
fgets(bufferLine,500,in);
fputs(bufferLine,out);
linCount++;
}
fclose(in);

fclose(out);

35

printf("\nFor EIS : %d\n",EIS);
// ==
/*
// UPDATE FAN EFFICIENCY
fanEta(fan_PR,EIS);
//UPDATE HPC EFFICIENCY
hpcEta(EIS);
*/
while (res>0.001) {
// Initialize necessary variables
minSFC=1000;
HPC_PRdes=4.2;
Windes=450;
upperTemp = 1370-(2020-EIS)*10;
lowerTemp = upperTemp-200;
T41M_TOC=lowerTemp;

// ===
// OPTMIZATION OF W2 AND V18/V8
while (Windes <= 550)

{
firstWriteFlag=1; // Creates a fresh file during every iteration
Velrat_TOC = 0.58;
//Initial V18/V8
while (Velrat_TOC < 0.99)
{
in = fopen("Engine_DP.dat","r");
if (in==NULL)
{
printf("\n3. File Engine_DP.dat not found. Please check!\n");
fclose(in);
exit(1);
}
out = fopen ("bufferFile","w");
linCount=1; // Reset linCount for rewrite
// Start writing the buffer file
while (linCount < 276)
{
fgets(bufferLine,200,in);
fputs(bufferLine,out);
linCount ++;
}
// Update Windes
fputs("Windes = ",out);
fprintf(out,"%f [kg/s] ! Inlet Mass Flow in [kg/s] <�<�<�< EDITED AUTOMATICALLY\n",Windes);

fgets(bufferLine,200,in); // Moves the seek by one line in 'in' linCount++;
while (linCount < 832)

{
fgets(bufferLine,200,in);
fputs(bufferLine,out);

linCount ++;
}
// printf ("\nI'm here\n");
// Change Velrat_TOC
fputs("VcoldQhotDes = ",out);
fprintf(out,"%f [-] ! Velocity Ratio <�<�<�< EDITED AUTOMATICALLY\n",Velrat_TOC);
fgets(bufferLine,200,in);
// Moves the seek by one line in 'in'
linCount++;
while (linCount < 1647)

{
fgets(bufferLine,200,in);
fputs(bufferLine,out);
linCount ++;
}
fclose(in);
fclose(out);
// Rewrite Engine_DP.dat with bufferFile
linCount=1;

in = fopen("bufferFile","r");
out = fopen("Engine_DP.dat","w");
while (linCount!=1647)
{
fgets(bufferLine,200,in);

36

fputs(bufferLine,out);
linCount++;
}
fclose(in);
fclose(out);
// run EVA
execEVA();
execWeico();
// grab SFC value from PerformanceResults.txt
MC_SFC = readSFC();
installedSFC = SFCinst(MC_SFC, firstWriteFlag);
// grab V18V8 values for mid-cruise and take-off conditions too
// Open PerformanceResults.txt
in = fopen("PerformanceResults.txt","r");
if (in==NULL) {printf("\nFile PerformanceResults.txt not found. Please check!\n");

fclose(in);
exit(1);
}
linCount =1; // Reset

// Grab VcoldQhot at Cruise
while (linCount<553)
{
fgets(bufferLine,1000,in);
linCount++;
}
// Get to position
while (fgetc(in)!='0'); // Scans the VcoldQhot value character wise and loads into VelratStr

array
charCount=0;
while ((VelratStr[charCount]=fgetc(in))!=' ')
charCount++;
VelratStr[charCount]='\0';
//printf("\n%s",VelratStr); // Convert string into a floating point value
Velrat_MC = atof(VelratStr); // Grab VcoldQhot at Cruise
while (linCount<746)
{
fgets(bufferLine,1000,in);
linCount++;
}
// Get to position
while (fgetc(in)!='0'); // Scans the VcoldQhot value character wise and loads into VelratStr

array
charCount=0;
while ((VelratStr[charCount]=fgetc(in))!=' ')
charCount++;
VelratStr[charCount]='\0';
//printf("\n%s",VelratStr);
// Convert string into a floating point value
Velrat_TO = atof(VelratStr);

//printf("\n%5.10G",VelratStr);
fclose(in); // Close PerformanceResults.txt
// Open weightAircraft.txt
in = fopen("weightAircraft.txt","r");
if (in==NULL) {

printf("\nFile weightAircraft.txt not found. Please check!\n"); fclose(in); exit(1);
}
linCount=1;
while (linCount<4)
{
fgets(bufferLine,1000,in);
linCount++;
}
// Grab Weight
// Get to position
while (fgetc(in)!='0');
// Scans the engineWeight value character wise and loads into engineWeightStr array
charCount=0;
while ((engineWeightStr[charCount]=fgetc(in))!='\n')
charCount++;
engineWeightStr[charCount]='\0';
engineWeight = atof(engineWeightStr);
linCount++;

37

fclose(in);

in = fopen("PerformanceResults.txt","r");
if (in==NULL)

{
printf("\nFile weightAircraft.txt not found. Please check!\n");
fclose(in);
exit(1);
}
linCount=1;
while (linCount<404)

{
fgets(bufferLine,1000,in);
linCount++;

}
// Grab BPR_MC from PerformanceResults.txt
// Get to position
while (fgetc(in)!='0');
// Scans the BPR_MC value character wise and loads into BPR_MCStr array
charCount=0;
while ((BPR_MCStr[charCount]=fgetc(in))!='\n')
charCount++;
BPR_MCStr[charCount]='\0';
BPR_MC = atof(BPR_MCStr);
linCount++;
printf("BPR_MC : %f", BPR_MC);
while (linCount<552)
{
fgets(bufferLine,1000,in);
linCount++;

}
// Grab OPR_MC from PerformanceResults.txt
// Get to position
while (fgetc(in)!='0');
// Scans the OPR_MC value character wise and loads into OPR_MCStr array
charCount=0;
while ((OPR_MCStr[charCount]=fgetc(in))!='\n')
charCount++;
OPR_MCStr[charCount]='\0';

OPR_MC = atof(OPR_MCStr);
linCount++;
printf("OPR_MC : %f", OPR_MC);
fclose(in);

/*
// Check if the latest SFC is the minimum. If so, update optWindes and optVelrat_TOC
if(MC_SFC<minSFC)
{
minSFC=MC_SFC;
optWindes=Windes;
optVelrat_TOC=Velrat_TOC;
optVelrat_MC=Velrat_MC;
optVelrat_TO=Velrat_TO;
//printf("\nMinimum noted: %G\n",minSFC);
} //printf("\n%G\n",minSFC);
*/

// optimising based on minimal installed SFC
if(installedSFC < minInstalledSFC)
{
minInstalledSFC=installedSFC;
optWindes=Windes;
optVelrat_TOC=Velrat_TOC;
optVelrat_MC=Velrat_MC;
optVelrat_TO=Velrat_TO;
//printf("\nMinimum noted: %G\n",minSFC);
}
printf("\n Itn:%d W2:%f V18/V8:%f HPC-PR:%f T41M_TOC:%f\ninstalledSFC: %5.8G",iteCount,Windes,Velrat_TOC,optHPC_PRdes,optT41M_TOC,installedSFC);
printf(WindesFilenameChar,"%f",Windes);
outputFile(WindesFilenameChar,Velrat_MC,BPR_MC,OPR_MC,engineWeight,MC_SFC,installedSFC,firstWriteFlag);
firstWriteFlag=0;
Velrat_TOC=Velrat_TOC+0.01;
}
// Ends Velrat_TOC

38

// printf("\nprinting windes : %f\n",Windes);
Windes=Windes+20;
} // Ends Windes
// printf("\n%f\n",optWindes);
// printf("\n%f\n",optVelrat_TOC);
// Update the Engine_DP.dat file with optimum Windes and VcoldQhotDes values
in = fopen("Engine_DP.dat","r");
if (in==NULL)

{
printf("\nAttempting to write optimum Windes and VcoldQhotDes values. File Engine_DP.dat

not found.\n");
fclose(in);
exit(1);
}
out = fopen ("bufferFile","w");
linCount=1; // Reset linCount for rewrite
// Start writing the buffer file
while (linCount < 276)

{
fgets(bufferLine,200,in);
fputs(bufferLine,out);
linCount ++;
}
// Update Windes
fputs("Windes = ",out);
fprintf(out,"%f [kg/s] ! Inlet Mass Flow in [kg/s] <�<�<�< EDITED AUTOMATICALLY\n",optWindes);
fgets(bufferLine,200,in);

// Moves the seek by one line in 'in'
linCount++;
while (linCount < 832)

{
fgets(bufferLine,200,in);
fputs(bufferLine,out);
linCount ++;
}
// Update Velrat_TOC
fputs("VcoldQhotDes = ",out);
fprintf(out,"%f [-] ! Velocity Ratio <�<�<�< EDITED AUTOMATICALLY\n",optVelrat_TOC);
fgets(bufferLine,200,in);

// Moves the seek by one line in 'in'
linCount++;
while (linCount < 1647)

{
fgets(bufferLine,200,in);
fputs(bufferLine,out);
linCount ++;
}
fclose(in);
fclose(out);
// Rewrite Engine_DP.dat with bufferFile
linCount=1;
in = fopen("bufferFile","r");
out = fopen("Engine_DP.dat","w");
while (linCount!=1647)

{
fgets(bufferLine,200,in);
fputs(bufferLine,out);
linCount++;
}
fclose(in);
fclose(out);
printf("\n Just got here!!!!! ");
// printf("\nEnd of stage1 \n");

// === // OPTIMIZATION
OF HPC PRESSURE RATIO

// Initialize necessary variables
firstWriteFlag=1;
while (HPC_PRdes <= 5.5)

{
in = fopen("Engine_DP.dat","r");
if (in==NULL)
{
printf("\n4. File Engine_DP.dat not found. Please check!\n");
fclose(in);

39

exit(1);
}
out = fopen ("bufferFile","w");
linCount=1; // Reset linCount for rewrite
// Start writing the buffer file
while (linCount < 489)
{
fgets(bufferLine,200,in);
fputs(bufferLine,out);
linCount ++;
}
// Update HPC PRdes
fputs("PRdes = ",out);
fprintf(out,"%f [-] ! Pressure Ratio <�<�<�< EDITED AUTOMATICALLY\n",HPC_PRdes);
fgets(bufferLine,200,in);
// Moves the seek by one line in 'in'
linCount++;
while (linCount < 1647)
{
fgets(bufferLine,200,in);
fputs(bufferLine,out);
linCount ++;
}
fclose(in);
fclose(out);
// Rewrite Engine_DP.dat with bufferFile
linCount=1;
in = fopen("bufferFile","r");
out = fopen("Engine_DP.dat","w");
while (linCount!=1647)
{
fgets(bufferLine,200,in);
fputs(bufferLine,out);
linCount++;
}
fclose(in);
fclose(out);
// run EVA
execEVA();

execWeico();
// grab SFC value from PerformanceResults.txt
MC_SFC = readSFC();
installedSFC = SFCinst(MC_SFC,firstWriteFlag);
// Check if the latest SFC is the minimum. If so, update optHPC_PRdes
if(installedSFC < minInstalledSFC)
{
minInstalledSFC=installedSFC;
optHPC_PRdes=HPC_PRdes;
// printf("\nMinimum noted: %G\n",minSFC);
}

// Read Engine weight
// Open weightAircraft.txt
in = fopen("weightAircraft.txt","r");
if (in==NULL)

{
printf("\nFile weightAircraft.txt not found. Please check!\n");
fclose(in);
exit(1);
}
linCount=1;
while (linCount<4)
{
fgets(bufferLine,1000,in);
linCount++;
}
// Grab Weight
// Get to position
while (fgetc(in)!='0');
// Scans the engineWeight value character wise and loads into engineWeightStr array
charCount=0;
while ((engineWeightStr[charCount]=fgetc(in))!='\n')
charCount++;

40

engineWeightStr[charCount]='\0';
engineWeight = atof(engineWeightStr);
linCount++;
fclose(in);
printf("\n Itn:%d W2:%f V18/V8:%f HPC-PR:%f T41M_TOC:%f\nMC-SFC: %5.8G",iteCount,optWindes,optVelrat_TOC,HPC_PRdes,optT41M_TOC,installedSFC);
outputFile("HPC_PRdes",HPC_PRdes,0,0,engineWeight,MC_SFC,installedSFC,firstWriteFlag);
firstWriteFlag=0;
HPC_PRdes=HPC_PRdes+0.1;
}
// Ends HPC PRdes increments
// Update the Engine_DP.dat file with Optimum HPC PRdes
in = fopen("Engine_DP.dat","r");
if (in==NULL)

{
printf("\nAttempting to write optimum HPC PRdes. File Engine_DP.dat not found.\n");
fclose(in);
exit(1);
}
out = fopen ("bufferFile","w");
linCount=1; // Reset linCount for rewrite
// Start writing the buffer file
while (linCount < 489)

{
fgets(bufferLine,200,in);
fputs(bufferLine,out);
linCount ++;
}
// Update to optimum HPC PRdes
fputs("PRdes = ",out);
fprintf(out,"%f [-] ! Inlet Mass Flow in [kg/s] <�<�<�< EDITED AUTOMATICALLY\n",optHPC_PRdes);
fgets(bufferLine,200,in);

// Moves the seek by one line in 'in'
linCount++;
while (linCount < 1647)

{
fgets(bufferLine,200,in);
fputs(bufferLine,out);
linCount ++;
}
fclose(in);
fclose(out);

// Rewrite Engine_DP.dat with bufferFile
linCount=1;
in = fopen("bufferFile","r");
out = fopen("Engine_DP.dat","w");
while (linCount!=1647)

{
fgets(bufferLine,200,in);
fputs(bufferLine,out);
linCount++;
}
fclose(in);
fclose(out);

// === // OPTIMIZATION
OF TAKE-OFF T41M_TOC BASED ON EIS

// initialize necessary variables
firstWriteFlag=1;

while (T41M_TOC <= upperTemp)
{
in1 = fopen("Engine_DP.dat","r");
if (in1==NULL)
{
printf("\n5. File Engine_DP.dat not found. Please check!\n");
fclose(in1);
exit(1);
}
out = fopen ("bufferFile","w");
linCount=1;
// Reset linCount for rewrite
// Start writing the buffer file
while (linCount < 600)
{
fgets(bufferLine,200,in1);

41

fputs(bufferLine,out);
linCount ++;
}
// Update Tmdes
fputs("Tmdes = ",out);
fprintf(out,"%f [K] ! Turbine rotor metal temperature in [K] at design point <�<�<�< EDITED AUTOMATICALLY\n",T41M_TOC);
fgets(bufferLine,200,in1);
// Moves the seek by one line in 'in'
linCount++;
while (linCount < 1647)
{
fgets(bufferLine,200,in1);
fputs(bufferLine,out);
linCount ++;
}
fclose(in1);
fclose(out);
// Rewrite Engine_DP.dat with bufferFile
linCount=1;
in = fopen("bufferFile","r");
out = fopen("Engine_DP.dat","w");
while (linCount!=1647)
{
fgets(bufferLine,200,in);
fputs(bufferLine,out);
linCount++;
}
fclose(in);
fclose(out);
// run EVA
execEVA();
execWeico();

// grab SFC value from PerformanceResults.txt
MC_SFC=readSFC();
installedSFC = SFCinst(MC_SFC,firstWriteFlag);
// Check if the latest SFC is the minimum. If so, update PRdes
if(installedSFC < minInstalledSFC)
{
minInstalledSFC=installedSFC;
optT41M_TOC = T41M_TOC;
// printf("\nMinimum noted: %G\n",minSFC);
}
printf("\n Itn:%d W2:%f V18/V8:%f HPC-PR:%f T41M_TOC:%f\ninstalledSFC: %5.8G",iteCount,optWindes,optVelrat_TOC,optHPC_PRdes,T41M_TOC,installedSFC);
outputFile("T41M_TOC",T41M_TOC,0,0,0,MC_SFC,installedSFC,firstWriteFlag);
firstWriteFlag=0;
T41M_TOC = T41M_TOC + 5;
}
// Ends T41M_TOC increments
// Update the Engine_DP.dat file with Optimum T41M_TOC
in = fopen("Engine_DP.dat","r");
if (in==NULL)

{
printf("\nAttempting to write optimum HPC PRdes. File Engine_DP.dat not found.\n");
fclose(in);
exit(1);
}
out = fopen ("bufferFile","w");
linCount=1;
// Reset linCount for rewrite
// Start writing the buffer file
while (linCount < 600)

{
fgets(bufferLine,200,in);
fputs(bufferLine,out);
linCount ++;
}
// Update to optimum T41M_TOC
fputs("Tmdes = ",out);
fprintf(out,"%f [K] ! Turbine rotor metal temperature in [K] at design point <�<�<�< EDITED

AUTOMATICALLY\n",optT41M_TOC);
fgets(bufferLine,200,in);

// Moves the seek by one line in 'in'
linCount++;

42

while (linCount < 1647)
{
fgets(bufferLine,200,in);
fputs(bufferLine,out);
linCount ++;
}
fclose(in);
fclose(out);
// Rewrite Engine_DP.dat with bufferFile
linCount=1;
in = fopen("bufferFile","r");
out = fopen("Engine_DP.dat","w");
while (linCount!=1647)

{
fgets(bufferLine,200,in);
fputs(bufferLine,out);
linCount++;
}
fclose(in);
fclose(out);
// ===

// ITERATION CHECK
if (oneWriteFlag==0)

{
SFCInit = minInstalledSFC;
oneWriteFlag=1;
}
// printf("\nPrev Min SFC: %G",minSFCPrev);

// printf("\nInitial SFC: %G",SFCInit);
res=fabsl((minInstalledSFC-minInstalledSFCPrev)/SFCInit);

printf("\n==\n");
printf("Iteration:\t\t%d\n",iteCount);
printf("Residual:\t\t%f\n",res);

printf("Minimum SFC:\t\t%G\n",minInstalledSFC);
printf("Opt W2:\t\t%f\n",optWindes);
printf("Opt V18/V8:\t\t%f\n",optVelrat_TOC);
printf("Opt HPC-PR:\t\t%f\n",optHPC_PRdes);
printf("Opt T41M_TOC:\t\t%f\n",optT41M_TOC);
printf("\n==\n");
// ===

// Write all results to one file
//
out = fopen("finalResults.txt","w");

iteCount++;
minInstalledSFCPrev=minInstalledSFC;
}

// Ends iteration loop
return 0;
}

43

B plotter.m

clear all
close all

load 450.000000
load 470.000000
load 490.000000
load 510.000000
load 530.000000
load 550.000000
load HPC-PRdes
load T41M-TOC

load DNac-DmEng

figure(1);
plot (X450(:,1),X450(:,5),'r','Linewidth',2);
hold on;
plot (X470(:,1),X470(:,5),'b','Linewidth',2);
plot (X490(:,1),X490(:,5),'g','Linewidth',2);
plot (X510(:,1),X510(:,5),'c','Linewidth',2);
plot (X530(:,1),X530(:,5),'k','Linewidth',2);
plot (X550(:,1),X550(:,5),'m','Linewidth',2);
grid on;
legend('450','470','490','510','530','550',1);
xlabel ('V18/V8','FontSize',20);
ylabel ('SFC','FontSize',20);
handle=gca;
set(handle,'fontsi',[20]);

figure(2)
plot (HPC-PRdes(:,1),HPC-PRdes(:,5),'Linewidth',2);
grid on;
xlabel ('HPC PRdes','FontSize',20);
ylabel ('SFC','FontSize',20);
handle=gca;
set(handle,'fontsi',[20]);

figure(3)
plot(T41M-TOC(:,1),T41M-TOC(:,5),'Linewidth',2);
grid on;
xlabel ('T41M','FontSize',20);
ylabel ('SFC','FontSize',20);
handle=gca;
set(handle,'fontsi',[20]);

figure(4)
plot (X450(:,1),X450(:,6),'r','Linewidth',2);
hold on;
plot (X470(:,1),X470(:,6),'b','Linewidth',2);
plot (X490(:,1),X490(:,6),'g','Linewidth',2);
plot (X510(:,1),X510(:,6),'c','Linewidth',2);
plot (X530(:,1),X530(:,6),'k','Linewidth',2);
plot (X550(:,1),X550(:,6),'m','Linewidth',2);
grid on;
legend('450','470','490','510','530','550',1);
xlabel ('V18/V8','FontSize',20);
ylabel ('Installed SFC','FontSize',20);
handle=gca;
set(handle,'fontsi',[20]);

figure(5)
plot (X450(:,6),X450(:,4),'r','Linewidth',2);
hold on;
plot (X470(:,6),X470(:,4),'b','Linewidth',2);
plot (X490(:,6),X490(:,4),'g','Linewidth',2);
plot (X510(:,6),X510(:,4),'c','Linewidth',2);
plot (X530(:,6),X530(:,4),'k','Linewidth',2);
plot (X550(:,6),X550(:,4),'m','Linewidth',2);
grid on;
legend('450','470','490','510','530','550',1);
xlabel ('SFC','FontSize',20);
ylabel ('Engine Weight','FontSize',20);

44

handle=gca;
set(handle,'fontsi',[20]);

figure(6)
plot (X450(:,1),X450(:,4),'r','Linewidth',2);
hold on;
plot (X470(:,1),X470(:,4),'b','Linewidth',2);
plot (X490(:,1),X490(:,4),'g','Linewidth',2);
plot (X510(:,1),X510(:,4),'c','Linewidth',2);
plot (X530(:,1),X530(:,4),'k','Linewidth',2);
plot (X550(:,1),X550(:,4),'m','Linewidth',2);
grid on;
legend('450','470','490','510','530','550',1);
xlabel ('V18/V8','FontSize',20);
ylabel ('Engine Weight','FontSize',20);
handle=gca;
set(handle,'fontsi',[20]);

45

