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Effects of electron trapping and ion collisions on electrostatic shocks

Andréas Sundström
Department of Physics
Chalmers University of Technology

Abstract
Electrostatic shocks in plasmas have been observed to be able to accelerate particles to
twice the shock velocity with a very low energy spread. Shock phenomena are often mod-
eled as exactly collisionless, which is a very good approximation for astrophysical shocks.
However, collisions might play a role in shocks created in laboratory plasmas, since very
sharp features of the ion distribution function develop due to ions being reflected at the
shock front; this ion reflection results in empty regions of phase space with discontinuities
at their boundaries. In this thesis the effects of a weak but finite ion collisionality are con-
sidered in a time dependent, semi-analytical treatment. The amplitude of the downstream
potential oscillation is found to increase approximately as the square root of time as par-
ticles are scattered into the originally empty regions of phase space. The corresponding
changes in the electrostatic potential lead to an increased size of the trapping regions in
the ion phase space.

This thesis also studies the effect of electron trapping in the potential oscillations
downstream of the shockfront. Two model electron distributions, which are flat in the
trapped regions of phase space, are considered. The two models only differ in where
the potential threshold for trapping is set; one model allows for trapping at a freely set
threshold in order to emulate the effects of far downstream behavior of the shock, while
the other model only allows for trapping inside the downstream potential oscillation. In
general the effects of electron trapping are to reduce the maximum electrostatic potential,
but at the same time increase the range of shock propagation speeds for which electrostatic
shock solutions exist. The second electron trapping model also exhibits multiple shock
solutions for the same temperature ratio and Mach number in certain parameter regions.
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Chapter 1

Introduction

Electrostatic shocks in plasmas are known to be able to accelerate charged particles [1–3],
in particular ions. Shock acceleration is somewhat similar to a golf club hitting a golf
ball; when the propagating shockwave hits an ion, the ion can bounce off of the shock
front with twice the speed of the shockwave. Using high intensity lasers to generate the
shocks, this shock acceleration has been observed to produce accelerated protons with an
extremely narrow energy spread [4]. This can potentially be used to create compact ion
accelerators, with applications in e.g. ion radiation therapy for cancer treatment.

Apart from laboratory plasmas here on earth, shocks are also common in astrophysical
plasmas [5–7], where they play an important role in accelerating particles. For instance,
shocks have been pointed out as an acceleration mechanism for generating the electrons
that cause the aurora [8]. While space plasmas are so tenuous that they can very well be
approximated as collisionless, more dense lab plasmas may require a treatment considering
the effects of inter-particle collisions; which is why a basic collisional shock model is devel-
oped in this thesis. Collisions in electrostatic shocks have also been shown in simulations
to cause extremely fast ion heating [9], with possible applications in inertial confinement
fusion.

The purpose of this thesis is to develop and investigate semi-analytical models of these
types of shocks. These models are developed as extensions of the work done by Cairns
et al. [10,11] and by Pusztai et al. [12]. While these shocks can be simulated using kinetic
Vlasov solvers or PIC (particle in cell) methods, the benefits of a semi-analytical model
lies in the relatively cheap computational cost of running these models. Furthermore, a
semi-analytical model can also aid in the understanding of these phenomena due to the
freedom to choose input parameters in a way that is not possible in a first-principles
simulation.

In this thesis a semi-analytical, kinetic model of electrostatic shocks is presented, and
then extended to also account for trapping of electrons and ion collisions. This thesis
will begin by first presenting a short introduction to shocks. Thereafter chapter 2 starts
with some basic plasma physics. Then, a short study of solitons as examples of non-linear
waves is used to lead up to the basic model for the collisionless electrostatic shock. With
the shock framework established, the shock model is extended to account for electron

1



1. Introduction

Image credit: NASA.

Figure 1.1: Schlieren image of a fighter jet in supersonic flight with accompanying
shockwaves. There are several shockwaves in this photograph, seen as dark bands,
from different parts of the aircraft disturbing the air flow enough to create a shock.

trapping; the effects of which are then studied numerically in chapter 3. After that, the
new shock model, with a small collisionality, is developed and studied in chapter 4, before
the final conclusions are drawn in chapter 5.

1.1 What are shockwaves?

The perhaps best known example of a shockwave is the “sonic boom” produced by a
supersonic fighter jet. An example of which is shown in Figure 1.1; the photograph is
taken using a method called Schlieren photography, where fluid density variations are
made visible as different brightnesses on the image. Each dark streak corresponds to one
shock front where the air is greatly compressed.

In a more general sense, shockwaves are wave structures that propagate trough a fluid
faster than the speed of sound in the fluid – the propagation is supersonic. A shockwave
is also characterized by having a very thin boundary layer where the fluid pressure varies
sharply [13]. It is this steep variation that is the reason for the loud “bang” from a
supersonic jet.

The cause of a shockwave can be intuitively understood through the idea of the prop-
agation of information through the fluid via soundwaves. Information about a subsonic
disturbance can be transmitted, with soundwaves, to any part of the flow1; therefore the
upstream flow can be “warned” of the obstacle and can thus flow around the obstacle more
or less smoothly. If on the other hand the flow is supersonic, the soundwaves are not fast
enough to travel upstream to warn about the disturbance, and so the fluid is “shocked” as
it abruptly encounters the obstacle. Since the speed of sound is the lower limit for shocks
to form, the so called Mach number M = V/cs, named after Ernst Mach, is introduced,
where V is the flow speed and cs is the speed of sound. Shocks can therefore only form at
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1.1. What are shockwaves?

M ≥ 1. The aircraft in Figure 1.1 is flying at M = 1.05.
One thing worth pointing out here is that it need not be sound waves per se that

mediate the information of the disturbance, but rather any type of information carriers.
Regular soundwaves happen to be the culprit in the common examples. This has therefore
influenced the terminology. Terms like the speed of sound should therefore rather be
thought of as the speed of information propagation in the fluid.

As an example of a shockwave not mediated by soundwaves, besides the electrostatic
shocks of this thesis, consider cars “flowing” down a highway. There, so called traffic waves
can occur. They are waves in the car-density arising from the non-zero reaction time of
the drivers. One such wave can be observed after a red light turns green; the first car
starts accelerating, then the second car shortly thereafter, and so on. Viewed from above
this looks like a wave of low density propagating backwards trough the line of cars. If the
car-density, through some random fluctuation, spontaneously rise above a critical density,
then this disturbance will continue to grow into what some have called shockwaves [14].

The speed of information is often determined by some linear, low amplitude wave
propagation speed. For a wave to be linear, it means that it can mathematically be
rescaled and superimposed onto some other linear wave, and still constitute a solution to
the (linear) wave equation of the system. Shockwaves, on the other hand, are inherently
non-linear [15]. For one thing, they propagate faster than the linear waves, so they cannot
be described as a linear combination of those waves. This also means that they do not
have the same freedom mathematically as linear waves; a shock solution cannot have an
arbitrary amplitude for instance. Shockwaves do also often have a larger amplitude than
the naturally occurring linear waves; this is because a linear wave theory is often just a
low amplitude approximation of some non-linear phenomenon in nature.

In a plasma, a possible linear wave propagating information is the ion-acoustic wave.
Unlike the electromagnetic waves, which most people are familiar with, the ion-acoustic
wave is a longitudinal wave. They stem from longitudinal ion density oscillations in a
plasma, which is why they are called ion-acoustic. Since these waves are also electric, they
do not require close contact between particles – the electric field is long-range. This also
explains why shock structures can be formed, even in tenuous space plasmas.

1When talking about shocks, it is usually easier to speak of them in their own rest frame. There, the
fluid is seen as supersonically flowing towards the shock.
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Chapter 2

Collisionless shock model

The electrostatic shocks are studied with a kinetic model based around the idea that the
shockwaves reflect ions back upstream. To arrive at this model, a short review of kinetic
and linear theory is first presented. Then, solitons are presented as a precursor to the shock
model. The shock model is then later modified to take electron trapping into account.

2.1 The ion-acoustic wave – a linear wave mode
Before delving into the non-linear waves, it is instructive to begin by studying some linear
wave modes. This will introduce some useful concepts, as well as provide a good review
of the basics in plasma physics; for a more in-depth treatment the reader is advised to a
proper text book on the subject, e.g. the one by Chen [16].

2.1.1 Kinetic theory

Since plasmas, like regular gases, consist of a very large number of particles, but where
each particle interacts electromagnetically, kinetic theory from statistical physics becomes
a powerful tool when analyzing plasmas. In kinetic theory it is the one-particle distribution
function, f = f(t,x,v), that plays the central role. It gives a measure of the distribution
of particles in phase space, which consists of all the spacial dimensions as well as the same
number of velocity dimensions. Note that the variables x and v denote coordinates in
phase space, and have nothing to do with any “bulk” or “macro” properties of the plasma.

The interpretation of the distribution function is that f(t,x,v) ddx ddv gives the num-
ber of particles in the phase space volume element ddx ddv at the phase space point (x,v)
at time t, and where d is the number of dimensions considered. This means that the
number of particles in a volume ddx in real space at position x is given by integrating over
all of v. In other words, the particle number density in real space is

na(t,x) =
∫

all v
ddv′ fa(t,x,v′), (2.1)

where a in this case denotes the particle species (ions or electrons). When more detail is
required, the naming convention in this thesis is that subscript “e” denotes electrons, and
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2. Collisionless shock model

“j” denotes any ion species while “i” is reserved for the main ion species. The “main ion
species” being the ion species with the greatest number of ions, Ni =

∫
x ddxni(x); and

that usually by far, Ni � Nj for j 6= i.
In general, a kinetic average of any quantity, χ, can be derived from the distribution

function through

〈χ(t,x,v)〉a = 〈χ〉a (t,x) = 1
na(t,x)

∫
all v

ddv′ χ(t,x,v′) fa(t,x,v′). (2.2)

For example, one quite useful average quantity is the bulk flow velocity of a plasma species

ua(t,x) = 〈v〉a = 1
na

∫
all v

ddv′ v′ fa(t,x,v′), (2.3)

which will be used later.

The Maxwell-Boltzmann distribution

The Maxwell-Boltzmann distribution function,

f (MB)
a (x,v) = na,0

(2πTa/ma)d/2 exp
[
−mav

2

2Ta
− Za

eφ(x)
Ta

]
, (2.4)

is the distribution used for non-relativistic particles in thermal equilibrium. Here v2 = |v|2,
and φ is the electrostatic potential; Ta, ma, Za, and na,0 are the temperature, mass, atomic
charge number1, and unperturbed density of species a respectively.

According to (2.1), the particle density of this distribution is

n(MB)
a (x) = na,0 exp

[
−eZaφ(x)

Ta

]
. (2.5)

2.1.2 The Vlasov equation

The distribution function is connected to the number of particles of each species in the
system. Therefore, following a phase space trajectory which a particle would follow, the
distribution function should be constant along the trajectory as long as there are no
collisions2. The reason for this is that the number of particles of species a in an infinitesimal
phase space volume is faddvddx, but since the particles follow precisely this phase space
trajectory fa must be constant along it. That is

0 = d
dt
[
fa
(
t,x(t),v(t)

)]
= ∂fa

∂t
+ dx

dt ·
∂fa
∂x

+ dv

dt ·
∂fa
∂v

, (2.6)

1That is, the charge of a particle of species a is Zae, where e is the magnitude of the elementary charge.
For an electron Ze = −1.

2At least in the processes relevant for this thesis, where recombination/ionization or nuclear reactions
are not present.
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2.1. The ion-acoustic wave – a linear wave mode

where d/dt denotes the total time derivative along the phase space trajectory. This
is called the Vlasov equation. This equation can be understood more intuitively as a
continuity equation in phase space, where the last two terms represent the influx of fa into
an infinitesimal phase space volume, and the partial time derivative is the corresponding
rate of change inside this piece of phase space volume. A derivative with respect to a
vector is to be understood as a vector of derivatives with respect to each component, i.e.
a gradient in the variables of the vector, e.g.

∂

∂x
=
(
∂
∂x ,

∂
∂y ,

∂
∂z

)
=∇x, (2.7)

for x = (x, y, z).
The Vlasov equation can be further rewritten by using

dx

dt ≡ v and dv

dt ≡ aa. (2.8)

The acceleration, aa, can then be written using Newton’s second law, and the expression
for the Lorentz force acting on a charged particle, as

dv

dt = 1
ma

F a = Zae

ma
(E + v×B). (2.9)

With this, the Vlasov equation becomes

∂fa
∂t

+ v · ∂fa
∂x

+ Zae

ma
(E + v×B) · ∂fa

∂v
= 0, (2.10a)

which is then coupled to Maxwell’s equations

∇ ·E = ρ

ε0
, ∇×E = −∂B

∂t
,

∇ ·B = 0, ∇×B = µ0J + µ0ε0
∂E

∂t
,

(2.10b)

with
ρ = e

∑
a

Zana(t,x) and J = e
∑
a

Zaua(t,x)na(t,x), (2.10c)

where the sum is over all particle species – also including electrons using the convention
that Ze = −1. In theory, this describes the whole physical system, and is called the Vlasov-
Maxwell system of equations. Note that this is a non-linear system of integro-differential
equations, since ρ and J depend on fa through na and ua.

The scope of this thesis is, however, limited to non-relativistic systems in which the
magnetic field does not affect the dynamics; either where B = 0 or, in some space plasmas,
where v||B. In both cases v×B = 0. The system of equations can then be reduced to

∂fa
∂t

+ v · ∂fa
∂x
− Zae

ma
∇φ · ∂fa

∂v
= 0, (2.11a)

7



2. Collisionless shock model

and
−∇2φ = ρ

ε0
= e

ε0

∑
a

Zana(t,x), (2.11b)

where φ is the electrostatic potential, and E ≡ −∇φ. This system is called the Vlasov-
Poisson system of equations, and is the framework in which the electrostatic shocks will
be studied in this thesis.

2.1.3 Fluid equations

While the equations (2.10) or (2.11) fully describe the physical system, they can also be
hard to work with due to their high dimensionality. Therefore, a fluid moment approach is
sometimes used instead. A set of fluid equations can sometimes be sufficient to capture all
the essential physics, and at the same time can be much easier to handle and understand
intuitively. These fluid equations can be derived from the Vlasov equation (2.10a) through
the method of moments, which is based on the kinetic average (2.2).

Given the equation (2.10a), it is clear that multiplying its LHS by some function of
only v, χ = χ(v), and integrating over the whole velocity space will still yield zero on the
RHS, i.e. ∫

v
ddv′ χ(v′)

[
∂fa
∂t

+ v′ · ∂fa
∂x

+ 1
ma

F a ·
∂fa
∂v′

]
= 0, (2.12)

where F a = Zae(E + v′×B) for short. For the first term, the time derivative can be
moved outside the integration since χ(v) only depends on the phase space coordinate v,
hence ∫

v
ddv′ χ(v′)∂fa

∂t
= ∂

∂t

∫
v

ddv′ χ(v′) fa(t,x,v′) = ∂

∂t

[
na(t,x) 〈χ〉a

]
. (2.13)

The second term is completely analogous,∫
v

ddv′ χ(v′)v′ · ∂fa
∂x

= ∂

∂x
·
∫

v
ddv′ χ(v′) v′fa(t,x,v′) = ∂

∂x

[
na(t,x) 〈χv〉a

]
. (2.14)

For the third term, the integration is a bit more involved since the derivative this time is
with respect to the integration variable v′. It can however be done through integration by
parts ∫

v
ddv′ χ(v′)F a ·

∂fa
∂v′

=
∮
v→∞

χ(v′)fa(t,x,v′)F a · dS

−
∫

v
ddv′ fa(t,x,v′)

∂

∂v′
·
[
χ(v′)F a

]
.

(2.15)

It is again stressed that x and v (v′) denote phase space coordinates, and are thus indepen-
dent of each other. The first integral is a surface integral over the surface where v →∞;
for any physical system with finite energy fa(t,x,v) → 0 as v → ∞, meaning that the
surface integral vanishes. For the remaining integral the derivative can be expanded to

∂

∂v′
·
[
χ(v′)F a

]
= ∂χ

∂v′
· F + χ(v′) ∂

∂v′
· F a. (2.16)

8



2.1. The ion-acoustic wave – a linear wave mode

When substituting in the expression for the Lorentz force,

F a = F a(t,x,v′) = Zae
(
E(t,x) + v′×B(t,x)

)
, (2.17)

the last term in (2.16) vanishes as

∂

∂v′
·
[
E(t,x) + v′×B(t,x)

]
= B(t,x) ·

(
∂

∂v′
× v′

)
= 0. (2.18)

Therefore, what is left of (2.15) is∫
v

ddv′ χ(v′)F a ·
∂fa
∂v′

= −
∫

v
ddv′ fa(t,x,v′)F a ·

∂χ

∂v′
= na(t,x)

〈
F a ·

∂χ

∂v′

〉
a
, (2.19)

which finally gives

ma
∂

∂t

[
na 〈χ〉a

]
+ma

∂

∂x
·
[
na 〈χv〉a

]
= eZana

〈(
E + v′×B

)
· ∂χ
∂v′

〉
a

(2.20)

from (2.12).
The method of moments is to set χ(v) = 1,v,v2,v3 etc., where the higher orders

of v are dyadic vector multiplications also known as outer products, which in tensor
index notation is (v`)k1,k1,...k` = vk1vk2 · · · vk` . Each moment, corresponding to setting
χ(v) = vk, gives a new equation but also introduces a new variable. Take, for instance,
the first two moments. Setting χ = 1 in (2.20), together with (2.3), gives

∂na
∂t

+ ∂

∂x
· [naua] = 0, (2.21)

which is recognized as the continuity equation for the particle density. Then for χ = v,
the calculations become somewhat clearer in tensor index notation3

∂

∂t

[
naua j

]
+ ∂

∂xi

[
na
〈
v′iv
′
j

〉
a

]
= eZana

ma

(
Ei + (ua×B)i

)∂v′j
∂v′i

. (2.22)

Note that the indices i and j in italics are actual indices, whereas i and j in roman font
denote different ion species. This can, however, be simplified by setting

v′i = ua i + wi, (2.23)

where wi is the motion relative to the mean flow velocity, which of course has 〈wi〉a = 0,
and

∂

∂xi

[
na
〈
v′iv
′
j

〉
a

]
= ∂

∂xi

[
naua iua j + na 〈wa iwa j〉

]
. (2.24)

The second term here is related to the pressure tensor

Pa ij = mana 〈wa iwa j〉 , (2.25)
3With the Einstein summation convention that two like indices are summed over, e.g. risi = r · s.
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2. Collisionless shock model

which represents the fluid pressure due to the random thermal motion, wi. This, together
with the fact that ∂v′j/∂v′i = δij is the Kronecker delta, results in

∂

∂t

[
naua j

]
+ ∂

∂xi

[
naua iua j

]
= eZana

ma

(
Ej + (ua×B)j

)
− 1
ma

∂

∂xi
Pa ij . (2.26)

The terms on the LHS can be simplified using (2.21), to finally give

mana
∂ua j
∂t

+manaua i
∂ua j
∂xi

= eZana
(
Ej + (ua×B)j

)
− ∂

∂xi
Pa ij , (2.27)

or in vector notation

mana
∂ua
∂t

+mana

(
ua i ·

∂

∂x

)
ua = eZana

(
E + ua×B

)
− ∂

∂x
· P̃ a. (2.28)

This represents a type of continuity equation for the momentum of the fluid. Together,
(2.21), (2.28), and possible higher order moment equations, constitute a fluid or hydrody-
namical system of equations.

The zeroth order moment generated (2.21), which is one equation with two unknowns,
na and ua. Then the next order moment generated another equation for na and ua,
but also introduced the pressure tensor P̃ a. Hopefully it has become clear that going to
the next order moment will not solve this problem. In fact, in theory all the information
conveyed by (2.10a) can still be recovered through the method of moments – it just requires
infinitely many moments. In practice however, one has to cut off at some point and say
that higher order terms of w are negligible compared to the other terms.

2.1.4 Dispersion of linear ion-acoustic waves

A special case, of relevance to the following sections, is the ion-acoustic wave. This wave
mode is derived from the cold-ion assumption that ions are much less mobile than the much
lighter electrons. Assuming cold ions also means that the random thermal motion of the
ions, wj, is small and thus the pressure tensor P̃ j becomes negligible. The ion-acoustic
wave is also an electrostatic wave mode meaning that the electric field is longitudinal, i.e.
it points in the direction of propagation. Furthermore the plasma is also assumed to be
unmagnetized.

To get the equations for the ion-acoustic waves, the fluid equations need to be linearized
in terms of a small perturbation

E = E0 + E′, nj = nj,0 + n′j, and uj = uj,0 + u′j. (2.29)

The unperturbed state is assumed to be static and uniform, meaning that E0 = 0, uj,0 = 0,
and ∂nj,0/∂x = 0. Expanding (2.21) and (2.28) to linear order in the primed variables
yields

∂n′j
∂t

+ nj,0
∂

∂x
· u′j = 0, (2.30a)

10



2.1. The ion-acoustic wave – a linear wave mode

and
mj
∂u′j
∂t

= eZjE
′. (2.30b)

The wave mechanics is then best understood through an expansion in terms of plane waves,
eik·x−iωt. Also, since the wave is longitudinal all the information about the wave lies along
the direction of wave propagation, parallel to k. The equations can therefore be simplified
to 1D by setting the coordinate system such that k = kx̂, u′j = u′jx̂, and E′ = E′x̂. The
linearized equations now become

− iωn′j + iknj,0u
′
j = 0, (2.31a)

and
− iωmju

′
j = eZjE

′ = −ikeZjφ
′, (2.31b)

where E′ = ∂φ′/∂x . For the electrons, which were assumed hot, their density is given by
the Maxwell-Boltzmann density (2.5)

ne = ne,0 + n′e = ne,0 exp
(
eφ′

Te

)
≈ ne,0

(
1 + eφ′

Te

)
. (2.32)

The potential is given by the Poisson equation (2.11b), which here becomes

− ε0(ik)2φ = e

∑
j
Zjnj,0 − ne,0

+ e

∑
j
Zjn

′
j − n′e

. (2.33)

The first bracket vanishes due to the unperturbed plasma being quasi-neutral

ne,0 =
∑

j
Zjnj,0 =.. n0. (2.34)

Now, substituting (2.31a) into (2.31b) yields

ω2

k2 n
′
j = nj,0

eZj
mj

φ′; (2.35)

then, with n′e from (2.32), (2.33) becomes(
ε0k

2

e
+ n0e

Te

)
φ′ = eφ′

k2

ω2

∑
j

nj,0Z
2
j

mj
. (2.36)

This can be simplified to the dispersion relation

ω2

k2

(
1 + k2λ2

D

)
= Te
n0

∑
j

nj,0Z
2
j

mj
. (2.37)

where

λD =
√
ε0Te
e2n0

(2.38)

11



2. Collisionless shock model

is called the Debye length. It might also be clear for the reader why this is called the
ion-acoustic wave. It is because, similarly to a regular sound wave, the oscillation is in the
density and flow velocity of the ions, the only difference being that it is the electrostatic
interaction between ions which mediates the oscillations. Meanwhile, the electrons just
instantaneously follow, without actually contributing to the oscillations.

The Debye length, λD, came from the effects of the electrons and their Maxwell-
Boltzmann distribution. This length scale arises in many different problems where the
electrons are assumed mobile. In such a situation the electrons will react to an electrostatic
potential in such a way as to trying to counteract or shield the potential. Then, as in this
case, the length scales on which this electron shielding acts is the Debye length. In other
words, a microscopic fluctuation will be compensated by the shielding electrons, and the
plasma will look smooth and neutral on length scales larger than λD.

In the long wavelength limit, kλD � 1, (2.37) can be written as

u2
phase = TeZi

mi

∑
j

Zjmi
mjZi

Zjnj,0
n0

= c2
s
∑

j
ζj
Zjnj,0
n0

(2.39)

for some ion species denoted with a subscript “i”, and where uphase = ω/k is the phase
speed of the wave, ζj ..= Zjmi/(mjZi), and

cs ..=
√
TeZi
mi

(2.40)

is referred to as the ion-acoustic wave propagation speed – or the speed of sound for short.
The reason why cs is called this is that when the “i” ion species is the main ion species,
meaning that Zini,0 � Zjnj,0 for j 6= i, then uphase ≈ cs. In a single ion species plasma,
ζi = 1, n0 = Zini,0, and uphase = cs becomes exact.

Finite ion temperature

In the derivation above, the ions were assumed to be cold, i.e. Tj was completely neglected
in the fluid description. However, it is possible to include a finite ion temperature; that
would give an ion acoustic phase velocity of [17, eq. (6.76)]

uphase =
√
ZiTe + γiTi

mi
= cs

√
1 + γiTi

ZiTe
(2.41)

for a single ion species plasma. The parameter γi is analogous to the adiabatic index, also
denoted γ, used in thermodynamics.

2.2 Solitons – initiating the theory of non-linear waves

In the example with traffic waves, in section 1.1, the shocks only originate from high-
enough amplitude perturbations. Then, for the ion-acoustic waves above, one of the

12



2.2. Solitons – initiating the theory of non-linear waves

premises of the whole derivation was that the oscillations be small enough that higher-than-
linear terms could be discarded. The fact that non-linear phenomena mostly only show
up for high amplitudes is symptomatic of such phenomena. It is often the case, in many
physical systems, that a linearized model works well for sufficiently small perturbations
– like in the previous section. However, at some point, the linear model breaks down,
like for example with Hooke’s law or Ohm’s law – a spring will plastically deform from
over-stretching, and a resistor will burn up if too much current is passed through it.
These might seem like silly examples, but they are examples of non-linear phenomenon
nonetheless.

Solitons are like the little brother of shockwaves, both are non-linear waves and both
travel faster than their low-amplitude linear cousins, i.e. they are supersonic with respect
to the basic wave propagation speed in the medium. It is therefore instructive to begin
by studying them briefly, and pick up some useful analytical tools and tricks, before going
on to study the shocks. Solitons occur as a phenomenon where linear dispersion effects,
which generally broadens pulse features, are balanced by non-linear focusing effects, which
act to compress a pulse. The result then becomes a solitary wave which can propagate
more or less indefinitely with the same shape throughout its whole path4. This is also,
in some sense, what sets solitons apart from shocks; solitons are non-dissipative [15, ch.
3], which makes them symmetric in the up- and downstream directions – see Figure 2.2
for an example of how a soliton can look like. This section is based on, and expanded
from, the treatment of solitons in chapter 6 of the book by Tidman and Krall [1], wherein
they also introduce solitons as a gateway to shocks. This is a very narrow treatment of
solitons, suitable for continuing on to electrostatic shocks in plasmas, for a more in-depth
treatment of solitons, the reader is encouraged to look up other text on non-linear waves
– e.g. Scott [15].

Continuing with the cold ion approximation, Ti � Te, in the hydrodynamical system
of equations in 1D, The continuity equation is

∂ni
∂t

+ ∂

∂x
[niu] = 0, (2.42)

and the momentum equation becomes

nimi

[
∂u

∂t
+ u

∂u

∂x

]
= −nieZi

∂φ

∂x
(2.43)

in the absence of magnetic fields. Here u = u(x) is the bulk flow of the plasma, and is
therefore a function of x. Note that this is a non-linear system of equations since there
are terms with products of the two unknowns ni and u, or their derivatives.

The analysis is carried out in the co-moving frame of the soliton, with the x coordinate
set such that the soliton is centered around x = 0. Focusing on steady state solutions in
this frame, the time derivatives can be set to zero, ∂/∂t → 0. For (2.42), this results in

4It should be pointed out that some circumstances require a more strict differentiation between solitons
and solitary waves, due to some different properties in e.g. interactions between waves. In this thesis, the
word soliton will be used with more loose definition.

13



2. Collisionless shock model

the product niu being constant over x, specifically niu = ni,0V where ni,0 and V represents
the values of the respective quantities as x → ±∞, far away from the soliton. Doing the
same for (2.43), and noting that u ∂u/∂x = 1

2 ∂(u2)
/
∂x , yields

E = 1
2miu

2 + eZiφ = 1
2miV

2, (2.44)

where E is of course the energy of an ion. Here φ is taken to be zero at x → ±∞. With
these two results the ion density can be written as

ni = ni,0V

u
= ni,0V√

V 2 − 2eZi
mi

φ
. (2.45)

Assuming that the electrons follow a Maxwell-Boltzmann distribution, (2.4), the elec-
tron density becomes

ne = ne,0 exp
(
eφ

Te

)
, (2.46)

according to (2.5), where ne,0 is the electron density far away from the soliton, where
φ = 0. It is clear from quasi-neutrality considerations that

ne,0 = Zini,0 =.. n0. (2.47)

Note that the quasi-neutrality condition only applies to the unperturbed plasma, there
must be a net charge density inside the soliton for the potential to change as it does.

It is now possible to use (2.45) and (2.46) to write down Poisson’s equation for the
electrostatic potential, in a single ion species plasma, as

− d2φ

dx2 = e(Zini − ne)
ε0

= e n0
ε0

 V√
V 2 − 2eZi

mi
φ
− exp

(
eφ

Te

). (2.48)

2.2.1 The Sagdeev pseudo-potential

To get a better understanding of the solution of (2.48), a so called Sagdeev pseudo-
potential Φ(φ) is introduced. It is defined so that

d2φ

dx2 = −∂Φ
∂φ

. (2.49)

Begin by noticing the similarity between this one-dimensional Poisson equation and New-
ton’s second law.5 Just as in the case of a mechanical system, it is simple to show that
this leads to

1
2

(dφ
dx

)2
+ Φ(φ) = W, (2.50)

5Think of replacing x → t, φ(x) → s(t), and Φ(φ) → U(s)/m, where t is the time, s the position
of a particle of mass m, and U is the potential well the particle is gliding in. This gives the familiar
ms̈(t) = − ∂U/∂s , which is Newton’s second law for a particle moving in a potential, U(s).
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2.2. Solitons – initiating the theory of non-linear waves

0

0 0.1 0.2 ψmax0.3

Ψ

ψ

Figure 2.1: An example form of the Sagdeev potential, plotted with the dimensionless
parameters Ψ = ε0Φ/(n0Te) and ψ = eφ/Te. The Sagdeev potential here is for Mach
number M = 1.1 with M = V/cs, where cs is the ion acoustic wave speed as in (2.40).
Note that Ψ(ψmax) = 0 corresponds to ψmax being the maximum value of the potential
of the soliton.

by multiplying both sides of (2.49) with dφ/dx and integrating over x. The constant of
motion, W , stems from the integration, and it would be the total mechanical energy in
the analogy. The pseudo-potential Φ is, like in a mechanical system, only determined up
to an additive constant. The condition imposed on φ, that φ(x) → 0 as x → ±∞, also
implies that ∂φ/∂x → 0 as φ → 0, which is realized by setting Φ(φ) → W as φ → 0. In
other words, the constant of integration can be chosen to be W = 0, resulting in

1
2

(dφ
dx

)2
+ Φ(φ) = 0, (2.51)

as long as Φ(φ)→ 0 as φ→ 0. In the case of the soliton, (2.48), this would correspond to
having

Φ(φ) = n0Te
ε0

[
mi
ZiTe

(
V 2 − V

√
V 2 − 2eZi

mi
φ

)
+ 1− exp

(
eφ

Te

)]
, (2.52)

which is obtained by simply integrating the RHS of (2.48) and applying Φ(φ) → 0 as
φ→ 0.

An interpretation of (2.51) is that the solution for φ(x) can be interpreted as finding
the trajectory of an imagined particle gliding, with zero total energy, in the potential
Φ(φ), like in Figure 2.1. The fact that the electrostatic potential has to obey (2.51) means
that the allowed φ must satisfy Φ(φ) ≤ 0, which means that the maximum value of the
electrostatic potential, φmax, is at the first positive root of Φ(φmax) = 0. Another way of
seeing this is that (2.51) requires that ∂φ/∂x = 0 only when Φ = 0, i.e. φ has a maximum
or a minimum when Φ = 0. This becomes important in the section 2.3, where shock are
discussed. The analogy that a particle is gliding back and forth in the Sagdeev potential,
Φ(φ), also ensures that the soliton is symmetric in the up- and downstream directions.
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2. Collisionless shock model
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Figure 2.2: The electrostatic potential of a plasma soliton with Mach number M = 1.1.
Notice that the indicated maximum value, ψmax, is the same as is shown in Figure 2.1.

2.2.2 Mach number

The factor mi/(ZiTe) in (2.52) can be recognized as the inverse square of the ion-acoustic
wave propagation speed, cs from (2.40). Without knowing if this is the proper choice,
define the Mach number to be

M ..= V

cs
= V√

ZiTe/mi
. (2.53)

The Sagdeev potential in (2.52) can now be written as

Ψ(ψ) = ε0
n0Te

Φ(φ) = M 2 −M
√

M 2 − 2ψ + 1− eψ, (2.54)

where the dimensionless parameters Ψ and ψ = eφ/Te have been introduced for notational
clarity. The shape of Ψ(ψ) at M = 1.1 is plotted in Figure 2.1.

To see that (2.53) is indeed the right choice of Mach number, Taylor expand (2.54) for
ψ � 1, which gives

Ψ(ψ) = − ψ2

2M 2

(
M 2 − 1

)
+O

(
ψ3
)
. (2.55)

Now, notice that (2.51) requires that Φ ≤ 0 (Ψ ≤ 0) for all values of φ (ψ). For this to be
valid in the limit ψ � 1, (2.55) requires that the Mach number has to fulfill M 2 > 1, i.e.
|M | > 1, which is to be expected of a “proper” Mach number. Furthermore, from (2.45)
it is clear the V and u must have the same sign, and since u is taken to be positive, so
must V and M .

2.2.3 The soliton solution

With this Mach number, the Poisson equation for these solitons, (2.48), can be rewritten
using M from (2.53) and ψ = eφ/Te. To further clean up the equation the new dimen-
sionless coordinate6 x = x/λD is used, with the Debye length λD from (2.38). This results
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2.2. Solitons – initiating the theory of non-linear waves

in the dimensionless Poisson equation

− d2ψ

dx2 = M√
M 2 − 2ψ

− eψ. (2.56)

Unfortunately this cannot be solved analytically, but a numerical solution for M = 1.1
is shown in Figure 2.2. Also note that since this is a second order ODE, two boundary
conditions are required and they are given by

ψ(x = 0) = ψmax,
dψ
dx

∣∣∣∣
x=0

= 0, (2.57)

where ψmax is given by Ψ(ψ = ψmax) = 0.

2.2.4 Infinite wavelength

The fact that the soliton solution is just one single potential hump can be rephrased that
it is an oscillation with infinite wavelength. By the analogy of a particle gliding in the
pseudo potential, the wavelength of the electrostatic potential oscillation corresponds to
the period time it takes this imaginary particle to glide back and forth in the pseudo
potential.

The wavelength can be calculated using the normalized version of (2.51),

1
2

(dψ
dx

)2
+ Ψ(ψ) = 0. (2.58)

Now the normalized wavelength, λ, is given by

λ = 2
λ/2∫
0

dx = 2
ψmax∫
0

(dψ
dx

)−1
dψ =

√
2
ψmax∫
0

dψ√
−Ψ(ψ)

. (2.59)

However (2.55) says that
1√
−Ψ(ψ)

∝ 1
ψ

for ψ � 1, (2.60)

which means that the last integral in (2.59) has a logarithmic divergence at the lower limit
of integration. Therefore λ =∞ in this case, as expected.

In the asymptotic limit ψ → 0, it is possible to rewrite (2.56) as

d2ψ

dx2 '
(
1−M−2

)
ψ, (2.61)

which gives
ψ(x) ' ψ0 exp

[
−x

√
1−M−2

]
, (2.62)

for some unknown constant ψ0. This also shows that the wavelength is infinite, since
M > 1.

6Some might worry that λD in (2.38) does not have the proper physical dimension of length since the
dimension of n0 is length inverse, and not length inverse cubed as is usually the case in three dimensions.
There is however not anything conceptually wrong with this definition, since the dimension of ε0 can be
said to be defined from (2.48), and thus already accounts for the dimensionality of n0.
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2. Collisionless shock model

2.3 Shockwaves

As has been pointed out in the previous section, the soliton is symmetric and therefore
does not dissipate energy, unlike shockwaves. To get shock solutions, one has to break
this symmetry. Reflected ions is one way of introducing asymmetry to the model [1, 2].
The reasoning behind the idea of ion reflection is that the rise in electrostatic potential,
that is the wave, creates a potential barrier for the positively charged ions; so if an ion
does not have enough kinetic energy to pass this potential barrier, it will be reflected back
upstream. It is worth noting that introducing ion reflection to the model requires finite ion
temperature. Otherwise the ion distribution would be concentrated to a single velocity,
u, and the ions would either all be reflected or all pass through to the downstream region.
Indeed, (2.44) in the soliton model guarantees that Zieφmax ≤ miV

2/2, meaning that no
ions will be reflected. By introducing a finite ion temperature there will be a small number
of reflected ions, breaking the symmetry between the up- and downstream.

This idea that the ion reflection creates the asymmetry of the shockwave was realized
already in the 1960s [18, 19], and a semi-analytical kinetic model implementing this idea
has been presented and studied by Cairns et al. [10, 11]. However the model by Cairns
et al. treats the downstream ions in a slightly unsatisfying manner. This is addressed by
Pusztai et al. [12] using a slightly different model for the downstream ions, which is then
verified against a fully-kinetic Vlasov-Poisson simulation. In this section, the model used
by Pusztai et al. is presented, and later extended to also account for trapped electrons.

As before, the electrostatic shockwave is described in the frame of the shock, i.e. with
a bulk flow of incoming plasma from x = +∞ with average velocity −V , and with the first
potential maximum at x = 0. In this frame of reference the electrostatic potential, φ(x),
is stationary and has the general form of rising from φ = 0 at x = +∞ to a maximum
value, φ = φmax at x = 0, and then oscillating at x < 0. See Figure 2.3 for a typical form
of the electrostatic potential.

While the first few moments of the Vlasov equation for cold ions, (2.42) and (2.43), were
sufficient to show the existence of solitons, the cold-ion approximation cannot be used here.
Kinetic effects must be considered, hence the Vlasov equation has to be used instead of
the fluid equations. For an ion distribution, fj, the time-independent electrostatic Vlasov
equation is

v
∂fj
∂x
− eZj
mj

∂φ

∂x

∂fj
∂v

= 0, (2.63)

which has the general solution fj = fj(Ej), where Ej = mjv
2/2 + eZjφ(x) is the total

energy of an ion. The ions in the unperturbed (φ = 0) plasma is assumed to follow a
shifted Maxwellian distribution,

fj(v) = nj,0√
2πTj/mj

exp
[
−mj(v + V )2

2Tj

]
. (2.64)

For the purposes of studying the shock, only the incoming ions are of interest, i.e. only
v ≤ 0 need to be considered. This is because in the steady state, any ion with v > 0
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Figure 2.3: The normalized electrostatic potential, ψ, as a function of normalized posi-
tion, x, for a fully ionized pure hydrogen plasma, with Maxwell-Boltzmann distributed
electrons. The plasma is flowing in from the right with Mach number M = 1.15 and
electron-to-ion-temperature ratio τi ≡ ZiTe/Ti = 50. The maximum value of the
potential is ψmax ≈ 0.28, and the downstream minimum value is ψmin ≈ 0.14.

would have already left the shockwave behind. This is assuming that there in no supply
of high energy ions coming from downstream, which is the case for collisionless shocks as
are studied here. Under these conditions (2.64) can be written as

fj = nj,0√
2πTj/mj

exp
[
−
(
|v| − V

)2
2Tj/mj

]

= nj,0√
2πTj/mj

exp

−mj
2Tj

(√
2Ej(v, φ = 0)

mj
− V

)2,
(2.65)

which now is in the desired form fj = fj(Ej). From here the distribution function is
extended to finite values of φ (i.e. finite x) by using Ej(v, φ = 0)→ Ej(v, φ), which yields

fj
(
Ej(v, φ)

)
= fj(v, φ) = nj,0√

2πTj/mj
exp

−mj
2Tj

(√
v2 + 2eZjφ

mj
− V

)2. (2.66)

Introducing the dimensionless variables

ψ ..= eφ

Te
, v ..= v

cs
= v√

ZiTe/mi
, ζj ..= Zjmi

mjZi
and τj ..= mj c

2
s

Tj
= ZiTemj

Tjmi
, (2.67)

the ion distribution function can be written as

fj = nj,0

√
τj
2π exp

[
−τj

2

(√
v2 + 2ζjψ −M

)2
]
. (2.68)
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The normalized densities and distribution functions are

n ..= n

n0
and f ..= f

n0/cs
(2.69)

respectively, where n0 ..=
∑

j Zjnj,0.
Note that the normalization of position and density defines two separate length scales,

λD and 1/n0 (the model is 1D). This is not a problem as long as the two length scales
are kept separate, which they are in all the calculations here; except in the very end in
Poisson’s equation, where they are connected via ε0 that unites the two different length
scales. Nonetheless using two different length scales in a normalization could potentially
cause problems if not handled properly, e.g. when going to higher dimensions. A similar
problem arises with the normalizations of φ and Tj which both define different energy
scales, that is however not a problem either.

The next step is to calculate the ion densities; as in (2.1) this is done by integrating the
distribution function over all allowed velocities. From the above argument, the incoming
ions were all assumed to have v ≤ 0. However, the full ion density also contains the
reflected ions; these ions are the ones with Ej ..= 1

2v
2 + ζjψ < ζjψmax, which means that

their reflected (positive) velocity is

v < v0(ψ) =
√

2ζj(ψmax − ψ). (2.70)

Since these ions are reflected back upstream, they must be removed from the downstream
distribution. In both [10] and [12], (2.68) is taken to hold for the reflected ions as well.
This leads to the ion densities

n
(us,ds)
j (ψ(x)) =

±v0(ψ)∫
−∞

fj(v, ψ) dv, (2.71)

where “us” and “ds” stands for up- and downstream respectively, and the integration
limit +v0(ψ) is for the upstream and −v0(ψ) corresponds to the downstream density
respectively. Unfortunately the integral in (2.71), with fj from (2.68), lacks a closed-form
analytical expression for arbitrary ψ; instead the integral has to be evaluated numerically.
However, in the far upstream region, where ψ = 0 but the plasma is still affected by the
shock through the reflected ions, the ion densities can be explicitly calculated as

nj,1 = n
(us)
j (ψ = 0) =nj,0

√
τj
2π

v0(ψ=0)∫
−∞

exp
[
−τj

2
(
|v| −M

)2]
dv

=nj,0
2

{
1 + 2 erf

[√
τj
2 M

]
+ erf

[√
τj
2
(√

2ζjψmax −M
)]}

,

(2.72)

where “erf” is the usual error function

erf(s) ..= 2√
π

s∫
0

e−s′2 ds′. (2.73)
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Note that nj,1 6= nj,0; the former is the density far enough upstream that the potential
has vanished but where the reflected ions are still present, whereas the latter is the ion
density of the unperturbed incoming plasma.

The electron density, ne, is also needed to calculate the electrostatic potential. Here, a
few different models for the electron density can be used. In any case, the only reasonable
dependencies that ne can have are the electrostatic potential, φ, and the electron temper-
ature, Te. The only way to write down a functional dependence through these parameters
is through the previously introduced dimensionless potential ψ = eφ/Te, which means that
the normalized electron density

ne = ne(ψ) = ne,1η(ψ), (2.74)

where η(ψ) is normalized so that η → 1 as ψ → 0. The constant ne,1 is calculated from
the quasi-neutrality condition in the far upstream region (ψ → 0)

ne,1 =
∑

j
Zjnj,1. (2.75)

The simplest model for the electron distribution is a Maxwell-Boltzmann distribution,
which leads to an electron density of

n(MB)
e (ψ) = ne,1 exp(ψ). (2.76)

This is what is used in [10–12].
The total normalized charge density is given by

ρ(us,ds)(ψ,ψmax) =
∑

j
Zj
[
n

(us,ds)
j (ψ,ψmax)−nj,1(ψmax)η(ψ)

]
. (2.77)

Note that while Zj is hidden under the normalized variables ζj and τj, it still appears here
as just Zj. This is because Zj is a dimensionless quantity and cannot be normalized away
completely. The normalized Poisson equation, with x ..= x/λD as in (2.56), is given by

d2ψ

dx2 = −
{
ρ(us)(ψ,ψmax), x ≥ 0,
ρ(ds)(ψ,ψmax), x < 0.

(2.78)

Also note that ρ is continuous at x = 0, since ψ = ψmax there and v0(ψmax) = 0. Just as
before, a Sagdeev potential is introduced,

Ψus(ψ,ψmax) =
ψ∫

0

dψ′ ρus(ψ′, ψmax). (2.79)

The Sagdeev potential for the shock in Figure 2.3 is shown in Figure 2.4. So far, all
presented quantities have had implicit dependencies on ψmax, so there has been no easy
way of calculating the value of ψmax. That is, up until now. Recalling (2.58), it is clear
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Figure 2.4: The up- and downstream Sagdeev potentials, solid and dashed lines re-
spectively, for a shock with M = 1.15 and τi = 50. Note that the corresponding
electrostatic potential, ψ(x) which is shown in Figure 2.3, has precisely the same
values of ψmin and ψmax as is given here.

that dψ/dx = 0 requires Ψ = 0, but the derivative must also be zero at a maximum
ψ = ψmax; therefore

Ψus(ψ = ψmax, ψmax) =
ψmax∫
0

dψ′ ρus(ψ′, ψmax) = 0. (2.80)

This is the key equation of this whole chapter. By solving this equation, the rest of the
electrostatic potential can easily be calculated numerically by solving (2.78).

For future reference, the downstream Sagdeev potential also has to follow (2.49) and
satisfy Ψds(ψ = ψmax, ψmax) = 0, which means that is has to be given by

Ψds(ψ,ψmax) =
ψ∫

ψmax

dψ′ ρds(ψ′, ψmax), (2.81)

and is shown in Figure 2.4 in comparison with the upstream Sagdeev potential. The lower
bound of the downstream electrostatic potential, is a minimum, where dψ/dx = 0, so
ψmin is of course given by

Ψds(ψ = ψmin, ψmax) =
ψmin∫
ψmax

dψ′ ρds(ψ′, ψmax) = 0. (2.82)

In practice, both (2.82) and (2.80) have to be solved numerically since there is no analytical
expression for nj(ψ) for an arbitrary value of ψ.
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2.3. Shockwaves

The shape of the electrostatic potential of the shock can now be understood within the
mechanical analogy as a particle first gliding in the upstream Sagdeev potential from ψ = 0
to ψmax, and there the particle switches to the downstream Sagdeev potential where it will
oscillate back and forth between ψmin and ψmin. This is illustrated when comparing the
electrostatic potential in Figure 2.3 to its corresponding Sagdeev potentials in Figure 2.4,
where ψmin and ψmin have been marked out and agrees precisely. The fact that ψmax is the
same in both cases is not that remarkable since the numerical ODE solution was initiated
using ψmax, however the value of ψmin is independently computed in the two different
methods, and they agree up to the precision of the numerical solution schemes.

2.3.1 Trapped electrons

Returning to the electron distribution, there are many different ways to model the elec-
trons. The simplest being the Maxwell-Boltzmann distribution, leading to the electron
density in (2.76). However, a Maxwell-Boltzmann distribution assumes that the elec-
trons are completely thermalized, i.e. that they have had enough time to dissipate any
perturbations from a thermal background distribution. Shocks, on the other hand, are
usually quite fast phenomena; in collisionless or low-collisionality shocks the electron ther-
malization timescale is much longer than the time it takes for the shock to pass. This
would suggest that the Maxwell-Boltzmann distribution might not be the most accurate
description for the electrons.

Among the strongest objections against the Maxwell-Boltzmann distribution in this
scenario is the fact that the potential crests trap the electrons, which are negatively
charged. This will affect the electron density and therefore also the potential. In a paper
from 1968, Gurevich [20] calculates the distribution function of trapped particles in an
adiabatically varying electrostatic field. The distribution function for trapped electrons
found by Gurevich is flat in the trapping region of phase space while still being continuous
on the boundary layer of the trapping region. The passing electrons follow their initial
distribution functions, unaffected by the trapped electrons. Similar behavior has also been
observed in simulations [12]. For an initially Maxwellian electron distribution, the trapped
electron distribution function would therefore be

f (tr)
e (φ ≥ φtr) = ne,1√

2πTe/me
exp

(
eφtr
Te

)
, (2.83)

inside the trapped electron region, where φtr is the potential at the boundary of the
trapping region, above which the electrons are trapped. This then leads to a normalized
electron density of

n(tr)
e = ne,1

[ 2√
π

√
ψ − ψtr exp(ψtr) + exp(ψ) erfc

(√
ψ − ψtr

)]
, (2.84)

where “erfc” is the complementary error function, defined as

erfc(s) ..= 2√
π

∞∫
s

e−s′2 ds′ = 1− erf(s). (2.85)
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ψtr

ψ

x

Figure 2.5: An example potential illustrating the trapping level ψtr. The trapping
level is the higher value of the potential at either end point of the trapping region.
The trapping is independent of the shape of the potential inside the trapping region.

Note that n(tr)
e → n

(MB)
e when ψ → ψtr, as is expected.

That the field is adiabatically varying means that the field evolves smoothly and much
slower than the electron motion. In the case of the shocks here, the time it takes for the
shock to pass over a length L is tshock = L/V ∼ L/cs ∼ L/

√
Te/mi, while for electrons

the same length is passed in roughly te ∼ L/ve ∼ L/
√
Te/me, or in other words

tshock
te
∼
√
mi
me
� 1. (2.86)

That is, the electrons are much faster than the shock, which means that it is safe to say
that the shock potential is varying adiabatically.

The trapping level ψtr in (2.84), above which the electrons get trapped, is given as the
higher of the two bounding values of the trapping region, as is illustrated in Figure 2.5. It
should also be pointed out that the trapping is independent of the shape of ψ inside the
trapping region, i.e. (2.84) holds for any ψ > ψtr inside the trapping region. With this
in mind it is natural to take ψtr = ψmin, making each hump in the downstream electro-
static potential a trapping region. This model is called the adiabatic trapping (AD) model
in this thesis. Practically, this means that (2.80) and (2.82) have to be solved (numeri-
cally) simultaneously as a system of equations with two unknowns and two independent
equations.

However, simulation results [12] have also indicated that setting ψtr = ψmin is not
exactly right. Also, while in this theoretical model of the shock the downstream oscillations
are indefinite, in a real shockwave the potential oscillations will eventually decay down in
the far down stream region; other limitations, like the physical size of the plasma, will also
prevent indefinite downstream oscillations. In that case, a situation resembling the one in
Figure 2.5 might arise, where the potential at the back end is higher than in the front. It
is therefore also interesting to study a model where ψtr varies more freely, like for instance
ψtr = Ctrψmax. Note that a value of the trapping coefficient of Ctr = 1 corresponds to fully
free Maxwell-Boltzmann electrons, and at points where Ctr = ψmin/ψmax the AD model
is recovered.
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Chapter 3

Effects of electron trapping on
collisionless shocks

To study the behavior of the different shock models some form of numerical method must
be employed. This is because the integral defining the ion density, (2.71), lacks a closed
analytical form. In this chapter, a short account of how the different shock models were
implemented numerically is presented, along with some results obtained from the trapped
electron models.

3.1 Numerical implementation

For finding the behavior of the shocks in the models from section 2.3, a series of Matlab
classes have been implemented. In this section, a brief overview of how this has been done
is presented.

The different shock classes create “shock objects”, which are initialized with the input
parameters M , Te/Ti, mj/mp, Zj, and nj,0. The class then calculates ψmax and ψmin, as
well as other model specific parameters, using the Sagdeev potential method, (2.80) and
(2.82).

These Matlab classes are open source and available on GitHub1. Do however note
that the normalization used in the code, at the time of writing, is not the same as in
the thesis; to convert to this normalization use ψ = phi/tau and x = x/sqrt(tau),
where tau ..= Te/Ti. There are plans to change the normalization of the code. When the
normalization has been changed, it will be announced in the GitHub repository.

Initializing a shock object

As was said when the Sagdeev potential method was introduced to the shock model,
many of the other quantities have some form of implicit dependence on either ψmax, ψmin
or both, and it was first with the Sagdeev potential that a method for finding ψmax or ψmin

1https://github.com/andsunds/Shock_pkg
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3. Effects of electron trapping on collisionless shocks

was presented. As such, the numerical implementation relies on solving (2.80) and (2.82)
numerically using a bisection method. This is done by guessing some initial ψ̃max and then
numerically integrating ρus(ψ′, ψ̃max), which in turn consists of a numerical integration to
calculate n

(us)
j according to (2.71) for each ψ′. This procedure is then repeated for a

different ψ̃max in a numerical root finder until the final integral in (2.80) is sufficiently
close to zero. The numerical precision is set by another input parameter, tol, which
determines the tolerances in each numerical step; in the numerical integration tol is the
tolerance in the relative error, while when finding roots tol is set as the tolerance in the
absolute function value. All runs in this thesis have been done at tol = 10−6 or better.

In the AD trapped electron model, where the electron trapping level is set at ψtr =
ψmin. The electron density also depends on ψmin, which results in the system of equations{

Ψus(ψ = ψmax, ψmax, ψmin) = 0
Ψds(ψ = ψmin, ψmax, ψmin) = 0.

(3.1)

The procedure for finding the roots here is similar, but due to the higher dimension-
ality some least square method has to used instead – e.g. a trust region or a Leven-
berg–Marquardt algorithm.

Some times, depending on the initial guess of ψmax, the numerical algorithms above
find unphysical roots. These roots correspond to a potential minimum, and an unbounded
ψ(x), which are clearly unphysical. To avoid any of these roots, the charge density at
ψ = ψmax is calculated, and checked so that

d2ψ

dx2

∣∣∣∣∣
x=0

= −ρus(ψmax, ψmax) = −ρds(ψmax, ψmax) < 0. (3.2)

This corresponds to an actual maximum of ψ at x = 0. If this check is not satisfied, the
values of ψmax and ψmin are set to NaN and the shock object is discarded.

Although this method involves evaluating two nested numerical integrations several
times, runtimes are very fast compared to PIC (particle in cell) or Vlasov solvers. The
computational time required to find ψmax and ψmin ranges from a couple of seconds up to
at most a few minutes depending on the input parameters and how good the initial guess
is. Although the upper limit is a few minutes, the absolute majority of runs take around
10 s. These runtimes are on a single core in a medium to high performance workstation
PC. Methods like PIC or Vlasov solvers generally have considerably longer runtimes, run-
ning on large clusters. However that is heavily dependent on the size of the problem; this
problem which only involves one spatial and one velocity dimension is not very heavy.
Nonetheless having a semi-analytical model significantly reduces the computational re-
sources required.

Using the shock objects

Once ψmax and ψmin have been found, they can then be used to calculate other quantities
of interest. Perhaps the most common quantity to one would want to calculate is ψ(x),
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3.2. Numerical results

which is calculated by numerically solving (2.78) with the initial conditions

ψ(x = 0) = ψmax and dψ
dx

∣∣∣∣
x=0

= 0, (3.3)

using some Runge-Kutta method – the problem is not stiff. When finding ψ(x), the user
also has the options to get E(x) = − ∂ψ/∂x and ρ(x) = − ∂2ψ

/
∂x2 at the same time.

There is also a function for calculating Ψus,ds(ψ), used mostly for checking the solutions
together with ψ(x), confirming that the found ψmin and ψmax are correct – like in Figure 2.3
and Figure 2.4. Although not shown in any figure in this thesis, a function calculating the
wavelength of the downstream potential oscillation, from (A.5) in Appendix A, has also
been implemented. This function has also been used to check the solution, ψ(x).

As was mentioned before, the runtime and risk of finding unphysical solutions depends
on the initial guess of ψmax. Therefore when doing scans in some parameter, most notably
the Mach number, a function for stepping trough a range of parameter values have been
implemented. The function, for e.g. Mach numbers, takes in a precalculated shock object
at some Mach number in the middle of the range, and then takes small steps in either
direction, using the ψmax,min of each previous step as the initial guess of the next step.
This function, and similar other functions, have been used to produce the various different
scans presented in the following section.

Lastly, it should be pointed out that the previous studies of this model [10–12] have
used a different normalization. Whereas the normalization in this thesis is based on cs
and, ultimately, the electron temperature Te, the previous normalizations have been based
on the ion temperature. This means that results will not be directly comparable in terms
of the numerical values obtained from the models, even though the models are essentially
the same. The conversion factors to get from this normalization to the one in [12] are
Te/Ti for the electrostatic potential and

√
Te/Ti for the position.

3.2 Numerical results

As the behavior of free electron shocks have already been studied elsewhere [10–12], the
numerical studies of this thesis will mostly focus on the effects of the electron trapping. One
benefit of using a properly chosen normalization is that it reduces the number unknowns
through the Buckingham Π-theorem [21]. Furthermore only single-ion-species plasmas
will be considered here; effects of small impurities have been studied in [12]. This means
that the parameter ζj → ζi ≡ 1 is fixed, and only the effects of τi, M , and Ctr, will have to
be studied. This will be done through a series of scans over primarily the Mach number,
M , but also over the trapping coefficient, Ctr. Scans have also been performed at different
τi.

Note that Zi will still appear in the expression for the charge density, (2.77), even in
a single ion species plasma. However the normalization of density results in

ni,0 = ni,0
n0

= 1
Zi

(3.4)
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Figure 3.1: The values of ψmax and ψmin in the trapped electron model for some
different values of the trapping coefficients, Ctr, with τi = 40. The range of solutions
is significantly larger for the rather low values of Ctr = 0.10 and 0.30.

for a single ion species plasma. This, together with the fact that all other relevant densities
are proportional to ni,0, means that (2.77) is in fact independent of Zi. For a multi-species
plasma, however, this is no longer the case, and Zj will still have to be considered together
with the other parameters which have been normalized away for a single ion species plasma.

Beginning with scans over M , which have been done with the electron trapping model,
that had a freely set trapping level, for a few different values of the trapping coefficient Ctr
at τi = 40; this is to see how the shocks are affected by Ctr. The results from these scans
are shown in Figure 3.1. The range of possible ψmin,max and the range of M for which
there exists a solution greatly increases for lower values of Ctr, i.e. larger trapping region.
However for the same Mach number, decreasing Ctr yields a lower value of ψmax and ψmin.
Even though the increased solution range can be quite large, it only becomes significant at
very low values of Ctr. As Figure 3.1 shows, the difference between Ctr = 0.90 and the pure
Maxwell-Boltzmann model (Ctr = 1) is extremely small. The treatment of ion reflection
in Appendix A shows that the important parameter for ion reflection is Fi ..= 2ψmax/M 2.
So, although not shown here, the considerably increased range of ψmax in Figure 3.1 only
slightly increases the maximum Fi for lower Ctr, due to the also increased range of M .
However the number of reflected ions is exponentially sensitive to Fi, so the trapping here
still affects the ion reflection considerably.

The actual trapping level, ψtr = Ctrψmax, is not shown in Figure 3.1, but it is still
clear that at some Mach number ψmin = ψtr since ψtr is constant and ψmin varies from
0 to ψmax. At these points, where ψmin = ψtr, the AD model is recovered, where each
potential hump is its own trapping region. Therefore to further study this model, scans
over Ctr were performed for some vales of M at τi = 40. In Figure 3.2, ψmin/ψmax is
compared to ψtr/ψmax = Ctr. There it is seen that the ψmin/ψmax curve only crosses the
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Figure 3.2: Comparison of ψmin/ψmax to ψtr/ψmax = Ctr for three different values
of M . All three cases have τi = 40. Each point where the curves cross the line Ctr
corresponds to the AD trapping model, where ψmin = ψtr. For M = 1.20 there are
three such crossings, while the others only have one each.
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Figure 3.3: The values of ψmax and ψmin for shocks calculated using either the Maxwell-
Boltzmann electron distribution (MB) or with adiabatically trapped electron model
(AD), at an electron temperature of τi = 40. For Mach numbers above around 1.25,
the AD model behaves similarly to the MB model. At lower M however, the two
models start to diverge; then in a region M ≈ 1.19−1.22, there are three solutions in
the AD model. Then below that, there is only one solution again which is considerably
lower than the MB solution.
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3. Effects of electron trapping on collisionless shocks

Ctr curve at one point each for M = 1.15 and M = 1.25, while for M = 1.20 there are
three different crossings. This means that there should be a region around M = 1.20
where the AD model has three distinct solutions. This is confirmed in Figure 3.3, where
the AD solutions are compared to the corresponding MB solution in a scan over M , and
there are indeed three AD solutions in a range M ≈ 1.19−1.22. For Mach numbers above
this region of multiple solutions, the AD model rapidly approaches the MB model.

The form of the electrostatic potentials of the three different AD solutions (“upper”,
“middle”, and “lower”) at M = 1.20 and τi = 40, together with the MB solution, are
shown in Figure 3.4. In addition to the varying ψmin and ψmax, the wavelengths of the
downstream oscillations differ by a factor 1.5−2 between each solution. In the upstream
region on the other hand the decay is exponential2 and fairly similar. Of course being able
to initiate a shock with the highest ψmax for the same M and τi is desirable for achieving
the most ions reflected.

The next step in the study of the AD model is to consider how τi affects the solutions.
When decreasing τi the region of multiple solutions shrinks until it, somewhere between
τi = 25 and τi = 30, vanishes. Then, for even lower τi, there is only one single solution
for each Mach number. This is shown in Figure 3.5. When τi is increased the region of
multiple solutions continues to grow as well as the total range of solutions, which is shown
in Figure 3.6. Another effect of τi, most clearly seen in Figure 3.6, is that for the same
Mach number ψmax has increased. In the case

One final comment is that, as can bee seen in Figures 3.1, 3.3, and 3.5, all Mach number
scans start slightly above M = 1. In fact most scans start at around M = 1.04−1.05.
This might be a bit unexpected since M is usually defined so that M = 1 constitutes the
lower limit for which shocks exist, indeed the Mach number used in this thesis was defined
based on the lower speed limit for the solitons in section 2.2. This Mach number was found
to be based on the ion-acoustic wave propagation speed, cs from (2.40). However since the
shocks have finite ion temperature, (2.41) should be used instead. In this normalization
(2.41) reads

uphase = cs

√
1 + γi

τi
, (3.5)

and in 1D γi = 3; so for e.g. τi = 40, uphase ≈ 1.04cs which is very close to the observed
lower Mach number limit in Figure 3.3. The sentiment that shocks only form at or above
the propagation speed of the linear waves, therefore continues to hold here. There might
however exist higher order effects of the ion temperature, at even lower values ofτi. For
instance [11] describes a lower limit on Te/Ti for the existence of shocks, but that is beyond
the scope of this thesis.

2It is not clear from Figure 3.4 that the upstream decay is exponential, but it becomes obvious when
the same curves are plotted using a log scale (not shown here).
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Figure 3.4: Electrostatic potentials calculated with either Maxwell-Boltzmann dis-
tributed electrons (MB) or adiabatically trapped electrons (AD), at Mach number
M = 1.20 and electron temperature τi = 40. As can be seen in Figure 3.3, the AD
model has three solutions at M = 1.20 there, the forms of which are shown in this
figure.
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Figure 3.5: The values of ψmin and ψmax from the AD model as functions of Mach
number, M , for three different electron temperatures τi. The solutions are single-
valued for τi = 20 and 25, while for τi = 30 the curves have just started to develop a
region of multiple solutions.
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Chapter 4

Weakly collisional shocks

In the shock models presented in section 2.3, any effects of binary collisions have so far
been neglected. This is safe to do in hot, low-density plasmas where the particles virtually
never collide with each other, as in for instance non-stellar space plasmas. However, in
laboratory plasmas the densities can be much higher, and in such cases binary collisions
may have to be considered. This chapter develops a theory for describing the effects of
introducing a weak, but finite, collisionality in a time dependent, semi-analytical shock
model.

4.1 Collisions and collision operators
Binary collisions happen on a particle-to-particle basis. It is therefore not immediately
obvious how to handle them theoretically. This section will therefore take some time
to go through the basics of how collisions are treated in kinetic theory. For a further
study of collisional effects, the reader is referred to for instance the book by Helander and
Sigmar [22].

The way collisions are studied in kinetic theory is through so called collision operators,
C[f ]. From a statistical mechanics viewpoint the distribution function does not represent
each single individual particle, but rather a collective or statistical behavior of the particles.
Similarly the collision operators cannot represent each single collision, instead they aim to
capture how the collisions affect the distribution function. Therefore the collision operators
are put in as a modification to the Vlasov equation, or in this case the electrostatic Vlasov
equation

∂fa
∂t

+ v · ∂fa
∂x
− Zae

ma

∂φ

∂x
· ∂fa
∂v

= C[fa], (4.1)

which in the context of collisions is just called the kinetic equation. The introduction of
C[f ] to the RHS of the Vlasov equation makes sense in terms of the reasoning around phase
space trajectories in section 2.1.2. Everything on the LHS corresponds to the phase space
trajectory of a particle due to the macroscopic fields, but then the collisions will knock
some particles off that trajectory resulting in f varying along the phase space trajectory,
i.e. C[f ] instead of zero on the RHS.
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4. Weakly collisional shocks

The form and motivation of each collision operator differ from problem to problem.
However, for problems dominated by binary collisions which only cause a small change
in the momentum of the particles, the general collision operator is the Fokker-Planck
operator, which using tensor index notation is

CFP
ab [fa, fb] = ∂

∂vi

[
A

(ab)
i fa + ∂

∂vj

(
D

(ab)
ij fa

)]
, (4.2)

where A(ab) and D(ab) are functionals of fb. The exact form of these functionals are not
given here, but can be found in [22, Ch. 3.1]. The functionals A(ab) is related to the
average net force on species a due to collisions with species b, and D(ab) is the diffusion
tensor of species a due to collisions with species b – the diffusion being in velocity space.
Both A(ab) and D(ab) depend on v.

4.1.1 Model collision operator for electrostatic shocks

As a first model, and to limit the scope of this thesis, only singe ion species plasmas are
considered. Furthermore, electron-ion collisions are neglected, and only one-dimensional
configurations are considered. This means that the collision operator can be simplified
somewhat.

The first major idea is to utilize the fact that the downstream ion distribution function,
f ..= fi, is discontinuous at the separatrix v = −v0. Indeed, this is also a key motivation for
studying the effects of collisions on shocks. This means that when introducing collisions,
there will be a very thin boundary layer, around v = −v0, across which f varies more
sharply than anywhere else. Take δv � v to be the characteristic width of that boundary
layer. Then ∂f/∂v ∼ f/δv and ∂2f

/
∂v2 ∼ f/δv2, which would mean that the dominant

term in the Fokker-Plank operator is

CFP ≈ D∂
2f

∂v2 � A
∂f

∂v
,
∂D

∂v

∂f

∂v
, etc. (4.3)

In this context, and the rest of this thesis, the symbol “∼” will be used to denote order of
magnitude estimates.

Now, as was mentioned above, D is, in general, velocity dependent. Its derivative was
neglected since the term with the second derivative of f dominates over all other terms.
However for the purpose of creating a first collisional model, D is here assumed constant.
Formally, for this to be valid the width of the trapped region has to be much smaller
than the velocity of the ions in the middle of the distribution – i.e. v0 �

√
M 2 − 2ψ,

which is equivalent to 2ψmax/M 2 � 1. This condition is in general not satisfied for the
shocks studied so far, and indeed those that will be studied in the rest of this thesis either.
However if this condition would be satisfied the number of particles near the separatrix
would be very small, and then collisional effects would be negligible. Also, as mentioned,
this is supposed to be a first model for collisions, and as such this formal requirement
will be neglected in the rest of this thesis. Keeping the velocity dependence would lead
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4.2. Introducing a small collisionality

to more complicated calculations of orbit-time-averages, but would likely not affect the
results very much.

Based on the normalizations of position, λD, and speed, cs, used previously, it is only
natural to now introduce the normalized time

t = t

λD/cs
. (4.4)

This elegantly normalizes (4.1) into

∂f

∂t
+ v

∂f

∂x
− ∂ψ

∂x

∂f

∂v
= ν∗

∂2f

∂v2 . (4.5)

Here the normalized collisionality

ν∗ ..= λDD

c3
s
� 1 (4.6)

has also been introduced based on the physical dimension of D. This is also the small
collision parameter referred to when speaking of a “weak collisionality” in this thesis.

4.2 Introducing a small collisionality
The previous shock model in section 2.3 was static, ∂f/∂t = 0, and collisionless, ν∗ = 0.
It is therefore natural to try and extend the model using a weak, but finite, collisionality
ν∗ � 1. This section presents the derivation of the time dependent, semi-analytical model
that accounts for weak ion collisions.

When the collisionality ν∗ � 1 is introduced, the time dependence of f is assumed
to only stem from collisions. Therefore ∂f/∂t is assumed to be of the same order of
magnitude as ν∗. When having these small perturbations to the system it is customary to
try to find a solution in the form of a perturbation expansion,

f = f0(t,x,v) + f1(t,x,v) + . . . , with f1 ∼ ν∗f0 � f0. (4.7)

Using this ordering, the lowest order perturbation equation obtained from (4.5) is

v
∂f0
∂x
− ∂ψ

∂x

∂f0
∂v

= 0, (4.8)

which is just the original equation of the collisionless shock model, (2.63). This means
that f0(t,x,v) = f0(t,E), with E = x2/2 + ψ.

The shocks are also assumed to form on short enough time scales, compared to the
collisionality ν∗, so that the collisionless shock model can be used as the initial condition
for these weakly collisional shocks. As such, the electrostatic potential in the downstream
region is assumed to be periodic and semi-infinite. In phase space this corresponds to
a periodic and semi-infinite chain of linked “islands of trapping”, marked as region II in
Figure 4.1. This periodicity will be used later on. In reality, the downstream oscillations
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Figure 4.1: The same shock as in Figure 2.3, together with a phase space plot showing
constant energy contours (dotted lines), and the separatrices (dashed lines) between
regions I, II, and III, corresponding to v = ±v0 = ±

√
2(ψmax − ψ). Ions inside an

“island” of region II will orbit around along their closed constant energy contour, and
are therefore trapped. Region III contains the co-passing ions, which move forward
and pass the shock, and lastly region Ia and Ib have the passing and reflected ions
respectively.

cannot extend indefinitely, and there will be effects which dampen the amplitude of the
oscillations making them non-periodic. For the purposes of studying the shockwave, most
interest is focused to the vicinity of the shock front and how it is affected by the collisions;
the downstream potential oscillations can therefore very well be approximated as periodic
and semi-infinite.

Looking at the phase space plot in Figure 4.1, there are four regions marked out and
they are separated by two separatrices. In the original, collisionless, shock model only
regions Ia and Ib are populated. The ions in region Ib are the ones that do not have
enough energy to make it over the potential barrier of the shock front and will thus get
reflected back upstream. The ions in region Ia on the other hand, have enough energy
to pass the shock front down into the downstream region. The collisionless model would
therefore have a sharp discontinuity in the ion distribution function at the separatrices
between regions Ia and II, and between Ib and III. This discontinuity is what is hoped
to be remedied by introducing a small collisionality. The collisions would act to diffuse
ions in velocity space across the separatrices, and thus populating regions II and III with
a small number ions in a very thin boundary layer near the separatrices.
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4.2. Introducing a small collisionality

4.2.1 Perturbative solution with orbit-time-averaging

The lowest order perturbation equation, (4.8), did not contain any collisions or time
dependence. In the next order perturbation equation,

∂f0
∂t

+ v
∂f1
∂x
− ∂ψ

∂x

∂f1
∂v

= ν∗
∂2f0
∂v2 , (4.9)

both the collisionality and a time dependence of f0 are introduced, however so is f1 and
the system is not closed.

In order to close the system an “orbit-time-average” is introduced,

〈g〉E ..=
[∮

E
dϑ
]−1 ∮

E
g dϑ (4.10)

where
dϑ = dx

v

∣∣∣∣
E

(4.11)

represents a time coordinate along a constant energy, E, contour. For particles in the
trapped region, the constant energy contours are closed and the name “orbit time” is
justified. However in regions I and III the contours are open, but as was mentioned above,
the potential oscillation is assumed to be periodic in the downstream region (x ≤ 0), so
the integrations in (4.10) can be taken over one such period – e.g. from x = −λ to
x = 0 where λ is the wavelength of the downstream oscillation. Note that the orbit time
coordinate, ϑ, is thought of as a time coordinate independent of t. The integrations are
therefore performed keeping both E and t fixed. This means that〈

∂

∂t

〉
E

= ∂

∂t
. (4.12)

Another way of seeing this is to say that the orbits happen on time scales much faster
than any collisional effects, meaning that any t dependence is negligible during the time
span of the orbit integrals.

The next thing to note with the orbit-time-average is that〈
v
∂g

∂x
− ∂ψ

∂x

∂g

∂v

〉
E

= 0. (4.13)

This is because the averaging is done over a constant energy, E = v2/2 + ψ, contour, and
on this curve

0 = dE
dϑ = v

dv
dϑ + dψ

dϑ = v
dv
dϑ + ∂ψ

∂x

∣∣∣∣
E

dx
dϑ . (4.14)

This means that
dg
dϑ = ∂g

∂x

dx
dϑ + ∂g

∂v

dv
dϑ = 1

v

dx
dϑ

[
v
∂g

∂x
− ∂ψ

∂x

∂g

∂v

]
E

=
[
v
∂g

∂x
− ∂ψ

∂x

∂g

∂v

]
E

, (4.15)

that is 〈
v
∂g

∂x
− ∂ψ

∂x

∂g

∂v

〉
E

=
[∮

E
dϑ
]−1 ∮

E

dg
dϑ dϑ = 0 (4.16)
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4. Weakly collisional shocks

where the last equality is assuming either that g is single valued in region II, or that g is
periodic in regions I or III. Also note that f0 = f0(t,E) only depends on the time t and
energy, which means that

〈f0〉E = f0 (4.17)

since the orbit-time-averages are performed at constant energy.
Now, applying the orbit-time-averaging to both sides of (4.9) yields

∂f0
∂t

= ν∗

〈
∂2f0
∂v2

〉
E

, (4.18)

which managed to completely remove f1 from the equation. The system of equations is
now closed. Now (4.18) is almost a regular diffusion equation except for the orbit-time-
averaging performed on the RHS.

The lowest order distribution function, f0, only depends on v troughE, so the velocity
derivative can be expressed as

∂2f0
∂v2 =

(
∂E

∂v

)2∂2f0
∂E2 + ∂2E

∂v2
∂f0
∂E

= v2∂
2f0
∂E2 + ∂f0

∂E
. (4.19)

Once again using the fact that f0 only depends on t and E, means that

〈
∂2f0
∂v2

〉
E

=
〈
v2
〉
E

∂2f0
∂E2 + ∂f0

∂E
. (4.20)

The next step is to use the thin boundary layer in a similar way as was done to derive
(4.3). Using δv� v with δE = vδv yields

∂f0
∂E
∼ f0

vδv
and ∂2f0

∂E2 ∼
f0

(vδv)2 , (4.21)

so it is expected that 〈
v2
〉
E

∂2f0
∂E2 �

∂f0
∂E

. (4.22)

Using this assumption, (4.20) can be approximated by

〈
∂2f0
∂v2

〉
E

≈
〈
v2
〉
E

∂2f0
∂E2 . (4.23)

This assertion must, however, be checked a posteriori once a solution has been found. This
is done in section 4.3.3.
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4.2. Introducing a small collisionality

4.2.2 Calculating the orbit-time-averaged squared velocity

Since the constant energy contours are closed in region II and open in regions I and III,
calculating an orbit-time-average differs slightly between the different regions.

Beginning with the open contour regions,

I0 =
∮
E

dϑ =
∮ dx

v
= 1√

2

∮ dx√
E − ψ(x)

, (4.24)

keeping in mind that E is a constant in the integration.
To continue from here, ψ(x) has to be known, by numerical computation, or approxi-

mated. From the forms found by the collisionless shock model, it is fair to say that in most
cases ψ(x) can be approximated as a sinusoidal plus a constant fairly well. Therefore, for
the purpose of continuing the analytical treatment, assume

ψ(x) = ψmin + ψA sin2
(
πx′

λ

)
. (4.25)

The reason for using sine squared instead of just sine will become apparent soon. Also
note that so far the convention has been that ψ = ψmax at x = 0, but for convenience
x′ = 0 is here set at some point downstream where ψ = ψmin.

With this, (4.24) can be written as

I0 = 1√
2

λ/2∫
−λ/2

dx′√
E − ψmin − ψA sin2(πx′/λ)

= 2λ√
2ψAπk

π/2∫
0

dθ√
1− k−2 sin2 θ

,

(4.26)

where the integration domain has been halved for an extra factor 2 since integrand is even
in θ, and where

k ..=
√
E − ψmin

ψA
. (4.27)

Note that k ≥ 1 in regions I and III, while k < 1 in region II. This last integral can be
expressed using the complete elliptic integrals [23, Sec. 19.2]

K(s) ..=
π/2∫
0

dθ√
1− s sin2 θ

, (4.28a)

E(s) ..=
π/2∫
0

√
1− s sin2 θ dθ. (4.28b)

39



4. Weakly collisional shocks

The reader should note that some authors define the elliptic integrals with s2, rather than
just s, on the RHS. Now, I0 can be written as

I0 =
√

2λ
π
√
ψAk

K(k−2). (4.29)

Then the procedure is very similar for the other integral required,

∮
E

2(E − ψ) dϑ =
√

2
λ/2∫
−λ/2

√
E − ψmin − ψA sin2(πx′/λ) dx′

=2
√

2ψAkλ

π
E(k−2).

(4.30)

Together this results in

2 〈E − ψ〉E
∣∣∣∣
k≥1

= 2ψAk
2 E(k−2)
K(k−2) , (4.31)

in regions I and III where the constant energy contours are open.
In region II, where the orbits are closed, the procedure is a little bit more involved.

The limits in x will have to be modified to ±λE/2, where λE is the width of the constant
energy orbit in x at energy E. This means that

J0 =
∮
E

dθ = 2√
2

+λE/2∫
−λE/2

dx′√
E − ψmin − ψA sin2(πx′/λ)

= 2
√

2λ√
ψAπ

+θE/2∫
0

dθ√
k2 − sin2 θ

.

(4.32)

The extra factor 2 in front of the x′ integral comes from the fact that the closed orbit has
one curve with v > 0 and one curve with v < 0 for each x.

The trick for evaluating this last integral is to introduce the new variable ϕ such that
k sinϕ = sin θ. Note that the integration limit λE/2 corresponds to the point where
ψ(x′) = E, or equivalently where sin θ = k; therefore θ = θE/2 means that ϕ = π/2. Now
the integration measure

dθ = dθ
dϕ dϕ = k cosϕ√

1− k2 sin2 ϕ
dϕ, (4.33)

and the integrand √
k2 − sin2 θ = k

√
1− sin2 ϕ = k cosφ. (4.34)

Together this results in

J0 = 2
√

2λ√
ψAπ

π/2∫
0

dϕ√
1− k2 sin2 ϕ

= 2
√

2λ√
ψAπ

K(k2). (4.35)
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4.2. Introducing a small collisionality

Again the method is analogous, using (4.33) and (4.34), for the other integral

J1 =
∮
E

2(E − ψ) dϑ =4
√

2ψAλ

π

θE/2∫
0

√
k2 − sin2 θ dθ

=4
√

2ψAλ

π

π/2∫
0

k2 cos2 ϕ√
1− k2 sin2 ϕ

dϕ.

(4.36)

This can be solved by rewriting the numerator of the integrand as

k2 cos2 ϕ = k2 − k2 sin2 ϕ =
(
k2 − 1

)
+
(
1− k2 sin2 ϕ

)
, (4.37)

which translates into

J1 = 4
√

2ψAλ

π

[(
k2 − 1

)
K(k2) + E(k2)

]
. (4.38)

This now results in

2 〈E − ψ〉E
∣∣∣∣
k<1

= J1
J0

= 2ψA

[
E(k2)
K(k2) − 1 + k2

]
. (4.39)

4.2.3 Arriving at a regular diffusion equation

Now, with 〈E − ψ〉E calculated, (4.18) can be expressed as

∂f0
∂t

= 2ν∗ψAk
2F (k)∂

2f0
∂E2 , (4.40)

where

F (k) =

k
−2
[
E(k2)
K(k2) + k2 − 1

]
, for k < 1,

E(k−2)
K(k−2) , for k ≥ 1.

(4.41)

To unify the variables on the RHS, the E derivative is transformed into a k derivative,
once again using the thin boundary layer argument,

∂2f0
∂E2 =

(
∂k

∂E

)2∂2f0
∂k2 + ∂2k

∂E2
∂f0
∂k
≈
(
∂k

∂E

)2∂2f0
∂k2 = 1

4ψ2
Ak

2
∂2f0
∂k2 . (4.42)

With this, (4.40) becomes
∂f0
∂t

= ν∗
2ψA

F (k)∂
2f0
∂k2 , (4.43)

which now only has k as the variable on the RHS.
The thin boundary layer is situated around k = 1. It is therefore natural to do a

penultimate change of variables to ε = 1−k, where |ε| � 1 in the region of interest, giving

∂f0
∂t

= F (ε)
Υ2

∂2f0
∂ε2 , (4.44)
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where

Υ ..=
√

2ψA
ν∗
� 1. (4.45)

The boundary layer is now around ε = 0. Now, introducing the final new variable w,
defined such that

dw
dε = Υ√

F (ε)
, w(ε = 0) = 0, (4.46)

turns (4.44) into
∂f0
∂t

= ∂2f0
∂w2 . (4.47)

Once again the thin boundary layer argument has been used to neglect lower order deriva-
tives of f0.

The original perturbation equation, (4.9), has now finally be turned into a regular
diffusion equation which can be solved analytically. The Green’s function method gives
the solution

f0(t, w) =
∞∫
−∞

dw′ G(t, w − w′)f0(t = 0, w′), (4.48)

with the Green’s function for the diffusion equation is

G(t,∆w) = 1√
4πt

exp
(
−(∆w)2

4t

)
. (4.49)

In the collisionless limit, the distribution function drops discontinuously to zero on the
separatrix, the initial condition can therefore be expressed as f0(t = 0, w) = fi(v)Θ(−w),
where Θ is the Heaviside step-function, and with fi taken from (2.68). However since the
boundary layer is so thin, variations due to fi(v) can be neglected to give

f0(t = 0, w) = FΘ(−w), (4.50)

with F = fi(v→ −v0). The solution, (4.48), can now be written down as

f0(t, w) = F√
4πt

∞∫
−∞

dw′ Θ(−w′) exp
(
−(w − w′)2

4t

)

= F

2 erfc
(
w

2
√
t

)
.

(4.51)

Adding boundary conditions

While (4.51) is the formal solution to the diffusion equation with a step-function as the
initial condition, it cannot be used directly here. For instance it will affect the distribution
function even for w < 0 in region I, but region I is constantly refilled with more ions
coming in from upstream. So instead fI

0, the distribution function in region I, is taken to
be constant in time and is given by (2.68).
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4.2. Introducing a small collisionality

Next are regions II and III. There will still be an influx of ions from region I to II, and
a subsequent outflux of ions from region II to III. So since (4.51) with any constant factor
still solves the diffusion PDE (4.47), it can be used instead with the boundary conditions
fII

0 (t, w = 0) = F and fII
0 (t, w → ∞) = 0. The second boundary condition not quite

rightly posed, since w never reaches ∞ in region II. However, it can be thought of as a
boundary condition if region II were to be extended to w → ∞. Now, since fII

0 solves
(4.47) and satisfies the boundary conditions, it must also be the unique solution to this
linear problem. That was however only the v < 0 part of region II; and since the orbit
time scales are much shorter than the collisional time scales, the v > 0 part of region II is
set to be mirrored1 that of the v < 0 part.

Then lastly considering region III. Since the distribution function in region II has the
value F on the boundary, the same boundary condition for w = 0 should be imposed on
fIII

0 . Therefore choose fIII
0 the same as fII

0 , but with opposite sign in the erfc function,
since w is decreasing when moving away from the separatrix into region III. Obviously the
different sign in the erfc does not affect the fact that fIII

0 is still a solution to the diffusion
PDE, since (4.47) only has a second derivative in w.

To summarize,

f II(t, w) =F erfc
(
w

2
√
t

)
, (4.52a)

and f III(t, w) =F erfc
(−w

2
√
t

)
, (4.52b)

where

F = fi(v→ −v0) = ni,0

√
τi
2π exp

[
−τi

2
(√

2ψmax −M
)2
]

(4.53)

in order to make the distribution function continuous over the boundaries.

4.2.4 The density of diffused ions

To study how the collisions affect the shock, the ion density has to be calculated. Now
that the diffused distribution function is known, the density of the diffused ions can easily
be calculated. These calculations are done separately for regions II and III.

Region III

Beginning with the particle density in region III,

nIII =
∞∫

v0

dvfIII(v) = F

∞∫
v0

dv erfc
(
−w(v)

2
√
t

)
. (4.54)

1While not immediately obvious, v and −v are actually represented by the same w coordinate. This is
because w is ultimately derived from E, and E is even in v.
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Then going to energy E = 1
2v

2 + ψ as the integration variable,

nIII = F√
2

∞∫
ψmax

erfc
(
−w(E)

2
√
t

) dE√
E − ψmin + q2

ψψA
, (4.55)

where

ψA = ψmax − ψmin and qψ =
√
ψ − ψmin

ψA
. (4.56)

This yields

nIII = F
√

2ψA

∞∫
1

erfc
(
−w(k)

2
√
t

)
k dk√
k2 − q2

ψ

. (4.57)

Note that while k = 1 on the separatrix, q2
ψ ≥ 1 with equality only at the crossings of the

separatrices, i.e. where ψ = ψmax.

Region II

The procedure for region II is quite similar, but with some key differences. Firstly the
integration limits will have to be ±v0,

nII =
v0∫
−v0

dvfII(v) = 2
v0∫
0

dvfII(v). (4.58)

Then going to E as the integration variable is just as before in (4.55), but now with the
integration limits E = ψ to E = ψmax, which then yields the k integral

nII = 2F
√

2ψA

1∫
qψ

erfc
(

w

2
√
t

)
k dk√
k2 − q2

ψ

. (4.59)

Quasi-neutrality and the electron density

Since the collisions affect the ion density, the electron density has to be modified as well,
to keep quasi-neutrality at the far upstream end. This is easily done by simply adding the
contribution from region III with ψ = 0,

ni,2 = F
√

2ψA

∞∫
1

erfc
(
− w

2
√
t

)
k dk√

k2 + ψmax/ψA
, (4.60)

to the far upstream electron density (2.75).
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4.3 Studying the new variable
So far the result in (4.52) is expressed in the, somewhat obscure, variable w while the
physics lies in the velocity, v, or the energy, E. Therefore, this section will deal with how
to find the form of w(ε), from which the energy or velocity dependence can be recovered.
Asymptotic expansions for w will be presented in the following subsection, these can then
be used to find a suitable approximation function for w(ε), and then to also verify dropping
the first order derivatives in the derivation of the model, which are done in the subsequent
subsections.

As an initial comment, it is clear from the definition of w, (4.46), that Υ ∝ ν−1/2
∗ only

acts as a scale factor for w. Then, since w is only used in conjunction with t−1/2, as in
(4.52), ν∗ and t will also only appear together as the product tν∗. The individual values
of t and ν∗ are therefore not of any significant interest in this model. Of course in reality,
that is not the case since other effects can affect the shock and its time evolution.

4.3.1 Asymptotic expansions for w(ε)
In this subsection an asymptotic formula for w(ε) as ε → 0, is presented. The reader
should therefore be aware of the more strict use of the symbol “'”. In this thesis ' means
that the RHS approaches the LHS faster than the smallest term on either side. That is,
in this context ' signifies a proper asymptotic approximation, and should not be confused
with ∼ which is just an order of magnitude estimate. For some more detail on asymptotic
methods, the reader is referred to the book by Lin and Segel [24].

Small ε limit

With w(ε) defined by (4.46), it can be expressed as

w(ε) = Υ
ε∫

0

dε′√
F (ε′)

. (4.61)

Using the asymptotic expansions for the complete elliptic integrals [23, Sec. 19.12]

K(k±2) ' 1
2 ln

( 1
|ε|

)
+ 3

2 ln(2) +O(ε) (4.62a)

E(k±2) ' 1 +O(ε), (4.62b)

for k = 1− ε as ε→ 0, the asymptotic expansion for F (ε) becomes

F (ε) ' 2
ln(8/|ε|) as ε→ 0. (4.63)

The O(ε) is omitted from now on for brevity. Using this expansion in (4.61) yields

w(ε)
Υ ' ε√

2

√
ln
( 8
|ε|

)
± 2
√

2π erfc
(√

ln
( 8
|ε|

))
as ε→ 0±. (4.64)
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Note that, for |ε| ≪ 1, the erfc term is around two orders of magnitude smaller than
the first term, but the erfc term provides a valuable extension of the range for which this
expansion is valid. Also note that while (4.63) seems sign independent, the absolute value
should be read as |ε| = ±ε which is the reason for the ± in (4.64). This therefore means
that both terms always have the same sign.

Large |ε| limit

Then there are the limits away from ε = 0. At first this seems like a strange limit to be
interested in, since ε has so far been said to always be very close to zero. However later,
when determining the density of diffused ions, the resulting integrals are taken over large
intervals in v, and hence also large intervals in ε. In these limits, the asymptotic behavior
differ between positive and negative ε, so they will be treated separately.

First the limit ε → 1, or equivalently k → 0. Using the expansions of the elliptic
integrals for small k given in [23, Sec. 19.5], (4.46) becomes

1
Υ

dw
dε '

1√
1
2 −

k2

16

'
√

2
(

1 + k2

16

)
as k → 0. (4.65)

Which, using k = 1− ε, results in

w(ε)
Υ '

√
2(ε− 1)−

√
2

48 (1− ε)3 + C+, (4.66)

where C+ is some unknown constant of integration which can be determined, by numer-
ically calculating w(ε = 1) and then matching that value against the asymptotic value
above.

Then the limit ε→ −∞, which, again using [23, Sec. 19.5], yields2

w(ε)
Υ ' 1 as ε→ −∞. (4.67)

This then gives
w(ε)

Υ ' ε+ C−, (4.68)

for some other integration constant C−. This time however, C− cannot be calculated as
naturally as before since w is not finite in the limit ε → −∞; instead w(ε) has to be
calculated for a sufficiently large (negative) ε, from which the above asymptotic expansion
is matched.

2When implementing the result of this calculation in the approximation function ŵ, described below,
it was found that a higher order approximation could not be used at ε = −2, which is the upper limit for
which this asymptotic expansion is used.
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Figure 4.2: The variable w as a function of the kinetic variable ε. Note that the
variable on the vertical axis is w/Υ, where Υ =

√
2φA/ν∗ � 1. Also shown here

is the relative error of the approximation of w, ŵ, used in the following numerical
calcualtions.

4.3.2 Returning to the original variables – numerical approach

The results in (4.64), (4.68), and (4.66) are only asymptotically valid in either limit of
ε. Unfortunately the only analytical refinement possible is to include more terms in the
asymptotic expansions, and even that might not help since not all asymptotic series are
convergent. Instead numerical methods have to be employed. One way to numerically
compute w(ε) is to simply use the definition of w, (4.46),

1
Υ

dw
dε = 1√

F (ε)
, w(ε = 0) = 0. (4.69)

This is a first order ODE, which can easily be solved numerically, with for instance a
Runge-Kutta method. It is also noted that the only role Υ plays here is that of a scale
factor for w; numerical calculations of w(ε) can therefore be performed with Υ = 1, and
then scaled by the desired value of Υ.

There are however some details which need a bit of extra attention. The first and
foremost being that the initial condition w(0) = 0 cannot be used in the numerical solver,
since F (0) = 0 the derivative is ill-behaved at ε = 0. This is where the work with the
asymptotic expansion comes into play. Instead of starting at (ε, w) = (0, 0), the numerical
solver can be given a starting point (ε0, w0), with ε0 � 1 and then w0 is given by (4.64).
Using this method, with ε0 = 1× 10−15, w(ε) has been plotted in Figure 4.2.

In order to effectively use w(ε) in later numerical methods, an approximation function,
ŵ(ε) has been utilized. For positive ε, ŵ(ε) is first given by (4.64) for 0 < ε ≤ 0.1 and then
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given by (4.66) with C+ = 1.4756 for 0.1 < ε ≤ 1. Then for negative ε, the approximation
function is divided into three parts with breaking points at ε = −0.5 and −2. In the first
part, −0.5 ≤ ε < 0, (4.64) is used, then the lowest region, ε ≤ −2, (4.68) is used with
C− = −0.3310 based on a numerical calculation of w(ε = −50)/Υ = −50.3310. Then for
−2 < ε < −0.5, a linear curve connecting the two asymptote is used. The result of this
approximation function, ŵ, is shown as the dashed curve in the lower panel of Figure 4.2,
as well as a graph of the relative error |(ŵ−w)/w| in the upper panel. The relative error
stays below 5%.

4.3.3 A posteriori verification of previous assumptions

In the calculations leading up to the results above, the thin boundary layer argument has
been used freely to neglect lower order derivatives in v, E, and k along the way. These
assumptions will be checked here.

It is now clear that the width of the boundary layer in w is δw ∼
√
t. This means

that the boundary layer width in terms of ε is δε =∼
√
t/Υ ∼

√
tν∗, which can be seen

from the relation between w/Υ and ε in Figure 4.2. Of course the width in k is the same
as in ε, δk = δε. Then using the definition of k, (4.27),

δE = 2ψAkδk ∼ k
√

2tψAν∗ ∼
√
tν∗ � 1, (4.70)

recalling that k = 1 at the boundary. These are the estimates of the boundary layer widths
which can now be used to check the relative sizes of the first and second derivatives.

Beginning with the first change of variables subject to an approximation of this kind,
(4.20), which can be exactly written as〈

∂2f0
∂v2

〉
E

= 2ψAk
2F (k)∂

2f0
∂E2 + ∂f0

∂E
. (4.71)

While in most cases v ∼ 1, on the separatrix, where v = ±v0, that is not necessarily the
case, especially on points where ψ → ψmax and v0 → 0. This also results in 〈v2〉 → 0 on
the whole of the separatrix, which violates the assumption that the first derivative could
be neglected compared to the second derivative. However, as shall soon be apparent, this
violation only becomes important in an extremely narrow region near the separatrix. This
region is narrow even compared to the rates of change of f0, meaning that even though
the assumptions are violated the contribution from this region is still so small that the
overall behavior of f0 is not affected. This line of reasoning is very similar to the one used
by Hazeltine et al. in [25].

To show that the region of violation is as narrow as claimed, let δ̂ε denote the width
of this region. In this region the two terms in (4.71) are of comparable size, meaning that

F (δ̂ε) f0
(δE)2 ∼

f0
δE

. (4.72)

Using the asymptotic expansion of F (ε), (4.63), yields
1

− ln
(
|δ̂ε|

) ∼ δE ∼ √tν∗, (4.73)
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or equivalently
|δ̂ε| ∼ exp

(
− 1√

tν∗

)
≪ δε, (4.74)

which is exponentially small, since tν∗ � 1. Any contribution to f0 from this region, δ̂f0,
will only be approximately δ̂ε/δε ≪ 1. Thus, neglecting the first order E-derivative will
not affect the end result, even though the approximation formally breaks down very near
the separatrix. The other first order derivatives that have been neglected in the derivation
of the collisional distribution function can also be treated in a similar way.

4.4 Numerical implementation
Just as with the previous shock models this model will need to be studied numerically as
well. In this section the numerical implementation is briefly described.

The numerical implementation of this model is very similar to what has been described
in section 3.1, but with the diffused ion densities from above added in the code. The
integrations in (4.57), (4.59), and (4.60) were performed using the approximation function
described in section 4.3.2.

To help the numerical integration, an upper integration limit

kmax = 1 + 10
√
t

Υ . (4.75)

is imposed on (4.57) and (4.60) in the numerical implementation. The choice of this limit
is based on the fact that the width, in terms of w, of the boundary layer in which f0 has
an appreciable value is δw ∼

√
t, which since δε ∼ Υδw corresponds to a width in k of

δk = δε ∼
√
t/Υ; then an extra factor of 10 is used as a margin. Any contribution to nIII

outside this kmax is extremely small due to the nature of the erfc function.
In this model, like the AD electron trapping model, ψmin as well as ψmax have to

be calculated together in a system of equations like (3.1). Furthermore, there are more
numerical integrations in this model, and the new integrands are not always that well
behaved, since they sometimes have singularities at the integration limits. Due to these
issues the runtime is negatively affected. The runtime of finding a single shock can now
reach several minutes. This do however almost exclusively happen for large tν∗ ∼ 0.1,
after which the model usually breaks down anyway; at tν∗ ∼ 10−3−10−2 the runtimes
are still at around 10 s per shock object. Again these runtimes are on a single core in a
medium to high end workstation PC.

As with the collisionless code, the Matlab packages used in the implementation of this
model are available on GitHub3.

4.5 The effects of collisions
When studying the collisions here, only Maxwell-Boltzmann electrons have been consid-
ered. The results of these studies are presented in this section.

3https://github.com/andsunds/Shock_pkg
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Figure 4.3: Log-log plot of the of −∆ψmin (solid markers) and −∆ψmax (open markers)
from a collisional shock as a function of time. All shocks are calculated with τi =
50. The slopes are all in the ranges 0.5–0.6 (the dotted line has a slope of 0.5 for
comparison), indicating a slightly faster than square root of t dependence. Note that
the few highest data points for M = 1.08 are unphysical since ψmin has reached 0 and
the model has broken down there.

The time dependence of the solutions have been studied for single ion species shocks
at three different Mach numbers at τi = 50. Both ψmax and ψmin are found to decrease
with time, so Figure 4.3 shows the change in ψmin and ψmax,

−∆ψmin,max = ψmin,max(0)− ψmin,max(t). (4.76)

Note the log-log scale in Figure 4.3 and how the data points fall on almost straight lines.
All the sets of data points have a slope of 0.5–0.6, indicating that ∆ψmin,max∝̃ −

√
tν∗,

which is very interesting but somewhat expected. It was expected since the basis for
this model is a type of diffusion equation, and the solutions of diffusion equations usually
exhibit

√
t behaviors in some form or another. In fact, a surprisingly similar method

has been used by Fülöp et al. [26] to study collisional effects on fusion plasmas, and they
similarly found a √ν∗ dependence. The result here is however still interesting since the
patterns are so consistent – the only expected part was that if a pattern would appear at
all, then it would be

√
t.

It is also interesting to note that the values of −∆ψmax are around an order of mag-
nitude smaller than those of the corresponding −∆ψmax. This means that while the
collisions do affect the downstream of the shock, ψmax is not affected very much. As a
consequence of that the upstream region of the shock is not affected significantly by the
collisions, neither is the ion reflection since that is governed by Fi ..= 2ψmax/M 2 according
to Appendix A.

The effect of collisions on the form of the shock and the charge density is shown in
Figure 4.4, which show the initial shock, at tν∗ = 0, and later when the collisions have

50



4.5. The effects of collisions

−20
0

20
40
60

0

0.1

0.2

0.3

−30 −25 −20 −15 −10 −5 0 5 10 15

ρ
×

10
3

tν∗ = 0.125
tν∗ = 0

ψ

x

tν∗ = 0.125
tν∗ = 0

Figure 4.4: Comparison between a collisionless (tν∗ = 0) and a collisional shock after
a time tν∗ = 0.125 has passed. These two shocks correspond to the first and last
shock of the series of shocks in Figure 4.3. The lower panel shows the electrostatic
potential of each shock, while the upper panel shows their charge density.

−4
0
4
8

0

0.05

0.1

0.15

−60 −50 −40 −30 −20 −10 0 10 20 30

ρ
×

10
3

ψ

x

Figure 4.5: The extreme limit of the collision model, showing the charge density, ρ,
and potential, ψ(x), for a shock with τi = 50, M = 1.08, and tν∗ = 0.120. This is
right before the model breaks down completely.

51
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had time to significantly modify the charge density, at tν∗ = 0.125. The fact that ψmin
is affected much more than ψmax is clear from this figure. Figure 4.4, showing ρ(x), also
reveals that the downstream oscillations are not very sinusoidal, otherwise ρ = − d2ψ

/
dx2

would have also been sinusoidal; the deviation from a sinusoidal spatial dependence is also
growing with time. This means that the assumption made in (4.25) does not quite reflect
reality in cases like this where the amplitude of the downstream oscillation is rather large.
The deviation from sinusoidal oscillations is however only clearly visible in the second
derivative, and not in ψ(x) itself. This will therefore most likely not affect the results
very much for these shocks.

Of course the square root of time dependence cannot continue indefinitely. This is
illustrated in the time series for M = 1.08 in Figure 4.3, where the last few data points
show that −∆ψmin first starts increasing faster and then abruptly flattens out. This
sudden stop in the change of −∆ψmin is due to the fact that ψmin has reached 0 and can
no longer continue decreasing. The form of the potential ψ(x) and the charge density
ρ of a shock just before this happens is shown in Figure 4.5. While the deviation from
sinusoidal oscillation was not that great in Figure 4.4, in Figure 4.5 the deviation from a
sinusoidal is definitely a problem here, and the theoretical model cannot be expected to
hold this far. This illustrates an important limitation to this model, i.e. that it can only
be said to be valid for small enough tν∗ and that in turn depends on the initial form of
the shock; at low Mach numbers, where ψmax and ψmin are low initially, the model breaks
down quicker than at high Mach numbers, where the initial ψmax and ψmin are larger.

There are however some important features that are still qualitatively valid, even for
these degenerated oscillation shapes. The inverse logarithmic behavior of F (ε) for ε� 1,
(4.63), is still valid – albeit with some other constants. This is because d2ψ

/
dx2 = −ρ(x)

is still continuous and non-zero at the peaks, meaning that the orbit-time-averages in
section 4.2.2 will still have their logarithmic divergence. This means that the qualitative
behavior of w near the boundary will be more or less unaffected, leading to similar end
results.

4.6 Possible extensions and improvements

The collisional shock model presented here in this thesis is an important first step, but
it still has room for improvement. Some points on how to further develop this model are
raised and discussed in the following.

The perhaps easiest extension of this model is to also include effects of electron trap-
ping, together with collisions. No significant theoretical work is needed to do this, and it
would most likely only involve fusing the different parts of code from the different models.
Since both electron trapping and ion collisions act to increase the amplitude of the oscil-
lations it would be interesting to see the effects together. An interesting point to study
would be to see how collisions affect an AD shock in a region with multiple solutions, e.g.
from Figure 3.4; one might perhaps find that some of the solutions are unstable.

One issue mentioned already in section 4.1.1, is the mathematically and physically
somewhat unjustified assumption to neglect any velocity dependence of ν∗. This was
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motivated to simplify the theory in this early stage. It is however not unfeasible to redo
the derivation with a velocity dependent ν∗. To do this, firstly ν∗ has to be specified by
a more careful study of the collision operator, and secondly the integrals in section 4.2.2
must be redone with

〈
2ν∗v2〉 instead. This would of course change the results somewhat,

but the qualitative results presented above are not expected to change very much.
As of now this model does not take all the aspects of the scattered ions into account.

By enforcing that fI is constant in time everywhere, this model does not take into account
that the ions scattered into region II must also have left region I. It is true that region Ia is
continuously refilled at the shock front, and fI should reasonably be considered constant
in time, but further downstream fI has to decrease if the number of ions is to be conserved.
This does however break one of the main assumptions of this model that f0 is periodic
in the downstream. One possible way to handle this is to say that this variation in x

happens on a much longer length scale, on the order of magnitude ν−1
∗ , than the size of

each particular island of trapping, so that the orbit-time-average for each particular island
is similar to what is done here but differs between island, i.e. 〈·〉E → 〈·〉

i
E where the index

i denotes which island the orbit-time-average is taken at. A treatment like this would
likely result in a spacial attenuation of the downstream oscillation amplitude, as there will
be fewer ions trapped on each successive island. It should however be emphasized again
that, except in extreme cases like in Figure 4.5, the collision model at its present stage
still provides a good approximation near the shock front.

Another very interesting and relevant point regarding collisions is how multiple ion
species or impurity ions affect the results of collision. Some of the major work required to
generalize to multiple ion species lies in the need to now consider inter-species collisions
and drag forces exerted between the different species. It is a non-trivial work to do this
generalization. Inter-species collisional effects have, in simulations, been shown to be able
to cause very fast heating of the light ions [9].
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Chapter 5

Conclusions

In this thesis, a semi-analytical model of electrostatic shocks is presented and further
developed. Effects of electron trapping are studied using two different models. Also the
effects of a weak but finite ion collisionality are studied through a semi-analytical, time
dependent model developed in this thesis.

The effects of electron trapping have been modeled as a flattening of the electron
distribution function in the trapping regions of phase space. The two models of the
electron trapping only differ in the sizes of the trapping regions. By flattening out the
electron distribution function in the trapped regions, the electron density is in fact lowered
compared to a Boltzmann response. This lowering of the electron density shifts the total
charge density toward being more positive, which results in generally larger amplitudes of
the downstream oscillation.

Depending on how the shock was created, the far downstream of shock might be very
different. That is why two models for the effects of electron trapping were considered. The
first model had a freely set potential threshold, above which the electrons were assumed to
be trapped, and the other model had the threshold strictly set by the downstream potential
oscillations. To further study this phenomenon, more knowledge on the far downstream
conditions of the shock is required. In the second model, multiple shock solutions are found
for the same input parameters in certain parameter regions. It would be very interesting
to study the stability of the different solutions to determine which type of solution will be
more likely to be found in an experiment.

To model collisions in the shock, an orbit-time-averaging technique has been employed
to find the leading order perturbative solution to the kinetic equation, in the smallness
of the collisionality. As the passing ions are continuously refilled by incoming ions, the
passing ion distribution function is assumed to be unaffected by the collisions. Meanwhile
more and more ions are scattered into other regions of phase space, smoothing out the
previous discontinuity of the distribution function. Since ions get trapped, the charge
density is again shifted towards being more positive; hence the effects of collisions are
somewhat similar to those of electron trapping. However the collisional model has a time
dependence which the electron trapping model lacks. Very interestingly, the amplitude of
the downstream oscillations grow as the square root of time, but the maximum value of
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the potential is more or less unaffected.
This collisional shock model is only a first step, and as such it has a few limitations and

uses a model collision operator. One of the limitations that occur during time evolution
of the model is that the model breaks down when enough ions have been scattered into
the trapping regions of phase space. This is because the scattered ions not only affect
the amplitude of the downstream oscillation, but also its shape; therefore some of the
assumptions made to derive the model break. This happens without any prior warning.
However, it is stressed that the model, as it is presented here, is still valid early on in the
time evolution.

Besides adjusting the model to handle this limitation, there are several other possible
ways to improve upon this model. For instance, another collision operator could be used,
or a spatial downstream dependence could be studied. The perhaps easiest extension of
the work in this thesis would be to combine the ion collisions with electron trapping; both
models have similar effects on the downstream oscillations, and it would be interesting to
study how they interact.

On a larger scale it would be desirable to extend the semi-analytical model to higher
dimensions to be able to also include effects of magnetic fields. This is crucial for the
development of a model of shocks which can be used for ion acceleration purposes. The
electrostatic shocks only have a limited range of shock propagation speeds, as has been
seen in chapter 3, and can therefore not be used to accelerate ions to very high energies.
Meanwhile magnetized shocks does not have an upper speed limit [27] – except the speed
of light. However the Sagdeev potential method does unfortunately only work with a one
dimensional theory, so some other means of finding the form and shape of the shock front
is required. Also, relativistic effects will have to be considered if high energy acceleration
is to be considered.

Another pressing issue is that of time evolution. The collisional model does have a
time dependency due to collisions, but other types of time dependencies definitely exist.
For instance, shocks are dissipative, but at this stage the model does not take energy
transfer from the field into the reflected ions into account, which in some circumstances
might affect the shock. Closely related to the time evolution issue is the problem of shock
formation. There is presently no good understanding of the formation stage of shocks,
which would be of great importance for any intended application of shocks.
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Appendix A

Other shock properties

In this appendix a couple more properties of the shock is presented. These properties
only play a very minor role in the thesis, but they might be useful for other studies of
electrostatic shocks.

A.1 Ion reflection

The fraction of ions that are reflected by the shock compared to the number of incoming
ions, αj, is calculated in a way similar to how nj,1 from (2.72) was calculated, and is given
by

αj =
∫ v0

0 fj(v, ψ = 0) dv∫ 0
−∞ fj(v, ψ = 0) dv

=
erf
[√

τj
2 M

]
+ erf

[√
τj
2
(√

2ζjψmax −M
)]

1 + erf
[√

τj
2 M

] . (A.1)

In the limit of high electron temperature, i.e. τj � 1,

erf
[√

τj
2 M

]
≈ 1, (A.2)

and

αj ≈
1
2

1 + erf

√τj
2 M

1−

√
2ζjψmax

M 2

 = 1
2 erfc

[√
τj
2 M

(
1−
√
F
)]
, (A.3)

where
Fj ..= ζjψmax

M 2/2 (A.4)

is the ratio between the maximum electric energy to the mean kinetic energy of the in-
coming ions. The higer Fj is the larger αj will be, and the effect is very dramatic if Fj
goes from slightly below 1 to slightly above 1 for large τj. This means that an ion species
with high ζj will have a significantly higher proportion of reflected ions.
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A.2 Wavelength
The Sagdeev potentials can, just as in section 2.2.4, be used to calculate the wavelengths
of the shock downstream oscillations. Similarly to (2.59), the downstream oscillation
wavelength is given by

λds =
√

2
ψmax∫
ψmin

dψ√
−Ψds(ψ,ψmax)

. (A.5)

Also like in section 2.2.4, the upstream electrostatic potential of the shock can be said to
have an infinite wavelength. This is because (2.79) guarantees that

Ψus(ψ = 0, ψmax) = 0, (A.6)

and quasi-neutrality also requires that

∂Ψus
∂ψ

∣∣∣∣
ψ=0
≡ ρ̂us(ψ = 0, ψmax) = 0. (A.7)

This means that
Ψus(ψ,ψmax) = O

(
ψ2
)

(A.8)

for small ψ, which by the argument in section 2.2.4 results in the upstream electrostatic
potential having an infinite wavelength.
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