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Abstract
Finite Element (FE) models are widely used to predict the mechanical behaviour
of materials and components when subjected to different loads. In the industry,
this is a valuable way to reduce the number of physical experiments and, thereby,
costs when developing new products. With many actors trying to become more
material efficient, new materials with sometimes complex structures are employed
or the limits of how much the material is loaded are pushed. As a consequence
of this, the need for adequate and accurate material models in the FE modelling
increases.
Digital Image Correlation(DIC) is a non-contact measurement technique used to
measure displacements and strains locally on a surface in space and time. The goal
of this thesis is to use DIC data to calibrate some typical material models used in FE
modelling. The value and potential of the proposed calibration method is evaluated.
The work is performed in collaboration with Research Institutes of Sweden AB
(RISE) who has extensive experience with physical experiments, modelling and DIC.
As there already existed test results from tensile tests made of steel, these were used
when developing the calibration method. For later applications more complicated
material models are of interest but for concept testing, the choice of material model
is less important and therefore the relatively simple linear isotropic elasticity and
von Mises plasticity with linear hardening are chosen. The work was mainly divided
into two parts. The first part consisted of examining the experimental data obtained
from DIC as a means for pre-processing and analysis of the data quality. The second
part of the work was concentrated on constructing FE models whose results could
be compared to the available experimental data and to calibrate the material models
by using an optimising method.
In order to assess the calibration method and how it is affected by different prereq-
uisites, different case studies were carried out. The aim of the case studies was to
investigate how different assumptions of the material model and of the FE modelling
affected the results and thereby also giving an indication of the calibration method’s
robustness. This thesis therefore provides an idea of how this calibration method
could work and what potential it has by showing some of the potential pitfalls to
avoid when developing the method further. Since the developed method is material
model independent, more advanced materials and models could be evaluated in the
future.

Keywords: digital image correlation, material model calibration, finite element mod-
elling.
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1
Introduction

With Finite Element (FE) modelling becoming more widespread, the importance
to have accurate models that can give good predictions increases. This project
was created to obtain a method of calibrating FE models using data obtained from
Digital Image Correlation (DIC).

1.1 Background
FE modelling is an important component in the product development processes,
allowing for the amount of physical testing to be substantially reduced and thereby
shortening the lead times during development of new products. In order for the FE
models to make accurate predictions, the model parameters must be determined to
give a good agreement between the model and the reality. For new materials such
as hybrid materials or manufacturing processes such as additive manufacturing this
may require the use of novel test procedures. It is therefore of interest to find ways
to accurately determine model parameters for different materials and geometries.
To make accurate predictions, calibration of the FE models is a necessity. This
is usually performed by using experimental data that can be compared to results
from FE simulations. DIC is a non-contact method that uses optical tracking and
image registration techniques to measure changes in images. DIC can thus be used
to measure displacements on the surface of test specimens [1].
The thesis work has been carried out at the Mechanics Research department at Re-
search Institutes of Sweden AB (RISE). The department works with a broad spectra
of services covering testing, quality control, fatigue life assessments, damage inves-
tigations and research. With advanced experimental resources and competence in
testing, many projects are performed for the industry and for research purposes. In
previously performed projects at RISE, DIC has been used to study the mechanical
behaviour of materials and components subjected to loading. A significant amount
of DIC data available from these projects constitutes the foundation for this work
[2].

1.2 Objective
The aim of this project was to obtain and evaluate a method that uses DIC data
to calibrate FE models. Quantifying the ability to make accurate predictions will
play an important role in the evaluation of the method together with an investiga-
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1. Introduction

tion of the uncertainties in the procedure and naturally occurring variations in the
materials.

1.3 Problem definition
To achieve the objective to calibrate FE models with DIC, the task had to be broken
down to smaller portions.
The calibration will require a specification of what it means to be calibrated and
a measure of what is required to classify the calibration as acceptable. Since the
calibration procedure is based on DIC data, the quality and behaviour of that data
are of interest to investigate. An issue to be solved is how to connect information
from the DIC measurements to the results from the corresponding FE simulations.
Since the FE models are created for this project, some modelling choices have to be
made as well.

1.3.1 Material models
Calibration in this case will refer to optimising the agreement between test results
and results from calculations with a given material model. The calibration will
therefore determine the parameter values in the material model that give the best
correlation when comparing results calculated by FE simulations with the corre-
sponding values obtained with DIC measurements. With this approach, the choice
of material model will affect how good the correlation between the results from FE
simulations and experimental data can become. Considering this, there is a need
of quantifying the correlation so that different material models can be compared to
choose a good one. In general a more complex model that subsequently uses more
information has a potential to give a better correlation between the experimental
and the modelled data. There is however a limit for when an increased model com-
plexity does not increase the model’s ability to mimic the experimental observations
further. There is therefore of interest to investigate how complex a model is required
to be to get good correlation while still not being more complex than necessary.

1.3.2 Linking process
To make it possible to identify the parameter values that gives the best fit between
the experimental observations and the model output, there needs to be some way of
connecting the displacements and load cases known from DIC measurements with
the FE models. It is thus of interest how this connection should be made. The term
connection includes both the practical part of creating a program routine that can
work with the two data sets but also the part of realising what information that is
necessary to use for the comparison to make sense.

2



1. Introduction

Figure 1.1 shows the necessary steps to connect the results that are obtained by the
experiments and the simulations respectively.

Performing experiments Create Finite
Element Models

Obtaining
experimental data Perform simulations

Choose relevant
results

Connecting results Choose relevant
results

Evaluate agreement

Figure 1.1: A schematic view over the process of linking results obtained from
experimental data and results obtained from simulations. The box with dashed
lines contains the linking part of the procedure.

1.3.3 Uncertainties and modelling challenges
There is always a risk of errors to occur when considering experimental data and
data obtained from simulations. The manufacturing of test specimens, the quality
of the measuring systems and the data analysis will all be possible error sources
connected to the experimental data. Natural variations in test specimens and noise
in experimental data are always present as well.
When creating FE models, simplifying assumptions are necessary. Not only the
choice of material model will affect the calibration results, but other parts of the
modelling as well. The correctness of the FE model, the meshing and correct inter-
pretation of the boundary conditions are examples of what can affect the calibration.
During the calibration there are a risk of errors to occur as well. This could be due
to coding errors and what tolerances that are chosen for the optimising routine but
also how the comparison of the results are performed. Being careful and thorough
when constructing the calibration routine will help to minimise these errors.

1.4 Limitations
There are a fixed number of test specimens that have been monitored during testing
using DIC. No additional data collection will be performed during this project, so
the material is limited. The DIC measurements have been made with use of the
program Aramis and no focus will be put into how the DIC is performed by the
program. The predefined set of test specimens limits the base material to steel in
room temperature only.
With obtaining the calibration method as the main objective, firstly the calibration
will only be based on few parameters and valid for elastic cases. More parameters
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1. Introduction

and plasticity will be considered only when a working method is present. Since the
time did not permit to investigate all models and parameters of interest, those are
left as ideas to further development.
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2
Computational modelling

This chapter is meant to serve as a help to understand the models upon which the
simulations in this project are based on. In particular general concepts of the finite
element method, as well as the underlying material models, will be briefly explained.
The chapter ends with an introduction to inverse problems and model calibration
which will be presented more detailed in chapter 4. The model calibration part is
strongly linked to the experimental procedures which are presented in Chapter 3.

2.1 Finite element modelling
Many engineering problems can be represented by mathematical models describing
the relevant physics. A majority of these models are based on differential or integral
equations. The Finite Element Method (FEM) is a numerical method for approxi-
mating the solutions to complex problems that cannot be solved analytically. The
solutions obtained by FEM will depend on what mathematical model that is chosen
to represent the physical problem [3]. A scheme over how the finite element analysis
works on a problem can be seen in Figure 2.1.

2.1.1 Material models
Since the solution obtained by a finite element analysis depends on what mathe-
matical description that is used to model the physical problem, it will only predict
results as good as the mathematical model. When it comes to predicting how dif-
ferent materials will behave during loading there are several assumptions that affect
which mathematical model to use when representing the material behaviour. The
assumptions related to the behaviour of the materials are used in the formulation
of a relevant, in relation to its intended use, model.
One assumption to make is whether a material could be considered homogeneous
or non-homogeneous. A homogeneous material is pure, without traces from other
materials. Most engineering materials are considered to be homogeneous, with com-
posite materials as an obvious exception.
Another assumption to make is whether the material has the same properties in
all directions or not. If it does, the material is considered to be isotropic. Most
metals are considered to be isotropic, thus they will be assumed to have the same
behaviour independently of in which direction the load is applied. As the available
test data in this project is taken from samples made of steel, it is assumed that the
material behaves homogeneously and isotropic. Transversely anisotropy could be
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2. Computational modelling

Physical problem

Mathematical model
Governed by differential equations

Assumptions on:
Kinematics, Mate-

rial law, Geometry, etc.

Improve
mathematical model

Finite element solution
Choice of:

Finite elements, Mesh density,
Solution parameters
Representation of:

Boundary conditions, Loading, etc. Refine mesh,
Solution parameters, etc.

Assessment of accuracy of finite ele-
ment solution of mathematical model

Interpretation
of results

Refine analysis

Figure 2.1: The process of the finite element analysis, adopted from [3]. A physical
problem is modelled by mathematics which in turn uses different assumptions such
as kinematics and material laws. The finite element solution then adds additional
choices that have to be made before performing an analysis, such as element types
and mesh density. The dashed box encapsulates the process of refining the finite
element solution based on a specific mathematical model. After finding an accept-
able solution for the mathematical problem, the results can be interpreted and the
mathematical model can be subjected to refinement.

possible due to the manufacturing method but here the assumption of isotropy is
made to simplify the modelling and the calibration procedure.
Constitutive equations states the relation between two physical quantities that is
specific for a material. For structural analyses the constitutive equation of interest
is usually the one relating stresses and strains. When referring to material models
during this project, it is the constitutive models that is meant. The linear elastic
model and a elastic-plastic model with hardening will be explained here since they
are considered later.
The linear elastic model assumes that the material will respond in a linear elastic
way when subjected to loading. This means that the material will return to its
original size and shape when the load is removed. The linear part addresses the
linear relationship between the stress and strain and is for isotropic materials called
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2. Computational modelling

Hooke’s law. This law is assumed to be valid up to the elastic limit for most metals
and crystalline materials.
Plasticity is the term describing what happens after reaching the elastic limit. When
entering the plastic range the material will no longer return to its initial size or shape
when unloaded and permanent deformations will occur. A perfect plastic material
will continue to deform as long as the yield stress is maintained. If the stress is
reduced the material will unload elastically. It is more common to have some kind of
hardening present, where the stress needs to increase for further plastic deformation.
If the loading is held constant, the material will neither be elastically unloaded nor
will any further deformation occur [4].
The material parameters that are associated to linear elasticity and a linear hard-
ening will be described more carefully in chapter 3.

2.2 Calibration and validation
To validate how good the prediction of an FE model is and to improve the results
in the future, experiments can be performed. For the model to be called accurate,
the agreement between the model and the experiment should be as good as possi-
ble. Improving the mathematical model and more explicitly the values of material
parameters will thus be a step to calibrate the model to perform better.

2.2.1 Inverse problem
Here, the concept of inverse problems will be briefly outlined. When working with
modelling, the problems encountered can be said to be direct problems or inverse
problems. A direct problem would consist in a model structure with a given math-
ematical model and loading, which is solved by FE analysis to obtain the response
of the model.
When the purpose is to calibrate the model, the problem is instead considered to
be inverse. Inverse problems differ from direct problems by that instead of having
known material and model parameters, the response of the model is known. The
response for an inverse problem is obtained by performing some sort of experiment
where data is collected. Instead the interest lies in finding the model parameter
values that give the best agreement to the results.
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2. Computational modelling

A scheme over the flow for the two problem types can be seen in Figure 2.2. For
an inverse problem there can be multiple solutions and thereby possibly providing
a more complicated problem than the direct problem [5].

Input Output

Model structure
Loading f

Parameters p
Direct solution Response r

Input Output

Model structure
Loading f
Response r

Inverse solution Parameters p

Figure 2.2: A schematic view over the difference between a direct and an inverse
problem. For a direct problem, the material parameters of the model are known
and the desired output is the response of the model. For an indirect problem, the
response of the model is known and the material parameters that result in the given
response is sought for.

2.2.2 Parameter identification
To identify the values of the model parameters, different strategies can be used. A
graphical, more direct identification of the parameters can be obtained by designing
the experiments such that each parameter can be found and physically interpreted.
However, that requires the parameters to be uncoupled and it might be hard to
construct suitable experiments.
A more general strategy is to use nonlinear optimisation algorithms to determine
parameters simultaneously. This requires less from the experimental setup and is
a general strategy but can be time consuming and having multiple optima due to
incomplete data.
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3
Experimental procedure and

analysis

With the aim to obtain a general procedure of using DIC for calibration of FE
models, the quality and understanding of the data obtained by DIC is of great
importance. The first part of the project was therefore dedicated to analysing the
DIC data independent of the FE modelling. During this phase, scatter of the data
was examined together with a general understanding of how this data could be
combined with the FE models in the best way. This chapter will therefore present
the testing method, the test specimens that have been used during this project and
explain in detail how the data was processed before using the DIC data in the FE
calibration.

3.1 Tensile testing
A standard procedure to determine material parameters that can be used for mod-
elling purposes is the tensile test. A common tensile test results in engineering
stress-strain data, which means force per unit undeformed area versus length change
per unit undeformed length. This is accomplished by letting a test specimen be sub-
jected to a tensile force in a controlled manner [6].
Specific machines exist for this purpose and a schematic figure of a test machine can
be seen in Figure 3.1. The test specimen is attached by two holding grips, of which
one is attached to a moving crosshead. These grips can have different properties
and in this project, a spherical seating was used to prevent any torque or bending
moment to arise within the specimen. Test specimens are manufactured according
to standards and an example is presented in Figure 3.2. The initial diameter d0,
shown as d in the figure, is measured prior to testing and the initial distance L0 is
known as well. During testing L0 will be elongated and an extensometer is therefore
attached to track the current length L.
During testing, the movement of the crosshead is performed in a controlled manner
while a load cell measures the applied force, F . With the known values of L0, L, F
and the nominal radius r0 = d0

2 , the engineering stress, σ, and engineering strain, ε,
can be calculated according to

σ = F

r2
0π
, ε = L− L0

L0
. (3.1)

9



3. Experimental procedure and analysis

Specimen

Moving crosshead

Load cell

Holding grips

Holding grips

Stationary base

Figure 3.1: The setup of a tensile test. The test specimen is fastened at both ends,
one end is kept fixed by the test machine while the other is subject to a controlled
force measured by the load cell.

Figure 3.2: A standard cylindrical test specimen [7]. The middle of the specimen
is thinner compared to the ends that are attached to the grips, d constitutes the
nominal diameter. L0 marks the part of the specimen that is studied and used for
elongation calculations while Lc is the parallel length of the specimen.
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3. Experimental procedure and analysis

Multiple material parameters for the test specimen can then be determined from a
stress-strain diagram. Figure 3.3 shows a typical stress-strain curve obtained from
one of the samples used later in this project. The curve segment that reaches from
the origin to the cross in the figure is called the elastic range of the material. As
mentioned during the previous chapter, the stress in this range is assumed to depend
linearly on the strain where the elastic modulus, E, is obtained as the proportionality
constant. When the stress has reached the so called yield stress, σy, the material will
not behave linearly anymore and instead enter the plastic range of the stress-strain
curve.

0 2 4 6 8 10 12 14 16 18 20 22
0

100

200

300

400

500

Strain, ε [%]

St
re
ss
,σ

[M
Pa

]

Engineering stress-strain curve

Figure 3.3: Typical stress-strain diagram obtained from a tensile test. This one
is obtained from test specimen S0_PLATE_A_30_02_A that were used in the
project. The cross marks where the elastic range ends.

To obtain the value of σy, a common method known as the offset yield method
is used [6]. The distinction between the elastic range and the plastic range is not
always trivial to find, motivating this method. To find the value of the yield stress
a line with a strain offset of 0.2% from the origin is constructed. The slope of
this line should be the same as the slope of the elastic interval of the engineering
stress-strain curve. The so called offset yield strength, σo, is then considered to be
the value of σ where the constructed line intersects the stress-strain curve [8] and is
often chosen to represent σy. An illustration of the method is shown in Figure 3.4.
The ultimate tensile strength, σu, is the maximum engineering stress that is reached
in the engineering stress-strain curve.
When interested in determining material parameters connected to the hardening of
the material a curve based on the true stress, σtr, and true strain, εtr, is useful.
The true stress is calculated based on the current smallest radius, r, of the sample
instead of the nominal radius. The true strain is based on the incremental length.
The expressions for the true stress and true strain are written as

σtr = F

r2π
, εtr =

∫ L

L0

dL
L

= ln
L

L0
. (3.2)
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
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Engineering stress-strain curve

Figure 3.4: The principles of the offset yield method are shown for test specimen
S0_PLATE_T_30_02_A. The dashed line is constructed with a strain offset of
0.2% from the origin and the value of σ at the intersection between the two curves
becomes the offset yield strength, here marked by a cross.
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Figure 3.5: Typical true stress-strain diagram obtained from a tensile test. This
one is obtained from test specimen S0_PLATE_A_30_02_A that was used in the
project. The crosses marks where the offset yield strength and the ultimate tensile
strength is found respectively.

A typical true stress-strain curve can be seen in Figure 3.5. A rough approximation of
the hardening can be reached by using the slope between the offset yield strength and
the ultimate tensile strength from the true stress-strain curve. This approximation
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3. Experimental procedure and analysis

will be used as input when choosing a range in the global analysis of which the
results are presented in section 5.2.2. Let εo,tr denote the true strain at the offset
yield strength and εu,tr denote the strain at the ultimate tensile strength. Then
by using the true stresses at those locations, σo,tr and σu,tr, a linear hardening
parameter, H, can be obtained as

H = σu,tr − σo,tr
εu,tr − εo,tr

. (3.3)

It is usually hard to achieve a true stress-strain curve since the radial displacements
not always are practically possible to measure during the deformation by the use of
conventional methods.

3.2 Digital image correlation
A method to measure displacements while performing tensile tests is by performing
DIC. DIC is an image technique based on the ability to track positions of an object
in three dimensions and can thus provide displacements in all directions over the
monitored domain of the specimen surface. This means that more information
about displacements is provided compared to tensile tests, where displacement is
only found for distances covered by extensometers.
The correlation works by having two cameras tracking the test procedure. Image
analysis is then used to correlate pixels between the two images and by the relative
positioning of the cameras be able to determine the three dimensional coordinate of
that pixel. Since each pixel is seldom unique a larger region of pixels, so called facet
or subset, is used during correlation. For each such facet the position value for each
pixel is averaged to apply to the full region. This averaging makes the facet value
more stable if a lot of pixels are included, but with increasing size of the facet, the
resolution of local displacements is lost. Therefore a trade-off between stability and
resolution has to be done for the calculations.
In addition to using facets as a way to make the correlation unique, the surface of
the specimen needs to be non-homogeneous to distinguish pixels and facets from
each other. This is possible for materials with an in some way irregular pattern that
can be used in data analysis to register certain regions. The pattern can be from
the object itself or it can be applied later, but has as its purpose to make different
parts of the object easier to distinguish, something that would not be possible with
a perfectly polished surface.

13



3. Experimental procedure and analysis

When used to track a tensile test, the DIC system can be setup as in Figure 3.6.
Compared to only performing a standard tensile test, this method provides full-field
measurements without having to decide where to locate extensometers.

Test specimen

Camera 1 Camera 2

Figure 3.6: The spatial setup of a DIC system while tracking a tensile test. Two
cameras record the position of the sample while the tensile test is running. By
knowing the relative placement of the cameras and comparing the two images, digital
image correlation can then be performed.

3.3 Experimental data acquisition
Experimental data existed from a prior project that RISE conducted during 2017
[2]. This data consists of results from tensile tests performed at RISE:s premises in
Borås measured by the DIC system Aramis professional 2016 from GOM. The test
specimens and data selection are presented below.

3.3.1 Test specimens
All tensile test specimens used in this project were cylindrical, made of steel and
manufactured from plate material. The test specimens were manufactured according
to guidelines in EN 10225:2009[9] and the geometry of the cylindrical test specimens
is specified by the standard SS 11 21 13[7]. The geometrical parameters of the test
specimens were illustrated in Figure 3.2. The diameter of all test specimens was
measured at three locations using a micrometer screw.
A list of all tensile test specimens and their dimensions used for this project are
listed in Table 3.1. The names of the test specimens are generated based on the
features of the specimen. As can be seen in the table all specimen names starts with
S0_PLATE, this refers to that all specimens are from Series 0 and made out of plate
material. The letter A or T that follows S0_PLATE tells whether the specimen has
been extracted along or transverse to the rolling direction of the base plate material.
The last part of the name then states the thickness of the plate material that the

14



3. Experimental procedure and analysis

specimen was extracted from and a serial number to ensure unique names for all
specimens.

Table 3.1: Dimensions of all tensile test specimens used during this project. Lc
is the parallel length and d is the nominal diameter while dmin and dmax are the
maximum and minimum diameter measured by the micrometer screw. The listed
types are associated to specific values of Lc and d, for the interested reader more
information regarding the types can be found in standard SS 11 21 13[7].

Test specimen name Type Lc d dmin dmax
S0_PLATE_A_10_01_A 5C50 60 5 4.95 4.99
S0_PLATE_A_15_01_A 7C70 85 7 6.94 6.98
S0_PLATE_A_20_01_A 10C50 70 10 9.97 10.0
S0_PLATE_A_30_01_A 14C70 100 14 13.97 14.01
S0_PLATE_A_30_02_A 14C70 100 14 13.98 14.02
S0_PLATE_A_40_01_A 14C70 100 14 13.98 14.02
S0_PLATE_T_10_01_A 5C50 60 5 4.97 5.00
S0_PLATE_T_15_01_A 7C70 85 7 6.97 7.01
S0_PLATE_T_20_01_A 10C50 70 10 9.95 9.99
S0_PLATE_T_30_01_A 14C70 100 14 13.97 14.01
S0_PLATE_T_30_02_A 14C70 100 14 13.97 14.01
S0_PLATE_T_40_01_A 14C70 100 14 13.96 14.00

Furthermore, it can be seen that the values measured by the micrometer screw, dmin
and dmax, sometimes are smaller or larger than the nominal diameter d. As part of
the standard manufacturing, tolerances are listed and thereby small variations from
the nominal diameter are accepted. Since the displacements were tracked by the
DIC system, all specimens were applied with speckle patterns. A specimen before
and after this application can be seen in Figure 3.7.

Figure 3.7: Test specimen S0_PLATE_A_10_01_A before and after application
of a speckle pattern.
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3.3.2 DIC data extraction
The procedure of extracting the relevant DIC data from Aramis was also performed
prior to this project but will be explained here to increase the understanding of the
DIC data. Each DIC analysis is performed over a certain area that is covered by
the cameras. This area will not only include the test specimen but also the space
around it. For each sample an area of interest is then chosen together with facet
size. An example taken from Aramis can be shown in Figure 3.8. The full image
is recorded by the DIC system but only a part of it is chosen as area of interest.
Depending on the facet size it is not always possible to fit this choice perfectly,
the area that actually will be evaluated is therefore coloured green. Smaller parts
of grey can be seen around the green area, those correspond to the area that was
chosen but could not fit any facets. For the area covered by facets, the positions,
displacements and strains are calculated by Aramis and can be printed to reports.
The x-, y-, z-coordinates and the information regarding time steps and applied load
are the entities that have been used during this project.

Figure 3.8: The appearance of a test specimen when surveyed in Aramis. The
area covered by facets and thus used for analysis is marked green. Image courtesy
to Torsten Sjögren.

16



3. Experimental procedure and analysis

3.4 Axisymmetric fitting

While performing the tensile tests, the specimens were attached in a way to avoid
bending moment from acting on the specimen. A consequence from this was that
rigid body motions occurred for some specimens if they were not perfectly aligned
when the load was applied. To be able to couple the results from the DIC data to
FE models later on, this rigid body motion had to be addressed.
Since the tensile test specimens were all cylindrical a local cylindrical coordinate
system attached to the test specimens became the solution for easier coupling. As
long as the tensile tests are considered, this solution will provide easier input to
the FE models. To get a better understanding of how the data points are located
relative to the test sample a fundamental sketch is shown in Figure 3.9 together with
a local cylindrical coordinate system. As is shown in the figure, the data points are
located in a regular grid aligned with the local coordinate axes of the specimen,
covering approximately 100◦ of the cylinder mantle.

r

a

Figure 3.9: An example showing the general appearance of a test specimens and
how the DIC data points are located on the mantle area. A local cylindrical co-
ordinate system is attached to the specimen with the centre line of the specimen
coinciding with the axial coordinate axis of the system.

To obtain a local coordinate system aligned with the DIC data points a method
to find this system had to be found. The first attempt to find a local coordinate
system was based on the assumption that all data points were supposed to lie on
a cylindrical surface, and the local coordinate system would be the one where the
deviation from this cylindrical surface would be as small as possible. During this
work it was discovered that the radius varied over the length of the specimen, thus
not forming a perfect cylindrical surface. This resulted in a poor fit when trying
to obtain local coordinate systems for the specimens. Since this approach did not
result in a satisfying result, it will not be explained further in this chapter. Instead
another method that allows the radius to vary over the sample length was used. The
concepts on which this method is built on will be explained below.
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3.4.1 Coordinate systems and transformations
A local coordinate system with one coordinate axis coinciding with the symmetry
line of the assumed axisymmetric test specimen can be obtained by a rotation and
translation of the original Cartesian coordinate system. The original Cartesian co-
ordinate is given by Aramis with the coordinate axes E1, E2 and E3. This original
coordinate system is similar to the local coordinate system that is found by the
method described below. The original system is however not following the speci-
mens movements and therefore becomes misaligned over time. That a specimen is
axisymmetric is a necessary assumption to make since the available DIC data does
not cover the full area of the specimen but this area needs to be modelled later. The
task was thus to find how much the current coordinate system should be rotated and
translated to make the E1-axis to coincide with the local axial coordinate axis, a in
Figure 3.9. The definition of best fit was changed from the initial assumption to in-
stead emphasise the importance of axisymmetry by minimising the radial deviation
for each axial increment along the symmetry line a.
The rotation of a coordinate system is often described by Euler angles, which de-
scribes multiple rotations around single axes performed in a sequence, thus resulting
in an arbitrary rotation. To achieve the desired rotation and translation mentioned
earlier, the movements shown in Figure 3.10 were used. As can be seen in the figure,
the two Euler angles α and β will constitute the necessary rotation of the system
while the translation is given by the constants C ′′2 and C ′′3 in the rotated system.

E1
E2

E3, E
′
3

E ′1

E ′2, E
′′
2α

α

E ′′1

E ′′3

β

β

E ′′2

E ′′1

E ′′3

C ′′2

C ′′3

E ′′1

E ′′3

E ′′2

Figure 3.10: The Euler angles α and β rotates the original Cartesian coordinate
system to make the E ′′1 -axis parallel to the symmetry line of the test specimen. The
constants C ′′2 and C ′′3 then gives the distance to move along the E ′′2 - and E ′′3 -axes to
finally make the E ′′1 -axis coincide with the local axial coordinate axis, a, of the test
specimen. Note that the origin of the local coordinate system is not guaranteed to
be located at one of the sample ends by this transformation.
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A rotation matrix that can be applied to all coordinates from the initial coordinate
system is obtained from equation 3.4 where the two Euler rotations are performed.
E1, E2 and E3 are the coordinate axes in the original coordinate system, E ′1, E ′2 and
E ′3 are the coordinate axes after rotating α degrees around the E3-axis and lastly
E ′′1 , E ′′2 and E ′′3 are the coordinate axes after rotating β degrees around the E ′′2 -axis.
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(3.4)

3.4.2 Optimisation of symmetry line
The optimal local coordinate for each time step is thus obtained by finding the
combination of α, β, C ′′2 and C ′′3 that gives the minimum radial deviation for each
axial increment along the E ′′1 -axis.
More specifically this is made by calculating the x′′y′′z′′-coordinates along the E ′′1 -,
E ′′2 - and E ′′3 -axes based on the xyz-coordinates in the E1E2E3-coordinate system.
First calculation is based on an initial guess of α, β, C ′′2 and C ′′3 . The cylindrical co-
ordinates r and a are then obtained for all data points as a = x′′ and r =

√
y′′2 + z′′2.

Since the data points are placed in a somewhat regular grid, as was seen in Figure
3.9, each column of this grid corresponds to a value along the E ′′1 -axis and thus an
axial value. For each column the mean, µr, and standard deviation, σr, of the radial
value for those points can be evaluated. The coefficient of variation cv = σr

µr
are thus

obtained for all axial increments along the specimen length.
The overall deviation is then computed by integrating the coefficients of variation
over the specimen length. This value is minimised by letting an optimising routine
update the guess of α, β, C ′′2 and C ′′3 . When the smallest value is found, the optimum
local coordinate system is considered to be found. For the optimum combination of
of α, β, C ′′2 and C ′′3 , the calculated µr and mean axial value, µa, for each column are
used as the resulting cylindrical coordinates. From here on, it is thus these values
that are referred to when mentioning the radius or axial value of the specimens.
The axisymmetric fitting is performed for each time step individually so that the
coordinate system follows the specimen over time.
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3.4.3 Analysis of DIC data

As discovered earlier the radius of the test specimens was not constant over the
length of the sample. To exemplify this variation, two images of radius as a function
of specimen length are shown in Figure 3.11.
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Figure 3.11: The top figure shows the coordinate values, XCyl, obtained from the
first cylindrical fitting method together with the assumed radius of the cylinder, R,
and the limits Rmax and Rminthat were measured by the micrometer screw. The
bottom image shows the coordinate values, XCyl, obtained from the final method
that assumed axisymmetry. The calculated mean radius for each axial increment,
µr, is shown by itself and with the standard deviation, σr added and subtracted to
it. Both figures are obtained from test specimen S0_PLATE_A_15_01_A before
any load is applied.
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The top figure is acquired when using the first method to define a local coordinate
system while the bottom figure shows the results when using the second method. The
coordinates obtained by the first method demonstrates the problem that occurs when
assuming a constant radius. Since there are no radius that fits all points, the method
compensates with misalignment of the E ′′1 -axis compared to the actual a-axis. The
misalignment of the axis results in large scatter of the calculated coordinates around
the ends of the specimen which also gives a non-axisymmetric representation of the
specimen. As can be seen in the bottom figure, the scatter is highly reduced with
the second method, which is interpreted as good correspondence to axisymmetry.
In addition to the improvement between the two methods and the varying radius,
other interesting things can be concluded from this example as well. The varying
radius seemed strange at first but later on seemed more reasonable. When samples
are manufactured according to standard they are turned to achieve the rotation
symmetry, thus axisymmetry is most likely obtained while a total fix radius is more
complicated to achieve. To make it more predictable where the necking will occur,
it is during manufacturing possible take advantage of the allowed tolerance to make
the cylinder a little bit thinner around the middle. The manufacturing method can
thus motivate the assumption of axisymmetry and also explain why a drop in radius
around the middle is visible for most specimens.
The measured limits, Rmax and Rmin, are the maximum and minimum radius that
were measured by the micrometer screw. Ideally, all coordinate values ought to be
within that range but as was seen in the top of Figure 3.11 this was not the case.
Possible explanations for this could be the fact that the diameter is only measured
at three locations over the specimen, according to standard, which could mean that
more diameter samples could have given a larger interval. For many samples the
radial values, µr, in general seems to lie in the upper range of the measured interval
or above the measured dimension limit. This could be related to the fact that the
specimens are measured before the speckle pattern is applied. Since the magnitude
of the radial variance is small, even a thin layer of colour could make a difference.
No measurements were made on the specimens after the paint was applied.
The value of adjusting the coordinate system was, as mentioned earlier, a way to
make the data easier to compare with results from FE modelling.
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An example of how the specimen is being subjected to rigid body motion can
be seen Figure 3.12, which shows the Euler angles over time for test specimen
S0_PLATE_A_10_01_A.
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Figure 3.12: The two Euler angles, α and β, plotted over time for test specimen
S0_PLATE_T_30_01_A. As can be seen the angles vary most in the beginning,
corresponding to rigid body motions of the test specimen when the force is applied.

As can be seen in the figure the angles vary most at the beginning, corresponding
to rotations of the specimen, and then stabilises. This demonstrates the rigid body
motion that the specimen undergoes when the force is first applied. Even though
the value does not change a lot, a misalignment of 0.1◦ would cause a relative
displacement around 0.1mm. Compared to the order of magnitude in the variation
of the radius, which is 0.01mm it is ten times this value, which validates the need
of finding a local coordinate system.

3.4.4 Estimating material parameters

When cylindrical coordinates were obtained for the test specimens, these were used
to estimate material parameters that could be used as reference points when initiat-
ing the modelling. The engineering stress and strain and the true stress and strain
were all calculated according to section 3.1. The full range of the specimen that
was captured by Aramis was used as L0 and L corresponded to the value of the
maximum axial coordinate value. The mean of all radial coordinates from the first
time frame was used as the nominal radius, r0. The current minimum radius that
was needed for the evaluation of true stress was obtained as the minimum radius,
which means the minimum value of µr, for each time frame. The estimations of
the material parameters will be presented and discussed in section 5.1.1 and 5.2.1
respectively.
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3.4.5 Conclusions to bring into the modelling
From the data analysis some things will be utilised or investigated further when
performing the modelling in Abaqus.
The cylindrical coordinates and the assumptions of which they are based on will be
implemented in the modelling and calibration phase. More specifically the coordi-
nates will be used in the construction of the model to get as good simulations as
possible, how they are used is presented in section 4.1.
It is of interest to investigate the impact of using more information while creating
the models. Hopefully a more accurate geometry will result in early prediction of
the necking area, the results from this investigation is presented in section 5.3.
The calculation of the cylindrical coordinates are built on the assumption of ax-
isymmetry so along with the knowledge of the varying radius, axisymmetry will be
used in the modelling. The assumption of axisymmetry is further strengthened by
the manufacturing method of the test specimens.
From the calculations of stresses and strains, suggestions for reasonable parameter
intervals were obtained. The true stress and strain diagrams have also supplied
suggestions for reasonable parameters to use for the modelling of linear hardening.
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4
Model calibration

After obtaining a better understanding of the experimental data, the second part of
the project consisted in performing the FE modelling and to calibrate the material
parameters based on the experimental data. The primary goal of this part was to
obtain a procedure that could take basic inputs for variables such as elastic param-
eters and number of elements. This procedure is then supposed to be updated to
include more sophisticated material models and to introduce validation methods.
This chapter is therefore dedicated to the explanation of how the FE models were
constructed and how the calibration procedure was made. When a working pro-
cedure was established, some test cases were performed to indicate strengths and
weaknesses of this calibration method. Those cases and the obtained results will
then be presented in Chapter 5.

4.1 Finite element model construction with Abaqus
script

The calibration method sought in this project is aimed to be general and thus be
applicable to many similar simulations, therefore a generic parameterized finite ele-
ment model was developed for this purpose. The commercial software Abaqus/CAE
6.16-1 with the finite element solver Abaqus/Standard was used together with its
own scripting interface, Abaqus Scripting Interface, to accomplish the task. Due to
the similar nature of the specimens, a default script could handle the things common
for the models. This section describes the FE simulation procedure with respect to
material modelling, choice of element types and meshing. A more detailed explana-
tion of how the Abaqus scripts for model setup works can be found in Appendix A,
the scripting structure is based on the structure in [10].

4.1.1 Shape and symmetry
All test specimens are assumed to be axisymmetric with a varying radius as discussed
during the DIC data analysis in section 3.4.5. As a result of this, the model is built
to be axisymmetric in Abaqus. The contour of this axisymmetric test specimen is
built by a sketch whose contour is determined from the initial radius and initial
axial positions obtained by the DIC analysis. Thereby the actual radius and not
the nominal radius is used when designing the specimens. Each sample thus get an
unique contour based on the DIC measurements.
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4.1.2 Material model and analysis type
For the initial model setup, only respect to elasticity and a linear hardening model
are taken, therefore a general static analysis is used. This choice needs to be recon-
sidered when more complex material models are used.

4.1.3 Elements and mesh
In Abaqus, continuum elements are used for linear static analysis and for non-linear
analyses such as plasticity and geometric non-linearity. A continuum element thus
fits for the calculations that are made during this project. Since the problem is
also axisymmetric, the element type CAX4R is used. It is a four-node, bilinear
axisymmetric quadriliteral which uses reduced integration and hourglass control
[11].
The mesh is constructed by seeding the edges of the model and then mesh the spec-
imen from that. The mesh is constructed as structured quadriliterals to maintain
control over how the elements appear. An example of how the mesh looks like can be
seen in Figure 4.1 which shows a mesh setup for sample S0_PLATE_A_40_01_A.

x

y

Figure 4.1: Test specimen S0_PLATE_A_30_02_A when using a mesh with 4
elements in the radial direction and one element for each of the specified nodes. The
nodes that were specified by coordinates from the DIC analysis are marked red.

4.1.4 Boundary conditions
To get a correct comparison, the FE model should mimic the setup that was used
when collecting the DIC data. As the DIC data only corresponds to the gauge part
of the tensile test, only this part was modelled in Abaqus. The radial coordinates
corresponds to Abaqus x-axis while the axial coordinates corresponds to Abaqus
y-axis. The boundary conditions are illustrated in Figure 4.2.

uaOuter vertices

Top edge
x

y

Figure 4.2: Boundary conditions that were used for the models. One end of the
test specimen was kept fixed, while the other end had a prescribed displacement in
the axial direction. The set Outer vertices, includes all nodes that are specified from
the DIC coordinates and set Top edge includes all nodes on the moving edge of the
specimen.
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The end where y=0 was kept fix in the y-direction and the other end had y being
controlled by a given displacement, ua. The magnitude of this displacement was
obtained by using the corresponding value obtained from the DIC analysis. Time
steps were created in Abaqus to correspond to the different time frames in the DIC
analysis, thus changing the magnitude of the boundary condition in each time step.
Along the symmetry line where x=0, a symmetry boundary condition was used. This
condition locks the displacement in the x-direction and prevents rotation around the
y- and z-direction. The point (0,0) was kept as a reference point and was thus kept
fixed. The surface of the specimen was free to move.

4.1.5 Set creation and result output

To easily obtain displacements from the nodes associated with the DIC measuring
points, sets were created for the model. One set included all nodes that were specified
from DIC coordinates, which means the nodes on the model surface. This set is
called Outer vertices. For all analyses performed during this project this is the same
as all nodes on the surface. Fore a later version it might be of interest to interpolate
between data points and then not have direct correspondence between surface nodes
and data points. Another set includes all nodes at the end of the specimen where
the displacement is prescribed. This set is called Top edge. Both of these sets were
shown in Figure 4.2.
After running an analysis job in Abaqus, results are extracted for the two sets.
The displacements u1 = ur and u2 = ua are obtained from the Outer vertices set
while reaction forces F are obtained from the Top edge set. Together with timestep
and node number they are written to report files that can be read easily outside of
Abaqus.
Since the vertices in the set Outer vertices corresponds to the DIC coordinates,
the displacements obtained by the FE analysis can be directly compared to the
displacements available from the DIC data. The sum of the forces obtained from
the set Top edge can similarly be compared directly to the registered force that was
applied by the test machine.

4.2 Calibration of model by coupling of DIC data
with FE results

What has been described above is the setup that the Abaqus script performs when
called upon. The shape of the specimen and the applied load are depending on what
sample that is considered while the mesh and material parameters should be possible
to alter when trying to optimise the fit between the measurements and simulation.
Optimisation in general usually refers to maximising or minimising some aspect
of a problem, called the objective. For this case of calibrating FE models, force
and displacement data are known from experiments and simulations. The desired
objective thus becomes to minimise deviations between these values.
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4.2.1 The objective function
The magnitude of the deviations are affected by the material parameters that the
simulations are built on. If the material parameters are denoted p = (p1, p2, ..., pm),
the displacements of all nodes and reaction force at the end of the sample can
be written as u1sim(p), u2sim(p) and Fsim(p) to emphasise the dependence of the
material parameters. The experimental data is denoted as u1exp, u2exp and Fexp and
do not depend on the material parameters. u1, u2 and F for both experiments and
simulations also depends on time and potentially multiple experiments.
Let the time entries be written as tn where n = 1, 2, ...Nt are the number of time
entries and Xk hold all data from a single experiment where k = 1, 2, ...NX are
the serial number of the experiment. Then a more extensive representation would
include tn and Xk as parameters, as for example u1sim(Xk, tn,p).
Since it is the difference between experimental data and simulations for the three
entities u1, u2 and F that is of interest to minimise. The differences are also called
residuals, with common notation R, and are calculated according to

Ru1 = (u1exp(Xk, tn)− u1sim(Xk, tn,p))2 (4.1)

Ru2 = (u2exp(Xk, tn)− u2sim(Xk, tn,p))2 (4.2)

RF = (Fexp(Xk, tn)− Fsim(Xk, tn,p))2. (4.3)

With these residuals, the objective function could be chosen in a least squares man-
ner as

f(p) =
NX∑
k=1

Nt∑
n=1

wu1Ru1 + wu2Ru2 + wFRF (4.4)

where wu1, wu2 and wF are possible weights. The best correlation between the
experimental data and the simulated data will then be found when the objective
function takes its smallest value. The weight parameters are included since the
different terms might have vastly different size and thus contributing to the total
objective function unequally. In this project the weights will only be set to 1 or
0, when enforcing more complex material models the weights will have to be more
carefully determined.
One issue to consider during this procedure is that the coordinates from each ex-
periment might not be the same as in the model. This can be solved either by
extrapolation of the values or as in this case, the model is forced to use the same
coordinates as were obtained from the experiments.

4.2.2 Implementing the objective function
Up to this point, the DIC data has been examined and key features have been used
as input to a model in Abaqus. A default script that setups the FE model and
simulation before running it has also been constructed. With the knowledge about
the objective function, the time has come to connect all this. To coordinate the
altering of setup files with comparison of results for several setups, a script was
constructed in Python. Python 2.7 was chosen as the programming language since
Abaqus scripts were built on Python and thus overall Python knowledge was needed
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in the project. The overall process of how the script is working is pictured in Figure
4.3.

Input: Test specimens and material model to use

Read DIC files, fit a local
cylindrical coordinate system

Optimisation routine, sends a pa-
rameter guess to function evaluation

1. Update default_MDB.py and default_ODB.py

2. Run Abaqus job from script changed_MDB.py Abaqus\Standard

Wait for job completion

Executes changed_ODB.py

Writes reports u1.rpt,
u2.rpt, rf.rpt3. Read u1.rpt, u2.rpt, rf.rpt

4. Evaluate objective value function value and
return f(mat_par)

mat_parfinal

Function evaluation

One or more samples

Figure 4.3: Scheme over the calibration methodology. The user specifies what
specimens and material model that are to be used during the calibration. The
DIC data is then read for the chosen samples and their cylindrical coordinates are
determined. An optimisation routine is then used to send in multiple versions of
material parameters into function evaluation and iterate until a given tolerance is
met.

The scheme can be divided into what is included in the dashed box and what is
not. The boxes outside of the dashed box are mainly input values, preprocessing of
the DIC data and determination of whether an optimisation routine or only single
evaluations of the correlation will be performed. Inside the dashed box the function
evaluation occurs, which explains how the correlation for a specific case is calculated.
The input given to the program is which test specimens and what material model to
use during the calibration. From that choice, the DIC files associated with the test
specimens are sent to a preprocessor. The preprocessor determines the cylindrical
coordinates and calculates the displacements for each time frame. Before entering
the function evaluation an optimisation routine can be applied. If this is the case,
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the routine handles what material parameters that should be used in the function
evaluation. The choice of material parameters could also be chosen manually and
let the user specify material parameters of interest.
With given test specimen, material model, number of elements and material pa-
rameters the function evaluation can be carried out. The default Abaqus scripts,
default_MDB.py and default_ODB.py, that controls model creation and result ex-
porting are rewritten to match the desired settings and parameters, thus becomes
changed_MDB.py and changed_ODB.py.
After the scripts have been changed, the Python script tells Abaqus\Standard to
run changed_MDB.py. Without opening the GUI the model is created and the job
is performed. As the scripts changed_MDB.py and changed_ODB.py are coupled,
changed_ODB.py executes when the job is completed and writes the reports. When
the reports are written by Abaqus, the Python script reads those results. Up to
this point the function evaluation has also belonged to a box, this box marks that
this can be made for multiple test specimens. When exiting this box the objective
function will be evaluated. If an optimisation routine is used, the function value will
be compared to earlier results and either be satisfied or try more parameter setups
before finally reaching mat_parfinal.

4.2.3 Minimise deviation with global parameter matrix
One approach to increase the probability to find a global minimum is to specify the
admissible parameter values and a given set of initial values for each parameter.
The objective function is then evaluated for all parameter combinations of the given
sets. The best result can be used as an indicative value or as an initial point in
a local minimisation algorithm. If only considering two material parameters, the
evaluation points can be visualised in a grid similar to Figure 4.4.
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Figure 4.4: Visualisation of a global parameter matrix, the function value is cal-
culated in all points that belongs to the chosen parameter sets.
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4. Model calibration

To determine how the objective function performed and get an overview over the
parameter space a global investigation were performed both when estimating the
elastic parameters E and ν, and when estimating the plastic parameters σo and H.
The investigation was performed for all samples, one at a time.

4.2.4 Minimise deviation with optimisation routine
For optimisation of Young’s modulus, an optimisation routine was used as well.
This was in order to obtain a more accurate value than by the global parameter
matrix. This could also have been accomplished by keep refining the parameters in
the global parameter matrix manually, but it was of interest to use an optimisation
routine as a mean for later purposes when a global parameter matrix cannot provide
sufficient information. In this project the Nelder-Mead, also known as downhill
simplex method, was used for optimisation purposes. The Nelder-Mead method is
a non-gradient method, thus only using function evaluations to determine the local
minima. To reach the minima the function is evaluated for m+1 points, where m is
the number of parameters. These points describes a simplex in the parameter space
and for each update the point resulting in the highest function value is replaced
by its reflection through the centroid of the remaining m points. The points will
keep changing until a converge condition is met [5]. In Python this is achieved by
using the fmin function from the SciPy package[12]. To see if the results from the
Nelder-Mead based optimisation routine was sensitive based on the initial guess,
both the best result from the global parameter matrix and the suggestions from the
DIC analysis were used as initial guesses in the routine.
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5
Calibration results and discussion

This chapter will present and discuss results based on the theoretical framework
outlined in Chapters 2-4. Results will be presented for three case studies. The first
case considers a linear elastic model and then performs an estimation of material
parameters based on DIC data followed by a global estimation and calibration of
those parameters. The parameter values that were obtained are presented and
reflected on. The second case adds the assumption of plasticity with linear hardening
to the model. Similar to the elastic case an estimation based on the DIC data is
performed initially followed by a global estimation of those parameters. The third
case instead focuses on the determination of fracture location that is obtained based
on the DIC data. Lastly there will be a discussion regarding how averaging of data
could be a possible help to generate better results.

5.1 Case 1: Estimation of elastic parameters
The simplest material model to assume is the isotropic linear elastic one, this was
thus used as the first case. This section will go through the results for the two
material parameters E and ν that were obtained when analysing the DIC data and
when using the DIC data to calibrate the FE models.

5.1.1 Initial estimation based on DIC data
The engineering stress as function of engineering strain was calculated based on
the DIC data associated with each individual test specimen. As an example, the
engineering stress-strain curve from sample S0_PLATE_A_10_01_A can be seen
in Figure 5.1. The curve follows the general pattern for a metal with an initial
elastic range followed by hardening. To predict values for Young’s modulus only the
points in the elastic range were used. The specific data points collected during this
interval are marked as crosses in the figure. As can be seen ten sample points exist
in the elastic range for this sample. The number of data points in the elastic interval
varied between different samples but all samples had between 9-21 data points in
the elastic range. This might be a little too low, compared with the required 50 that
is needed when doing testing according to standard [9].
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Figure 5.1: Engineering stress as function of engineering strain for test specimen
S0_PLATE_A_10_01_A. As can be seen there are roughly ten sample points
during the elastic range of the curve.

From the stress-strain curves Young’s modulus can be determined by a linear fit to
the curve that lies within the elastic interval. For each test specimen it was identified
what time frames of the DIC data that could be considered to lie within the elastic
range of the stress-strain curve. Depending on which data points that were used
within this range, the resulting value of Young’s modulus differed somewhat. Four
evaluations based on different intervals of data points were therefore made for each
sample to investigate the impact of intervals and to illustrate the differences. First
interval includes all points that seemingly occur before leaving the elastic range, as
depicted in Figure 5.1. The estimations based on the first interval is also denoted
EDIC for later use. The second interval is similar to the first but excludes the two
endpoints of the first interval. By dividing the second interval into two groups, the
third and fourth interval are obtained.
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5. Calibration results and discussion

A clarification of which points that were included in interval two to four can be seen
in Figure 5.2. A summation of all predictions can be seen in Table 5.1.
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Figure 5.2: Engineering stress as function of engineering strain for test specimen
S0_PLATE_A_10_01_A. The left image shows the points included in the second
interval. The right image shows the points in interval three as orange crosses and
the points in interval four as green circles.

Table 5.1: Young’s modulus obtained as the slope of the stress-strain curves ob-
tained from the DIC data listed together with the number of data points in the
elastic range. The four intervals are then subsets of the total set of data points.

Test specimen name Data points 1:st 2:nd 3:rd 4:th
S0_PLATE_A_10_01_A 10 194GPa 197GPa 198GPa 188GPa
S0_PLATE_A_15_01_A 15 210GPa 212GPa 224GPa 203GPa
S0_PLATE_A_20_01_A 21 190GPa 193GPa 197GPa 179GPa
S0_PLATE_A_30_01_A 11 198GPa 199GPa 193GPa 197GPa
S0_PLATE_A_30_02_A 9 192GPa 193GPa 193GPa 193GPa
S0_PLATE_A_40_01_A 11 141GPa 132GPa 68GPa 85GPa
S0_PLATE_T_10_01_A 12 228GPa 230GPa 234GPa 224GPa
S0_PLATE_T_15_01_A 17 218GPa 217GPa 224GPa 216GPa
S0_PLATE_T_20_01_A 17 220GPa 221GPa 216GPa 223GPa
S0_PLATE_T_30_01_A 10 210GPa 210GPa 212GPa 209GPa
S0_PLATE_T_30_02_A 10 199GPa 202GPa 197GPa 198GPa
S0_PLATE_T_40_01_A 9 197GPa 199GPa 203GPa 195GPa

35



5. Calibration results and discussion

Except from sample S0_PLATE_A_40_01_A, no samples varied more than 20GPa
between lowest estimation and highest estimation and considering the centered in-
tervals, 1 and 2, no samples varied more than 3GPa. Again except from sample
S0_PLATE_A_40_01_A, the values are in reasonable range for steels. To get
an idea of why S0_PLATE_A_40_01_A did not provide as good results as the
others, the engineering stress-strain curve for that sample is depicted in Figure 5.3.
As can be seen here the data from DIC has too much variation. This constitutes
a restriction in how good E can be determined for that sample. With only few
points and a steep slope, small errors in the data can have a big impact on the
results. With more data points collected during the elastic range, the variations due
to choice of interval could possibly be reduced further and possible outliers could
be distinguished and safely removed from the data and thus improve the results for
samples such as S0_PLATE_A_40_01_A.
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Figure 5.3: Engineering stress as function of engineering strain for test specimen
S0_PLATE_A_40_01_A, as can be seen the points in the elastic range are not
aligned and thereby restricts the ability to make valid predictions for E.
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5. Calibration results and discussion

To get a better overview, the results from Table 5.1 are plotted in Figure 5.4.
Young’s modulus is plotted as a function of the thickness of the plate from which the
specimen was extracted. The rolling direction compared to sample extraction are
marked as circles for the samples cut transverse to rolling direction and the crosses
for the samples cut along the rolling direction. In this project isotropy was assumed,
but the rolling direction could be investigated further as a part of an anisotropic
assumption.
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Figure 5.4: The values obtained for Young’s modulus sorted by plate thickness
and sample direction.

5.1.2 Global estimation and calibration
After analysing the DIC data and obtaining initial guesses for Young’s modulus the
next step was to try calibrating the FE models based on the DIC data. A global
parameter search preceded an optimisation with the Nelder-Mead method.
Since the variation between the first two of the chosen elastic intervals were small,
the first interval has been used for the global estimation and calibration. The global
estimation served as a check to see if the method provides reasonable results and to
observe what initial guess that is suitable for calibration. The values for the three
residuals that were defined in equations 4.1-4.3, RF , Ru1 and Ru2 , were evaluated
for all combinations of the parameter sets for E and ν.
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5. Calibration results and discussion

Figure 5.5 shows how the values for each residual depended on the material parame-
ters for test specimen S0_PLATE_T_30_01_A. For this specific global estimation
the parameter space for E was set to E ∈ [200, 220 ]GPa with 5GPa spacing. The
parameter space for ν was set to ν ∈ [0.25, 0.35] with 0.05 as spacing. As can be
seen in the figure, different residuals depend on different material parameters.
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Figure 5.5: The three residual matrices obtained for test specimen
S0_PLATE_T_30_01_A. As can be seen the residual RF only depends on E and
the residual Ru1 only depends on ν. The last residual, Ru2 , is almost constant over
the interval, thus independent of the elastic material parameters.

This was expected for RF since the material is assumed to be linear and the loading
is axial and thus the axial reaction forces depend only on the prescribed elongation
and the elastic modulus. It was also expected for Ru1 since ν depends on the
prescribed elongation and the thickness in the radial direction. That Ru2 seems to
be independent of the material parameters is also reasonable since with the total
elongation prescribed and the assumption of elasticity all points will evenly spread
independent of the material. Last thing to be noted is that the values provided
from RF are much larger than the ones obtained from Ru1 and Ru1 , thus indicating
that the weight factors need to be considered when constructing the full objective
function that is needed when more material parameters are included.
Based on the direct relationship between the residuals and material parameters, the
following analysis only uses RF for determination of E and Ru1 for determination
of ν. The grid was evenly spaced by 5GPa or 10GPa for most cases, and ν was
initially set to 0.25, 0.3 and 0.35. The value of E that generates the lowest value
in the global investigation is denoted Eglob and were used as an initial guess for the
Nelder-Mead optimisation routine.
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5. Calibration results and discussion

Table 5.2 lists the values of E that were obtained by the three different approaches.
EDIC is the value obtained from the initial analysis of the DIC data that was dis-
cussed in section 5.1.1, Eglob is the optimum choice based on the global search and
Eopt is the refined value after applying the optimisation routine.

Table 5.2: The values of E that were obtained by the three different approaches.

Test specimen name EDIC Eglob Eopt
S0_PLATE_A_10_01_A 194GPa 200GPa 197.7GPa
S0_PLATE_A_15_01_A 210GPa 210GPa 213.8GPa
S0_PLATE_A_20_01_A 190GPa 190GPa 186.5GPa
S0_PLATE_A_30_01_A 198GPa 200GPa 197.9GPa
S0_PLATE_A_40_01_A 141GPa 175GPa 177.1GPa
S0_PLATE_T_10_01_A 228GPa 230GPa 227.9GPa
S0_PLATE_T_15_01_A 218GPa 220GPa 224.8GPa
S0_PLATE_T_20_01_A 220GPa 210GPa 213.8GPa
S0_PLATE_T_30_01_A 212GPa 210GPa 212.5GPa
S0_PLATE_T_30_02_A 199GPa 195GPa 194.0GPa
S0_PLATE_T_40_01_A 197GPa 190GPa 191.1GPa

From the initial analysis of the DIC data it was concluded that the data points
in the elastic range were too few to accurate determine Young’s modulus, thus the
results from the three different methods are not expected to be identical. What is
encouraging is that Eopt and EDIC have similar values and thus indicates a working
calibration method. An illustration of how well the forces are predicted can be seen
in Figure 5.6 where force is plotted as function of time.
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Figure 5.6: The force obtained from experimental data and the force obtained
by the simulations as function of time during the elastic range for test sample
S0_PLATE_A_15_01_A.
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That Eopt is close to Eglob works as a confirmation of that the Nelder-Mead opti-
misation routine runs properly, something that will be of more significance when
increasing the complexity of the objective function.
When it comes to Poisson’s ratio, it was possible to find minimas for some samples
but not all of them when performing a global search. For the samples not obtaining
0.3 as mimima, the parameter space were extended to include 0.2 and 0.4 in the
parameter space. For samples that did find a minima at 0.3 in the global search,
the interval spacing was decreased to be 0.01 instead. A summary of the results for
Poisson’s ratio is included in Table 5.3. νmin is the minimum value that were tested
and νmax was the maximum value that was tested when trying to find a minima of
the objective function.

Table 5.3: The range of ν that were used during the global investigation of the
samples together with the optimal choice based on the global search. As can be seen
only six of the samples succeeded in predicting an acceptable value of 0.29 or 0.3.

Test specimen name νmin νmax νopt
S0_PLATE_A_10_01_A 0.2 0.4 0.4
S0_PLATE_A_15_01_A 0.25 0.35 0.3
S0_PLATE_A_20_01_A 0.25 0.35 0.3
S0_PLATE_A_30_01_A 0.2 0.35 0.2
S0_PLATE_A_40_01_A 0.2 0.4 0.35
S0_PLATE_T_10_01_A 0.2 0.4 0.4
S0_PLATE_T_15_01_A 0.25 0.35 0.3
S0_PLATE_T_20_01_A 0.25 0.35 0.29
S0_PLATE_T_30_01_A 0.25 0.35 0.29
S0_PLATE_T_30_02_A 0.25 0.35 0.25
S0_PLATE_T_40_01_A 0.25 0.35 0.3

The samples for which the global search resulted in a ν with value 0.2 or 0.4 were
considered to be unlikely when compared to normal values for ν for steel. When
examining the reason of the unlikely values, it was discovered that the deviations in
the radial coordinates over time were so large that the actual displacements became
to small to give any reasonable values.
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5. Calibration results and discussion

An example of this can be seen in Figure 5.7. This could possibly be avoided by
time averaging the radius over time, thereby making the values more robust. More
sample points during the elastic range could also improve the results. To get the
calibration working for Poisson’s ratio, there needs to be better pre-processing of
the data.
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Figure 5.7: The radial displacement during the elastic interval for test sample
S0_PLATE_T_10_01_A. The displacement is taken from 10 sample locations over
the sample and tracked over time. It can be seen that none of the displacements are
strictly decreasing as expected, but instead varying over time. However it should be
noted that the displacements are very small, only a few µm.

5.2 Case 2: Estimation of plastic parameters
When expanding the material model to include linear hardening two more param-
eters were included in the material model. This section will go through the results
for the material parameters σy and H that were obtained when analysing the DIC
data and when using the DIC data to calibrate the FE models.

5.2.1 Initial estimation based on DIC data
The true stress as function of true strain were plotted for the DIC data associated
with each individual test specimen.
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The true stress-strain curve from sample S0_PLATE_A_10_01_A can be seen in
Figure 5.8. This curve corresponds to the engineering stress-strain curve seen in
Figure 5.1 earlier.
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Figure 5.8: True stress-strain curve for test sample S0_PLATE_A_10_01_A.
The crosses marks the point of yield stress and the point of ultimate stress obtained
from the engineering stress-strain curve.

As described in section 3.1, the predicted offset yield strength, σo, was determined
according to the offset-yield method and will in this work serve as an initial guess
of σy. The slope between the point of yield stress and the point of ultimate stress
were used to predict the linear hardening constant, H, according to equation 3.3. A
summation of all values and predictions can be seen in Table 5.4.

Table 5.4: The values obtained for the true stresses and strains related to the offset-
yield method and ultimate tensile strength are listed together with the calculated
value of H.

Test specimen name σo,tr σu,tr εo,tr εu,tr H
S0_PLATE_A_10_01_A 422MPa 619MPa 0.0044 0.0872 2370
S0_PLATE_A_15_01_A 447MPa 626MPa 0.0040 0.1061 1753
S0_PLATE_A_20_01_A 464MPa 631MPa 0.0043 0.1175 1470
S0_PLATE_A_30_01_A 444MPa 581MPa 0.0046 0.1225 1160
S0_PLATE_A_30_02_A 438MPa 622MPa 0.0044 0.1011 1900
S0_PLATE_A_40_01_A 424MPa 622MPa 0.0049 0.1127 1681
S0_PLATE_T_10_01_A 473MPa 634MPa 0.0043 0.1095 1536
S0_PLATE_T_15_01_A 466MPa 600MPa 0.0042 0.1015 1375
S0_PLATE_T_20_01_A 482MPa 623MPa 0.0044 0.0860 1727
S0_PLATE_T_30_01_A 435MPa 584MPa 0.0037 0.1091 1419
S0_PLATE_T_30_02_A 459MPa 629MPa 0.0043 0.0861 2080
S0_PLATE_T_40_01_A 430MPa 595MPa 0.0043 0.0834 2082

42



5. Calibration results and discussion

5.2.2 Global estimation based on force residual
After analysing the DIC data and obtaining initial guesses for the two material
parameters associated to the linear elastic material model, the next step was to
try calibrating the FE models based on the DIC data. A global search was used
to investigate how the residuals would behave and to find global minimas for the
parameters.
To make it easier to observe the behaviour of the residuals ν was fixed to 0.3 and
E was set to EDIC for each sample. The values for the three residuals, RF , Ru1

and Ru1 , were then evaluated for all combinations of material parameters σo,tr and
H. Figure 5.9 shows how the values for each residual depended on the material
parameters for test specimen S0_PLATE_A_15_01_A.
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Figure 5.9: The three residual matrices obtained for for test specimen
S0_PLATE_A_15_01_A. As can be seen all residuals show some correlation be-
tween σo,tr and H, but the greatest correlation is obtained from RF

For this specific global estimation the parameter space for σo,tr was set to σo,tr ∈
[420, 460 ]GPa with 10MPa spacing. The parameter space for H was set to H ∈
[1300, 1700] with 0.05 as spacing. As can be seen in the figure, these parameters are
correlated unlike in the linear elastic case. To run a good calibration the weighting
needs to be considered, something that remains to be done. However, RF seemed
to be the dominating term as in the case for Young’s modulus. So to get a preview
of how well the results could be, the value of RF was used when performing a global
estimation of σo,tr and H.
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The results for the specimens are summarised in Table 5.5. A visualisation of how
well the simulated results corresponds to the data obtained from DIC can be seen in
Figure 5.10. Even though only a linear hardening model was used, the result agrees
fairly well between the two values. If implementing more complex material models
in the future would be a good possibility to improve these results.

Table 5.5: The values of σo,tr and H obtained from the estimation based on DIC
listed and from a global estimation based on the force residual respectively.

Test specimen name σo,DIC σo,glob HDIC Hglob

S0_PLATE_A_10_01_A 422MPa 420MPa 2370 2000
S0_PLATE_A_15_01_A 447MPa 430MPa 1753 1600
S0_PLATE_A_20_01_A 464MPa 460MPa 1470 1400
S0_PLATE_A_30_01_A 444MPa 420MPa 1160 1200
S0_PLATE_A_30_02_A 438MPa 440MPa 1900 1900
S0_PLATE_A_40_01_A 424MPa 430MPa 1681 1600
S0_PLATE_T_10_01_A 473MPa 450MPa 1536 1300
S0_PLATE_T_15_01_A 466MPa 440MPa 1375 1400
S0_PLATE_T_20_01_A 482MPa 470MPa 1727 1600
S0_PLATE_T_30_01_A 435MPa 420MPa 1419 1400
S0_PLATE_T_40_01_A 430MPa 440MPa 2082 2000
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Figure 5.10: The force obtained from experimental data and the force obtained
by the simulations as function of time for test sample S0_PLATE_A_15_01_A.
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5.3 Case 3: Determination of fracture location
With the help of the calculated cylindrical coordinates and the applied force, the
true stress as a function of length could be determined for the test specimens. This
information would not be available without the DIC data and was therefore of
interest to investigate further. The true stress was therefore plotted as function
of length and it was discovered that a stress concentration became visible for the
samples very early during the loading. For most cases the early stress concentration
coincided with the location where the necking and later fracture of the material
occurred.
Since the FE models were constructed from the coordinates obtained from DIC
analysis, the actual geometry was reflected instead of the nominal geometry. This
resulted in an early indication of where the necking would occur, in accordance with
the examination of DIC data only. Figure 5.11 illustrates the stress calculated over
the test sample S0_PLATE_A_10_01_A. The true stress is calculated for the DIC
data and is seen at the top. The von Mises stress calculated by Abaqus can be seen
in the middle and footage of the specimen after fracture can be seen at the bottom.
The magnitude of the stress is not included since only the stress concentration is of
interest. It appears that the simulations predict failure in the same area as the DIC
data shows.

Figure 5.11: All three images are visualisations of test specimen
S0_PLATE_A_10_01_A. The top image is the true stress calculated for the sur-
face of the specimen based on the experimental DIC data. The middle image is
the von Mises stress calculated in Abaqus after using the radii calculated from DIC
data, it shows the stress distribution from the center of the specimen to the surface.
The bottom image shows an actual footage of the test sample that was taken after
fracture. Both of the two top images are taken from the elastic interval of the test,
thus indicating that the area of fracture could be discovered early.

To get a comprehensive comparison of when the necking area can be distinguished
the axial coordinate of the highest true stress was tracked over time. This was
made to see when the location stabilised around the axial coordinate where necking
started to occur.
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Figure 5.12 shows a sketch of a specimen where the total length atot, axial value
of where the necking occurs, abr, and the axial value when the location started to
stabilise, ain. The location of maximum stress was considered stabilised when the
value of a stayed within a certain range from the final breaking spot. This range was
chosen to be ±5% of the specimens total length. This condition can be expressed
as

arel = |a− abr|
atot

≤ 0.05 (5.1)

and ain becomes the first value of a that fulfils this condition before it stays valid
for the remaining time. An example of how the maximum true stress changes over
time can be seen in Figure 5.13.
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Figure 5.12: Sketch of a test specimen with the notation used when examining the
location of fraction. The total length of the specimen measured by DIC is denoted
atot, abr denotes the axial value of the node where the specimen breaks, ain is the
axial value when rmin starts to stabilise.
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Figure 5.13: The index of the axial coordinate a that has the maximum true
stress as a function of time for test specimen S0_PLATE_A_40_01_A. The value
is considered stabilised when constantly being located between the two dashed lines.
As can be seen the value stabilises early at ain and then only varies with a few indices
before maximum stress is reached after 157 s.
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The time when ain is reached is called time of initiation and is denoted tin. A
summary of time of initiation, tin, and relative distance from failure spot, arel, can
be seen in Table 5.6. The times refer to time after load is applied, thus neglecting
some data points at the beginning. tmax is the time when the maximum stress is
reached and the relative time is determined as trel = tin

tmax
. As can be seen, most cases

predicts a spot closer than 5.0 % of the specimens total length at a time long before
the maximum stress is reached. Only for a third of the specimens, the initiation of
stress concentration is confirmed after reaching the offset-yield stress. For the rest,
the stress concentration is found during the elastic interval. A cumulative plot over
the stress concentration initiation can be seen in Figure 5.14.

Table 5.6: Time of initiation of stress concentration listed together with the time
of maximum stress and the initiation time relative to time of maximum stress. The
time when reaching the offset-yield stress is listed as to as reference.

Test specimen name arel tin to tmax trel
S0_PLATE_A_10_01_A 2.6% 0 s 19 s 230 s 0
S0_PLATE_A_15_01_A 1.8% 72 s 27 s 393 s 0.183
S0_PLATE_A_20_01_A 2.8% 0 s 33 s 382 s 0
S0_PLATE_A_30_01_A 3.2% 52 s 17 s 209 s 0.249
S0_PLATE_A_30_02_A 4.0% 0 s 17 s 173 s 0
S0_PLATE_A_40_01_A 3.1% 19 s 19 s 195 s 0.097
S0_PLATE_T_10_01_A 4.3% 80 s 19 s 287 s 0.279
S0_PLATE_T_15_01_A 2.4% 34 s 28 s 376 s 0.090
S0_PLATE_T_20_01_A 2.2% 0 s 32 s 279 s 0
S0_PLATE_T_30_01_A 2.4% 3 s 15 s 185 s 0.016
S0_PLATE_T_30_02_A 3.2% 17 s 17 s 148 s 0.115
S0_PLATE_T_40_01_A 3.1% 14 s 15 s 143 s 0.098
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Figure 5.14: A cumulative plot showing when the necking point is distinguished
compared to time of maximum stress for the 12 samples.
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5. Calibration results and discussion

For most samples the location of the necking can be determined very early compared
to failure. This result indicates that after only obtaining the geometry, the area of
where the necking will occur can be made visible by the simulations. For test speci-
men S0_PLATE_T_10_01_A, longer time than for other samples were needed to
define this area. While inspecting the contour of the surface, seen in Figure 5.15,
this can be tracked to having a small radius close to the end of the specimen. The
final breaking point was at the axial value a = 29.4 mm.
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Figure 5.15: The surface contour for test specimen S0_PLATE_T_10_01_A
after 15 s. The small radius at the end of the sample prevents the script from
recognising the middle as the weakest part as early as for other samples.

5.4 Averaging data for improvement
What has not fully been investigated is how small abnormalities in the data affects
the results. As found when trying to calibrate for Poisson’s ratio, the radial dis-
placements are small and deviations over time are not constantly decreasing as would
have been expected when increasing the tensile force. The conclusion from that is
that the deviations in the data are in the same order as the actual displacements.
Small variations in the data from different DIC frames give miscalculations of dis-
placements. What might be of interest is to investigate further the influence of
facet size chosen in Aramis, as mentioned earlier larger facets provide data with less
deviations but decreases the solution. Another possible action to make the values
more robust for small deviations in time would be to consider time deviations when
fitting the cylindrical coordinate system to the data.
All displacements measured by DIC is based on the difference in position between
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the first frame and the actual frame, this could lead to errors if the first data frame
holds large deviations compared to the rest. This could probably be helped by
averaging the initial coordinates based on multiple frames as well. If making more
experiments, more frames could be collected before applying the force, thus leaving
a couple of frames from which an average could be calculated and used as initial
values.
Averaging could also be of interest in the early frames when considering the dis-
placement that is sent into the FE model. As of the current model the boundary
condition is based on the displacement at the highest axial value, during the elastic
range the displacements are not so large so small deviations between frames would
get larger impact.
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6
Concluding remarks

With the aim to obtain a general method that uses DIC to calibrate an FE model
some interesting things have been found but there are still much to investigate in the
future. This chapter will summarise important notes regarding the work and also
point out what have been learnt during the project together with ideas for future
work.

6.1 Summary and important results

During the project, a method that uses DIC data to setup an FE model and find
the material parameters that minimises the deviation between this model and ex-
perimental data for a specific material model has been obtained. Pre-processing of
the DIC data was performed to obtain a local cylindrical coordinate system that
would simplify the comparison with simulations of tensile tests. During this phase
the assumption of axisymmery and a varying radius were introduced. The second
phase of the project consisted in creating FE models with the help of Abaqus script
and to connect the data from experiments and simulations with a Python script.
Three different cases studies were then performed to estimate material parameters
based on the DIC data and by using the calibration method.
Even though steel is not the material that could get the most benefit from a more
detailed calibration method, it has served as a great help to understand features of
the DIC and important principles of the method.
It was a positive result that the DIC data obtained from Aramis were accurate
enough to obtain cylindrical coordinates with a small standard deviation. The
discovery that the radius varied over the sample was of importance to early predict
the area where the necking would occur only based on the DIC data. When using
the actual geometry for setting up the FE models, those models also predict the
area of necking good. This highlights that accurate description of the geometry can
have a crucial impact when constructing a model even for such a simple geometry.
The small deviation between necking point seen from the DIC data, FE simulation
data and the images taken of the specimens shows that the calculation of cylindrical
coordinates are at least sufficiently good and brings information to the sample.
The method of the calibration works but to get reliable results, data of good quality
needs to be used in the calibration routine. Since the available data was not collected
specifically for this project no thought was put into the need of having much data
in the in the elastic range of the stress-strain curve. The lack of this type of data
became a limiting factor when trying to determine Young’s modulus.
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This project has provided a good start to the evaluation of the effects of calibrating
FE models with the use of DIC. With a working method of comparing experimental
data obtained with DIC to simulated data from an FE software, there should not
be to much of an effort to invoke more complex models and expand the model to
get more results.

6.2 Suggestions for future work
Much time was spent on the investigation of the DIC data and to get the method
working, therefore there are several things that are interesting to examine in the
future.
As mentioned above, a greater amount of data collection over the elastic range would
be of interest to get a better measure of how well the calibration in itself works. This
work indicates that the calibration works fairly well even for small amount of data
but is not fully reliable. More sample points in the elastic range would also constitute
a better foundation foundation to investigate Poisson’s ratio. An additional data
collection would thus be needed for this purpose.
It is also of interest to invoke more material models to get an overall comparison
of how well the calibration works. This is something that could be useful when
considering other materials with a more complex structure. Additional data would
be of interest for this as well, to obtain more complex data than for steel. When
considering more material models the error function needs to be further developed.
When only a few parameters are studied the error from the different terms could be
used separately to calibrate different parameters, when more complex models are
used the weighting of the different terms become important and needs to be taken
into account.
The current focus have been on the calibration of the material models, to verify the
calibration some organised validation of the results needs to be done as well.
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A
Abaqus script

Abaqus scripting is an application programming interface connecting to the models
and data used by Abaqus. Abaqus scripting is based on the object-oriented Python
programming language. All actions that can be made in Abaqus/CAE graphical
user interface (GUI) have an equivalent Python statement or block of statements
and the actions can thus be performed by Abaqus scripts instead[13]. The scripting is
powerful and lets the user combine the functionality of Abaqus and the programming
language Python. For tasks that are repetitive, scripting is valuable since it lets the
program do all the work. The script can be run inside Abaqus in the GUI but can
also be controlled and run from an outer program through the terminal, of which
the latter is used mostly during this work. Two scripts are written for the analysis
of the tensile tests. The first script uses Abaqus to construct an FE model based on
the data from the DIC analysis and call the next script. The second script extracts
the desired output from the ouput database that was generated by the first script
and writes the results to reports. The content of the scripts are explained more
detailed below.

A.1 Script for model setup
To produce FE models corresponding to different tensile tests with varying geometry
and material parameters, a script that constructs those models was created. The
script is altered to correspond to different setup choices and are designed according
to the following work flow:

1. Parameter definition. The beginning of the script encloses variables that con-
trols the geometry, material parameters, mesh details, time steps and end
displacement for each step.

2. Creation of part. The simple geometry of a tensile test specimen is created by a
profile sketch that is axisymmetric according to the axisymmetric assumption.
The outer edge of the sketch is based on the coordinates obtained from the
DIC data analysis.

3. Material definition. The material model is chosen together with the current
material parameters and assigned to the part.

4. Creation of instance.
5. Creation of sets. The sets are created to make postprocessing easier, only the

values at the surface has corresponding values in the DIC data.
6. Creation of steps and boundary conditions. The steps and displacement of the

upper end are determined based on the DIC data analysis.
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A. Abaqus script

7. Seeding and meshing of the model. Seeds the edges of the model to control the
mesh structure.

8. Setup of job.
9. Execution of postprocessing script.

A.2 Script for postprocessing
To automatically handle the output of interest a postprocessing script is constructed.
This script reads the results from the output database file that Abaqus produces
when running the job on the model database and prints report files. The report
files holds information about the axial and radial displacements for the nodes corre-
sponding to the nodes given by DIC and also the reaction forces that are obtained
from the nodes at the upper end of the specimen. Step times are also included to
verify that the correct files are used. Time steps in Abaqus are there to split up the
analysis into sequences, in this work it is primary made to define multiple prescribed
displacements of the end.
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