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Structural Response of Concrete Beams Subjected to Drop Weight Impact  
A parametric study using numerical modelling 

Master’s Thesis in the Master Programme Structural Engineering and Building 
Technology  

MICHAELA MUNTHER 

JOSEFINE RUNEBRANT 

Department of Architecture and Civil Engineering  
Division of Structural Engineering 
Concrete Structures 
Chalmers University of Technology 
 

ABSTRACT 

A structure subjected to an impact load will respond differently compared to when 
subjected to static loading. Finite element modelling of dynamically loaded structures 
has not been practiced to the same extent as of statically loaded ones, and 
consequently the results are not as reliable. Modelling choices in nonlinear finite 
element analyses of dynamically loaded structures are important to the resulting 
response of the model. In this thesis different levels of numerical modelling are used 
to describe the structural behaviour of reinforced concrete beams subjected to drop 
weight impact.  

An aim of this project was to develop an already existing 3D solid finite element (FE) 
model in LS-DYNA. Another objective was to evaluate when simplified models, such 
as a 2D FE model using beam elements in Abaqus and a two-degrees-of-freedom 
(2DOF) system, are applicable. Another aim was to investigate the sensitivity of these 
models as well as the 3D FE model through parametric studies.  

Based on an existing 3D solid FE model, a more refined model was created by 
comparing different modelling techniques regarding e.g. structural behaviour of the 
reinforcement, and interaction between concrete and reinforcement. The 2DOF 
model, the Abaqus model and the LS-DYNA model were validated by comparison to 
test results. Using these validated models, parametric studies were performed varying 
the dynamic load and the beam geometry as well as the amount of reinforcement. 

The further development of the LS-DYNA model by including a bond-slip relation 
and a non-linear structural behaviour of the reinforcement gave satisfying results. For 
the 2DOF model used in this thesis it was found to be necessary that the model is 
calibrated for each separate case and that the correspondence with the Abaqus model 
was less accurate when the mass of the drop weight was small in relation to the beam. 
This indicated that the time dependency of the response of the beam is captured in the 
Abaqus model, but not in the 2DOF model. To conclude, it is believed that time 
dependent transformation factors in the 2DOF model would make it possible to 
capture a behaviour like that in Abaqus and achieve a model that is applicable in all 
load cases.  

Key words: Reinforced concrete beam, impact load, numerical modelling, 
FE modelling, bond-slip, LS-DYNA, CDPM2, Abaqus, 2DOF model 
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Strukturell respons hos betongbalkar utsatta för fallviktsbelastning 
En parameterstudie utförd genom numerisk modellering  

Examensarbete inom mastersprogrammet Konstruktionsteknik och Byggnadsteknologi 

MICHAELA MUNTHER 

JOSEFINE RUNEBRANT 

Institutionen för Arkitektur och Samhällsbyggnadsteknik 
Avdelningen för Konstruktionsteknik 
Betongbyggnad 
Chalmers Tekniska Högskola 

 

SAMMANFATTNING 

En konstruktion utsatt för stötbelastning reagerar annorlunda jämfört med en statiskt 
belastad. Finita elementmodellering av dynamiskt belastade konstruktioner har inte 
studerats i samma utsträckning som statiskt belastade och följaktligen är resultaten 
inte lika tillförlitliga. Modelleringsval i ickelinjär finit elementanalys av dynamiskt 
belastade konstruktioner är avgörande för den resulterande responsen hos modellen. I 
detta arbete används olika nivåer av numerisk modellering för att beskriva 
strukturresponsen hos en betongbalk utsatt för en fallviktsbelastning. 

Ett syfte med detta projekt var att utveckla en befintlig finita elementmodell med 3D 
solida element i LS-DYNA. En annan avsikt var att utvärdera när förenklade modeller 
som en finita elementmodell med 2D balkelement i Abaqus och ett 
tvåfrihetsgraderssystem (2DOF) är tillämpbara. Ett annat syfte var att undersöka 
känsligheten hos dessa modeller och LS-DYNA-modellen genom en parameterstudie.  

Baserat på den befintliga 3D solida finita elementmodellen skapades en förfinad 
modell genom att jämföra olika modelleringsval så som strukturresponsen hos 
armeringen och interaktionen mellan betong och armering. 2DOF-modellen, 
Abaqus-modellen och LS-DYNA-modellen validerades genom att jämföra dem med 
testresultat. Vidare genomfördes en parametersstudie med dessa tre validerade 
modeller då den dynamiska lasten samt balkens geometri och armeringsmängd 
varierades.  

Utvecklingen av LS-DYNA-modellen, då vidhäftning-glidningssambandet mellan 
betong och armering samt en ickelinjär strukturrespons hos armeringen inkluderades, 
gav tillfredställande resultat. För 2DOF-modellen upptäcktes det nödvändigt att 
kalibrera modellen för varje separat fall och att överensstämmelsen med 
Abaqus-modellen var sämre när fallviktens massa var liten i förhållande till balkens. 
Detta indikerade att tidsberoendet hos balkens respons fångas i Abaqus-modellen men 
inte i 2DOF-modellen. En slutsats är att tidsberoende transformationsfaktorer i 
2DOF-modellen förmodligen skulle göra det möjligt att fånga detta beteende och få 
en modell som kan användas för alla lastfall. 

Nyckelord: Armerad betongbalk, stötbelastning, numerisk modellering, 
FE-modellering, vidhäftning-glidningssamband, LS-DYNA, CDPM2, 
Abaqus, 2DOF-modell 
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1 Introduction 
1.1 Background 
Protective structures need to have the ability to withstand impulse loading like explosions and 
collisions. A suitable material for this kind of structures is reinforced concrete. However, it is 
of importance to have the knowledge about failure modes that may occur in concrete 
structures subjected to dynamic loads since they can be different from failure modes 
occurring in statically loaded structures.   

Excessive finite element modelling has been performed on statically loaded structures and 
can be considered to give rather accurate results. Finite element modelling of dynamically 
loaded structures has not been practiced to the same extent, and consequently the results are 
not as reliable. The modelling choices in nonlinear finite element analyses of dynamically 
loaded structures have shown to be of high importance to the resulting response of the model. 
Consequently, parametric studies can improve the accuracy of future analyses.  

There is an ongoing research project, financed by the Swedish Civil Contingencies Agency, 
at the division of Structural Engineering, Chalmers, of which this master’s thesis was a part. 
Previous work within this part of the research project are the PhD project Ekstöm (2017) and 
the master thesis projects Lovén and Svavarsdóttir (2016) and Lozano and Makdesi (2017). 
This thesis was carried out as a co-operation between Norconsult and Chalmers.  

 

1.2 Aim 
The aim of this project was to increase the understanding of how dynamic loading affects the 
structural behaviour of reinforced concrete beams by using finite element (FE) analyses in 2D 
and 3D as well as analyses using two-degrees-of-freedom (2DOF) models.  

A specific question that was investigated in this thesis was how impact loaded structures can 
be modelled efficiently using the simplified methods of 2DOF systems and 2D FE models 
with beam elements. To further develop already existing 3D solid FE models in LS-DYNA 
used in previous work was another purpose of the project. Furthermore, one objective was to 
increase the understanding of how the structural response of the models is affected by the 
modelling choices by conducting parametric studies varying different parameters in the 
models. 

The thesis project was as a part of an ongoing research project a continuation of previous 
MSc theses as well as a preparation for future master’s thesis projects.  
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1.3 Method  
In this project, a simply supported beam subjected to an impact load represented by a drop-
weight was studied and is demonstrated in Figure 1.1.   

 

 

Figure 1.1 The structure studied in this project. 

The first part of the project consisted of a literature review covering the basics of structural 
dynamics. The simplified methods using single-degree-of-freedom (SDOF) and 2DOF 
systems were investigated to understand how and when they can be used. Furthermore, 
previous MSc thesis projects regarding concrete structures subjected to impact loading were 
studied.  

A 2DOF system was adopted to analyse the structural response of the beam in a simplified 
way. This was done using a numerical explicit time stepping method, Central Difference 
Method (CDM). FE analyses in 2D were performed using plastic beam elements in Abaqus. 

Finite element analyses using 3D solid elements in LS-DYNA were carried out. Based on 
existing models, a more refined model was created by comparing different modelling 
techniques regarding e.g. choice of material parameters, structural behaviour of the 
reinforcement, and interaction between concrete and reinforcement. 

The 2DOF model, the Abaqus model and the LS-DYNA model were validated by 
comparison to tests carried out previously within the research project. In the analyses using 
these models, parametric studies were performed. In the simplified models, parameters 
related to the mass of the drop weight, the drop height of the weight, the beam geometry, and 
the reinforcement amount were varied. Due to the more extensive computational time in the 
LS-DYNA model, the parametric study in 3D was limited to the parameters regarding the 
drop weight and the reinforcement amount.  

 

1.4 Limitations 
In this project, the studied beam is simply supported and made of reinforced normal concrete. 
No experiments were conducted in this project, but results from the analyses were compared 
with tests in previous master's thesis within the research project. 

The elements which were used in the 3D analyses of this project were tetrahedral and the 
only material model for concrete that was used is Concrete Damage Plasticity Model 2 
(CDPM2) which is developed by Peter Grassl et al. (2013) in a project with Chalmers. 

No damping factors were included in the FE-analyses or in the simplified analyses since it 
was deemed they would have a negligible effect in the case of short load duration. 
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1.5 Thesis outline  
In this thesis chapter 2-4 presents the theory which this project is built on. The following two 
chapters, 5-6, describes the method and how the modelling of the different models are done. 
In chapter 7-8 the results are presented and discussed. Lastly, the conclusion and references 
are covered in chapter 9-10. 

Chapter 2: The structural behaviour of the relevant materials as well as their simplified 
response used in mathematical models are treated in this chapter. Furthermore, 
some basic theory behind effects of fast loading is introduced. 

Chapter 3: To analyse impulse loaded structures, it is important to have the knowledge 
about the fundamentals in dynamics, which is briefly treated in this chapter. 

Chapter 4: In this chapter a simplified way to describe an impulse loaded beam using an 
equivalent 2DOF system is introduced.  

Chapter 5: In this project, two simplified methods are used to predict the behaviour of a 
simply supported reinforced concrete beam subjected to impact loading: the 
2DOF system and 2D FE model using beam elements in Abaqus. These two 
methods are presented in this chapter.  

Chapter 6: The theory behind the more detailed 3D FE model using solid elements in LS-
DYNA are described in this chapter. 

Chapter 7: The modelling choices in the simplified as well as the more advanced methods 
are evaluated and improved in this chapter, and then the final models are 
validated. 

Chapter 8: Parametric studies are presented in this chapter performed in all three models. 

Chapter 9: In this chapter the conclusion of this thesis is presented as well as suggestions 
for future studies.   

Chapter 10:  The references used in this thesis are presented in this chapter. 
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2 Material and Structural Response  
2.1 Introduction      
To understand the limitations of models used in calculations, it is of importance to understand 
the actual structural behaviour of the studied structure. The relevant materials in this project 
are concrete, reinforcing steel and the composite material reinforced concrete; these will be 
briefly treated in the following sections. Furthermore, the response of these materials is 
influenced when a load is applied fast, as in this project. Some basic theory behind this effect 
will be introduced. In the mathematical models used, the response of the material is often 
simplified into elastic, plastic, or elasto-plastic response, which are also covered in this 
chapter. 

 

2.2 Concrete 

2.2.1 Structural response  

High compressive strength is characteristic for plain concrete. However, the tensile strength 
is much lower. Both the tensile and compressive stress-strain relations are non-linear which 
can be seen in Figure 2.1. 

 

Figure 2.1 Schematic illustration of the stress-strain relationship for concrete subjected 
to uniaxial loading, from Lovén and Svavarsdóttir (2016). 

 

2.2.2 Fracture energy 

To describe the post-peak behaviour of concrete in tension, fracture mechanics can be used. 
As described by Plos (2000), the fracture energy, 𝐺ி, is a material parameter that describes 
how much energy that is consumed or dissipates when a crack develops fully through a 
specimen. The use of fracture energy as a parameter is convenient for transferring 
experimental data to input parameters in e.g. a finite element model. The stress-displacement 
graph from a test can be divided into an elastic stress-strain relation together with a stress-
crack opening curve, see Figure 2.2. The area under the stress-crack opening curve defines 
the fracture energy.  
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Figure 2.2 Schematic picture of how the pre- and post-peak behaviour of concrete is 
described, from Johansson (2000). 

This partition is done since the crack will localize into a fracture zone whose size is 
independent of specimen size. If the stress-displacement graph was to be transferred into a 
stress-strain relation only, it would give different curves for different specimen sizes and 
thereby not be able to represent the material itself.  

 

2.3 Reinforcing steel 
Reinforcing steel has different structural behaviour depending on if the steel is cold worked 
or hot rolled, this is described by e.g. Engström (2015). If the steel is hot rolled it 
demonstrates a more ductile response with a characteristic yield behaviour and large strain 
hardening effect, see Figure 2.3(a). The cold worked steel does not have the same yield 
behaviour as the hot rolled, this is demonstrated in Figure 2.3(b). Instead, the 0.2 % 
proof-stress is used here to represent the yield strength. This stress is defined as the stress of 
which the plastic strain after unloading is 0.2 %. The strain hardening effects of cold worked 
steel is normally significantly smaller than for hot rolled. 

 

σs σs 

fu 

fy 

εsu 

εs εs 

fu 
f0.2 

0.2 % εsu 

(a) (b)  

Figure 2.3  Structural behaviour of reinforcing steel, a) hot rolled and b) cold worked. 
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2.4 Reinforced concrete 
Reinforced concrete is a composite material where the high compressive strength of concrete 
and the high tensile strength of reinforcing steel are united. The structural behaviour of 
reinforced concrete is described by Engström (2015) and is schematically shown in 
Figure 2.4. The response can be divided into four stages; uncracked, cracked, yielding of the 
reinforcement and failure.  

 

u 

q 

Ductile 
response 

Brittle 
response 

u 

q 

Cracking 
starts 

Fully cracked, 
yielding starts 

Failure 

 

Figure 2.4 The structural behaviour of reinforced concrete, modified from 
Johansson (2012). 

In the uncracked stage the reinforcement has small influence and the flexural rigidity is 
mostly governed by the concrete. The response is relatively stiff and linear in this stage. This 
is referred to as state I. 

When the tensile strength of the concrete is reached in a section, a crack is formed. In the 
early stages of cracking the concrete between the cracks has a large contribution to the 
stiffness, this is called tension stiffening. When the cracks propagate in the structure the 
stiffness decreases until the structure can be regarded as fully cracked and the stiffness is to a 
high degree governed by the reinforcement. The stiffness of the fully cracked section is 
referred to as state II stiffness. 

In the third stage the reinforcement will start to yield and the response of the structure 
changes drastically. The strain hardening of the steel allows the load on the structure to be 
increased beyond the yield strength of the steel.  

The failure of the structure can be brittle or ductile depending on the properties of the section, 
e.g. the amount and the ductility properties of the reinforcement. A formation of a plastic 
hinge will develop if the response of the reinforcement is ductile and a suitable reinforcement 
configuration, with regard to cross-section and concrete strength, is present. 
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2.5 Strain rate effects 
The rate of which a strain is applied to a structure affects the response of the materials, this is 
described by e.g. Johansson (2000). When a strain is applied fast, materials tend to be stiffer 
and stronger. According to Johansson, the strain rate effect on concrete can be explained by 
viscous and structural effects, see Figure 2.5. 

 

10-5 10-4 10-3 10-2 10-1 100 101 102 103 
Strain rate [s-1] 

1.0 

0.5 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

Fdyn / Fsta 

30 

structural effects: 
  - inertia forces 
  - confinement 

transition 
zone 

viscous effects 

 

Figure 2.5 Strain rates for which viscous and structural effects are influencing concrete 
in compression, modified from Johansson (2000). 

The viscous effects have an impact on the formation of cracks in the material. During static 
loading, the crack propagates through the material slower and has time to find the weaker 
path. At high strain rates on the other hand, the crack propagates without having time to make 
use of the same weaknesses within the material. This gives rise to a stiffer and stronger 
response. 

At higher strain rates, the structural effects are influencing the strength. This is mainly due to 
inertia forces that develops at the tip of the crack. When concrete is subjected to compression, 
faster than it responds, a confinement effect will arise. This leads to a stress state close to 
plain strain which increases the strength of the concrete. 

The strain rate effects are usually treated by the Dynamic Increase Factor (DIF) which is 
calculated as the ratio between the dynamic and static strength: 

𝐷𝐼𝐹 =
𝐹ௗ௬௡

𝐹௦௧௔
 (2.1) 
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The DIF for concrete in tension according to different theories can be seen in Figure 2.6. 

 

0 

1 

2 

3 

4 

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 
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Fdyn / Fsta 
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 Theory 1, fc = 60 MPa 

 Theory 3, fc = 28 MPa 

 Theory 2, fc = 30 MPa 
 Theory 2, fc = 60 MPa 

 

Figure 2.6 DIF for concrete in tension from different theories with regard to the strain 
rate, modified from Johansson (2000). 

Regarding the reinforcement, strain rate effects lead to increased yield and ultimate strength. 
The Young’s modulus however, is not affected. The DIF for reinforcement according to 
different theories is shown in Figure 2.7. 
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Figure 2.7  DIF for reinforcement from different theories with regard to strain rate, 
modified from Johansson (2000). 
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In this project, an impact load which results in a strain rate of approximately 100 - 101 s-1 will 
be analysed. This can be placed in relation to a static load where the strain rate is in a range 
around 10-5 and a blast between 102 - 103, see Figure 2.8. 

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103

creep static earthquake hard impact blast

strain rate [s-1]  

Figure 2.8 Strain rates for different kind of loading, from Johansson (2000). 

 

2.6 Simplified models of structural response 

2.6.1 Linear elastic behaviour 

Deformations of a structure with elastic response are reversible and the stiffness, 𝑘, of the 
structure is constant. The resistance, 𝑅, varies linearly with the displacement, 𝑢. The relation 
can be described by:  

 𝑅(𝑢) = 𝑘 ∙ 𝑢 (2.2) 

The elastic structural response is illustrated in Figure 2.9.  

 

 

 

 

 

 

k 

1 

R 

u 
 

Figure 2.9  Linear elastic structural behaviour. 

 

2.6.2 Ideally plastic behaviour 

The resistance in an ideally plastic case is equal to the applied load, 𝐹, until the capacity of 
the structure is reached. Until this point no deformation is developed. When the capacity is 
reached, the resistance is constant and the displacement, 𝑢, is irreversible and infinite.  

The resistance of the material can be given as: 

𝑅(𝑢) = ൜
𝐹                            𝑢 = 0

𝑅௠                          𝑢 > 0 
 (2.3) 
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The relation between the resistance and the displacement is shown in Figure 2.10.  

 

Rm 

R 

u 

 
Figure 2.10  Ideally plastic structural behaviour. 

2.6.3 Elasto-plastic behaviour 

In the elasto-plastic case, the response is a combination between the linear elastic and the 
ideally plastic case. The resistance develops linearly until an upper limit and then remains 
constant. If the resistance limit is reached, there will be an irreversible plastic displacement, 
𝑢௘௟ି௣௟.௣௟. 

𝑅(𝑢) = ൜
𝑘 ∙ 𝑢                         𝑢 < 𝑢௘௟ି௣௟.௘௟

𝑅௠                            𝑢 ≥ 𝑢௘௟ି௣௟.௘௟ 
 (2.4) 

The total displacement will be: 

𝑢௧௢௧ = 𝑢௘௟ି௣௟.௘௟ + 𝑢௘௟ି௣௟.௣௟ (2.5) 

In Figure 2.11, the response of an elasto-plastic structure is illustrated. As shown in the 
figure, the unloading of an elasto-plastic structure is similar to that of an elastic one. 
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Figure 2.11  Elasto-plastic structural response. 
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3 Basics of Structural Dynamics 
3.1 Introduction  
To analyse impulse loaded structures, it is important to have the knowledge about the 
fundamentals in dynamics. This starts with basic concepts as energy and work, that are 
briefly treated in this chapter. Furthermore, these concepts help to understand the interaction 
between two bodies and the characteristics of an impact, which are covered in this chapter as 
well. This chapter is based on the theory described by Johansson and Laine (2012).  

 

3.2 Energy, momentum, impulse, and work 
The kinetic energy, 𝐸௞, for a body with mass 𝑚 and velocity 𝑣, is defined as: 

𝐸௞ =
𝑚𝑣ଶ

2
 (3.1) 

The momentum, 𝑝, of the body is defined as: 

When an external force, 𝐹(𝑡), acts on a body from time 𝑡 = 0 to 𝑡 = 𝑡ଵ , there will be a 
change in momentum, defined as an impulse, 𝐼.  

If the body is initially at rest (𝑣଴ = 0) this can be written as:  

Using equations (3.1) and (3.4), the change in kinetic energy can be expressed as:  

When the force acts on the body, it gives rise to a change in velocity and consequently a 
change in kinetic energy. This change is equal to the external work that the force has 
performed on the body.  In this case, where the body is initially at rest, the external work on 
the body can be expressed as in equation (3.6).   

𝑝 = 𝑚𝑣 (3.2) 

𝐼 = 𝑝 − 𝑝଴ = 𝑚 𝑣 − 𝑚𝑣଴ = න 𝐹(𝑡)𝑑𝑡
௧భ

଴

 (3.3) 

𝐼 = 𝑚𝑣 (3.4) 

𝐸௞ =
𝐼ଶ

2𝑚
 (3.5) 

𝑊௘ =
𝑚𝑣ଶ

2
= 𝐸௞ (3.6) 
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When the external force causes a displacement, 𝑢, the work can also be calculated using the 
component of the force acting in the direction of the displacement, see equation (3.7). The 
work is calculated assuming a displacement along the x-axis and the integral describes the 
area under the force-displacement curve.  

The body subjected to an external work will respond with an internal work, 𝑊௜ . The 
maximum displacement is reached when the internal work is of equal magnitude as the 
external work. 

This can be visualized using the areas under the force-displacement curve for the external 
work and resistance-displacement curve for the internal work. The structural response, as 
described in Section 2.6, is simplified to elastic, plastic or elastoplastic and the graph of the 
internal work is described accordingly. Equilibrium is reached when the areas are of equal 
size and then the final displacement is reached. In Figure 3.1, the equilibrium for an elastic, 
plastic and elasto-plastic structure, respectively, are shown.  
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Figure 3.1 Equilibrium between external and internal work for: a) elastic, b) plastic, and 
c) elasto-plastic response. 

 

  

𝑊௘ = න 𝐹(𝑥)𝑑𝑥
௨

଴

 (3.7) 

𝑊௜ = 𝑊௘ (3.8) 
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3.3 Dynamic load cases  
There are two ideal cases of dynamic loading: characteristic impulse and characteristic 
pressure load, see Figure 3.2. In both cases, the maximum force is reached instantaneously. 
The characteristic impulse has an infinitely high pressure and an infinitely short duration, but 
an impulse content of 𝐼௞ . On the contrary, a characteristic pressure load defined by the 
characteristic pressure 𝐹௞, has an infinite duration, see Figure 3.2. In reality, the loading will 
be somewhere in between these two cases.  

 

(a) 

 

(b) 

Figure 3.2 The two ideal cases of dynamic loading, (a) characteristic impulse and (b) 
characteristic pressure load. 

In this project, the impact will be assumed to be an impulse. The reason is that the main part 
of the load will be transferred during a short time in relation to the time it takes for the whole 
structure to respond. The impulse load in this project is an impact, which by definition is a 
high-velocity collision. Based on Chen and May (2009), and experience within the research 
project, e.g. Jönsson and Stenseke (2018), the load in this project is expected to have the 
shape illustrated in Figure 3.3. 
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Figure 3.3 Simplification of the expected shape of the dynamic load in this project. 
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An illustration of an impact between the two arbitrary bodies: body 1, with mass 𝑚ଵ and 
body 2, with mass, 𝑚ଶ , can be seen in Figure 3.4. Body 1 has an initial velocity before 
impact, while body 2 is at rest. 

 

Before impact 

After impact 

 

Figure 3.4  Impact between two arbitrary bodies. 

If body 1 has velocity 𝑣଴ and body 2 is at rest, the kinetic energy before impact can be written 
as: 

𝐸௞,଴ =
𝑚ଵ𝑣଴

ଶ

2
 (3.9) 

The momentum of the system before impact is: 

𝑝଴ = 𝑚ଵ 𝑣଴ = 𝐼଴ (3.10) 

The impact can be elastic or plastic and the momentum is conserved in the system regardless 
of which. If it is elastic, the kinetic energy is preserved as well. In the plastic case, a plastic 
work is performed, transforming a part of the kinetic energy into potential energy in body 1 
and/or in the contact surface between the two bodies.  

 

3.4 Elastic response of an impact  
After an impact, where the response of body 1 is elastic, the velocity of the two bodies can be 
derived from the conservation of momentum and kinetic energy. The velocity for body 1 after 
impact will then be: 

𝑣ଵ =
𝑚ଵ − 𝑚ଶ

𝑚ଵ + 𝑚ଶ
𝑣଴ (3.11) 

and the velocity for body 2 will be: 

𝑣ଶ =
2𝑚ଵ

𝑚ଵ + 𝑚ଶ
𝑣଴ (3.12) 
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The kinetic energy for the two bodies is then: 

𝐸௞,ଵ = ൬
𝑚ଵ − 𝑚ଶ

𝑚ଵ + 𝑚ଶ
൰

ଶ

𝐸௞,଴ (3.13) 

𝐸௞,ଶ =
4𝑚ଵ𝑚ଶ

(𝑚ଵ + 𝑚ଶ)ଶ
𝐸௞,଴ (3.14) 

 

3.5 Plastic response of an impact  
After a plastic impact, the two bodies move with the same velocity. With regard to the 
conservation of momentum, the velocity of the two bodies after impact can be derived to: 

𝑣ଵ = 𝑣ଶ =
𝑚ଵ

𝑚ଵ + 𝑚ଶ
𝑣଴ (3.15) 

and the kinetic energy for the two bodies is then: 

𝐸௞,ଵଶ =
𝑚ଵ

𝑚ଵ + 𝑚ଶ
𝐸௞,଴ (3.16) 
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4 Discrete Systems 
4.1 Introduction 
A common simplified way to describe an impulse loaded structure is to use a single-degree-
of-freedom (SDOF) system. To include a falling object in the analysis, the system can be 
expanded to an equivalent two-degree-of-freedom (2DOF) system. The extension of the 
system from one to two degrees of freedom increases the complexity of the system 
substantially. 

To analyse a system using the simplified method of transferring it into a discrete system 
involves simplifications and can lead to less accurate results. However, since the calculations 
are simple and fast, the simplified method is in many cases a good alternative.  

 

4.2 SDOF system 

4.2.1 Equation of motion for SDOF system 

A SDOF system consists of a mass, 𝑚 , a resistance, 𝑅(𝑢) , and a damper, 𝑐(�̇�),  see 
Figure 4.1. In this project, though, the effect of the damping is neglected due to the nature of 
the impulse loading. When a force, 𝐹(𝑡), acts on the system, it gives rise to a displacement, 
𝑢. The first derivative of the displacement with respect to time defines the velocity, �̇�. The 
acceleration, �̈�, is defined by the second derivative.   

 

F(t) 

c(u ) R(u) 

m u  

F(t) 

R(u) 

m u 

 

Figure 4.1 Single degree of freedom system, from Johansson (2012). 

Using Newton’s second law, the differential equation of motion for the SDOF system is 
defined as: 

𝑚�̈� + 𝑅(𝑢) = 𝐹(𝑡) (4.1) 

The resistance of the spring varies depending on its mechanical properties, as described in 
Section 2.6.  

 

4.2.2 Response of a SDOF system subjected to an impulse 

When SDOF system is subjected to an impulse, the displacement can be calculated from the 
energy balance described in Figure 3.1. According to Johansson et al. (2014), the expression 
for the external work on the system, derived in Section 3.2, is only valid for a characteristic 
impulse load: 

𝑊௘ =
𝐼௞

ଶ

2𝑚
 

(4.2) 
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The corresponding internal work in an elastic system is defined as: 

𝑊௜,௘௟ =
𝑅(𝑢௘௟)𝑢௘௟

2
=

𝑘𝑢௘௟
ଶ

2
 (4.3) 

Using equations (3.8), (4.2), and (4.3) the displacement for a system with an elastic response 
can be expressed as: 

𝑢௘௟ =
𝐼௞

𝑚𝜔
 (4.4) 

where 𝜔 is the eigenfrequency defined as: 

𝜔 = ඨ
𝑘

𝑚
 (4.5) 

If the response of the system is plastic instead, the internal work is defined as: 

𝑊௜,௣௟ = 𝑅௠𝑢௣௟ (4.6) 

Using equations (3.8), (4.2) and (4.6) the plastic displacement can be expressed as: 

𝑢௣௟ =
𝐼௞

ଶ

2𝑚𝑅௠
 (4.7) 

The internal work for an elasto-plastic response of a spring can be calculated as: 

𝑊௜,௘௣ =
𝑅௠𝑢௘௟ି௣௟.௘௟

2
+ 𝑅௠𝑢௘௟ି௣௟.௣௟ =

𝑅௠

2
൫𝑢௘௟ି௣௟.௘௟ + 2𝑢௘௟ି௣௟.௣௟൯ (4.8) 

Using equations (3.8), (4.2) and (4.8) the plastic part of the displacement can be expressed as: 

𝑢௘௟ି௣௟.௣௟ =
𝐼௞

ଶ

2𝑚𝑅௠
−

𝑢௘௟ି௣௟.௘௟

2
 (4.9) 

From equation (2.4), the elastic part of the elasto-plastic displacement can be calculated as: 

𝑢௘௟ି௣௟.௘௟ =
𝑅௠

𝑘
 (4.10) 
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By inserting equation (4.10) in equation (4.9), the plastic displacement can be rewritten as: 

𝑢௘௟ି௣௟.௣௟ =
𝐼௞

ଶ

2𝑚𝑅௠
−

𝑅௠

2𝑘
 (4.11) 

The total displacement for a system with an elasto-plastic response can then be calculated 
according to: 

𝑢௧௢௧ = 𝑢௘௟ି௣௟.௘௟ + 𝑢௘௟ି௣௟.௣௟ =
𝑅௠

2𝑘
+

𝐼௞
ଶ

2𝑚𝑅௠
 (4.12) 

 

4.2.3 Equivalent static load 

To analyse a structure with respect to dynamic loading, it can be convenient to transform the 
dynamic load into an equivalent static load. The equivalent static load is defined as the static 
load that generates an external work of the same magnitude as the dynamic load: 

𝑊௘,௦௧௔ = 𝑊௘,ௗ௬௡ (4.13) 

For the elastic response, the external work caused by a static load, 𝑄, can be calculated as: 

𝑊௘,௦௧௔ =
𝑄𝑢௘௟

2
 (4.14) 

From equations (4.13), (4.14) and (4.2), the equivalent static load, 𝑄௘௤, for an elastic system 
can be calculated as: 

𝑄௘௤,௘௟ =
𝐼௞

ଶ

𝑚𝑢௘௟
 (4.15) 

Using equation (4.4), this can be expressed as: 

𝑄௘௤,௘௟ = 𝐼௞𝜔 (4.16) 

For the plastic response, the external work caused by a static load, 𝑄, can be calculated as: 

𝑊௘,௦௧௔ = 𝑄𝑢௣௟ (4.17) 
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Using equations (4.2) and (4.13) together with (4.17) the equivalent static load can be 
expressed by: 

𝑄௘௤,௣௟ =
𝐼௞

ଶ

2𝑚𝑢௣௟
 (4.18) 

Using equation (4.7), the equivalent static load is calculated as: 

𝑄௘௤,௣௟ = 𝑅௠ (4.19) 

The external work in an elasto-plastic case caused by a static load, 𝑄, can be expressed as: 

𝑊௘,௦௧௔ =
𝑄𝑢௘௟ି௣௟.௘௟

2
+ 𝑄𝑢௘௟ି௣௟.௣௟ =

𝑄

2
൫𝑢௘௟ି௣௟.௘௟ + 2𝑢௘௟ି௣௟.௣௟൯ (4.20) 

Equations (4.2) and (4.13) together with (4.20) gives the following expression for the 
equivalent static load: 

𝑄௘௤,௘௟ି =
𝐼௞

ଶ

𝑚൫𝑢௘௟ି௣௟.௘௟ + 2𝑢௘௟ି௣௟.௣௟൯
 (4.21) 

Using equations (4.10) and (4.11), the equivalent static load can be written as: 

𝑄௘௤,௘௟ି௣௟ = 𝑅௠ (4.22) 

 

4.2.4 The influence of the shape of the impulse 

The external work on a system is influenced by the resistance, this is explained in 
Johansson (2014) and Johansson et al. (2014). In previous sections, the impulse was assumed 
to correspond to a characteristic impulse. This is the case e.g. in a system with no resistance 
(𝑅 = 0) and the external work can then be calculated according to equation (4.2).  

For a system with a resistance, where the load does not correspond to a characteristic 
impulse, there will be a reduction of the external work done on the system resulting in a 
smaller displacement. Consequently, for such a case, a higher impulse is needed to cause the 
same response to the structure as a so called characteristic impulse would do. This can be 
explained by that the shape of the impulse is altered, it is more spread over time and the 
maximum value of the force is lower, and hence, this kind of impulse is gentler on the 
structure. 

The system can be evaluated using pressure-impulse diagrams, see Figure 4.2. The diagram is 
based on that different combinations of the dynamic load, 𝐹(𝑡), causes the same critical 
displacement, 𝑢ଵ,௖௥௜௧, on a system. For a known dynamic load, the pressure-impulse diagrams 
can be used to determine if the load causes a displacement larger than the allowed.  
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Figure 4.2  Illustration of a pressure-impulse diagram, modified from Johansson (2012). 

Johansson (2012) treats the effects of an impulse different from the characteristic by defining 
a reduction factor 𝛾ூ ≥ 1, which is used to reduce the external work as: 

𝑊௘ =
(𝐼 𝛾ூ⁄ )ଶ

2𝑚
 (4.23) 

Here, 𝛾ூ describes how close to a characteristic impulse the actual impulse is where 𝛾ூ = 1.0 
indicates a characteristic impulse. The value of 𝛾ூ  depends on several factors such as the 
duration of the load, the resistance of the system and the shape of the load.  

 

4.3 2DOF system 

4.3.1 Equation of motion for the 2DOF system 

A 2DOF system is similar to a SDOF system, but with two masses, and two resistances, see 
Figure 4.3, where the interaction between the bodies is represented by 𝑅ଵ . To derive the 
equation of motion for the system, a free body diagram is used, see Figure 4.4.  

 

F(t) 
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m1 u1 

 

Figure 4.3 2DOF system without dampers, modified from Johansson (2014). 
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Figure 4.4 Free body diagram of the two degree of freedom system. 

For body 1 and 2, Newton´s second law gives: 

↓:    𝐹ଵ(𝑡) − 𝑅ଵ(𝑢ଵ − 𝑢ଶ)  = 𝑚ଵ�̈�ଵ 

↓:    𝑅ଵ(𝑢ଵ − 𝑢ଶ) −𝑅ଶ(𝑢ଶ) = 𝑚ଶ�̈�ଶ 
(4.24) 

In the next step, the parameters that are dependent on the displacement or the derivatives of 
the displacement are moved to the left-hand side and the force to the right hand-side.  

𝑚ଵ�̈�ଵ + 𝑅ଵ(𝑢ଵ − 𝑢ଶ) = 𝐹ଵ(𝑡) 

𝑚ଶ�̈�ଶ − 𝑅ଵ(𝑢ଵ − 𝑢ଶ) + 𝑅ଶ(𝑢ଶ) = 0 
(4.25) 

On matrix form the equation system can be written as:  

൤
𝑚ଵ 0
0 𝑚ଶ

൨ ൤
�̈�ଵ

�̈�ଶ
൨ + ൤

𝑅ଵ(∆𝑢)

−𝑅ଵ(∆𝑢) + 𝑅ଶ(𝑢ଶ)
൨ = ቂ

𝐹ଵ(𝑡)
0

ቃ (4.26) 

Where: 

∆𝑢 = 𝑢ଵ − 𝑢ଶ (4.27) 

and the response, 𝑅௜, can be e.g. elastic, plastic or elasto-plastic as described in equations 
(2.2), (2.3) or (2.4). The equation of motion for the 2DOF system is then expressed as: 

𝑴�̈� + 𝑹(∆𝑢, 𝑢ଶ) = 𝑭(𝑡) (4.28) 
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In the linear elastic case, the resistance depending on the difference between the 
displacements can be separated and the matrix written as:  

൤
𝑚ଵ 0
0 𝑚ଶ

൨ ൤
�̈�ଵ

�̈�ଶ
൨ + ൤

𝑘ଵ −𝑘ଵ

−𝑘ଵ 𝑘ଵ + 𝑘ଶ
൨ ቂ

𝑢ଵ

𝑢ଶ
ቃ = ቂ

𝐹ଵ(𝑡)
0

ቃ (4.29) 

The equation of motion can then be written as: 

𝑴�̈� + 𝑲𝒖 = 𝑭(𝑡) (4.30) 

A convenient way to handle the elasto-plastic case is to use the secant stiffness, 𝑘௦,ଵ and 𝑘௦,ଶ, 
so that the equation of motion can be written in the same way as the linear elastic case.  

The secant stiffness is used for the plastic branch of the resistance-displacement curve and 
during unloading. The principle of the secant stiffness is illustrated in Figure 4.5.   
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Figure 4.5  Schematic illustration of the secant stiffness for the elasto-plastic case. 

4.3.2 Influence of the response of body 1 

Depending on whether the response of the spring in body 1 is elastic, plastic or elasto-plastic 
the impulse, and therefore also the energy, transferred to body 2 will be affected, this is 
explained in Johansson (2014). When body 2 can be regarded as totally stiff, the impulse will 
have the following character for the different cases.  

  

൤
𝑚ଵ 0
0 𝑚ଶ

൨ ൤
�̈�ଵ

�̈�ଶ
൨ + ൤

𝑘௦,ଵ −𝑘௦,ଵ

−𝑘௦,ଵ 𝑘௦,ଵ + 𝑘௦,ଶ
൨ ቂ

𝑢ଵ

𝑢ଶ
ቃ = ቂ

𝐹ଵ(𝑡)
0

ቃ (4.31) 
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If the response of body 1 is elastic, the transferred impulse to body 2 is illustrated in 
Figure 4.6 

 F2 

t 
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F2,el 

 

Figure 4.6 Shape of the impulse in case of elastic response, modified from 
Johansson (2014). 

The transferred force, 𝐹ଶ,௘௟, corresponds to half a sinus wave and is equal to the resistance of 
body 1, 𝑅ଵ. The force will increase until the maximum value of the elastic displacement of 
body 1 is reached, corresponding to the maximum force. The maximum value, 𝐹ଶ,௘௟, can be 
calculated according to equation (4.32) and is derived in Johansson (2014). 

𝐹ଶ,௘௟ = 𝑣଴ඥ𝑘ଵ𝑚ଵ (4.32) 

At this point, the transferred impulse is equal to the momentum, 𝐼଴, of body 1 before impact 
is calculated as in equation (4.33). Compare with equation (3.4). 

𝐼଴ = 𝑚ଵ𝑣଴ (4.33) 

The force and the displacement will decrease in the same manner as it appeared and during 
this time, energy will continue to be transferred. The final value of the impulse will hence be 
twice the size of 𝐼଴: 

𝐼௘௟ = 2𝐼଴ (4.34) 

For the plastic case, the impulse is illustrated in Figure 4.7. The maximum value of the force 
is reached instantaneously and then remain constant until unloading.    
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Figure 4.7 Shape of the impulse in case of plastic response, modified from 
Johansson (2014). 
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In the plastic case the impulse is of the same magnitude as 𝐼଴: 

𝐼௣௟ = 𝐼଴ (4.35) 

If the resistance of body 1 is elasto-plastic the response will be a combination of the elastic 
and plastic case, see Figure 4.8. The loading is elastic until the resistance limit, then the force 
is constant until the maximum deformation is reached. During unloading, it shows elastic 
behaviour again, but this time from a limit according to the plastic resistance limit, as 
schematically shown in Figure 4.8. 
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Figure 4.8  Shape of the impulse in case of elasto-plastic response, modified from 
Johansson (2014). 

The size of the impulse in this case is somewhere in between the elastic and plastic case: 

𝐼଴ < 𝐼௘௟ି௣௟ < 2𝐼଴ (4.36) 

If body 2 cannot be considered totally stiff, the maximum value of the contact force will 
decrease but the impulse will be of the same magnitude; i.e. the duration of the impact load 
will increase. 

The impulses discussed in this section will give rise to a response in body 2,  𝑅ଶ . This 
response is complex and can be very different depending on how the two bodies interact with 
each other. The ratio between the frequencies and masses of the two bodies are parameters 
that affect the response.  
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4.4 Transformation into discrete systems 

4.4.1 Beam into SDOF system 

To transform the beam into an equivalent SDOF system, transformations factors can be used 
according to Johansson (2012). The transformation is illustrated in Figure 4.9.  
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Figure 4.9 The beam transformed into the 2DOF system, modified from Johansson and 
Laine (2012). 

To do this transformation, a system point along the x-axis is used. Since the shape of the 
deformed beam can be considered known, the displacement in all other points along the beam 
can be expressed in relation to the system point: 

𝑢௕(𝑥) = 𝛼(𝑥) ∙ 𝑢௦ (4.37) 

The point with maximum displacement is often suitable to use as the system point, and in this 
project, it is also the largest displacement that is of interest. The transformed system is to be 
described as: 

where 𝑚, 𝑅(𝑢) and 𝐹(𝑡) are the components in the SDOF system. To transform the beam 
into this SDOF system, the mass of the beam is multiplied with the transformation factor 𝜅௠, 
the resistance with 𝜅௞ and the force with 𝜅௙. The equivalent equation of motion representing 
the beam can then be written as: 

𝜅௠𝑚௕�̈� + 𝜅௞𝑅௕(𝑢) = 𝜅ி𝐹௕(𝑡) (4.39) 

Biggs (1964) has stated that 𝜅ி  is equal to 𝜅௞, which leads to that equation (4.39) can be 
written as: 

𝜅௠ி𝑚௕�̈� + 𝑅௕(𝑢) = 𝐹௕(𝑡) (4.40) 

 

  

𝑚�̈� + 𝑅(𝑢) = 𝐹(𝑡) (4.38) 
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Where:  

𝜅௠ி =
𝜅௠

𝜅ி
 (4.41) 

The transformation factors are derived by conservation of kinetic energy as well as internal 
and external work. For the entire derivation, refer to e.g. Johansson and Laine (2012). In 
Table 4.1, the transformation factors are summarized for a simply supported beam subjected 
to a point load in the middle of the span with the system point localized directly under the 
point load. Depending on if the response is elastic or plastic, the deformed shape of the beam 
will be different, resulting in different transformation factors.  

Table 4.1  Summary of transformation factors for a simply supported beam subjected to a 
point load, from Johansson and Laine (2012). 

Transformation 
factor 

Elastic response Plastic response 

𝜅௠ 0.486 0.333 

𝜅ி 1.000 1.000 

𝜅௠ி 0.486 0.333 

 

4.4.2 Drop weight into SDOF system 

The drop weight can be transformed into a SDOF system in a similar way as the beam, and 
described as:   

𝜅௠ி𝑚௪�̈� + 𝑅௪(𝑢) = 𝐹௪(𝑡) (4.42) 

Considering that the drop weight is deformed in the axial direction, the transformation factors 
are somewhat different. The derivations of the transformation factors, see Lovén and 
Svavarsdóttir (2016), are based on the same principles as for the beam, using conservation of 
energy. The displacement shape of the weight depends on the stiffness of the beam as well as 
on how the load is assumed to be applied. The ideal displacement shape is triangular if the 
load is assumed to be evenly distributed along the length and the beam considered stiff, but 
rectangular if the weight is considered much stiffer than the beam or the load assumed to be a 
point load, see Figure 4.10. 
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Figure 4.10 The deformation of the drop weight depending on the load application the 
relation between the stiffness of the beam and the weight. 
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The transformations factors for the drop weight assuming a triangular or a rectangular 
deformation shape are presented in Table 4.2.  

Table 4.2  Transformation factors for the drop weight depending on displacement shape, 
from Lovén and Svavarsdóttir (2016). 

Transformation 
factor 

Triangular shape Rectangular shape 

𝜅௠ 0.333 1.000 

𝜅ி 0.500 1.000 

𝜅௠ி 0.667 1.000 

 

4.4.3 Equivalent 2DOF system 

When expanding the two SDOF systems into a 2DOF system, the response of the impulse 
loaded beam can be analysed in a simplified way. The expanded system is shown in 
Figure 4.11. The falling object is represented by mass 𝑚ଵ and the interaction between the 
masses by the resistance, 𝑅ଵ. The beam is represented by mass 𝑚ଶ and the resistance 𝑅ଶ. 
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Figure 4.11 The 2DOF system representing the falling object and the beam. 

In the same manners as in previous sections, the properties of the drop weight and the beam 
are transformed into equivalent properties of the 2DOF system, see equations (4.43) to (4.46). 

𝑚ଵ = 𝜅௠,ଵ𝑚௪ (4.43) 

𝑅ଵ = 𝜅௞,ଵ𝑘௦,௪(𝑢ଵ − 𝑢ଶ) (4.44) 

𝑚ଶ = 𝜅௠,ଶ𝑚௕ (4.45) 

𝑅ଶ = 𝜅௞,ଶ𝑘௦,௕𝑢ଶ (4.46) 
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Adopting the method of secant stiffness of body 1, as described in Section 4.3.1, and the 
transformation factors, the equation of motion for the equivalent 2DOF system can be written 
as: 

൤
𝜅௠,ଵ𝑚௪ 0

0 𝜅௠,ଶ𝑚௕
൨ ൤

�̈�ଵ

�̈�ଶ
൨ + ൤

𝜅௞,ଵ𝑘௦,௪ −𝜅௞,ଵ𝑘௦,௪

−𝜅௞,ଵ𝑘௦,௪ 𝜅௞,ଵ𝑘௦,௪ + 𝜅௞,ଶ𝑘௦,௕
൨ ቂ

𝑢ଵ

𝑢ଶ
ቃ . . .

= ൤
𝜅ி,ଵ𝐹௪(𝑡)

𝜅ி,ଶ ∙ 0
൨ 

(4.47) 
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5 Simplified Analyses 
5.1 Introduction  
In this project, two simplified methods are used to predict the behaviour of a simply 
supported reinforced concrete beam subjected to impact loading: the 2DOF system and 2D 
FE-analysis using 2D beam elements in Abaqus. The results from these analyses are 
compared with the experimental results as well as results from 3D analyses using solid 
elements carried out in LS-DYNA, see Chapter 6. In this section, modelling techniques and 
choices for the two simplified methods are presented. The software Abaqus 6.14 is used to 
perform analyses of the beam and drop weight modelled in 2D. The theory described in 
Section 5.3 is based on Simulia (2014 a, b and c). 

 

5.2 2DOF model 

5.2.1 Modelling choices for the beam 

To model the beam, the response is simplified into a bilinear behaviour according to 
Figure 5.1. In the elastic part, the beam is assumed to be in state II, i.e. fully cracked, and to 
have the corresponding stiffness.  
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Figure 5.1  Bilinear response assumed for the beam in the simplified analysis using 

2DOF. 

The resistance limit for the beam, 𝑅௠,௕, is calculated using the moment capacity, 𝑀ோௗ, where 
the capacity utilised for the self-weight, 𝑔௕, is subtracted:  

𝑅௠,௕ =
4 𝑀ோௗ

𝐿
−

𝑔௕𝐿

2
 (5.1) 
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To obtain the stiffness for the linear part, as described in equation (2.4), the expression for the 
midpoint displacement of a simply supported beam subjected to a point load,  𝐹 , at the 
midpoint of the beam can be used: 

𝑢 =
𝐿ଷ

48𝐸𝐼ூூ
∙ 𝐹 (5.2) 

This gives an expression for the stiffness, 𝑘௕: 

𝑘௕ =
48𝐸௖𝐼ூூ

𝐿ଷ
 (5.3) 

In Figure 5.2, the simplified behaviour of the beam is illustrated. In reality, the stiffness of the 
beam could be different for negative and positive displacements depending on the amount of 
reinforcement in the top and bottom of the beam. In the negative direction, the self-weight 
has a favourable effect on the stiffness. However, this is not taken into account in this project. 
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Figure 5.2  Illustration of stiffness and resistance limit for the beam assuming elasto-
plastic behaviour. 

 

5.2.2 Modeling choices for the drop weight and the interaction between the 
drop weight and the beam 

The structural response of the fictitious spring representing the interaction between the drop 
weight and the beam is assumed to be elasto-plastic, see Figure 5.3. When the spring is in 
tension however, it has no stiffness. This represents that the drop weight and beam are not 
connected; and hence, no tensile forces can be transferred in between them.  
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Figure 5.3  Assumed structural response of the spring that represents the contact between 
the beam and the drop weight. 

The stiffness of the drop weight, 𝑘௪ , is determined from the simplified expression in 
equation (5.4) including the Young’s modulus, 𝐸, cross-sectional area, 𝐴, and the length, 𝐿, 
of the drop weight.  

𝑘௪ =
𝐸𝐴

𝐿
 (5.4) 

The resistance limit, 𝑅௠,௪, of the spring representing the contact between the weight and the 
beam is determined by either yielding of the steel in the drop weight or crushing of concrete 
in the beam. This gives a large span for the resistance which varies between different cases. 
An evaluation of the choice is made in Section 7.3.1. 

The simulation of the impact is made assigning an initial velocity, 𝑣଴, to the drop weight and 
the force, 𝐹௪(𝑡), is set to zero. Depending on which height, ℎ, the weight is dropped from, the 
velocity can be calculated according to: 

�̇�ଵ = 𝑣଴ =  ඥ2𝑔ℎ (5.5) 

When comparison is made with test results, the measured velocity right before impact is used.  

 

5.2.3 Transformation factors for the system 

The deformed shape of the beam will in this project be similar to that of a beam with a plastic 
response. Therefore, the transformation factors corresponding to plastic response are used.  

In the case of an impact load, the boundary conditions of the beam can be said to be time 
dependent. Directly after impact, the entire beam has not received any information about the 
impact and only a part of the beam is “active”. Initially this results in displacements in the 
middle part of the beam but no displacement in the outer parts, see Figure 5.4. This is 
henceforth referred to as the wave propagation effect. 
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Figure 5.4 Illustration of the deformed shape of the beam at different stages shortly after 
impact. 

The transformation factors, given in Section 4.4.1, are however only valid for a simply 
supported beam when a plastic hinge has formed in the middle of the beam. The wave 
propagation effect leads to that the mass of the beam can be considered time dependent. To 
fully account for this, the transformation factors on the mass could be changed with time. Yi 
et al. (2016) have studied this time dependency for the transformation factor and also 
provides a suggestion of how it can be approximately accounted for. As a simplification in 
the present study, though, the boundary conditions, and thereby the transformation factors, 
are assumed to remain constant. 

The stiffness of the drop weight is in this project much stiffer than that of the beam. This 
means that the drop weight can be considered to move as a rigid body with the same 
displacement along its entire length. Consequently, the system point of the drop weight can 
be chosen anywhere along the length. Assuming a stiff drop weight in comparison to the 
beam also influences the choice of transformation factors for the drop-weight. The 
assumption that the weight moves as a rigid body means that the displacement shape will be 
rectangular, and the transformation factors should be chosen accordingly, see Section 4.4.2. 
In Table 5.1 the chosen transformation factors for the beam and drop-weight are presented. 

Table 5.1   Transformation factors for the drop weight and the beam used in the 2DOF. 

Transformation 
factor 

Beam Drop weight 

Plastic response Rectangular shape 

𝜅௠ 0.333 1.000 

𝜅ி 1.000 1.000 

𝜅௠ி 0.333 1.000 

This choice of transformation factors allows for rewriting the equation system given in 
equation (4.47). Since the transformation factors on the load, 𝜅ி , and on the stiffness, 𝜅௞, for 
both the drop weight and the beam are equal, the equation system can now be expressed as: 

൤
𝜅௠ி,ଵ𝑚௪ 0

0 𝜅௠ி,ଶ𝑚௕
൨ ൤

�̈�ଵ

�̈�ଶ
൨ + ൤

𝑘௪,௦ −𝑘௪,௦

−𝑘௪,௦ 𝑘௪,௦ + 𝑘௕,௦
൨ ቂ

𝑢ଵ

𝑢ଶ
ቃ = ቂ

0
0

ቃ (5.6) 

 

5.2.4 Central difference method  

The central difference method (CDM) is an explicit numerical iteration method that can be 
used to solve the differential equation of motion for the 2DOF system, see equation (5.6). In 
this project this is done using Matlab, see Appendix B for the code. The following section on 
CDM is based on Craig and Kurdila (2006). In CDM, the displacements of the current and 
previous time steps are used to calculate the displacement of the next step. For the solution to 
be stable, the timestep, ∆𝑡, must be sufficiently small, i.e. the method is conditionally stable.   
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∆𝑡 <
2

𝜔௠௔௫
 (5.7) 

where 𝜔௠௔௫ is the highest eigenfrequency for |𝑲 − 𝜔ଶ𝑴| = 0. Differently put, this means 
that a stress wave should not propagate more than an element length, 𝑙௘௟, in each time step: 

∆𝑡 <
𝑙௘௟

𝑐
 (5.8) 

Here, 𝑐  describes the speed of wave propagation in the material with the density 𝜌 , and 
Young’s modulus 𝐸, and can be calculated as:  

𝑐 = ඨ
𝐸

𝜌
 (5.9) 

According to Johansson and Laine (2012), it is preferable to use an even smaller timestep to 
obtain enough accuracy in the solution. For an impulse loaded structure, they suggest using a 
timestep smaller than one percent of the load duration, 𝑡ଵ, i.e. equal to: 

∆𝑡 <
𝑡ଵ

100
 (5.10) 

CDM is based on the definition of the first and second order derivative. The first order 
derivative is approximated to: 

�̇�𝒏 ≈
𝒖௡ାଵ − 𝒖௡ିଵ

2ℎ
 (5.11) 

Where the subscript 𝑛 denotes the current timestep, 𝑛 − 1 the previous timestep, and 𝑛 + 1 
the timestep to be calculated. Similarly, the second order derivative is approximated to:  

�̈�𝒏 ≈
�̇�௡ାଵ/ଶ − �̇�௡ିଵ/ଶ

∆𝑡
≈

𝒖௡ାଵ − 2𝒖௡ + 𝒖௡ିଵ

∆𝑡ଶ
 (5.12) 

Together with the differential equation of motion for the 2DOF system, see equation (4.29), 
equations (5.11) and (5.12) gives:  

൬
𝑴௡

∆𝑡ଶ
൰ 𝒖௡ାଵ + ൬𝑲௡ −

2𝑴௡

∆𝑡ଶ
൰ 𝒖௡ + ൬

𝑴௡

∆𝑡ଶ
൰ 𝒖௡ିଵ = 𝑭௡ (5.13) 
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This can be rearranged to give an expression for 𝒖௡ାଵ:  

𝒖௡ାଵ = ൬
𝑴௡

∆𝑡ଶ
൰

ି𝟏

൬𝑭௡ − ൬𝑲௡ −
2𝑴௡

∆𝑡ଶ
൰ 𝒖௡ − ൬

𝑴௡

∆𝑡ଶ
൰ 𝒖௡ିଵ൰ (5.14) 

In order to solve the first timestep, initial conditions are needed: 𝒖଴ = 𝒖(0) and �̇�଴ = �̇�(0). 
The initial acceleration �̈�଴ is then calculated from the equation of motion as: 

�̈�଴ = 𝑴଴
ିଵ(𝑭଴ − 𝑲଴𝒖଴) (5.15) 

To find the displacement of the timestep before that, 𝑛 = −1, a Taylor series expansion is 
made:  

𝒖ିଵ ≈ 𝒖଴ − ∆𝑡�̇�଴ +
∆𝑡ଶ

2
�̈�଴ (5.16) 

 

5.3 Model in Abaqus using 2D beam elements 

5.3.1 Modelling of the system 

Using 2D beam elements in Abaqus, the drop weight and the beam were modelled according 
to Figure 5.5. In the same manners as in the 2DOF system, the weight was modelled as a 
point mass connected to a spring. According to Lovén and Svavarsdóttir (2016), that way of 
modelling the drop weight is accurate enough, and since it is not the deformations of the drop 
weight that are of interest, there is no need to model the drop weight in a more detailed way. 

 m 

R 

 

Figure 5.5 Schematic picture of how the system is modelled in Abaqus. 

The spring representing the interaction between the beam and the drop weight has no 
resistance in tension, in the same way as in the 2DOF model. The behaviour of the spring in 
compression can be modelled as either elastic or elasto-plastic. Lovén and 
Svavarsdóttir (2016) modelled the interaction as elastic and got reasonable results, but in the 
2DOF system the interaction is modelled as elastoplastic. These two ways of modelling the 
behaviour of the spring have been evaluated in Section 7.3.3. In both cases, the stiffness, 𝑘௪, 
was calculated according to equation (5.4) and in the elasto-plastic case the resistance limit, 
𝑅௠,௪, was set to the same value as for the 2DOF model. This value of the resistance limit is 
further evaluated in Section 7.3.1.  

In Abaqus, a spring is symmetrically elastic, which means that it is elastic in both directions. 
To modify the behaviour of the spring, the input file must be changed, see the standard input 
file in Appendix H. This was done for the elastic spring to remove the resistance in tension. 
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For the elasto-plastic spring, the behaviour was modified in both tension and compression. 
The modified spring cannot display any plastic deformation, though, and the loading and 
unloading for a spring in Abaqus where a resistance limit is added follows the graph in 
Figure 5.6.   

 

R 

u 

 

Figure 5.6  Spring behaviour in Abaqus. 

To enable for plastic deformations and an elasto-plastic behaviour of the spring, the spring 
element was modelled together with a bar element, see Figure 5.7. Together they represent 
the elasto-plastic spring.   

 

Bar 

m 

 

Figure 5.7 Schematic picture of how the system is modelled in Abaqus with the addition 
of a bar. 

The bar was modelled as elasto-plastic with a very high stiffness and the correct resistance 
limit. The spring element on the other hand has a stiffness somewhat higher than the intended 
one, but no resistance limit. Together they represent an elasto-plastic spring with the correct 
stiffness and resistance limit, see Figure 5.8. The relation between the total, effective stiffness 
and the individual stiffnesses of the spring element and the bar element is defined by: 

1

𝑘௘௙௙
=

1

𝑘௦௣௥௜௡௚
+

1

𝑘௕௔௥
 (5.17) 
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Figure 5.8  Structural behaviour of the combination of a spring and a bar generating an 
elasto-plastic behaviour, modified from Andersson and Antonsson (2015). 

The transformation factors chosen for the drop weight in the 2DOF system, presented in 
Table 5.1, were included in Abaqus as well. However, since these values are equal to 1 they 
are not further mentioned. Furthermore, the fall of the mass was represented by an assigned 
initial velocity in the same way as for the 2DOF system. 

In Abaqus, no units are displayed. Instead the user can choose which units to use and it is 
crucial to keep consistence in these choices. The units used in Abaqus in this project are 
presented in Table 5.2. These units were chosen to make the handling of the output data more 
efficient compared to standard SI units.  

Table 5.2  The units used in Abaqus. 

Mass Length Time Force Stress Energy 

g mm ms N MPa N·mm 

 

5.3.2 Elements 

The element type chosen for the beam in Abaqus is a 2D planar beam element that uses linear 
interpolation and is called B21. This is the default element used when 2D planar and wire 
elements are chosen in the software. B21 is a Timoshenko beam element which is usually 
suitable for beams with a high cross section since they allow for transverse shear strains. In 
Abaqus these beam elements are formulated so that they are suitable for more slender beams 
as well. According to Simulia (2014 b) the B21 element is one of the element types that are 
well suited when simulating impact loading. 

To find a suitable number of elements, a convergence study was made studying the static 
capacity of the beam when subjected to a prescribed deformation in the middle of the span. 
Three different meshes with 50, 100 and 200 elements, respectively, were compared. In 
Table 5.3, the errors from the theoretical value, calculated in Appendix C, are compared. An 
error of approximately 1 % was considered good enough and was achieved by a mesh of 100 
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elements. No further modifications of the input data in the Abaqus model are made to 
calibrate the model. 

Table 5.3  Convergence study of number of elements in the Abaqus model. 

 Capacity [kN] Error [%] 

Theoretical 10.38 - 

50 elements 10.59 2.0 

100 elements 10.49 1.0 

200 elements 10.43 0.5 

 

5.3.3 Boundary conditions 

In the Abaqus model, the beam is modelled as simply supported. That is, the vertical 
translation in the beam is tied at the supports while the rotations are set free. In the real case 
though, the beam is only resting on the supports and not tied to them, which corresponds to 
boundary conditions were the beam is only fixed downwards. This leads to that the Abaqus-
model gives different results than the experiments and the more detailed 3D FE-analysis, but 
similar to the 2DOF model. However, the Abaqus results does not differ from the test results 
until the beam rebounds from the supports. Considering that the most interesting results are 
the maximum values, which are obtained before that, the differences in the later response are 
deemed to be of minor importance.  

 

5.3.4 Solution method 

The analyses are performed with an explicit solution method, described in Simulia (2014c). 
The method is similar to the central difference method described in Section 5.2.4 and a 
sufficiently small timestep is needed to make this numerical method work. According to 
Simulia (2014b), Abaqus gives the possibility to choose between an automatically generated 
timestep that is small enough or a user specified fixed timestep. In this project the fixed 
timestep is used to have more control over the analysis.   

The explicit solution method is provided in the software Abaqus/Explicit. In 
Abaqus/Standard, though, the dynamic response is calculated using an implicit solution 
method. According to Simulia (2014b), the explicit integration method is usually more 
mathematically efficient for very short-term events, but a comparison between the explicit 
and implicit solution methods is still of interest to perform. 

The implicit solution method is an unconditionally stable integration procedure, where the 
timestep is less important than for the explicit method. To calculate the displacement, 
unknown quantities in the timestep to be solved are used which leads to that iteration is 
required within every timestep, according to (2014c). Compared to the explicit method, 
explained in Craig and Kurdila (2006), where only known quantities from previous timesteps 
are used, which leads to that no iteration is required within each timestep, leading to a more 
computationally efficient solution for short term events.   
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5.3.5 Modelling of the materials 

Since the global response of the beam was of interest, the reinforced concrete could be 
modelled as an isotropic material with a bilinear response as in Figure 5.9 with the state II 
(cracked) stiffness.  

 

ε 

σ 
 

Eeq 

fy 

 

Figure 5.9 Bilinear response with equivalent Youngs modulus.  

In standard calculations, Young’s modulus for concrete and the moment of inertia for state II 
would be used. However, in Abaqus the section is assumed to be isotropic and uncracked 
which means that the software will calculate the moment of inertia for state I. To account for 
this, an equivalent Young’s modulus, 𝐸௘௤, is used in the Abaqus analyses: 

𝐸௘௤ = 𝐸௖

𝐼ூூ

𝐼ூ
 (5.18) 

This results in the same bending stiffness for the two cases: 

𝐸௘௤𝐼ூ = 𝐸௖𝐼ூூ (5.19) 

However, altering the value of Young’s modulus also affects the wave speed in the material, 
see equation (5.9). This has some influence on the response of the model, but Andersson and 
Karlsson (2012) examined this and found no significant differences until the Young’s 
modulus was changed by a factor of 25. In this project, it is changed by a factor of 
approximately 6, which implies that the effects on the results are acceptable.     

The input value of the yield stress is also calculated for the isotropic material. This is done 
using the moment capacity, 𝑀ோௗ , and the section modulus for the linear elastic sectional 
response, 𝑊௘௟ . To be able to compare the results to the test results, the moment capacity 
reduced with regard to gravity, 𝑀ோௗ,௥௘ௗ, must be used. This gives the corresponding value for 
the yield stress, 𝑓௬,௥௘ௗ: 

𝑓௬,௥௘ௗ =
𝑀ோௗ,௥௘ௗ

𝑊௘௟
 (5.20) 
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where the section modulus is calculated using the height, ℎ, and the width, 𝑏, of the beam: 

𝑊௘௟ =
𝑏ℎଶ

6
 (5.21) 

 

5.3.6 Integration points 

In the Abaqus model, three integration points are chosen to describe the height of cross 
section of the beam. Using three integration points, the sectional response of the model is 
treated as linear by the software, see Figure 5.10.  

 

1 

2 

3 

1 
 

Figure 5.10  Interpretation of three integration points in Abaqus. 

Using three integration points gives the user more control of the response of the model 
compared to e.g. five integration points, which is default. To change to three integration point 
must be done in the input file, see the standard input file Appendix H. For five integration 
points, the stress distribution over the section in Abaqus varies in a less obvious way. The 
stress can be analysed in the integration points only, which means that it is difficult to know 
how it varies between them. Figure 5.11 shows examples of protentional cross sectional 
responses using five integration points in Abaqus.  
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Figure 5.11 Example of possible sectional responses using 5 integration points.  

To investigate the program’s interpretation of five integration points, a comparison was made 
of the time-displacement curves from analyses using three and five integration points 
respectively. Since the stress distribution when five points are used is closer to that of a fully 
plastic section, the plastic section modulus, 𝑊௣௟, is calculated according to equation (5.22). 
The input value of the yield strength, 𝑓௬,௥௘ௗ,௣௟, is calculated using the plastic section modulus 
as in equation (5.23). 

𝑊௣௟ =
𝑏ℎଶ

4
 (5.22) 
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From the elastic and plastic response, respectively, the values of the equivalent yield strength 
defined in Abaqus are presented in Table 5.4. See Appendix C for calculations. 

Table 5.4  Equivalent yield strength of the concrete assuming elastic (3 ip) and 
plastic (5 ip) sectional response. 

 Elastic, 3 ip Plastic, 5 ip 

Equivalent yield strength [MPa] 15.57 10.38 

The results of the comparison can be seen in Figure 5.12. It showed that the ultimate capacity 
of the beam becomes very similar for the two cases.  

 

Figure 5.12 Structural response of the beam assuming elastic section with three 
Integration points and assuming plastic section with five integration points. 

Using five integration points the bend in the curve is softer, which is closer to the real 
behaviour of the beam. However, to improve the comparison of the Abaqus model and the 
2DOF model, a true bilinear response is desired, which means that the use of three integration 
points is preferable. The fact that the capacity of the beam becomes almost the same using the 
plastic section modulus together with five integration points as using the elastic section 
modulus together with three integration points implies that the stress distribution with five 
integration points is close to fully plastic. In Figure 5.13, a comparison between the stress 
distribution for a fully plastic section and a possible assumed stress distribution is showed. 
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Figure 5.13  Comparison between possible assumed stress distribution and stress 
distributions for a fully plastic section.  
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𝑓௬,௥௘ௗ,௣௟ =
𝑀ோௗ,௥௘ௗ

𝑊௣௟
 (5.23) 
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6 LS-DYNA Modelling Using 3D Solid Elements 
6.1 Introduction 
In LS-DYNA, a 3D model using solid elements is created and analysed to simulate the 
behaviour of a reinforced concrete beam subjected to impact loading. For the modelling, 
several choices are preformed based on Lovén and Svavarsdóttir (2016) and Lozano and 
Makdesi (2017). Furthermore, different choices for some parameters are presented and later 
evaluated in Chapter 7. The information concerning modelling in LS-DYNA described in this 
chapter is to a large extent based on LSTC (2014 a, b). The input file for the LS-DYNA 
model can be found in Appendix I. 

 

6.2 Modelling of the system 
In the LS-DYNA model, presented in Figure 6.1, the beam and the drop-weight are modelled 
as solid parts. The beam is resting on two roller supports which are modelled as individual 
solid parts made of steel. 

 
 

Figure 6.1 LS-DYNA model including the beam, supports and drop weight. 

Between the rollers and the beam, a contact was defined. This contact simulates the real 
behaviour so that it allows the beam to lift; i.e. the beam was not tied to the support. This was 
done using CONTACT: AUTOMATIC_SURFACE_TO_SURFACE in LS-DYNA. The 
roller supports, though, were locked in both positive and negative z-direction. They were also 
locked horizontally in both x- and y-direction. These boundary conditions were obtained by 
creating sets of nodes and prescribing their displacements in the BOUNDARY: SPC_SET 
option in LS-DYNA. 

The drop weight was initially located 1 mm above the beam and assigned an initial velocity 
representing the fall. This is made under INITIAL: VELOCITY_GENERATION in LS-
DYNA. The contact between the drop-weight and the beam was modelled in the same way as 
the contact between the beam and the supports. The bottom surface of the drop weight is 
spherical which was included in the model, see Figure 6.2. 
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Figure 6.2 Shape of the drop weight in LS-DYNA. 

In the same way as in Abaqus, LS-DYNA does not include units on any quantities. Instead, 
the user must ensure that a consistent system of units is used. In Table 6.1 the units used in 
this project are presented.  

Table 6.1  The units used in LS-DYNA. 

Parameter Mass Length Time Force Stress Energy 

Unit g mm ms N MPa N·mm 

 

6.3 Elements 
In this project, solid tetrahedral elements were used for the beam based on the results from 
Lozano and Makdesi (2017) who found that the models using tetrahedral elements compared 
to hexahedral elements corresponded better to test results.  

The tetrahedral elements were created by the tetrahedral mesher available in LS-DYNA, see 
Figure 6.3. The mesh can be created in different ways; with different methods (Method 1-3) 
of remeshing after a trial mesh is created and with or without skin remesh. If skin remesh is 
used, it is possible to choose between Method 1 or 2. Lozano and Makdesi (2017) concluded 
that the tetrahedral mesh is very sensitive to how the mesh looks. Therefore, the mesh was 
created in the same way as presented in Lozano and Makdesi (2017) where Method 2 was 
used for the skin remesh and Method 3 for tetrahedral mesh, as well as the element size of 
5mm. After the mesh was created, the element type was defined by assigning ELFORM to 10 
in the category of solid elements, creating tetrahedral elements with one integration point.  
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Figure 6.3 Illustration of the meshed model in LS-DYNA.  

The drop weight and roller supports were modelled using solid hexahedral elements with 
constant stress. The mesh was created using the solid mesher and the element type was 
defined by assigning the parameter ELFORM to 1 in the category solid elements. This kind 
of element was used for the weight and supports since their response was not of interest in 
this study.  

For the reinforcement, beam or truss elements have been used. Since the reinforcement is 
mainly acting in tension, it could be argued that truss elements would be well suited. 
Therefore, a comparison was made in Section 7.5.1 between beam and truss elements for the 
reinforcement. The number of integration points over the section is specified with the 
parameter QR/IRID. If beam elements with one integration point over the section is used, an 
element similar to a truss element is obtained.  

Beam elements of the type Hughes-Liu were chosen by assigning ELFORM to 1 while truss 
elements were defined by choosing ELFORM to 3 in the category of beam elements. When 
truss elements are used, the section is defined by a cross sectional area and for beam 
elements, the diameter of the reinforcement is specified. The mesh was created using element 
generation and the element generation method was set to “curve”. 

 

6.4 Solution method 
The time integration performed in LS-DYNA is described in LSTC (2018). The method used 
was CDM, which is described in Section 5.2.4. Since CDM is an explicit method, the 
timestep is important for the stability. The timestep is not specified by the user but 
automatically computed in the software. The automatically generated timesteps are calculated 
differently depending on the element type used. When using tetrahedral solid elements, the 
critical timestep for each element ℎ௖௥௜௧,௜ is calculated based on the size of the element and the 
wave speed. Then the timestep used in the next iteration step, ℎ௡ାଵ is calculated as:  

ℎ௡ାଵ = 𝑎 ∙ min (ℎ௖௥௜௧,௜)    i=1,2…n (6.1) 

where 𝑎 is a timestep scaling factor defined by default as 0.9 if nothing else is specified and 𝑛 
is the number of elements. The timestep scaling factor is chosen by defining the parameter 
TSSFAC in CONTROL_TIMESTEP. 
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6.5 Material models 

6.5.1 Concrete 

The material model used for the concrete is called CDPM2 and is developed and described by 
Grassl et al. (2013). The material model is suitable for dynamic analyses of concrete 
structures. In LS-DYNA this material model is named MAT_273 or 
MAT_CONRETE_DAMAGE_PLASTICITY_MODEL. It contains many input variables, of 
which some are mentioned in this section. The other parameters were left as the default 
values. In the manual of CDPM2 by Grassl (2016) and the manual of LS-DYNA, 
LSTC (2017), a description of each input parameter can be found. In Table 6.2, the 
parameters that were defined as something different than the default value are presented 
together with the notation used in LS-DYNA. 

Table 6.2  Material parameters defined for CDPM2 in LS-DYNA. 

LS-DYNA notation Parameter 

RO Mass density 

E Young’s modulus 

PR Poisson’s ratio 

ECC Eccentricity parameter 

FT Uniaxial tensile strength 

FC Uniaxial compressive strength 

HP Hardening parameter 

WF Ultimate crack width 

TYPE Type of tensile damage 

EFC Compressive damage variable 

One input variable that was defined is the eccentricity parameter, called ECC in LS-DYNA. 
According to Grassl et al. (2013), the shape of the deviatoric section is handled with this 
parameter. It is calculated using the mean tensile strength, 𝑓௧ , and the mean compressive 
strength, 𝑓௖ , of the concrete used. According to Grassl et al. (2013), 𝑓௕௖  represents the 
equiaxial compressive strength and the expression is obtained through experiments.  

ECC =
1 + 𝜖

2 − 𝜖
,      𝜖 =

𝑓௧(𝑓௕௖
ଶ − 𝑓௖

ଶ)

𝑓௕௖(𝑓௖
ଶ − 𝑓௧

ଶ)
,       𝑓௕௖ = 1.16𝑓௖ (6.2) 

Another parameter that was defined is the hardening parameter which is dependent on if the 
strain rate effects are included. The default value is HP = 0.5 and is only valid if the strain 
rate effects are included. However, if these effects are not included the recommended value is 
HP = 0.01. The effect of strain rate effect on the concrete can be treated in CDPM2 by putting 
the variable STRFLG to 1.0, however this was not done in this project.  

The compressive damage variable 𝜀௙௖, EFC in LS-DYNA, which controls the behaviour of 
concrete after the maximum compressive stress is reached, were increased from the default of 
0.0001 value to a larger value of 0.001. This is recommended by Grassl et al. (2018) when 
using tetrahedral elements to avoid local compressive failure where the drop weight hits the 
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beam. For some cases when the risk of local compressive failure is extra high, the damage 
variable can be increased further.  

The damage when the tensile strength is reached is described by the stress-inelastic 
displacement law as described in Section 2.2.2. This relation can in LS-DYNA be described 
as linear, bilinear or exponential. The damage formulation is linear by default. However, 
Grassl (2016) states that a bilinear damage formulation gives the best results which is also 
shown in the previous project by Lozano and Makdesi (2017). A comparison of how the 
result is affected by the choice of the damage formulation is of interest since Lovén and 
Svavarsdóttir (2016) used the linear formulation in their project.  

The linear damage formulation is defined by TYPE = 0 and can be seen in Figure 6.4. Using 
the value for fracture energy, 𝐺ி the ultimate crack width, 𝑤௙ for a linear damage formulation 
is calculated according to equation (6.3). 
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Figure 6.4 Linear tensile damage formulation applied in LS-DYNA. 

𝑤௙ =
2𝐺ி

𝑓௖௧
 (6.3) 

The bilinear damage formulation is illustrated in Figure 6.5 and is defined in LS-DYNA by 
assigning the parameter TYPE = 1.  
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Figure 6.5 Bilinear tensile damage formulation applied in LS-DYNA.  
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The ultimate crack width, 𝑤௙ for a bilinear damage formulation is calculated using the value 
for fracture energy, 𝐺ி, according to equation (6.4). From the input value of 𝑤௙ the values of 
w୤ଵand 𝑓௖௧ଵ are calculated by default according to equations (6.5) and (6.6). 

𝑤௙ =
4.444𝐺ி

𝑓௖௧
 (6.4) 

𝑤௙ଵ = 0.15 ∙ 𝑤௙,௧௘௧௥௔ (6.5) 

𝑓௖௧ଵ = 0.3 ∙ 𝑓௖௧ (6.6) 

According to Grassl (2016), the input value of the ultimate crack width in models with 
tetrahedral elements should be modified:   

𝑤௙,௧௘௧௥௔ = 0.56 ∙ 𝑤௙ (6.7) 

 

6.5.2 Reinforcement 

The steel in the reinforcement can be modelled in different ways, Lovén and 
Svavarsdóttir (2016) and Lozano and Makdesi (2017) modelled it as bilinear. However, to 
model the reinforcement in a more realistic way, a multilinear relationship for the stress-
strain curve can be introduced. An investigation of the different ways of modelling the stress-
strain relation for the concrete is made in Section 7.5.4. 

The bilinear behaviour is defined with the material model MAT_003, which is called 
MAT_PLASTIC_KINEMATIC in LS-DYNA. According to LSTC (2014 b), this material 
model is effective and well suited for isotropic materials with hardening plasticity. In 
Figure 6.6, the structural response of the reinforcement in LS-DYNA is illustrated. 
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Figure 6.6  Structural response of the plastic kinematic material model. 

There are several material parameters in the material model that can be defined. The 
parameters for the bilinear model that are defined as something other than the default value 
are presented together with the LS-DYNA notation of the parameter in Table 6.3.  
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Table 6.3  Input material parameters for the bilinear model in LS-DYNA. 

LS-DYNA notation Parameter 

RO Mass density 

E Young’s modulus 

PR Poisson’s ratio 

SIGY Yield stress 

ETAN Tangent modulus 

The multilinear behaviour is in LS-DYNA introduced using the material model 024-
PIECEWISE_LINEAR_PLASTICITY. This material behaviour is illustrated in Figure 6.7. 

 σs 

εs 

E 

 

Figure 6.7 Structural response for the multilinear material model.  

For the multilinear model, SIGY and ETAN mentioned in Table 6.3 are not used. Instead, 
stresses and corresponding strains are defined by assigning values to the parameters ES and 
EPS. Only the plastic strains are considered, which means that the first value of strain is zero 
and the corresponding stress is equal to the yield stress. In Figure 6.8, the values of plastic 
strain and stress defined in LS-DYNA are illustrated. 
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Figure 6.8  Schematic illustration of the stress-plastic strain relationship defined in LS-

DYNA. 
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To calculate the plastic strain defined for this material model in LS-DYNA, the elastic part of 
the strain is subtracted from the total strain, as schematically illustrated in Figure 6.9. 
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Figure 6.9  Schematic illustration of the stress strain relationship for the reinforcement. 

The plastic strain for the corresponding stress is calculated for the points according to 
equation (6.8). 

𝜀௣௟ = 𝜀௧௢௧ − 𝜀௘௟ = 𝜀௧௢௧ −
𝜎௦

𝐸௦
 (6.8) 

There is an option to include strain rate effects with this material model, this was however not 
done in this project.  

 

6.5.3 Supports and drop weight 

For the drop weight and the supports the isotropic hypoelastic material model MAT_001, 
called MAT_ELASTIC in LS-DYNA, was used. According to LSTC (2014b) this material 
model is suitable if the strains are suspected to be small which is the case for these parts. The 
input variables are presented in Table 6.4 together with the corresponding notations in 
LS-DYNA. 

Table 6.4  Input parameters for the material of the supports and drop weight in 
LS-DYNA. 

LS-DYNA notation Parameter 

RO Mass density 

E Young’s modulus 

PR Poisson’s ratio 
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6.6 Interaction between reinforcement and concrete 
In reinforced concrete, forces are transferred from the reinforcement to the concrete by shear 
stress acting in the contact between the concrete and reinforcement. These stresses are 
referred to as the bond stress. The bond between the reinforcement bars and the concrete is 
developed during a certain distance from a free edge or a crack, this is explained by e.g. 
Engström (2014). The reinforcement slides in relation to the concrete until the full bond is 
developed. If the stress then has reached the tensile strength of the concrete, a new crack is 
formed. The relative displacement that occurs between the concrete and the reinforcement is 
referred to as the slip. The bond-slip relation can be determined by experiments or calculated.  

The interaction between concrete and reinforcement can be modelled in different ways. One 
common way of treating the interaction is to model the reinforcement as embedded. This 
means that the bond between the reinforcement and concrete is complete. In LS-DYNA a 
complete bond is set by defining CONSTRAINED where the SLAVE is defined as the 
reinforcement bars and the MASTER as the solid beam. This means that the nodes of the 
reinforcement bars and the concrete elements coincide and that the bars are constrained to 
move perfectly together with the concrete. This, though, does not simulate a fully realistic 
behaviour.  

To approach a more realistic behaviour of the structure in an FE-model, the bond-slip relation 
between the reinforcement bars and the concrete can be included. The bond-slip relationship 
is described by defining an axial force, 𝐹 , depending on the bond, 𝜏௕ , which in turn is 
dependent on the slip, 𝑠. The force is defined as: 

𝐹 = 𝜏௕(𝑠) ∙ 𝜋𝜙 ∙ 𝑙௘௟ (6.9) 

where 𝑙௘௟ is the average element length. The bond stress is described in the CEB-FIP Model 
Code (2012). In Figure 6.10 the relation assuming good bond conditions is illustrated.  
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Figure 6.10 Schematic illustration of Bond-slip relation according to CEB-FIP (2012). 
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In this project a simplification of this relation was used based on Grassl et al. (2017) and 
Lockhart (2017). This function is also given as an example in the new version of the LS-
DYNA Keyword User’s Manual from LSTC (2017). The assumed bond-slip relation can be 
seen in Figure 6.11. 
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Figure 6.11  Assumed bond-slip relation in LS-DYNA. 

The first part of the bond-function is adopted directly from the model code, while the second 
part is assumed constant, see equation (6.10). The value of the slip at which the simplified 
bond stress function becomes constant is defined according to CEB-FIP (2012), for good 
bond conditions, as in equation (6.11), and the maximum value of the bonds stress according 
to equation (6.12). 

𝜏௕(𝑠) = ቐ
𝜏௠௔௫ ൬

𝑠

𝑠ଵ
൰

଴.ସ

 𝑖𝑓 𝑠 < 𝑠ଵ

𝜏௠௔௫                𝑖𝑓 𝑠 ≥ 𝑠ଵ

 (6.10) 

𝑠ଵ = 1.0 𝑚𝑚  (6.11) 

𝜏௠௔௫ = 2.5ඥ𝑓௖௠  (6.12) 

Grassl et al. (2017) explains how this bond-slip can be modelled in LS-DYNA either by 
constraining the reinforcement in the concrete using bond-slip laws or using nonlinear spring 
elements. If the bond-slip is introduced by making the reinforcement constrained into the 
concrete using bond-slip functions, Lockhart (2017) states that the modelling is less 
complicated compared to including springs. In this case, the nodes of the reinforcement and 
the concrete, respectively, are constrained to move according to the bond-slip function. This 
is made using a built-in function in LS-DYNA. As for the case of perfect bond, 
CONSTRAINED is defined. But to include bond-slip, the parameter AXFOR is used to 
enable the user to specify the bond-slip relation of the reinforcement. In this project, bond-
slip was included using this option since it was considered the simplest way to model, and the 
easiest method to repeat in future projects. The bond-slip relation is defined by 
DEFINE_FUNCTION, for the code used, see Appendix I. When AXFOR is used, the 
parameter CDIR must be changed from the default value to 1 to remove the constraint along 
the axial direction of the reinforcement and allow for a movement. 
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7 Validation and Improvements of Models 
7.1 Introduction 
Previously, tests have been conducted where actual concrete beams have been subjected to a 
drop-weight corresponding to the scenario modelled in this project. The tests were originally 
carried out and analysed by Ekström (2017). Lovén and Svavarsdóttir (2016) used some of 
those tests results to create models and analyse and compare results. Lozano and 
Makdesi (2017) carried out a new series of drop weight tests. In this chapter a brief 
description of the tests studied in Lovén and Svavarsdóttir (2016) are described. Time-
displacement curves for the midpoint of the beam and crack patterns from these tests were 
used in this project. For more detailed information and deeper analyses of these tests, the 
reader is referred to the original studies.  

Some different choices were compared and analysed to evaluate the modelling techniques in 
the simplified models as well as in the LS-DYNA model. The 2DOF model and the Abaqus 
model were then validated by comparing them to each other, to hand calculations and to some 
extent test results. The LS-DYNA model was validated by comparison to test results.  

 

7.2 Reference experimental procedure and material properties  
Dynamic tests were carried out on simply supported concrete beams by means of a guided 
fall of a weight hitting the beam. The basic geometry and support conditions of the beams 
that were tested can be seen in Figure 7.1.  

 

90 90 1 000 

[mm] 

70 70 

 

Figure 7.1 Dimensions of the beams used in experiments. 

The beams were reinforced with four rebars, divided in one top and one bottom layer and the 
square cross sections of the beams and the reinforcement layout is shown in Figure 7.2. The 
dimensions of the cross section are presented in Table 7.1. 
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Figure 7.2  Cross section of the beam. 
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Table 7.1  Dimensions of the cross section. 

Property Dimension  

Height, h [mm] 100 

Width, b [mm] 100 

Cover, c [mm] 20 

Diameter, ϕ [mm] 6 

The drop-weight, illustrated in Figure 7.3, is cylindrical and made of steel. There is a cavity 
inside the weight intended for measuring devices and the bottom of the drop-weight has a 
rounded surface. Since the weight is modelled as solid in LS-DYNA, the input value of the 
density has been modified to represent the correct mass. The dimensions and properties of the 
drop-weight are presented in Table 7.2. For more detailed information on the drop-weight, 
refer to e.g. Lovén and Svavarsdóttir (2016).  

 

b 

h 

r 

 

Figure 7.3 Geometry of the drop-weight, modified from Lovén and Svavarsdóttir (2016). 

Table 7.2  Properties of the drop-weight, according to Lovén and Svavarsdóttir (2016). 

Property Value 

Height, h [mm] 260 

Width, b [mm] 80 

Radius of rounded tip, r [mm] 400 

Mass, 𝑚௪ [g] 10 093 

Young’s modulus [GPa] 200 

Material tests were carried out on the concrete and reinforcement. The average mechanical 
properties of the concrete at the day of the dynamic tests, according to Lovén and 
Svavarsdóttir (2016), as well as the ultimate tensile strength of the reinforcement are 
presented in Table 7.3. These are also the values used for validation of the models in this 
report. The values of Young’s modulus and theoretical fracture energy for the concrete were 
calculated using the mean compressive strength at the day of the tests, see Appendix C for 
calculations.  
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Table 7.3  Mechanical properties of the concrete and reinforcement, from Lovén and 
Svavarsdóttir (2016).  

Parameter Value 

Mean compressive strength of concrete cylinders, 𝑓௖௠ [MPa] 45.5  

Mean tensile strength of concrete cubes, 𝑓௖௧௠ [MPa] 3.28 

Modulus of elasticity of concrete, 𝐸௖௠ [GPa] 34.7 

Fracture energy from tests of concrete, 𝐺ி [N/m] 113 

Mean ultimate tensile strength of reinforcement, 𝑓௨ [MPa] 665 

Tensile tests were performed on the reinforcement and the results of these tests can be seen in 
Figure 7.4. From this, the mean ultimate strength was obtained. Mean values for the stresses 
and strains were calculated to obtain a curve representing the average behaviour of the 
reinforcement. For the input data used in the models, see Appendix A. 

 

Figure 7.4 Result from the tensile tests of the reinforcement bars. 

Several different dynamic tests were carried out, dropping the weight from different heights. 
The reference test for this project was from 5.5 meters, resulting in a measured velocity of 
10.35 m/s of the drop weight just before impact. There were five beams tested in the test 
series with a drop height of 5.5 meters. The test results from the dynamic tests showed some 
variation, see Figure 7.5.  

Lovén and Svavarsdóttir (2016) used the beam RPC2 as a reference since it was considered 
representative for the results in total. In this project, RPC2 was mostly used for comparison, 
but it was desirable to achieve results from the models that are on the safe side. Therefore, the 
entire test series was sometimes used in the comparison. 
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Figure 7.5 Displacement with time for the tested beams. 

The cracks for two beams from the experiments are presented in Table 7.4, at the time of the 
maximum displacement. The beam RPC2 was previously chosen as the reference beam for 
the time-displacement curve. RPC5 was considered more representative concerning the crack 
pattern since the crack closest to the middle region in RCP2 is more inclined and has merged 
with the middle cracks. Therefore, these two beams were used for comparison of crack 
patterns in this project. The scale for the crack patterns from the tests were chosen by Lovén 
and Svavarsdóttir (2016) so that the red colour represents an open crack. 

Table 7.4 Crack patterns at maximum displacement for two tested beams that were used 
as reference. 

Description Crack pattern 

RPC2 
 

 RCP5 
 

Principle 
strain  
[%]  
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7.3 Comparison of modelling techniques in simplified models 

7.3.1 Resistance limit for the interaction in the 2DOF model 

The resistance limit of the spring representing the interaction between the beam and the drop 
weight is chosen based on the properties of the specific beam and load case, as mentioned in 
Section 5.2.2. Lovén and Svavarsdóttir (2016) evaluated the choice of resistance limit with 
respect to velocity and concluded that a limit of 50 kN proved to give reasonable results in 
comparison to their test results. Lozano and Makdesi (2017) also used 50 kN. To evaluate the 
effects of the choice of resistance limit, the displacements with time using a limit of 20, 50, 
100, 200, 500 and 1 000 kN were evaluated in this project and are presented in Figure 7.6. 

 

Figure 7.6 Difference in response depending on how the resistance limit of the spring 
representing the interaction was chosen. 

It can be seen that the displacement does not differ much if a value between 50 or 100 is 
chosen. The shape of the response starts to differ though when a limit of 200 kN is used and 
when using a limit of 500 kN the resulting response is quite different. Based on this 
sensitivity analysis and previous experience, the resistance limit was set to 50 kN in this 
project as well. For the elasto-plastic spring in Abaqus, the same limit was used. 
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7.3.2 Implicit or explicit solution method in Abaqus 

A comparison between the two solution methods in Abaqus, explained in Section 5.3.4, was 
made to evaluate the influence of the solution method on the displacement with time. The 
result can be seen in Figure 7.7. The results from the two solution methods correspond well, 
but since the explicit method is more efficient for this type of analysis, the explicit method 
was used henceforth. 

 

Figure 7.7 Comparison of implicit and explicit solution method using an elastic and 
elasto-plastic spring in Abaqus. 
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7.3.3 Structural behaviour of the spring in the Abaqus model 

The elastic and elasto-plastic structural behaviour of the spring in Abaqus, mentioned in 
Section 5.3.1, were evaluated and are presented in Figure 7.8. 

 

Figure 7.8 Comparison of midpoint displacement with time from the 2DOF model and 
from Abaqus using elastic and elasto-plastic springs. 

As can be seen, the difference in results using an elasto-plastic or an elastic spring was not 
significant. In the 2DOF model, on the other hand, the resistance limit of the spring had a 
large influence. This can be seen in Figure 7.6 where an elasto-plastic spring with a very high 
resistance limit gave larger displacements. An elasto-plastic spring with a high resistance 
limit approaches the behaviour of an elastic spring. The difference in influence from the 
structural behaviour of the spring in the different models may be explained by the different 
ways of modelling the beam. In the 2D model in Abaqus, the wave propagation effect, 
explained in Section 5.2.3, was captured. In the 2DOF model in 1D it was not captured, and 
an elasto-plastic spring was needed to simulate the more realistic behaviour. Therefore, 
elasto-plastic behaviour of the spring was not needed in Abaqus and an elastic structural 
behaviour was sufficient.  
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7.4 Validation of simplified models 
The time-displacement curves for the 2DOF model and the Abaqus model, compared in 
Figure 7.9, are similar. Regarding the maximum displacement, there is a difference of 0.7 
millimetres, which was considered accurate enough considering the different levels of detail 
in the models.  

 

Figure 7.9  Displacement of the midpoint of the beam comparing 2DOF and Abaqus. 

The results from the simplified models are compared to hand calculations with respect to 
transferred energy in the system and maximum displacement. The energy in the system was 
calculated from the value of the maximum displacement from the two models using equations 
(3.8) and (4.8). In the hand calculations, a plastic impact was assumed, and the energy was 
calculated as the external work described by equation (3.16). From the external work, the 
maximum displacement was obtained. The equations used are also presented in Appendix F. 
From the maximum values, the quota 𝜂௨  for the displacements and the ratio 𝜂ௐ೤

 for the 

energy were calculated as described in equations (7.1) and (7.2). The results are presented in 
Table 7.5.  

𝜂௨ =
𝑢௜

𝑢ଶ஽ைி
                                    𝑖 = 𝐴𝑏𝑎𝑞𝑢𝑠, 𝐻𝑎𝑛𝑑 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 (7.1) 

𝜂ௐ೤
=

𝑊௬௜

𝑊௬ଶ஽ைி

                               𝑖 = 𝐴𝑏𝑎𝑞𝑢𝑠, 𝐻𝑎𝑛𝑑 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 (7.2) 
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Table 7.5 Comparison of transferred energy into the system calculated using different 
methods. 

Method 
Maximum 

displacement 
[mm] 

𝜂௨ 
[-] 

Energy 
[J] 

𝜂ௐ೤
  

[-] 

2DOF 30.9 1.00 298.3 1.00 

Abaqus 31.6 1.02 305.6 1.02 

Hand calculations 31.1 1.00 299.8 1.00 

From the results, it can be seen that the assumption of a plastic impact and the elasto-plastic 
response with a resistance limit of 50 kN in the 2DOF model was a good approximation to 
capture a more realistic response. In the Abaqus model, the behaviour of the system was 
captured well with the more simple, elastic response. As previously mentioned, one possible 
explanation to why an elasto-plastic modification was needed in the 2DOF model and not in 
Abaqus can be that the wave propagation effect discussed in Section 5.2.3 is automatically 
captured in Abaqus. 

The results from the 2DOF model and the Abaqus model were compared to the test results 
regarding the time-displacement curves, see Figure 7.10. The simplified models were only 
compared to the test results with respect to global behaviour since the models are not detailed 
enough to describe e.g. crack patterns. 

 

Figure 7.10 Time-displacement curves from the 2DOF model, Abaqus model and test 
results. 

The models are less stiff than the real beam and one contributing factor is that the simplified 
models do not take strain rate effects into account for either the reinforcement or the concrete. 
Another contributing explanation may be that static tests, performed by Lozano and 
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Makdesi (2017) and by Jönsson and Stenseke (2018), showed that the capacity of the beams 
was higher than predicted (reason unknown) with hand calculations.  

No adjustments of the models were made to make them fit better to the test results. It was 
investigated, though, how much the capacity would need to be modified in the 2DOF to 
obtain results close to the test results. If the yield strength of the reinforcement were to be 
increased, an increase of 45 % would be needed to reduce the displacement to that obtained 
in the test, see Figure 7.11.  

 

Figure 7.11 An attempt to modify the 2DOF model to obtain results closer to the test 
results. 

Another attempt was made to get closer to the test results by modelling the interaction 
between the parts in a more sophisticated way using contact mechanics. See Appendix D for 
an evaluation of this more thorough method of modelling the contact. This evaluation, 
though, showed that there is a neglectable difference between the simplified way and the 
more detailed way since the stiffness of the interaction is still so much larger than the 
stiffness of the beam. Since the difference in results was neglectable, and the fact that the 
stiffness has been modelled in the simplified way previous years, the stiffness based on 
contact mechanics has not been used in this project.  

  

0

5

10

15

20

25

30

35

0 10 20 30 40

D
is

pl
ac

em
et

, u
[m

m
]

Time, t [ms]

2DOF, original

Test 2016

2DOF, yield strength of
reinforcement increased by 45 %



 
 
 

CHALMERS Architecture and Civil Engineering, Master’s Thesis, ACX30-18-36 61 

7.5 Comparison of different modelling choices in LS-DYNA 

7.5.1 Element type for the reinforcement 

The different element types for the reinforcement, described in Section 6.3, were evaluated. 
The time-displacement curves for the analyses showed that very similar results were obtained 
using beam elements with 1 x 1 integration point and truss elements. The displacements when 
using beam elements with 2 x 2 integration points were smaller, see Figure 7.12. There were 
some convergence issues for the model with truss elements and 1x1 beam elements where the 
analyses terminated after approximately 15 ms. However, the time of main interest is when 
the maximum displacement is reached, which happens after approximately 8 ms. Hence, this 
means that the problem with convergence later is not of major concern. 

 

Figure 7.12 Comparison between beam elements with 1 x 1 integration points, 2 x 2 
integration point and truss elements. 

The crack patterns from the LS-DYNA model were compared to test results. In the plots from 
the LS-DYNA model, the strain representing a fully open crack, i.e. no tensile force can be 
transferred over it, is represented with red colour. That strain value was calculated, in 
Appendix C, using an equivalent element length according to Lozano and Makdesi (2017). 
The strain from the tests and LS-DYNA, though, are not directly comparable since the strain 
presented refers to different lengths.  

The results showed that more realistic crack patterns were achieved when using truss 
elements and 1 x 1 beam elements, see Table 7.6. Using beam elements with 2 x 2 integration 
points, unrealistic horizontal strains along the reinforcement occurred. The fact that truss 
elements and beam elements with 1 x 1 integration points resulted in more realistic crack 
patterns than beam elements with 2 x 2 integration points was considered more important 
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than the convergence issues in a later stage even if 2 x 2 integration points would have been 
the most realistic choice for modelling the reinforcement. 

Table 7.6  Crack patterns for test results and models with different element types for the 
reinforcement at the time for maximum displacement.  

Description Crack pattern 

Test (RPC2) 
 

Test (RCP5) 
 

Principle 
strain 
[%]  

Beam 
elements 
(2 x 2 ip)  

Beam 
elements 
(1 x 1 ip)  

Truss elements 
 

Principle 
strain 
[%]  
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7.5.2 Interaction between concrete and reinforcement 

A comparison was made between a model with embedded reinforcement and a model with a 
bond-slip function included. The displacements when bond-slip was included were noticeable 
larger and closer to the test results, see Figure 7.13. 

 

Figure 7.13 Time-displacement curve with and without bond-slip, using beam elements 
with 1 x 1 integration point for the reinforcement. 

The crack patterns for the models without and with bond-slip are presented together with the 
crack patterns from the test in Table 7.7. It can be seen that there are some horizontal strains 
along the reinforcement for the model without bond-slip but that they are less prominent in 
the model including bond-slip. As expected, the crack pattern has changed somewhat when 
the bond-slip is introduced, and the cracks are distributed with a larger crack distance. 
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Table 7.7 Crack patterns from the test and LS-DYNA models without and with bond-slip 
at the time for maximum displacement. The reinforcement is modelled with 
beam elements with 1 x 1 integration point. 

Description Crack pattern 

Test (RPC2) 
 

Test (RCP5) 
 

Principle 
strain 
[%]  

Without bond-
slip 

 

With bond-
slip 

 

Principle 
strain 
[%]  

Based on that the horizontal strains were less prominent for the beam elements using 1 x 1 
integration points there was an idea that the horizontal strains for 2 x 2 beam elements, 
discussed in Section 7.5.1, would be reduced when the full constraint between the 
reinforcement and the concrete was released. Therefore, different element types for the 
reinforcement were compared when bond-slip was included.  

In Figure 7.14, the displacements for beam elements with 1 x 1 and 2 x 2 integration point 
and truss elements are compared when bond-slip is included. The displacements for 1 x 1 
integration points and truss elements were larger than and closer to the test results. 
Furthermore, the crack pattern is shown in Table 7.8, and it were concluded that the 
horizontal strains for beam elements with 2 x 2 integration points remained. It can also be 
seen that the crack patterns for beam elements with 1 x 1 integration point and for truss 
elements are very similar.  
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Figure 7.14 Displacements for different element types for the reinforcement when bond-
slip interaction is included in the modelling.  

Table 7.8  Crack patterns from models with different element types for the reinforcement 
when bond-slip is included.  

Description Crack pattern 

Beam 
elements 
(2 x 2 ip)  

Beam 
elements 
(1 x 1 ip)  

Truss elements 

 

Principle  
strain 
[%]  

When beam elements with 1 x 1 integration points or truss elements were used, the influence 
of bond-slip on the displacement was larger than for beam elements with 2 x 2 integration 
points. For truss elements and beam elements with 1 x 1 integration points, the increase in 
displacement when bond-slip was included was 16 %. For beam elements with 2 x 2 
integration points the difference was 7 %. Based on that it was considered desirable to 
achieve larger displacements in the model compared to the tests and that the horizontal strains 
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remained for the beam elements with 2 x 2 integration points, bond-slip was included in 
further analyses and beam elements with 2 x 2 integration points were excluded. 

The way of modelling the interaction, using the built-in function CONSTRAINT, the nodes 
of the reinforcement is probably linked to the closest nodes in the concrete. This leads to that 
the interaction is spread out over the element size. In this case, when the diameter of the 
reinforcement and the element size is almost the same, this can be favourable. However, if 
the element size would be larger than the diameter of the reinforcement, this is something that 
may be needed to be considered.  

 

7.5.3 Damage formulation for the concrete 

A comparison was made between linear and bilinear damage formulation for the concrete in 
tension. In Figure 7.15 it can be seen that the difference in displacement for the two models 
was small.  

  

Figure 7.15 Displacements for the models with linear and bilinear damage formulations 
for concrete in tension. The reinforcement is modelled with beam elements 
with 1 x 1 integration point. 

In Table 7.9, the crack patterns for the model with linear and bilinear damage formulations 
for concrete in tension are presented. There is a small difference, but it is not significant. 
Therefore, the bilinear response was considered to be the best model since it is a better 
approximation of the real behaviour.  
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Table 7.9 Crack patterns for the models with linear and bilinear damage formulations 
for concrete in tension. The reinforcement is modelled with beam elements 
with 1 x 1 integration point. 

Description Crack pattern 

Test (RPC2) 
 

Test (RCP5) 
 

Principle 
strain 
[%]  

Linear  
damage 

formulation  

Bilinear 
damage 

formulation  

Principle 
strain 
[%]  
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7.5.4 Modelling of stress-strain relation for the reinforcement 

The two ways to model the structural behaviour of the reinforcement that were studied is the 
bilinear and a multilinear behaviour, see Figure 7.16. The bilinear curve is a very rough 
estimation of the real behaviour while the multilinear curve captures the behaviour of the 
reinforcement more realistically.  

 

Figure 7.16 The mean value from tests of the reinforcement in comparison with the 
bilinear and multi-linear behaviour modelled in LS-DYNA. 

Since the experimental stress-strain relation does not show a distinct yield behaviour, and 
there is no clear point where the nonlinear part of the curve begins, the multilinear curve is 
designed to fit the curve from the tests and not only starting from the yield plateau. 

It was concluded when running analyses that the truss elements and the multilinear behaviour 
of the reinforcement were not compatible in LS-DYNA. Since the results from truss elements 
and beam elements with 1 x 1 integration point have proved to be similar, beam elements 
with 1 x 1 integration points are used in all further analyses made in this thesis.   

The displacements for the models with multilinear and bilinear stress-strain relation are 
compared in Figure 7.17. The model with bilinear behaviour can absorb more energy since 
the area under the stress-strain graph in is also larger. This is confirmed by the somewhat 
smaller displacements for the model with bilinear behaviour.  
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Figure 7.17 Displacements for models with multilinear and bilinear behaviour of the 
reinforcement. 

The multilinear behaviour is closer to reality than the bilinear and gave results that are more 
on the safe side. The crack patterns from the different models showed to be very similar. 
Therefore, the model with multilinear behaviour were used in all further analyses. 
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7.6 Validation of the final LS-DYNA model 
From the comparisons made for different modelling choices, a final version of the model, 
referred to as the standard model, was obtained. The modelling choices for this model are 
presented in Table 7.10. 

Table 7.10 Conclusions from comparison of modelling choices. 

Modelling parameter Chosen method 

Element type for the reinforcement Beam elements, 1x1 integration point 

Interaction between concrete and reinforcement Bond-slip included 

Damage formulation for concrete in tension Bilinear 

Structural behaviour of the reinforcement Multilinear 

The displacements for the final model is compared to the beams in the test series, see 
Figure 7.18. The results from the final model are just above the weakest test beam, which is 
deemed to be a satisfactory result since the model was close to reality while still on the safe 
side. No strain rate effects were considered, but the beam still showed a stiffness that 
corresponds well to the reality. This may be explained by volumetric locking effects in the 
model when tetrahedral elements are used. Volumetric locking effects can be caused by the 
shape of the tetrahedral elements and the irregular pattern they create in the beam. This 
inhibits the movements that would occur in more regular shaped elements.  

 

Figure 7.18 Comparison of the standard LS-DYNA model and the tested beams. 
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The crack pattern for the final model is compared to the test results, see Table 7.11, and the 
overall expression of the crack patterns corresponds well. The strain pattern in LS-DYNA is 
not symmetric which is realistic since the real material of the beam is not totally 
homogenous. In LS-DYNA an asymmetric element mesh may be an explanation for these 
unsymmetrical crack pattern. The middle part of the LS-DYNA beam is more similar to 
RCP5, but as mentioned in Section 7.2, the crack closest to the middle region of RCP2 is 
more inclined and has probably merged with the middle cracks. 

Table 7.11  Crack patterns for the final LS-DYNA model compared to the tests.  

Description Crack pattern 

Test (RPC2) 
 

Test (RCP5) 
 

Principle  
strain 
[%]  

LS-DYNA 
final 

 

Principle  
strain 
[%]  
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7.7 Summary of results from the final models 
The results from the final, now considered standard, models from 2DOF, Abaqus and LS-
DYNA, can be seen in Figure 7.19. The settings used in these models were used as a basis for 
the parametric studies in Chapter 8.  

 

Figure 7.19 Time-displacement curves for the test and final models 2DOF, Abaqus 
and LS-DYNA.  

The shapes of the time-displacement curves are different when comparing the 2DOF and 
Abaqus results to the test results and LS-DYNA. In the test results and LS-DYNA, the 
displacement oscillates around a descending branch, while in the results from the simplified 
models it oscillates around a constant value equal to the plastic deformation. This can be 
explained with how the support conditions were modelled in the simplified models compared 
to the actual conditions in the test. In the simplified models, the beam was prevented from 
lifting from the supports, while in reality it lifted from the supports when the beam rebounded 
after reaching the maximum displacement. In LS-DYNA the support conditions were 
modelled realistically enough to capture this behaviour. Since the maximum displacement 
and not the plastic displacement is the main interest in this study, it is of minor importance to 
extract the relative displacement for the LS-DYNA model.  
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8 Adaption to New Test Series and Parametric Study 
8.1 Introduction 
Having validated the different models, they were adapted to simulate new tests carried out by 
Jönsson and Stenseke (2018). In these tests, new beams were casted with new reinforcement, 
which means that some material parameters for concrete and reinforcement were modified. 
The adaption to the new tests was done to enable for future studies to continue the work.  

A variation of load, geometry and reinforcement parameters was then studied to investigate 
how sensitive the different models are to certain parameters. In LS-DYNA the mass of the 
drop weight, the drop height and the amount of reinforcement were varied. In the simplified 
model these parameters as well as the height, width and length of the beam were varied.  

 

8.2 Adaption of models to new test results and future studies 
In the new tests, the radius of the rounded bottom surface of the drop weight was decreased 
from 400 to 200 mm. Since new reinforcement was used and new concrete was mixed and 
casted, the properties of the concrete and reinforcement was different compared to previous 
years. The new material properties of the reinforcement were adopted in this project to enable 
for future studies using the same reinforcement. Several bars were tested, and the average 
material behaviour of the reinforcement is shown in Figure 8.1. 

 

Figure 8.1 Structural behaviour of the tested reinforcement bars and average value. 

The measured properties of the concrete were however not used since the properties of the 
concrete varies slightly from each batch. Instead, the target values for the concrete when 
casting the new concrete were used. The properties are presented in Table 8.1. 
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Table 8.1  Target values for the material properties of concrete used in Jönsson and 
Stenseke (2018). 

Parameter Value 

Compressive mean strength, 𝑓௖௠ [MPa] 36 

Tensile mean strength, 𝑓௖௧௠ [MPa] 2.8 

Young’s modulus, 𝐸௖௠ [GPa] 32.0 

In the 2DOF model, the ultimate strength of the reinforcement was used as the limit in the 
elasto-plastic curve. The ultimate strength was chosen instead of the yield strength since 
static tests performed by Jönsson and Stenseke (2018) showed that the static capacity of the 
beams was higher than expected. Furthermore, this limit was used when calculating the input 
data for the Abaqus model. In the LS-DYNA model, the structural behaviour of the 
reinforcement was modelled as multilinear and adopted to the real behaviour. The elasto-
platic behaviour as well as the multilinear curve used in LS-DYNA are shown in Figure 8.2 
together with the average relation of the stress-strain curve for the reinforcement. Based on 
this new data, all the needed parameters for the models were calculated, see Appendix C. All 
the input data for the different models are presented in Appendix A.  

 

Figure 8.2 Structural behaviour of the reinforcement from tests and in the different 
models. 
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8.3 Parametric studies in 2DOF and Abaqus 

8.3.1 Studied cases 

In the parametric study, different load cases were created combining different masses and 
drop heights of the drop weight. It was of interest to see how the response of the models was 
affected by different combinations of the mass and drop height resulting in the same kinetic 
energy before impact. In Table 8.2, the different load cases that were studied are presented. 
The darker grey boxes represent twice the kinetic energy of the drop weight just before 
impact compared to the lighter grey boxes. All load cases were studied for nine different 
beams with properties presented in Table 8.3.  

Table 8.2 Load cases studied in the 2DOF and Abaqus models combining mass and 
drop height of the drop weight. 
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Table 8.3 Properties of the beams studied in the parametric studies. 

Beam 
Width, 𝑏 [m] Height, ℎ [m] Length, L [m] Reinforcement 

0.1 0.2 0.1 0.2 1.0 2.0 2ϕ5 2ϕ6 2ϕ8 4ϕ6 

1 ●  ●  ●  ●    

2 ●  ●  ●   ●   

3 ●  ●  ●    ●  

4  ● ●  ●   ●   

5 ●   ● ●   ●   

6 ●  ●   ● ●    

7 ●  ●   ●  ●   

8 ●  ●   ●   ●  

9 ●  ●   ●    ● 
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To change the mass of the drop weight in Abaqus and the 2DOF model for the different load 
cases in the parametric study, only the point mass was altered. This corresponds to that the 
density of the drop weight would be modified, while in practise it is more reasonable to 
modify the height of the drop weight. When the height is changed, the stiffness is as well. 
However, since the study in Appendix D showed that a change of the stiffness of the 
interaction between the weight and the beam in this range does not influence the response of 
the beam significantly, the stiffness is kept the same when the mass is altered. 

8.3.2 Complete results for one selected beam 

The time-displacement curves from all the load cases for Beam 2 can be seen in Figure 8.3. 
Comparing 2DOF and Abaqus, the overall look of the curves is similar. In Appendix F, 
Section F.2, the results can be found for all beams and the appearance have the same 
correspondence.  

 

 

Figure 8.3 Time-displacement relation for all load cases for Beam 2. The upper graph is 
from the 2DOF model and the lower one from the Abaqus model. 
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It can be seen that a larger mass of the drop weight, 𝑚௪, gives larger displacements in both 
2DOF and Abaqus. This may be related to the expression for the external work performed on 
the system in a plastic impact, which is calculated as:  

𝑊௬ =
𝑚௪

𝑚௪ + 𝑚௕
𝐸௞,଴ (8.1) 

To evaluate the results more thoroughly, the results from Abaqus and hand calculations were 
compared to the results from the 2DOF model with regard to maximum displacement and 
transferred energy calculated as described in Appendix F. From the maximum values, the 
ratio for the displacements, 𝜂௨  , and the ratio for the energy, 𝜂ௐ೤

, were calculated as 

described in equations (7.1) and (7.2). The comparison of results for Beam 2 is presented 
together with the values of the maximum displacement in Table 8.4. The values and 
comparisons for the other beams are presented in Appendix F. 

Table 8.4 Displacements and comparison of displacements and transferred energy from 
all load cases in Abaqus and hand calculations (Calc.) compared to 2DOF for 
Beam 2. 

Load  
case 

m  h  Displacement, u [m] 𝜂௨ [−] 𝜂ௐ೤
 [−] 

[kg] [m] 2DOF Abaqus Calc. Abaqus Calc. Abaqus Calc. 

A 40 1.25 41.3 42.1 41.4 1.02 1.00 1.02 1.00 

B 20 2.5 35.7 36.0 35.8 1.01 1.00 1.01 1.00 

C 10 5 28.1 28.9 28.3 1.03 1.01 1.03 1.01 

D 5 10 20.1 20.7 20.3 1.03 1.01 1.03 1.01 

E 2.5 20 13.3 15.2 13.4 1.14 1.01 1.17 1.01 

F 40 2.5 80.3 79.2 80.5 0.99 1.00 0.99 1.00 

G 20 5 68.8 67.8 69.3 0.99 1.01 0.99 1.01 

H 10 10 53.5 54.0 54.4 1.01 1.02 1.01 1.02 

I 5 20 37.6 40.1 38.4 1.07 1.02 1.07 1.02 

J 2.5 40 24.2 27.7 24.6 1.15 1.02 1.16 1.02 

In this load case the correspondence of the results is quite good, especially the 2DOF in 
comparison with the hand calculation. This shows that the resistance limit of 50 kN used 
here, see Section 7.3.1, is a valid assumption to capture a plastic response. In comparison 
with the Abaqus result, the correspondence is good for most load cases, but a trend can be 
seen that the correspondence is less accurate when the mass of the drop weight becomes 
smaller in relation to the mass of the beam. Hence, the assumption of a plastic impact in the 
hand calculations and the choices made for the 2DOF system are valid approximations when 
the mass ratio of the weight and the beam is higher.  
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8.3.3 Overall comparison of 2DOF and hand calculations 

In Figure 8.4 and Figure 8.5, the comparisons with regard to energy in the hand calculations 
compared to 2DOF for all beams and all load cases are presented. As for Beam 2, the 
correspondence is good in all cases except for Beam 5. This is discussed more further down.   

 

Figure 8.4 Comparison of transferred energy from the hand calculations compared to 
2DOF for load cases A-E. 

 

Figure 8.5 Comparison of transferred energy from the hand calculations compared to 
2DOF for load cases F-J. 
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Since the 2DOF model was created and calibrated to fit Beam 2, as described in 
Section 7.3.1, one reason for the deviation of Beam 5 showed to be that the resistance limit 
for the interaction between the drop weight and the beam, 𝑅௠,௪ , was not accurate. In 
Figure 8.6, a new calibration of the resistance limit for Beam 5 is presented. The load case 
that had the worst correspondence, i.e. load case J, was chosen for the calibration.  

 

Figure 8.6 Difference in response depending on how the resistance limit of the spring 
representing the interaction for Beam 5. 

The result of the calibration for Beam 5 shows that the range, for which the resistance limit, 
𝑅௠,௪, is accurate, is higher than for Beam 2. Here a value of about 100 – 200 kN seems to be 
more accurate. This means that 𝑅௠,௪ = 50 kN is not the best choice for the resistance limit 
for Beam 5. When instead a resistance limit of 100 kN or 200 kN was chosen, the 
correspondence with the hand calculation was also improved significantly, see Table 8.5. 

Table 8.5 Displacement and quota between the result from hand calculations and 2DOF 
for different resistance limit for the interaction between the weight and beam. 

𝑅௠,௪ [kN] 𝑢 [mm] 𝜂௨ [-] 𝜂ௐ೤
 [-] 

50 14.4 1.14 1.14 

100 15.9 1.03 1.03 

200 16.4 1.00 1.00 

It was of interest to investigate why Beam 5 required another resistance limit for the 
interaction between the drop weight and the beam. Things that separate the different beams 
and affect the response are their mass, 𝑚௕, stiffness, 𝑘௕, and capacity, 𝑅௠,௕. An attempt to 
investigate which one of these properties that has the largest effect of the resistance limit for 
the interaction between the weight and the beam, 𝑅௠,௪, was made. Since the mass is the same 
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for Beam 4-9, this difference was excluded. The stiffness, 𝑘௕, and the resistance limit, 𝑅௠,௕, 
for Beam 5 are both much higher than for the other beams. Due to this, two beams with 
almost the same resistance limit, and different stiffnesses were chosen for the comparison 
(Beam 4 and Beam 9). The properties of these beams are presented in Table 8.6. It could be 
seen in Figure 8.4 and Figure 8.5, that the load also has an influence since the correspondence 
is better for some load cases, therefore load case J was chosen for all the beams in this 
investigation. The calibration of Beam 4 and 9 is presented in Figure 8.7 and Figure 8.8. 

Table 8.6 Stiffness and resistance limit for the beams in the calibration study. 

Beam 𝑘௕ [N/m] 𝑅௠,௕ [kN] 

4 2.59·106 10.68 

5 13.33·106 24.42 

9 0.50·106 9.62 

 

Figure 8.7 Difference in response depending on how the resistance limit of the spring 
representing the interaction for Beam 4. 
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Figure 8.8 Difference in response depending on how the resistance limit of the spring 
representing the interaction for Beam 9. 

From this limited comparison it is difficult to draw a clear conclusion. However, for Beam 4 
a value of 50 – 200 kN for the resistance limit, 𝑅௠,௪, is acceptable while for Beam 9, a value 
of 20 kN and 500 kN is almost acceptable as well. Since they have almost the same capacity, 
𝑅௠,௕, this indicates that the stiffness has an influence. The lower the stiffness, the larger the 
span of acceptable values to be used for 𝑅௠,௪ in a 2DOF model. However, further and more 
extensive evaluations need to be conducted but is not further done in this report.  

Furthermore, this calibration study indicates that when the capacity of the beam is changed, 
the resistance limit for the interaction between the weight and the beam should be calibrated 
for each separate beam.  
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8.3.4 Overall comparison of 2DOF and Abaqus  

In Figure 8.9 and Figure 8.10, the comparisons with regard to energy in Abaqus and 2DOF 
for all beams and all load cases are presented. A deviation for the different beams can be seen 
within each load case. In the Abaqus model a more realistic behaviour including the wave 
propagation effect is captured, but in the 2DOF model it is not. The deviation between the 
2DOF model and Abaqus model is larger for the longer beams, which is an indication of this 
may be one reason for these deviations.  

 

Figure 8.9  Comparison of transferred energy calculated from Abaqus compared to 2DOF 
for load cases A-E. 

 

Figure 8.10 Comparison of transferred energy calculated from Abaqus compared to 2DOF 
for load cases F-J. 
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described in equation (8.1), decreases. This indicates that when the mass ratio decreases, the 
assumption of a plastic impact is no longer valid to capture the realistic response of the beam 
regarding the time dependency.  

Beam 5 deviates from the pattern, but this can be explained by the choice of resistance limit 
in the 2DOF model, as discussed in Section 8.3.3. If the resistance limit was chosen to 
200 kN instead of 50 kN, the displacements for load case H would be in the same range as the 
other beams, see Figure 8.11. 

 

Figure 8.11 Load case H for all beams when Rm,w for Beam 5 is updated. 

A suggestion of how to avoid these deviations between the models can be to use time 
dependent transformation factors where the mass and resistance of the beam is changed with 
time. Thereby, an elastic spring for the interaction between the drop weight and the beam 
could be used in the 2DOF model as in Abaqus. Thereby the wave propagation effects would 
be included and the problem with choosing the correct resistance limit would be solved.  
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8.4 Parametric studies in LS-DYNA 
Due to the extensive computing time in LS-DYNA, the parametric study was limited to 
mainly load case F-J for Beam 1-3. For comparison, though, load case A-E for Beam 2 were 
analysed as well, see Table 8.7 and Table 8.8. When the mass of the drop weight was 
changed in LS-DYNA the density was modified to give the correct value of the mass instead 
of changing the height of the drop weight. 

Table 8.7 Load cases studied in LS-DYNA. 
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Table 8.8 Beams studied in LS-DYNA. 

Beam 
Width, 𝑏 [m] Height, ℎ [m] Length, L [m] Reinforcement 

0.1 0.2 0.1 0.2 1.0 2.0 2ϕ5 2ϕ6 2ϕ8 4ϕ6 

1 ●  ●  ●  ●    

2 ●  ●  ●   ●   

3 ●  ●  ●    ●  

The time-displacement curves from the analyses of Beam 2 for the load case A-J can be seen 
in Figure 8.12. In the same way as for the simplified analyses, the largest mass gives the 
largest displacements. This can be observed for Beam 1 and 3 as well, see Appendix G. 
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Figure 8.12 Time-displacement curves for Beam 2 for load case A-J. 

The crack pattern from the time of maximum displacement for load case A-E for Beam 2 can 
be seen in Table 8.9, and load case F-J in Table 8.10.  

In load case A-E the magnitude of the kinetic energy before impact is halved compared to 
load case F-J, which leads to less extensive cracking. The differences of the cracks depending 
on a high mass or a high velocity for the gentler cases are not as distinct as for the severe 
cases. 

Comparing load case F-J, higher impact velocity caused more extensive shear cracks. There 
are more cracks in the middle section for the cases with higher velocity and they have a lower 
inclination. In the rest of the beam, there are fewer cracks due to the smaller displacement 
compared to the cases with a higher mass of the drop weight. These tendencies can be 
observed for Beam 1 and 3 as well, see Appendix G.   
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Table 8.9 Crack pattern at the time om maximum displacement for load case A-E for 
Beam 2. 

Load case Crack pattern 

A 

 

B 

 

C 

 

D 

 

E 

 

Principle 
strain 

[%]  
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Table 8.10 Crack pattern at the time om maximum displacement for load case F-J for 
Beam 2. 

Load case Crack pattern 

F 

 

G 

 

H 

 

I 

 

J 

 
Principle 

strain 
[%]  

In the load cases with high impact velocity, extruded parts of the beam can be observed, see 
Figure 8.13. The extruded parts appear in the middle of the beam, in and under the impact 
zone. These may represent concrete that is spalled of due to the pressure wave caused by the 
high velocity impact. An argument for this is that the extruded parts continue to grow during 
the entire analysis, even after the beam has reached its maximum displacement. 

 

Figure 8.13 Visualization of the extruded parts appearing in Beam 2, load case J. 

A possible improvement of the model could be to include so called erosion of elements, so 
that elements with a strain large enough to make them disconnected from the other elements 
are removed. In this way the extrusion of parts might be avoided.  
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When the different load cases were analysed in LS-DYNA, there were trouble with 
convergence in some cases, probably due to concrete compressive failure, and the analyses 
did not reach the timestep of maximum displacement. In some cases, the extruded parts could 
be a contributing factor, but there was no indication that this would be the main reason since 
it was not observed at all in several cases with convergence issues. Instead, the compressive 
failure variable, 𝜀௙௖ , was increased for the cases with convergence issues. This was 
considered to be acceptable since the post peak behaviour of local compressive failure was 
not of interest and should not influence the global result significantly.  

In Appendix E an evaluation of how the displacements and the crack patterns are influenced 
by an increase of two, five and ten times the standard value of the compressive failure 
variable is made. The conclusion is that the influence was not significant. In the parametric 
study, the standard value was used if no converges issues arose before the maximum 
displacement was reached. If it did, the compressive damage variable was first increased to 
two times the standard value, secondly five times and thirdly ten times. The different values 
that were finally used in the analyses presented in this report can be seen in Table 8.11. 

Table 8.11 Summary of the values that have been used of the compressive damage 
variable for the different beams and load cases, 0.001 being the standard 
value in this project.   

Beam Load case 𝜀௙௖ [-]  

1 

F 0.005 

G 0.002 

H 0.010 

I - 

J - 

2 

A 0.001 

B 0.001 

C 0.001 

D 0.001 

E 0.001 

F 0.002 

G 0.001 

H 0.002 

I 0.002 

J 0.002 

3 

F 0.001 

G 0.001 

H 0.002 

I 0.005 

J 0.005 
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There was no obvious correlation between the load case and the value of the compressive 
damage variable that was needed, but for higher velocities, a higher value was often required. 
However, in the less severe load cases for Beam 2, the standard value of the compressive 
damage variable could be used. This implies that not only the impact velocity, but also the 
total loading affects how the variable should be chosen. 

For load case I and J for the weakest beam (Beam 1), the analyses stopped after 
approximately 1-2 milliseconds for all four values of the compressive damage variable. In 
Abaqus and the 2DOF model, they reach maximum displacement after approximately 14 
milliseconds for load case I and approximately 11 milliseconds for load case J. These cases 
are the ones with the highest velocity right before impact and theses load cases have required 
a higher value for the compressive damage variable for Beam 2-3 as well. In the analyses for 
these two load cases the compressive damage variable was not increased above the studied 
values and the reasons for the issues were not further investigated. The analyses for these two 
load cases were instead ran with the value of 𝜀௙௖ = 0.01 until convergence issues arose.  

 

8.5 Comparison between models 
To compare the results from LS-DYNA to the results from the simplified model, ratios for 
the maximum displacements were calculated. In this case, energy calculations were excluded 
since the final force-displacement relation in LS-DYNA is unknown.  

𝜂௨,௅ௌି஽௒ே஺ =
𝑢௅ௌି஽௒ே஺

𝑢௜
                  𝑖 = 2DOF, Abaqus (8.2) 

In Figure 8.14 load case A-E for Beam 2 are compared to Abaqus and in Figure 8.15 load 
case F-J for Beam 1-3 are compared. 

 

Figure 8.14 The maximum displacement in LS-DYNA compared to in Abaqus for Beam 2, 
load case A-E. 
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Figure 8.15  The maximum displacement in LS-DYNA compared to in Abaqus for all 
beams, load case F-J. 

In general, the LS-DYNA model gave smaller displacements than the simplified models. For 
the more severe load cases with high velocity, the displacements from LS-DYNA approach 
the displacements from Abaqus, and for some cases, even exceed them. For these load cases 
extensive shear cracks can be observed in middle of the beam, see Table 8.10. These 
extensive cracks lead to a lowering of the capacity and a softer behaviour of the beam and 
may be an explanation for this deviation. There are also indications of that crushing of 
concrete in the impact zone could be more extensive in these cases, which also lowers the 
capacity and creates a softer behaviour.  

For the less severe cases, A-E, the deviation is not as prominent and to take a closer look at 
this, the gentler load cases were compared to the severe load cases for Beam 2 in Figure 8.16. 
The comparison indicates that the relation between LS-DYNA and Abaqus is more constant 
when the load level is lower. It could also be seen in Table 8.9 that there is a smaller variation 
in crack pattern for these load cases. 
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Figure 8.16 Comparison of LS-DYNA to Abaqus for Beam 2, Load cases A-E and F-J. 

This indicates that the LS-DYNA model can represent the behaviour of lowered capacity due 
to cracking or crushing of concrete more realistically. However, since no experiments have 
been conducted on the different beams and load cases, it cannot be determined how reliable 
the results from the LS-DYNA model are.  
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9 Final Remarks 
9.1 Conclusions 
This project aimed to increase the understanding of dynamically loaded structures by using 
different levels of numerical modelling. The 2DOF system proved to give different levels of 
accuracy for different beams and load cases compared to the beam element model in Abaqus 
where a more realistic behaviour is captured. One thing that the Abaqus model cannot capture 
is the cracking which proved to have an influence of the results in comparison to the LS-
DYNA model.  

In the 2DOF model, a plastic impact was assumed. It was discovered that the suitable range 
for the value for the resistance limit of the spring, representing the interaction between the 
drop weight and the beam, varied mainly depending on properties of the beam, such as the 
stiffness and the capacity. To use this kind of 2DOF model, it was found to be necessary to 
calibrate the model for each separate case.  

Results from the 2DOF model and the Abaqus model for cases with the same kinetic energy 
before impact were compared. It could be seen that for the cases when the mass of the drop 
weight was small in relation to the beam, the results differed more. This indicates that the 
assumption of a plastic impact in the 2DOF model was not valid to capture a more realistic 
behaviour in these cases.  

The time dependency of the response of the beam is captured in the Abaqus model, but not in 
the 2DOF model. It is believed that using time dependent transformation factors would make 
it possible to model the spring, representing the interaction between the drop weight and the 
beam, in the 2DOF model as elastic. Thereby, the problems with the value for the resistance 
limit could be solved. Time dependent transformation factors in the 2DOF model would also 
make it possible to capture a behaviour similar to that in Abaqus and achieve a model that is 
applicable for all load cases. 

The further development of the LS-DYNA model by including a bond-slip relation and a 
non-linear structural behaviour of the reinforcement gave satisfying results. In the parametric 
study, it was concluded that there is a need to further develop the model to be able to analyse 
all kind of load cases since convergence issues arose for some analyses. In some of these 
cases the issues where to some extent solved by increasing the variable describing the 
descending branch of the post-peak behaviour of concrete in compression. In the parametric 
study using the LS-DYNA model of the severe load cases, a high velocity showed to give 
more extensive shear cracks in the middle section of the beam and crushing of concrete in the 
impact zone. For these cases, the difference between the LS-DYNA model and the Abaqus 
model also showed a deviant trend. It is therefore believed that this deviation can be an 
indication that the LS-DYNA model captures the lowering of capacity due to cracking and 
crushing of concrete and thereby a more realistic behaviour.  

 

9.2 Future studies 
In this project bond-slip, by the built-in function CONSTRAINED in LS-DYNA, as well as a 
nonlinear structural behaviour of the reinforcement were included. However, further 
development of the model could be made as a future study. The different ways of modelling 
bond-slip could be evaluated. The description of the structural behaviour of the reinforcement 
can be further developed by including an ultimate strain where the bar would be torn off. 
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Furthermore, the model used in this thesis showed convergence issues and the problem 
behind this is a question to be answered.  

In future studies it would be of interest to include erosion of elements in the LS-DYNA 
model since it could be seen in this study that parts of the beam were extruded. Including 
erosion leads to that elements with a strain large enough to make them disconnected from the 
other elements are removed. The extrusion can probably be spalling of concrete and when 
these elements would be removed a more realistic behaviour might be obtained.  

In this thesis, a simplified way of model the stiffness for the spring representing the 
interaction between the weight and the beam was used. A brief study of the use of contact 
mechanics was conducted but not applicated in this project. However, a further evaluation of 
how this more advanced and realistic way of modelling the stiffness would be of interest. 

The parametric study showed that the 2DOF model used in this project is sensitive to some 
parameters. It was discovered that the suitable range of the resistance limit for the interaction 
between the drop weight and the beam change depending on the properties on the weight. It 
would be of interest to evaluate which parameters that affect the model and how to be able to 
make it applicable for a general case.  

However, it would be desirable to have a 2DOF model of universal application. An idea of 
how to achieve this can be by including time dependent transformation factors and to use an 
elastic spring for the interaction between the drop weight and the beam. Thereby a response 
of the beam similar to that obtained in the Abaqus model (i.e. considering wave propagation 
effects) could be simulated.  

From the parametric study that was made, some of the studied load cases and beams would 
be interesting to conduct experiments on, even though many of the load cases would be hard 
to realise. Performing more experiments could give a further indication of when the models 
are valid. Since it was seen that when the results from the 2DOF model deviated when the 
mass of the drop weight was small in relation to the mass of the beam, it would be of interest 
to conduct experiments on heavier beams. It would also be interesting to conduct experiments 
on beams with different relations between the height and the length than the beams that have 
been included in previous experiments. 
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Appendix A Material input data  
A.1 Input data to the 2DOF model for validation 
The material input data used in the 2DOF model for validation, made in Sections 7.3 and 7.4, 
is presented in Table A-1 and Table A-2.  

Table A-1  Material parameters for the beam in the 2DOF model. 

Parameter Value  

Mass density, 𝜌 [kg/m3] 2400 

Stiffness, 𝑘௕ [N/m] 2.405·106 

Resistance limit, 𝑅௠ [kN] 10.377 

Table A-2 Parameters for the weight and the interaction between the weight and the 
beam in the 2DOF model.  

Parameter Value  

Mass of the weight, 𝑚 [kg] 10.093 

Stiffness, 𝑘௪ [N/m] 3.99·109 

Resistance limit, 𝑅௠ [kN] 50 

Initial velocity, 𝑣଴ [m/s] 10.35 

To calculate the resistance limit for the beam, the simplification of the structural behaviour of 
the reinforcement seen in Figure A-1 was used. The resistance limit is based on a value for 
the yield stress of the reinforcement which is approximated to 610 MPa.  

  

Figure A-1 The mean value from the tensile test of the reinforcement in comparison with 
the elasto-plastic behaviour used in the simplified models. 
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A.2 Input data in Abaqus for validation 
In Table A-3 and Table A-4, the material input data used in Abaqus for validation of the 
model, made in Sections 7.3 and 7.4, is presented. The units used in Abaqus are presented in 
Section 5.3.1, Table 5.2.  

Table A-3 Material input parameters for the drop weight. 

Element Parameter Value  

Bar 

Density, ρ [kg/m3] 5 000 

Height, ℎ [mm] 50 

Young’s modulus, 𝐸 [GPa] 133 100 

Corresponding stiffness, 𝑘௕௔௥ [N/m] 4.342e12 

Yield stress, 𝑓௬  [MPa] 50 

Fictitious area, 𝐴 [m2] 0.001 

Point mass 
Mass, 𝑚 [kg] 10.093 

Initial velocity, 𝑣଴ [m/s] 10.35 

Spring Stiffness, 𝑘௦௣௥௜௡௚ [N/m] 4.0e9 

Table A-4 Material input parameters for the beam in Abaqus. 

Parameter Value  

Mass density, 𝜌 [kg/m3] 2 400 

Equivalent Young’s modulus, 𝐸௘௤ [GPa] 6.0 

Poisson’s ratio, 𝑣 [-] 0.2 

Equivalent yield stress, 𝑓௬.௠௢ௗ [MPa] 15.57 
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A.3 Input data in LS-DYNA for validation 
The material input data used in LS-DYNA for validation of the model, made in Sections 7.5 
and 7.6, is presented in Table A-5 to Table A-9. The units used in LS-DYNA are presented in 
Section 6.2, Table 6.1.  

Table A-5  Material parameters in LS-DYNA for CDPM2 

LS-DYNA notation Parameter Value  

RO Mass density, 𝜌 [kg/m3] 2 400 

E Young’s modulus, 𝐸௖ [GPa] 34.7 

PR Poisson’s ratio, 𝑣 [-] 0.2 

ECC Eccentricity parameter, 𝑒 [-] 0.516 

FT Uniaxial tensile strength, 𝑓௧ [MPa] 3.28 

FC Uniaxial compressive strength, 𝑓௖ [MPa] 45.5 

HP Hardening parameter [-] 0.01 

WF Ultimate crack width, 𝑤௙ [mm] 0.086 

TYPE Type of tensile damage 
Bi-linear 
[1.0] 

EFC Compressive damage variable [-] 0.001 

Table A-6  Material parameters in LS-DYNA for the reinforcement. 

LS-DYNA notation Parameter Value 

RO Mass density, 𝜌 [kg/m3] 7 850 

E Young’s modulus, 𝐸௖ [GPa] 200 

PR Poisson’s ratio, 𝑣 [-] 0.3 

TS1 Diameter of bar, ϕ [mm] 6 

TS2 Diameter of bar, ϕ [mm] 6 

 

Table A-7 Parameters in LS-DYNA for the bilinear structural behaviour of the 
reinforcement. 

LS-DYNA notation Parameter Value 

SIGY Yield stress, 𝑓௬ [MPa] 609.8 

ETAN Tangent modulus, 𝐸௧௔௡[MPa] 584 

E Young’s modulus, 𝐸௖ [GPa] 200 
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Table A-8 Parameters in LS-DYNA for the nonlinear structural behaviour of the 
reinforcement. This reinforcement was used in tests in 2016. 

LS-DYNA notation Parameter Value 

E Young’s modulus, 𝐸௖ [GPa] 200 

ES1 Stress, σ1 [MPa] 450 

ES2 Stress, σ2 [MPa] 520 

ES3 Stress, σ3 [MPa] 550 

ES4 Stress, σ4 [MPa] 590 

ES5 Stress, σ5 [MPa] 620 

ES6 Stress, σ6 [MPa] 650 

ES7 Stress, σ7 [MPa] 660 

ES8 Stress, σ8 [MPa] 668 

EPS1 Plastic strain, εpl,1 [‰] 0.0 

EPS2 Plastic strain, εpl,2 [‰] 2.1 

EPS3 Plastic strain, εpl,3 [‰] 4.5 

EPS4 Plastic strain, εpl,4 [‰] 12.7 

EPS5 Plastic strain, εpl,5 [‰] 23.9 

EPS6 Plastic strain, εpl,6 [‰] 45.9 

EPS7 Plastic strain, εpl,7 [‰] 59.5 

EPS8 Plastic strain, εpl,8 [‰] 95.8 

TS1 Diameter of bar, ϕ [mm] 6 

TS2 Diameter of bar, ϕ [mm] 6 

 

Table A-9  Material parameters in LS-DYNA for the drop weight and supports. 

LS-DYNA notation Parameter  

RO Mass density, 𝜌 [kg/m3] 7 753 

E Young’s modulus [GPa] 205 

PR Poisson’s ratio [-] 0.3 
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A.4 Input data to the 2DOF model 2018 
The material input data used in the 2DOF model for the material data from 2018 is presented 
in Table A-10 and Table A-11. The input data that was varied is calculated in Appendix C 
based on the different parameters.  

Table A-10 Material parameters for the beam in the 2DOF model. 

Parameter Value  

Mass density, 𝜌 [kg/m3] 2 400 

Stiffness, 𝑘௕ [N/m] Varied 

Resistance limit, 𝑅௠,௕ [kN] Varied 

Table A-11 Parameters for the weight and the interaction between the weight and the 
beam in the 2DOF model.  

Parameter Value  

Mass of the weight, 𝑚 [kg] Varied 

Stiffness, 𝑘௪ [N/m] 3.99·109 

Resistance limit, 𝑅௠,௪ [kN] 50 

Initial velocity, 𝑣଴ [m/s] Varied 

To calculate the resistance limit for the beam, the simplification of the structural behaviour of 
the reinforcement seen in Figure A-2 was used. The resistance limit is based on the mean 
value of the ultimate strength of the reinforcement bars which is calculated from the 
measured values to 623 MPa.  

 

Figure A-2 Structural behaviour of the reinforcement in the 2DOF model compared to in 
the test 2018. 
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A.5 Input data in Abaqus 2018 
In Table A-12 and Table A-13, the material input data used in Abaqus 2018 is presented. The 
units used in Abaqus are presented in Section 5.3.1, Table 5.2. The input data that was varied 
is calculated in Appendix C based on the different parameters. 

Table A-12 Material input parameters for the drop weight in Abaqus 2018. 

Element Parameter Value  

Point mass 
Mass, 𝑚 [kg] Varied 

Initial velocity, 𝑣଴ [m/s] Varied 

Spring Stiffness, 𝑘௦௣௥௜௡௚ [N/m] 3.99e9 

Table A-13 Material input parameters for the beam in Abaqus 2018. 

Parameter Value  

Mass density, 𝜌 [kg/m3] 2400 

Equivalent Young’s modulus, 𝐸௘௤ [GPa] Varied 

Poisson’s ratio, 𝑣 [-] 0.2 

Equivalent yield stress, 𝑓௬.௠௢ௗ [MPa] Varied 

 

A.6 Input data in LS-DYNA 2018 
The material input data used in LS-DYNA 2018 is presented in Table A-14, Table A-15, and 
Table A-16. The units used in LS-DYNA are presented in Section 6.2, Table 6.1.  

Table A-14  Material parameters in LS-DYNA for CDPM2 2018.  

LS-DYNA notation Parameter Value  

RO Mass density, 𝜌 [kg/m3] 2400 

E Young’s modulus, 𝐸௖ [GPa] 32 

PR Poisson’s ratio, 𝑣 [-] 0.2 

ECC Eccentricity parameter, 𝑒 [-] 0.518 

FT Uniaxial tensile strength, 𝑓௧ [MPa] 2.8 

FC Uniaxial compressive strength, 𝑓௖ [MPa] 36.0 

HP Hardening parameter 0.01 

WF Ultimate crack width, 𝑤௙ [mm] 0.124 

TYPE Type of tensile damage 
Bi-linear 
[1.0] 

EFC Compressive damage variable 0.001 
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Table A-15  Material parameters in LS-DYNA for the reinforcement used in tests in 2018. 

LS-DYNA notation Parameter Value 

RO Mass density, 𝜌 [kg/m3] 7800 

E Young’s modulus, 𝐸௖ [GPa] 196 

PR Poisson’s ratio, 𝑣 [-] 0.3 

ES1 Stress, σ1 [MPa] 420 

ES2 Stress, σ2 [MPa] 500 

ES3 Stress, σ3 [MPa] 520 

ES4 Stress, σ4 [MPa] 560 

ES5 Stress, σ5 [MPa] 590 

ES6 Stress, σ6 [MPa] 610 

ES7 Stress, σ7 [MPa] 620 

ES8 Stress, σ8 [MPa] 623 

EPS1 Plastic strain, εpl,1 [‰] 0 

EPS2 Plastic strain, εpl,2 [‰] 1.6 

EPS3 Plastic strain, εpl,3 [‰] 3.6 

EPS4 Plastic strain, εpl,4 [‰] 12.8 

EPS5 Plastic strain, εpl,5 [‰] 27.2 

EPS6 Plastic strain, εpl,6 [‰] 48.0 

EPS7 Plastic strain, εpl,7 [‰] 75.0 

EPS8 Plastic strain, εpl,8 [‰] 110.0 

TS1 Diameter of bar, ϕ [mm] Varied 

TS2 Diameter of bar, ϕ [mm] Varied 

 

Table A-16  Material parameters in LS-DYNA for the drop weight and supports. 

LS-DYNA notation Parameter  

RO Mass density, 𝜌 [kg/m3] Varied 

E Young’s modulus, 𝐸௦ [GPa] 205 

PR Poisson’s ratio, 𝑣 [-] 0.3 
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Appendix B Matlab script for the 2DOF model  
 

%% 2DOF 
%%  
clc 
clear all 
close all 
%% 
% Chosen timestep 
h=0.01;                               % [ms]  
  
%% Data for the beam 
  
L_b=1000;                   % Length [mm] 
b_b=100;                    % Width [mm] 
H_b=100;                    % Height [mm] 
A_b=b_b*H_b;                % Area of section [mm^2]                 
rho_b=2.4e-3;               % Density [g/mm^3] 
  
g=9.82e-3;                  % [mm/ms^2] Gravity 
m_b=rho_b*A_b*L_b;          % Mass [g] 
kel_b=2.3240e3;             % Stiffness for the bilinear response [N/mm] 
Rm_b=10.45e3;               % Resistance limit [N]           
uel_b=Rm_b/kel_b;           % Maximal elastic displacement [mm] 
  
% Transformation factors (Plastic) 
kappampl_b=1/3;           % For the mass of the beam 
kappaFpl_b=1;             % For the stiffness and force of the beam 
kappamFpl_b=1/3;          % For the ratio mass/force for the beam 
 
uRd_b=100000;               % Displacment limit [mm]. Set to a large value. 
  
%% Data for the drop weight  
v0_1=9.9;                   % Initial velocity for the weight [mm/ms] 
 
H_w=258;                    % Height [mm] 
r_w=40;                     % Radius [mm] 
A_w=pi*r_w^2;               % Area of section [mm^2]                 
E_w=205e3;                  % Youngs modulus [MPa]           
m_w=10000;                  % Mass [g] 
  
kel_w=3.99e6;               % stiffness for elasto-platic response [N/mm] 
Rm_w=50e3;                  % Resistance limit [N] 
  
uel_w=Rm_w/kel_w;           % Maximal elastic displacement [mm] 
  
% Transformation factors (Rectangular shape)  
kappampl_w=1;               % For the ratio mass of the beam        
kappaFpl_w=1;               % For the ratio force and stiffness of the 
weight 
kappamFpl_w=1;              % For the ratio mass/force for the weight 
  
uRd_w=100000;               % Displacment limit [mm]. Set to a large value. 
  
%% Critical Timestep 
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Kel=[kel_w -kel_w; -kel_w kel_w+kel_b];   % Stiffness matrix for the 
elastic part            
M=[kappamFpl_w*m_w 0; 0 kappamFpl_b*m_b]; % Mass matrix 
  
[L,X]=eigen(Kel,M);          % Solve for the eigenfrequencies 
hcrit_1=2/sqrt(max(L));      % Critical timestep 1 
hcrit=min(hcrit_1); 
  
% The program is terminated if the timestep is to large  
if h>hcrit 
 fprintf('Choose a timestep that is smaller than %1.1e [ms]',hcrit) 
 return 
end 
  
%% Initial conditions 
  
t=0:h:40;                  % Load duration [ms]                                 
% Force vector, constant and zero. 
f=zeros(2,1); 
  
% Initial plastic deformation for the beam 
upl_w=0; 
upl_b=0; 
  
% Allocate space for the displacement, velocity and acceleration  
u=zeros(2,length(t));          % [mm] 
v=zeros(2,length(t)-1);          % [mm/ms] 
a=zeros(2,length(t)-1);          % [mm/ms^2] 
  
% Allocate space  
upl_b_store=zeros(1,length(t)-1);          % [m]                                   
R_store=zeros(2,length(t)-1); 
Ir=zeros(2,length(t)-1); 
Im=zeros(2,length(t)-1); 
Ek=zeros(2,length(t)-1); 
Wi=zeros(2,length(t)-1); 
We=zeros(2,length(t)-1); 
  
  
% Initial conditions for the system 
u0=[0; 0];              u(:,1)=u0; 
v0=[v0_1; 0];           v(:,1)=v0; 
a0=inv(M)*(f-Kel*u0);   a(:,1)=a0; 
  
% Displacement for timestep n=-1. 
uminus1=u0-h*v0+(h^2)*a0/2; 
  
%% Timestep n=0 
% Generates n=1 
  
% Relative displacement between the beam and weight  
du=u(1,1)-u(2,1); 
  
% Plastic displacement for the weight  
if du>uel_w && du>max(u(1,:)-u(2,:)) 
    deltaupl_w=du-max(uel_w,max(u(1,:)-u(2,:))); 
else 
    deltaupl_w=0; 
end 
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upl_w=upl_w+deltaupl_w; 
  
% Resistance for the weight 
if du<0 || upl_w>uRd_w 
    R_w=0; 
else 
R_w=max(0,kel_w*(du-upl_w)); 
end 
R_store(1,1)=R_w;                            
  
% Stiffness for the weight 
if du==0 
    ks_w=kel_w; 
elseif upl_w>uRd_w  
    ks_w=0; 
else 
    ks_w=R_w/du; 
end 
  
% Plastic displacement for the beam 
if u(2,1)>uel_b && (u(2,1)-uel_b)>upl_b         % Compression plastic 
    deltaupl_b=u(2,1)-(uel_b+upl_b); 
elseif u(2,1)<-uel_b+upl_b                      % Tension plastic 
    deltaupl_b=-abs(u(2,1)+uel_b-upl_b);             
else 
    deltaupl_b=0;  
end 
upl_b=upl_b+deltaupl_b; 
  
% Resistance for the beam 
R_b=kel_b*(u(2,1)-upl_b); 
R_store(2,1)=R_b;                                
  
% Stiffness for the beam 
if u(2,1)==0 
    ks_b=kel_b; 
elseif upl_b>uRd_b  
    ks_b=0; 
else 
    ks_b=R_b/u(2,1); 
end 
  
% New stiffness matrix 
Ks=[ks_w -ks_w; -ks_w ks_w+ks_b];  
  
upl_b_store(:,2)=upl_b;                                                          
  
  
% Calculate u(n=1) and a(n=1) 
u(:,2)=inv(M/(h^2))*(f-(Ks-2*M/(h^2))*u(:,1)-(M/(h^2))*uminus1); 
a(:,2)=inv(M)*(f-Ks*u(:,2));                 
  
%% Timestepping n=1--> 
% Generates n=2 --> 
  
for i=2:length(t)-1       
     
% Relative displacement between the beam and weight  
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du=u(1,i)-u(2,i); 
  
% Plastic displacement for the weight  
if du>uel_w && du>max(u(1,1:i-1)-u(2,1:i-1)) 
    deltaupl_w=du-max(uel_w,max(u(1,1:i-1)-u(2,1:i-1))); 
else 
    deltaupl_w=0; 
end 
upl_w=upl_w+deltaupl_w; 
  
% Resistance for the weight  
if du<0 || upl_w>uRd_w 
    R_w=0; 
else 
R_w=max(0,kel_w*(du-upl_w)); 
end 
R_store(1,i)=R_w;                                
  
% Stiffness for the weight  
if du==0 
    ks_w=kel_w; 
elseif upl_w>uRd_w  
    ks_w=0; 
else 
    ks_w=R_w/du; 
end 
  
% Plastic displacement for the beam 
if u(2,i)>uel_b && (u(2,i)-uel_b)>upl_b         % Compression plastic 
   deltaupl_b=u(2,i)-(uel_b+upl_b); 
elseif u(2,i)<-uel_b+upl_b                      % Tension plastic 
   deltaupl_b=-abs(u(2,i)+uel_b-upl_b); 
else 
   deltaupl_b=0;  
end 
upl_b=upl_b+deltaupl_b; 
  
% Resistance for the beam 
R_b=kel_b*(u(2,i)-upl_b); 
R_store(2,i)=R_b;                                 
  
% Stiffness for the beam 
if u(2,i)==0 
    ks_b=kel_b; 
elseif upl_b>uRd_b  
    ks_b=0; 
else 
    ks_b=R_b/u(2,i); 
end 
  
% New stiffness matrix 
Ks=[ks_w -ks_w; -ks_w ks_w+ks_b]; 
  
upl_b_store(:,i)=upl_b;                            
  
% Calculation of u(n+1), v(n) and a(n) 
u(:,i+1)=inv(M/h^2)*(f-(Ks-2*M/h^2)*u(:,i)-(M/h^2)*u(:,i-1));                 
v(:,i)=(u(:,i+1)-u(:,i-1))/(2*h);                
a(:,i)=(u(:,i+1)-2*u(:,i)+u(:,i-1))/(h^2);              
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% Calculation of impulse 
% I=Integral av F över t 
Ir(1,i)=Ir(1,i-1)+(R_store(1,i)+R_store(1,i-1))*h/2; 
% I=Integral av F över t 
Ir(2,i)=Ir(2,i-1)+(R_store(2,i)+R_store(2,i-1))*h/2;  
% I=mv 
Im(2,i)=M(2,2)*v(2,i);  
% I=mv 
Im(1,i)=M(1,1)*v(1,i);                                       
  
% Calculation of work and kinetic energy                
Wi(1,i)=Wi(1,i-1)+(R_store(1,i)+R_store(1,i-1))/2*(u(1,i)-u(1,i-1)); 
Wi(2,i)=Wi(2,i-1)+(R_store(2,i)+R_store(2,i-1))/2*(u(2,i)-u(2,i-1)); 
We(1,i)=0;                                                  % No force                      
We(2,i)=We(2,i-1)+(R_store(1,i)+R_store(1,i-1))/2*(u(2,i)-u(2,i-1)); 
Ek(1,i)=(M(1,1)*v(1,i)^2)/2;                                % E=mv^2/2 
Ek(2,i)=(M(2,2)*v(2,i)^2)/2;                                % E=mv^2/2 
end 
  
  
%% Plots  
% Displacement of the weight and the beam 
figure 
hold on 
title('Displacement') 
xlabel('Time [ms]') 
ylabel('Displacement [mm]') 
plot(t,u(1,:)) 
plot(t,u(2,:)) 
legend('Drop weight','Beam') 
  
% Velocity of the weight and the beam 
figure 
hold on 
title('Velocity') 
xlabel('Time [ms]') 
ylabel('Velocity [m/s]') 
plot(t(1:(length(t)-1)),v(1,:)) 
plot(t(1:(length(t)-1)),v(2,:)) 
legend('Drop weight','Beam') 
  
% Acceleration of the weight and the beam 
figure 
hold on 
title('Acceleration') 
xlabel('Time [ms]') 
ylabel('Acceleration [mm/ms^2]') 
plot(t(1:(length(t)-1)),a(1,:)) 
plot(t(1:(length(t)-1)),a(2,:)) 
legend('Drop weight','Beam') 
  
% Resistance of the weight and the beam 
figure 
hold on 
title('Resistance') 
xlabel('Time [ms]') 
ylabel('Resistance [N]') 
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plot(t(1:(length(t)-1)),R_store(1,:)/1000)              
plot(t(1:(length(t)-1)),R_store(2,:)/1000)               
legend('R_1','R_2') 
  
% Impulse on the weight 
figure 
hold on 
title('Impulse on the drop weight') 
xlabel('Time [ms]') 
ylabel('Impulse [kNs]') 
plot(t(1:(length(t)-1)),Ir(1,:))                                                                 
plot(t(1:(length(t)-1)),Im(1,:))                                                                 
legend('I(R_1)','I(m_1)') 
  
% Impulse on the beam 
figure 
hold on 
title('Impulse on the beam') 
xlabel('Time [ms]') 
ylabel('Impulse [kNs]') 
plot(t(1:(length(t)-1)),Ir(2,:))                                                                  
plot(t(1:(length(t)-1)),Im(2,:))               
legend('I(R_2)','I(m_2)') 
  
% Work on the drop weight 
figure 
hold on 
title('Work on the drop weight') 
xlabel('Time [ms]') 
ylabel('Work [Nmm]') 
plot(t(1:(length(t)-1)),Wi(1,:))     
plot(t(1:(length(t)-1)),Ek(1,:))                                                                  
plot(t(1:(length(t)-1)),We(1,:))               
legend('Wi_1','Ek_1','We_1') 
  
% Work on the beam 
figure 
hold on 
title('Work on the beam') 
xlabel('Time [ms]') 
ylabel('Work [Nmm]') 
plot(t(1:(length(t)-1)),Wi(2,:))     
plot(t(1:(length(t)-1)),Ek(2,:))                                                                  
plot(t(1:(length(t)-1)),We(2,:))               
legend('Wi_2','Ek_2','We_2') 
  
umax=max(u(2,:)); 
fprintf('The maximal displacement of the beam is %.2f mm', umax) 

 

 



 
 
 

CHALMERS Architecture and Civil Engineering, Master’s Thesis, ACX30-18-36 C-1 

Appendix C Mathcad calculations  
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Appendix D Evaluation of Contact Theory  
A more thorough way of treating the interaction between the drop weight and the beam is to 
determine the contact stiffness using contact mechanics. By using one method based on Hertz 
contact theory, described by Fujikake et al. (2006), many parameters are taken in 
consideration to calculate the stiffness for the interaction between two objects. The equations 
used in this section are applicable for calculating the stiffness of the interaction between a flat 
and a rounded surface. The roundness of the surface and material parameters of both 
materials are considered. In this study an evaluation was made of the influence on the 
displacement for this more advanced way of calculating the stiffness compared to the more 
simplified way, described in Section 5.2.2. The contact law describes the relation between the 
impact force, 𝐹, and local deformation at the impact zone, 𝛿, as: 

𝐹 = 𝑘 ∙ 𝛿ଷ/ଶ (D.1) 

where 𝑘 is a stiffness depending on the Young’s modulus, 𝐸, and Poisson’s ratio, ν, for body 
1 and 2 as well as the radius of the rounded surface, 𝑟ଵ. It is calculated as: 

𝑘 =
4√𝑟ଵ

3
ቈ
1 − 𝜈ଵ

ଶ

𝐸ଵ
+

1 − 𝜈ଶ
ଶ

𝐸ଶ
቉

ିଵ

 (D.2) 

The force-displacement relation is nonlinear, but in this project, the new stiffness of the 
interaction, 𝑘௪,ு௘௥௧௭ , was calculated by assuming a linear relationship at a force 
corresponding to the resistance of 50 kN, see Figure D-1. 

 

Figure D-1 Relation between impact force and local deformation according to Hertz 
contact theory. 
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The resulting stiffness of the spring representing the interaction calculated using this method 
is presented in Table D-1 together with the original stiffness of the interaction and the beam. 

Table D-1 Comparison of the stiffness of the spring representing the interaction 
calculated using different methods and the stiffness of the spring representing 
the beam.  

 Stiffness [N/m] 

Interaction Hertz, 𝑘௪,ு௘௥௧௭ 3.1·108 

Interaction simplified, 𝑘௪ 4.0·109 

Beam 2.4·106 

When the new stiffness is calculated in this way, the difference on the force-displacement is 
negligible, see Figure D-2.  

 

Figure D-2 Displacement in the elasto-plastic case using the simplified stiffness and 
stiffness according to Hertz contact theory. 

Since the difference in displacement was very small it was of interest to see if the difference 
in displacement would be larger between the two ways of modelling the stiffness if the 
response of the interaction between the weight and the beam were elastic. The result is shown 
in Figure D-3 and the effect was still very small. This is due to that the stiffness for the 
interaction was still much higher than the stiffness of the beam and therefore the change had 
no significant influence.  
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Figure D-3 Displacement for an elastic spring using the simplified stiffness and stiffness 
according to Hertz contact theory. 

From this short evaluation it can be seen that the influence of the way of calculating the 
stiffness is small and therefore, the simplified expression has been used in this study. The use 
of Hertz contact law could be more thoroughly evaluated in a future study. 
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Appendix E Compressive damage in LS-DYNA 
In some load cases there were convergence issues in LS-DYNA due to local compressive 
failure of the concrete. To avoid this, the compressive damage variable, 𝜀௙௖ , explained in 
Section 6.5.1, was increased. An evaluation was made of how the results were influenced by 
this modification. In the evaluation, the values presented in Table E-1 were investigated. 

Table E-1 Evaluated values of the compressive damage variable.  

Standard value, 𝜀௙௖ [-] 0.001 

Evaluated values, 𝜀௙௖ [-] 

0.002 

0.005 

0.010 

Three different load cases that converged using the original value were investigated, they are 
presented in Table E-2. 

Table E-2 The different load cases evaluated with regard to compressive damage 
variable. 

 
Mass of drop-weight, 

𝑚 [kg] 
Drop height, ℎ [m] 

Standard case 10 5 

Load case 1 20 5 

Load case 2 10 2.5 

In Figure E-1, the time-displacement curves for the different load cases with different values 
of the compressive damage variable can be seen.   

 

Figure E-1 Displacements for three different load cases using different values of the 
compressive damage variable. 
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The displacement was decreased when the damage variable was increased. This is reasonable 
since the larger value of the damage variable gives a more ductile behaviour of concrete in 
compression and thereby a higher capacity of the compressive zone. As shown in the graph, 
the difference was larger for Load case 1 with larger displacements. For the standard case and 
Load case 2, the differences were very small even when the damage variable was increased 
by a factor of ten. Therefore, no other values were investigated for these two cases. For Load 
case 1, the difference for the increase of ten times was more noticeable, and therefore an 
increase of two and five times were performed as well. To further investigate the influence of 
the compressive damage variable in this case, the crack patterns are compared in Table E-3. 

Table E-3  Crack patterns for Load case 1 using different values of the compressive 
damage variable. 

𝜀௙௖ Crack pattern 

0.001, 
standard 

 

0.002 

 

0.005 

 

0.010 

 

Principle 
strain 

[%]  

The crack patterns are very similar but it can be seen that there is a difference in the 
compressive zone. Since this part of the strain pattern was not of interest in this study, and the 
differences in the more relevant parts were considered negligible, increasing the value of the 
compressive damage variable in the cases with convergence issues was considered to be 
acceptable.   

A final evaluation of two cases where the value of the compressive damage variable needed 
to be changed was made to confirm that the modification was applicable. In Figure E-2 the 
time-displacement curves for these cases are presented.  
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Figure E-2 Displacement for two load cases where convergence issues arose using the 
standard value of the compressive damage variable. 
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Table E-4 Crack pattern for two cases just before convergence issues arose compared 
with strain pattern for the same timestep with a higher compressive damage 
variable. 

Load case Crack pattern 

m = 10 kg, 
h = 10 m,  

efc = 0.001 
 

m = 10 kg, 
h = 10 m, 

efc = 0.002 
 

m = 5 kg, 
h = 20 m, 

efc = 0.001 
 

m = 5 kg,  
h = 20 m,  

efc = 0.002 
 

Principle strain 

[%] 
 

The conclusion from this evaluation was that the compressive damage variable can be 
changed to a larger value when needed. When that is done, the used value should be 
presented. 
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Appendix F Results from parametric study in 2DOF 
and Abaqus 

F.1 Input values for the parametric study 
The input values for the nine different beams studied in the parametric study using 2DOF and 
Abaqus are presented in Table F-1. The descriptions of the studied beams are presented in 
Table F-2. 

Table F-1 Input values for the parameters of the beam that were varied in the 2DOF 
model and Abaqus model. 

 2DOF Abaqus 

Beam 
𝑘௕ 

[N/m] 

𝑅௠,௕ 

[kN] 

𝐸௘௤  

[GPa] 

𝑓௬.௥௘ௗ 

[MPa] 

1 1.72·106 7.37 4.30 11.05 

2 2.32·106 10.45 5.80 15.67 

3 3.66·106 17.69 9.10 26.53 

4 2.59·106 10.68 3.20 8.01 

5 13.33·106 24.42 4.20 9.16 

6 0.21·106 3.51 4.30 10.53 

7 0.29·106 5.05 5.80 15.14 

8 0.46·106 8.67 9.10 26.00 

9 0.50·106 9.62 10.00 28.87 

Table F-2 Description of the beams studied in the parametric studies. 

Beam 
Width, 𝑏 [m] Height, ℎ [m] Length, L [m] Reinforcement 

0.1 0.2 0.1 0.2 1.0 2.0 2ϕ5 2ϕ6 2ϕ8 4ϕ6 

1 ●  ●  ●  ●    

2 ●  ●  ●   ●   

3 ●  ●  ●    ●  

4  ● ●  ●   ●   

5 ●   ● ●   ●   

6 ●  ●   ● ●    

7 ●  ●   ●  ●   

8 ●  ●   ●   ●  

9 ●  ●   ●    ● 
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F.2 Time-displacement curves from 2DOF and Abaqus 
The time-displacement curves from 2DOF and Abaqus for all the load cases for each beam 
are presented below. In Figure F-1 the results for Beam 1 are presented. 

 

 

Figure F-1 Time-displacement curves for all load cases from 2DOF and Abaqus for 
Beam 1. 
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In Figure F-2, the results for Beam 2 are presented. 

 

 

Figure F-2 Time-displacement curves for all load cases from 2DOF and Abaqus for 
Beam 2. 
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In Figure F-3, the results for Beam 3 are presented. 

 

 

Figure F-3 Time-displacement curves for all load cases from 2DOF and Abaqus for 
Beam 3. 

 

 

 

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40

D
is

pl
ac

em
en

t, 
u

[m
m

]

Time, t [ms]

2DOF

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40

D
is

pl
ac

em
en

t, 
u

[m
m

]

Time, t [ms]

Abaqus

m=40 kg, h=2.5m m=40kg, h=1.25m
m=20kg, h=5m m=20kg, h=2.5m
m=10kg, h=10m m=10kg, h=5m
m=5kg, h=20m m=5kg, h=10m
m=2.5kg, h=40m m=2.5kg, h=20m



 
 
 

CHALMERS Architecture and Civil Engineering, Master’s Thesis, ACX30-18-36 F-5 

In Figure F-4 the results for Beam 4 are presented.  

 

 

Figure F-4  Time-displacement curves for all load cases from 2DOF and Abaqus for 
Beam 4. 
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In Figure F-5, the results for Beam 5 are presented. 

 

 

Figure F-5 Time-displacement curves for all load cases from 2DOF and Abaqus for 
Beam 5. 
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In Figure F-6, the results for Beam 6 are presented.  

 

 

Figure F-6 Time-displacement curves for all load cases from 2DOF and Abaqus for 
Beam 6. 
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In Figure F-7, the results for Beam 7 are presented.  

 

 

Figure F-7 Time-displacement curves for all load cases from 2DOF and Abaqus for 
Beam 7. 
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In Figure F-8, the results for Beam 8 are presented. 

  

 

Figure F-8 Time-displacement curves for all load cases from 2DOF and Abaqus for 
Beam 8. 
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In Figure F-9, the results for Beam 9 are presented. 

 

 

Figure F-9 Time-displacement curves for all load cases from 2DOF and Abaqus for 
Beam 9. 
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F.3 Displacement and energy ratios 
The transferred energy for the hand calculation is calculated according to equation (F.1). 

𝑊௬ =
𝑚௪

𝑚௪ + 𝑚௕
𝐸௞,଴ (F.1) 

For the displacement, equations (F.2), (F.3) and (F.4) are used. 

𝑊௬ = 𝑊௜  (F.2) 

𝑢௘௟ି௣௟.௘௟ =
𝑅௠

𝑘
 (F.3) 

𝑢௧௢௧ =

⎩
⎨

⎧
2 𝑊௜

𝑅௠
                             𝑖𝑓    

𝑅௠𝑢௘௟ି௣௟.௘௟

2
≥ 𝑊௜

𝑊௜

𝑅௠
+

𝑢௘௟ି௣௟.௘௟

2
          𝑖𝑓    

𝑅௠𝑢௘௟ି௣௟.௘௟

2
< 𝑊௜

 (F.4) 

To obtain the transferred energy for Abaqus and 2DOF the following equations are used 
where the total displacement, 𝑢௧௢௧, is the displacement obtained from the analysis.  

𝑢௘௟ି௣௟.௘௟ =
𝑅௠

𝑘
 (F.5) 

𝑊௜ = ൞

𝑘 𝑢௧௢௧
ଶ

2
                                                             𝑖𝑓    𝑢௘௟ି௣௟.௘௟ ≥ 𝑢௧௢௧

𝑅௠

2
(𝑢௘௟ି௣௟.௘௟ + 2(𝑢௧௢௧ − 𝑢௘௟ି௣௟.௘௟)          𝑖𝑓    𝑢௘௟ି௣௟.௘௟ < 𝑢௧௢௧

 (F.6) 

𝑊௜ = 𝑊௬ (F.7) 
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Table F-3 Displacements and comparison of displacements and transferred energy from 
all load cases in Abaqus and hand calculations compared to 2DOF for 
Beam 1. 

Load  
case 

m  h  Displacement, u [m] 𝜂௨ [−] 𝜂ௐ೤
 [−] 

[kg] [m] 2DOF Abaqus Calc. Abaqus Calc. Abaqus Calc. 

A 40 1.25 57.6 58.2 57.6 1.01 1.00 1.01 1.00 

B 20 2.5 49.6 49.2 49.7 0.99 1.00 0.99 1.00 

C 10 5 39.0 39.0 39.1 1.00 1.00 1.00 1.00 

D 5 10 27.6 29.0 27.7 1.05 1.01 1.06 1.01 

E 2.5 20 17.9 20.4 18.0 1.14 1.01 1.16 1.01 

F 40 2.5 112.9 109.5 113.1 0.97 1.00 0.97 1.00 

G 20 5 96.7 94.1 97.2 0.97 1.01 0.97 1.01 

H 10 10 75.2 74.0 76.1 0.98 1.01 0.98 1.01 

I 5 20 52.6 55.0 53.3 1.05 1.01 1.05 1.02 

J 2.5 40 33.4 37.8 33.8 1.13 1.01 1.14 1.01 

 

Table F- 4 Displacements and comparison of displacements and transferred energy from 
all load cases in Abaqus and hand calculations compared to 2DOF for 
Beam 2. 

Load  
case 

m  h  Displacement, u [m] 𝜂௨ [−] 𝜂ௐ೤
 [−] 

[kg] [m] 2DOF Abaqus Calc. Abaqus Calc. Abaqus Calc. 

A 40 1.25 41.3 42.1 41.4 1.02 1.00 1.02 1.00 

B 20 2.5 35.7 36.0 35.8 1.01 1.00 1.01 1.00 

C 10 5 28.1 28.9 28.3 1.03 1.01 1.03 1.01 

D 5 10 20.1 20.7 20.3 1.03 1.01 1.03 1.01 

E 2.5 20 13.3 15.2 13.4 1.14 1.01 1.17 1.01 

F 40 2.5 80.3 79.2 80.5 0.99 1.00 0.99 1.00 

G 20 5 68.8 67.8 69.3 0.99 1.01 0.99 1.01 

H 10 10 53.5 54.0 54.4 1.01 1.02 1.01 1.02 

I 5 20 37.6 40.1 38.4 1.07 1.02 1.07 1.02 

J 2.5 40 24.2 27.7 24.6 1.15 1.02 1.16 1.02 
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Table F-5 Displacements and comparison of displacements and transferred energy from 
all load cases in Abaqus and hand calculations compared to 2DOF for 
Beam 3. 

Load  
case 

m  h  Displacement, u [m] 𝜂௨ [−] 𝜂ௐ೤
 [−] 

[kg] [m] 2DOF Abaqus Calc. Abaqus Calc. Abaqus Calc. 

A 40 1.25 25.5 26.2 25.5 1.03 1.00 1.03 1.00 

B 20 2.5 22.1 22.5 22.2 1.02 1.01 1.02 1.01 

C 10 5 17.6 18.3 17.8 1.04 1.01 1.04 1.01 

D 5 10 12.9 13.4 13.1 1.04 1.01 1.05 1.02 

E 2.5 20 8.9 10.3 9.0 1.16 1.01 1.22 1.02 

F 40 2.5 48.4 48.5 48.6 1.00 1.00 1.00 1.01 

G 20 5 41.5 42.5 42.0 1.02 1.01 1.03 1.01 

H 10 10 32.4 33.9 33.2 1.05 1.03 1.05 1.03 

I 5 20 23.0 24.5 23.7 1.06 1.03 1.07 1.04 

J 2.5 40 15.2 17.6 15.6 1.16 1.03 1.19 1.03 

 

Table F-6 Displacements and comparison of displacements and transferred energy from 
all load cases in Abaqus and hand calculations compared to 2DOF for 
Beam 4. 

Load  
case 

m  h  Displacement, u [m] 𝜂௨ [−] 𝜂ௐ೤
 [−] 

[kg] [m] 2DOF Abaqus Calc. Abaqus Calc. Abaqus Calc. 

A 40 1.25 34.7 35.8 34.9 1.03 1.00 1.03 1.00 

B 20 2.5 27.4 28.2 27.6 1.03 1.01 1.03 1.01 

C 10 5 19.5 20.2 19.7 1.03 1.01 1.04 1.01 

D 5 10 12.9 15.0 13.0 1.16 1.01 1.19 1.01 

E 2.5 20 8.2 10.5 8.3 1.28 1.01 1.37 1.01 

F 40 2.5 67.0 66.0 67.6 0.99 1.01 0.98 1.01 

G 20 5 52.1 52.7 53.1 1.01 1.02 1.01 1.02 

H 10 10 36.5 39.2 37.4 1.07 1.02 1.08 1.02 

I 5 20 23.4 26.6 23.9 1.14 1.02 1.15 1.02 

J 2.5 40 14.3 18.2 14.5 1.27 1.01 1.32 1.02 
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Table F-7 Displacements and comparison of displacements and transferred energy from 
all load cases in Abaqus and hand calculations compared to 2DOF for 
Beam 5. 

Load  
case 

m  h  Displacement, u [m] 𝜂௨ [−] 𝜂ௐ೤
 [−] 

[kg] [m] 2DOF Abaqus Calc. Abaqus Calc. Abaqus Calc. 

A 40 1.25 14.80 15.81 15.26 1.07 1.03 1.07 1.03 

B 20 2.5 11.43 12.18 12.07 1.07 1.06 1.07 1.06 

C 10 5 8.11 9.65 8.64 1.19 1.07 1.22 1.07 

D 5 10 5.41 6.63 5.70 1.22 1.05 1.27 1.06 

E 2.5 20 3.52 4.39 3.63 1.25 1.03 1.33 1.04 

F 40 2.5 27.76 29.13 29.61 1.05 1.07 1.05 1.07 

G 20 5 20.91 23.14 23.23 1.11 1.11 1.11 1.12 

H 10 10 14.42 18.20 16.37 1.26 1.14 1.28 1.14 

I 5 20 9.34 13.15 10.48 1.41 1.12 1.45 1.13 

J 2.5 40 5.87 9.31 6.34 1.59 1.08 1.69 1.09 

 

Table F-8 Displacements and comparison of displacements and transferred energy from 
all load cases in Abaqus and hand calculations compared to 2DOF for 
Beam 6. 

Load  
case 

m  h  Displacement, u [m] 𝜂௨ [−] 𝜂ௐ೤
 [−] 

[kg] [m] 2DOF Abaqus Calc. Abaqus Calc. Abaqus Calc. 

A 40 1.25 108.02 112.28 108.04 1.04 1.00 1.04 1.00 

B 20 2.5 85.80 88.89 85.85 1.04 1.00 1.04 1.00 

C 10 5 61.89 64.93 61.95 1.05 1.00 1.06 1.00 

D 5 10 41.37 47.58 41.46 1.15 1.00 1.19 1.00 

E 2.5 20 27.01 32.17 27.07 1.19 1.00 1.27 1.00 

F 40 2.5 207.92 204.19 207.92 0.98 1.00 0.98 1.00 

G 20 5 163.46 165.11 163.53 1.01 1.00 1.01 1.00 

H 10 10 115.62 121.95 115.73 1.05 1.00 1.06 1.00 

I 5 20 74.70 84.20 74.75 1.13 1.00 1.14 1.00 

J 2.5 40 45.91 57.23 45.96 1.25 1.00 1.30 1.00 
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Table F-9 Displacements and comparison of displacements and transferred energy from 
all load cases in Abaqus and hand calculations compared to 2DOF for 
Beam 7. 

Load  
case 

m  h  Displacement, u [m] 𝜂௨ [−] 𝜂ௐ೤
 [−] 

[kg] [m] 2DOF Abaqus Calc. Abaqus Calc. Abaqus Calc. 

A 40 1.25 78.1 84.5 78.1 1.08 1.00 1.09 1.00 

B 20 2.5 62.6 65.6 62.7 1.05 1.00 1.06 1.00 

C 10 5 46.0 48.9 46.1 1.06 1.00 1.08 1.00 

D 5 10 31.7 37.2 31.8 1.17 1.00 1.24 1.00 

E 2.5 20 21.8 28.5 21.8 1.31 1.00 1.51 1.00 

F 40 2.5 147.5 148.6 147.5 1.01 1.00 1.01 1.00 

G 20 5 116.5 119.5 116.7 1.03 1.00 1.03 1.00 

H 10 10 83.3 87.8 83.4 1.05 1.00 1.06 1.00 

I 5 20 54.9 61.4 55.0 1.12 1.00 1.14 1.00 

J 2.5 40 34.9 42.6 35.0 1.22 1.00 1.30 1.00 

 

Table F-10 Displacements and comparison of displacements and transferred energy from 
all load cases in Abaqus and hand calculations compared to 2DOF for 
Beam 8. 

Load  
case 

m  h  Displacement, u [m] 𝜂௨ [−] 𝜂ௐ೤
 [−] 

[kg] [m] 2DOF Abaqus Calc. Abaqus Calc. Abaqus Calc. 

A 40 1.25 49.9 54.2 49.9 1.09 1.00 1.11 1.00 

B 20 2.5 40.9 45.0 40.9 1.10 1.00 1.13 1.00 

C 10 5 31.2 38.1 31.2 1.22 1.00 1.32 1.00 

D 5 10 22.9 29.1 23.0 1.27 1.00 1.46 1.01 

E 2.5 20 17.0 21.4 15.3 1.26 0.90 1.56 1.01 

F 40 2.5 90.3 95.9 90.3 1.06 1.00 1.07 1.00 

G 20 5 72.2 76.1 72.4 1.05 1.00 1.06 1.00 

H 10 10 52.8 56.8 53.0 1.07 1.00 1.09 1.00 

I 5 20 36.3 43.9 36.4 1.21 1.00 1.28 1.00 

J 2.5 40 24.7 30.7 24.8 1.24 1.00 1.39 1.00 
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Table F-11 Displacements and comparison of displacements and transferred energy from 
all load cases in Abaqus and hand calculations compared to 2DOF for 
Beam 9. 

Load  
case 

m  h  Displacement, u [m] 𝜂௨ [−] 𝜂ௐ೤
 [−] 

[kg] [m] 2DOF Abaqus Calc. Abaqus Calc. Abaqus Calc. 

A 40 1.25 46.0 51.2 46.0 1.11 1.00 1.14 1.00 

B 20 2.5 37.9 43.0 38.0 1.13 1.00 1.18 1.00 

C 10 5 29.2 36.5 29.2 1.25 1.00 1.38 1.00 

D 5 10 21.7 27.5 21.8 1.27 1.00 1.48 1.01 

E 2.5 20 16.2 20.3 13.8 1.25 0.85 1.55 1.01 

F 40 2.5 82.4 87.6 82.5 1.06 1.00 1.07 1.00 

G 20 5 66.1 70.6 66.3 1.07 1.00 1.08 1.00 

H 10 10 48.7 53.4 48.8 1.10 1.00 1.12 1.00 

I 5 20 33.8 41.0 33.9 1.21 1.00 1.30 1.00 

J 2.5 40 23.3 29.5 23.4 1.26 1.00 1.45 1.00 
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Appendix G Results from parametric study in LS-
DYNA  

 

G.1 Time-displacement curves from LS-DYNA 

 

Figure G-1 Time-displacement curves for all load cases for Beam 2, note that the results 
for two load cases end at around 2 ms. 

 

Figure G-2 Time-displacement curves for all load cases for Beam 2. 
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Figure G-3 Time-displacement curves for all load cases for Beam 3. 
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G.2 Crack patterns from LS-DYNA 
Table G-1 Crack patterns at the time of maximum displacement for load cases F-J for 

Beam 1. 

Load case Crack pattern 

F 
(40 kg, 2.5 m) 

 

G 
(20 kg, 5 m) 

 

H 
(10 kg, 10 m) 

 

I 
(5 kg, 20 m) 

- 

J 
(2.5 kg, 40 m) 

- 

Principle 
strain 

[%]  
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Table G-2 Crack patterns at the time of maximum displacement for load cases A-E for 
Beam 2. 

Load case Crack pattern 

A 
(40 kg, 1.25 m) 

 

B 
(20 kg, 2.5 m) 

 

C 
(10 kg, 5 m) 

 
 

D 
(5 kg, 10 m) 

 

E 
(2.5 kg, 20 m) 

 

Principle strain 
[%] 
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Table G-3  Crack patterns at the time of maximum displacement for load cases F-J for 
Beam 2. 

Load case Crack pattern 

F 
(40 kg, 2.5 m) 

 

G 
(20 kg, 5 m) 

 

H 
(10 kg, 10 m) 

 

I 
(5 kg, 20 m) 

 

J 
(2.5 kg, 40 m) 

 

Principle 
strain 

[%]  
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Table G- 4  Crack patterns at the time of maximum displacement for load cases F-J for 
Beam 3. 

Load case Crack pattern 

F 
(40 kg, 2.5 m) 

 

G 
(20 kg, 5 m) 

 

H 
(10 kg, 10 m) 

 

I 
(5 kg, 20 m) 

 

J 
(2.5 kg, 40 m) 

 

Principle 
strain 
[%]  
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Appendix H Abaqus script file 
*Heading 
** Job name: Explicit_2018 Model name: Dynamic - Explicit 
** Generated by: Abaqus/CAE 2017 
*Preprint, echo=NO, model=NO, history=NO, contact=NO 
** 
** PARTS 
** 
*Part, name=Beam 
*End Part 
**   
** 
** ASSEMBLY 
** 
*Assembly, name=Assembly 
**   
*Instance, name=Beam-1, part=Beam 
*Node 
      1,        -500.,           0. 
      2,           0.,           0. 
      3,         500.,           0. 
      4,        -490.,           0. 
      5,        -480.,           0. 
      … 
    100,         480.,           0. 
    101,         490.,           0. 
*Element, type=B21 
 1,  1,  4 
 2,  4,  5 
 3,  5,  6 
 … 
 99, 100, 101 
100, 101,   3 
*Nset, nset=Set-1, generate 
   1,  101,    1 
*Elset, elset=Set-1, generate 
   1,  100,    1 
*Nset, nset=Set-2, generate 
   1,  101,    1 
*Elset, elset=Set-2, generate 
   1,  100,    1 
** Section: Beam  Profile: Beam profile 
*Beam Section, elset=Set-1, material="Equivalent concrete", 
temperature=GRADIENTS, section=RECT 
100., 100. 
0.,0.,-1. 
3 
*End Instance 
**   
*Node 
      1,           0.,         200.,           0. 
*Nset, nset="Attachment Points-1-Set-1" 
 1, 
*Nset, nset=Set-1, instance=Beam-1 
 1, 
*Nset, nset=Set-2, instance=Beam-1 
 3, 
*Nset, nset=Set-3, instance=Beam-1 
 2, 
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*Nset, nset=Set-4, instance=Beam-1 
 1, 
*Nset, nset=Set-5, instance=Beam-1 
 3, 
*Nset, nset=Set-12, instance=Beam-1 
 1, 
*Nset, nset=Set-13, instance=Beam-1 
 3, 
*Nset, nset=Set-14, instance=Beam-1 
 1, 
*Nset, nset=Set-15, instance=Beam-1 
 3, 
*Nset, nset=Set-18, instance=Beam-1 
 2, 
*Nset, nset=Set-29 
 1, 
*Nset, nset=Set-30 
 1, 
*Element, type=MASS, elset="Set-29_Point mass_" 
1, 1 
*Mass, elset="Set-29_Point mass_" 
10000.,  
*Spring, elset=Spring-spring, nonlinear 
 
-3.99e+09, -1000 
0, 0 
0.1, 1000 
*Element, type=SpringA, elset=Spring-spring 
2, 1, Beam-1.2 
*End Assembly 
**  
** MATERIALS 
**  
*Material, name="Equivalent concrete" 
*Density 
 0.0024, 
*Elastic 
5800., 0.2 
*Plastic 
 15.67,0. 
 15.68,1. 
**  
** BOUNDARY CONDITIONS 
**  
** Name: Left Type: Displacement/Rotation 
*Boundary 
Set-14, 1, 1 
Set-14, 2, 2 
** Name: Right Type: Displacement/Rotation 
*Boundary 
Set-15, 2, 2 
**  
** PREDEFINED FIELDS 
**  
** Name: Initial velocity   Type: Velocity 
*Initial Conditions, type=VELOCITY 
Set-30, 1, 0. 
Set-30, 2, -9.9 
** ---------------------------------------------------------------- 
**  
** STEP: Dynamic explicit 
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**  
*Step, name="Dynamic explicit", nlgeom=YES 
*Dynamic, Explicit, direct user control 
0.002, 40. 
*Bulk Viscosity 
0.06, 1.2 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, number interval=1, time marks=NO 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field, number interval=200 
*Node Output 
A, RF, RM, RT, U, V 
*Element Output, directions=YES 
E, MISES, S, SF 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history 
*Energy Output 
ALLAE, ALLCD, ALLCW, ALLDC, ALLDMD, ALLFD, ALLIE, ALLKE, ALLMW, ALLPD, 
ALLPW, ALLSE, ALLVD, ALLWK, ETOTAL 
*End Step 
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Appendix I LS-DYNA script file 
$# LS-DYNA Keyword file created by LS-PrePost(R) V4.5.4 - 07Nov2017 
$# Created on Apr-11-2018 (08:48:51) 
*KEYWORD 
*TITLE 
$#                                                                         title 
LS-DYNA keyword deck by LS-PrePost 
*CONTROL_TERMINATION 
$#  endtim    endcyc     dtmin    endeng    endmas     nosol      
      20.0         0       0.0       0.01.000000E8         0 
*DATABASE_ELOUT 
$#      dt    binary      lcur     ioopt   option1   option2   option3   option4 
       0.1         3         0         1         0         0         0         0 
*DATABASE_GLSTAT 
$#      dt    binary      lcur     ioopt      
       0.1         3         0         1 
*DATABASE_MATSUM 
$#      dt    binary      lcur     ioopt      
       0.1         3         0         1 
*DATABASE_NCFORC 
$#      dt    binary      lcur     ioopt      
       0.5         3         0         1 
*DATABASE_NODFOR 
$#      dt    binary      lcur     ioopt      
       0.5         3         0         1 
*DATABASE_NODOUT 
$#      dt    binary      lcur     ioopt   option1   option2        
       0.5         3         0         1       0.0         0 
*DATABASE_RCFORC 
$#      dt    binary      lcur     ioopt      
       0.1         0         0         1 
*DATABASE_BINARY_D3PLOT 
$#      dt      lcdt      beam     npltc    psetid       
       0.2         0         0         0         0 
$#   ioopt      
         0 
*DATABASE_EXTENT_BINARY 
$#   neiph     neips    maxint    strflg    sigflg    epsflg    rltflg    engflg 
         5         0         0         1         1         1         1         1 
$#  cmpflg    ieverp    beamip     dcomp      shge     stssz    n3thdt   ialemat 
         0         0         1         1         1         1         2         1 
$# nintsld   pkp_sen      sclp     hydro     msscl     therm    intout    nodout 
         0         0       1.0         0         0         0                     
$#    dtdt    resplt     neipb     quadr     cubic      
         0         0         0         0         0 
*BOUNDARY_SPC_SET_ID 
$#      id                                                               heading 
         1BC left vertical 
$#    nsid       cid      dofx      dofy      dofz     dofrx     dofry     dofrz 
         1         0         0         0         1         0         0         0 
*SET_NODE_LIST_TITLE 
BC Left vertical 
$#     sid       da1       da2       da3       da4    solver       
         1       0.0       0.0       0.0       0.0MECH 
$#    nid1      nid2      nid3      nid4      nid5      nid6      nid7      nid8 
     10299     10300     10342     10343     11178     11179     11180     11181 
     11182     11183     11184     11185     11186     11187     11188     11189 
     11190     11191     11192     11193     11194     11195     11196     11197 
     11198     11199     11200     11201     11202     11203     11204     11205 
     11206     11207     11208     11209     11210     11211     11212     11213 
     11214     11215     11216     11217         0         0         0         0 
*BOUNDARY_SPC_SET_ID 
$#      id                                                               heading 
         2BC left horizonal 
$#    nsid       cid      dofx      dofy      dofz     dofrx     dofry     dofrz 
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         2         0         1         1         0         0         0         0 
*SET_NODE_LIST_TITLE 
BC Left horizontal 
$#     sid       da1       da2       da3       da4    solver       
         2       0.0       0.0       0.0       0.0MECH 
$#    nid1      nid2      nid3      nid4      nid5      nid6      nid7      nid8 
     10288     10331     10958     10959     10960     10961     10962     10963 
     10964     10965     10966     10967     10968     10969     10970     10971 
     10972     10973     10974     10975     10976     10977         0         0 
*BOUNDARY_SPC_SET_ID 
$#      id                                                               heading 
         3BC right vertical 
$#    nsid       cid      dofx      dofy      dofz     dofrx     dofry     dofrz 
         3         0         0         0         1         0         0         0 
*SET_NODE_LIST_TITLE 
BC Right vertical 
$#     sid       da1       da2       da3       da4    solver       
         3       0.0       0.0       0.0       0.0MECH 
$#    nid1      nid2      nid3      nid4      nid5      nid6      nid7      nid8 
     15381     15382     15424     15425     15886     15887     15888     15889 
     15890     15891     15892     15893     15894     15895     15896     15897 
     15898     15899     15900     15901     15902     15903     15904     15905 
     15906     15907     15908     15909     15910     15911     15912     15913 
     15914     15915     15916     15917     15918     15919     15920     15921 
     15922     15923     15924     15925         0         0         0         0 
*BOUNDARY_SPC_SET_ID 
$#      id                                                               heading 
         4BC right horizontal 
$#    nsid       cid      dofx      dofy      dofz     dofrx     dofry     dofrz 
         4         0         1         1         0         0         0         0 
*SET_NODE_LIST_TITLE 
BC Right horizontal 
$#     sid       da1       da2       da3       da4    solver       
         4       0.0       0.0       0.0       0.0MECH 
$#    nid1      nid2      nid3      nid4      nid5      nid6      nid7      nid8 
     15392     15435     16106     16107     16108     16109     16110     16111 
     16112     16113     16114     16115     16116     16117     16118     16119 
     16120     16121     16122     16123     16124     16125         0         0 
*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_ID 
$#     cid                                                                 title 
         1Contact-Weight-beam 
$#    ssid      msid     sstyp     mstyp    sboxid    mboxid       spr       mpr 
         3         8         3         3         0         0         0         0 
$#      fs        fd        dc        vc       vdc    penchk        bt        dt 
       0.0       0.0       0.0       0.0       0.0         0       0.01.00000E20 
$#     sfs       sfm       sst       mst      sfst      sfmt       fsf       vsf 
       1.0       1.0       0.0       0.0       1.0       1.0       1.0       1.0 
*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_ID 
$#     cid                                                                 title 
         2Contact-left support-beam 
$#    ssid      msid     sstyp     mstyp    sboxid    mboxid       spr       mpr 
         1         8         3         3         0         0         0         0 
$#      fs        fd        dc        vc       vdc    penchk        bt        dt 
       0.0       0.0       0.0       0.0       0.0         0       0.01.00000E20 
$#     sfs       sfm       sst       mst      sfst      sfmt       fsf       vsf 
       1.0       1.0       0.0       0.0       1.0       1.0       1.0       1.0 
*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_ID 
$#     cid                                                                 title 
         3Contact-right support-beam 
$#    ssid      msid     sstyp     mstyp    sboxid    mboxid       spr       mpr 
         2         8         3         3         0         0         0         0 
$#      fs        fd        dc        vc       vdc    penchk        bt        dt 
       0.0       0.0       0.0       0.0       0.0         0       0.01.00000E20 
$#     sfs       sfm       sst       mst      sfst      sfmt       fsf       vsf 
       1.0       1.0       0.0       0.0       1.0       1.0       1.0       1.0 
*PART 
$#                                                                         title 
Left support 
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$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 
         1         2         1         0         0         0         0         0 
*SECTION_SOLID_TITLE 
Support 
$#   secid    elform       aet    
         2         1         0 
*MAT_ELASTIC_TITLE 
Weight and supports 
$#     mid        ro         e        pr        da        db  not used         
         1  0.007753  200000.0       0.3       0.0       0.0         0 
*PART 
$#                                                                         title 
Right support 
$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 
         2         2         1         0         0         0         0         0 
*PART 
$#                                                                         title 
Weight 
$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 
         3         3         1         0         0         0         0         0 
*SECTION_SOLID_TITLE 
Weight 
$#   secid    elform       aet    
         3         1         0 
*PART 
$#                                                                         title 
Reinforcement, top-front 
$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 
         4         1         5         0         0         0         0         0 
*SECTION_BEAM_TITLE 
Reinforcment 
$#   secid    elform      shrf   qr/irid       cst     scoor       nsm    
         1         1       1.0         1         1       0.0       0.0 
$#     ts1       ts2       tt1       tt2     nsloc     ntloc      
       6.0       6.0       0.0       0.0       0.0       0.0 
*MAT_PIECEWISE_LINEAR_PLASTICITY_TITLE 
Multi-linear reinforcment 
$#     mid        ro         e        pr      sigy      etan      fail      tdel 
         5    0.0078  196000.0       0.3       0.0       0.01.00000E21       0.0 
$#       c         p      lcss      lcsr        vp   
       0.0       0.0         0         0       0.0 
$#    eps1      eps2      eps3      eps4      eps5      eps6      eps7      eps8 
       0.0    0.0016    0.0036    0.0128    0.0272     0.048     0.075      0.11 
$#     es1       es2       es3       es4       es5       es6       es7       es8 
     420.0     500.0     520.0     560.0     590.0     610.0     620.0     623.0 
*PART 
$#                                                                         title 
Reinforcement, top-back 
$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 
         5         1         5         0         0         0         0         0 
*PART 
$#                                                                         title 
Reinforcement, bottom-front 
$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 
         6         1         5         0         0         0         0         0 
*PART 
$#                                                                         title 
Reinforcement, bottom-back 
$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 
         7         1         5         0         0         0         0         0 
*PART 
$#                                                                         title 
Beam 
$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 
         8         4         3         0         0         0         0         0 
*SECTION_SOLID_TITLE 
Concrete 
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$#   secid    elform       aet    
         4        10         0 
*MAT_CONCRETE_DAMAGE_PLASTIC_MODEL_TITLE 
Beam Concrete-CDPM2 
$#     mid        ro         e        pr       ecc       qh0        ft        fc 
         3    0.0024   32000.0       0.2     0.518       0.3       2.8      36.0 
$#      hp        ah        bh        ch        dh        as        df       fc0 
      0.01      0.08     0.003       2.01.00000E-6      15.0      0.85       0.0 
$#    type        bs        wf       wf1       ft1    strflg   failflg       efc 
       1.0       1.0     0.124       0.0       0.0       0.0       0.0     0.001 
*MAT_PLASTIC_KINEMATIC_TITLE 
Reinforcment 
$#     mid        ro         e        pr      sigy      etan      beta     
         2   0.00785  200000.0       0.3     609.8     584.0       0.0 
$#     src       srp        fs        vp   
       0.0       0.0       0.0       0.0 
*MAT_ELASTIC_TITLE 
Beam elastic concrete 
$#     mid        ro         e        pr        da        db  not used         
         4    0.0024    3470.0       0.2       0.0       0.0         0 
*INITIAL_VELOCITY_GENERATION 
$#nsid/pid      styp     omega        vx        vy        vz     ivatn      icid 
         3         2       0.0       0.0       0.0      -9.9         0         0 
$#      xc        yc        zc        nx        ny        nz     phase    irigid 
       0.0       0.0       0.0       0.0       0.0       0.0         0         0 
*CONSTRAINED_BEAM_IN_SOLID_ID 
$#  coupid                                                                 title 
         1reinforcmenttop-front 
$#   slave    master     sstyp     mstyp                        ncoup       cdir 
         4         8         1         1         0         0         0         1 
$#   start       end              axfor        
       0.0       0.0         0        -1 
*CONSTRAINED_BEAM_IN_SOLID_ID 
$#  coupid                                                                 title 
         2reinforcmenttop-back 
$#   slave    master     sstyp     mstyp                        ncoup       cdir 
         5         8         1         1         0         0         0         1 
$#   start       end              axfor        
       0.0       0.0         0        -1 
*CONSTRAINED_BEAM_IN_SOLID_ID 
$#  coupid                                                                 title 
         3reinforcmentbottom-front 
$#   slave    master     sstyp     mstyp                        ncoup       cdir 
         6         8         1         1         0         0         0         1 
$#   start       end              axfor        
       0.0       0.0         0        -1 
*CONSTRAINED_BEAM_IN_SOLID_ID 
$#  coupid                                                                 title 
         4reinforcmentbottom-back 
$#   slave    master     sstyp     mstyp                        ncoup       cdir 
         7         8         1         1         0         0         0         1 
$#   start       end              axfor        
       0.0       0.0         0        -1 
*ELEMENT_SOLID 
$#   eid     pid      n1      n2      n3      n4      n5      n6      n7      n8 
   13000       1   10595   10643   13938   12838   10596   10596   12378   12378 
   13001       1   12838   13938   13939   12839   12378   12378   12379   12379 
   13002       1   12839   13939   13940   12840   12379   12379   12380   12380 
   13003       1   12840   13940   13941   12841   12380   12380   12381   12381 
… 
35177       7   36212   36214   36215       0       0       0       0       2 
   35178       7   36214   36216   36217       0       0       0       0       2 
   35179       7   36216   36218   36219       0       0       0       0       2 
   35180       7   36218   36220   36221       0       0       0       0       2 
*NODE 
$#   nid               x               y               z      tc      rc   
       1             0.0          -590.0           -35.0       0       0 
       2           100.0          -500.0             0.0       0       0 
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       3             0.0          -500.0   1.672415e-015       0       0 
       4           100.0        -504.981      -0.3562494       0       0 
… 
196208        26.37588       -453.5173        41.99794       0       0 
  196209        71.48462        -417.763        63.55512       0       0 
  196210        73.74369        -177.108        35.98502       0       0 
  196211        73.39993       -135.9213        35.75033       0       0 
*DEFINE_FUNCTION 
$#     fid                                                               heading 
         1Bond-slip between reinforcement and concrete 
$#                                                                      function 
float force(float slip,float leng) 
{ 
float force,pi,d,area,shear,pf,s1,s2,s3,tmax,tf; 
pi = 3.1415926; 
d = 6; 
s1 = 1.0; 
tmax = 15; 
area = pi*d*leng; 
if(slip < s1) { 
shear = tmax*(slip/s1)**0.4; 
} else{ 
shear = tmax; 
} 
                                                                                 
force = shear*area; 
return force; 
} 
*END 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


