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Clustering software projects at large-scale using time-series
A novel method that enables efficient large-scale analysis of software projects on
commodity hardware
Heiko Joshua Jungen & Peter Pickerill
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Context Within the field of Mining Software Repositories, there are numerous
methods employed to filter datasets in order to avoid analysing low-quality projects,
such as backups and student projects. Since the rise of GitHub, the world’s largest
repository hosting site, large scale analysis has become more common. However,
filtering methods have not kept up with this growth and researchers often rely on
“quick and dirty” techniques to curate datasets.

Objective The objective of this thesis is to develop a method that clusters large
quantities of software projects in a limited time frame. This explores the possibility
that a fully-automated method can be used to identify high-quality repositories at
large scale and in the absence of an established ground-truth. At the same time,
the hardware requirements and time limitations of existing approaches should be
reduced to remove the barrier for researchers.

Method This thesis follows the design science methodology. The proposed method,
PHANTOM, extracts five measures from Git logs. Each measure is transformed into
a time-series, which is represented as a feature vector for clustering using a k-means
algorithm.

Results Using the ground-truth from a previous study, PHANTOM was shown
to be competitive compared to supervised approaches while reducing the hardware
requirements by two orders of magnitude. The ground-truth was rediscovered by
several k-means models, with some models achieving up to 87% precision or 94% re-
call. The highest Mathews correlation coefficient (MCC) was 0.65. The method was
later applied to over 1.77 million repositories obtained from GitHub and found that
38% of them are “well-engineered”. The method also shows that cloning repositories
is a viable alternative to the GitHub API and GHTorrent for collecting metadata.

Conclusions It is possible to use a fully automated, unsupervised approach to
identify projects of high-quality. PHANTOM’s reference implementation, called
COYOTE, downloaded the metadata of 1,786,601 GitHub repositories in 21.5 days,
which is over 33% faster than a similar study using a computer cluster. PHANTOM
is flexible and can be improved further, but it already shows excellent results. The
method is able to filter repositories very accurately with low hardware requirements
and was able to rediscover an established ground-truth. In future work, cluster
analysis is needed to identify the characteristics that impact repository quality.
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1
Introduction

Imagine you were given a large collection of software projects. How would you
identify only those projects that have been developed to a high standard? Software
project analysis is traditionally performed on a small corpus of selected projects,
as seen in industry-based case studies [11, 40, 41]. Source code, metadata, and
project artefacts have been used to judge quality or benchmark projects[20] against
each other. In the recent years, due to the rise of GitHub, researchers have had
access to a massive corpus of software projects that can be analysed. However, the
quality of GitHub’s over 80 million repositories is unclear[16]. It has been shown
that most repositories can be considered to be of low quality, and could therefore
skew analysis[23].

In the 2017 Mining Software Repositories (MSR) conference, a number of stud-
ies performed analysis on GitHub repositories. The reported dataset sizes ranged
between one to over 80,000[7, 19, 26, 37, 48, 33, 24]. Most of these studies needed
to filter out low quality repositories from the collection, where low-quality denotes
those repositories that do not fit into the desired sample. Despite this, there is no
standard approach to filtering in the MSR field. While filtering by popularity has
been used a number of times, it has been shown to perform poorly[25]. It is clear
then, that for researchers to make use of the large number of repositories available
on GitHub, new filtering methods are required. In 2017, Munaiah et al. proposed a
filtering method that outperformed traditional filtering approaches by using super-
vised classification. With this framework over 1.8 Million GitHub repositories have
been analysed, one of the largest datasets to date[8]. While this is an impressive
achievement, a number of key issues with the method remain. First, the required
computing resources are out of reach of most researchers. Second, the required ef-
fort to establish a ground-truth was extensive. Third, some measures cannot be
captured on every repository. Therefore, a new method is needed that can be used
to filter repositories at large scale, using measures applicable to all repositories, and
without requiring high computing resources and an established ground-truth. With
this in mind, the authors propose one research question for this thesis; Is it possible
to cluster software repositories at large scale, based on their development history,
while using commodity hardware?

The authors argue that it is possible to achieve comparable results to Munaiah
et al. by using an unsupervised clustering algorithm to filter repositories, therefore
removing the need for researchers to establish a ground-truth. By simplifying the ac-
quisition of information used for analysis, using the development history exclusively,
it is possible to perform the analysis on commodity hardware. At the same time,
the method shortens analysis time and achieves comparable accuracy to Munaiah
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1. Introduction

et al.’s approach. The method proposed in this thesis is named Project History
Analysis of Time-Series Method, or PHANTOM for short. PHANTOM’s efficacy is
shown by using a ground-truth consisting of 650 labelled repositories and its appli-
cability for large-scale analysis is shown when it is applied on a dataset of over 1.8
million software repositories. Both datasets and the ground-truth are published in
[25], which is referred to as the baseline study.

The contribution of this thesis is; the PHANTOMmethod which compares repos-
itories by using their development history. Second, the implementation tool COY-
OTE, which can be used to extract feature vectors and fit k-means models. Third,
the Git logs, time-series, and feature vectors for over 1.77 million GitHub reposito-
ries.

The structure of this thesis is as follows; the background and related work are
presented in chapter 2 and chapter 3. The problem statement and the design of this
thesis are presented in chapter 4. The main chapter is chapter 5, which presents
the requirements, design, datasets and validation of PHANTOM. The results of this
are evaluated in chapter 6. The significance of the study, threats to validity, ethical
considerations and future work are discussed in chapter 7. The thesis is concluded
in chapter 8.
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2
Background

In this chapter the background of the thesis is presented. The chapter is structured
in sections that cover version control, time-series and machine learning, which are
the main topics of this thesis.

2.1 Version Control

Version control systems (VCS) are tools that track file-level changes within software
repositories. VCS allow multiple programmers to contribute to a repository at the
same time. As VCS handle and store a history of these changes, they are a useful
data source for researchers as they can trace the changes made to source code over
time. VCS are a common component of software development and there are many
variants (e.g. Git, SVN, Mercurial).

One example of VCS is Git. Git is a distributed version control system, that is
open-source and free to use. It allows developers to manage a repository locally and
synchronise with a Git server. Git introduces terminology that describes particular
actions that developers perform on repositories[6]. A list with descriptions of the of
the terms used in the thesis is shown in table 2.1.

One of the most common ways to use Git is through GitHub. Github is a repos-
itory hosting service that provides public and open-source repositories with a free
online Git repository. As of March 2018, GitHub has over 24 million users and over
80 million repositories[16], making it the most popular code hosting website in the
world[8]. In addition to hosting the repository, GitHub provides a number of addi-
tional details about the development of a repository (e.g. issues). It also provides
a measure of the popularity of repositories through a feature called starring[18].
When a developer subscribes to a repository as a stargazer, they are showing their
interest in the repository for others to see.

Due to Git’s distributed nature, cloned repositories contain a record of every
commit pushed to them. Git enables developers to see this record of these commits,
and their authors, through the Git log. As GitHub is so popular, many projects
use it to host a centralised repository for all push actions, rather than using the
distributed features of Git. This makes GitHub an excellent source for repository
metadata, and it has become a popular target for research[23] as it gives a detailed
picture of the development history of a large corpus of open-source repositories.

GitHub repositories can be cloned by using the Git client. Passing the URL
of a repository to the command git clone will download the repository onto the
machine. To exemplify the structure of a GitHub URL consider https://github.

3

https://github.com/Netflix/SimianArmy
https://github.com/Netflix/SimianArmy
https://github.com/Netflix/SimianArmy


2. Background

Term Meaning
Commit The action of submitting/contributing local changes into a specific

branch.
Integration The action of accepting a pull request into a specific branch.
Clone Making a local copy of a repository that developers can work on.
Fork Making a remote copy of a repository on GitHub. That is to say,

a new repository on GitHub is created by copying an existing one.
Merge The action of combining changes made to a file in different commits.

Can also refer to the combination of two branches resulting in one
branch containing all the changes of the second. This action may
result in conflicts, which have to be resolved manually.

Pull The action of retrieving commits from a remote repository.
Pull request A request from one developer to another to merge commits into a

repository.
Push The action of updating a remote repository with changes made

since the last pull.
Repository The storage of the project files and historical records of those files.

Table 2.1: Terminology of the version control system Git.

com/Netflix/SimianArmy. This URL refers to the user Netflix who has created the
repository SimianArmy. The convention for GitHub URLs is the GitHub domain
followed by user/repository.

Git allows the formatting of logs by using the git log --format command. The
format parameter takes a string with any combination of tokens (e.g. %ae for
author email), which allows the user to choose which information to include within
the outputted log. A complete list of tokens can be found at [15].

2.2 Time-series clustering
Due to the exponential increase in stored data, in part due to an increased ability
to monitor processes over time, a popular way to represent and analyse sequential
datasets is by using time-series. It is used in many fields (e.g. finance, economy,
environment and transportation) to analyse data[28]. Time-series are sequential
observations of a value, which are either made regularly or irregularly. Regular
observations form an evenly spaced time-series, whereas irregular observations form
unevenly spaced time-series. In fig. 2.1 an example of a regular time-series, consisting
of fifteen observations, is plotted. As the time-series is evenly spaced it could be
represented as a vector;

T = {t1, t2, . . . , t15},where tx are the values for the observations (2.1)

In table 2.2 the observations are listed to exemplify the data format of a time-series.

When clustering time-series there are three approaches[2]. The first is whole
time-series clustering and is used in this thesis. In this approach, all observations
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Figure 2.1: An example plot of a regular (evenly spaced) time-series. Values are
shown in table 2.2.

Order Date Value Order Date Value
1 18-01-01 1 9 18-01-09 6
2 18-01-02 3 10 18-01-10 7
3 18-01-03 4 11 18-01-11 2
4 18-01-04 6 12 18-01-12 1
5 18-01-05 5 13 18-01-13 3
6 18-01-06 3 14 18-01-14 2
7 18-01-07 3 15 18-01-15 0
8 18-01-08 4

Table 2.2: An example table of a regular (evenly spaced) time-series.

are taken into account. The second approach is subsequence clustering which as the
name suggests, compares subsequences of a time-series against each other. Finally,
in the third approach, individual data points are compared. This approach is called
time-point clustering. The approaches are summarised in table 2.3.

Due to the large variations in length, time-series are incompatible with tradi-
tional clustering algorithms, so one has to either customise clustering algorithms or
convert time-series to different, simpler representations[2]. One way to do this is the
feature-based approach. In this approach, a time-series is represented by a feature
vector. This feature vector is usually fixed-length which makes it compatible with
common clustering algorithms. A feature vector consists of a number of values; one
example feature is the highest value in the time-series.

2.2.1 Euclidean Distance & Dynamic Time Warping

Euclidean distance, which is the distance of two points within Euclidean Space,
can be used to compare time-series against each other. Each individual observation
within a time-series can be compared to another observation in a different time-
series via this measurement. However, Euclidean Distance has problems detecting

5



2. Background

Clustering approach Description
Whole time-series Clustering of complete time-series.
Subsequences time-series Clustering of data ranges from a time-series. Se-

quences can be compared within and across time-
series.

Time-point clustering Single observations are clustered either against points
from the same or other time-series.

Table 2.3: The three approaches to time-series clustering.

patterns in time-series. Consider the time-series A and B;

A = 0, 1, 0, 0 and B = 0, 0, 1, 0 (2.2)

Calculating the Euclidean distance would not identify that the two time-series ac-
tually show the same trend, because they are slightly shifted [30].

A shift within a time-series would be recognised by the Dynamic Time Warping
(DTW) algorithm, which is most commonly used when comparing time-series[30].
DTW first identifies an optimal many-to-many mapping between the observation
of the time-series, which effectively stretches or compresses them (within certain
bounds) so that they align better. In the case of A and B the mapping could look
like this;

D(a1, b1), D(a1, b2), D(a2, b3), D(a3, b4), D(a4, b4) (2.3)

where D is a distance measure (e.g. Levenshtein) between two observations.
When time-series have slightly different lengths, Euclidean Distance cannot com-

pare the whole time-series. DTW can calculate the best mapping between data
points. Data points may be mapped to one or more other points to compen-
sate for the different lengths. However, when the time-series are of very different
lengths, DTW may not be applicable as the boundary on how much the series can be
stretched or compressed (warping size) would be very large. An alternative approach
is to interpolate (i.e. insert estimated values) the shorter time-series to match the
length of the longer one.

2.2.2 Extracting Features from time-series
Time-series can be characterised by features, which relate to particular attributes of
the sequence. For example, a feature could be the lowest value within the sequence,
which could be called Min Y. Features can show very simple, or very complex char-
acteristics (see fig. 2.2). The up and down peaks of the time-series are marked using
upward and downward pointing triangles. To calculate the features Peak Up and
Peak Down these points are counted. A peak can be described as any point that is
either higher or lower than the preceding and succeeding points. Peak None is the
sum of all points that are not marked (e.g. at week 250). The feature Max Y is
the largest value within the time-series, which is roughly 4000 in the example. The
position of Max Y is captured by Max Y Pos, which is the index (week) in which the
value occurred, around 150 in the example. Duration is equal to the total number

6
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of weeks between the first point and the last point, illustrated by the bar close the
x axis.

Figure 2.2: Example features that can be extracted from a time-series.

In fig. 2.3 more features are illustrated. At the start of the time-series a sub-
sequence is labelled to show a positive gradient. All positive gradients between
neighboring observations are averaged to calculate the feature Mean Positive Gra-
dient. Similarly, the feature Mean Negative Gradient is calculated by averaging the
negative gradients. A further set of features relate to amplitude; Min Amp, Avg
Amp and Max Amp. Amplitude is the increase in value that is measured between
an up peak and its previous point, divided by the Max Y value. That means, it is
the increase relative to the maximum value. An example is shown at around week
250 in (b). The amplitude is labelled in the middle of the plot and for the purpose
of the example, the difference between the peak and the previous value is equal to
1000. The Max Y value of the time-series is roughly 4000, which therefore means
an amplitude of 25%. Min Amp is the lowest measured amplitude, Avg Amp is the
mean of all amplitudes, and Max Amp is the highest amplitude.

2.3 Machine Learning: Classification and Clus-
tering

In machine learning, statistical techniques are used to train an algorithm for a spe-
cific task. Although they are trained to a specific task, machine learning algorithms
are general purpose and have been applied in many research areas and industries
(e.g. medicine, business, computer science and social sciences)[36]. From a high-
level perspective, machine learning algorithms start with a set of objects, learn from
them and produce an output. Examples of input objects are images, text and sensor
data. Outputs are dependent on the algorithmic family, where the three main ones

7
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Figure 2.3: Example features that can be extracted from a time-series.

are; classification, clustering and projection [36]. Input objects are usually repre-
sented by a (fixed-length) feature vector that captures observation on the real-world
object (e.g. pixels from an image, word counts from a text, values from a sensor).

2.3.1 Classification and Clustering
There are supervised and unsupervised machine learning algorithms. Supervised
learning requires a ground-truth for the input data, which is used to learn the the
structure of the input data. Unsupervised learning does not require a ground-truth
and instead identifies the structures by itself. Classification belongs to supervised
and clustering belongs to unsupervised learning.

The task of classification is to predict the class of an object. Class refers to a
group or category that the object belongs to (e.g. an email is classified as either
spam or not spam) and the class is indicated by a label[1]. In classification the
starting point is a collection of objects where the class is known. These objects,
together with their labels, become the input to a model that learns to correctly
predict object labels. The objects are referred to as the training data and their
labels are the ground-truth. After a model has learned the characteristics of the
training data from the ground-truth, labels for new objects can be predicted.

In clustering, the input to the algorithm is a set of objects without labels. That
means, in contrast to classification, there is no ground-truth associated with the in-
put. The task of clustering is to group the input in a way that objects within a group
(or cluster) are similar to each other, and dissimilar to objects in other groups[1].
One application of clustering is shopping recommendation systems, where items are
suggested to a customer based on the shopping behaviour of other customers. In
this scenario, the interest is not in the cluster label, but rather to identify which
items similar customers buy. Similarly, when clustering repositories, researchers are
often interested in repositories that are similar to each other rather than what the
cluster represents, which can be determined by later analysis.

8



2. Background

Figure 2.4: This figure illustrates the application of the k-means algorithm to a
set of two-dimensional data.

Bandyopadhyay and Saha state that clustering consists of three steps; data ac-
quisition, feature extraction, and clustering. Data acquisition is about gathering and
pre-processing of data. In feature extraction, the dimensionality of the previously
acquired data is reduced to a smaller set of “relevant features”[4]. A subprocess of
the feature extraction step is to remove redundant information, and by that further
reduce the number of features to a selected few. Finally, the selected features are
grouped using a supervised or unsupervised algorithm[4].

2.3.2 K-means
Two commonly known clustering techniques are agglomerative hierarchical cluster-
ing and k-means[1]. However, Agglomerative hierarchical clustering does not work
well at scale because of quadratic complexity (in the context of time-series cluster-
ing)[2].

The fig. 2.4 illustrates the k-means algorithm. On the left side, an example
set of two-dimensional data is plotted. The right side shows the cluster centroids
(indicated by the rhombuses), which exemplify the result of the k-means algorithm
with the number of clusters set to two. The data points on the right side are labelled
Cluster 0 and Cluster 1.

2.3.3 Accuracy
When predicting the label of an object and comparing the predicted label to the
actual label (coming from a ground-truth) there are four cases, which are commonly
known as error types; true positive(TP), false positive(FP), true negative(TN) and
false negative(FN). The error types are used to calculate measures to indicate how
well an algorithm performs the prediction; precision, recall and F-measure. Precision
is the ratio of correctly captured data points (true positives) and all captured data
points (true positives and false positives), by that describing how pure a cluster is;

9



2. Background

Precision = TP
TP + FP (2.4)

Considering the right illustration of fig. 2.4, and assuming that the data points
belonging to Cluster 1 are truly belonging to this cluster (only true positives), the
precision would be 100%. There are no data points which are falsely believed to
be of this cluster (false positives). A high precision is desirable, because it shows
that the algorithm accurately predicts object labels. Recall is a further measure
that complements precision. It is the ratio of true positives, and the sum of true
positives and false negatives;

Recall = TP
TP + FN (2.5)

Recall is the percentage of data points that were captured by the cluster (true
positives), compared to the total number of data points that should have been
captured by the cluster (true positives and false negatives). This means, a high
recall is desirable because it shows that many of the objects of a certain class are
identified correctly. The F-measure is a compound measure, which is the average of
precision and recall. F-measure is used to determine the overall effectiveness of the
model.

F-Measure = Precision + Recall
2 (2.6)

Precision and Recall do not take all of the error types into account. An addi-
tional measurement, the Mathews correlation coefficient (MCC), provides a better
picture of the classifier’s performance when combined with the aforementioned mea-
surements. It ranges from -1 to 1, where -1 indicates that the classifier is always
wrong, 0 indicates it is random, and 1 indicates that it is always correct. The MCC
is defined as;

MCC = TP ∗ TN − FP ∗ FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(2.7)
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Since 1997, the International Software Benchmarking Standards Group (ISBSG)
has been collecting project-artefacts data from industry practitioners through ques-
tionnaires[20]. They have collected 8,200 projects so far, covering seven industry
types[21]. Although the ISBSG is non-profit, they charge for data access, which
combined with the small-scale could prevent researchers from using ISBSG data. It
appears that a lack of automation limits large-scale analysis.

The implementations in [13] and [25] feature a high-level of automation, yet the
resources required (e.g. time, computing power) are large. Gabel and Su conducted
a study about the uniqueness of source code within C++, C# and Java applications
taken from sourceforge1. They approached the question of How unique is software?
by performing lexical analysis on a dataset of 6000 projects (in total 420 million lines
of code). Following this, the percentage of unique code within 30 selected projects
was measured. The study identified a general lack of uniqueness within software,
where most programs are made from code snippets found in other software. The
analysis time took four months, where source code was compared on a token-level
with an optimised tool. This shows that source-code analysis requires a lot of time
even for a small number of projects.

Metadata analysis is time-consuming at large-scale, primarily due to data col-
lection limitations. Cosentino, Canovas Izquierdo, and Cabot looked into 80 studies
that mined GitHub. They found that the two largest data sources, GHTorrent
and GitHub API, were criticized by researchers. The GitHub API was said to be
a source of problems, given request limitations and errors in the data returned.
Cosentino, Canovas Izquierdo, and Cabot state that “the GitHub API request limit
acts as a barrier to get data from GitHub”[8] which effects curated datasets (such as
GHTorrent) and individual researchers. Many researchers criticise the size and up-
to-dateness of services like GHTorrent. Cosentino, Canovas Izquierdo, and Cabot
report that of studies they explored, only three looked at more than 100,000 repos-
itories. These findings show that despite using these services, researchers struggle
to collect up-to-date data at large scale.

Robles et al.[35] identified the similar issues with GitHub when collecting infor-
mation about twelve million repositories. First, due to API limits, they calculated
that it would have taken fourteen months to collect all of the data using a single
API key, adding that “[. . . ] this would have made the data gathering unfeasible”.
To gather the data in a feasible time, twenty keys were used. Secondly, 25% of the
twelve million repositories had been moved or deleted between the time GHTorrent

1http://www.sourceforge.com
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collected its data and the Robles et al.’s request to GitHub API, which wasted keys
and analysis time. This shows that data collection time can be reduced by using
volunteered keys for data collection, a practice employed by GitHub mirroring sites,
like GHTorrent and Boa.

The study of Kalliamvakou et al. [23] presented thirteen perils of collecting,
analysing and interpreting data from GitHub. The study shows that the assumption
that every repository is a software project does not hold. In a random sample, just
63.4% of the repositories were related to software development. Furthermore, most
repositories have low or zero activity. The study showed that only 25% of repositories
were active for over 100 days. Kalliamvakou et al. note that even when repositories
are active, it is not guaranteed that they use GitHub exclusively. This prevents
the full development effort from being captured. When used for research, the API’s
hourly request limit, the risk of changes and the reduced amount of information
create challenges. An additional problem is that the information from GitHub may
not be reliable in every case. Kalliamvakou et al. explain that there are different
ways to merge commits and GitHub cannot detect all of them. Therefore, some
merges are not reported through the API. A further peril when using the GitHub
API is, that unlike cloning with Git, the GitHub API does not redirect requests
when a repository was moved. Accessing a moved repository with the API will
result with a not found status code.

Nuñez-Varela et al. conducted a systematic review of 226 papers studying source
code metrics. They identified that most studies considered one programming lan-
guage and paradigm. Over 85% of the studies use object-oriented metrics. This
is reflected in the available public datasets and the metric extraction tools. While
the paper does not reason why researchers focus on one language, it indicates that
cross-language analysis of source code may not be straightforward. Although, the
use of metrics “theoretically can be applied to any language”[27], in practice it is
complex and tools do not support all languages.

In 2017, Munaiah et al.[25] presented an evaluation framework that classifies
GitHub repositories based on seven measures (dimensions). These dimensions cover
metadata and source code and are used to to label repositories as “well-engineered”
or not. In order to establish a ground-truth, Munaiah et al. manually labelled
650 repositories, of which 200 were used for validation. Once two classifiers were
validated, the most accurate was selected. It took over a month to label 1.8 million
software repositories. This is an impressive achievement and also makes the study
one of the largest in the MSR field. Munaiah et al. concludes that according to this
classifier, 24.07% of the analysed repositories contained a well-engineered software
repository.

Aghabozorgi, Seyed Shirkhorshidi, and Ying Wah presented a decade review on
time-series clustering in [2]. Common fields of where time-series clustering is used
are change recognition, prediction or recommendation, and pattern discovery. There
are a variety of approaches, representation methods, similarity measures, clustering
algorithms, and evaluation measures presented in the paper.

Dynamic Time Warping(DTW) was studied by Ratanamahatana and Keogh[32],
who identified a number of myths associated with the technique. One finding was
that DTW is not slow, as is commonly mentioned, and the authors show that it

12
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can achieve O(n) complexity. Another finding was that interpolation is also shown
to have little effect on the resulting accuracy of similarity searches that use DTW,
however they note that the warping limit has significant effects on the accuracy.

In [45] a method for time-series clustering on global characteristics is proposed.
Wang, Smith, and Hyndman extracted 9 features (based on statistical descriptions),
from time-series to capture the global characteristics. Then, by using a greedy for-
ward search algorithm, the best subset of features is selected to cluster on. The
evaluation of the approach on benchmark datasets has shown that meaningful clus-
ters were produced by this method.

Deng et al. have proposed a method for time-series classification based on three
statistical features (mean, standard deviation and slope). These features are repet-
itively taken on subsequences of the time-series and the merged to build a feature
vector. Using greedy forward search the best subset of features is selected. With this
subset, the time-series of a benchmark dataset can be classified with high accuracy,
and the method could outperform DTW as well[9].

A similar, but much more sophisticated approach to time-series classification is
presented in [12]. In this paper, over 1000 features of time-series are extracted.
Before classification, the best subset of features is determined by using a greedy
forward algorithm. These features are then used as input into a classifier. This
approach outperforms DTW “despite dramatic dimensionality reduction”[12] of the
time-series. In some cases, one feature was sufficient to classify time-series with high
accuracy.

In 2012, Esling and Agon looked into representations of time-series data. They
state that “Defining algorithms that work directly on the raw time series would
therefore be computationally too expensive”[10], which shows the need for sim-
ple time-series representation formats. The paper outlined 5 requirements for any
time-series representation, such as low computational cost and good reconstruction
quality. Although, they admit that representation methods make trade-offs between
these requirements. Additionally, Esling and Agon highlight a need for time-series
systems that do not require expert knowledge.

Guo studied trends in stock market time-series data. They clustered patterns
as identified in the pricing of 30 stocks over 200 days. Using time-series and k-
means, they were able to identify 4 distinct patterns despite high levels of noise and
dimensionality[22].
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Methodology

When filtering repositories there are a number of problems that can occur that
PHANTOM needs to address. These problems are investigated in this chapter with
a summary at the end. In addition, the research strategy for this thesis is presented.

4.1 Problem Investigation
An initial problem is deciding on what measures should be extracted from reposi-
tories in order to filter them. In MSR research, a number of measures have been
suggested. Often, these measures are singular and do not take chronology into ac-
count. For example, number of stargazers is a single measurement approach, which
has been shown to be ineffective at filtering for quality repositories[25]. Effective
filtering methods strengthen conclusions because samples remain free of undesirable
repositories. Therefore, it is important to address the problem of how to select
measures that can be used to identify desirable repositories, such as those of high-
quality.

Community based filtering strategies, for example; popularity, issues, and forks
are common, but do not measure the internal quality of a project. These methods
cannot be used on repositories without community interaction, for instance those
that are hosted on private servers. Such repositories would be missing or misclas-
sified in any analysis using these filtering methods. Therefore, it is important to
address the problem of finding a uniform way of grouping similar repositories to-
gether, that does not rely on community engagement.

Most filtering methods trade depth for speed and simplicity. These methods are
easier to implement, relying on a small number of measures without looking into
the development history (appendix A). In [25], the in-depth methods were shown to
require significant manual effort by multiple researchers to identify well-engineered
repositories. With the exception of the proposed filtering method in [25], researchers
need to choose “quick and dirty” filtering techniques, which have been shown to be
inaccurate.

One clear problem is that computing resources are limited for most researchers,
forcing them to choose methods that are not in-depth. Reaper required over a month
to finish analysis on a computer cluster with over 200 nodes[25]. Therefore, new
methods should reduce hardware requirements when conducting in-depth analysis
compared to existing approaches.

Chronologic measures taken from repositories can be represented as a time-series.
In the field of time-series clustering a number of techniques are available. Euclidean
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Distance and DTW are most commonly used, however they cannot compare time-
series of very different lengths. Feature-based approaches have been shown as an
effective way to compare time-series of different lengths, and reduce the dimen-
sionality of the data significantly. However, extracted features must describe the
time-series correctly to ensure accurate clustering. Each method comes with its own
set of limitations, which makes it difficult when choosing between them.

Researchers must decide between classification and clustering algorithms when
grouping repositories. Classification requires an established ground-truth, which can
be time-intensive to discover[25]. This ground-truth must be accurate to produce
meaningful predictions. Clustering does not require a ground-truth, but requires
later investigation. This investigation is needed to discover whether clusters are
meaningful, which can also be time-intensive.

Based on this, the authors have identified five main problems that the new
method should address;

1. Which measures should be taken from repositories

2. How to transform time-series to feature vectors

3. Quality of the established ground-truth for software repositories is unclear

4. How to cluster feature vectors using unsupervised learning algorithms

5. Current methods perform poorly on commodity hardware

4.2 Research Methodology
The research conducted in this thesis follows the design science methodology. In
design science, research follows the engineering cycle. It is called a cycle because
the research is conducted iteratively, which means the steps are performed multiple
times until the objectives are reached. The engineering cycle is a “rational-problem
solving process”[46] and consists of five steps:

1. Problem Investigation

2. Treatment Design

3. Treatment Validation

4. Treatment implementation

5. Implementation evaluation

The design cycle, which is a sub-cycle of the engineering cycle, is described in
this paragraph as summarised from Wieringa[46] and the explanations are are not
further cited for brevity. The cycle begins with an investigation of the problem, to
gain an in-depth understanding of the causes. The acquired knowledge is then used
to design a treatment. Treatment is defined as the interaction of an artefact with a
problem context. For this thesis, the artefact is PHANTOM, the proposed method
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to analyse software projects, and the problem context is to filter well-engineered
repositories from GitHub. Part of the treatment design is to specify requirements
for the treatment. The goal of the third step, treatment validation, is to confirm
that the designed treatment satisfies all the requirements and whether the treatment
is able to treat the problem (i.e. filter repositories accurately). After treatment
validation, the design cycle is finished and can be repeated if needed. Leaving
the design cycle and continuing to the fourth step, treatment implementation, the
designed treatment is applied to the problem context. For this thesis, this means
that a reference implementation of the proposed method is implemented to cluster
repositories from GitHub. The final step of the engineering cycle is to evaluate the
results produced in the preceding step. According to Wieringa, design science is
restricted to design cycle (step 1, 2 and 3)[46]. However, this thesis surpasses the
design science methodology, by performing the the full engineering cycle.
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PHANTOM

The objective of this thesis is to develop a new filtering method that can address the
problems identified in section 4.1. This method will use a time-series representation
to capture historical information on projects through their repositories. The authors
call this method the Project History Analysis of Time-Series Method (PHANTOM).
In this chapter, the requirements for PHANTOM are stated and its design decisions
are outlined. Then, PHANTOM is validated against the requirements using a ref-
erence implementation of the method, called COYOTE.

5.1 Requirements
PHANTOM will not have access to additional information beyond the Git repository
itself, therefore any measures that are taken cannot rely on additional information
(such as the GitHub API) (R#1). Time-series cannot be clustered directly due to
variation in duration, therefore feature vectors are taken. However, these features
must characterise the time-series well for accurate clustering (R#2). PHANTOM
should not require a ground-truth in order to be useful for researchers, but the
produced clusters have to be meaningful. Therefore, PHANTOM should rediscover
an established ground-truth to show the meaningfulness of the clusters (R#3).
PHANTOM uses a standard k-means algorithm to cluster repositories, but without
a ground-truth the accuracy of predicting new repositories is unknown. Therefore,
k-means must be compared against a supervised algorithm which has been trained
on an established ground-truth, to see if the unsupervised approach is competi-
tive(R#4). Finally, PHANTOM is considered an in-depth method due to its inves-
tigation of development history. However, other in-depth techniques have hardware
requirements that hinder general use, especially at scale. Therefore PHANTOM
must show that it is possible to be in-depth while having hardware requirements
within reach of the average researcher (R#5).

Below are the five requirements for PHANTOM;

R#1 All Measures must be extractable from the Git Log.

R#2 Time-series must be characterised by feature vectors accurately.

R#3 Show that an established ground-truth can be discovered using an alternative
technique.

R#4 Show that k-means can compete with supervised algorithms.
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R#5 Show that an in-depth method can perform well on commodity hardware at
large-scale.

5.2 Design decision
The design decisions for PHANTOM are presented in this section. The complete
process is illustrated in fig. 5.1 and the steps are explained in the subsequent para-
graphs. The input to PHANTOM is a collection of repository URLs, which locate
the repositories to be analysed. Each repository is cloned to the machine using Git
(Step A). Next, the Git log of the cloned repository is generated (Step B) in the
format defined in table 5.1, where each column is separated by a comma (“,”). From
now on, Git log will refer to this format.

An example Git log is presented in table 5.2. The Git log contains timestamped
rows, which makes the conversion to time-series possible (Step C). These time-series
use combinations of the different columns of the Git log and are referred to as
measures. In table 5.3 these measures are explained and the information used to
obtain them is listed.

In table 5.4 the example Git log is transformed into the five measures. Measures
are represented as a regular time-series, which makes their comparison possible;
however, considering very different lengths, a direct comparison of the time-series
may not make much sense. Interpolation would mean that the data are manipulated,
which the authors argue would not be a true representation of the development
history. The time-series are of very different lengths (e.g. 50 weeks and 900 weeks).
Therefore, DTW and Euclidean distance are not suitable. Instead, a feature-based
approach is selected, which does not come with these issues.

The time-series are therefore reduced in dimensionality by extracting a fixed-
length feature vector (Step D). A complete list of the 42 extracted features is pre-
sented in in appendix B. The measures are extracted separately, which means that
there is one feature vector per measure. In table 5.5 a sample of the extracted fea-
tures is presented. Each repository in the input collection is processed in this way.
After this, feature vectors are used in the subsequent steps.

Some features cannot be extracted from all measures. For example, peak-related
features cannot be measured on time-series with a length of three or less, because
peaks cannot be detected. Where features are immeasurable the value is set to zero
(“0”) during the preprocessing step (Step E), because the k-means algorithm cannot
handle missing values.

The next step is to select the best subset of features from the feature vector

Hashes Author Committer
Name Commit Parent Name Email Date Name Email Date
Format %H %P %an %ae %at %cn %ce %ct
Type GUID GUID String String UTS String String UTS

Table 5.1: The format of the generated Git logs, each column is separated with a
comma. UTS refers to Unix Timestamp, GUID refers to Globally Unique Identifier.
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Figure 5.1: Overview of PHANTOM.

Hashes Author Committer
Commit Parent Name Email Date Name Email Date
b57f4f3 82c9f95 ab a@b.com 1519904296 cd c@d.com 1519904396
82c9f95 efaf9cd ab a@b.com 1519834072 ab a@b.com 1519904296
efaf9cd 703b7b1 ab a@b.com 1519404672 ab a@b.com 1519824672

Table 5.2: Example Git log, where each row is one commit.

Measure Git Log Information Used Description
Commit Frequency

(Commits) Author Date The number of commits
summed per Week

Integration Frequency
(Integrations) Committer Date The number of integrations

summed per Week.
Commit Frequency

(Committers) Author Date, Author
Email

The number of unique de-
velopers (by email) that
have made commits per
Week

Integration Frequency
(Integrators) Integrations Date, Integra-

tions Email
The number of unique de-
velopers (by email) that
have made integrations per
Week

Merge Frequency
(Merges) Parent Hashes, Committer

Date
The number of merges
summed per Week

Table 5.3: The measures extracted by PHANTOM.
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Date Integrations Integrators Commits Authors Merges
2018-02-26 2 2 2 1 0
2018-02-19 1 1 1 1 0

Table 5.4: Example time-series for the five measures.

Feature Duration Avg Y Max Y
Integrations 2 1.5 2
Integrators 2 1.5 2
Commits 2 1.5 2
Authors 2 1 1
Merges 2 0 0

Table 5.5: Example feature vectors for the five measures.

(Step F). In order to remove redundant features, the pearson correlation coefficient
is calculated. If the correlation meets or exceeds a specified threshold the feature is
removed.

The remaining features are normalised with the standard score and then used to
fit a k-means model (Step G). The configuration parameters of the k-means model
are presented in appendix D. Finally, the fitted model is outputted.

5.3 Datasets
Munaiah et al. published five datasets as part of their research “Curating GitHub for
engineered software projects”. These datasets are formatted as collections of GitHub
repository URLs. Four of these datasets (organisation, utility, negative instances
and validation) are used as ground-truths in this thesis, with the fifth being referred
to as the large dataset (a collection of over 1.85 million URLs). To create the
ground-truth datasets Munaiah et al. followed a manual curation process in order
to label repositories. Each repository was independently judged by two or three
researchers as either well-engineered or not, according to agreed guidelines. If the
judgement about a repository differed, it was either discussed further or discarded.
The datasets are summarised in the list below;

• Organisation
The organisation dataset consists of 150 well-engineered repositories. Well-
engineered repositories are defined as similar to those of popular software en-
gineering companies such as Amazon, Apache and Facebook. The researchers
manually investigated repositories to find those that matched the definition.

• Utility
The utility dataset contains 150 well-engineered repositories. It defines a well-
engineered repository as one with a general-purpose. That is to say, a reposi-
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tory that has value to users other than the developers. The repositories were
randomly sampled from 1,857,423 GitHub repositories.

• Negative Instances

The dataset of negative instances holds 150 repositories that are not well-
engineered. The repositories do not conform to either of the definitions of
well-engineered. The dataset resulted from the selection process of the util-
ity dataset, which means that it contains the first 150 repositories that both
authors rejected.

• Validation

The validation dataset consists of 100 well-engineered and 100 not well-engineered
repositories. The selection process is similar to the one of the utility dataset
and shares the definition of what is well-engineered and not.

• Large dataset

This dataset is a collection of 1,857,423 GitHub URLs. In contrast to the other
datasets there is no ground-truth, meaning the quality of the repositories is
unknown.

5.4 Validation

This section validates the requirements stated in section 5.1. Each of the five require-
ments is discussed separately in the following subsections. R#1 is validated against
the design decisions, the remaining requirements are validated against the results
of a reference implementation of PHANTOM. This implementation is referred to as
COYOTE, which stands for Classification of Time-Series.

5.4.1 All Measures must be extractable from the Git Log

The five measures extracted by PHANTOM are; Integration Frequency, Commit
Frequency, Integrator Frequency, Committer Frequency, and Merge Frequency. Each
measure uses different parts of the Git log, along with at least one of the two date
types (author or committer date). The other parts of the Git log are the author
and committer email, and the number of parent commits (table 5.3). All of this
information is available in every Git managed repository, and in fact Git ensures
its availability, because when committing changes, the information is automatically
recorded. PHANTOM has no dependency on additional data from GitHub, such as
the GitHub API and mirroring services like GHTorrent. Due to the decision to use
this specific set of information, PHANTOM is able to extract all measures from Git
logs exclusively.
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Figure 5.2: Integration Frequencies for https://github.com/mono/mono (3) and
https://github.com/FFmpeg/FFmpeg (5).

Repository Duration Max Y Max Y Pos
3 870 470 160
5 900 430 640

Table 5.6: Example feature vector for the time-series in fig. 5.2. The number have
been rounded for illustration.

5.4.2 Time-Series must be characterised by Feature Vectors
accurately

Feature vectors must capture the characteristics of time-series accurately to avoid
k-means mislabeling them. It can be difficult to select features that do this. This
problem is illustrated by the two integration frequencies plotted in fig. 5.2, which
were selected from an investigation of twenty repositories using COYOTE. The plots
are visually distinguishable. However, when converted into feature vectors, a small
number of features, such as Max Y or Duration may not be enough to differentiate
two time-series from each other (see table 5.6). The difference between the Max
Y values and the Duration values is 30 and 40 respectively. Max Y and Duration
are close enough that one can say that the time-series are similar to each other.
Therefore, crucial features are missing to differentiate them. An additional feature
such as the x value of the highest peak (Max Y Pos) would show a clear difference
between the two repositories. PHANTOM uses Duration, Max Y, and Max Y Pos
along with 39 other features (appendix B) to characterise time-series.

Even if a number of features are similar, the chances of an identical feature
vector for a different time-series is reduced with a larger feature vector. By this,
the k-means algorithm is able to cluster time-series via feature vectors effectively,
as those differences are clear. By using larger feature vectors, PHANTOM captures
the characteristics of time-series and the differences between them are highlighted.
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Figure 5.3: The accuracy of k-means model thresholds against the the ground-
truth for the five measures.

5.4.3 Show that an established Ground-Truth can be dis-
covered using an alternative Technique

In this section, COYOTE is used to fit k-means models on the ground-truth datasets.
These are the organisation and utility repositories, which are both complemented
with the negative instances, so that the datasets contain well-engineered and not
well-engineered repositories to almost equal parts. PHANTOM requires a correla-
tion threshold to select the best subset of features. As it is unknown which threshold
is best, COYOTE explores thresholds ranging from 0.05 to 1, with a step size of 0.05.
This means that for each combination of datasets and measures, twenty models are
fitted. As k-means is unsupervised, the true labels are not known to the algorithm
when fitting the model, which enables a comparison of the produced cluster labels
and the ground-truth labels.

This comparison results with the four error types which are used to calculate
the precision, recall, and F-measure (see fig. 5.3). On the organisation dataset
there are many models that achieve a precision and recall close to 100%. On the
utility dataset, the accuracy is lower with precision and recall of up to 90%. The
high precision and recall indicate that the models were able to rediscover the the
majority of true labels for both datasets. Overall, the organisation repositories
could be rediscovered with higher accuracy than utility repositories. However, the
accuracy largely depends on the dataset, measure and correlation threshold. This
shows that a ground-truth could successfully be discovered using an alternative,
unsupervised technique.

5.4.4 Show that K-means can compete with supervised Al-
gorithms

In the baseline study a Score-based and Random Forest classifier was trained on
the organisation and utility ground-truth datasets. The classifiers were then used
to predict the validation dataset. In order to compare k-means to these algorithms,
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Figure 5.4: The accuracy of k-means model thresholds against the the validation
data for the five measures.

Measure Threshold Precision Recall F-Measure MCC Features
Merges 0.90 0.68 0.85 0.76 0.48 17
Integrators 0.75 0.82 0.71 0.77 0.57 9
Integrations 0.90 0.75 0.93 0.83 0.64 19
Commits 0.90 0.75 0.94 0.83 0.65 19
Committers 0.75 0.82 0.71 0.77 0.57 11

Table 5.7: Prediction accuracy for the five measures when clustering repositories.
(Organisation models)

COYOTE is applied to the same datasets. First, similarly to section 5.4.3, COYOTE
explores a range of thresholds for each combination of datasets (organisation, utility)
and measures. This time however, the fitted models are used to predict repositories
from the validation dataset. Accuracy when predicting repositories is shown in
fig. 5.4. As already seen in fig. 5.3, the accuracy varies across measures, datasets
and thresholds.

To compare the results against the baseline study, the best models for each
dataset and measure are selected. In order to achieve this the authors established a
set of rules that determine the best model;

1. Find the highest F-measure

2. Find the highest precision

3. Find the highest recall

4. Find the lowest threshold

These rules are implemented in COYOTE which automates the feature selection
process. In table 5.7 and table 5.8 the best models (fitted to the organisation and
utility repositories respectively) are presented.

In comparison to the classifiers of the baseline study (table 5.9), it is clear that
the COYOTE models can compete with the supervised approaches. The baseline
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Measure Threshold Precision Recall F-Measure MCC Features
Merges 0.85 0.68 0.84 0.75 0.47 11
Integrators 0.45 0.83 0.69 0.76 0.56 5
Integrations 0.95 0.86 0.70 0.78 0.61 22
Commits 0.95 0.87 0.70 0.78 0.62 22
Committers 0.75 0.83 0.71 0.77 0.58 8

Table 5.8: Prediction accuracy for the five measures when clustering repositories.
(Utility models)

Data set Classifier Precision Recall F-Measure
Organisation Score-based 0.76 0.61 0.68
Organisation Random Forest 0.88 0.42 0.57
Utility Score-based 0.58 0.99 0.73
Utility Random Forest 0.82 0.86 0.84

Table 5.9: The accuracy of the baseline’s tool reaper as reported in [25].

classifiers, trained on the organisation dataset, achieve lower F-measure than any
COYOTE model fitted to the same data. The models match the precision and sur-
pass the recall of the supervised algorithms. Classifiers trained on the utility dataset
set a higher benchmark than classifiers trained on the organisation dataset. COY-
OTE matches the F-measure of the Score-based classifier. Although the highest
precision on the utility dataset of 82% could be surpassed by two out of five COY-
OTE models (Integrations, Commits), the recall on these cannot compete with the
Random Forest (RF) classifier. Considering the precision and recall of the Commit-
ters model, it is clear that the accuracy is close to the accuracy of the RF classifier.
This shows, that k-means is a competitive alternative to supervised algorithms.

5.4.5 Show that an in-depth Method can perform well on
commodity Hardware at Large-Scale

COYOTE was used to download the organisation, utility, negative instances and
validation datasets. In order to validate that PHANTOM is applicable at scale, the
timings of COYOTE are extrapolated to the size of the large dataset. Since the
organisation dataset comes from a different selection process than the others (see
section 5.3) it is not used for this extrapolation.

COYOTE’s results (table 5.10) show that 3.8% of the repositories were unavail-
able, which means they have been deleted or made private. The total download
time was 7.5 minutes for 500 repositories, or an average of one repository every 0.94
seconds.

When these values are extrapolated up to the large dataset (1,857,423 reposito-
ries), the time to obtain the Git logs is estimated to be 20.2 days. This extrapolation
validates that PHANTOM can perform well on commodity hardware, even at large
scale.
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Dataset Available Repositories Time Taken
(minutes)

Organisation 149 / 150 10:39
Utility 145 / 150 2:44
Negative Instances 138 / 150 1:53
Validation(Well-engineered) 100 / 100 1:36
Validation(Not well-engineered) 98 / 100 1:18

Table 5.10: Number of available repositories and timings to clone and generate
the Git log for them.
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Results

In this chapter, the results for COYOTE’s application on the large dataset are
presented. COYOTE took 21.5 days to obtain the Git logs for 1,780,773 (95.36%
of all) repositories. This leaves 76,650 (4.64% of all) repositories that were not
available, due to either deletion or being made private. When converting the Git
logs to time-series, some of the logs had to be excluded from the analysis, because
of a formatting problem; Logs with author and committer names that contain a
comma (“,”) had to be excluded, because the additional comma made the correct
separation of information impossible since Git logs are saved as CSV files. For this
reason 9,606 (0.5% of the obtained) Git logs had to be discarded. The remaining
1,771,167 Git logs were converted to time-series and feature vectors were extracted.

In order to predict the labels for the repositories a fitted model is required.
Therefore the models that performed best on the validation dataset are selected.
This means, ten models (one for each combination of ground-truth dataset and
measure) are used to predict the repository labels for the large dataset. The models
are chosen following the same set of rules as presented in section 5.4; however, since
k-means uses random initial centroids, the accuracy varies, from the one seen in the
validation. In table 6.1 and table 6.2, the best models and the number of repositories
predicted to be well-engineered are presented. Out of these models, six resulted in
a percentage of well-engineered repositories between 35% and 40% and two resulted
in 55%. The remaining two models resulted with 19% and 96%.

6.1 Evaluation
In this section, COYOTE’s performance is compared to reaper, the baseline study’s
implementation. COYOTE produced ten models where six were within a 5% range

Measure Threshold Number of
well-engineered

Percentage of
well-engineered

Merges 0.9 343,818 0.19
Commits 0.9 704,995 0.4
Committers 0.75 688,260 0.39
Integrations 0.9 700,501 0.39
Integrators 0.75 688,260 0.38

Table 6.1: Results from COYOTE on 1,771,167 repositories from the large dataset.
Each row represents one model (Organisation models).
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Measure Threshold Number of
well-engineered

Percentage of
well-engineered

Merges 0.85 1,716,118 0.96
Commits 0.95 985,213 0.55
Committers 0.75 690,371 0.39
Integrations 0.95 983,553 0.55
Integrators 0.45 617,042 0.35

Table 6.2: Results from COYOTE on 1,771,167 repositories from the large dataset.
Each row represents one model (Utility models).

of one another. These six models predicted 38.33% (mean) of repositories to be well-
engineered. This is significantly higher than the prediction for the baseline study,
which was 24.07%.

COYOTE achieved a 33% reduction in data collection time over reaper, however
4.64% of repositories were unavailable. It took 21.5 days to generate the Git logs
for the large dataset, or one second per repository, which is within 1.3 days of the
extrapolated analysis time of 20.2 days (see section 5.4.5). At one second per repos-
itory, it would take around 2.54 years to clone all of GitHub. However, considering
that GitHub will grow in this time, even at the this rate it would be infeasible to
analyse all of GitHub. It is also interesting to note that for every extra second the
analysis takes, a total of 21.5 days is added to the total analysis time for the large
dataset. Therefore, it is important to reduce the analysis time for each repository
when operating at scale. The data collection time concerns Git log retrieval only.

COYOTE reduced the hardware requirements over reaper by two orders of mag-
nitude. Reaper analysed the large dataset using a computer cluster of 200 nodes,
while COYOTE achieved the same using a standard desktop computerappendix C.
Furthermore, the authors found that the hardware resources were not exhausted
(RAM, CPU), spending most of the time idle. The majority of “analysis” time is
spent waiting for downloads to complete, rather than Git log extraction.

Bandwidth is not a limiting factor in analysis, rather the download speed pro-
vided by GitHub is. The bandwidth available to the machine on which COYOTE
ran was 1 Gbps. The authors observed the download speed, which rarely exceeded
40Mbps. This shows that bandwidth is not the constraint one might expect it to
be, but rather the speed at which repositories can be downloaded from GitHub is.

COYOTE reduces the number of measures needed for analysis from seven taken
by reaper to one. Although five measurements were experimented with, four show
competitive results when used on their own. This shows that with only limited
information, accurate predictions can be made about the quality of a repository.
For instance, COYOTE can produce competitive results with Commit Frequency
alone, which is also taken by reaper as part of the seven extracted measures (as a
monthly average). This shows that COYOTE was able to achieve similar accuracy,
with a subset of the data used by reaper (i.e. one seventh), by choosing a different
representation.

Since measurements are taken from the Git logs, rather than other sources (e.g.
source code, GitHub API, GHTorrent), private or closed-source repositories can now
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be cross-analysed with open-source ones. PHANTOM also avoids the limitations of
other sources such as out-of-date information and API key sharing.

PHANTOM’s working assumption is that the programming language of a repos-
itory is not relevant. As the Git log is independent of the programming language,
COYOTE can analyse any programming language, which is a significant improve-
ment over reaper. However, the authors must admit that the efficacy of COYOTE
on other programming languages has not been established, since the large dataset
contains repositories from a set number of languages, which are the ones supported
by reaper.

The above presented points are presented in table 6.3 and compared side-by-side
to reaper.

Aspect Reaper PHANTOM
Data Collection Time >1 month 3 weeks

Hardware Requirements Computer cluster
(200 nodes)

Desktop computer

Measures 7 measures 1 measure

Data Sources GHTorrent, source code Git

Sample Size 1,857,423 1,771,167

Machine Learning approach Supervised Unsupervised

F-Measure (Organisation) 68% 77%

F-Measure (Utility) 84% 76%

Percentage well-engineered 24.07% 38.33%

Programming Languages
Supported

C, C#, C++, Java,
PHP, Python, Ruby

Any

Implementation Languages Python Python, Rust

Table 6.3: Comparison between reaper and PHANTOM.
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7
Discussion

In this chapter the significance of the study, threats to validity, ethical considerations
and future work are discussed.

7.1 Significance of the Study
The amount of available software repositories rises everyday; between January 2014
and March 2018 the number of GitHub repositories rose from 10.6 million to over
80 million, an increase of 780%. This dramatic increase has not been matched
by analysis methods so far. In order to make use of this large corpus of data, it
is essential to filter out undesirable repositories, however as Munaiah et al. puts
it: “there are limited means of separating the signal (e.g. repositories containing
engineered software projects) from the noise (e.g. repositories containing homework
assignments)”[25].

PHANTOM addresses this problem and improves on existing methods with re-
spect to analysis time and hardware requirements, without sacrificing accuracy.
Therefore, the barrier for researchers, who operate in short time frames and without
expensive hardware, is removed. PHANTOM allows researchers to automatically
and inexpensively curate desirable repositories for more specific analyses. In the
MSR field, the authors observed the use of inaccurate or unproven filtering methods
(e.g. popularity). PHANTOM could be applied in such studies to improve the data
curation process. For example, Robles et al. published a collection of 24,000 repos-
itories, for which PHANTOM could be useful to filter out undesirable repositories.
Such use cases are possible, because PHANTOM is not dependent on mirroring
services like GHTorrent. Any Git repository, not just those available through such
services, can be analysed, making PHANTOM also suitable for research on private,
or very specific collections of repositories. Furthermore, PHANTOM is programming
language agnostic.

As part of this thesis several datasets are published; Git logs, time-series(measures),
and feature vectors for both the ground-truth (630 repositories of known quality),
and the large dataset (1,771,167 of unknown quality). These datasets can be used
to reproduce the findings and carry out other analysis. For instance, they could be
complemented with programming language information to find correlations between
the quality and the programming language of software projects.

We hope that PHANTOM is used by other researchers as a baseline to improve
large-scale analysis. This thesis has shown that an alternative way of analysing
software repositories is feasible. However, the proposed method can be improved
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and more algorithms experimented with.

7.2 Threats

External Validity The ground-truth [25], which is based on a description of 300
well-engineered and 150 not well-engineered repositories may not agree with other
collections of repositories. Although the authors cannot confirm the correctness of
the ground-truth, as it is not feasible, COYOTE does not use the ground-truth to
train, because k-means is an unsupervised algorithm. The produced clusters agree
with the ground-truth to a large degree, which supports its correctness. That being
said, the possibility also exists that both COYOTE and the ground-truth are wrong
and this agreement is coincidental. COYOTE was also not validated against other
datasets, which could mean that it is overfitted, and therefore may not perform as
accurately on other datasets. Furthermore, statements about the download speed
may not be relevant to researchers with different hardware, internet connection, or
an alternative agreement with GitHub.

Internal Validity The results of the thesis are based on the five measures that
are taken from Git logs; Integration Frequency, Commit Frequency, Integrator Fre-
quency, Committer Frequency, and Merge Frequency. These have been selected by
the authors and may not reflect the true characteristics of repositories. In addi-
tion, feature vectors contain 42 features, which are also chosen by the researchers.
Although attention has been paid to choose features that are reflective of the time
series, no rigorous process was followed to ensure they were so.

7.3 Ethical Considerations

The most important ethical consideration concerns the Git logs published as part
of this thesis, which contain the names and emails of GitHub users. Although these
are publicly available, the authors have anonymised this data to protect the users’
privacy, in accordance with GitHub terms and conditions. Therefore, the published
Git logs contain placeholder names and emails which neither hinder analysis, nor
leak sensitive information.

A further ethical consideration is the collection of repositories from GitHub.
Although the repositories are publicly available, mining data on the scale seen in
this thesis is not generally acceptable behaviour according to GitHub’s terms of
service[17]. The authors came to an agreement with GitHub about the duration
and use of GitHub’s servers, and how the collection should be carried out. GitHub
has requested that the details of this agreement should not be published, because
it is specific between GitHub and the authors. It is important to emphasise that
contacting GitHub before mining is a necessity for ethical research, due to the terms
of service. This extends (beyond cloning from GitHub) to using the GitHub API.
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7.4 Future Work

There are several areas which would be worthwhile exploring, but could not be
explored during the thesis. As the validation of PHANTOM has shown, meaningful
clusters could be produced; however, there is still uncertainty on how well this
generalises to other repositories. A manual investigation on a random sample of
repositories from the large dataset would clarify how well COYOTE works, and
how the concept of well-engineered is understood by the tool. This would help
to understand why COYOTE was more optimistic about the percentage of well-
engineered repositories than reaper. The meaning of the produced clusters could
be further analysed by cross-referencing COYOTE’s labels with reaper’s labels to
see where they disagree. Identifying the characteristics of repositories in such cases
would deepen the understanding of what the clusters mean.

As of now, PHANTOM extracts five measures from the Git log which were
chosen by the authors; however, they do not exhaust the available information. For
example, Git can provide a list of files that changed in each commit and how many
lines were added or removed. This would enable a code churn related measure,
which does not require static code analysis. As long as the additional measures can
be formatted as time-series, the later steps (feature extraction, feature selection, and
clustering) of PHANTOM are not affected. It would also be of interest to combine
measures to analyse whether this would improve the accuracy.

The extracted feature vector could be extended, as well as the feature selection
process (based on correlation threshold) could be experimented with (e.g. greedy
forward search). K-means was used to cluster repositories, however, other machine
learning algorithms, both supervised and unsupervised (e.g. hierarchical clustering,
neural networks, support vector machine), and respective configuration parameters
could be experimented with. As the time to fit k-means and to predict repositories is
negligible, the focus of such experiments would rather be on the prediction accuracy.

Due to the lack of ground-truths in the MSR field, PHANTOM was applied to
one ground-truth only. It would be interesting to investigate PHANTOM’s accuracy
on other datasets and ground-truths. PHANTOM could also be of interest for other
contexts. For example, given a collection of agile repositories, PHANTOM could
be used to perform cluster analysis to identify different sub-groups (i.e. clusters) of
agile repositories and the characteristics these have.

COYOTE could be improved in speed and user interaction. Currently, the tool
requires some practice to be handled correctly. COYOTE must be simplified to
encourage its usage by others. There is room for several optimisations that would
streamline the process. For instance, the time-series conversion and feature extrac-
tion, and cloning the Git repositories could be run in parallel, because the computer’s
CPU and RAM are not exhausted at runtime. Additionally, other input formats (e.g.
JSON, SQL) would be helpful, as well as an easy way for users to swap the machine
learning algorithm to encourage experimentation.

There are two ambitious improvements which would provide great value. One
is to implement functionality to update the feature vectors of previously analysed
repositories, which would enable analysis of how repositories change over time. The
other is, to implement a distributed version of PHANTOM; COYOTE could be
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run on several machines, and by that distribute the load, which would cut down
analysis time linearly. For example, using five machines, all of GitHub (80,000,000
repositories) could be analysed in about half a year (compare section 6.1).
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Conclusion

Traditionally, software project analysis has been approached in form of case studies
where researchers manually analyzed a small set of similar projects. Finding these
similar projects was both effort intensive and error-prone. However, since the rise
of repository hosting platforms like GitHub, large-scale analysis has become more
common as we can use automation to mine and compare repositories. One of the
biggest problems with large-scale analysis is the acquisition of desirable repositories.
Without an appropriate way of filtering out undesirable repositories, analyses will
be skewed.

The problem with the majority of applied filtering techniques when mining soft-
ware repositories is that they are inaccurate or unproven. Munaiah et al. introduce a
new method(reaper) that achieves high accuracy, but requires the computing power
of a computer cluster, and cannot be applied to all repositories as it is based on
static analysis of code. In this thesis, a method called PHANTOM is proposed that
improves over existing ones. PHANTOM is able to filter repositories accurately with
low hardware requirements. It achieves this by using a time-series representation as
input to create feature vectors describing properties of the time-series (e.g. number
of peaks). These time-series are based on information from the development history
and are transformed to feature vectors that can be used with machine learning algo-
rithms for smarter comparison. In particular, this makes the time-series compatible
with a standard k-means algorithm, which is used to cluster the repositories into
two groups; well-engineered and not well-engineered.

PHANTOM was able to rediscover a ground-truth of 450 repositories, with the
best k-means models achieving up to 100% precision and recall. Upon validation
of PHANTOM, the best models achieved up to 87% precision or 94% recall when
predicting new repositories. The MCC of the best models was overall positive,
with the highest being 0.65. This is competitive to the best supervised classifiers
from the baseline study (88% precision, 99% recall). PHANTOM obtained the
metadata of 1,786,601 GitHub repositories in 21.5 days, which is over 33% faster
than reaper, and reduced the hardware requirements by two orders of magnitude.
The authors conclude that 38.33% of the analysed GitHub repositories are well-
engineered, compared to 24% reported in the baseline study.

In future work a comparison of PHANTOM and reaper is of interest. Identify-
ing where the two methods disagree would open up the opportunity to clarify the
differences between them. An additional worthwhile endeavour is to explore addi-
tional clustering techniques, which was not possible during the thesis due to time
limitations. We provide the produced data, which includes collections of both Git
logs, time-series and feature vectors for 650 repositories from the ground-truth and
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1,771,167 Git logs of unknown quality.
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A
Overview of Studies in the Field of

MSR

Table A.1: Presents an overview the MSR 2017 studies.

Paper Filtered on Dataset Data Source Data Type Language
[44] Domain, market

and venture value.
20 GitHub Bug

Database
Many

[19] Empty and Forked
repository

82477 GitHub,
GHTorrent

Source code,
metadata

Many

[26] File type 245 GitHub OCL files -
[48] Apache project 8 GitHub Metadata -
[24] Popularity, Com-

mits
- GitHub Metadata -

[5] Popularity, Forks,
Language

1359 GitHub Travis CI -

[33] Popularity, Builds,
Developers, Com-
mits

14 GitHub,
Travis CI

Build and
Git log

Java

[47] Popularity 20 GitHub,
Travis CI

Build and
Git log

Java

[7] File type, Popular-
ity

38079 GitHub Docker files -

[34] Popularity, Lan-
guage

850 GitHub Metadata 17

[43] Domain 1316 GitHub Metadata Java
[14] Language, Devel-

opers, Duration,
Commits

8753 GHTorrent Source code Java

[3] Forks 14807 GitHub Source code Java
[42] Calendar time,

Commits, Duration
- GHTorrent,

GitHub
Metadata -

[39] Popularity, Lan-
guage, Commits

750 GitHub Source code Java

[38] Size, Commits,
Language

<3000 Boa Metadata Java

Continued on next page
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A. Overview of Studies in the Field of MSR

TableA.1– Continued from previous page
Paper Filtered on Dataset Data Source Data Type Language
[31] Popularity, Com-

mits
154 GitHub Source code,

Metadata
Java
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B
Features extracted by PHANTOM

Table B.1: Features extracted by PHANTOM

Category Feature Description
Duration Duration Time interval in weeks between the first and last

week of the time-series

Y value

Max y The highest value
Max y Pos The week number of the Max Y
Mean y The average value
Sum y The sum of all values
q25 The 25% quantile of values
q50 The 50% quantile of values
q75 The 75% quantile of values
std The standard deviation of values

Peaks
Peak down The number of downwards facing peaks
Peak none The number of peaks that are neither downwards,

nor upwards facing peaks
Peak up The number of upwards facing peaks

Time
between
peaks

Min TBP up The time between upwards facing peaks is
measured as the number of weeks between two
neighbouring peaks.

Avg TBP up
Max TBP up

Amplitude
Min amplitude The amplitude is the difference in height between

a peak and the previous valley. This value is
normalised by dividing it with Max Y.

Avg amplitude
Max amplitude

Positive
and
negative
peak
deviation

Min PPD The positive peak deviation (PPD) is the
difference between the Mean Y value and the y
value of a upwards facing peak.

Avg PPD
Max PPD
Min NPD The negative peak deviation (NPD) is the

difference between the Mean Y value the y value
of a downwards facing peak.

Avg NPD
Max NPD

Positive
and
negative
sequences

Min PS A sequence is, when at least two sequential
gradients have the same sign. Therefore, the
positive (PS) and negative sequences (NS) are
numeric values, that count the number of
sequential same sign gradients.

Avg PS
Max PS
Min NS
Avg NS
Max NS

Continued on next page
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B. Features extracted by PHANTOM

TableB.1– Continued from previous page
Category Feature Description

Positive
and
negative
gradients

Min PG

Gradients are the difference between two
neighboring y values.

Avg PG
Max PG
Min NG
Avg NG
Max NG
PG Count Number of positive gradients (PG)
NG Count Number of negative gradients (NG)
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C
Desktop Computer Specification

Table C.1: Hardware specification of the desktop computer used in this thesis.

Component Specification
Processor Intel i5
Ethernet Connection 1Gbps
HDD 1TB
RAM 16Gb DDR3 RAM
Operating System Lubuntu 17.10
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D
K-Means Configuration

Table D.1: K-means configuration for COYOTE. COYOTE uses the standard
configuration from the Python library Scikit-Learn[29]

Parameter Value
Number of Clusters 2
Number of Initialisations 10
Centroid Update Algorithm k-means++ (Lloyd’s algorithm)
Max Iterations 300
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