
Integrating Fault-Tolerance in Real-Time
Scheduling of Mixed-Criticality Systems
on Multiprocessors
Master’s thesis in Computer Systems and Networks

PHILIP STÅLHAMMAR

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Master’s thesis 2018

Integrating Fault-Tolerance in Real-Time
Scheduling of Mixed-Criticality Systems on

Multiprocessors

PHILIP STÅLHAMMAR

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018

Integrating Fault-Tolerance in Real-Time Scheduling of
Mixed-Criticality Systems on Multiprocessors
PHILIP STÅLHAMMAR

© PHILIP STÅLHAMMAR, 2018.

Supervisor: RISAT PATHAN, Department of Computer Science and Engineering
Examiner: JAN JONSSON, Department of Computer Science and Engineering

Master’s Thesis 2018
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Integrating Fault-Tolerance in Real-Time Scheduling of
Mixed-Criticality Systems on Multiprocessors
PHILIP STÅLHAMMAR
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
This thesis presents a novel real-time global fixed-priority scheduling algorithm that
integrates mixed-criticality and fault-tolerance. An important aspect of mixed-
criticality is to ensure that the temporal correctness of safety-critical tasks is not
impacted by non-safety critical tasks they share a platform with. This thesis pro-
poses that safety-critical tasks are given fault-tolerance to also ensure functional
correctness. By integrating fault-tolerance the algorithm can provide guarantees for
the temporal and functional correctness of safety critical tasks. Fault-tolerance is
given through the execution of backup tasks where these tasks may be simple a
re-execution of the primary or a diverse implementation. In addition, the backup
tasks can be scheduled as either passive or active backups. The thesis includes an
analysis to derive a schedulability test for the proposed algorithm and also presents
policies to determine how many backups should be active for each task assuming a
certain fault model. Simulated tests show that mixed-criticality and fault-tolerance
can be costly in terms of schedulability, but that assigning active backups according
to the policies proposed by the thesis can provide an increase in schedulability over
having just passive backups.

Keywords: Real-Time Systems, RTS, Mixed-Criticality, Fault-Tolerance, Global
Scheduling, Fixed-Priorities.

v

Acknowledgements
Thank you to my supervisor Risat Pathan whose knowledge and insight have helped
tremendously to complete this project.

Philip Stålhammar, Gothenburg, June 2018

vii

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Methodology . 3
1.3 Limitations . 4

2 Background 5
2.1 Multiprocessor Scheduling . 5
2.2 Mixed-Criticality . 6
2.3 Fault-Tolerance . 6
2.4 Related Work . 7

3 Scheduling Algorithm 9
3.1 Task and Fault Models . 9
3.2 Scheduling Algorithm . 10

4 Schedulability Analysis 13
4.1 General Properties . 13
4.2 Low Criticality Mode . 14

4.2.1 General Procedure Overview 14
4.2.2 Low Criticality Analysis . 15

4.3 High Criticality Mode . 18
4.3.1 General Procedure Overview 18
4.3.2 High Criticality Analysis . 18

4.4 Priority and Active Backup Assignment 21

5 Simulated Testing 23
5.1 Task-set Generation . 23
5.2 Test Results . 24

5.2.1 Base Performance . 24
5.2.2 Fault-Tolerance Performance 26

5.3 Summary of Results . 29

6 Conclusions 31
6.1 Future Work . 32

Bibliography 35

ix

Contents

x

1
Introduction

In real-time scheduling there are tasks that have temporal correctness requirements,
temporal correctness is that the tasks must produce a result within a given time
window, and results produced outside of this window are considered incorrect [26],
for example, a value read from a sensor might only be valid for a short amount of
time, so tasks working on that sensor data have to finish before the data is no longer
valid. The end of such a time interval is called the deadline of the task and the goal
of a real-time scheduler is to ensure that all real-time tasks complete their execution
before their deadline. A task-set is said to be schedulable if all its are schedulable
i.e. they meet all their deadlines.

Mixed-criticality is a concept of increasing importance where tasks of differing crit-
icality levels execute on the same processing system [9]. Criticality levels of tasks
can be given from their function in accordance with some standard like ASIL, which
is part of the larger automotive standard ISO 26262 [17], functions that are crit-
ical to safety will have a high criticality level, and Certification Authorities (CA)
requires greater guarantees that the high criticality tasks will function correctly and
meet the standards of that safety/criticality level. These guarantees can come in the
form of a more pessimistic, then what developers would normally use, estimation
of a tasks worst-case execution time (wcet). Since correctly estimating the wcet of
a task is not a clear-cut problem [21], having a more pessimistic estimation lowers
the chances that it is wrong. One issue with integrating real-time scheduling and
mixed-criticality is that criticality level is independent of the tasks real-time priori-
ties, i.e. a low priority task from a real-time perspective may have a high criticality
level and vice versa.

As mentioned previously real-time schedulers focus on providing temporal correct-
ness to tasks, but it is also important, especially for safety critical task, to have
functional correctness, i.e. the task produces the correct output. There are mul-
tiple reasons why a task might produce erroneous output, from software bugs, to
design faults in hardware, to bit-flips in registers caused by background radiation
and more [18]. The good news is that many of these faults can be handled using
fault-tolerance, a common way to handle faults is have some form of fault detection
and then re-execute a faulty task in the hope that the fault was temporary.

It should be obvious that having fault-tolerance via re-execution introduces new

1

1. Introduction

challenges to real-time scheduling, with one being increased resource usage. This
is where multicore processors have benefits over single-core processors, in that they
offer increased performance for their size, and lower power consumption for their
performance [21], both important attributes for embedded systems where real-time
applications are common. Multicore processors also have a measure of built-in hard-
ware redundancy with multiple cores that can work independently, depending on the
fault, not all cores might be affected. Multicore processors are an increasingly more
common type of hardware that has a number of benefits over single core processors.

This thesis, therefore, presents the design and evaluation of a novel real-time schedul-
ing algorithm using global scheduling with fixed-priorities for a multiprocessor en-
vironment. In global scheduling all processors in a system share a ready queue,
where tasks that are ready to execute are stored, it is the scheduler’s job to assign
these tasks to the processors for execution. Fixed-priorities are set offline and do
not change during runtime. The proposed scheduling algorithm will handle task
sets with mixed-criticality levels and also offers fault-tolerance for high criticality
tasks in terms of re-execution in case a fault is detected in such tasks. Areas where
mixed-criticality task-sets are used and fault-tolerance is required are for example
the automotive and aeronautic industries [21]. The real-time scheduler that this the-
sis presents integrates the concepts of mixed-criticality with fault-tolerance to make
the high criticality tasks more reliable and thus improve the safety and performance
of the system they are part of.

1.1 Problem Statement

Design a real-time multiprocessor scheduling algorithm that can schedule mixed-
criticality task-sets with fault-tolerance guarantees for high criticality tasks, the al-
gorithm will use global scheduling with fixed-priorities. Since fixed-priorities are as-
signed offline and the fact that priorities affect the schedulability of tasks, a method
to assign priorities needs to be found.

The fault-tolerance will consist of the execution of active and passive backup tasks,
active backups are always released to the scheduler at the same time as the primary,
even when no faults are detected, this means that they can execute in parallel. On
the other hand, passive backups for a task are only released when a fault has been
detected in the executing task and no other variant (primary or backup) of that task
is currently executing or waiting to execute, in effect the passive backups are released
sequentially. Given that active and passive backups have different properties there
is a need to design policies that decide the number of active backups each high
criticality task has. The inclusion of fault-tolerance will add extra work to the
system which may affect the schedulability negatively.

A real-time task-set requires that the tasks are able to meet their deadlines i.e. be
schedulable, and the schedulability of a task-set should be proven before it becomes
part of a live system. A schedulability test will determine the schedulability of a task-

2

1. Introduction

set for a given scheduling algorithm. Thus to test the schedulability of task-sets on
the proposed scheduling algorithm a schedulability test needs to be derived. Deriving
the schedulability test requires finding suitable task and fault models, the task model
will determine what properties will represent a task, and the fault model determines
properties like what type of faults can occur, their number and frequency, how
accurately they are detected etc. The models together with the scheduling algorithm
will be used to derive a schedulability test used to determine the schedulability of
task-sets on the proposed scheduling algorithm.

The performance of the proposed scheduling algorithm will be measured by its ability
to schedule task-sets if a task-set is schedulable is determined by the schedulability
test. The schedulability test will be tested by generating a number of random task-
sets and measuring the ratio of tasks that are schedulable. To test the schedulability
test in a meaningful way it needs to be implemented in code from its mathematical
equations, this process is not trivial since the equations can be computationally
heavy.

1.2 Methodology

The scheduling algorithm will use global fixed-priority scheduling. The mixed-
criticality is modeled with two criticality levels, low and high, and conversely, the
scheduler has two modes corresponding to these levels. In low criticality mode, all
tasks are allowed to execute, and it is assumed that the high criticality tasks have a
lower or less pessimistic wcet. If during runtime any high criticality task executes for
longer than its low wcet then the scheduler switches to high criticality mode where
only high criticality tasks are allowed to execute, low criticality tasks are dropped
to free up resources for the high criticality tasks. In high criticality mode, the high
criticality tasks wcet may be higher, or more pessimistic than the one used in the
low criticality mode.

High criticality tasks are also given fault-tolerance through the use of backup tasks,
either passive or active. Active backups are always released together with the pri-
mary and they can execute in parallel with each other and the primary. Active
backups are released even if no faults have been detected, this means that active
backups may increase the workload of the system without providing a benefit in
terms of correcting faults, but on the other hand, active backups can execute in
parallel which means a correct result may be available earlier. A Passive backup is
released only when the primary, all active backups, and previous passive backups
have failed to produce a valid result, as a consequence of this release pattern passive
backups execute sequentially. Since passive backups are released only when needed
they provide a minimal increase in workload, but since they execute sequentially,
the time it takes until a valid result is available might be longer than if the equal
number of active backups was used instead. So in a simplified summary: Active
backups trade an increase in workload for a reduction in time before a valid result,

3

1. Introduction

and the passive backups trade increase in time before a valid result for a reduction
in workload compared to having the backup as active.

The schedulability test consists of two parts, one for each criticality level. The
schedulability test will investigate a job from each task in the task-set, these jobs
will be made to suffer the maximal amount of interference from higher priority
jobs, and if the job still meets its deadline then all other jobs from that task are
also guaranteed to meet their deadlines. The general analysis each part of the test
performs is the same, first find the number of jobs from each higher priority task
that interfere with the investigated job. Secondly, the workload of these interfering
jobs must be calculated, and since high criticality jobs have backups their workload
can differ based on the number of faults they encounter, thus the fault distribution
that produces the maximal workload must be found. Next, the workload of the
investigated job will be calculated, this includes the workload of any active backups.
The previous workloads can be done in parallel, but the workload of passive backups
for the investigated job can’t be done in parallel. Next, the fault distribution between
the investigated job and the interfering jobs must be found, again to maximize
the workload. Lastly if the time it takes to execute the total workload is within
the deadline of the investigated job then that job, and the task it belongs to is
schedulable. The main difference with the high criticality analysis is to find the
point in time that produces the highest total workload, taking into account that
after that point low criticality tasks are no longer allowed, so the interfering workload
decreases, but on the other hand high criticality jobs have a larger workload.

1.3 Limitations

This thesis focuses on designing a scheduler that uses fixed-priorities so dynamic-
priorities will not be considered. The analysis of the mixed-criticality functionality
will be limited to two criticality levels, with no function to return to a low criticality
state once it has gone to high criticality. The schedulability analysis will be done
with the fault model presented later in section 3.1, but there are other equally
valid models. It is assumed that all task errors will be detected at the end of task
execution at the latest, a more probabilistic analysis of error detection is outside the
scope of this thesis.

4

2
Background

This section will present some of the theory behind real-time scheduling and will
focus on the areas that this paper concerns namely multiprocessor scheduling, mixed-
criticality scheduling and fault tolerance.

2.1 Multiprocessor Scheduling

Real-time multiprocessor scheduling comes in two main shapes global and parti-
tioned scheduling [26]. In partitioned scheduling tasks are assigned offline to a core
from which they can’t migrate, i.e. a task assigned to a given core can only ever
execute on that core. The benefit of this approach is that uniprocessor scheduling
theory can be used to schedule the tasks on each individual core. The main draw-
backs are inflexibility, and wasted resources, i.e. one core can remain idle while there
are tasks in waiting on other cores.

Global scheduling, on the other hand, means that the scheduler assigns tasks to cores
at runtime, and they are free to migrate to different cores during their execution.
The migration process can be costly in terms of overhead, but in return tasks can
execute on any free core, helping to prevent idle cores.

Global scheduling has a property that makes it harder to design schedulability test
namely the lack of a predictable critical instant. A critical instant [19] is the moment
in time where a task suffers the most interference from higher priority tasks, i.e its
execution is delayed the most. The critical instant for a task set is when the lowest
priority task faces the most interference, in uniprocessor fixed priority scheduling
the critical instant happens when the lowest priority task is released for execution
at the same time as all higher priority tasks. And if that task is able to meet its
deadline in that situation than it will meet its deadline in any other situation. In
global scheduling, on the other hand, the critical instant is not guaranteed to happen
when all tasks are released at the same time, which makes it more challenging to
design a schedulability test for global scheduling.

5

2. Background

2.2 Mixed-Criticality

Mixed-criticality is a concept that mixes tasks of different criticality levels on the
same processor. The criticality levels are given by certain standards like ASIL from
the ISO 26262 standard. Functionality/tasks that concern safety critical properties
are given a high criticality level, and CAs place their focus on the high criticality
tasks working correctly from both a temporal and functional point of view. Usually,
mixed-criticality in real-time scheduling is handled by giving the high criticality
tasks a more pessimistic estimation of their worst-case execution time (wcet) than
what the designers would give them if they were of a lower criticality. This pessimism
means that fewer task sets can be scheduled and it is likely that there is slack, i.e
unused processor time, in the schedule that lower criticality tasks can make use of
[21]. Another variation is to assume two (or more) different wcets for high criticality
tasks [9], [22]: The first one is larger and more pessimistic and will satisfy the CAs
requirement that the real wcet will not exceed the estimated one. And the second
wcet is estimated to be smaller and more realistic according to the designers. The
designers then schedule the task set with the smaller wcet, but if during runtime
a high criticality task overruns the lower estimated wcet then the system will shift
mode and for example remove low criticality tasks from execution, thereby freeing
up resources to make sure that the high criticality tasks meet their deadlines.

2.3 Fault-Tolerance

Fault-tolerance, in general, is the ability of a service to detect and handle (or toler-
ate) faults in hardware and software. Faults come in three main types [18]:
Permanent faults are faults that won’t go away by themselves, like a processor that
failed and won’t function again.
Transient faults are faults that are temporary and the affected component will re-
vert back to a normal state after some time, like a bit flip in a memory cell caused
by background radiation.
Intermittent faults where the component will switch between a correct and faulty
state like a loose connection.

The most common way to handle faults is by using redundancy, the two main
categories of redundancy are space and time redundancy. Space redundancy means
having extra components that do perform the same function so that in case one
component fails another can take over, this is the main way to tolerate permanent
faults. For example, a computer system might have multiple processors not to
increase computational performance but to protect against broken processors. Bugs
in software and hardware are a type of permanent fault that can’t be tolerated by
having more copies of the same component, diverse components that fulfill the same
functionality are required, for example, software that needs to perform sorting in a
fault tolerant way might include multiple different sorting algorithms with varying

6

2. Background

levels of efficiency and complexity.

Time redundancy is to perform the same task again in the hope that the fault was
temporary, which makes it the main approach in dealing with transient faults, in
software it would involve re-executing the failed task. For time redundancy to work
the functionality must have some leeway time-wise so that re-execution has time to
complete.

Active backups are always executed, this makes it easier to determine if the task will
meet its deadline even with faults, but the downside of active backups is that they
are executed even in the absence of faults. Passive backups, on the other hand, are
only executed once their primary task experience a fault, this makes them trickier
to schedule since there must be sufficient amount of slack after the fault in the
primary was detected to allow the passive backup time to finish executing before
the deadline. The positive aspect of passive backups is that they only run when a
fault is detected thereby saving resources. So in a situation with a relatively low
amount of faults passive backups should be preferred, certain tasks might always
require active backups to have fault-tolerance. An example of such a situation is if
the execution time of the primary and the backup together would exceed the deadline
then the backup can’t be run in passive mode but must run in active mode.

2.4 Related Work

There is previous work in the areas of global scheduling, mixed-criticality and fault-
tolerance. In [2] Andersson et al. presents a global scheduling rate-monotonic
scheduling algorithm that was an extension of the uniprocessor rate-monotonic
scheduling algorithm. Much work has gone into improving the schedulability analy-
sis of global real-time scheduling for both fixed- and dynamic-priorities, a selection
of this work can be seen in [15], [8], [10], [4]. In [14] Davis and Burns shows that
Audsleys OPA algorithm [3] for assigning task priorities work with multiprocessor
scheduling algorithms.

In [6] Baruah et al. introduce and analyze a uniprocessor scheduler that can handle
mixed-criticality task-sets, they also present a formal model for how mixed-criticality
task-set can be represented. In [7] Baruah et al. extends and improves upon the
previous analysis, this analysis is further extended by Burns and Davis in [11] where
they show that by adding regions where tasks can’t be preempted that schedulability
can be improved. In [22] Pathan presents an analysis of a mixed-criticality scheduler
for use on multiprocessors, this analysis is used in the schedulability analysis for the
algorithm this thesis proposes. In a bid to make mixed-criticality scheduling more
robust Bate et al. [7] present analyses for allowing low criticality tasks back after
they have been dropped by a criticality switch. In [5] Baruah and Guo consider
mixed-criticality scheduling on processors that have varying speeds, normal and
impaired, with the goal of having all tasks be schedulable at normal, and at least
have the high criticality task schedulable in the impaired state.

7

2. Background

In [25] Pathan and Jonsson present the analysis of a multiprocessor fault tolerant
scheduler, the fault-tolerance is achieved by executing passive backup tasks. The
main difference with the proposed algorithm is once again the use of mixed-criticality,
but also that the proposed algorithm uses both active and passive backup tasks. The
analysis in [12] by Chen et al. considers fault-tolerance through task replication,
where there are multiple independent copies of a task in the system, this method of
fault-tolerance is comparable to the active backups the proposed algorithm uses. In
[27] Salehi et al. propose a check-point system to handle fault-tolerance, with a focus
on energy-efficiency. In [24] Pathan presents a multiprocessor scheduling algorithm
with fault-tolerance using two different fault models, and achieving fault-tolerance
through active and passive backup tasks, the fault models used in Pathans paper
are more advanced than the single model used for the proposed algorithm, but in
turn the proposed algorithm consider mixed-criticality which [24] does not.

In [20] Liu et al. combines fault-tolerance and mixed-criticality for partitioned
scheduling, with a goal to minimize the number of task reallocations while still pre-
serving the function of high criticality tasks. Huang et al. [16] shows that they can
model a mixed-criticality system with fault-tolerance through re-executions as just a
mixed-criticality problem. The authors of [1] examine the design of mixed-criticality
systems that can tolerate permanent processor failures. In [28] Thekkilakattil et al.
explore fault-tolerance on a mixed-criticality system in a distributed system, their
method maximizes the amount of resources available for low criticality tasks while
ensuring that the high criticality tasks function correctly. The real-time schedul-
ing algorithm presented by Pathan in [23] handles the concepts of fault-tolerance
and mixed-criticality in a real-time context on uniprocessors. One of the main dif-
ferences between this scheduler and the proposed one is that that it only works
on uniprocessors, and uniprocessor scheduling theory is not directly applicable on
multiprocessors [26].

8

3
Scheduling Algorithm

This section presents the proposed scheduling algorithm in greater detail and also
present the task and fault models that the algorithm is designed for.

3.1 Task and Fault Models

The paper will consider the following task model, an application will be modeled like
a set Γ = {τ1...τn} of n sporadic tasks where each task has the following properties
τi =< Ti, Di, λi, B̄

LO
i , B̄HI

i , hi > where:

• Ti gives the tasks minimum inter arrival time, commonly referred to as the
tasks period.

• Di gives the tasks relative deadline, since this paper considers constrained
deadlines Di ≤ Ti.

• λi indicates the tasks criticality level, LO for low criticality and HI for high.

• B̄LO
i is a vector < E0

i,LO, E
1
i,LO, E

2
i,LO... > with E0

i,LO being the wcet, in low
criticality mode, of the primary and E1

i,LO the wcet of the 1st backup etc.

• B̄HI
i is a vector < E0

i,HI , E
1
i,HI , E

2
i,HI ... > with E0

i,HI being the wcet, in high
criticality mode, of the primary and E1

i,HI the wcet of the 1st backup etc.

• hi gives the number of active backups that task τi has, i.e. versions of the task
that are released together and can run in parallel.

A task τi will generate an infinite sequence of jobs with job Jki , k > 0, being the k:th
job of task τi. The wcet in low criticality mode will be referenced as low wcet and
high wcet in the case of high criticality mode. The backups of a task are given the
same fixed priority as the primary relative to other tasks, but internally the primary
has higher priority than the first active backup, that in turn has higher priority than
the second active backup etc. Also, note that only tasks with high criticality level
will have backups. For tasks that experience more faults then they have backups,

9

3. Scheduling Algorithm

the missing backups will be re-executions of the primary.

The fault model will consider both transient faults and permanent hardware faults,
for transient faults we assume that a maximum of f faults can occur in a given time
interval Dmax which is the largest relative deadline, also that a maximum of ρ cores
can suffer a permanent fault and be put out of commission. Another assumption is
that errors will at the latest be detected when jobs signal for completion, specifically
how errors are detected is beyond the scope of this paper, but a TMR approach could
be modeled with two active backups.

3.2 Scheduling Algorithm

The following points will provide a high-level overview of how the scheduling algo-
rithm is designed to work.

• When a job of task τi is released, it and all of its active backups are placed in
the ready queue, if there are idle cores then the scheduler will assign the job,
giving priority to the primary job over the active backups.

• If there are no idle cores then the scheduler will look to see if there are any
jobs from tasks with lower priority currently executing and if so it will preempt
them, and they will be returned to the ready queue. If there are no idle cores
and no preempt-able jobs then the released job will wait in the ready queue.

• If a high criticality job is detected as faulty and no other backup of that task
is running then the next passive backup is released for execution, and new
passive backups can be released as error are detected.

• When a job has signaled an error-free completion then no more backups are
released and currently waiting or running backups are dropped.

If at any point a job of a high criticality task has not signaled for completion (or
fault) before executing for more than the low criticality wcet then the scheduler will
move into high criticality mode, and tasks with low criticality level will be dropped,
giving the system more resources to execute the high criticality tasks.

Figure 3.1 provides a simple example of how some of the schedulers features work. It
shows jobs from three different tasks, τ1 and τ2 are both high criticality tasks, while
τ3 is a low criticality task. The jobs of τ1 are used to show the fault-tolerance aspects
of the algorithm, thus τ1 has been given one active backup denoted as J1,A in the
figure, conversely J1,P denotes a passive backup. The red triangles indicate that a
fault has been detected in that job, the green triangle means that a correct result has
been obtained for a job that has experienced faults. We see that the active backup
executes at the same time as the primary and that no passive backup is released
when a fault occurs in the active backup, the passive is only released when the only

10

3. Scheduling Algorithm

remaining job, in this case, the primary, also fails to produce a correct result. The
second release of τ1 experience no faults, so no passive backups are released. At the
point in time marked by s and the yellow triangle, the scheduler switches into high
criticality mode since the execution time of J1

2 has exceeded the low wcet. After the
switch to high criticality mode, all low criticality tasks are dropped this means that
J1

3 can not finish execution, the high criticality tasks also use the high wcet as seen
by the second release of τ1 that have a larger time block allotted.

Times

J2J1,A

J1J
1

J1,AJ
1

J1J
2P1

P2

P3

Figure 3.1: An example that shows the 2 main features of the scheduling algorithm,
mixed-criticality, and fault-tolerance. The red triangles indicate that a fault has
been detected in that job, the green triangle means that a correct result has been
obtained for a job that has experienced faults, and the yellow triangle indicates
that the execution time of a high criticality job has exceeded the low wcet. The
red dotted line indicates the time when the scheduler switches from low to high
criticality mode.

11

3. Scheduling Algorithm

12

4
Schedulability Analysis

This section will cover the schedulability analysis that is used to derive a schedula-
bility test. It is divided into subsections that cover the analysis of the low and high
criticality modes, and general properties that are shared by both analyses.

4.1 General Properties

The schedulability of a task, τi, will be determined by finding the response time of
a generic job Ji of the task, the response time is the time it takes from the release,
ri of Ji, to the successful completion, this is shown in figure 4.1. In order to find the
largest response time, Ji will be made to suffer the maximum amount of interference,
where interference is the time that Ji is available for execution but the processors
are busy executing higher priority jobs. If it is still schedulable, i.e. the response
time is smaller or equal to the deadline, then all other jobs of τi are schedulable
and by extension task τi is schedulable. The scheduling window of job Ji is defined
as the time interval that Ji is available for execution i.e. the interval [ri, di) with
length Di, where ri is the release time of Ji and di the absolute deadline, see figure
4.1 for a visual explanation.

Time

ri di

Di

Response Time

Ji
Inter-
ference

Figure 4.1: ri denotes the point in time when Ji is released for execution, the
deadline of Ji is given by di is the point in time at which Ji must have finished
execution, Di is the amount of time that Ji has to produce a result. The response
time is the amount of time it takes, from ri to the point in time that Ji finishes.
Finally, interference is the amount of time that Ji is available for execution but is
not executing.

Since this algorithm employs static priorities only jobs from higher priority tasks

13

4. Schedulability Analysis

will affect the schedulability, let hp(i) denote the set of tasks with higher priority
than task τi, hpL(i) is the set of tasks with higher priority than τi but with low
criticality, and finally hpH(i) is the set of higher priority tasks than τi and with
high criticality.

hp(i) = hpL(i) ∪ hpH(i)

Let Cf
i,λ be the total workload of task τi in criticality mode λ, suffering from f errors,

and is given by the following equation:

Cf
i,λ = E0

i,λ + E1
i,λ + ...E

max{hi, f}
i,λ (4.1)

Note that only high criticality tasks have backups, so Cf
j,LO for a low criticality tasks

τj is E0
j,LO. The primary and the active backups can run in parallel but the passive

backups run sequentially so their workload must be separated, let Ĉf
i denote the

workload of the passive backups of task τi then

Ĉf
i,λ = Cf

i,λ − C
hi
i,λ (4.2)

If τi is a low criticality task then Ĉf
i,LO = 0 since low criticality task don’t have

backups.

Additionally, let M̂ denote the number of working cores whereM is the total number
of cores (working and faulty) on the platform, i.e. M̂ = M − ρ, and as a reminder
ρ is the number of faulty cores. Also let ei = (jei + ρ) denote the total number
of failures that occur in the scheduling window of job Ji, where jei denotes the
maximum number of task failures.

4.2 Low Criticality Mode

This section describes the main principle of the low criticality part of schedulability
test and the schedulability analysis of the low criticality mode.

4.2.1 General Procedure Overview

The purpose of this part of the schedulability test is to determine the schedulability
of all tasks in low criticality mode. The procedure to determine the schedulability
of a job Jk is in general:

• Find the number of interfering jobs from each higher priority task.

• Calculate the workload these interfering jobs produce, additionally find the
fault distribution among the jobs that gives the maximal workload.

• Calculate the workload of Jk, including active backups.

14

4. Schedulability Analysis

• If Jk is a high criticality task, find the fault distribution between Jk and the
interfering jobs that give the maximal workload.

• Calculate the response time of Jk using the previously calculated workloads.

• Check the schedulability of Jk.

4.2.2 Low Criticality Analysis

In low criticality mode, all tasks are available for execution, and generic job Jk of
task τk will suffer interference from jobs of the tasks in hp(k). Determining the
interference on Jk involves finding the sets HJK , HJNk and HJHk, which are the
set of jobs belonging to tasks in hp(k), hpL(k) and hpH(k) that are active in the
scheduling window of Jk. Since it is not known exactly when the higher priority
jobs are active, HJk will be an upper bound of the possible interfering jobs. The
sporadic task model assumes that jobs from the same task must be separated by at
least Ti time units.

If Dk < (Ti −Di) then only one job of τi can interfere so J1
i ∈ HJK , on the other

hand if Dk ≥ (Ti−Di) then an additional dDk−(Ti−Di)
Ti

e jobs can interfere, summing
up these two contributions gives us the following equation for finding the number of
interfering jobs from a higher priority task τ1:

N(i) =
⌈
max{0, Dk − (Ti −Di)}

Ti

⌉
+ 1 (4.3)

The first term in the max function covers the case where Dk < (Ti − Di) and the
other term the reverse. So now that we know the number of interfering jobs, HJk
is given by:

HJNk =
⋃

τi∈hpL(k)
{J1

i , J
2
i , ...J

N(i)
i } (4.4)

HJHk =
⋃

τi∈hpH(k)
{J1

i , J
2
i , ...J

N(i)
i } (4.5)

HJk = HJNk ∪HJHk (4.6)

Next the workload of HJk needs to be calculated, let W c(HJk) denote the workload
ofHJk when suffering c faults, the tasks suffering faults will be chosen so to maximize
the workload. Since the jobs in HJNk don’t have fault-tolerance any faults affecting
these tasks won’t increase the workload, so it is safe to assume zero faults affecting
these tasks when calculating the workload of this set, equation (4.7) shows how the
workload for the low criticality jobs is calculated.

W 0(HJNk) =
∑

Jp
i ∈HJNk

C0
i,LO =

∑
Jp

i ∈HJNk

E0
i,LO (4.7)

In the end, the workload of the low criticality jobs is just a summation of their wcet.

15

4. Schedulability Analysis

Calculating the workload for W c(HJHk) is more complicated since the high criti-
cality tasks has fault-tolerance that may increase the workload through having to
execute passive backups, so finding which jobs increase the workload the most when
hit by faults, in other words calculating W c(HJHk) involves finding the fault distri-
bution among the jobs that produce the maximal workload. CalculatingW c(HJHk)
is done through recursion using equation (4.8) as a basic element, this equation ba-
sically gives the workload of a single job.

W f ({Jpi }) = Cf
i,LO (4.8)

where Jpi ∈ HJHk, and assuming that f faults affect that job. Then the workload
W c(HJHk) can be calculated recursively as follows:

W c(HJHk) = cmax
f=0

{
W f ({Jpi }) +W c−f (β)

}
(4.9)

where β = (HJHk − {jpi }, J
p
i ∈ HJHk). The equation is given c number of faults

that it can distribute among the jobs to maximize the workload, each step checks
if it is better to apply faults to the selected job or if it is better to apply it to the
rest if the jobs in β. We can now find the total interfering workload, W c(HJk), by
simply taking the sum of the workloads produced by equations (4.7) and (4.9) as
seen in the following equation:

W c(HJk) = W 0(HJNk) +W c(HJHk) (4.10)

Next up the CPU time requirement for job Jk and its active backups is M̂ · S
k,M̂

where:
S
k,M̂

= hkmax
z=0

{
Ez
k,LO +

∑z−1
b=0 E

b
k,LO

M̂

}
(4.11)

the first term in the max function covers the sequential execution, since a single job
can’t be executed in parallel, of the zth active backup and the second term covers
that the primary and the rest of the active backups can execute in parallel. The
time given by M̂ ·S

k,M̂
is an upper bound on the CPU time it takes to complete the

execution of Jk and all its active backups. We can show that M̂ · S
k,M̂

time units
is enough to complete the execution of Jk and all its hk active backups using the
following equation for z = 0, 1, ...hk:

M̂ · S
k,M̂
≥ M̂ · Ez

k,LO +
z−1∑
b=0

Eb
k,LO (4.12)

Under the proposed scheduler the primary (z = 0) has higher priority than the
first active backup, z = 1, which in turn has higher priority than the second active
backup, z = 2, etc. Given this the time required to complete the execution of the
zth active backup includes the time required to execute the higher priority backups,∑z−1
b=0 E

b
k,LO, in addition to its own execution time. After completing the workload

of the higher priority backups there is M̂ ·Ez
k,LO time units left, spreading this time

evenly over the working cores leaves the least amount of sequential time for the zth

16

4. Schedulability Analysis

backup to execute, even then M̂ ·Ez
k,LO

M̂
= Ez

k,LO there is enough time left to complete
the execution of the zth backup.

Assuming that the speed of the processors is 1, i.e a job with execution time 4 will
take 4 time units to complete, then the total amount of CPU time that needs to be
assigned to complete the execution of the higher priority jobs and Jks primary and
active backups is (W c(HJk) + M̂ · S

k,M̂
). Then d

W ek (HJk)+M̂ ·S
k,M̂

M̂
e gives us the time

units required to execute the workload on a system with M̂ processors. Since the
passive backups of Jk are only released after its primary and active backups have
failed the time required to execute them is equal to their workload Ĉf

k,λ. By adding
these two terms together we can find the response time for the low criticality mode,
RLO
k , of Jk, and if RLO

k is smaller than the deadline Dk then Jk and by extension τk
are schedulable. Now we have the required components to formulate schedulability
conditions under the low criticality mode. The basic schedulability condition for
low criticality tasks can be seen in equation (4.13).

RLO
k =

W ek(HJk) + M̂ · S

k,M̂

M̂

 + Ĉ0
k,LO ≤ Dk (4.13)

Since fault-tolerance is not applicable to low criticality tasks equation (4.13) can be
simplified further, Ĉ(0)

k,LO is always 0 for the low criticality tasks, and with no active
backups S

k,M̂
just evaluates to E0

k,LO. Applying these two changes gives us the final
schedulability condition for the low criticality tasks in equation 4.14.

RLO
k =

⌈
W ek(HJk)

M̂
+ E0

k,LO

⌉
≤ Dk (4.14)

For high criticality tasks the schedulability condition needs an additional element
namely finding the final fault distribution between Jk and the jobs in HJk that
produces the maximum response time for Jk. The fault distribution that maximizes
the workload of HJk, given a certain number of faults, is already calculated in (4.9),
so finding the final fault distribution just requires testing which combination of faults
effecting Jk or HJk produce the maximal response time. For example with a total
of 2 faults, the combinations to test would be: 2 faults effecting Jk and 0 HJk, 1
fault effecting each of then, and finally 0 faults effecting Jk and 2 HJk. With this
in mind we can extend equation (4.13) into equation (4.15) where the max function
finds the fault combination that gives the largest response time.

RLO
k = ekmax

c=0

W c(HJk) + M̂ · S

k,M̂

M̂

 + Ĉ
(ek−c)
k,LO

 ≤ Dk (4.15)

which can be rewritten as

RLO
k = ekmax

c=0

{⌈
W c(HJk)

M̂
+ S

k,M̂

⌉
+ Ĉ

(ek−c)
k,LO

}
≤ Dk (4.16)

17

4. Schedulability Analysis

So the final schedulability conditions for the scheduler in low criticality mode are
given in equations (4.14) and (4.16), for low and high criticality tasks respectively.
Low criticality tasks that pass this part of the test are deemed schedulable but the
high criticality tasks must also pass the high criticality part of the test to be deemed
schedulable.

4.3 High Criticality Mode

This section contains the schedulability analysis to derive the high criticality part
of the overall schedulability test.

4.3.1 General Procedure Overview

The purpose of this part of the schedulability test is to determine the schedulability
of the high criticality tasks in high criticality mode. The procedure to determine
the schedulability of a job Jk is mainly the same as the low criticality analysis but
the main difference is that the main challenge is to find the point in time, s (see
figure 3.1), that gives the largest response time for Jk. Before this point jobs from
all tasks can interfere with Jk, while after only high criticality jobs can interfere but
in return, these jobs may have a higher wcet and thereby produce more interference.

4.3.2 High Criticality Analysis

When the system switches to high criticality mode all tasks with low criticality level
are thrown out, and will no longer be allowed to execute, while the high criticality
tasks may have a higher wcet. When testing the schedulability of the high criticality
mode there is no need to test the schedulability of low criticality task, therefore the
high criticality analysis will only consider generic jobs from high criticality tasks.
Let Jk be a generic job of the high criticality task τk.

Let s be the time relative to the release of high criticality job Jk, that the system
switched to high criticality mode, i.e. at time t > rk + s the system is in high
criticality mode. If s is larger than RLO

k then Jk has already finished executing in
low criticality mode and is thus not affected by the switch. Since we consider an
integer time model, there are at most RLO

k possible values of s, which leads to a
schedulability test with pseudo-polynomial time complexity.

Since low criticality jobs are only active before time rk+s they can only interfere with
Jk during that portion of time instead of the whole scheduling window of Jk. Based
on previous statements we have that s ≤ RLO

k ≤ Dk from this it follows that the
length of the time intervals also follow the pattern of [rk, rk + s) ≤ [rk, rk +RLO

k) ≤

18

4. Schedulability Analysis

[rk, rk + Dk). For the purpose of finding the number of interfering low criticality
jobs the time that Jk is available to be interfered with can be reduced to s from
Dk. By making this change we can change equation (4.3) that we used to find the
total number of interfering faults into equation (4.17) that will give us the number
of interfering low criticality jobs for a given s value.

NLC(i, s) =
⌈
max{0, s− (Ti −Di)}

Ti

⌉
+ 1 (4.17)

This equation gives us an upper bound on the number of low criticality jobs that
can interfere with Jk. Next, we need to find the number of interfering jobs from
high criticality tasks. Since after point s the high criticality tasks may increase their
wcet, and by extension increase their workload, we also need to find an upper limit
to the number of jobs released after this point. With similar reasoning to finding the
number of interfering low criticality jobs, the high criticality jobs with high wcet can
also just effect Jk in a limited time interval, since they are only released after point
s. The amount of time that these jobs can interfere with Jk is limited to Dk − s,
now we can change equation (4.3) to take this reduced interval into account as seen
in equation (4.18).

NH(i, s) =
⌈
max{0, (Dk − s)− (Ti −Di)}

Ti

⌉
+ 1 (4.18)

This equation finds an upper limit to the number of high criticality jobs that are
released in high criticality mode given a time s when the criticality mode switches.

There are still high criticality jobs unaccounted for, namely the jobs that released
before point s. Since the switch to high criticality mode does not affect the release
pattern of the high criticality tasks, the total number of interfering jobs from these
tasks must be the same as the number calculated in equation (4.3) for the low
criticality analysis. By removing the number of jobs found by equation (4.18) from
the total number of jobs we can get the number of interfering high criticality jobs
in low criticality mode, which gives us the following equation:

NL(i, s) = N(i)−NH(i, s) (4.19)

This equation finds the number of high criticality jobs that are released in low
criticality mode for a given point s.

To find which value of s gives the largest interfering workload we calculate equations
(4.17), (4.19) and (4.18) for every value of s and add each value of s that gave a
different number distribution to the set S. We then use these numbers to create the
following sets of interfering jobs:

HJNk,s =
⋃

τi∈hpL(k)
{J1

i , J
2
i , ...J

NLC(i, s)
i }, s ∈ S (4.20)

HJLk,s =
⋃

τi∈hpH(k)
{J1

i , J
2
i , ...J

NL(i, s)
i }, s ∈ S (4.21)

HJHk,s =
⋃

τi∈hpH(k)
{J1

i , J
2
i , ...J

NH(i, s)
i }, s ∈ S (4.22)

19

4. Schedulability Analysis

From these we can construct the following sets:

HJMk,s = HJLk,s ∪HJHk,s (4.23)
HJk,s = HJNk,s ∪HJMk,s (4.24)

Since HJLk,s and HJHk,s contains jobs from the same tasks and their workload in
regards to faults will be handled in the same way, baring different wcet, the sets
HJLk,s and HJHk,s are merged into one set HJMk,s with jobs from HJLk,s being
identified as Jpi,LO and jobs from HJHk,s with Jpi,HI .

We will again calculateW c(HJk,s), i.e. the workload of the interfering jobs suffering
from c faults. The workload of the low criticality tasks, W 0(HJNk,s), is calculated
using equation (4.7) in the same way as in the low criticality analysis.

The procedure to calculate the workload of the high criticality jobs is largely the
same as the low criticality analysis, just with the addition of handling high criticality
jobs released in both modes. Calculating the workload for W c(HJMk,s) is done
through recursion using equation (4.25) as a basic element.

W f ({Jpi,λ}) = Cf
i,λ, λ ∈ {LO, HI} (4.25)

This equation just gives the workload of a single job, where Jpi,λ ∈ HJMk,s, and
assuming that f faults affect that job. Then the workload W c(HJMk,s) can be
calculated recursively as follows:

W c(HJMk,s) = cmax
f=0

{
W f ({Jpi,λ}) +W c−f (β)

}
(4.26)

where β = (HJMk,s−{jpi,λ}, J
p
i,λ ∈ HJMk,s). This equation also finds the fault dis-

tribution in HJMk,s that gives the maximal workload following the same reasoning
as for equation (4.9).

Then we have that the workload W c(HJk,s) is given by:

W c(HJk,s) = max
s∈S

{
W 0(HJNk,s) +W c(HJMk,s)

}
(4.27)

This equation goes through the different sets of HJk,s, given by different s values,
to find the one that has the largest workload.

Next up the CPU time requirement for job Jk and its active backups is M̂ · S
k,M̂

where:
S
k,M̂

= hkmax
z=0

{
Ez
k,HI +

∑z−1
b=0 E

b
k,HI

M̂

}
(4.28)

The only difference to the low criticality analysis is that this equation assumes that
Jk uses the high wcet, since we can not be sure what portion of the execution was
done before s. This assumption also holds for Jk’s passive backups.

Next we calculate the time needed to complete the execution of the previously
mentioned workloads, following the same reasoning as for the low criticality mode.

20

4. Schedulability Analysis

Once we have that time we add in the time needed to complete the passive backups

of Jk given by Ĉf
k,HI to produce equation

⌈
W c(HJk,s)+M̂ ·S

k,M̂

M̂

⌉
+ Ĉf

k,HI . From this we

can construct the high criticality mode schedulability condition as seen in equation
(4.29).

RHI
k = ekmax

c=0

{⌈
W c(HJk,s)

M̂
+ S

k,M̂

⌉
+ Ĉ

(ek−c)
k,HI

}
≤ Dk (4.29)

Following the same reasoning as for equation (4.15), equation (4.29) also finds the
fault distribution between Jk and the jobs inHJk,s that produce the longest response
time RHI

k . A high criticality task that passed the condition set in equation (4.29) is
deemed to be schedulable under the proposed scheduling algorithm.

4.4 Priority and Active Backup Assignment

Since the proposed scheduling algorithm uses fixed priorities, task-sets that are
to be scheduled on this algorithm needs to have their priorities assigned and the
schedulability of the task-sets must be tested to ensure that all deadlines are met.
Priority assignment will assign each task in a task-set a distinct priority, so a task-set
with n tasks will have n different priority levels, where higher priority number means
a lower real-time priority. In a task-set with n tasks there are n! different priority
assignments, and going through each combination in an attempt to find a priority
assignment that is schedulable is clearly unfeasible for any but the smallest task-
sets. Audsley’s OPA approach [3] is a way to reduce the number of different priority
assignments that need to be checked and also terminate the priority assignment
early if no valid, i.e. schedulable, priority assignment exists. By following Audsley’s
OPA approach the number of different priority assignments for a task-set with n
tasks can be reduced to the following: n + (n − 1) + ... + 1 instead of n!. The
following procedure follows Audsley’s OPA approach and will try to assign priorities
to a task-set:

1. Start with all tasks having no priority and belong to set P∅.

2. Pick a task τi ∈ P∅ from P∅ that has not been picked for this priority and
assign it the lowest available priority.

3. Perform the schedulability test, if it fails re-add τi to P∅ and go back to step
2.

4. If the test is successful, go back to step 2 but don’t add τi back to P∅.

5. If no task can be successfully assigned a priority level then the task-set is not
schedulable.

Since the M̂ highest priority tasks will be able to preempt at least one lower priority
task, it is assumed that the M̂ highest priority tasks will not suffer any interference

21

4. Schedulability Analysis

from each other, effectively the M̂ highest priority tasks share the highest priority.

The use of active backups brings both positive and negative impacts on schedulabil-
ity, the negative is that it introduces more work that needs to be done since active
backups are always executed. But in return, the active backups can execute in par-
allel which can improve schedulability, and take advantage of multicore processors
since passive backups must execute in sequence.

This paper proposes two main policies to assign active backups, Minimal and Joint.
The latter of which comes in two variants Joint-Min and Joint-Max. For compari-
son’s sake, the following basic policies are also included: None, and Random. The
specifics of the policies used in this paper are as follows:

1) None: No active backups are assigned.

2) Random: The number of active backups is assigned randomly, that is hi for each
high criticality task is assigned a random number from (0, f).

3) Minimal: Assign active backups to tasks that can’t meet their deadline suffering
f faults even at the highest priority. For each task τi where the following equation
holds:

RHI
i =

⌈
S
i,M̂

⌉
+ Ĉf

i,HI > Di (4.30)

hi is incremented until equation (4.30) is no longer fulfilled.

4) Joint: Active backups are assigned in conjunction with the priority assignment.
When a high criticality task τj is not schedulable at a particular priority level instead
of picking a new task, increment hj by 1 and repeat the test, continue to do this
until the test is successful or hj > f . If the test is successful then an additional
check to see if the previously assigned tasks are still schedulable is done, since the
workload of the additional backups was not there when those tasks were scheduled.
If this check fails or if hj > f then τj is deemed not schedulable at this level and hj is
reset to its previous value and the priority assignment process carries on as normal.
Since the Minimal policy gives us the minimum number of active backups required
to make the task-set theoretically schedulable this will be the starting point for
the Joint-Min policy. To mitigate the issue of post-assignment interference increase
another variant Joint-Max is presented. It assumes that all high criticality tasks
that have not been assigned a priority, will have the maximum number, f , of active
backups, when the tasks are assigned they will get the "correct" number of active
backups. So, in summary, the Joint policy has the following two variants which
govern the starting amount of active backups:

4a) Joint-Min: The starting number of active backups are set according to the
Minimal policy.
4b) Joint-Max : The starting number of active backups are to f .

22

5
Simulated Testing

The scheduler and schedulability test will be simulated and tested with randomly
generated task-sets. The main property that will be tested is acceptance ratio,
i.e. the proportion of task sets that pass the schedulability test. Then a sensitivity
analysis will be performed, where the effects of different values for system properties,
like with varying utilization levels, the total number of tasks, the ratio of high
criticality tasks, the number of failures and the effects of the different policies for
active backup assignment. Let n be the number of tasks in a task-set, and f be the
maximal amount of faults that can occur.

5.1 Task-set Generation

The task-sets are generated accordingly: First, the task-set is given a utilization, U ,
between (0, 1), this value is then scaled with the number of processors, M . Then U
is passed to the UUnifastDiscard algorithm [13] together with the number of tasks,
n, the algorithm then generates utilizations for each task. Next the tasks criticality
will be generated by giving the wanted ratio of high criticality tasks, CR, to a simple
algorithm that for each task generates a random number between (0, 1) and if this
number is smaller than CR then the task is given high criticality otherwise it is
given low criticality. This algorithm also ensures that the actual criticality ratio is
close to the wanted CR, by checking that the number of generated high criticality
tasks equals the theoretical number of tasks derived from the CR. If the wanted
number of high criticality tasks is not an integer then the number of generated high
criticality tasks is accepted if the number is either the floor or ceiling of the wanted
number, for example in a task-set with 5 tasks and CR = 30% the wanted number
is 5 · 0.3 = 1.5, so generating either 1 or 2 high criticality tasks are accepted. Next,
the tasks have to be given a period, by randomly selecting a number from (10,
10000). Now the wcet of each task is given by multiplying the tasks period with its
utilization, this wcet is considered to be the low criticality one. The high criticality
tasks also require a high wcet, this is achieved by adding some extra time to the low
wcet, this extra time is given by picking a random number from (0, Uextra) where at
the start Uextra is the sum of the utilization of the low criticality tasks. This number
is then bounded to ensure that the task utilization does not exceed 1, Uextra is then

23

5. Simulated Testing

reduced by this number for future high criticality tasks. This procedure ensures
that the utilization in high criticality mode does not exceed the utilization level
specified in the generation. In summary, the task-set generation takes the following
parameters: the total utilization scaled by the number of processors, the number of
tasks in the task-set, and finally the criticality ratio.

5.2 Test Results

For each utilization level, 1000 task-sets are generated and each task-set is then
tested by the schedulability test, once for each policy, then the acceptance ratio
is given by dividing the number of successfully scheduled task-sets with the total
number of task-sets. The utilization is varied from 0 to 1 in steps of 0.025. The
results presented in this section are for the following system parameters: M = 4
processors and a CR of 30 % when testing the fault-tolerance. For these tests, the
task’s deadline equals their period, and backup tasks are copies of the primary.

5.2.1 Base Performance

The purpose of this round of tests is to see how the schedulability test performs under
basic conditions, that is no fault-tolerance. Figure 5.1 shows the base performance
of the proposed algorithm, without any high criticality tasks, i.e. CR of 0. We
see that the acceptance ratio generally improves with an increased number of tasks
in the task-sets, the exception to this is the task-set with 5 tasks, it has better
schedulability than the other task-sets at a utilization of around 0.65 - 0.7, this is
due to the fact that the number of tasks is very close to the number of cores, in this
case only one task actually suffers interference.

Figure 5.2 shows the effect that different criticality ratios have on schedulability. We
can see that the results seem counter-intuitive, the acceptance ratio for the larger
criticality ratios (70 - 90 %) is in general closer to the case with CR = 0% and better
than the smaller CRs. This is a side effect of how the high wcet is generated, with a
low criticality ratio the "spare" utilization available for the extra time is greater, so
the probability of more than M̂ high criticality task having a utilization of 1 is great,
which means that the task-set is not schedulable. When looking at the effects of
different task-sets sizes we see that as the size increases the acceptance ratios for the
CRs become more "ordered", i.e. the higher the CR the better the schedulability. A
reason for this is again the task-set generation, with larger task-sets the randomness
is more spread out lowering the probability of having utilization heavy tasks.

24

5. Simulated Testing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
e
p
ta

n
c
e
 R

a
ti
o

Base Performance Comparison

n = 5

n = 10

n = 20

n = 30

Figure 5.1: Acceptance ratios of the schedulability test in basic setting, no mixed-
criticality and no fault-tolerance, for four differently sized task-sets.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
e

p
ta

n
c
e

 R
a

ti
o

Criticality Ratio Performance Comparison, n = 5

CR = 0%

CR = 10%

CR = 30%

CR = 50%

CR = 70%

CR = 90%

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
e

p
ta

n
c
e

 R
a

ti
o

Criticality Ratio Performance Comparison, n = 10

CR = 0%

CR = 10%

CR = 30%

CR = 50%

CR = 70%

CR = 90%

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
e
p
ta

n
c
e
 R

a
ti
o

Criticality Ratio Performance Comparison, n = 20

CR = 0%

CR = 10%

CR = 30%

CR = 50%

CR = 70%

CR = 90%

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
e
p
ta

n
c
e
 R

a
ti
o

Criticality Ratio Performance Comparison, n = 30

CR = 0%

CR = 10%

CR = 30%

CR = 50%

CR = 70%

CR = 90%

(d)

Figure 5.2: The schedulability tests acceptance ratio for different criticality ratios.

25

5. Simulated Testing

5.2.2 Fault-Tolerance Performance

The purpose of these tests is to see how the fault-tolerance affects the schedulability.
The left side of figure 5.3 shows the schedulability of task-sets with 5 tasks suffering
from an increased number of faults. For these task-sets, we see that all policies
that use active backups have better schedulability than the None-policy and that
the main policies proposed (Minimal & Joint) are better than the Random policy.
This is not continued for larger task-sets, with 5 tasks running on 4 cores there is
only 1 task that can be interfered with, so this size of task-sets are more tolerating
of increases in workload from the active backups. Among the proposed policies the
Joint-Min is the best by a very small margin that increases slightly with the number
of faults.

The right side of figure 5.3 shows the schedulability of task-sets with 10 tasks suffer-
ing from an increased number of faults. Here we start to see some of the negatives
of active backups, with 1 or 2 faults (5.3 (b) & (d)) we see that that the Joint-Max
and Random policies have worse schedulability than the None policy for the higher
utilization levels. This is because we have an increased number of high criticality
tasks, in comparison to the n = 5 task-sets, that Joint −Max gives the maximal
number of active backups to, leading to a big increase in workload that is detrimental
to schedulability. With 3 faults, (5.3 (f)), the relative performance of the Joint-Max
and Random policies improves as active backups becomes needed to handle faults
in a timely manner. The Joint-Min policy is the best and its lead compared to the
next best policy, the Minimal, increases as the number of faults increase.

For larger task-sets figure 5.4 shows us their schedulability. The left side shows
task-sets with 20 tasks, and here we can see the trend that began in the 10 task
task-sets, namely that assigning to many active backups or assigning them to the
wrong tasks have a negative impact on schedulability. We see that the Joint-Max
and Random policies are worse than the None policy after certain utilization levels,
generally, the None policy is the worst at lower utilization levels while Joint-Max
is worst for higher utilization levels. The Random policy is worse than the None
policy for task-sets suffering 1 fault (5.4 (a)) but is largely comparable with the
None policy for the larger fault numbers (5.4 (c) & (e)). The Joint-Min policy is
also the best policy for task-sets with 20 tasks, with the Minimal following closely
behind. Once again the gap between the Joint-Min and Minimal policies increase
with the number of faults.

The final tests were done with task-sets with 30 tasks and the results can be seen
on the right side of figure 5.4. These curves are very similar to the one for n = 20
task-sets, again the Joint-Max and Random policies are worse than the None policy
for larger utilizations, they compare slightly better for higher fault numbers. Once
again the Joint-Min is the better policy with the Minimal one following tightly, but
falling behind with the increasing number of faults.

In contrast with the base performance (figure 5.1) where the schedulability improved
with task-set size, the inverse is true when fault-tolerance is used. The main reason

26

5. Simulated Testing

is the increase in the number of high criticality tasks, many of whose utilization can
be 1 for reasons previously discussed, this high utilization obviously makes it hard
to handle any faults as there are no margins in the system.

0 0.1 0.2 0.3 0.4 0.5 0.6

Utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
e

p
ta

n
c
e

 R
a

ti
o

AB-Policy Comparison, n = 5, f = 1, CR = 30%

None

Random

Minimal

Joint-Min

Joint-Max

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
e
p
ta

n
c
e
 R

a
ti
o

AB-Policy Comparison, n = 10, f = 1, CR = 30%

None

Random

Minimal

Joint-Min

Joint-Max

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6

Utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
e

p
ta

n
c
e

 R
a

ti
o

AB-Policy Comparison, n = 5, f = 2, CR = 30%

None

Random

Minimal

Joint-Min

Joint-Max

(c)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
e
p
ta

n
c
e
 R

a
ti
o

AB-Policy Comparison, n = 10, f = 2, CR = 30%

None

Random

Minimal

Joint-Min

Joint-Max

(d)

0 0.1 0.2 0.3 0.4 0.5 0.6

Utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
e

p
ta

n
c
e

 R
a

ti
o

AB-Policy Comparison, n = 5, f = 3, CR = 30%

None

Random

Minimal

Joint-Min

Joint-Max

(e)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
e
p
ta

n
c
e
 R

a
ti
o

AB-Policy Comparison, n = 10, f = 3, CR = 30%

None

Random

Minimal

Joint-Min

Joint-Max

(f)

Figure 5.3: Comparison of the different active backup assignment policies. Left
side shows task-sets with 5 tasks, the right task-sets with 10 tasks.

27

5. Simulated Testing

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
e
p
ta

n
c
e
 R

a
ti
o

AB-Policy Comparison, n = 20, f = 1, CR = 30%

None

Random

Minimal

Joint-Min

Joint-Max

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
e
p
ta

n
c
e
 R

a
ti
o

AB-Policy Comparison, n = 30, f = 1, CR = 30%

None

Random

Minimal

Joint-Min

Joint-Max

(b)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
e
p
ta

n
c
e
 R

a
ti
o

AB-Policy Comparison, n = 20, f = 2, CR = 30%

None

Random

Minimal

Joint-Min

Joint-Max

(c)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
e
p
ta

n
c
e
 R

a
ti
o

AB-Policy Comparison, n = 30, f = 2, CR = 30%

None

Random

Minimal

Joint-Min

Joint-Max

(d)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
e
p
ta

n
c
e
 R

a
ti
o

AB-Policy Comparison, n = 20, f = 3, CR = 30%

None

Random

Minimal

Joint-Min

Joint-Max

(e)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
e
p
ta

n
c
e
 R

a
ti
o

AB-Policy Comparison, n = 30, f = 3, CR = 30%

None

Random

Minimal

Joint-Min

Joint-Max

(f)

Figure 5.4: Comparison of the different active backup assignment policies. Left
side shows task-sets with 20 tasks, the right task-sets with 30 tasks.

28

5. Simulated Testing

5.3 Summary of Results

We saw that the schedulability of the algorithm gets worse with larger task-sets,
and in regards to the active backup assignment policies the tests found that:

• None: generally the worst policy for task-sets with less than 20 tasks, but
having slightly better schedulability than the Joint-Max and Random policies
for larger task-sets.

• Random: Better then the None policy for small task-sets (n <= 10), but
negatively impacts schedulability for larger task-sets.

• Minimal: Is the second-best policy, always slightly behind the Joint-Min pol-
icy.

• Joint-Min: The policy that provides the best schedulability, and its perfor-
mance relative to theMinimal policy improves as the number of faults increase.

• Joint-Max : Performs comparably to Minimal and Joint-Min for small task-sets
(n = 5), but its performance worsens as the task-sets increase in size.

29

5. Simulated Testing

30

6
Conclusions

This thesis presents a new real-time global fixed-priority scheduling algorithm that
integrates mixed-criticality with fault-tolerance. Using mixed-criticality in real-time
scheduling is a way to mix safety critical and none safety-critical tasks on the same
platform while ensuring that the temporal correctness of the safety-critical tasks is
not compromised. The thesis chose to model mixed-criticality with 2 criticality level,
low and high, non-safety critical tasks were assigned the low criticality level and the
safety critical task the high criticality level. The high criticality tasks were also
assumed to have 2 separate wcet, one that was less pessimistic and one that more
pessimistic to reduce the probability that the estimated wcet is smaller than the
actual wcet. Having the less pessimistic wcet allows for more tasks to be scheduled
on the same platform, but in case this estimate is exceeded during runtime, the
scheduler is designed to drop all low criticality tasks to allow more computational
resources to be devoted to the high criticality tasks to ensure that they don’t miss
any deadlines.

Adding fault-tolerance to the safety critical/high criticality tasks enhances the func-
tional correctness of these tasks, thus adding more robustness to these tasks to en-
sure that they operate correctly. The proposed scheduling algorithm handles fault-
tolerance through the execution of backup tasks, that are either active or passive.
The algorithm can handle transient software and hardware faults and permanent
software faults in case some, or all, of the backup tasks, are diverse implementations
rather than copies of the primary. The algorithm can also handle permanent core
failures thanks in part to the use of global scheduling that allows core failures to be
modeled as a task failure. Backup tasks can then be scheduled on the remaining
cores since they have are not bound to specific cores, core failures during runtime
means that the scheduler just has a reduced number of cores to assign tasks to, in
theory, the scheduling algorithm can keep a task-set scheduled and functional even
when reduced to a single working core.

The proposed scheduling algorithm is designed for a sporadic task model with ex-
plicit deadlines, having low and high criticality tasks, with the high criticality ones
having additional backup tasks, these can be diverse implementations or copies of
the primary. The model also allows certain backups to be designated as active, that
is they are always released alongside the primary. This potentially allows handling
faults affecting a task more quickly, the downside is that they are released even

31

6. Conclusions

when no faults have been detected leading to an increase in workload. Backup tasks
not designated as active will instead be passive, i.e. they release only when a fault
has been detected in a task and no other version of that task is currently execut-
ing/waiting. This method conserves workload but may, in turn, take a longer time
to produce a correct result.

The fault model designed for the proposed algorithm specifies that the number of
faults that can affect the system is limited to a specified number for a time interval
that is equal to the largest deadline in the task-set. Inside this interval, the frequency
at which the faults occur is not considered, the faulty can happen in quick succession
or more slowly. The model assumes that faults that affect the result of tasks are
detected, with a perfect success rate, at the end of a task’s execution. In addition,
the model also specifies the number of core failures that can occur, no consideration
is taken to specifically when these faults occur, the worst case is that the cores fail
as soon as the system is started, so that is the assumption that the model will make.

These Models are used to derive a schedulability test for the scheduling algorithm,
this test guarantees that a task-set will meet all deadlines in the presence of a certain
number of task faults and core failures. Finding a valid priority assignment for the
fixed priorities is a computationally hard problem, therefore the schedulability test
was designed to be OPA compatible, which means that Audsley’s OPA approach
can be used to assign the priorities in an efficient way.

To make use of the different properties between active and passive backups this the-
sis also designed a number of different policies that govern how many active backups
should be assigned to the tasks with the aim to improve schedulability. Simulated
tests showed that mixed-criticality and the fault-tolerance lead to noticeable drops
in schedulability. The tests showed that having some form of active backups im-
proved schedulability, but that it became more important to assign active backups
carefully the larger the task-sets become. The Joint-Min active-backup policy was
shown to be the policy that could schedule the most task-sets, with its performance
improvement relative to the other policies as the number of faults grew.

6.1 Future Work

Following in the spirit of robustness and fault-tolerance it would be interesting
to extend the mixed-criticality analysis to include the possibility to return to low
criticality mode from high criticality mode when certain conditions are met. This
could in effect allow the scheduler to switch to high criticality mode for a period
of time, when there are a large number of faults experienced, and switch back to
low criticality mode if the number of faults decreases. This would make the system
more robust and able to function in a fluctuation environment.

Another interesting approach would be to do a schedulability analysis for a more
advanced fault model. For example, instead of having all tasks be affected equally

32

6. Conclusions

by faults, some tasks might be more susceptible to faults while others are more
robust. Having this differentiation would allow for a more precise assignment of
active backups, for example, it would be sensible to assign active backups to tasks
that regularly suffer faults while leaving tasks that rarely experience faults with just
passive backups.

Having guarantees that a task-set can handle f number of faults in a time interval
can leave much empty time in the schedule. Such as in the case where no faults
are experienced, or the faults affected tasks that were not as workload intensive
as the worst case estimation performed by the schedulability test. In these cases,
it might be beneficial to extend the fault-tolerance to low criticality tasks in an
"opportunistic" way, where they are only allowed backups in case the schedule is
empty.

33

6. Conclusions

34

Bibliography

[1] Z. Al-bayati, B. H. Meyer, and H. Zeng. Fault-tolerant scheduling of multicore
mixed-criticality systems under permanent failures. In 2016 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), pages 57–62, Sept 2016.

[2] B. Andersson, S. Baruah, and J. Jonsson. Static-priority scheduling on multi-
processors. In Proceedings 22nd IEEE Real-Time Systems Symposium (RTSS
2001) (Cat. No.01PR1420), pages 193–202, Dec 2001.

[3] N.C. Audsley. On priority assignment in fixed priority scheduling. Information
Processing Letters, 79(1):39 – 44, 2001.

[4] S. Baruah. Techniques for multiprocessor global schedulability analysis. In
28th IEEE International Real-Time Systems Symposium (RTSS 2007), pages
119–128, Dec 2007.

[5] S. Baruah and Z. Guo. Mixed-criticality scheduling upon varying-speed pro-
cessors. In 2013 IEEE 34th Real-Time Systems Symposium, pages 68–77, Dec
2013.

[6] S. Baruah, H. Li, and L. Stougie. Towards the design of certifiable mixed-
criticality systems. In 2010 16th IEEE Real-Time and Embedded Technology
and Applications Symposium, pages 13–22, April 2010.

[7] S. K. Baruah, A. Burns, and R. I. Davis. Response-time analysis for mixed
criticality systems. In 2011 IEEE 32nd Real-Time Systems Symposium, pages
34–43, Nov 2011.

[8] S. K. Baruah and J. Goossens. Rate-monotonic scheduling on uniform multi-
processors. IEEE Transactions on Computers, 52(7):966–970, Jul 2003.

[9] I. Bate, A. Burns, and R. I. Davis. A bailout protocol for mixed criticality
systems. In 2015 27th Euromicro Conference on Real-Time Systems, pages
259–268, July 2015.

[10] M. Bertogna, M. Cirinei, and G. Lipari. Schedulability analysis of global
scheduling algorithms on multiprocessor platforms. IEEE Transactions on Par-

35

Bibliography

allel and Distributed Systems, 20(4):553–566, April 2009.

[11] A. Burns and R. I. Davis. Adaptive mixed criticality scheduling with deferred
preemption. In 2014 IEEE Real-Time Systems Symposium, pages 21–30, Dec
2014.

[12] J. J. Chen, C. Y. Yang, T. W. Kuo, and S. Y. Tseng. Real-time task replication
for fault tolerance in identical multiprocessor systems. In 13th IEEE Real Time
and Embedded Technology and Applications Symposium (RTAS’07), pages 249–
258, April 2007.

[13] R. I. Davis and A. Burns. Robust priority assignment for fixed priority real-time
systems. In 28th IEEE International Real-Time Systems Symposium (RTSS
2007), pages 3–14, Dec 2007.

[14] R. I. Davis and A. Burns. Priority assignment for global fixed priority pre-
emptive scheduling in multiprocessor real-time systems. In 2009 30th IEEE
Real-Time Systems Symposium, pages 398–409, Dec 2009.

[15] N. Guan, M. Stigge, W. Yi, and G. Yu. New response time bounds for fixed
priority multiprocessor scheduling. In 2009 30th IEEE Real-Time Systems Sym-
posium, pages 387–397, Dec 2009.

[16] P. Huang, H. Yang, and L. Thiele. On the scheduling of fault-tolerant mixed-
criticality systems. In 2014 51st ACM/EDAC/IEEE Design Automation Con-
ference (DAC), pages 1–6, June 2014.

[17] International Organization for Standardization (ISO). Road vehicles – Func-
tional safety. ISO 26262-2011. International Organization for Standardization
(ISO), 11 2011.

[18] K. I. Krishna and C. Mani. Fault Tolerant Systems. Elsevier, 2007.

[19] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in
a hard-real-time environment. J. ACM, 20(1):46–61, January 1973.

[20] G. Liu, Y. Lu, and S. Wang. An efficient fault recovery algorithm in multipro-
cessor mixed-criticality systems. In 2013 IEEE 10th International Conference
on High Performance Computing and Communications 2013 IEEE Interna-
tional Conference on Embedded and Ubiquitous Computing, pages 2006–2013,
Nov 2013.

[21] M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, and J. A. Score-
dos. Mixed-criticality real-time scheduling for multicore systems. In 2010
10th IEEE International Conference on Computer and Information Technol-
ogy, pages 1864–1871, June 2010.

[22] R. M. Pathan. Schedulability analysis of mixed-criticality systems on multi-

36

Bibliography

processors. In 2012 24th Euromicro Conference on Real-Time Systems, pages
309–320, July 2012.

[23] R. M. Pathan. Fault-tolerant and real-time scheduling for mixed-criticality
systems. Real-Time Systems, 50(4):509–547, Jul 2014.

[24] R. M. Pathan. Real-time scheduling algorithm for safety-critical systems on
faulty multicore environments. Real-Time Systems, 53(1):45–81, Jan 2017.

[25] R. M. Pathan and J. Jonsson. Ftgs: Fault-tolerant fixed-priority scheduling on
multiprocessors. In 2011IEEE 10th International Conference on Trust, Security
and Privacy in Computing and Communications, pages 1164–1175, Nov 2011.

[26] M. Bertogna S. Baruah, G. Buttazzo. Multiprocessor Scheduling for Real-Time
Systems. Springer, 2015.

[27] M. Salehi, M. Khavari Tavana, S. Rehman, M. Shafique, A. Ejlali, and
J. Henkel. Two-state checkpointing for energy-efficient fault tolerance in hard
real-time systems. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 24(7):2426–2437, July 2016.

[28] A. Thekkilakattil, R. Dobrin, and S. Punnekkat. Mixed criticality scheduling in
fault-tolerant distributed real-time systems. In 2014 International Conference
on Embedded Systems (ICES), pages 92–97, July 2014.

37

	Introduction
	Problem Statement
	Methodology
	Limitations

	Background
	Multiprocessor Scheduling
	Mixed-Criticality
	Fault-Tolerance
	Related Work

	Scheduling Algorithm
	Task and Fault Models
	Scheduling Algorithm

	Schedulability Analysis
	General Properties
	Low Criticality Mode
	General Procedure Overview
	Low Criticality Analysis

	High Criticality Mode
	General Procedure Overview
	High Criticality Analysis

	Priority and Active Backup Assignment

	Simulated Testing
	Task-set Generation
	Test Results
	Base Performance
	Fault-Tolerance Performance

	Summary of Results

	Conclusions
	Future Work

	Bibliography

