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Abstract

The aim of the present study is to improve the accuracy of the predicted flow topology in the engine bays
of cars when using both simple turbulence models based on the concept of Reynolds averaged Navier-Stokes
(RANS) and more advanced models such as Detached Eddy Simulations (DES) and Large Eddy Simulations
(LES). The focus has been to investigate the simple RANS models capability of predicting separation and the
influence of unsteady wake movements (i.e vortex shedding) on the size of the created regions with recirculating
flows and how much the accuracy can be improved by switching to the more advanced modelling approaches. In
order to simplify the analysis of the studied models, they were tested on simple bluff bodies of cylindrical shape
with different cross sections. The investigated geometries included polygonal shapes with 2, 4, 7, 8 and 16 sides
and a circular cross section. The geometries were tested at different orientations and at a Reynolds number
of Red = 1 · 104, which is equivalent to that found for similar geometries in engine bays. The square cross
section was also tested at a Reynolds number of Red = 2.2 · 104. Both of these Reynolds numbers are below
the critical number, which means that the boundary layers prior to separation is laminar. The behaviour of the
different models have been compared to both experimental results, the LES results obtained in the present
study and those from other numerical studies. The investigated RANS models included k − ε Realizable, k − ω
SST, Reynolds Stress Model, k − ε v′22f and Spalart-Allmaras.

An investigation of the development of the vortices and the transport of momentum into the base region
predicted by eddy viscosity models, represented by k − ω SST, was performed for the square cross section. It
was found that the initial creation of the vortices is fundamentally different than that found in experiments
and by scale resolving methods. The actual creation of the vorticies takes place in the free shear layers after
the separation points where small disturbances are amplified, turned into vortices and then enlarged by roll-up.
For the eddy viscosity models, which are unable to resolve the roll-up process, the creation of the vortices
are instead provided by separation at the trailing corner of the geometry. The modelled development of the
vortex and the accumulation of mass and momentum into the vortices seems to be connected to their shape
during the initial part of their existence, during which the vortices stick to the back side of the cylinder. The
behaviour was found to be the result of a low pressure zone in the inner most part of the viscous sub-layer,
which creates a force toward the surface of the cylinder. Further out in the buffer layer and the log-layer the
force changes sign and is directed donwstream, partially due to the turbulent diffusion term. As a result an
overestimation of the turbulence kinetic energy promotes the release of the vortices. The current flow contains
many of the known weaknesses of the eddy viscosity approach, like a number of regions with stagnation flow
and curved streamlines, which gives an overestimation of turbulent kinetic energy. The consequence is that
the recirculation region lengths is underestimated by the eddy viscosity models due to increased transport of
momentum into the wake. It is believed that this behaviour also influences the Strouhal number by increasing
the vortex shedding frequency.

It was found that the eddy viscosity models are able to predict the vortex shedding process with an acceptable
level of accuracy for polygonal shapes. However, the circular cross section constituted a bigger challenge.
The recirculation region length was underestimated by approximately 30%. The separation was predicted to
occur later than experiments performed by Bearman [2] and correlates with the expected separation behaviour
at increased levels of turbulence. In order to get results of adequate accuracy for the separation point and
recirculation region length, scale resolving approaches were needed.

Keywords: Engine bay, Vortex shedding, Flow topology, Separation, Reattachment, Bluff body, Computational
Fluid Dynamics, Cylinder
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Nomenclature

α Blending parameter g Model parameter

β2 Model constant k Turbulent kinetic energy

β∗ Model constant k0 Ambient turbulent kinetic energy

γ2 Model constant L Model parameter

∆ Grid filter width lR Recirculation region length

∆x Cell size (V 1/3) lt Model parameter

δ Surface cell thickness lW Wake width in mean velocity field

δij Kronecker delta Nij Model parameter

ε Dissipation rate n Wall normal vector

ε0 Ambient dissipation rate nc Number of cells per length scale

ε, εh, εω Dissipation rate (RSM) P, PB Pressures

η Model parameter P k,ε,f,v
′
2
2

Model production terms

θ, θs Angle/Separation angle Red Reynolds number based on diameter

κ von Kármán constant r Radial coordinate

µ, µt Dynamic viscosity S
√

2SijSij

ν Kinematic viscosity Sij Strain rate tensor

ν̃ Modified diffusivity St Strouhal number

ξ Distance T0 Corner at widest geometry point

ρ Density T1 Corner upstream of widest geometry point

σk,ω1,ω2,ω3,ε,ν Model constants t Time

τw Wall shear stress U∞ Free stream velocity

τij Reynolds stresses u Velocity vector

τ̂ij Sub-grid stresses V Cell volume

φ Model parameter W Model parameter

φ,φh,φω Pressure-strain X, x, xw, ... Position vectors,Distances

χ Kinematic viscosity ratio y+ Normalised wall distance

ω,ω̃ Specific dissipation rate

R Rate of change term in momentum eq.

ϑ Turbulent velocity scale C Convection term in momentum eq.

` Turbulent length scale P Pressure term in momentum eq.

V Viscous diffusion term in momentum eq.

Ac Cylinder frontal area T Turbulent diffusion term in momentum eq.

A,A0,s,a1 Model coefficients M Arbitrary term in momentum eq.

Aij Anisotropy tensor

B,Bnorm 2-point correlations DES Detached Eddy Simulations

C Corner orientation LES Large Eddy Simulations

Cd/l Coefficient of (drag/lift) RANS,URANS Reynolds Averaged Navier-Stokes

Cf Skin friction coefficient RSM Reynolds Stress Model

C1,2,3,... Model constants SST Shear Stress Transport

CDkω Model parameter

D Cylinder diameter u Time average of quantity

d Distance to nearest wall ũ Periodic variation of quantity

F Face orientation u′ Random fluctuation of quantity

Fd Drag force 〈u〉 Instantaneous mean of quantity (u+ ũ)

F1,2 Model parameters û Grid filtered quantity

f Damping function ut,o,r Tangential, orthogonal and radial part

fν1,ν2,s,t2 Model parapeters
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1 Background

The automotive industry rely heavily on physical testing when developing new designs. These methods have
often been used for decades and are because of this both well tested and integrated into the work flow. Despite
of this, physical experiments have some drawbacks when implemented as the main method of testing new
concepts and designs. The test requires physical models which might be both expensive, difficult to manufacture
and time demanding to prepare for testing. In some cases the geometry itself is an obstacle in the way that it
does not permit experimental measurements to be performed without the flow being severely affected by the
measurement equipment.

Numerical methods is an alternative to the physical tests and eliminates some of these drawbacks. It is
cheaper and more time efficient since no physical models are needed. Because of the non-intrusive nature of
numerical calculations it is also applicable in most flow cases. If the limitations of the used model is known,
good understanding of the flow and reliable results can be obtained.

At Volvo cars the flow field and temperature distribution in the engine bay, referred to as aero-thermal
conditions, are of great interest when determining the thermal loads and durability of different components.
The implementation of physical tests inside the engine bay is however difficult to perform because of the high
risk of affecting the flow field due to the limited space. Because of this, experimental data regarding the flow
are non existent. Numerical methods are therefore of great interest.

1.1 Previous studies

The flow field in the engine bay can be computed with a high level of accuracy using Direct Numerical Simulation
(DNS) or Large Eddy Simulation (LES). These methods are however very computationally demanding and
are not suitable as the main method in product development. Because of this, simple and more time efficient
methods, that have an acceptable level of accuracy, are needed. A steady state RANS solution, using k-ω SST,
has been investigated in previous attempts by Menon [17] to develop such a method. In this study were both
the flow through NACA ducts located on the under-body of the car and the flow created inside the engine
bay by these ducts investigated. The function of the ducts is to provide streams of cooling air at specific
components sensitive to thermal loads. It is because of this important to compute both the mass flow and the
flow path accurately. Since no experimental results were available a reference solution was obtained using LES.
The study concluded that parts of the flow field can be computed accurately under certain conditions. The
flow through the ducts was computed with acceptable level of accuracy in therms of mass flow rate. However,
the path of the flow was found to be more difficult to model. Especially for regions where the flow has to pass
one or several components with complex geometry with separation and reattachment. A steady state RANS
method was because of this found not to be applicable for computations of the complete engine bay.

1.2 Aim

The purpose of this paper is to improve both the knowledge about the aero-thermal conditions and the methods
used for computing them within the engine bay. The improved methodology will enable Volvo Cars to develop
and dimension new products with respect to their aero-thermal properties with a higher level of accuracy and
as a result increase the durability and performance of their cars. The aim is to identify physical phenomenons
and other factors inside the engine bay, which constitutes a challenge in therms of modelling accuracy and for
numerical computation. This investigation will also conclude the accuracy and limitations for the different
methods.

1.3 Specification of issue under investigation

The flow inside an engine bay is highly complex and previous attempts of finding critical regions and flow
phenomena in terms of modelling accuracy has proved difficult. In order to simplify the process of finding
the sources of the discrepancies, between simple RANS methods and the more accurate LES references, a
simple academic case will be the foundation for this investigation. The use of a simple geometry gives a
number of advantages. The first is, as already mentioned, that the flow phenomena under investigation can be
isolated, which makes it easier to find both the source of the modelling challenge and how big impact modelling
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errors and improvements have on the flow in close proximity of the object. Another advantage is that both
experimental and numerical results will be available in the literature. In that way, both the simplified methods
and the LES reference are validated further.

When the limitations and requirements for modelling the flow phenomena has been established the im-
provements can be implemented in a more complex engine bay flow situation. This will validate that the
improved methodology gives the anticipated result even with the influence of other flow phenomena. Hopefully
the results are in much better agreement with the reference solution than previous results. With some of the
errors removed, other challenging aspects of the modelling approach can be identified and studied further.

Even tough previous studies have not concluded the sources of the discrepancies between results obtained
from RANS and LES, strong indications that separation has a significant influence on the validity of the results
has been obtained. The purpose of the present work is to increase the knowledge regarding the flow and
modelling challenges in regions with separation and transient wake movement (i.e vortex shedding).

A well studied case which has been exposed to extensive research is the flow past slender cylinders. Cylinders
with both cylindrical and square cross sections have been investigated with the consequence of a wide range
of available results and knowledge. The flow is characterised by a number of flow phenomena, where many
constitutes challenges in terms of modelling. It contains separation and reattachment, regions with recirculating
flows, highly anisotropic turbulence and strong vortex shedding.

Slender and bluff bodies is a common geometric feature in engine bays. Hoses, pipes and ducts, such as
exhaust manifolds, all provides conditions for vortex shedding. Many of the available references are conducted
at Reynolds numbers comparable to those found for these components. With a maximum velocity magnitude
in the region of 5− 7 m/s and length scales in the region of 50 mm, Reynolds numbers up to 2.5 · 104 can be
expected. For geometries of circular cross section, this gives a sub-critical flow where the boundary layer is
laminar in the region upstream of the separation point. This is however dependent on the turbulence level
within the engine bay around and prior to these geometries. The turbulence level in an engine bay is expected to
be rather low since the incoming free stream velocity from the environment is rather low. The relaminarizating
properties of the radiator whose geometry is similar to that of flow straightener used in wind tunnels to reduce
the turbulence level also reduces the turbulence level. The use of a sub-critical flow is therefore believed to be
highly relevant for the application.

1.4 Limitations

A car is a complex system in which all sub-systems interact and affects both each other and the total performance
of the car. The engine bay is no exception. The cooling system and the aero-thermal conditions in the engine
bay affects several aspects of the cars performance. It can for example be noise generation by the fan and
cooling air ducts, or the aerodynamic drag of the car. It is known that a considerable amount of drag is
generated by conventional inlet and outlet configurations of cooling air. As high as 7− 10 % of the total drag
has been reported by Khaled et al. [13] to be generated by the configuration of the cooling system. The focus
of this study is strictly limited to the aero-thermal conditions and accuracy of modelling within the engine
bay. How the conditions inside the engine bay affects the surroundings and other performance aspects is not
included.

1.4.1 Ethical & ecological issues

The increased accuracy of the predicted thermal loads are not only advantageous when it comes to the
performance of the developed cars. Increased accuracy is also advantageous when it comes to the ecological
footprint. Uncertainties in technical development are always present to some degree. These uncertainties are
often dealt with by adjusting the specifications of individual component. This could in turn results in an
unnecessary consumption of material, a restriction to specially adapted materials, increased aerodynamic drag
or unnecessary long duration of operation for the cooling fan, where all of which increases the environmental
impact. By increasing the accuracy of the numerical methods, these uncertainties can be reduced and as a
result enables cars which are better adapted for their range of operation.

The results could possible be used to develop cars with shorter life expectancy but that has a similar level of
durability. This development would most likely increase the total environmental impact. In that case the use
of the results becomes an ethical issue. This project will only cover the development of the numerical methods
and not the way in which the results are used.
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2 Theory

The available literature regarding the complete flow situation inside an engine bay is scarce, both for experimental
and numerical work. Some work has been focused on specific aspects of the aero-thermal conditions, such
as soaking or fan modelling. These studies are often limited to a specific region in the engine bay and/or
conducted on simplified geometries. One example is the work of Gullberg [10] whose research included fan
modelling in steady state solvers.

2.1 Flow past slender cylinders

Figure 2.1: Definition of the of characteristic lengths
describing the wake.

The flow field past cylinders of different cross section
is a common geometry seen in many engineering ap-
plications and have, because of this, been studied for
many years. Early research have been focused on the
global parameters of the flow such as coefficient of
drag, fluctuating coefficient of lift, distribution of the
pressure coefficient and Strouhal number at different
Reynolds numbers. The coefficients of drag and lift
is defined as Cd/l = 2F/ρU2

∞Ac, where F is either
the drag or lift force on the cylinder and U∞ the
free stream velocity. The Strouhal number describes
the shedding frequency, fs, and is normalised with
the free stream velocity, U∞, and the diameter, D,
and is defined as St = fsD/U∞. The Reynolds num-
ber uses the diameter as characteristic length and is
defined as Red = U∞D/ν. During the last decades have knew technology, in the form of computers and
laser based measuring techniques, enabled researchers to look closer into the characteristics of the wake
in therms of the mean velocity field and turbulent quantities in different regions surrounding the cylin-
ders. More extensive data regarding the size of the wake including parameters such as separation position
& angle, recirculation region length (lR), maximum wake with (lw) and its location (xw), some of which
are illustrated in Figure 2.1, has been published both through numerical and experimental investigations.

Figure 2.2: Vorticity created by the vortex shedding
process in the wake behind a cylinder with circular cross
section.

The vortex shedding process is characterised by a
periodic movement of the wake behind bluff bodies.
As the flow passes moves the wake from side to side
and each time it does so a vortex is released down
stream. The vortices originates from the sides of the
body with an alternating side of origin for each vortex,
which gives the vortices an alternating direction of
rotation. As the vortices are transported down stream
a von Kármán vortex street is created in its wake,
illustrated in Figure 2.2.

When investigating the flow quantities, they are
typically decomposed into a time averaged, a coher-
ent (periodically varying) and a incoherent (random)
component. For the velocity, the decomposition can
be written as

ui = ui + ũi + u′i 〈ui〉 = ui + ũi (2.1)

where ui is the constant time averaged value, ui the periodic and u′i the random velocity fluctuations.
The flow past cylinders of both circular and polygonal cross sections causes the flow to separate along

the sides of the body. Since the flow in the boundary layer before the separation point can be both laminar
(subcritical), transitional (critical) or fully turbulent (supercritical) can the separation behaviour and the
flow be very different and difficult to model. In this study subcritical flows are investigated, meaning that
the flow before the separation point is laminar. The transition to turbulent are induced by the separation
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itself. As pointed out by Balzer & Fasel [1], the transition is due to separation created by the amplification of
disturbances by the reverse flow velocity profiles, i.e the free shear layer between the free stream fluid and the
fluid within the separation bubble. Independent of the turbulence level prior to separation, the disturbances
will grow and induces roll-up of the shear layer into larger vortices or ”rollers”, which are convected down
stream into the wake region where they are released down stream. It is this process which creates the vortex
shedding process and due to the high level of anisotropy of the roll-up is it difficult to model.

The vortex shedding process is governed by different flow phenomena in different regions of the flow. The
roll-up in the free shear layer at the separations is one of these regions. Further down stream the flow is
governed by other flow phenomena. Lyn et al. [16] made a distinction between the regions down stream of the
cylinder. As the vortices created in the free shear layers are transported downstream their size and behaviour
changes. In the first four diameters, called the base region, the flow is characterised by strong mixing between
the free stream fluid and the fluid within the base region. In this region the vortices grows and evolves into
a fully developed von Kármán vortex street. In the fully developed vortex street, called the near wake, the
vortices have a more stable size and behaviour.

The topology of the flow field in the near wake contains a number of interesting points. Perry & Steiner [21]
showed the importance of the topology for the turbulence in the near wake. Along the vortex street occurs
streamline saddle and centre points. The saddle points are identified as the region where two opposing flow
streams meet and are redirected in the orthogonal directions. These saddle points creates high Reynolds shear
stresses and production of turbulent kinetic energy. The streamline centres are regions completely enclosed by
streamlines. The high production of turbulence in the saddle points are convected along the streamlines into
the vortex centre, which results in a maximum of turbulent kinetic energy in the centres.

2.2 Turbulence modelling

The Navier-Stokes equations describes the movement and transport of momentum within the fluid.

ρ
∂ui
∂t

+ ρ
∂uiuj
∂xj

= − ∂P
∂xi

+ µ
∂2ui
∂xj∂xj

(2.2)

∂ui
∂xi

= 0 (2.3)

Time averaging as ui = 1
2T

∫ T
−T uidt gives the Reynolds Averaged Navier-Stokes (RANS) equations.

ρ
∂uiuj
∂xj

= − ∂P
∂xi

+
∂

∂xj

(
µ
∂ui
∂xj
− ρτij

)
(2.4)

∂ui
∂xi

= 0 (2.5)

If separation of scales is assumed, where the variations of the periodic field (ũi) are assumed to be much slower
than the turbulent fluctuations (u′i), the time gradient in equation (2.2) can be kept. The instantaneous time
averaged velocity is defined as above according to 〈ui〉 = ui + ũi.

ρ
∂〈ui〉
∂t

+ ρ
∂〈ui〉〈uj〉
∂xj

= −∂〈P 〉
∂xi

+
∂

∂xj

(
µ
∂〈ui〉
∂xj

− ρτij
)

(2.6)

∂〈ui〉
∂xi

= 0 (2.7)

The new term, τij = −ρu′iu′j , in equation (2.4) and (2.6) are the Reynolds stresses which are modelled.

If equation (2.2) and (2.3) instead are averaged in space as ûi(x, t) = 1
∆x

∫ x+0.5∆x

x−0.5∆x
ui(ξ, t)dξ the following

equations are obtained

ρ
∂ûi
∂t

+ ρ
∂ûiûj
∂xj

= − ∂P̂
∂xi

+
∂

∂xj

(
µ
∂ûi
∂xj
− ρτ̂ij

)
(2.8)

∂ûi
∂xi

= 0 (2.9)
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With equation (2.8) and (2.9) can parts of the turbulence be resolved and computed with higher accuracy.
The unknown sub-grid stress, τ̂ij = ûiuj − ûiûj , which describes the unresolved turbulence appears and needs
modelling similar as for the Reynolds stresses in the RANS approach.

2.2.1 Eddy viscosity models

Eddy viscosity models are the most common turbulence models used for engineering applications due to
their low computational cost and stability. The convective influence from the turbulence on the transport of
momentum, the Reynolds stresses, are modelled as an extra diffusion term through an eddy viscosity, µt. The
models are based on Boussinesqs assumption who in 1877 found that the Reynolds stresses appeared to be
linearly proportional to the strain rate tensor.

−ρu′iu′j = 2µtSij −
2

3
ρkδij (2.10)

with Sij = 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
and δij = 1 if i = j and 0 if i 6= j. The second term in equation (2.10) is added to

obtain the physically correct turbulent kinetic energy, k, as u′iu
′
i = 2k. This second term is used to compute

the Reynolds stresses but when implemented into CFD codes, such as Star CCM+, the second term is often
excluded and said to be included in the pressure as PB = P + 2

3ρkδij . The Reynolds stresses in equation (2.4)
and (2.6) are therefore equal to 2µtSij for the eddy viscosity models.

The eddy viscosity is assumed to have the same dimension as the dynamic viscosity, µ, which through
dimensional analysis gives

µt = Cρϑ` (2.11)

where ϑ is the turbulent velocity scale and ` the turbulent length scale. All eddy viscosity models uses
Boussinesqs assumption to compute the Reynolds stresses but approximates the turbulent scales from different
turbulent quantities obtained from additional transport equations or algebraic expressions.

A majority of the eddy viscosity models uses the modelled k-equation, which is given by

ρ
∂k

∂t
+ ρ

∂k〈ui〉
∂xi

=
∂

∂xi

[(
µ+

µt
σk

)
∂k

∂xi

]
+ P k − ρε (2.12)

k − ω SST

Menter [19] proposed a new alternative to the two common turbulence models k − ε and Wilcox k − ω. Menter
found that k − ε was much less sensitive toward assumed values of the model constants in the free stream,
giving more accurate results then k− ω. However, k− ω performes better in boundary layer flows with adverse
pressure gradient. Menter proposed a model combining the two models. For k − ε are the turbulent viscosity
and the velocity and length scales modelled as

ϑ = k1/2 ` =
k3/2

ε
µt = ρCµϑ` = ρCµ

k2

ε
(2.13)

k − ω SST uses the same transport equations as k − ε, i.e. the k-equation defined by equation (2.12) and
the ε-equation, but with ε expressed as ε = β∗kω. For incompressible flow the ε-equation then becomes

ρ
∂ω

∂t
+ ρ

∂ω〈ui〉
∂xi

=
∂

∂xi

[(
µ+

µt
σω,1

)
∂ω

∂xi

]
+ 2γ2ρSij ·Sij − β2ρω

2 + 2
ρ

σω,2ω

∂k

∂xi

∂ω

∂xi
(2.14)

The eddy viscosity are given by

µt =
a1ρk

max(a1ω, SF2)
(2.15)

S =
√

2SijSij F2 = tanh

(
max

(
2
√
k

β∗ωd
,

500u

d2ω

)2
)
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The production turbulent kinetic energy and dissipation rate in equation (2.12) are given by

P k = min

(
10β∗ρkω, 2µtSij ·Sij

)
P ε = β∗kω (2.16)

Table 2.1: k − ω SST model constants.

σk σω,1 σω,2 γ2 β2 β∗ a1 Cµ

1.0 2.0 1.17 0.44 0.083 0.09 0.31 0.09

The k − ω model is known to model the turbulent quantities in boundary layers correctly. k − ω SST is
transformed into a k − ω model in boundary layer flows, which mean that it is possible to use the model in its
original form all the way into the viscous sub-layer.

k − ε Realizable

Shih et al. [25] proposed a new k − ε model. The new model was based on the standard k − ε model with a
modified transport equation for the dissipation rate, ε, and a new realizable eddy viscosity which would ensure
physically correct non-negative normal Reynolds stresses. The model uses the modelled k-equation defined by
equation (2.12). The ε-equation is defined as

ρ
∂ε

∂t
+ρ

∂ε〈ui〉
∂xi

=
∂

∂xi

[(
µ+

µt
σε

)
∂ε

∂xi

]
+Cε,1ρSε−Cε,2ρ

(
ε2

k +
√
νε
− kε0

(k +
√
νε)max(k0/ε0, Ct

√
ν/ε0)

)
(2.17)

with

Cε,1 = max

(
0.43,

η

5 + η

)
η =

√
2SijSijk

ε

The last term in equation (2.17), containing the ambient turbulence values ε0 and k0, was proposed by Spalart
et al. [28] to counteract turbulence decay. The eddy viscosity is obtained as

ϑ = k1/2 ` =
k3/2

ε
µt = ρCµ

k2

ε
(2.18)

with

Cµ =
1

A0 +As
√
SijSij + ΩijΩijk/ε

A0 = 4

As =
√

6 cos

(
1

3
cos−1

(√
6W
))

W = SijSjkSki/(SijSij)
3/2

Table 2.2: k − ε Realizable model constants.

σk σε Cε,2 A0 Cmax Cr1 Cr2

1.0 1.2 1.9 4.0 1.25 0.04645 0.25

P k and P ε in equation (2.12) is defined as

P k = min

(
Cmax,

1

Cr1(|η| − η) +
√

1−min(Cr2, 0.99)

)(
µtS

2 − 2

3
ρk
∂〈ui〉
∂xi

− 2

3
µt
∂2〈ui〉
∂x2

i

)
(2.19)

P ε = ρ(ε− ε0) (2.20)

Unlike the k − ω models are the k − ε models unable to resolve the viscous sub-layer. To be able to do so
the original model must be modified. Normally this is done by adjusting the model coefficients in the boundary
layers to obtain physically more correct predictions. Rodi [23] proposed an alternative two-layer approach in
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which the dissipation rate close to the wall is prescribed algebraically and then blended with the free stream
values predicted by the ε-equation. ε are prescribed according to

ε =
k3/2

lε
(2.21)

The blending of the prescribed ε and the modelled one are provided by a wall-proximity indicator suggested by
Jongen [12] as

λ =
1

2

(
1 + tanh

(
Rew − 60

10/atanh(0.98)

))
(2.22)

with

Rew =

√
kd

ν

The eddy viscosity is then defined as

µt = λµt,k−ε + (1− λ)

(
µt
µ

)
2layer

(2.23)

k− ε v′2
2f

Similarly as for the k − ε model the transport equations for k and ε are solved for in the k − ε v′22f model.
Beyond these two transport equations are two additional equations solved, one for the wall normal Reynolds
stress v′2

2 and one for an elliptic damping function f . The reason for solving these extra equation is to more
accurately capture the dampening of the wall normal turbulence than can be provided by the damping functions
used for the two equation k − ε and k − ω models. The model is based on the work of Durbin [8], Lien et al.
[15] and was further modified by Davidsson et al. [7]. The eddy viscosity is computed as

µt = ρ·min

(
Cµkmax

(
k/ε, Ct

√
ν/ε

)
, Cµϑ2v′2

2max

(
k/ε, Ct

√
ν/ε

))
(2.24)

The transport equations read

ρ
∂ε

∂t
+ ρ

∂ε〈ui〉
∂xi

=
∂

∂xi

[(
µ+

µt
σε

)
∂ε

∂xi

]
+Cε,1ρ

ε

k

(
1 +A

√
k

v′2
2

)
−Cε,2ρ

(
ε2

k
− ε0

max(k0/ε0, Ct
√
ν/ε0)

)
(2.25)

ρ
∂v′2

2

∂t
+ ρ

∂v′2
2〈ui〉
∂xi

=
∂

∂xi

[(
µ+

µt
σv′22

)
∂v′2

2

∂xi

]
+ P v

′
2
2 − 6ρv′2

2ε

k
(2.26)

L2 ∂
2f

∂x2
i

− f + P f = 0 (2.27)

with

P v
′
2
2

= ρ·min

(
kf,− 1

max(ε/k, Ct
√
ν/ε)

(
(C1−6)v′2

2−2k

3
(C1−1)

)
+C2

(
µtS

2−(2/3)ρk∇u−(2/3)µt(∇u)2

))

L = CL·max

(
k3/2

ε
, Cη

(
ν3

ε

)1/4
)

P f =
1

max(ε/k, Ct
√
ν/ε)

(C1 − 1)

(
2

3
− v′2

2

k

)
+ C2

Cµv′22v′2
2S2

ε
+

5v′2
2

k·max(ε/k, Ct
√
ν/ε)
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P k in equation (2.12) is defined as

P k = µtS
2 − 2

3
ρk
∂ui
∂xi
− 2

3
µt
∂2ui
∂x2

i

(2.28)

Table 2.3: k − ε v′22f model constants.

C1 C2 Cε1 Cε2 Cµ Cµv′22 CL Ct Cη σk σε σv′22 A

1.4 0.3 1.4 1.9 0.09 0.22 0.23 6 70 1 1.3 1 0.045

Unlike the original k − ε, the k − ε v′22f model are able to compute the flow all the way into the viscous
sub-layer, which means that no low Reynolds modification is needed in order to resolve the boundary layers.

Spalart-Allmaras

Spalart & Allmaras [29] proposed a one equation eddy viscosity model in which only one transport equation is
solved for a kinematic eddy viscosity parameter, ν̃. The eddy viscosity is computed as

µt = ρν̃fν1 (2.29)

The transport equation for ν̃ reads

ρ
∂ν̃

∂t
+ρ

∂ν̃〈ui〉
∂xi

= ρCb,1(1−ft2)S̃ν̃+
1

σν

[
∂

∂xi

((
µ+ρν̃

) ∂ν̃
∂xi

)
+Cb,2ρ

∂2ν̃

∂x2
i

]
−ρ
(
Cω1fω−

Cb1
κ2

ft2

)(
ν̃

d

)2

(2.30)

with

ft2 = 1.1· e−2χ2

χ =
ν̃

ν

S̃ =
√

2ΩijΩij +
ν̃

κ2d2
fν2 Cω1 =

Cb1
κ2

+
1 + Cb2
σν̃

fν2 = 1− χ

1 + χfν1

fω = g

(
1 + C6

ω3

g6 + C6
ω3

)1/6

g = min

(
ν̃

S̃κ2d2
, 10

)
fν1 =

χ3

χ3 + C3
ν1

Table 2.4: Spalart-Allmaras model constants.

Cb1 Cb2 Cω2 Cω3 κ σν Cν1

0.1355 0.622 0.3 2.0 0.41 2/3 7.1

The original proposed model included an additional trip term, ρft1∆〈ui〉2, which is used to initiate boundary
layer transition. This term is not included in the implementation in Star CCM+.

The Spalart-Allmaras model, just like k− ω, is a low Reynolds model in its original form, which means that
it can be used all the way into the viscous sub-layer.

2.2.2 Reynolds Stress Model

Unlike the eddy viscosity models, the Reynolds stress model (RSM) solves the Reynolds stresses directly
by solving their transport equations. Even though the Reynolds stresses are obtained from their respective
transport equations, modelling is needed to determine a number of the terms in their equations. The transport
equation for the Reynolds stresses reads

ρ
∂τij
∂t

+ ρ
∂τij〈uk〉
∂xk

=
∂

∂xk
Dτ
ijk + P τij + φ+ ε (2.31)

with
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P τij = −ρ
(
τik

∂〈uj〉
∂xk

+ τjk
∂〈ui〉
∂xk

)
The turbulent diffusion term, Dτ , the turbulent dissipation, ε, and the pressure-strain term, φ, needs modelling
as follows

Dτ
ijk =

(
µ+

µt
σk

)
∂τij
∂xk

(2.32)

ε is obtained from the modelled ε-equation from the standard k − ε model.

ρ
∂ε

∂t
+ρ

∂ε〈ui〉
∂xi

=
∂

∂xj

[(
µ+

µt
σε

)
ε

∂xj

]
+
ε

k

(
Cε1

1

2
Pkk−Cε2ρε

)
+A1ν(τlmNlm)

k

ε
(1−α3)

(
∂

∂xn
((Sopnp)

1/3nn)

)2

(2.33)
The pressure-strain term is obtained using the elliptic blending model proposed by Lardeau & Manceau [14].

φ− ε = (1− α3)(φω − εω) + α3(φh − εh) (2.34)

with

α− L2∇2α = 1

φh
ij

= −(C1ρε+C1sPkk))Aij+(C3−C3s

√
AlmAlm)ρkSij+C4ρk(SinAnj+AioSoj−

2

3
ApqSpq))+C5ρk(ΩirArj+AisΩsj)

Aij =
τij
k
− 2

3
δij

φω
ij

= −5ρ
ε

k
(τikNkj+τilNlj−

1

2
τmnNmn(Nij+δij)) Nij = ninj ni =

∂α/∂xi√
∂α/∂xj · ∂α/∂xj

εh =
2

3
εδij εω = τij

ε

k
L = C1max

(
k3/2

ε
, Cη

ν3/4

ε1/4

)
In equation (2.33) is the eddy viscosity needed. It is redefined as

µt = ρCµk·max
(
k

ε
, Ct

√
ν

ε

)
(2.35)

Table 2.5: RSM model constants.

σk σε CM Cs Cε1 Cε2 Cµ A1 C1

1.00 1.15 2.00 0.21 1.44 1.83 0.07 0.115 1.70

C1s C3 C3s C4 C5 Cl Ct Cν

0.90 0.80 0.65 0.625 0.20 0.133 6.00 80.0

The RSM with elliptic blending function is a low Reynolds model, which means that it can be used all the
way into the viscous sub-layer.

2.2.3 Smagorinsky model

The subgrid stresses in equation (2.8) needs modelling. The first developed model for these stresses where the
Smagorinsky model developed by Smagorinsky [26]. The modelling of the subgrid stresses is, similar to the
eddy viscosity models, based on Boussinesqs assumption as

τ̂ij = 2µtSij −
2

3
ρkδij (2.36)

The Smagorinsky model approximates µt as

µt = ρ∆2S (2.37)
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with

∆ = fνmin(κd,CsV
1/3) fν = 1− e−y

+/A

Table 2.6: Smagorinsky model constants.

Cs A

0.1 25

2.2.4 Detached Eddy Simulations

Even though the RANS and scale resolving appraches uses different averageing techniques there are no difference
between equation (2.6) and (2.8). Menter & Kuntz [20] proposed a mix between the approaches which is called
Detached Eddy Simulations (DES). It uses unsteady RANS in the boundary layers and LES in the free stream.
The turbulent quantities are described using k and ω, which are solved for using equation (2.12) and (2.14)
from the k − ω SST model. The transition to LES is provided by modifying the specific dissipation rate, ω, as

ω̃ = ωφ (2.38)

with

φ = max

(
lt

CDES∆
F, 1

)
F = 1− tanh

((
2
√
k

β∗ωd
,

500ν

d2ω

)2
)

CDES = CDES,k−ωF1+CDES,k−ε(1−F1) F1 = tanh

((
min

(
max

( √
k

0.09ωd
,

500ν

d2ω

)
,

2k

d2CDkω

))4
)

CDkω = max

(
1

ω
∇k· ∇ω, 10−20

)
lt =

√
k

β∗ω

Table 2.7: Detached Eddy Simulation model constants.

CDES,k−ω CDES,k−ε

0.78 0.61

∗ Other model constants are defined
as in the k − ω SST model above.

2.3 Resolution of Scale Resolving Methods

For scale resolving methods the mesh is of great importance. There are a number of strategies to evaluate
the mesh ability to resolve turbulent length scales. Among these are evaluation of the resolved energy, two
point correlation and different ratios of the modelled sub-grid scale quantities to resolved or mean quantities.
Quantities such as: shear stress, viscosity, dissipation and kinetic energy can be used. Previous investigations
by Davidsson [6][5] has shown that among these, the two point correlation is the most accurate.

The two point correlation is a tool used for evaluating how closely the fluctuations of a quantity in two different
points are related. A high value indicates that if the quantity increases in one of the points, it is likely to
also increase in the other. A value close to zero indicates that the fluctuations in the two are completely
uncorrelated and changes independently of each other. A large negative value indicates that the fluctuations in
the two point are correlated but that an increase in one point is likely to result in a decrease in the other.

The two point correlation is defined as

Bij(x, x̂) = v
′
i(x)v

′
j(x+ x̂). (2.39)
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It is often normalised by vi,rms(x)vj,rms(x+ x̂) where vi,rms(x) =
√
v

′2
i .

Bnormij (x, x̂) =
v

′
i(x)v

′
j(x+ x̂)

vi,rms(x)vj,rms(x+ x̂)
(2.40)

Note that in a direction in which the turbulence is homogeneous
∂vi,rms

∂x̂ , which makes vi,rms(x) = vi,rms(x+ x̂).
Equation (2.40) then becomes a function of only the distance between the two points, x̂.

By investigating the correlation of velocity fluctuations in two points it can be determined if the two points
are enclosed by the same eddies at the same time. As one of the point is moved further from the other the
correlation will decrease. At a certain distance the correlation will approach zero, indicating that the distance
between the points is larger than the resolved turbulence. The number of points within this distance gives
a number on the resolution of the turbulent length scales. Davidsson [5] suggested that for a coarse LES a
resolution of at least 8 cells should be used.

The two point correlation do not just give a measure of how well the turbulent length scales are resolved, it
also gives a measure of the size of the large scales. The integral length scale, i.e. the size of the large turbulent
scales, can be determined as

`(x) =

∫ ∞
0

Bij(x, x̂)

vi,rms(x)vj,rms(x+ x̂)
dx̂. (2.41)

3 Method

The simplified geometry chosen as validation case is based on the work of Xu et al. [30], who investigated
the flow around slender cylinders of varying cross sections at a number of Reynolds numbers ranging from
Red = 1 · 104 to 1 · 105 in an open loop wind tunnel. The experimental study included investigation and
comparison of coefficient of drag, fluctuating lift coefficient, Strouhal number, critical Reynolds number at
which the boundary layer transitions to a turbulent behaviour, separation point and topology of the wake in
therms of recirculation region length (lR), wake width (lw) and position of the maximum width stream wise
location (xw).

The different cross sections consisted of a variety of polygonal shapes, categorised into different groups
depending on their orientation and shape. The different orientations consisted of geometries with a face or
a corner normal to the incoming flow, denoted as ”F” (face) or ”C” (corner) geometries respectively. The
shape of the cross sections was defined by the number of sides, i.e. a geometry with four sides is named ”4”.
Combining the two parameters, a geometry with four sides with a face oriented with its normal parallel to
the incoming flow is named ”4F”. The same geometry rotated 45◦ so that a corner is pointing towards the
incoming flow the geometry is named ”4C”. The investigated geometries included shapes of 2-8, 12 and 16
sides of both ”F” and ”C” orientation.

This validation case is relevant for a number of reasons. It contains the flow phenomena that are difficult to
model, described in Section 2.1. With a Reynolds number of Red = 1 · 104 and a diameter D = 25mm the free
stream velocity for air at a standard atmosphere (101325Pa and 288.15K) becomes 5.87m/s, both a length
scale and velocity comparable to those found in an engine bay. This ensures that the flow phenomena behaves
in a similar way as in an engine bay. The large variation of polygonal shapes also gives a large platform for
evaluating different turbulence models and numerical setups ability to predict the separation in great detail.
The different geometries has different separation behaviour, which has been divided into three categories by
Xu et al. [30]: {i} The flow separates at the corner farthest from the centre line (defined as T0) and do not
reattach {ii} The flow separates at the corner farthest from the centre line (T0), even though there are one
corner up-stream from the separation point, and do not reattach {iii} The flow separates at the corner up
stream from the corner that is farthest from the centre line (defined as T1) and reattach and separates again at
the corner farthest from the centre line (T0) {iv} The flow separates at the corner up stream from the corner
that is farthest from the centre line (T1) and do not reattach. By testing the numerical setups for geometries
from the different separation groups, their ability to predict separation can be evaluated. The tested geometries
are presented in Figure 3.1.
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Figure 3.1: Tested geometries with an arrow indicating the free
stream flow direction.

The present study investigated the
cross sections illustrated in Figure 3.1: 2F,
4F{i}, 7F {ii}, 7C {iv}, 8C {iii} and 16C.
2F was also investigated due to being a
common geometric feature in engine bays.

Several parameters was measured and
compared to the experimental data, includ-
ing coefficient of drag, recirculation region
length, wake width and Strouhal number. The Strouhal number was determined from a fast Fourier transform
performed on the velocity magnitude in a point located 2.5D down stream from the cylinder centre.

3.0.1 Computational domain & Mesh for RANS computations

Figure 3.2: Location and sizes of local mesh refinements.

The computational domain was kept as similar as
possible to the wind tunnel experiment with a cross
section of 0.5 × 0.5m. The wind tunnel section is
extended 10D (0.25m) up stream and 20D down
stream. The length of the test cylinder was 16.8D
(0.42m), giving an aspect ratio of 16.8 and a blockage
of α ≈ 5 %, due to end plates that reduced the influ-
ence of both the boundary layers along the walls and
3D effects. A Cartesian coordinate system is defined
with origin positioned in the centre of the cylinder at
the mid span in the span wise direction. The x-axis is
pointing in the down stream direction and the z-axis
is in the span wise direction.

The mesh was created using polyhedral cells to
reduce the effect of false diffusion. A total of three
box refinements and a cylinder refinement was added
around the cylinder and in its wake according to
Figure 3.2. The cell sizes was set according to Table 3.1. The cell size in the local refinements is presented in
relation to the largest cell size in the free stream, referred to as base size.

Table 3.1: Mesh refinement.

Refinement box Stream-wise length [x/D] Sideways width [y/D] cell size [%]

Base size - - 100
Coarse [−20D +4D] ±3.6D 75
Medium [−14D +3D] ±3D 50
Fine [−10D +1.6D] ±2.4D 25
Cylinder Diameter = 2.4D, centred at x = −0.3D 15

Figure 3.3: Results for the mesh study obtained from the
geometry 4F with k − ω SST. The results for the drag
on the cylinder are normalised by the results from the
finest mesh resolutions.

Along the walls of both the wind tunnel and the
cylinder, prism layer is added. The thickness of the
first layer is adjusted to give y+-values below 1. The
growth of the prism layer follows a geometric pro-
gression adjusted both to give a smooth transition in
size from the last prism layer to the bulk cells and
to get a total thickness similar to the boundary layer
thickness.

In order to determine the required cell size a mesh
study was performed, in which the number of prism
layers and base size was investigated. The base size
was varied as ∆x = 20 (∆x/D = 0.8), 15 (∆x/D =
0.6), 10 (∆x/D = 0.4) and 8mm (∆x/D = 0.32).
From the result in Figure 3.3, it can be seen that only
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marginal differences in the result can be seen. However, the drag force on the cylinder seems to have reached a
converged state at 10mm, which was chosen for future computations. The number of prism layers were varied
as 6, 9, 12, 15 and 18 for which the results can be seen in Figure 3.3. These results was obtained with a base
size of 10mm. An even smaller variation of the result was observed and 15 was chosen as the number of prism
layers. Since the aim of the present study is to investigate the numerical setup rather than the mesh, a larger
number of prism layers was chosen to reduce the mesh dependency and make sure that the resolution is fine
enough even with geometric variations. This could be permitted due to the limited increase in cell count. The
refinement boxes was also both extended to the outlet and made wider with negligible effect on the result.

3.0.2 Computational domain & Mesh for scale resolving methods

To be able to resolve the turbulent scales a mesh that is significantly finer than that of RANS simulations is
needed. This is especially true for LES computations near walls which puts stringent size limitations in both
the wall normal and parallel directions. To limit the computational power needed to perform the computations
the domain was reduced and only the geometry 4F and a circular cylinder were considered. The walls and the
height of the domain were removed and reduced. Instead of having a cylinder shorter than the height of the
test section combined with end plates to retain a 2-dimensional mean field the cylinder was extended to span
the entire height. The walls was changed to symmetry planes and the boundaries in the span wise direction was
changed to periodic boundary conditions. The height was reduced to 0.25m (10D) compared to the original
height of 0.5m, giving a new aspect ratio of 10. Similar studies have used similar dimensions but with a smaller
aspect ratio. Sohankar et al. [27] used a domain with a length of 24.2D, a width of 15.7D and a height of
varying from 4D to 7D. Elkhoury [9] used a domain that was 20.5D long, 14D wide and 4D high for URANS
simulations. The reason for using a higher aspect ratio is that Sohankar et al. [27] found that as the aspect
ratio was increased from 4 to 7, the rms lift and drag were reduced with 3 and 15%, indicating a dependence
on the aspect ratio. An aspect ratio of 10 was used in order to reduce these effects.

The mesh strategy used for the scale resolving methods was quite different from that used for the RANS
simulations. To be able to resolve the turbulence correctly a specific number of cell is needed to resolve the
large turbulent eddies. The size of the large turbulent length scales varies within the domain, variations which
is difficult to adapt a mesh to by using local mesh refinements built up by simple geometric features. Drastic
changes in cell size between the refinements and poor adaptation to the flow field can result in large variations
in resolution. Instead of using local mesh, the cell sizes was related to the large turbulent length scales. Even
though the URANS simulations do not resolve the turbulent length scales they can be approximated from
the modelled quantities that are used to describe the turbulence. For k − ε, k describes the turbulent kinetic
energy and ε the destruction of turbulent kinetic energy. The destruction takes place at the smallest turbulent
scales if the turbulent kinetic energy is assumed to be conserved throughout the cascade process. Even if ε is
used to describe a phenomena taking place at the small scales it can be related to the large scales trough the
conservation of energy which gives equilibrium of production of turbulent kinetic energy at the large scales
and destruction at the smallest scale. The large scales are approximated as ` = k3/2/ε and with ε = β∗kω
(β∗ = 0.09)

` =

√
k

β∗ω
(3.1)

The basic principle of the meshing approach is to evaluate equation (3.1) for the results obtained from a
transient k − ω SST simulation to approximate the size of the large scale turbulence as a continuously varying
field in the entire domain. The size of the turbulence can then be divided by a constant nc to get the cell size,
∆x, required to resolve a large scale eddy by nc cells in the entire domain.

∆x =
1

nc
·
√
k

β∗ω

To include the surface cell size was the equation adjusted according to

∆x = max

(
1

nc
·
√
k

β∗ω
,∆xs

)
(3.2)

where ∆xs is the surface cells size. This implementation of a surface cell size is possible due to the fact that
the predicted large turbulent length scales approaches zero at the surfaces of the cylinder. By implementing
the adjustment user control of the surface resolution is added.
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Equation (3.2) was evaluated and used as a field function refinement for a polygonal mesher in STAR-CCM+
to obtain a mesh adapted to the flow field. k and ω was taken as the time averages k and ω. 15 and 30 prism
layer was added on the surface of the cylinder in order to resolve the boundary layer down to y+ < 1 for the
DES and LES meshes respectively.

3.0.3 Numerical setup

The flow was computed using the commercial software STAR-CCM+ version 12.06.010 and with a number
of modelling approaches, including RANS, DES and LES. For the RANS approach a number of turbulence
models and both a steady state solver and a unsteady solver (URANS) was used. It was expected that the
steady state solver would not give accurate results for such a transient flow. However, since steady state solver
are used quite frequently it is of great interest to investigate how much and in what way it is incorrect. Both
the steady state and transient solutions was computed as incompressible flows with a coupled pressure-velocity
solver. The transient computations utilised an implicit solver with constant time steps.

The implemented turbulence models include k − ε Realizable and k − ω SST, Reynolds Stress Model (RSM)

with elliptic blending, the four equation k − ε v′2
2 f and the one equation Spalart Allmaras. The k − ε models

are known for their inability to model the shear stress in boundary layers with adverse pressure gradient and
therefore has difficulty predicting separation. However, the two modified versions investigated in this study
are better adapted to other flow phenomena present in this kind of flow, such as predicting the turbulent
production in the stagnation region in front of the cylinder, which makes them interesting to investigate. The
k−ω SST and the RSM both have desirable features for the current flow, such as better prediction of boundary
layers in separating flows. RSM have additional advantages compared to the eddy viscosity models due to the
fact that it can handle anisotropic turbulence and curvature effects. The Spalart Allmaras has the advantage of
being computationally efficient due to being a one equation model. It was developed and are used for airfoils
and has proved reliable for separating flows.

For the RANS solutions the 3rd-order MUSCL up-wind scheme was used for the momentum equations and
the 2nd-order upwind scheme for the turbulent quantities. The transient implicit solver used a time step of
1.125 · 10−4 s (tU∞/D = 0.0264) and 15 iterations per time step. All turbulence models was initialised from a
solution obtained with k − ω SST that had been running for (3 s · 5.866ms−1/0.75m > 20 flow through times).
Sampling of mean field quantities started after yet another flow through time and continued for 38 flow through
times. This was a large value, considerably higher than those used in similar studies, and could have been
reduced. The convergence of the mean quantities was controlled by the mean drag and lift on the cylinder,
which indicated a fully developed behaviour.

For the LES the Smagorinsky sub-grid stress model was used with Cs = 0.1. A bounded central dif-
ferencing scheme was used for the momentum equations and the 2nd-order upwind scheme for the turbu-
lent quantities. The time step was reduced to 5.33 · 10−5 s (tU∞/D = 0.0125) and the initialisation was
done similar to the URANS computations with the difference that the sampling of mean field quantities
started after 1 s (7.8 flow through times) and continued for 2 s (15.6 flow through times). The DES used
a numerical setup similar to what was used for the LES solution with k − ω SST for the URANS part.

Figure 3.4: The instantaneous velocities was
sampled along several lines, in both x-, y-
and the homogeneous z-direction. The thin
solid lines illustrates the sampling lines in the
x- and y-direction and the circles illustrates
the sampling lines in the z-direction.

3.0.4 Boundary conditions

The wind tunnel walls and the surface of the cylinder was set
to no-slip walls and at the outlet the pressure was specified and
all other quantities extrapolated from the up stream cells. At
the inlet a turbulent intensity of ε̂ = 0.05%, similar to what
was measured in the experiment, and a viscosity ratio of 10
was specified. Prior to the computations the influence of the
boundary layer thickness on the solution was investigated. It was
found that the drag increased by 2.4 % with a fully developed
boundary layer compared to a constant velocity profile at the
inlet. The velocity profile with a boundary layer was obtained
by extending the inlet 2m upstream. In order to replicate the
experimental setup as much as possible it was assumed that a
fully developed boundary layer was present. The temperature
was set to 288.15K giving a viscosity of µ = 1.7965 · 10−5Pa · s.
To obtain a Reynolds number of Red = 1 · 104, a free stream
velocity of U∞ = 5.87m/s was specified.
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3.0.5 Evaluation of resolution for scale resolving mesh

In order to evaluate the mesh of the scale resolving methods two point correlations was used. A number of
sampling lines, illustrated in Figure 3.4, was added prior to the simulations along which the instantaneous
velocities for u, v and w was extracted at each time step and cell centre of the cells intersecting the line. Two
point correlations was then computed between all of the point along the sampling lines and the number of
neighbouring nodes with a non-zero correlation was counted using a MATLAB script. The non-zero correlation
was defined as a normalised correlation value above 0.3 and the count was taken from the direction with the least
amount of cells above the threshold value. By using a nc = 8 and limiting the cell size above ∆xs/D = 0.032
the resolution of the large turbulent length scales could not be kept above 8 cells per eddy and the obtained
y+ value was above one, which meant that thickness of the surface cells had to be reduced. Instead was nc
increased to 10 and the thickness reduced to δ/D = 4 · 10−4. To keep the maximum aspect ratio of the cells
below 10 along the walls was the surface cell size limited to ∆xs/D = 0.008. The minimum cell size along the
surfaces for the square cross section gave a resolution of 125 cells per side, a significantly larger number than
25 cells used by Sohankar et al. [27]. Even with the new settings the resolution was still not good enough close
to the cylinder surface with a number of locations at which the resolution was below 8.

Figure 3.5a and 3.5b illustrates a typical distribution of the obtained resolution. It appears that the lowest
resolution is found for the two point correlations in the homogeneous z-direction. The reason for this might
be that the mean field are two dimensional in the xy-plane, which means that the mean velocity gradients
are only non-zero in these two directions. Turbulence is generated by the amplification of disturbances due to
gradients in the mean field. This would indicate that the production of turbulence takes place in the xy-plane.
Newly created turbulence is highly anisotropic and has large turbulent length scales. The large length scales
are broken down in the cascade process, which turns large anisotrpoic scales into many small isotropic scales.
This means that the turbulent length scales found in the z-direction are not generated by the gradients in the
mean field but are a result of larger scales being turned into smaller ones with different orientations. They are
therefore smaller than those found in the xy-plane. The scale resolving methods wants to resolve the largest
scales of the turbulence and a result, a finer resolution is needed in the homogeneous direction.

(a) The resolution varies in the domain. In the wake are
the scales small and puts the most stringent requirement
on the resolution. The current distribution of resolution is
taken at a line in the y-direction at x = −10D and z = 0.

(b) Resolution along sampling line oriented in the z-
direction at x = −4D and y = 1D.

Figure 3.5

4 Results
The main purpose of using the experimental study performed by Xu et al. [30] is to investigate different
turbulence models ability to predict separation and reattachment for a set of cylinders with different polygonal
cross sections. The polygonal shapes all exhibit different behaviour of separation and reattachment, including
complex flows with multiple separation and reattachment points, giving a wide variety of different flows which
must be handled correctly by the turbulence model.

The results, including separation point, coefficient of drag (Cd), recirculation region length (lR), wake width
(lw) and Strouhal number (St), are obtained at a Reynolds number of Red = 1 · 104 and compared to the
experimental results obtained by Xu et al. [30]. The separation point was identified as the point at which the
streamwise velocity becomes negative. The separation point is often defined as the point in which the skin
friction coefficient, defined as Cf = 2τw/ρU

2
∞ = 2µ∂u∂y y=0

/ρU2
∞, changes sign. In extension this gives the same

definition as the velocity changing direction. The global characteristics of the wake were defined according to
Section 2.1 and all length parameters are normalised by D and velocities by U∞.
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4.0.1 Predictions of separation & reattachment

Table 4.1 summarises the separation points obtained with the different turbulence models. The results are
generally in good agreement with the experimental results. For the steady RANS only two cases were incorrectly
predicted, both with the turbulence model k − ε Realizable and for the geometries 7C and 16C. In both cases
the separation behaviour is underestimated with a delayed separation. For 16C the separation is postponed
entirely and separation does not occur until T0, compared to T1 indicated by the experiments. For 7C is the
separation at T1 captured but the separation bubble collapses before reaching T0, causing the flow to reattach.
The separation behaviour becomes similar to that of 8C, which has a similar geometry but with a slightly
blunter angle at the corners.

The predicted separation is worse for the unsteady RANS. It is still the same geometries that constitutes a
challenge but in addition to k − ε Realizable, several of the other turbulence model are incapable of predicting
the separation correctly. RMS, Spalart-Allmaras and k − ε Realizable predicts a separation and reattachment
before T0 for the geometry 7C. All turbulence models predict separation at T0 instead of T1 for the geometry
16C.

Common for both RANS and URANS is that if the separation is incorrectly predicted, it is under predicted.
By the present author it is believed that this might be due to incorrectly modelled turbulence in the free stream
and along the surface of the cylinder. From Balzer & Fasel [1] it is known that the turbulence level in the
free stream and in the region close to a separation bubble can decrease the size of the bubble. Partly due to
increased mixing in the boundary layer ahead if it, which prevents the boundary layer from separating in the
first place by constantly transporting momentum into it, and partly due to entrainment of free stream fluid
into the separation bubble itself. The entrianment is a transient phenomenon of the interface between the free
stream fluid and the fluid contained inside the separation bubble. The interface is constantly moving due to
large eddies passing by and occasionally large eddies can burst into the bubble causing it to collapse if it is
small enough or otherwise drastically reduce its size. RANS does not resolve the turbulence and can therefore
not capture this transient phenomena. The eddy viscosity RANS models investigated in this study models the
convective transport of quantities due to turbulence as an extra diffusion term, in the form of an extra viscosity,
µt. For k − ε Realizable, k − ε v′22 f and k − ω SST µt are directly proportional to the turbulent kinetic energy
k, according to equation (4.1). For Spalart-Allmaras µt is proportional to the kinematic eddy viscosity in a
similar way. This means that an increased turbulent kinetic energy gives an increased viscosity and as a result
an increased diffusion of streamwise momentum into the separation bubble. A higher streamwise momentum
means that the low pressure zone in the recirculation region in the near wake will have smaller influence on
the movement of the fluid. Instead of being slowed down and sucked into the recirculation region the fluid
will have enough momentum to sustain a positive streamwise velocity, which thereby reduces the recirculation
region length.

µt = ρCµ
k2

ε
µt = k

ρa1

max(a1ω, SF2)
µt = ρṽfv1 (4.1)

Table 4.1: The predicted separation point compared to the experimental results. T0 is defined as the corner
farthest from the centre line and T1 as the neighbouring corner up-stream from T0. The entries highlighted in
red indicates incorrect prediction of separation point for one or several turbulence models. For further details
see explanation below.

Geometry RANS URANS Xu et al. [30]

2F T0 T0 T0

4F T0 T0 T0

7F T0 T0 T0

7C T 1
1 T 2

1 T1 (without reattachment)

8C T1 T1 T1 (with reattachment and separation again at T0)
16C T 3

1 T 4
1 T1 (without reattachment)

1 k − ε Realizable predicts separation at T1 with reattachment and separation again at T0.
2 k− ε Realizable, RSM and Spalart-Allmaras predicts separation at T1 with reattachment and separation at T0.

3 k − ε Realizable predicts separation at T0.
4All turbulence models predict separation at T0.
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4.0.2 Wake characteristics

Table 4.2 and 4.3 summarises the results from the polygonal cylinder validation case for the steady and unsteady
RANS respectively. The results obtained from the steady RANS are extremely different from the experimental
results for all of the investigated parameters. The largest error obtained from the three parameters are those
for the recirculation region length, which deviates by several hundred percent. The error for the width of the
wake is also quite large with an error of around 50 % for many of the cases. Common for both the length
of the recirculation region and the width of the wake is that the characteristic lengths of the wake is highly
exaggerated. The coefficient of drag on the other hand is consistently underestimated by around 20 % depending
on the geometry. This general trend appears to be consistent for all geometries with an exception for the
prediction of the drag coefficient for geometry 8C which gives relatively acceptable results.

Among the turbulence models the results are also consistent, both in terms of the magnitude of the error for
each model and the differences between them. The most obvious difference can be seen for Spalart-Allmaras
which performs significantly better than the rest of the models for all of the investigated parameters. Even if
Spalart-Allmaras have been used extensively and been proven to give reasonable results in aerospace applications,
with similar flow conditions as in the present study, tests by Menter [18] have shown that k − ω SST have a
similar and even better performance. It is therefore surprising that such a big difference can be observed. On
the other side of the spectrum is RSM, which predicts the longest wake for all geometries. RSM is the most
advanced of the investigated RANS models and computes the Reynolds stresses directly by solving six separate
transport equations in contrast to the other four which models them through a linear relation between an eddy
viscosity and the strain rate tensor. RSM can therefore, in contrast to the others, predict both the effects of
anisotropic turbulence and curved streamlines better than the others. Since both of the effects are especially
pronounced in the current flow significant differences can be expected, even though better results for RSM
would have been expected. For k − ω SST, k − ε Realizable and k − ε v′22 f only comparatively small difference

can be seen. k − ε v′22 f predicts slightly longer recirculation regions, but which of the other to performs the
best appears to be rather random.

The results for the unsteady RANS is in much better agreement with the experimental results. However,
relatively large differences are still present. Instead of over predicting the length of the recirculation region, it is
under predicted by around 25 %. A similar reduction can be seen for the width of the wake. The general trends
in the steady RANS can be seen also for the unsteady RANS. The errors for the length of the recirculation
have the largest magnitude followed by the width of the wake. The coefficients of drag are predicted rather
well for geometries with a small number of faces but increases compared to the experiments for the 8C and 16C
geometries.

The differences between the models seen for the steady RANS changes somewhat for the unsteady solutions.
Many of them can still be seen, but they are drastically decreased. Spalart-Allmaras which produced significantly
better for the steady RANS now predicts results that are much closer to the other models, even though it
still predicts shorter recircualtion regions in many of the cases. RSM still predicts relatively long and wide
wakes, which in this case means better agreement with the experiments. Among the k − ε and k − ω models
the accuracy for the different geometries are rather random. For the steady RANS was k − ε v′22 f predicting
slightly longer recirculation regions. For the unsteady solutions this tendency has disappeared.
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Table 4.2: Results for polygonal geometries using steady RANS at Red = 1 · 104.

Geometry: 2F Cd/Cd,exp − 1 [%] lR/lR,exp − 1 [%] lw/lw,exp − 1 [%]

k − ω SST -28.87 224.50 54.12
k − ε Realizable -30.27 207.97 51.59
RSM elliptic blending -30.60 271.81 63.08

k − ε v′22f -29.17 234.90 51.86
Spalart Allmaras -15.56 24.43 4.78
Experiments by Xu et al. [30] Cd,exp = 2.250 lR,exp = 3.15D lw,exp = 1.80D

Geometry: 4F Cd/Cd,exp − 1 [%] lR/lR,exp − 1 [%] lw/lw,exp − 1 [%]

k − ω SST -21.69 382.92 56.17
k − ε Realizable -25.83 401.52 58.70
RSM elliptic blending -25.00 496.47 71.28

k − ε v′22f -23.76 416.02 54.11
Spalart Allmaras -15.51 138.71 20.41
Experiments by Xu et al. [30] Cd,exp = 2.100 lR,exp = 1.85D lw,exp = 1.70D

Geometry: 7F Cd/Cd,exp − 1 [%] lR/lR,exp − 1 [%] lw/lw,exp − 1 [%]

k − ω SST -35.79 250.38 42.00
k − ε Realizable -40.27 277.37 49.43
RSM elliptic blending -38.50 326.24 56.66

k − ε v′22f -36.75 273.81 43.10
Spalart Allmaras -26.67 81.28 15.42
Experiments by Xu et al. [30] Cd,exp = 1.663 lR,exp = 1.80D lw,exp = 1.30D

Geometry: 7C Cd/Cd,exp − 1 [%] lR/lR,exp − 1 [%] lw/lw,exp − 1 [%]

k − ω SST -30.24 404.21 46.32
k − ε Realizable -43.53 344.20 25.12
RSM elliptic blending -35.10 389.95 58.10

k − ε v′22f -31.79 348.24 50.08
Spalart Allmaras -29.78 105.35 13.36
Experiments by Xu et al. [30] Cd,exp = 1.228 lR,exp = 1.40D lw,exp = 1.20D

Geometry: 8C Cd/Cd,exp − 1 [%] lR/lR,exp − 1 [%] lw/lw,exp − 1 [%]

k − ω SST -7.78 290.57 47.34
k − ε Realizable -8.68 266.79 36.42
RSM elliptic blending -11.00 347.11 48.84

k − ε v′22f -8.51 292.32 40.05
Spalart Allmaras 6.16 112.42 25.72
Experiments by Xu et al. [30] Cd,exp = 0.950 lR,exp = 1.35D lw,exp = 1.10D

Geometry: 16C Cd/Cd,exp − 1 [%] lR/lR,exp − 1 [%] lw/lw,exp − 1 [%]

k − ω SST -17.63 231.29 41.45
k − ε Realizable -34.24 182.78 18.90
RSM elliptic blending -21.31 297.56 52.27

k − ε v′22f -20.36 243.27 39.22
Spalart Allmaras -10.89 83.00 15.94
Experiments by Xu et al. [30] Cd,exp = 1.050 lR,exp = 1.50D lw,exp = 1.10D
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Table 4.3: Results for polygonal geometries using unsteady RANS at Red = 1 · 104.

Geometry: 2F Cd/Cd,exp − 1 [%] lR/lR,exp − 1 [%] lw/lw,exp − 1 [%] St/Stexp − 1 [%]

k − ω SST 11.27 -37.59 -16.42 16.73
k − ε Realizable 5.80 -41.78 -17.37 13.75
RSM elliptic blending 18.70 -30.40 -21.59 15.24

k − ε v′22f 12.62 -38.48 -17.59 15.24
Spalart Allmaras 11.48 -35.26 -16.39 13.25
Experiments by Xu et al. [30] Cd,exp = 2.250 lR,exp = 3.15D lw,exp = 1.80D Stexp = 0.143

Geometry: 4F Cd/Cd,exp − 1 [%] lR/lR,exp − 1 [%] lw/lw,exp − 1 [%] St/Stexp − 1 [%]

k − ω SST 19.06 -39.23 -10.13 6.54
k − ε Realizable 5.15 -24.88 -6.39 13.00
RSM elliptic blending 10.14 -27.34 -6.13 10.31

k − ε v′22f 11.69 -52.13 -10.74 13.54
Spalart Allmaras 16.86 -39.00 -11.32 6.01
Experiments by Xu et al. [30] Cd,exp = 2.100 lR,exp = 1.85D lw,exp = 1.70D Stexp = 0.132

Geometry: 7F Cd/Cd,exp − 1 [%] lR/lR,exp − 1 [%] lw/lw,exp − 1 [%] St/Stexp − 1 [%]

k − ω SST 9.52 -34.79 -5.78 17.31
k − ε Realizable -1.50 -40.87 -7.81 35.19
RSM elliptic blending 3.44 -27.21 -4.03 32.44

k − ε v′22f 7.36 -35.79 -6.73 25.56
Spalart Allmaras 13.89 -35.96 -5.33 21.90
Experiments by Xu et al. [30] Cd,exp = 1.663 lR,exp = 1.80D lw,exp = 1.30D Stexp = 0.155

Geometry: 7C Cd/Cd,exp − 1 [%] lR/lR,exp − 1 [%] lw/lw,exp − 1 [%] St/Stexp − 1 [%]

k − ω SST -15.57 34.28 8.14 -47.27
k − ε Realizable -3.13 -31.13 -6.25 -33.52
RSM elliptic blending -11.84 -1.96 -2.00 -36.19

k − ε v′22f -16.14 8.76 0.31 -40.78
Spalart Allmaras -6.89 -21.28 -5,83 -38.29
Experiments by Xu et al. [30] Cd,exp = 1.228 lR,exp = 1.40D lw,exp = 1.20D Stexp = 0.169

Geometry: 8C Cd/Cd,exp − 1 [%] lR/lR,exp − 1 [%] lw/lw,exp − 1 [%] St/Stexp − 1 [%]

k − ω SST 37.45 -19.38 0.72 4.91
k − ε Realizable 52.14 -24.79 1.59 22.39
RSM elliptic blending 56.27 -15.27 1.77 18.75

k − ε v′22f 59.88 -25.07 2.10 9.28
Spalart Allmaras 79.23 -25.81 1.13 8.18
Experiments by Xu et al. [30] Cd,exp = 0.950 lR,exp = 1.35D lw,exp = 1.10D Stexp = 0.195

Geometry: 16C Cd/Cd,exp − 1 [%] lR/lR,exp − 1 [%] lw/lw,exp − 1 [%] St/Stexp − 1 [%]

k − ω SST 28.56 -27.16 -0.99 22.09
k − ε Realizable -13.05 -14.88 -3.14 -24.36
RSM elliptic blending 20.25 -24.16 -1.83 35.48

k − ε v′22f 21.97 -28.90 -2.62 24.01
Spalart Allmaras 30.67 -28.09 -1.48 17.49
Experiments by Xu et al. [30] Cd,exp = 1.050 lR,exp = 1.50D lw,exp = 1.10D Stexp = 0.185
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4.0.3 Vortex shedding process

Figure 4.1: Development of
the flow fields topology at the
time step 0, 40, 80, 120 and
160, at which the velocity
magnitude (Figure 4.2), static
pressure (Figure 4.3) and ra-
dial velocity (Figure 4.4) have
been investigated. The 0th

time step is taken as a step
in the early stage of the build-
up. Up until the 80th time step
the vortex keeps growing but
remains stuck to the cylinder
surface. After the 80th is the
vortex released from the sur-
face and starts moving down-
stream during which it starts
to dissolve. One time step is
∆tU∞
D = 0.026. Incoming flow

from the left.

The largest discrepancies in the results are those for the recirculation region
length between the steady and unsteady solutions. As discussed above is
it known that the transport of streamwise momentum into the wake due to
turbulence has a large impact on the topology in regions with separated flows.
In this case, however, is it believed that the extreme differences can not be
the result of incorrectly modelled turbulence directly. The results from the
steady and unsteady solvers both have similarities and differences. Upstream
and closely downstream from the separation points the flow are rather steady,
making the results from the steady RANS both more accurate and also more
similar to those from the unsteady solver. The turbulence in these regions will
therefore be equal for the two solvers, making the contribution to the transfer
of momentum due to turbulence similar for the two cases. The difference in
recirculation region length must therefore be the result of other sources affected
by the resolved vortex shedding.

In order to understand the flow and the vortex shedding process is it
important to understand the forces effecting the flow. For the proceeding
analysis the geometry 4F will be investigated in further detail using k− ω SST.
Just as for all the face oriented geometries the geometry 4F has a face normal
oriented parallel to the incoming flow, which creates a high pressure stagnation
region in front of the cylinder. The geometry is characterised by a number
of separation points, all visible in Figure 4.1. The first two is created at the
leading corners where the fluid has been pushed sideways by the high pressure
zone, creating recirculation regions on the sides of the cylinder. As stated
above, the flow in the regions in front of the cylinder centre is rather similar for
both the steady and unsteady solvers. The unsteady vortex shedding process
does however affect the flow upstream to some extent by moving the stagnation
point slightly from side to side as the wake moves.

The large discrepancies are created downstream in the wake of the cylinder.
The flow in this region is dominated by a low pressure zone created in the region
behind the cylinder. This low pressure zone directs free stream fluid into the
near wake and creates the major recirculation region. The recirculation regions,
or vortices, are created and sustained by the interaction of the momentum
brought into the wake by the free stream fluid and the low pressure zone
near the centre of the vortex. The low pressure zone constantly redirects the
momentum into a circular motion which in turn helps sustain the low pressure.
The steady RANS predicts two stationary symmetric vortices. The unsteady
RANS resolves the vortex shedding process and therefore is only one vortex
present in the wake region closest to the cylinder at any given time. The
created vortices has both an alternating direction of rotation and location of
creation. The vortices are created at the corners in the back of the cylinder,
where reattached flow from the side vortices separates once again and creates
small recirculation regions. This behaviour is fundamentally different from
how the vortices are created in the actual flow and is a result of the modelling
approach. As stated in Section 2 the vortices is created by amplification of
disturbances and roll-up in the free shear layers in the separated regions on
the side of the cylinder. The RANS models are unable to resolve these small
rollers.

The created vortices sticks to the back side of the cylinder and gradually
increase in size as more fluid is accumulated in the vortex. It is during this
part of the process the vortex grows and it is terminated when the vortex is
finally saturated and is released downstream. It then travels backwards and
slightly towards the opposite side of the cylinder from where it was first created.
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Figure 4.2: Development of the veloc-
ity magnitude. The velocity magnitude
is normalised with U∞ and the radial
position with D. The solid lines illus-
trates the distribution at time step 0, 80
and 160. The dashed lines illustrates
the distribution at time step 40 and 120.
At angle θ = 270◦ is more dashed lines
added, which are separated by 20 time
steps. One time step is ∆tU∞

D = 0.026.

Further downstream is the trajectory of the vortex changed and a
movement parallel to the free stream is obtained. During the build-up,
fluid is accumulated in the recirculation region on the opposite side
of the cylinder from where the vortex is created, as shown in Figure
4.1 at time step 80 and 120. As the vortex is realised downstream
the size of this region is reduced, as seen at time step 160, and the
fluid is pulled into the back of the cylinder by the low pressure. This
movement triggers the creation of a new separation and a new vortex.
The new vortex undergoes the same process mirrored about the centre
line as compared to the presiding vortex.

The resolved vortex shedding process is far more complex than
the flow predicted by the steady RANS and it is obvious that it adds
streamwise momentum to the fluid in the near wake, reducing the
recirculation region length of the mean field. However, it is not obvious
in what form the momentum is transferred into the wake. It is not
crucial to understand how the transfer of momentum is different for
the steady and unsteady simulations. That a steady solver are not
able to predict an unsteady flow phenomena are expected. However,
it is important to understand the transfer to be able to clarify what
possible requirements it puts on the turbulence modelling and the
unsteady numerical setup in general.

In order to investigate the variation of quantities, such as velocity,
pressure and the terms in the momentum equation, at both different
locations along the vortex and over time is a number of sampling lines
added. A local cylindrical coordinate system that moves together with
the vortex is added in the streamline centre of the vortex. The local
z-axis is oriented parallel to the global negative z-axis and the angular
position, θ, is defined as zero in the direction of the negative y-axis
of the global coordinate system with its positive direction in the clock
wise direction. The location of the centre for each time step is visually
identified by computing the instantaneous streamlines and are updated
at each time step. Four sampling lines are added in the coordinate
system, all originating in the origin of the cylindrical coordinate system
and are parallel with the r-axis at θ = 0◦, 90◦, 180◦ and 270◦. The
duration of the sampling period is half a shedding cycle and covers the
time from the creation of one vortex, the realise of the vortex from the
cylinder surface and the initial part of its dissolution and transport
downstream. The obtained data comes, as already mentioned, from
the geometry 4F using unsteady k− ω SST. This analysis gives a very
rough set of data, unsuitable for direct comparison with both other
studies and different numerical setups, due to the vulnerability to
variations in the investigated shedding cycle and the position of the
local coordinate system. However, it can provide a more detailed view
of different phases in the vortex shedding process than time averaged
data. With a better knowledge of the local events in the shedding
cycle more accurate and relevant time averaged data, more suitable
for comparison, can be obtained later on.

The distributions of velocity magnitude, static pressure and radial
velocity along the sampling lines are presented in Figure 4.2, 4.3 and

4.4, respectively. As it turns out the velocity magnitude varies extensively at both different locations around
the vortex and over time. The free stream fluid enters the base region at θ = 0◦ for which the magnitude is
highest. As the fluid moves around the vortex it is gradually reduced. When comparing the velocity at different
time steps it can be seen that the magnitude increases. Both the magnitude at a specific radial distance from
the vortex centre and the size of the vortex increases with time. The increase in size is clearly illustrated by the
sampling line at θ = 270◦, which is directed upstream toward the back of the cylinder. The magnitude increases
with increased distance to the vortex centre and when the wall is approached the velocity is abruptly reduced.
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Figure 4.3: Development of the static
pressure. The pressure is normalised
with the dynamic pressure Pd = 1

2ρU
2
∞

and the radial position with D. The
solid lines illustrates the distribution at
time step 0, 80 and 160. The dashed
lines illustrates the distribution at time
step 200. One time step is ∆tU∞

D =
0.026.

The location of the sudden drop in velocity gives a sense of the size
and the development of the vortex. The increase in velocity magnitude
is visible for all sampling lines. However, at around the 80th time
step the velocity appears to start to decrease for the sampling lines
at θ = 0◦ and 90◦. This results in a movement of the location of
the maximum velocity magnitude from θ = 0 to 70◦. In Figure 4.1
it appears that free stream fluid starts to enter the region between
the vortex and the cylinder at the 80th time step, indicating that
the velocity maximum follows the location where free stream fluid is
brought into the base region.

The pressure distribution is illustrated in Figure 4.3. Compared to
the velocity distribution the pressure is more evenly distributed along
th four lines. Instead the largest variations is seen over time. Initially,
at the 0th time step, the pressure is rather high. As momentum is
accumulated to the vortex and the velocity increases the pressure can
be seen to decrease. As discussed before are the velocity and the
pressure are related and from an increase in velocity are a decrease in
pressure expected. Similarly when the velocity decreases an increase
in pressure is expected. The velocity magnitude could be seen to start
to decrease as the vortex is released from the cylinder at around the
80th time step. However, it is not until the 160th time step that the
pressure can be observed to reach a minimum and start increase.

4.0.4 Momentum transport

In order to investigate the changed flow condition and the phenomenons
effecting the recirculaion region length the transfer of momentum into
the wake will be investigated further. This is most efficiently done
by investigating the different terms in the transport equation for the
momentum, which in its time averaged state for incompressible flows
reads

ρ∂〈ui〉
∂t = −ρ∂〈ui〉〈uj〉

∂xj
− ∂〈P 〉

∂xi
+ ∂

∂xj

(
µ∂〈ui〉
∂xj
− ρ〈u′iu′j〉

)
(4.2)

Rate of change = −Convection+ Pressure term+ ...

...+ (Viscous diffusion+ Turbulent diffusion)

At first it was believed that the momentum is added to the wake
mainly through the convection term, which describes the transfer of
momentum due to the movement of a fluid. The convection term can
describe the additional transfer of momentum created by free stream
fluid entering the wake region as the wake oscillates from side to side
due to the vortex shedding. The term would therefore be of great
importance in this case and might explain the difference between the
solvers. Even though this is true, is it not as simple as a direct relation
between the averaged streamwise velocity and the convection term.
As stated above there is a close relation between the convection term
and the pressure term in which the pressure gradient redirects the
movement into a circular motion. It is quite intuitive that a circular fluid motion would create centrifugal
forces that has to be counteracted by a centripetal force, which in this case is created trough the pressure term.
The streamwise momentum added by the free stream fluid entering the wake region will therefore to a large
extent be counteracted by a pressure gradient. Since the momentum is not destroyed by the pressure term,
merely redirected, the speed of the fluid should remain fairly unchanged ignoring the influence of diffusion.
The streamwise velocity is reduced and transformed, first into a sideways and then into an upstream movement.
At the upstream edge of the vortex the pressure term then help to recover the streamwise velocity.
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Figure 4.4: Development of the radial
velocity. The radial velocity is nor-
malised with U∞ and the radial position
with D. The solid lines illustrates the
distribution at time step 0, 80 and 160.
The dashed lines illustrates the distribu-
tion at time step 40 and 120. One time
step is ∆tU∞

D = 0.026.

As already mentioned the transport of momentum, and because
of that, the acceleration of the fluid elements is dominated by the
convection and pressure terms. Both the convection and pressure terms
is in turn determined by the gradients of the velocity and pressure,
respectively. The convection term can, with help of the continuity
equation, be simplified as follows

−C = −ρ∂〈ui〉〈uj〉
∂xj

= −ρ〈uj〉
∂〈ui〉
∂xj

(4.3)

Due to the curved streamlines created by the circular motion inside the
vortex the gradients of the velocities will be both large and sensitive
to topological changes of the vortex, especially in regions of the vortex
where the streamlines deviate from a circular topology and creates a
protrusion with sharper curvature. The pressure gradient along the
sampling lines, as illustrated by Figure 4.3, varies with the distance
to the vortex centre. Just as for the convection this gives a sensitive
behaviour toward topological changes. Situations in which the vor-
tex centre and the low pressure minimum do not coincide or when
protruding streamlines with an elliptic shape are present this should
give rise to a retardation of the velocity as the streamlines moves out
from the centre and the low pressure region and acceleration when
moving towards it. Figure 4.1 illustrates the development of the flow
topology during the creation and shedding of a vortex. It can be seen
that the topology deviates quite extensively from a circular one during
the initial creation of the vortex but obtains a more circular shape
as it grows. Figure 4.3 illustrates the pressure distribution along the
sampling lines at different time steps. It can be seen that discrepancies
between the location of the vortex centre and the minimum pressure do
exist along the sampling line in the direction of θ = 0◦. In the initial
state of the build-up the low pressure minimum is moved further out
towards the corner from where the vortex originated. The discrepancy
might be due to variation of velocity magnitude within the vortex. A
higher velocity reduces the static pressure and would thereby extend
the low pressure zone towards it and thereby move it. During the
initial creation of the vortex the velocity on the free stream side of
the vortex is of the same magnitude as the free stream fluid and the
fluid on the other side is much lower.

Equation (4.2) describes the transport of momentum in a Cartesian
frame of reference. Since the vorticies are characterised by a circular
motion this will make an analysis of the transport of momentum
difficult to interpret inside the vorticies. Some of the terms in equation
(4.2) will most probably influences the flow differently in different part
of the vortex. The pressure term would for example help to reduce and
accelerate the flow in regions were protrusions exist, giving it a major
influence on the velocity magnitude. With a perfectly circular topology
with the low pressure minimum located in the vortex centre it would
instead only redirect the flow and not influence the velocity magnitude.
In order to get a better understanding of the terms influence on the

flow an investigation from a different point of view would be more helpful. The velocity magnitude, static
pressure and radial velocity distributions have been investigated in a cylindrical frame of reference, which would
be more suitable for a circular flow. But neither that gives a clear division of the different terms effect in terms
acceleration/retardation and redirection of the flow as both Figure 4.1 and 4.4 indicates distortions in the
vortex topology. Instead the components in the momentum equation will be projected onto the normalised
velocity vector, giving their influence on the velocity magnitude. The terms are in this way expressed as their
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magnitude in the tangential direction of the flow, which for an arbitrary term in the momentum equation gives

Mt = M · u

|u|
(4.4)

A similar transformation for the part of the terms that redirects the flow is more difficult to develop. Since
the direction of rotation can be arbitrary the transformation onto a vector orthogonal to the normalised velocity
vector must be able to give consistent results in terms of inward or outward pointing contributions. To obtain
the redirectional contribution are first the magnitude of the part orthogonal to the velocity vector computed,
denoted mo. It is then multiplied by the sign of the normalised radial part of the term. The radial part is
obtained by projecting the terms vector onto a normalised position vector, X̂/|X̂|. X̂ is the position vector in
a Cartesian coordinate system, located in the centre of the vortex, oriented in the same direction as the global
coordinate system. The terms redirectional contribution, Mo, is then obtained. It is positive in the outward
direction and are computed as in the equations below.

mo =
√
|M|2 −M2

t

Mr = M · X̂

|X̂|
X̂ = X−Xvortex

Mo = mo
Mr√
M2
r

(4.5)

The size of the vortex is increased during the build-up and when it is released the entire vortex moves
downstream. During both parts of the process the centre of the vortex moves and accelerates downstream,
indicating an imbalance of the forces acting on the fluid within the vortex. The effect can be seen in Figure
4.10, which illustrates the recovery of the time averaged streamwise velocity for geometry 4F for the unsteady
RANS. Close to the cylinder the acceleration is large, further downstream it is reduced and at approximately 5
diameters from the cylinder centre the velocity appear to reach a steady value. The velocity recovery for the
steady RANS is as expected much lower as indicated by Table 4.2. The velocity development of the vortex, and
as a result the mean field, is determined by three processes. Figure 4.5 and 4.6 summarises the variation of the
tangential and orthogonal parts of the terms in the momentum equation and together with the discussion and
Figures presented above it gives an indication to the physics behind the development of the vortex. The terms
have been evaluated along both the same sampling lines and at the same time steps as the velocity magnitude,
static pressure and radial velocity presented above. It turns out that the flow is mainly dominated by the
convection and the pressure terms, which are significantly larger than the contribution from the diffusion term.
The convection and pressure terms have almost always a similar magnitude but with different signs. This
is especially true for the orthogonal part whose total change of momentum, the Rate of change term, is of
comparable size to that of the tangent equivalent even tough the magnitudes for the orthogonal terms is almost
twice as large compared to the tangent in certain locations. Even tough the contribution from the diffusion
term is much smaller due to the close relation between the convection and the pressure terms the influence
from the diffusion becomes significant in the development of the vortex.
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Figure 4.5: Development of the tangential part, defined by equation (4.4), of the terms in the momentum
equation. From left to right is time step: 0, 40, 80, 120 & 160. Solid line: Rate of change, Dashed line:
Convection, Dashed/Dotted: Pressure, Dotted: Diffusion.

Figure 4.6: Development of the orthogonal part, defined by equation (4.5), of the terms in the momentum
equation. From left to right is time step: 0, 40, 80, 120 & 160. Solid line: Rate of change, Dashed line:
Convection, Dashed/Dotted: Pressure, Dotted: Diffusion.
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4.0.5 Summary of vortex development

Figure 4.7: Variation of the or-
thogonal terms in the momentum
equation along the sampling line
at θ = 270◦. A positive value rep-
resents a force upstream toward
the cylinder. Close to the cylinder,
within y+ < 5, the pressure term
is positive indicating a low pres-
sure zone along the surface. Solid
line: Rate of change, Dashed
line: Convection, Dashed/Dotted:
Pressure, Dotted: Diffusion.

The first part of the development of a vortex is the build-up, during which
a vortex is created and amplified. The build-up can itself be divided into
two phases. Common for the two phases is that they are both characterised
by accumulation of mass and momentum, i.e increasing size and velocity.
However, the development appears to change behaviour during the build-up.
The initial creation of a vortex is induced by the movement of fluid from
one of the separation bubbles on the side of the cylinders into the wake
of the cylinder due to a low pressure, which creates a small separation
around the corner. As seen in Figure 4.2 the flow that is being brought
into the near wake, at θ = 0◦ and 90◦ at r/D ≈ 0.4, has a rather high
velocity comparable to that of the free stream fluid. Close to the streamline
centre, at r/D ≈ 0.1 which is the approximate size of the vortex at the
0th time step, the velocity is much lower. The higher velocity further out
gives a decreased static pressure, which as a result mean that the streamline
centre and pressure minimum are not co-located. The low pressure region
is moved in the downstream direction. The pressure distribution for the 0th

time step in Figure 4.3, at θ = 90◦ close to the centre, indicates that the
minimum pressure is located at r/D ≈ 0.15. Figure 4.6 further confirms
that they are not co-located. At the same time step and for the same
sampling line the orthogonal rate of change term is positive due to a positive
pressure term, indicating a force in the down stream direction created by
a decrease in pressure.The pressure term becomes zero at r/D ≈ 0.15,
indicating a pressure minimum. The fact that the pressure minimum is
located downstream of the vortex centre results in a majority of the vortex
being effected by a positive force in the streamwise direction. This gives
the rapid increase in streamwise size seen in Figure 4.2 at the sampling
line θ = 270◦. As the vortex grows, Figure 4.1 and 4.2 illustrates that the
shape of the vortex becomes more circular and the distribution of velocity
more even. At the 40th time step in Figure 4.3 it can be observed that this
results in a movement of the pressure minimum along θ = 90◦ toward the
vortex centre. This reduces the streamwise growth rate, which is illustrated
by the steady streamwise size observed in Figure 4.2 at θ = 270◦ around
the 80th time step.

When the vortex has been established and obtained a more circular
shape, the rapid streamwise growth is reduced. The build-up enters the
second phase in which the vortex keeps growing and accumulating both
mass and momentum. However, this phase is slower than the initial one.
The velocity increases and the pressure decreases, but only slightly. The
vortex has already been established during the initial phase, giving it both
a more stable size and distribution of quantities. Maybe the largest change
of the vortex can be seen in Figure 4.1. Even if the streamwise growth has
slowed down, the vortex keeps growing. Instead the growth appears to be
focused to the transverse direction giving the vortex a more round and full
appearance. When the size of the vortex finally reaches a size comparable
to the cylinder it is released from the surface. At this stage the fluid within
the vortex is moved so far out towards the corner opposite from where it
was created that it can interact with the free stream fluid on the other
side of the cylinder. This enables the free stream fluid to enter the region
between the vortex and the cylinder, which divides them and initiates the
release of the vortex.

To summarise the build-up of the vortex the first phase establishes the vortex. During this phase the
majority of the mass and momentum exchange between the free stream fluid and the base region takes place.
This phase is enabled by a non co-located vortex centre and pressure minimum. It is ended when the vortex
obtains a more circular shape, which moves the pressure minimum towards the vortex centre. When this phase
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has ended the size of the vortex might not permit interaction with the free stream fluid on the other side of the
cylinder. The second phase saturates the vortex by increasing its transverse size, which enables the free stream
interaction and as a consequence the release of the vortex.

A clear division between the two phases are difficult to define. The changes appears to be rather gradual
and might overlap. However, a number of impotant aspects for the development of the vortex can still be
identified. The majority of the accumulation of mass and momentum takes place during the time that the
vortex sticks to the cylinder surface. To obtain high accuracy it is therefore important to understand what
is causing the vortex to stick to surface and what is causing the vortex to be released to be able to use the
correct numerical setup.

As already stated the diffusion term has a marginal influence on the transport of momentum. However,
the boundary layer at the back side of the cylinder gives high velocity gradients resulting in a much higher
contribution, comparable to those of the other terms. Figure 4.7 illustrates the variation of the orthogonal
rate of change, convection, pressure and diffusion term along the back surface of the cylinder. Both the rate of
change and pressure term are positive closest to the wall, indicating that the force is created by a low pressure
zone in the viscous sub-layer. The diffusion term is always negative close to the wall which means that it
generates a force that wants to release the vortex from the cylinder surface. Further out a second minimum in
the diffusion term can be observed. The inner one is due to the viscous forces in the viscous sub-layer. The
minimum in the buffer layer and the inner part of the log-layer is due to the turbulent diffusion. Physically it
makes sense that the diffusion term creates a force directed away from the wall. The thickness of the boundary
layer grows as the fluid in the boundary layer is slowed down. The fast moving fluid further out is due to this
growth pushed further away from the wall. In the viscous sub layer the magnitude of the pressure term is larger
than the diffusion term causing a force towards the surface. In the buffer layer and log-law layer the magnitude
of the convection term increases and the sign of the rate of change term is determined by the ration between
the pressure and convection term.

In Figure 4.7 it can be observed that the rate of change term stays positive in the inner most part of the
viscous sub-layer even if the vortex is being released at the 80th time step. The release of the vortex is therefore
not due to the rate of change term changing sign. Instead it is due to free stream fluid entering the region
between the wall and the vortex resulting from a combination of the interaction between the free stream fluid
and the fluid within the vortex and the low pressure found in the base region. The positive force then acts on
the free stream fluid rather than the fluid contained within the vortex. A direct relation between the release of
the vortex and the modelling of the turbulence can therefore not be made. However, the release of the vortex
will be dependent on the sign of the rate of change term further out from the wall, a factor that is dependent
on the turbulent diffusion. Since the turbulent diffusion term is negative and has a magnitude comparable to
the other term it will have a significant contribution to how fast the release of the vortex is.

The flow around the cylinder will be two-dimensional for results obtained using RANS. The velocity and all
velocity gradients in the span wise direction of the cylinder will therefore be zero. The velocity at the back
surface of the cylinder along θ = 270◦ can be assumed to be parallel to the wall and directed in the negative
y-direction inside the vortex. Therefore it is relevant to look at the transport equation for momentum in the
Cartesian framework ones again to investigate the validity of the behaviour. From equation (2.6) and (2.10) we
get the turbulent diffusion as

Di,turbulent =
∂

∂xj

(
µt

(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

))
In this case can the velocity and its gradient in the span wise direction (z-direction) be assumed to be zero.
The equation is then reduced to

D1,turbulent =
∂

∂x1

(
∂〈u1〉
∂x1

µt +
∂〈u1〉
∂x1

µt

)
+

∂

∂x2

(
∂〈u1〉
∂x2

µt +
∂〈u2〉
∂x1

µt

)
The velocity in the wall normal direction, u1, will be damped by the wall and the terms in which it is including
will therefore be small. By removing them remains only one term.

D1,turbulent ≈
∂

∂x2

(
∂〈u2〉
∂x1

µt

)
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The diffusion term will therefore be dependent on the modelling of the turbulence and the eddy viscosity. For
k − ω SST the eddy viscosity is defined according to equation (2.13) as µt = ρCµk

2/ε. A higher turbulent
kinetic energy, k, or a lower dissipation rate, ε, should give a lower rate of change term.

The release of the vortex is therefore somewhat connected to the turbulence, where an overestimated level
of modelled turbulent kinetic energy should promote a quicker release of the vortex. This would effect the
duration of time it sticks to the surface. It could also have an effect on the shape of the vortex, which from the
discussion above seems to have a large effect on the growth of the vortex in its initial phase. Similar to the
diffusion terms promotion of a fast release, the shape of the vortex would effect the accumulation rate of mass
and momentum during the build-up and as a result could effect the time duration from the creation to the
release of a vortex. Both of these effects can therefore have an influence on the predicted shedding frequency.
The Strouhal number can be interpreted as the shedding frequency in relation to the amount of fluid passing
by. Since the growth of the vortex and as a result the velocity recovery in the wake is related to the amount of
momentum brought into the wake the Strouhal number would be of great importance. For a given cylinder
diameter and free stream velocity and assuming a constant size of the saturated vortices a higher shedding
frequency, and by definition a higher Strouhal number, mean that a larger amount of free stream fluid and
momentum is brought into the wake. A higher transport of momentum into the wake would decrease the
recirculation region length. The results presented in Table 4.3 seem to support that such a relation between
the Strouhal number and recirculation region length exists. The lengths are consistently under predicted while
the Strouhal number are over predicted.

The modelled k equation in eddy viscosity models has a number of known shortcomings. Bradshaw [3] and
Rodi et al. [24] showed that convex streamlines, in which the velocity magnitude increases with the radius
of the curved streamline, stabilises turbulence. Excluding the diffusion it can be shown from the momentum
equation in cylindrical coordinates, in equation (4.6), that an increased velocity magnitude increases the
pressure gradient.

ρ
v2
θ

r
=
∂P

∂r
(4.6)

The pressure gradient is balanced by the centrifugal forces created by the curvature of the flow. If the velocity
increases with the radius this gives an increasing pressure gradient with increased radius, i.e a greater forces
toward the centre of the curved streamline. If a fluid element is moved outwards it will be effected by a
larger force inward and since the velocity is lower at a smaller radius the centrifugal force will not balance
the increased force from the pressure gradient. The movement is therefore counteracted. A movement inward
would instead cause a higher centrifugal force which also counteracts the movement. If the velocity magnitude
instead decreases with increased radius the pressure gradient would also decrease. A movement in the radial
direction would in this case instead be reinforce by the pressure gradient, causing an unstable flow which
promotes production of turbulence. Different turbulence models handles this flow situation differently. In the
Reynolds Stress Model, which solves transport equations for each component in the Reynolds stress tensor, the
production terms are connected and depends on the other stress components and an increase (or decrease) of
one of the components due to curvature causes a feedback loop which increases (or decreases) all components.
Eddy-viscosity models that uses the modelled k equation lacks this ability. The turbulent production is modelled
as a linear relation between the eddy viscosity and the strain rate tensor which means that the same feed back
loop does not exist. The current flow situation does contain curved streamlines, especially in the vortex itself.
As illustrated by both Figure 4.2 and 4.3 the velocity magnitude increases with the radius in the vortex, which
causes a larger pressure gradient in the outskirts of the vortex. This mean that the flow is stabilised. An eddy
viscosity model might miss the dampening effect and over predict the turbulence, which as stated above would
effect the growth and shape of the vorticies.

Another shortcoming of the modelled k equation is overproduction of turbulent kinetic energy in regions
with stagnation flow[4]. The geometry 4F has a number of regions with this kind of flow. The most obvious is
the front surface of the cylinder where the flow approaches the surface in the wall normal direction. Then there
are more subtle regions with stagnation flows which are easily overseen. Both on the side of the cylinder and
on the back surface stagnation flow is obtained when the separated flow reattaches. The fluid moves along the
interface between the separated region and the free stream. As the flow approaches the wall the fluid within
the separated zone is moved back into the separated region and the fluid outside it toward the other direction.
The Reynolds stresses are related to k trough Bossinesqs assumption. Stagnation flows creates large velocity

gradients, ∂〈u1〉
∂x1

and ∂〈u2〉
∂x2

assuming the flow is 2-dimensional in the xy-plane, which through the continuity
gets opposite signs. The production of k in the modelled k equation is defined as
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P k = 2µtSijSij

Because of SijSij the production will not be dependent on the gradients directed but instead the square of
the gradients. The different signs of ∂u1

∂x1
and ∂u2

∂x2
will not be recognised and they will both give a positive

contribution. In RSM can the production of turbulent kinetic energy be written as

P krsm = 0.5
(
P11 + P22

)
= −∂〈u1〉

∂x1

(
〈u′21 〉2 − 〈u′22 〉2

)
The RSM production of k does not contain squared gradients and will therefore not over predict the

production as the eddy viscosity model do. Table 4.3 indicates that RSM predicts a slightly longer recirculation
region length, which might be due to a more accurate prediction of the turbulence.

The second part of the vortex life, or third if the two phases of the build-up is considered as two separate
processes, is the dissolution and transport of the vortex downstream. As the vortex grows and mass and
momentum is accumulated, it is observed in Figure 4.3 that the pressure is reduced. Both the reduction of
the pressure and the increase of momentum, related to the build up of the vortex is reduced as the vortex is
released. The increase in velocity magnitude is halted as soon as the vortex is released at around the 80th time
step. The pressure however keeps decreasing for some time and it is not until the 160th time step that the
pressure can be observed to increase. At this point both the pressure can be observed to increase and the
velocity magnitude to decrease, a process which continues until the vortex is completely dissolved. As discussed
above the distorted shape of the vortex seems to be related to the accumulation of fluid and momentum. When
the influence of the low pressure zone in the viscous sub-layer keeping the vortex stuck to the surface is no
longer effecting the vortex, it can obtain a more circular shape which reduces the transport of momentum into
the vortex. The transport of momentum out of the vortex then takes over and the vortex is slowly dissolved. In
Figure 4.5 it can be seen that the rate of change term is exclusively negative except for along the sampling line
at = 270◦. The diffusion also seems to increase slightly at θ = 180◦ where the velocity inside the vortex and the
outside free stream velocity are directed in opposite directions. As seen in Figure 4.10 the velocity recovery of
the mean field continues for a longer distance than can be covered by a vortex. A transport of momentum into
the wake must therefore still be present. In Figure 4.2 it can be seen that the location at which the maximum
velocity is observed changes when the vortex is released. During the build up the maximum velocity is found
at θ = 0◦ and 90◦. As the vortex is released the velocity decreases in these regions. At θ = 270◦ the velocity
continues to increase and due to this the position of maximum velocity magnitude is moved to this location.
The terms investigated in Figure 4.5 seems to suggest that the only source of momentum after the release is
found along the line in the θ = 270◦ direction where both the pressure and convection terms accelerates the
flow.

4.0.6 Further improvement

Because of the fact that only an unsteady solver can capture the extra transport of momentum into the wake
it can be concluded that steady RANS is unsuitable for these kinds of flows. The unsteady RANS has the
potential of capturing the additional transport of momentum correctly and it gives somewhat reasonable, and
especially consistent, results for the rather simple polygonal geometries investigated so far. From the discussion
above it is reasonable to believe that the discrepancies between the experimental and numerical results are
due to an excessive amount of numerical diffusion or that the investigated models are unable to capture these
kind of flow with a high level of accuracy, even under perfect condition. Even if the discrepancy between the
experimental results and that of the unsteady RANS are within an acceptable level for the polygonal case they
are still not negligible in a more complex flow situation where the flow interact with several components along
its path, which will result in accumulation of errors. Instead of implementing the methods into an engine bay
the numerical setup will therefore be investigated further in order to either improve the accuracy and find the
necessary requirements to obtain acceptable results or to be able to conclude that more advanced methods are
a necessity.

The observed trends for each model and geometry are consistent for the unsteady RANS, indicating that
the flows for all geometries are rather similar and constitutes similar challenges in terms of modelling. It is
therefore not necessary to include all of them in a continued investigation. Because of this the set of shapes is
reduced to only the geometry 4F. The reason for using 4F is that it has been the focus of an extensive amount
of research, which gives a larger possibility to compare the obtained results with other studies than for the
other geometries.
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Even if some differences exist between the experiments and numerical results it does appear as if all models
predicts the separation point rather well. It is possible that the reduced spectrum of possible separation points
created by the polygonal shapes compared to a smoother shape reduces the differences in separation behaviour
for the models. In order to investigate this further is a circular cross section added along geometry 4F. For a
circular cross section the separation point can be more arbitrate than for the polygonal geometries and might
be more challenging to predict. The flow past a cylinder with cylindrical cross section has, just like that of
square cross sections, been studied extensively.

In order to reduce the computational cost the computational domain is reduced to create a geometry
identical to that used for the LES and DES computations. The mesh strategy is changed from the local
volume refinements used for the polygonal case to the same strategy used for the scale resolving methods,
where the cell sizes are related to the large turbulent length scales. Prior to the computations a second mesh
study was performed with this new method. The study was performed on the cylindrical geometry which was
believed to constitute a larger challenge due to the more arbitrary separation point. Two mesh parameters were
investigated, the surface cell size, ∆xs, and the number of cells per large scale eddy, nc. The large turbulent
length scales was computed as for the scale resolving methods by equation (3.2) in which the mean turbulent
quantities were obtained using k − ω SST. The mesh for this computation was obtained using a similar mesh
strategy as for the polygonal case, but with the medium and fine refinement boxes extended to the outlet. The
cylinder refinement was removed and instead the cell sizes were adjusted to 60, 30 and 15% of the base size for
the coarse, medium and fine refinement boxes respectively. The surface cell size was optimised first since it was
found that the results showed little to no variation if the surface was incorrectly resolved when varying nc. To
limit the numerical diffusion and its possible effects on the separation during the first part of the study nc is
kept constant at 8. The surface cell size is varied between ∆xs

D = 0.008 and 0.072, where the larger value is
slightly larger then that used for the polygonal geometries.

Figure 4.8 summarises the results obtained from the mesh study. The results are normalised with the results
obtained from the finest mesh resolution. Both the characteristic lengths of the wake and the drag on the
cylinder was investigated. It appears that the wake width and the drag on the cylinder are rather insensitive
towards the surface cell size with a surface resolution below ∆xs

D = 0.06 with variations of only a few percent.

The recirculation region length is more sensitive and it is not until ∆xs

D = 0.03 that the difference is below

5%. Even at ∆xs

D = 0.02 significant change can be seen which might indicate that an even finer mesh would
be required. The results obtained with the finest resolution required a drastic reduction in time step size
(∆tU∞/D) in order to limit the CFL number to obtain physical results. However, the results obtained with
this resolution seems to deviate rather drastically from the consistent trend seen for the other resolutions. It is
therefore possible that there still is some problems with this result. Due to drastic increase of the required
computational power as the surface resolution is reduced below ∆xs

D = 0.01 a further refinement is not possible.

The best possible results can therefore be obtained with a surface resolution of ∆xs

D = 0.016.
By investigating the skin friction coefficient the separation point can be identified. Figure 4.8 illustrates the

variation of the separation point as the surface cell size is reduced. The separation angle is defined as the angle
between the incoming free stream flow and the cylinder surface tangent at the separation point. As the mesh
is refined the separation point moves upstream. The small discrepancies is most likely due to the restricted
resolution given by the mesh, which varies between 0.92◦ and 8.25◦ between the cells. The later separation for
the coarser meshes is most likely due to numerical diffusion, which just as turbulence provides the boundary
layer with increased momentum.

The mesh study for the number of cells per large turbulent scale was performed with ∆xs

D = 0.016 and nc
was varied between 4 and 10. The parameters converges consistently toward a steady value and already at
nc = 6 is the difference rather small. A small change in the values is present even between the two finest meshes,
which indicate that meshes still are not entirely mesh independent. The difference is however so small that the
discrepancies can be neglected. A mesh with nc = 8 is considered good enough for further investigation.
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Figure 4.8: Results for the mesh study obtained from the circular cross section with k − ω SST. The results for
the characteristic lengths of the wake and the drag on the cylinder are all normalised by the results from the
finest mesh resolution, ∆xs

D = 0.008 and nc = 10. The mesh study of the surface resolution was performed first

and with nc = 8. The mesh study of nc was then performed with ∆xs

D = 0.016.

Table 4.4: Results for the circular and square geometry using unsteady RANS, DES & LES at Red = 1 · 104 &
Red = 2.2 · 104, respectively.

Geometry: Cylinder Cd/Cd,exp − 1 [%] lR/lR,exp − 1 [%] lw/lw,exp − 1 [%] St/Stexp − 1 [%]

k − ω SST 4.12 -35.18 -4.42 0.38
k − ε Realizable -30.04 -33.87 -10.36 29.93
RSM elliptic blending 3.28 -35.71 -4.49 6.37

k − ε v′22f 2.44 -34.86 -4.14 1.56
Spalart Allmaras 13.09 -47.34 -8.36 -1.87
k − ω SST (DES) 6.50 -29.90 -1.63 -5.37
Smagorinsky model (LES) -29.51 -19.21 -5.22 -20.36
Experiments by Xu et al. [30] Cd,exp = 1.105 lR,exp = 2.050 lw,exp = 1.150 Stexp = 0.205

Geometry: 4F Cd/Cd,exp − 1 [%] lR/lR,exp − 1 [%] lw [%] St/Stexp − 1 [%]

k − ω SST 3.00 -3.09 1.58D -16.18
k − ε Realizable 2.36 -6.34 1.54D -1.52
RSM elliptic blending -5.83 26.25 1.60D -3.72

k − ε v′22f -0.96 7.01 1.56D -17.31
Spalart Allmaras 2.16 6.09 1.63D -13.95
k − ω SST (DES) -3.69 12.52 1.61D 0.50
Smagorinsky model (LES) 2.05 -16.99 1.53D 14.03
Previous studies (non-normalised)
Experiments by Xu et al. [30] Cd,exp = 2.1(1.9− 2.2) lR,exp = 1.38D - Stexp = 0.132
Sohankar et al. [27] (Smagorinsky) 2.22 1D - 0.127
Sohankar et al. [27] (D. Smagorinsky) 2.03 1D - 0.126
Rodi [22] (Smagorinsky) 2.30 1.46D - 0.130

Iaccariano et al. [11] (k − ε v′22f) 2.22 1.45D - 0.141
Elkhoury [9] (Spalart Allmaras) 2.13 1.01D - 0.128
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Figure 4.9: Distribution of the skin friction
coefficient long the surface of the cylinder.
The angle is defined as the angle between the
upstream edge of the circular cylinder and
the tangent of the surface. Thick solid line:
k − ω SST, Dashed line: k − ε Realizable,
Dashed/Dotted line: RSM, Dotted line: k− ε
V2F, Thin solid line: Spalart-Allmaras.

Table 4.4 summarises the results obtained for the square and
circular cross sections. Compared to Table 4.3 a significant im-
provement can be observed for the square geometry, for which
accurate results are obtained. The circular cross section how-
ever shows errors of similar magnitudes as for the polygonal
cases. There might be a number of reasons for this. As already
mentioned above a certain level of mesh dependence still exist.
Bearman [2] found through experiments that the separation an-
gle was close to 80◦ at Re = 2 · 104. As the present results
predicts a larger separation angle and a movement forward of
the separation point as the surface cell size is reduced this would
indicate that the accuracy of the results increases. The reason
why the separation angle is overestimated is most likely due to
a combination of overproduction of turbulent kinetic energy and
numerical diffusion. It appears that in order to reduce the error
in recirculation region length, scale resolving methods must be
used.

Figure 4.10: Recovery of the streamwise velocity in the centre of the wake downstream of the cylinders. The
circular cylinder is to the left and the square cylinder to the right. For legend see Figure 4.9.

Figure 4.10 illustrates the recovery of the streamwise velocity. As already indicated in Table 4.4 the
recirculation length predicted for the circular cross section by all of the URANS models and the DES are to
small. The underestimated recirculation region lengths for all of the models are either due to the modelling of
turbulence upstream of the separation point or the result of incorrectly predicted separation point. Figure
4.9 shows the skin friction coefficient along the surface of the cylinder. The separation point is defined at
the point where the skin friction coefficient vanishes and reaches a minimum. From Figure 4.9 is it apparent
that the predicted separation point varies little between the models. Figure 4.11 illustrates the mean of the
total turbulent kinetic energy (Modelled + Resolved) along the centre line in the wake downstream of the
cylinders. For the square geometry they appear to agree with the experimental results obtained by Lyn et al.
[16]. The most obvious difference is between the circular and square geometry. For the circular cross section
the turbulence is significantly lower for the LES results. For the square geometry the results from the RANS
and scale resolving methods are in much better agreement. An overestimated turbulent kinetic energy can be
observed also for the DES for the circular geometry. The only difference between the LES and DES is that
DES uses URANS and kω SST along the surface of the cylinder. As discussed earlier curved streamlines are
one of the modelled k-equations weaknesses and the difference between the circular and square are that the
circular geometry has curved surfaces. It is therefore likely that the larger errors seen for the circular geometry
is due to the RANS models having problems to predict the turbulence correctly along curved surfaces.
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Figure 4.11: Total turbulent kinetic energy (Modelled+Resolved) along the centre line in the wake downstream
of the cylinders (upper row) and on the side of the cylinder at x = 0 (lower row) for the circular cylinder (left
column) and the square cylinder (right column). The turbulent kinetic energies have been normalised by the free
stream velocity. For legend see Figure 4.9.

Figure 4.12a and 4.12b shows the normal Reynolds stresses in the centre of the wake downstream of the
cylinders. The results for the square cylinder seems to agree rather well with both previous experimental
performed by Lyn et al. [16] and numerical studies performed by Elkhoury [9] and Sohankar et al. [27] both
when it comes to the magnitudes and the position of the maximum stresses. For the circular cross section a bit
more variation in the results can be observed. For both the Reynolds stresses in the x- and z-direction are
the position of the maximum stresses moved closer to the cylinder than for the scale resolving methods. The
stresses in the y-direction are significantly over predicted.

(a) (b)

Figure 4.12: The normal components of the Reynolds stress tensor, which are normalised by the free stream
velocity in the centre of the wake downstream of the cylinder. The circular cylinder is to the left and the square
cylinder to the right. For legend see Figure 4.9.
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5 Conclusion

The unsteady flow around cylinders with different cross sections were investigated. The cross sections included
a circular geometry and a number of polygonal shapes, with 2, 4, 7, 8 and 16 sides of different orientations. The
investigation was performed at a Reynolds number of Red = 1· 104. The square geometry was also investigated
at a Reynolds number of Red = 2.2· 104. Several Reynolds Averaged Navier-Stokes (RANS) models were
investigated with both steady and unsteady solvers, including: k − ω SST, k − ε Realizable, Reynolds Stress
Model, k − ε v′22f and Spalart Allmaras. Detached Eddy Simulations (DES) using k − ω SST for the unsteady
RANS part and Large Eddy Simulations (LES) using the Smagorinsky sub-grid model were also investigated.

It was found that separation and reattachment predicted by the different RANS models varied little, both
for the steady and unsteady solver. For the polygonal shapes only a few errors were made. k − ε Realizable
appeared to be slightly worse at predicting the separation point than the other models. For the circular shape
the predicted separation points showed the same trend as for the polygonal shapes with small variations. Once
again k − ε Realizble appeared to make larger errors and predicted the latest separation point. Common
for both the polygonal shapes and the circle was that if the separation point were predicted incorrectly, the
predicted separation point was located downstream compared to the separation point indicated by experiments
performed by Xu et al. [30] and Bearman [2]. It is believed that this is due to numerical diffusion and an
overestimated turbulent kinetic energy.

The largest difference between the steady and unsteady solver was the predicted recirculation region length
in the time averaged velocity field downstream of the cylinder. The unsteady solver predicted a significantly
shorter and more accurate recircualtion region length. The reason is the extra transport of momentum into the
wake due to the vortex shedding process, which only a transient solver is able to resolve. It could therefore be
concluded that the steady state solver was unsuitable for these kinds of flow.

The predicted creation and development of the vortices was investigated further for the square geometry
using k − ω SST. It was found that the development of vortices can be divided into two different processes: A
build-up process during which mass and momentum are accumulated to the vortices and a dissolvement process
during which the accumulated momentum are removed from the vortex and spread to the surrounding fluid.
The build-up could be further divided into two phases: One initial phase with rapid accumulation of mass
and momentum and one second phase with slower accumulation of mass and momentum. During the initial
phase the vortices are created and the streamwise size of the vortices are established. The rapid streamwise
increase of the vortex size was due to a non co-located streamline centre and pressure minimum, where the low
pressure minimum was located further downstream. During the second phase the transverse size of the vortices
is increased, which eventually ends when the vortices have a size comparable to the cylinder. At that time
the vortex starts to interact with the free stream fluid on the other side of the cylinder. Partially due to the
free stream interaction and a decreased pressure within the vortices is free stream fluid pulled into the region
between the cylinder and the vortex. This eventually results in the release of the vortex.

The vortices sticks to the surface of the cylinder during the build up. The behaviour was found to be the
result of a low pressure zone within the inner most part of the viscous sub-layer. This force is preserved during
the entire build-up, release and dissolvement of the vortices. The release of the vortices are instead caused by
the free stream fluid moving the fluid within the vortices further out from the wall into the buffer and log-layer
where the turbulent diffusion and pressure term in the momentum equation results in a downstream pointing
force. Because of this the modelling of the eddy viscosity in eddy viscosity models have a certain influence on
the release rate of the vortices, where an overestimated eddy viscosity seems to promote a faster release. For
the eddy viscosity models which solves the modelled k-equation this means that an overestimated turbulent
kinetic energy promotes a faster release.

The vortex shedding process can be predicted with adequate accuracy with the simple URANS models for
polygonal shapes if the temporal and spacial resolution are fine enough. The circular cross section proved
to be a greater challenge and results with non negligible errors was obtained in the form of underestimated
recirculation region lengths. The reason was believed to be an overproduction of turbulent kinetic energy.
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5.1 Future work

Due to the demand for both high spacial and, most importantly, temporal resolution URANS is considered
unsuitable for implementation in complete engine bay situations in its current form. Neither the accuracy nor
the computational power needed to obtain stable mean fields are the reason. To obtain stable mean fields,
only a few vortex shedding cycles are required. The reason is that the thermal situation within the engine bay
needs significant amount of time, in order of 30 minutes in order to stabilise, a simulation time that makes the
computations to computationally heavy. The implementation is therefore somewhat dependent on how much
the required computational resources can be reduced.

An uncertainty in the present study is the required surface mesh resolution for the circular geometry. For
the present work the surface cell size was restricted to ∆xs

D = 0.016 due to the drastic increase of the cell count
and required computational power below this point. However, the results from the mesh study indicated that
the separation point had not reached a steady value, which means that a mesh dependence is still present.
An investigation of the required surface cell size is needed for a number of reasons. The first is to see if the
investigated models are able to predict the location of the separation point correctly even at ideal conditions.
It is already known that eddy viscosity models creates an overproduction of turbulent kinetic energy. In the
present study it has also been shown that this behaviour is increased by curved surfaces. The second reason is
to reduce the computational cost when the findings are implemented in a detailed engine bay. Even for the
simple geometries investigated in this study has the cell count proved to be a limiting factor, which means
that it would most probably not be feasible using the same resolution in an engine bay. An investigation if a
local refinement at the separation point is enough or if the hole surface up stream of the separation has to be
resolved could therefore save a lot of time and computational power.
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