
Self-Supervised Cross-Connected CNNs
for Binocular Disparity Estimation
Master’s thesis in Systems, Control and Mechatronics

TRYGVE GRÖNDAHL
ANNA SAMUELSSON

Department of Mechanics and Maritime Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Master’s thesis 2018:26

Self-Supervised Cross-Connected CNNs
for Binocular Disparity Estimation

TRYGVE GRÖNDAHL
ANNA SAMUELSSON

Department of Mechanics and Maritime Sciences
Division of Vehicle Engineering and Autonomous Systems

Adaptive Systems Research Group
Chalmers University of Technology

Gothenburg, Sweden 2018

Self-Supervised Cross-Connected CNNs for Binocular Disparity Estimation
TRYGVE GRÖNDAHL
ANNA SAMUELSSON

© TRYGVE GRÖNDAHL, ANNA SAMUELSSON, 2018.

Supervisor: Oskar Noresson, Yaowen Xu, CPAC Systems AB
Examiner: Peter Forsberg, Adaptive Systems

Master’s Thesis 2018:26
Department of of Mechanics and Maritime Sciences
Division of Vehicle Engineering and Autonomous Systems
Adaptive Systems Research Group
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: The left image from an image pair in the Cityscapes dataset. A depth for
every pixel was calculated using a self-supervised X-CNN.

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Self-Supervised Cross-Connected CNNs for Binocular Disparity Estimation
TRYGVE GRÖNDAHL
ANNA SAMUELSSON
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract
When developing autonomous vehicles, sensors with high accuracy and speed are
needed. One type of sensor that can gather a lot of information is the camera. From
two stereo images a disparity between them can be calculated, and from that the
depth. The drawback with today’s algorithms is the trade-off between high quality
estimation and computational speed.

By taking inspiration from recently published neural networks for other appli-
cations, we present a novel design for disparity estimation networks. We design a
cross-connected convolutional neural network to calculate full HD disparity maps
from stereo images at a high frequency. By transfer training the network, using
self-supervised learning, the network can learn to handle new environments. The
network shows significantly faster runtimes than other disparity estimation networks,
with the loss of some accuracy.

We show that the self-supervised loss functions perform poorly when the images
are not aligned, which is important to solve for real life applications of the network.
Furthermore, we present ideas on how to improve the network’s runtime further.

Keywords: Artificial Neural Network (ANN), Convolutional Neural Network (CNN),
deep learning, self-supervised, machine learning, cross-connection, stereo vision, dis-
parity estimation

v

Acknowledgements
We would not have achieved this thesis alone, and would like to thank those who
made this thesis possible. First, we would like to thank our supervisors Oskar
Noresson and Yaowen Xu for all help and support during our work. We would also
like to thank our examiner Peter Forsberg who has been very engaged in our project
and our way forward.

This thesis work was conducted at the company CPAC Systems AB, where we
have been well received and given a lot of support and interest, we therefore thank
the company as such for making this thesis possible and for making us feel welcome.

Trygve Gröndahl and Anna Samuelsson, Gothenburg, May 2018

Thesis advisors: Oskar Noresson, Yaowen Xu, CPAC Systems AB
Thesis examiner: Peter Forsberg, Adaptive Systems

vii

Abbreviations

ANNArtificial Neural Network
CNNConvolutional Neural Network
EPEEndpoint error
FOVField Of View
FT3DFlyingThings3D
GbgGothenburg
GC-netGeometry and Context network
px pixels
ReLURectified Linear Unit
RGBRed Green Blue, used for color images
SIFT. Scale-Invariant Feature Transform
X-CNNCross Convolutional Neural Network

ix

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Purpose . 2

1.1.1 Goals . 2
1.2 Scope . 2
1.3 Thesis outline . 2

2 Theory 5
2.1 Stereo vision . 5

2.1.1 A simple camera model . 5
2.1.1.1 The pinhole model 5
2.1.1.2 Lens distortion . 7

2.1.2 Camera calibration . 7
2.1.3 Disparity and depth calculation 8

2.2 Artificial neural networks . 9
2.2.1 Convolutional neural networks 9
2.2.2 Training neural networks . 11

2.2.2.1 Network learning . 11
2.2.2.2 Loss function . 11
2.2.2.3 Optimizers . 12
2.2.2.4 Other training methods 12

2.2.3 Further improving a model . 12
2.3 Stereo vision using neural networks 12

2.3.1 Siamese network . 13
2.3.2 Residual connections . 13
2.3.3 Reconstruction error . 13

2.3.3.1 Bilinear sampling . 14
2.3.3.2 Structural similarity between images 15

2.3.4 Recent research . 15
2.3.4.1 The geometry and context network 15

2.4 Applying the theory . 16

3 Method 17
3.1 Correlation between disparity, depth and hardware 17

xi

Contents

3.2 Dataset selection . 18
3.2.1 Available datasets . 19

3.2.1.1 FlyingThings3D . 19
3.2.1.2 Kitti Stereo 2015 . 19
3.2.1.3 Cityscapes . 20

3.2.2 Generated data . 21
3.3 Neural network . 22

3.3.1 GC-network . 23
3.3.1.1 Network design . 24
3.3.1.2 Training . 24
3.3.1.3 Results . 24
3.3.1.4 Evaluation . 24

3.3.2 Cross-CNN . 25
3.3.2.1 Network design . 25

3.3.2.1.1 Building blocks of the X-CNN 26
3.3.2.1.2 Final X-CNN design 27

3.3.2.2 Training . 29
3.3.2.3 Results . 29
3.3.2.4 Evaluation . 30

3.3.3 Self-supervised Cross-CNN . 30
3.3.3.1 Network design . 30
3.3.3.2 Training . 35

3.4 Creating a new dataset . 36
3.5 Summary . 36

4 Results and discussion 39
4.1 Numerical results . 39
4.2 Visual results . 41

4.2.1 Representative scenes . 41
4.2.2 Highest errors . 41
4.2.3 Visual evaluation . 43
4.2.4 Gbg dataset . 43

4.3 Discussion . 44
4.3.1 Network performance . 44
4.3.2 Self-supervision . 47
4.3.3 Robustness and adaptability 47
4.3.4 Computing power . 48
4.3.5 Trade-offs . 48
4.3.6 Applying to real life . 48
4.3.7 Disparity range . 48
4.3.8 Multiple cameras in stereo . 49

5 Conclusion 51

Bibliography 53

A Appendix 1 I

xii

List of Figures

2.1 Pinhole camera model . 6
2.2 Disparity estimation with stereo cameras 8
2.3 A basic neural network . 10
2.4 Example of a one layer convolutional neural network 11
2.5 The effect of pruning a network . 13
2.6 Bilinear sampling example . 14

3.1 The camera rig used . 17
3.2 Correlation between disparity and depth 18
3.3 FT3D dataset . 19
3.4 Kitti stereo vision dataset . 20
3.5 Cityscapes dataset . 21
3.6 Carla dataset . 22
3.7 GC-network prediction on FT3D . 25
3.8 X-CNN concept network . 26
3.9 X-CNN detailed structure . 27
3.10 Comparing X-CNN design ideas . 28
3.11 Comparing final X-CNN design ideas 29
3.12 X-CNN prediction results on the Carla dataset 31
3.13 Concept figure of image warping . 32
3.14 Masking of the warped image . 34
3.15 Visual evaluation of prediction results on Cityscapes 36
3.16 Stereo images captured in Gothenburg 37

4.1 Self-supervised X-CNN prediction on Carla data 42
4.2 Self-supervised X-CNN prediction on Kitti data 42
4.3 Self-supervised X-CNN prediction on Cityscapes data 43
4.4 Comparison between supervised and self-supervised X-CNN 44
4.5 Supervised X-CNN prediction width the largest error on Carla 45
4.6 Supervised X-CNN prediction width the largest error on Cityscapes . 45
4.7 Self-supervised X-CNN prediction on Cityscapes combined to 3D . . . 46
4.8 Warping of an unalligned imagepair 47

xiii

List of Figures

xiv

List of Tables

3.1 CNN runtime for input size . 27
3.2 Training parameters tuning and outliers 35

4.1 Numerically comparing trained networks 39
4.2 Numerically comparing self-supervised X-CNN networks 40
4.3 Runtimes for different resolutions . 41

A.1 A description of the layers in the X-CNN network. I

xv

List of Tables

xvi

1
Introduction

During recent years, many companies in the automotive industry have invested
heavily in the development of autonomous vehicles. Volvo Group, for example, has
started projects in developing autonomous trucks for usage in mining [1] and in
garbage collection [2]. An autonomous system could improve the traffic safety and
replace human drivers in hazardous or inhospitable environments.

The system of an autonomous vehicle is safety critical, meaning that a failure
of such a system could lead to irreversible damage [3]. Safe systems needs to be
both redundant and robust, which can be achieved by combining the result from
different sensors and algorithms. Different types of sensors have different strengths
and weaknesses, hence the usage of different sensors is needed to create a robust
digital representation of the world around the system. Having multiple sensors to
cover different cases is important, as the data they provide is useful in different
situations. An example is the sensors an autonomous car could use. In a tunnel a
GPS will not be of much use, as the satellite signals will not reach it, whereas the
laser of a LiDAR will be reflected on the tunnel walls and provide useful data. In an
open landscape the reverse would be true. GPS and LiDAR are just two examples
of useful sensors in this application, others can be cameras, radar and IR-sensors.
One of the strengths of using cameras as sensors is the amount of data that can be
obtained from images in a variety of environments. Drawbacks exist however, such
as the dependency of sufficient light.

Cameras can be used for many applications and multiple cameras can be com-
bined to aggregate data. The use of two or more sources for vision, such as cameras,
is known as stereo vision. By using the difference of where an object is located in
the images from both sources, a position of the object relative to the cameras can be
calculated. By changing the distance between the sources of vision, the quality of
the estimation at different depths change. Cameras further apart gives better depth
estimation of objects further away. By using multiple stereo image pairs at different
distance from each other, the depth estimation can be refined and handle a wider
range of distances [4].

The introduction of convolutional neural networks (CNNs) has made cameras and
computer vision a strong tool in creating an accurate digital interpretation of the
world [5]. When training a neural network, such as a CNN, the network is fed with
large quantities of data and can learn features in or properties of the data. In order
to train a network to calculate the depth from images, different learning strategies
can be employed depending on the available datasets. Recent research in supervised
stereo vision shows very high precision with a sub-pixel accuracy for the depth
estimation [6], but at the cost of being very computationally heavy. The estimations

1

1. Introduction

can also be done using unsupervised training which has shown interesting results for
both stereo and monocular vision [7, 8].

Problems with calculating depth using computer vision still exist. Cameras as
sensors have various drawbacks, especially in varying light and weather conditions.
The conventional algorithms for calculating depth are often computationally heavy,
and insufficient for images with occluded or texture-less areas. The use of CNNs
might tackle these problems if trained with a sufficient amount of data, yielding
the problem of finding diverse, publicly available real-life data with ground truth
depth. Training a network with only synthetic data will not generalize to real life
[9], and one way of solving the problem of finding ground truth data could be to use
unsupervised learning.

1.1 Purpose
The purpose of this project is to examine how neural networks can be used to obtain
depth estimations from a stereo camera pair and how it can be implemented on an
embedded platform. This will be done by implementing existing neural network
theory and research followed by examining the possibilities of refining the accuracy
and runtime of the estimation. The aim is to use unsupervised learning to create
accurate depth maps in new environments, thus eliminating the need for labeled
datasets.

1.1.1 Goals
The main goal of the project is to design and implement a neural network for depth
estimation using high resolution images in an embedded system. The embedded
approach leads to restrictions on the computational power and the runtime of the
system. The goals are:

• Predict a full HD, 1920×1080 pixels, disparity map
• Predict with a frequency of 10 Hz, i.e. generate 10 disparity maps every second,

on a NVIDIA Jetson TX2

1.2 Scope
The project will focus on computer vision using cameras as the primary sensors.
The scope of this Master’s thesis does not involve the design of the hardware used,
as this will be provided. Thus, the camera specifications, distance between cameras
and other hardware design parameters are set.

1.3 Thesis outline
This thesis consists of five parts. The introductory part presents a brief background
and the purpose and scope of the thesis. In the theory chapter, binocular stereo vi-
sion and artificial neural networks is presented. These two areas are then combined

2

1. Introduction

to a section about the theory behind stereo vision using neural networks, empha-
sizing convolutional neural networks. The method chapter describes the work flow
of the thesis and the methods used to obtain the result and the strategic decisions
made. In the method method the different network designs are presented as well
as some initial results and evaluations of those designs. The results are then pre-
sented, compared and discussed in the fourth chapter. The last chapter contains a
conclusion of the work done and a presentation of ideas about future work.

3

1. Introduction

4

2
Theory

In this chapter the theoretical background of the project is presented. There are
three main topics in this chapter. The first section presents the camera hardware,
calibration of the cameras and the use of stereo vision for depth estimation. In the
second section the theory of artificial neural networks is described emphasizing on
convolutional neural networks and methods of training networks. The last section
describes the use of convolutional neural networks for disparity estimation together
with recent research in the area.

2.1 Stereo vision
In this section a simple yet efficient camera model is presented and explained to-
gether with the drawbacks of that model and how to compensate for those. Fur-
thermore, the idea behind camera calibration, both for one camera and for two
cameras in stereo, is described. Finally, binocular disparity and how it is calculated
is presented.

2.1.1 A simple camera model
A simple camera model often used is that of a pinhole camera, which is a model of a
box with a tiny aperture in one of its walls [10]. No light can pass through the wall
except for through the hole. The light passing through the hole is projected on the
opposite wall of the box, called the image plane. In reality, a camera needs more
light than available in this simplified model. By using lenses, cameras can acquire
the amount of light needed. The lens introduces distortions in the resulting image,
which it is preferable to compensate for [11].

2.1.1.1 The pinhole model

In Figure 2.1 a representation of the pinhole and inverted pinhole camera models can
be found. The light from outside the box is passed through the aperture and hits
the imaging plane a distance f , the focal length, from the aperture. The pinhole
camera will produce an image of the scenery upside down. The idea behind the
inverse pinhole camera is to project the image plane to the other side of the pinhole,
yielding the inverse of the image. This is the model often used for calculations, since
the inverse model makes the calculations easier [10]. The field of view (FOV) is the
imaging limit for an imaging system, depending on the lenses or sensors used. The

5

2. Theory

FOV and the focal length, f is related to each other. For the horizontal FOV the
equation can be written as

FOVhorizontal = 2 arctan
(

width
2f

)
, (2.1)

where width is the width of the resulting image in millimeters [12].

Image plane for pinhole
camera

Image plane for inverted
pinhole camera

Optical axis

f f

z

Pinhole

Figure 2.1: A visualization of how a pinhole camera model works. The black dot
is the pinhole, and the image plane is the focal length f from it. In the image plane
of the pinhole camera the tree will be upside down. However, this can be solved by
using the inverse pinhole camera model, where the image plane is moved in front of
the pinhole.

In reality the focal lengths in the x and y directions are different, fx and fy, since
the shape of individual pixels in a camera often are non-square. The variables cx and
cy are used for describing the possible offset in the middle point in the image plane
compared to the optical axis, called principal point. The coordinates of a real world
point P that has the position (X, Y, Z) can be used to calculate the coordinates in
the image, x and y, as

x = fx
X

Z
+ cx

y = fy
Y

Z
+ cy,

(2.2)

using the inverse pinhole camera model with the origin in the aperture. These
equations can be rewritten into a matrix that can be used for translating between
a real world point and the corresponding point in the image plane. The matrix is
often denoted M and consists of the intrinsic parameters; fx, fy, cx and cy [10].
The transformation is written asxy

w

 =

fx 0 cx
0 fy cy
0 0 1

XY
Z

 . (2.3)

6

2. Theory

In most applications it is preferred to transform these camera coordinates, to
coordinates in the world coordinate system. This can be done by linear transfor-
mation using a rotation matrix R and a translation vector t, called the extrinsic
parameters. The transformation from world coordinates to camera coordinates can
be written as Pcamera = R(Pworld−t). R and t are calculated for the specific camera
through calibration [13].

2.1.1.2 Lens distortion

There are two types of common lens distortions [11]. Radial distortion is the most
common and has the highest effect at the edges of the images, leading to the "barrel"
or "fish-eye" effect. Most lenses bend light more the further away from the center
the light hits the lens which causes this distortion. The formula for compensating
for this is a Taylor series expansion in the neighborhood of r=0;

xcorrected = x(1 + k1r
2 + k2r

4 + k3rv),
ycorrected = y(1 + k1r

2 + k2r
4 + k3rv),

(2.4)

where k3 is commonly neglected for cameras without a special fish-eye lens [11].
The second most common lens distortion is tangential distortion originating from

the lens not being exactly parallel to the imaging plane. The two equations for
correction of this distortion are:

xcorrected = x+ 2p1y + p2(r2 + 2x2,

ycorrected = y + p1(r2 + 2y2) + 2p2x.
(2.5)

The parameters k1, k2, k3, p1 and p2 are also called intrinsic and are calculated
through the camera calibration [13]. Other kinds of lens distortions exists but do
not usually effect the resulting image enough to be compensating for.

2.1.2 Camera calibration
When capturing images to create a dataset, it is important that the cameras are
calibrated. The calibration of a camera is done to find the intrinsic and extrinsic
parameters for that specific camera [13]. In this section the main idea of camera cal-
ibration will be explained, but not the mathematical theory behind all steps. Often,
a library such as OpenCV [14] is used for calibration. The calibration procedure
consists of taking a set of photos of an object with known dimensions, often in the
form of a 2D "chessboard" with alternating white and black squares. When trans-
lating and rotating the object, the fact that the dimensions of the object is known
can be used to estimate the unknown intrinsic parameters [15].

Stereo calibration is the process of finding a relationship between two cameras in
space. The stereo calibration is often followed by rectification, aligning the image
planes of the cameras. The calibration is done by calculating the rotation matrix
and translation vector between two cameras, calculated as:

R = RrRT
l (2.6)

t = tr −Rtl, (2.7)

7

2. Theory

where R and t denotes the rotation and translation that brings the right camera
coordinate system into the left one [16]. Rr, tr, Rl and tl are the rotation ma-
trices and translation vectors found out by two single camera calibrations, used to
transform a point’s world coordinates to camera coordinates. These are used as:

Pleft_camera = Rl(Pworld − tl) (2.8)
Pright_camera = Rr(Pworld − tr). (2.9)

2.1.3 Disparity and depth calculation
Two cameras that are aligned in stereo and that has been calibrated, can be used
together in order to produce a depth map. The images the cameras produce can
be combined by finding the corresponding pixels in the images [17]. Distinctive
patterns such as edges or points, known as features, in the images are often used
for matching. A number of different matching algorithms exist, such as the well
known scale-invariant feature transform (SIFT) [18]. The distance between the
corresponding pixels in two images are called the binocular disparity. In Figure 2.2
two cameras registering a point P can be seen from a top-view. The camera to the
left is called Cl and the one to the right Cr. The cameras are placed a distance b from
each other, known as the baseline. The focal length f is the same for both cameras.
The difference between a point in the left image pl, having pixel coordinates (xl, yl),
and the same point in the right image pr, having pixel coordinates (xr, yr), is the
disparity, denoted d [19]. Assuming that the two cameras have been rectified, yl = yr
the disparity for pl i defined as:

d(pl) = xl − xr. (2.10)

Note that the binocular disparity is only measured in horizontal direction. The

b

P(X,Y,Z)

Cl Cr

Imagel Imager

z

pl pr

f f

Figure 2.2: A top-view of two cameras photographing a point P a distance z from
the camera baseline. The cameras produce an image each and the point P will have
different coordinates in those images, since it has been seen from different views.

8

2. Theory

distance z from the camera baseline to the point P can be calculated as

z = bf

pl − pr
= bf

d(pl)
[20]. (2.11)

The stereo disparity estimation algorithms are commonly divided into four build-
ing blocks. Most algorithms focus on a subset of these [21]:

• Matching cost computation
• Cost aggregation
• Disparity computation or optimization
• Disparity refinement

This way of dividing the disparity estimation algorithm is often used both for neural
networks and in conventional image analysis methods.

2.2 Artificial neural networks
Artificial neural networks (ANN) is one part in the area of machine learning. The
idea behind ANNs is to imitate the neurons and synapses of the human brain [22].
ANNs have a graph-like structure with layers of neurons connected with different
weights. An example of how an ANN can be structured is shown in Figure 2.3.
The first and last layers are called input and output layers respectively. In between
those layers there can be a number of hidden layers. The type of network shown in
Figure 2.3, is called a feed forward network with fully connected nodes [22]. Nodes
are never fed backwards in the network and all neurons in one layer are connected
to all neurons the following layer. In each neuron a bias is added and an activation
function is applied. The output, y, from a neuron can be written as

y = f(wx + θ), (2.12)

where x is a vector containing the outputs from the layer before, w is a vector
containing the weights for the connections and θ is a bias for each neuron. The
function f(·) is called the activation function and maps the weighed inputs to the
output of each neuron [22]. A common activation function is the rectified linear
unit, ReLU, which is a nonlinear activation function [23]. The ReLU function is
defined as

f(x) = max(0, x). (2.13)

Another common activation function is the hyperbolic tangent function, tanh, which
maps the output of the node between -1 and 1. An ANN that has many hidden
layers is called a deep neural network and the field of deep neural networks is often
called deep learning.

2.2.1 Convolutional neural networks
In computers, images are represented as matrices with dimensionsW×H×C, where
W is the width, H is the height and C the number of color channels of the image. To
use a fully connected ANN with a connection for each input pixel would require an

9

2. Theory

Output1

Input2

Input1

Output2

w1,1
(1)

w2,2
(1)

w1,2
(1)

w2,1
(1)

w1,1
(2)

w2,2
(2)

w2,1
(2)

w1,2
(2)

Figure 2.3: An example of a neural network consisting of an input layer, an output
layer and one layer in-between called a hidden layer. The connections between the
neurons has different weights, denoted w.

abundance of parameters even for a small network. A convolutional neural network
(CNN) can be seen as using convolutions between the image and small filters, giving
a lot less parameters [5, 24, 25]. Figure 2.4 shows how a CNN with a single filter
could look. The image is represented by numbers, and for each time the filter moves
one step over the image, it takes multiple values and produces a part of the output.
CNNs can be used when the input has a spatial relation, and are commonly used in
image analysis applications.

A CNN can also be seen as a number of small networks, each applied to different
parts of the image. Because of the spatial relation in the input the networks can
share weights. The number of neurons in the networks corresponds to the number
of filters used in the convolution, and the networks receptive field to the filter size.

The output from a convolutional layer taking an image, i.e. a matrix, as input
will be a new matrix with other dimensions. The number of filters decides the
depth of the matrix. The stride, the number of pixels the filter will move in the
convolution, and the filter size decides the output height and width. A common way
to obtain the wanted height and width after a convolution is to pad the input image
with zeros at the borders. The deeper the CNN, the more complex features it can
learn [24, 25].

A convolution layer is often followed by an activation function and sometimes a
pooling layer. The pooling layer is used as a way of down-sampling. A common
pooling function is the max pooling, which gives the maximum output in a rectan-
gular neighborhood. A pooling layer helps to make the output transition invariant,
i.e. the output does not change even if the input is slightly shifted [24]. In many
applications, a max pooling layer can be replaced by larger stride without loss of
accuracy [26].

A variation to a convolutional layer is a deconvolution layer also known as trans-
posed convolutions [27]. These layers are filters that output a larger image than the
input shape, and can be used to upsample the input to a larger size.

10

2. Theory

Figure 2.4: A CNN with a single filter applied to an image. The pixels in the image
are digitally represented as numbers, which the yellow filter strides over, producing
new numbers as output.

2.2.2 Training neural networks
The input and output of a network as well as availability of datasets limits how a
network can be trained. There are three different approaches to training a network;
supervised, unsupervised and reinforcement learning [28]. These terms have no set
definition, and the usage is rather ambiguous in the research community. However,
the usage of the terms can still be generalized.

2.2.2.1 Network learning

Supervised learning is used when the dataset contains labels or targets and the
network is trained to associate features in the data with the corresponding label or
target. An example is to classify a dog or a cat in an image, after training on one
dataset of cats and one of dogs.

Unsupervised learning is used when the network is trained to learn properties of
the dataset such as distribution or divide it into clusters without any given labels
or targets.

Reinforcement learning is when an autonomous agent learns to perform a task
without guidance from a human. Instead the agent uses trial and error and learns
from the feedback given by the system. This learning method is practical when no
correct answer exist at a given time, or when the feedback is delayed.

2.2.2.2 Loss function

The loss, sometimes called error, of what the network predicts is in the supervised
case the difference between the ground truth and the prediction. A common way to

11

2. Theory

train a network using supervised or unsupervised learning is by shifting the param-
eters a small step according to the negative gradient of the produced network loss,
which is called gradient decent [28]. The loss function is calculated according to the
problem at hand, and could for example be the mean squared error.

2.2.2.3 Optimizers

The objective when training a network is to find the optimal network parameters,
i.e weights and biases, of the network to minimize the loss function. Finding the
optimal parameters for the network can be a costly process, taking a lot of time and
computational power. A number of different algorithms has been developed in recent
years that attempts to solve these problems. In deep learning these algorithms are
called optimizers, and common algorithms are stochastic gradient decent, AdaGrad,
RMSProp and Adam [29].

2.2.2.4 Other training methods

Self-supervised learning is a subset of unsupervised learning. A self-supervised net-
work uses the inputs and the predicted outputs to calculate a loss [30]. A set of
different loss functions can then be combined to train the network.

A network can be transfer trained or retrained, to fit a new dataset. This is called
transfer learning [31]. Retraining a network can done if the new task is similar to
how it already is trained.

2.2.3 Further improving a model

A model can still be improved, even after it is trained and has converged for a
dataset. There are different techniques to lower the memory size and runtime of a
model, and one of these techniques is pruning.

A trained model usually has some weights very close to zero, which do not effect
the model output. These weights can be removed, and the neurons without output
weights can also be removed, without losing accuracy [32]. The weights and neurons
with the smallest effect are pruned and the network is retrained, and the process
is repeated until the model loses accuracy. Experiments with well known networks
for image classification have shown reduction to 10 % of the original weights [32],
reducing the number of weights lowers the runtime. An example of the pruning of
a fully connected network can be seen in Figure 2.5.

2.3 Stereo vision using neural networks

A way to calculate high accuracy disparity maps from stereo image pairs is to use
CNNs. In this section some of the building blocks commonly used for network design
and ways of training a network to produce a disparity map are presented.

12

2. Theory

Pruning neurons

Pruning weights

Figure 2.5: The image shows an example of a fully connected network (left) and
a resulting network after pruning (right), where both weights and neurons has been
removed.

2.3.1 Siamese network
The conventional algorithms used for feature matching can be replaced by CNNs.
A common way to extract features and match them using CNNs is by using the
Siamese architecture, which consists two networks sharing the same weights. The
two networks are commonly fed with one image each and provides the matching
features as output [33].

2.3.2 Residual connections
When an input to a layer is fed forward and added to the output of a layer further
down in the network structure, it is called a residual connection [34]. The output
from a residual block can be written as F (x) + x, where x is the input to the block
and F (·) is the function representing a layer. Residual connections can be used to
feed forward information in an encoder-decoder network, as this could make the
training easier. It can therefore be used in deeper networks which otherwise would
be hard to train.

2.3.3 Reconstruction error
The most common way to train networks to estimate disparity from stereo image
pairs is to use supervised learning with ground truth disparity maps. This requires
large datasets containing images and corresponding ground truth data. However,
only a few large datasets with stereo image pairs and ground truth disparity are
publicly available. A way to tackle this problem is to construct the loss function to
use just the input and output of the network, no ground truth. In recent publications
a so called reconstruction error has been used [30, 8]. The disparity between a two
images in stereo can be used to warp the left image to the right. The error between
the right image and the warped left image can be used as the error on which to
train the network, as a perfect disparity map would recreate the other image. The
disparity from the left image to the right is written as dl, and the formula for the
reconstructed right image can be denoted as I ′r = dl(Il). By using both dl and the
disparity from the right to the left image dr, the image can be warped twice, with

13

2. Theory

(x+1,y+1)

(x,y) (x+1,y)

(x,y+1)

xf

yf

Figure 2.6: A figure to explain how a bilinear sampler works. The four neighbours
of the the red cross are weighted together to form a value. In the warped image
that value is then given to the pixel the cross has transformed to. The xf and yf
represent the decimal pixel coordinates of the cross in the original image.

both output disparity maps, producing itself as I ′′l = dr(dl(Il)). This kinds of errors
are both used in [8] and [30]. A visual representation of how I ′ is created can be
seen in Section 3.3.3.

2.3.3.1 Bilinear sampling

Image warping is a transformation that maps all the pixel in the input image to
positions in a new image [35]. A common linear transformation is the affine trans-
formation, given as:

u = a0x+ a1y + a2,

v = b0x+ b1y + b2,
(2.14)

where x and y are the old pixel positions, u and v are the pixel positions in the
new image and a and b is the transformation in question [35]. Often, the resulting
values for u and v are not integers. This can be solved by rounding the values to
integers but result in loss of information, or by using bilinear sampling. The bilinear
sampling method is done by calculating from which location in the old image the
value should be taken for a specific pixel location in the new, warped image. The
value is then calculated by the weighted sum of the four neighbouring pixels to the
location [36]. A warping Iwarp[u, v] = I[xf , yf] where xf and yf is the decimal values
of the location where to obtain the pixel value is illustrated in Figure 2.6. The
sampled value for the warped image is then:
I ′[u, v] = (x+ 1− xf)(y + 1− yf)I[x, y] + (xf − x)(y + 1− yf)I[x+ 1, y]+

(x+ 1− xf)(yf − y)I[x, y + 1] + (xf − x)(yf − y)I[x+ 1, y + 1].
(2.15)

In [37] a network using a fully differentiable implementation of bilinear sampling is
presented. This implementation is later used for implementations of reconstruction
error for image warping using the disparity [30, 8].

14

2. Theory

2.3.3.2 Structural similarity between images

A problem often occurring when working with images is how to decide how similar
two images are. A simple solution is to calculate the element-wise norm between
the images, however that is not always a suitable way to calculate similarity. A
structural similarity measure, SSIM, that calculates the similarity of the luminance,
contrast and structure for images was presented in [38]. The function, SSIM, for
structural similarity between two images, I and I ′ is defined as:

SSIM(I, I ′) = [l(I, I ′)]α · [c(I, I ′)]β · [s(I, I ′)]γ, (2.16)

where l(·), c(·) and s(·) are functions for comparing luminance, contrast and struc-
ture respectively, and the α, β and γ are weights of these functions. In [38] the
SSIM-function is simplified to:

SSIM(I, I ′) = (2µIµI′ + C1)(2σII′ + C2)
(µ2

I + µ2
I′ + C1)(σ2

I + σ2
I′ + C2)

, (2.17)

where µ is the mean of the image, σ the standard deviation and C1 and C2 are
constants defined as:

C1 = (K1L)2, (2.18)
C2 = (K2L)2, (2.19)

and K1, K2 � 1 and L is the dynamic range of pixel values [38]. Using this measure
of similarity can be helpful when comparing images, as seen in both [30] and [8].

2.3.4 Recent research
A common indicator of the accuracy and performance of different ANNs, is the Kitti
benchmark suite [39]. The benchmarks on Kitti are limited to a few categories which
are evaluated on publicly available datasets.

One network using the reconstruction error for unsupervised, or rather self-
supervised training is the SsSMnet [30]. It ranked as the fifth best network when
it was published to the Kitti stereo 2015 benchmark, and was more accurate than
many nets using supervised learning.

A network that has interesting properties is a CNN for LiDAR-Camera Fusion
[40]. The paper explores the different approaches to the fusion between two input
sources. The paper introduces the novel fusion strategy called cross-fusion, which
connects the two branches of data and enables the network to integrate multimodal
information at any abstract level.

2.3.4.1 The geometry and context network

A network scoring high on the Kitti benchmark scoreboard is the Geometry and
context network, called the GC-net [6]. The GC-net consists of two Siamese net-
works of 2D convolutions used for feature extraction, combined with a cost volume
calculation. The cost volume calculation is a function that calculates the cost of

15

2. Theory

matching each pixel in one of the input images with all other pixels in the other im-
age horizontally. This cost is combined with the output matrices from the Siamese
networks, giving a 4D volume. The cost computation is then refined using multi-
ple 3D convolutions. Following this is a soft argmin activation function which is
differentiable, and defined as:

argmin
dmax∑
d=0

dσ(−cd), (2.20)

where d is the disparity, dmax the maximum allowed disparity, σ(·) the argmax
function and c the predicted cost [6, 30]. The GC-net has an outlier percentage of
2.87 % on the Kitti scoreboard and is top ranking.

2.4 Applying the theory
The theory which has been presented in this chapter is the basis for Chapter 3, and
is used to complete the goal of creating a full HD disparity map at high frequency.

The stereo vision theory, Section 2.1, was used in the selection and creation of
datasets. The theory which combines neural networks and stereo vision, Section 2.3,
was used in order to design the networks. The different building blocks of neural
networks was combined to create new network structures while the reconstruction
error in Section 2.3.3 allowed for self-supervision in the networks. Section 2.3.4,
Recent research, was used as an initial inspiration for network structures.

16

3
Method

In this chapter the method and work flow used in the master’s thesis are described.
Since the hardware was provided by CPAC, the main focus for this thesis was soft-
ware and more specifically to design a robust network that can be used in a real
world application. The work was carried out iteratively, where network was im-
proved according to the evaluation of the previous iteration. This chapter describes
the hardware used in the project, the datasets used for network training and the
process of creating a network which fulfills the goals. This chapter also include
immediate results from the networks used to further iterate the design.

3.1 Correlation between disparity, depth and hard-
ware

The correlation between disparity and depth depends on the specific cameras and
how they are positioned. More specifically the baseline, the focal length and the pixel
size is needed to calculate a correlation. The disparity estimations can be performed
on-board the camera rig using the NVIDIA Jetson TX2 embedded computing device
[41]. The TX2 is built around a GPU; a NVIDIA Pascal™ with 256 NVIDIA
CUDA® cores and a total RAM of 8 GB. The camera rig consists of four cameras
mounted on a distance 14 cm apart. The cameras are from Leopard Imaging Inc
[42]. They are able to capture images in full HD at 60 fps, have a focal length of
5 mm and a pixel size of 3.75 µm. A photograph of the camera rig can be seen in
Figure 3.1.

Figure 3.1: The camera rig consisting of four cameras and a laser rangefinder.

Using Equation 2.11 and the camera specifications for the rig, the correlation

17

3. Method

between disparity and depth for the different camera pairs can be visualized. The
resulting graph can be seen in Figure 3.2. Objects closer than 0.5 meters to the
camera will have a disparity of more than 300 pixels for the camera pair with the
shortest baseline. For the cameras further apart the disparity will be even higher.
Some algorithms and networks require a maximum allowed disparity, called dmax,
for example the GC-net described in Section 3.3.1. For the GC-net, the dmax decides
the interval of which to calculate the matching pixels. With a maximum allowed
disparity of 200 pixels (px), and a baseline of 14 cm, the depth of an object slightly
closer than one meter from the camera pair can be estimated. Apart from the
cameras, the rig is also equipped with a one point laser rangefinder, LiDAR, that
measure distances between 0 and 100 meters [43]. The LiDAR is not used in this
project.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Depth [m]

0

50

100

150

200

250

300

350

400

450

500

D
is

p
a

ri
ty

 [
p

x
]

Baseline 14 cm

Baseline 28 cm

Baseline 42 cm

Figure 3.2: A graph of the correlation between disparity and depth for the different
camera baselines. As seen a disparity of 200 pixels for a baseline of 14 cm corresponds
to a distance of a little less than one meter.

3.2 Dataset selection

In this section the different datasets used for network training and evaluation are
presented. Most of the data used is synthetic, meaning that it is generated in a
virtual world and has a dense ground truth. Real-life ground truth disparity data
is often sparse, as it is commonly generated from LiDAR data. One can make a
difference between publicly available datasets, generated by others, and datasets
generated as a complement for the purpose of this project alone. The datasets
generated for this project are created to match the hardware specifications of the
rig, e.g. the camera positioning and the camera parameters.

18

3. Method

3.2.1 Available datasets
There are many publicly available datasets for different purposes, however many of
those are not applicable for disparity estimations. By getting an overview of relevant
datasets, it is possible to decide upon what needs to be created.

3.2.1.1 FlyingThings3D

The FlyingThings3D (FT3D) dataset [44] is a simulated dataset consisting of a
stereo image pair with ground truth left and right disparity. It is a total of 21 818
frames training data and 4 248 frames test data in the dataset. The resolution of
the RGB images are 960×540 pixels. As the name suggests, the dataset consists
of images of different objects flying around in a randomly generated environment.
Some of the objects are so close that they occlude the view from one of the cameras.
To tackle this problem, data containing a disparity higher than 200 px was sorted
out of the dataset. Since the FT3D data is randomly generated, the data has low
bias. An example of the FT3D data can be found in Figure 3.3.

(a) Left image (b) Right image

(c) Ground truth left disparity.
Brighter color means higher disparity.

(d) Ground truth right disparity.
Brighter color means higher disparity.

Figure 3.3: An example of how an image pair and the resulting disparities look in
the FT3D dataset.

3.2.1.2 Kitti Stereo 2015

Kitti is a project from Karlsruhe Institute of Technology and Toyota Technological
Institute in Chicago with the goal of producing real world benchmarks for computer
vision [39]. The Kitti Stereo 2015 dataset contains two images captured in stereo

19

3. Method

and the ground truth disparity map for the left images, which is based on LiDAR
data points. The ground truth data is sparse and contains only data points close
to the cameras. The dataset has a resolution of approximately 1242×375 pixels,
though the size vary throughout the dataset. There are only 400 image pairs with
ground truth disparity, however 8400 image pairs without ground truth exist. An
example of the Kitti data can be found in Figure 3.4.

(a) Left image (b) Right image

(c) Ground truth left disparity. A brighter point means a
higher disparity. Occluded or uncertain points has been
removed.

Figure 3.4: An example of how an image pair and the resulting left disparity look
in the Kitti dataset.

3.2.1.3 Cityscapes

Cityscapes is large scale real life dataset with two images captured in stereo taken
from 50 different cities in Germany [45]. The Cityscapes dataset consists of approx-
imately 25,000 image pairs with sparse ground truth disparity data. The images
have a resolution of 2048×1024, however the right image contains some errors along
the left and top side of the image. These errors are visible in Figure 3.5b, where the
left edge of the image looks like it has been padded. Also, all the images contain
the hood of the car with a Mercedes-Benz star. The images were cropped to get
rid of the errors along the edges as well as the hood of the car which would other-
wise generate a constant bias. The Mercedes-Benz star was left in the images, since
cropping it away would lead to loosing too much data. Worth to note about the
Cityscapes dataset is that the ground truth disparity sometimes contains errors and
the results obtained on this dataset might be slightly misinforming. An example of
the Cityscapes data can be found in Figure 3.5.

20

3. Method

(a) Left image (b) Right image

(c) Ground truth left disparity. A
brighter point means a higher disparity.

Figure 3.5: An example of how an image pair and the resulting left disparity look
in the Cityscapes dataset. The left and the top side of the images might contain
errors, in these image pair seen most in the right image.

3.2.2 Generated data

To have a dataset with correct hardware parameters to train a network, a simulated
dataset was generated, using the tool Carla Driving Simulator [46]. Carla is an open
source driving simulator developed for autonomous drive research on the Unreal
Engine platform which allows for custom camera parameters like resolution, FOV,
position and rotation. To make the simulated data similar to the data that can be
obtained from the camera rig, the simulation was done with four cameras aligned
14 cm apart and a depth camera. With the depth camera, a ground truth disparity
map could be calculated for each camera pair using Equation 2.11 and the camera
specifications in Section 3.1. The result was three left disparity maps, one for each
camera pair with different baselines. The horizontal FOV was set in Carla, so the
focal length of the cameras on the rig and in the generated dataset are the same.
The focal lengths of the cameras on the rig are 5 mm and the pixel size 3.75 µm.
Equation 2.1 could then be used to calculate the horizontal FOV to 71.508° as

FOVhorizontal = 2 arctan
(

1920 · 3.75 · 10−3

2 · 5

)
= 71.508. (3.1)

An example of how the Carla data looks can be found in Figure 3.6. Another dataset
was captured in Gothenburg city as a proof of concept. This is presented in Section
3.4.

21

3. Method

(a) Left image (b) Right image

(c) Ground truth left disparity.
Lighter color means higher disparity.

Figure 3.6: An example of how a left and right image pair and the resulting left
disparity look like in the simulated Carla data.

3.3 Neural network

The goal is to design a network that takes high resolution stereo image pairs as input
and outputs high accuracy disparity maps, at multiple samples per second. Different
network designs were created, trained and evaluated. New networks were designed
based on the conclusions drawn in the evaluation. This process was carried out
iteratively until a final net was acquired. The software used for the network design
and evaluation was Keras [47] with a TensorFlow [48] backend.

The initial designs were inspired from high performing networks on the Kitti
benchmark. The later network designs combined building blocks from recently pub-
lished networks to achieve new designs. All the networks were designed to use a
single stereo camera pair. How to take advantage of the full potential of the camera
rig is discussed in Section 4.3.

To train a network, either images with a corresponding ground truth data or
a self-supervised learning approach is required. The initial goal was to design a
network that could be used to predict satisfying results using supervised learning,
since it is easier to implement and test a network using supervised learning. When
a well working network was obtained, the focus could shift to how self-supervised
training could be used in this context, to enable the network to learn new data
and environments without corresponding ground truth data. With a self-supervised
approach, the network could be used in a real-life application where ground truth
disparity does not exist. All training was done with a GeForce GTX 1080 Ti which

22

3. Method

has 3584 CUDA cores, 14 times as many as the TX2.
For evaluating the network and comparing the results, evaluation methods and

metrics had to be decided upon and implemented. The networks were evaluated with
regards to accuracy, runtime and also computational power and memory usage, to
decide whether it will work on board the camera rig.

When evaluating the different networks between iterations the Kitti benchmark
error was used. The Kitti error is calculated by how many pixels that can be labeled
as outliers:

Outliers = (|dGT − dest| > τ0) ∩
(
|dGT − dest|
|dGT|

> τ1

)
, (3.2)

where τ0 and τ1 are thresholds, for Kitti τ0 = 3 and τ1 = 0.05. The dGT is the
ground truth disparity and dest the disparity estimated by the network. If the pixel
fulfills both parts of the intersection, the pixel is labeled as an outlier. The number
of outliers is only calculated for pixels where a ground truth depth exists. Changing
τ0 to higher and lower values gives good indication on how the errors are distributed.
Another way the prediction error can be calculated is by using the absolute relative
error,

Eabs_rel = 1
N

∑
N

|dGT − dest|
|dGT|

, (3.3)

and the squared absolute relative error,

Esqr_rel = 1
N

∑
N

|dGT − dest|2

|dGT|
. (3.4)

The common root mean squared error, defined as

ERMS =
√√√√ 1
N

∑
N

(dGT − dest)2, (3.5)

can also be used as well as the mean absolute error, also called endpoint error [49],
EPE,

EEP = 1
N

∑
N

|dGT − dest|. (3.6)

3.3.1 GC-network

For the first network design, we used the structure of one of the top performing
models on the Kitti benchmark. The network chosen initially was the Geometry and
context network, called the GC-net [6], described in Section 2.3.4.1. In this section
the design, training configuration and some results are presented together with an
evaluation of the network. The evaluation part contains the conclusions drawn on
why this network does not fulfill the goals, and how to address that problem.

23

3. Method

3.3.1.1 Network design

The network was designed using the main ideas from the GC-net, but reducing
the network size to allow for quicker testing and evaluation. This lighter version
designed is called GC-lite. The GC-lite network consists of two Siamese nets using
shared weights to extract a total of 32 filters in each image. The outputs from the
Siamese networks are combined using the cost volume calculation. The output from
the cost volume is passed through five 3D-convolutional and two 3D-deconvolutional
layers. Before the deconvolutional layers a total of 64 filters are extracted. The last
layer contains the soft argmin activation function. The output from the network is
the left disparity map.

3.3.1.2 Training

To train the network the input images were cropped at random to the size of 256 px
height and 512 px width and normalized between -1 and 1 for all three color channels
respectively. The loss function used was the mean absolute error and the network
was trained using RMSprop. When using the FT3D dataset the dmax was set to 200
px, since all images in the dataset containing higher disparities have been removed
as outliers. Since the network uses a cost volume, the ground truth disparity used
for training was not normalized. After the model was trained for more than 90
hours, the loss had not converged, but was declining very slowly.

3.3.1.3 Results

When trying to predict a high resolution disparity map using the GC-lite network a
GeForce GTX 1080 Ti with 11 GB of memory runs out of memory. One of the largest
resolutions this GPU can handle is 768×512 px. Using this image size, the average
predicting time on the GPU is 0.96 seconds. An example of how the left disparity
map looks when predicting on the FT3D dataset is found in Figure 3.7 together
with the left input image and ground truth disparity map. The network was not
optimized with regard to accuracy as it could be concluded that the network would
not be able to fulfill the goal presented in Section 1.1.1; it is a too computationally
and memory heavy design. The numerical results can be found together with a
comparison of different designs in Section 4.1.

3.3.1.4 Evaluation

A conclusion that can be drawn from the result is that the network design is too
memory heavy for the TX2, since the target resolution can not even be run on the
GeForce GTX 1080 Ti. The way the GC-lite is built, using the cost volume followed
by the 3D convolutions and deconvolutions is even too computationally heavy for
the TX2.

Due to the computation and memory issues, higher dimensional volumes can not
be used. The designs on the Kitti benchmark are graded on accuracy, and they
might not be optimized for computation speeds. New approaches should therefore
focus on lightweight building blocks and efficient network structures in order to fulfill
the goals, and not only accuracy.

24

3. Method

(a) Ground truth left disparity (b) Predicted left disparity

(c) Outlier map (d) Left input image

Figure 3.7: Results from the GC-lite network. It can be seen that the network
has problems with occluded and textureless areas, as well as the left hand side of
the image. The outlier map shows the errors as an intensity map where the yellow
part, highest intensity, corresponds to an absolute error 91 pixels. The number of
outliers in this prediction is 11.44 %.

3.3.2 Cross-CNN
A lightweight network was designed with inspiration from the encoder-decoder struc-
ture commonly used in CNNs for semantic segmentation, and the cross-fusion net-
work presented in [40]. This kind of network structure, containing only 2D convolu-
tions and early compression of the image, creates a network which is more lightweight
than the GC-lite network. A concept image of the network design can be found in
Figure 3.8. The first design of the network was tested with a single output disparity
map, and the immediate results proved the design had a fast runtime with poten-
tially high quality results. Using the initial network and tuning design parameters,
different approaches to the network was compared, and a final design was chosen.

3.3.2.1 Network design

The network uses the common encoder-decoder structure which quickly reduces the
size of the two input images. In order to keep important information given in the
input images, the feature size is increased when the height and width are reduced.

25

3. Method

dl

dr

Imgl

Imgr

Encoder

Encoder

Decoder

Decoder

Figure 3.8: A concept image of the design of the cross connected-CNN. The two
networks share the same weights and are connected with cross connections that
has trainable scalar weights. Each arrow in the image represent an output from
a layer added to the input of another layer in the arrows direction. The arrows
between the networks represents cross connections and the arrows from the encoder
to the decoder residual connections. The left image is fed to the part of the network
producing the left disparity map, and vice versa.

A detailed figure of the cross connected-CNN (X-CNN) can be seen in Figure 3.9.
The network consists of residual connections between the encoder and decoder which
feed important information forward in the network and ease the training. In order to
combine the two Siamese networks continuously, connections between the networks
with trainable scalar values are used on each layer, called cross connections. The
network was initially designed to give the left disparity map as output for quick
testing of the network. The network was later redesigned to output both disparity
maps.

3.3.2.1.1 Building blocks of the X-CNN The initial X-CNN was built up
with convolutions to lower the input size quickly, followed by the same amount of
deconvolutions. It had multiple residual connections, and every layer also had a cross
connection with trainable weights. The initial network scaled down the input image
to 1

64 of the input size. It contained 20 layers evenly distributed in the encoder and
decoder with residual connections, and a final layer to calculate a single disparity
map.

To design a final version of the X-CNN, the effect of the different design pa-
rameters were investigated by designing new networks and changing only a few
parameters at the time. The different designs were trained for 4 epochs each on the
Carla data and their losses were compared to the initial X-CNN.

The depth of the network and number of layers was tuned to find a quick, but

26

3. Method

Conv-X

Left image

Right image

Conv

Conv

S

S

+

+
Conv-X

Conv-x

Deconv-X

Deconv-X

Deconv-
X

+

+

Deconv

Deconv

+

+S

S

S

S

Conv

Conv

Left disparity

Right disparity

The last layer has
extra scalars

+

+

+

+

+

+

Residual
connections

Figure 3.9: An overview of the building blocks in the cross connected-CNN net-
work. Like an encoder-decoder structured CNN, the input is sampled down and
then up to the size of the input image again. Between some of the encoder and
decoder layers are residual connections. After each convolution, the outputs from
the same layers are combined with a cross connection with trainable scalar weights.

accurate network. To compare depth and runtime a three layer network using 2D
convolutions and deconvolutions on full HD images was compared to a more complex
network. As seen in Table 3.1, the number of layers have an effect on the runtime
but not to such extent that it has to be minimized. The prediction time and the
input size is linearly correlated and any network predicting on full HD images will
not be as fast as needed. The focus was therefore to obtain good accuracy with the
2D convolution and deconvolution structure.

Table 3.1: Runtimes for predicting a disparity map, with different image and
network sizes, on a GeForce GTX 1080 Ti. The networks consists of mirrored
convolutions and deconvolutions.

Image resolution [px] 21 layers 3 layers
1920×1024 0.201s 0.136 s
960×512 0.043 s 0.030 s

Networks with deeper encoder (deep left), deeper decoder (deep right) and a
combination of both (double deep) was tested. Other networks was designed to test
the effect of the residual connections (in figure called skips) on every other layera
and on each layer, cross connections, number and size of filters. The training results
can be found in Figure 3.10. From the different training and validation losses, new
networks with a combination of these approaches could be designed.

The second round of designs used was a combination of less sub-sampling than
the original, fewer filters in each layer, certain residual connections and different
combinations of the number of layers. A few designs of different depths, number
of layers, were trained again and the training and validation losses can be seen in
Figure 3.11. From these the final network was chosen.

3.3.2.1.2 Final X-CNN design The final network was designed after the pre-
vious designs were trained and evaluated, and it is very similar to the initial design.
It has 15 layers in the encoder, 10 in the decoder and a final convolutional layer
with only one filter. The input images are scaled down to a size a 1

32 of the original

27

3. Method

(a) Training loss for networks of different
depths

(b) Validation loss for networks of differ-
ent depths

(c) Training loss for networks containing
different cross connections and filters

(d) Validation loss for networks contain-
ing different cross connections and filters

(e) Training loss for different residual, or
skip connections, and scalars

(f) Validation loss for different residual,
or skip connections, and scalars

Figure 3.10: Results from different design approaches of X-CNN trained on Carla
data. As seen the epoch axis stars at 0, meaning it has already been trained for one
epoch. In some of the plots the first epoch is cropped away, for easier viewing.

28

3. Method

(a) Residual connections, and scalars
training

(b) Residual connections, and scalars val-
idation

Figure 3.11: Results from different designs of X-CNN trained on Carla data, the
second iteration. The epoch number 0 corresponds to one epoch of training. These
results were used to design a final X-CNN.

size through convolutions. The number of filters for each layer range between 20
and 80, with the most filters in the middle layers. The network has some residual
connections and cross connections between each layer of the Siamese networks. The
output is a left and a right disparity map with the same size as the input image. A
table with a description of every layer in the final X-CNN is found in Appendix A.

3.3.2.2 Training

The final X-CNN was trained on different datasets to compare the accuracy and how
it handles different challenges. The optimizer used was Adam, as it showed better
results than RMSprop. The network was trained on the Carla data to see how it
handles large images, and on FT3D data to see that the network can perform well
on data with large disparities that is not as biased as the Carla data. Both datasets
have a ground truth disparity, and the loss is calculated as the absolute difference
between the estimate and the ground truth.

As the network scale down the input image to 1
32 of the input size, the images

needs to be cropped or padded to be evenly dividable by 32. When training the
network on the Carla data, the data was randomly cropped to different sizes for each
batch. Randomly cropping the image should also make the network more robust
and not be affected as much by the bias in the dataset. The smallest crop size used
was 512×320 and the largest 1920×1024 px.

3.3.2.3 Results

A network design which only use 2D convolutions and deconvolutions can be fed
with Full HD images without requiring too large memory resources. The average
prediction time on full HD images, calculated as a mean value over 100 samples of
the Carla test data in full HD, using a GeForce GTX 1080 Ti was 0.2251 seconds.

29

3. Method

A network for predicting on Carla was trained for 50 hours in total and the average
number of outliers, calculated with Equation 3.2, was 2.16 %. An example of how the
network predicts on the Carla data, together with an intensity map of the outliers
can be found in Figure 3.12.

A network for predicting on the FT3D dataset was trained for 50 hours on the
whole training dataset. The average prediction time, over 100 samples of the test
data, was 0.0524 seconds and the average number of outliers, calculated using Equa-
tion 3.2 is 9.65 %. An example of how the network predicts on the test data can
also be found in Figure 3.12.

3.3.2.4 Evaluation

From the early results of predicting using the X-CNN, it can be stated that the
network design will not fulfill the goal of a prediction frequency of 10 Hz on the
TX2. As seen in Table 3.1, when using a three layer to predict on full HD images,
the prediction frequency on the GeForce GTX 1080 Ti is approximately 7 Hz, and
that is a much more powerful GPU than the TX2. The prediction time is linearly
correlated with the input size, seen in Table 3.1, and no CNN fed with two full HD
color images can predict at 10 Hz. The goal of 10 Hz prediction on full HD images on
the TX2 will therefore not be fulfilled. The X-CNN does not perform exceptionally
well on datasets with large disparities and large occluded areas such as the FT3D
dataset. For the Carla dataset however, the network obtains very accurate results.
A table with more results can be found in Section 4.1.

The X-CNN was chosen as a good base for further designs as it is relatively
lightweight with a fast runtime. The network showed good accuracy for the Carla
dataset, but could only be trained on annotated datasets.

3.3.3 Self-supervised Cross-CNN
A network which can be trained with a dataset of only stereo image pairs can easily
be applied to new environments and can be very useful in a real life product. For the
self-supervised approach the loss function of the network had to be rewritten. The
new loss function was a compilation of different calculations using only the inputs
to the network and the predicted disparities.

3.3.3.1 Network design

For the self-supervised approach the X-CNN designed to output both the left and
right disparity map was used, as both are needed for the self-supervised loss com-
putation, described later in this section. Furthermore, to allow the different kinds
of self-supervised loss functions presented in this section a denormalization of the
disparity was needed inside the network, as the bilinear sampling in the warping
function needs the disparity to not be normalized. The denormalization of the dis-
parity, dout in the network is done by:

dnotnorm = 100(dout + 1), (3.7)

30

3. Method

(a) Ground truth left disparity (b) Predicted left disparity

(c) Outlier map, with 3.38 % outliers and
max absolute error is 28 px

(d) Left input image

(e) Ground truth left disparity (f) Predicted left disparity

(g) Outlier map, with 8.99 % outliers and
the max absolute error is 117 px

(h) Left input image

Figure 3.12: Results from the X-CNN network trained on Carla, image (a)-(d),
and FT3D, image (e)-(h), respectively. The network does not perform well on edges
and occluded areas. The outlier map is a heat map for all the pixels labeled as
outliers.

31

3. Method

giving a denormalized disparity, dnotnorm between 0 and 200 for a dout between -1 and
1. The denormalization wass done to output disparities between 0 and 200, because
it complies with the discussion in Section 3.1, that 200 is a sufficient disparity for
cameras with the closest baseline.

For the self-supervised network training, a loss function which is not using the
ground truth had to be implemented. This loss function can be a combination of
different self-supervised loss functions weighted together. The main loss functions
used are presented in [8] and [30]. The main idea for the self-supervised loss function
is to find the reconstruction error by warping one of the images to the other by using
bilinear sampling, see Section 2.3.3.1, and the predicted disparity maps. Since the
disparity map is only a measure of horizontal disparity, no vertical transformation
is done when warping the images. How similar the warped image and the real
image are can be computed in different ways. A simple way is to calculate the norm
between the images;

Lnorm = |I − I ′|, (3.8)

where I corresponds to one of the images the network takes as input and I ′ the
other input image warped, which was further explained in Section 2.3.3. A visual
representation of how I ′ is generated can be seen in Figure 3.13. The warped image
has regions which were occluded, which are filled with information from the old
image. As a result there are multiples of the same objects that generate a false
error.

(a) Left image and right disparity map
together with how the pixels are selected
when warping the image

(b) Warped right image I ′r

Figure 3.13: The warped image I ′r has artifacts from the old image as there are
occluded regions.

The similarity can also be measured using the structural similarity measure,
SSIM, see Section 2.3.3.2. SSIM is used to calculates the similarity of the luminance,
contrast and structure of the images for comparison. The resulting loss for the SSIM
can be calculated as:

LSSIM = 1− SSIM(I − I ′)
2 . (3.9)

The gradients, how much the intensity between a pixel and it neighbours differ, of the
images can also be compared to see how similar the warped image and the original

32

3. Method

image are. The difference between the pixel-wise gradients in x and y-directions for
the images can be written as the loss

Lgrad = |∇Ix −∇I ′x|+ |∇Iy −∇I ′y|, (3.10)

where ∇ denotes the pixel-wise gradient. These three loss functions presented above
are different ways of calculating the similarity between the reconstructed image and
the original. They can be combined to a reconstruction loss:

Lrec = 1
N

∑
N

(λ0LSSIM + λ1Lnorm + λ2Lgrad), (3.11)

where λ specifies how the losses are weighted and N is the total number of pixels.
The different loss functions are tested separately and then weighted together. Inter-
esting to observe is that the SSIM loss, LSSIM, and the gradient loss, Lgrad, all work
for networks that have been trained before, but for newly initialized networks the
loss does not shrink at all, and all the disparity values converge to the mean value.
This can be solved by initially using only the norm-error for training and after one
epoch add the other losses, alternatively using a network trained for another dataset
and then train it for new data using self-supervised learning, i.e. transfer learning.

When producing a disparity map, a common wanted feature of the predicted
disparity map is to be locally smooth, i.e. the gradient between a pixel and it’s
neighbours is small. This can be obtained using a regularization loss:

Lreg = 1
N

∑
N

(
|∇2

xd|e−|∇
2
xI| + |∇2

yd|e−|∇
2
yI|
)
. (3.12)

This regularization loss will, if used alone or weighted too high, make the network
produce a disparity map with no difference between the gradients, i.e. same disparity
throughout the whole map. An important feature of this network is to obtain a left-
right consistency, i.e that the left and right disparity maps are related and consistent
with each other. To obtain this the image warping technique can once again be used.
An image can be warped twice, using both disparities, to reconstruct the original
image, see Section 2.3.3. The loss for disparity consistency can be written as the
absolute difference between an image and the double warped one. The consistency
error can be written as:

Lcon = |I − I ′′|, (3.13)

where I ′′ is the image I warped two times.
Also, to punish the high disparities in the occluded areas a maximum depth loss

is added, and weighted very low. This loss function can be written as:

Ldepth = 1
N

∑
N

|d|. (3.14)

With a high weight, this loss will give a disparity map where all disparities are zero.
It is important to note that when bilinear sampling and warping is used on

a dataset with occluded areas, information about what to fill the occluded areas
with does not exist. The warped image will therefore have areas where the image

33

3. Method

information is not correct, even if the disparity used is the ground truth. Warped
images containing large disparities will have larger regions with wrong information.
In Figure 3.14 some objects are seen in two places, yielding a large reconstruction
error, even though the disparity is correct.

A mask was created to ignore this error, by using the disparity map and finding
occluded pixels. The mask is constructed from all the pixels in the warped image
which the disparity does not point to. Pixels from the original target image are used
to patch the warped image where there is a mask. The usage of the mask lowers the
incorrect reconstruction loss. The network trained with the mask had an average
outlier amount of 4.28 % while the unmasked had 4.60 %, showing that the masked
network is better, considering both networks was trained on the same dataset.

(a) Ground truth right disparity map (b) Generated mask from the disparity
map, showing occluded regions in dark

(c) Warped right image with occluded re-
gions

(d) Patched warped image, using the
original right image where the mask is
empty

Figure 3.14: The right image is warped to the left image using the ground truth
left disparity and bilinear sampling. The warped image is patched with the original
left image using the mask, where the right image has occluded regions.

The loss function combining all of the above presented loss functions can be
written as:

Ltot = ω0(Llrec +Lrrec)+ω1(Llreg +Lrreg)+ω2(Llcon +Lrcon)+ω3(Lldepth +Lrdepth) (3.15)

To decide in which manner the weights should be set, the approach was similar to the
way the network was designed, i.e. training the network using different weights and

34

3. Method

then comparing the results iteratively. The main difference to this kind of iterative
testing was that it is the way the loss is calculated that changes, and the resulting
loss for the different approaches are not a valid comparison. Instead the number of
outliers were compared for the networks trained with different weights, and weighted
together with a visual estimation of how the network performs. Some differently
weighed networks produce almost the same number of outliers, but different visual
results. Some predictions gave disparity maps with the sky labeled as closer than
the ground truth or darker areas as very far away, and these networks were ruled
as unfit. In Table 3.2 some of the different evaluated weights can be seen with the
average number of outliers for 200 images in the test data in Cityscapes. When the
losses were designed and set initially, each separate loss was first given an initial
weight and then combined and tuned to find a working network. The initial weights
are found at Line 1 in Table 3.2. Not all tuning of the losses are presented in the
table. The weights ω1 and ω3 were left unchanged, since altering them gave no
preferable effect.

Table 3.2: The table presents some of the weights tried and their result after
training 7 epochs on a tenth of the Cityscapes dataset. The outlier percentage is
averaged over 200 samples of the test data. The best results are shown in bold.

Weights Outliers [%]
Line λ0 λ1 λ2 ω0 ω1 ω2 ω3 τ0 = 1 τ0 = 3 τ0 = 7
1 0.5 0.8 0.5 1 0.001 0.5 0.001 39.8 6.9 1.6
2 0.5 0.8 0.5 0.5 0.001 0.5 0.001 32.9 5.7 1.7
3 0.3 0.8 0.5 1 0.001 0.5 0.001 29.4 5.7 1.7
4 0.5 0.8 0.5 1 0.001 1 0.001 33.0 5.9 1.7
5 0.5 0.2 0.5 0.5 0.001 0.5 0.001 38.4 6.8 1.7
6 0.5 0.6 0.25 0.5 0.001 0.5 0.001 27.9 5.3 1.5
7 0.5 0.8 0.25 0.5 0.001 0.5 0.001 27.4 5.3 1.6
8 0.5 0.8 0.35 0.5 0.001 0.5 0.001 27.8 5.2 1.4

An example of how an image with undesirable light and dark areas predicted
with some weights can be seen in Figure 3.15. This kind of results were also taken
into consideration when choosing the final weightings of λ and ω. In Figure 3.15c
the sky has clearly got a higher disparity than what is right, ever though the weights
used are line 6 in Table 3.2, comparable to line 7, producing the result in Figure
3.15b. Comparing line 7 and 8 in Table 3.2, the number of outliers produced are
both small and the produced disparity maps looks much alike. The weights chosen
as the best were therefore the weights on line 8, λ = {0.5, 0.8, 0.35} and ω =
{0.5, 0.001, 0.5, 0.001}. These parameters were tuned for Cityscapes, and might not
be optimal for other datasets.

3.3.3.2 Training

During this part of the network design process the normalization of the images were
changed, so the intensity of the images were normalized between 0 and 1 for all color

35

3. Method

(a) Ground truth left dis-
parity

(b) Image which was seen
as a good result

(c) Image which was seen
as a bad result

Figure 3.15: An example of where two networks trained with different weights for
the self-supervised loss produce relatively different output. The one producing a
very light sky, relatively high disparity, is not seen as good when choosing the final
weights.

channels. This was since we implemented the SSIM function to use pixel values in a
range between 0 and 1. The optimizer used was Adam with the learning rate 0.001.

A network was trained supervised on the FT3D dataset for 16 hours before it
was retrained for the new datasets. On Cityscapes the network was trained for 107
hours, but the loss was still declining. On Kitti the network was trained for 50
hours, but the validation loss was more or less constant after 24 hours. The network
was also trained on the Carla dataset for the cameras with the shortest baseline for
118 hours, after which the validation loss was still shrinking.

3.4 Creating a new dataset
As a final step to test how applicable the network is in a real-life situation, the camera
rig hardware was used to create a new dataset. By driving around in Gothenburg,
stereo image pairs from an urban driving environment was captured. The data
captured was called the Gbg dataset. The differences between this, the Cityscapes
and the Kitti datasets are the camera parameters and different baseline between the
cameras. A script as a proof of concept was implemented to capture the images.
The script captured images with some delay between them, and when the rig was
recording it was not exactly horizontal. Using OpenCV [14] the cameras were stereo
calibrated and the images undistorted and rectified. However, the camera rig was not
re-calibrated after installation in the vehicle, which resulted in the images not being
aligned horizontally. Since the images were not horizontally aligned, the resulting
disparity is both horizontal and vertical. Sample images from the Gbg dataset can
be seen in Figure 3.16.

3.5 Summary
In this chapter the process of designing an ANN and tune its parameters has been
discussed. The network design and building blocks were first chosen with regards to
accuracy, runtime and memory requirements. The X-CNN was then chosen as the
network design which could give a good enough accuracy in the shortest amount
of time for full HD image pairs. The original design was tuned to find the best

36

3. Method

(a) Gothenburg dataset, left image

(b) Gothenburg dataset, right image

Figure 3.16: A left and a right image from the Gbg dataset. The camera rig was
not perfectly horizontal, and did not capture images at the same time with both
cameras.

possible model. Multiple loss functions were implemented to enable unsupervised,
or self-supervised, training of the model. The weights of the loss functions were
optimized and a new dataset was captured using the camera rig.

The numerical and visual results from the final X-CNN with different training
methods on different datasets are compared in the following chapter.

37

3. Method

38

4
Results and discussion

In this chapter the results of the different network designs and training methods
are presented first numerically and then visually. The results are followed by a
discussion about the results obtained and how to interpret and improve them.

4.1 Numerical results
The evaluations of the networks’ performance were done using the software Keras
[47] with a TensorFlow [48] backend. The results from the networks depend on the
ground truth in the datasets. Multiple models can be compared on the same dataset,
but the errors for models are hard to compare between datasets. One problem is that
the Kitti ground truth is very sparse, and another that Cityscapes sometimes have
faulty annotations. The Carla dataset has a dense disparity map as ground truth.
Results from the different supervised trained networks such as average runtime and
average accuracy for 100 samples can be found in Table 4.1. The different errors
calculated are presented in Section 3.3.

Table 4.1: Numerical results from the different supervised networks. Runtime is
measured on a GeForce GTX 1080 Ti. The runtime and metrics are the average
over 100 predictions.

GC-lite X-CNN X-CNN
Training method Supervised Supervised Supervised

Dataset FT3D FT3D Carla
Training amount [epochs] 35 105 65
Training time [hours] 95 50 50

Input size [px] 768×512×3 960×540×3 1920×1080×3
Runtime [s] 0.9644 0.0524 0.2251

Outliers with τ0 = 1 [%] 14.411 25.930 17.707
Outliers with τ0 = 3 [%] 9.497 9.420 2.327
Outliers with τ0 = 5 [%] 7.777 5.537 1.371
Absolute relative error 0.184 0.100 1.423

Squared absolute relative error 6.367 2.774 2.859
Root mean square error 7.122 5.056 1.604

Mean absolute error, EPE 2.042 1.617 0.921

The GC-lite network was only trained on the FT3D data and results are therefore

39

4. Results and discussion

only presented for that specific dataset. The supervised X-CNN was able to han-
dle larger input images and was therefore trained on different datasets to compare
performance between different types of data. The X-CNN trained on the FT3D
data has lower errors than the GC-lite network, as GC-lite was not optimized for
better accuracy. The number of outliers for τ0 = 3 is almost the same, though the
GC-lite has more perfect pixels, and therefore less outliers for τ0 = 1. The runtimes
in the table are not easily compared since they depend on the number of pixels in
the input, but the X-CNN is almost 20 times faster than the GC-lite network, even
if it is used to predict on larger images.

The numerical results for the X-CNNs that were trained using self-supervision
can be found in Table 4.2. The definition of the errors can be found in Section
3.3. One network, trained supervised for 17 epochs on a tenth of the FT3D data,
was used as a start for all self-supervised training. All networks shown in the table
were trained using self-supervised transfer learning from this network. As seen in
the table, the self-supervised network performs relatively well on both the Kitti and
the Cityscapes dataset, but has high errors for the Carla data set compared to the
supervised network. This is a result of large errors from classifying the foreground as
background, giving predictions containing areas with too low disparity. The visual
outputs and errors can be seen in the figures in Section 4.2.

Table 4.2: Numerical results from the different self-supervised networks. The
runtime is measured on a GeForce GTX 1080 Ti. The runtime and metrics are the
average over 100 predictions, and the errors are calculated where a ground truth
exists. The errors are only calculated for the left disparity as this is present in all
the evaluated datasets.

X-CNN X-CNN X-CNN
Training method Self-supervised Self-supervised Self-supervised

Dataset Kitti Cityscapes Carla
Training amount [epochs] 100 23 53
Training time [hours] 51 107 118

Input size [px] 1216×352×3 1984×896×3 1920×1080×3
Runtime [s] 0.0499 0.1538 0.2369

Outliers with τ0 = 1 [%] 28.212 18.234 20.295
Outliers with τ0 = 3 [%] 7.711 4.883 15.547
Outliers with τ0 = 5 [%] 4.605 2.968 12.039
Absolute relative error 0.056 0.082 2.483

Squared absolute relative error 0.507 1.250 33.410
Root mean square error 3.600 3.314 5.271

Mean absolute error, EPE 1.396 1.020 2.078

The runtimes are slightly higher for the self-supervised X-CNN than for the
supervised version of the same network, since the self-supervised network has two
outputs and the supervised only has one. However, the training time differs between
them. The loss for the supervised X-CNN is lower than for the self-supervised X-
CNN as the supervised network has been given the ground truth for the training

40

4. Results and discussion

data. The results for the self-supervised X-CNN trained on a dataset from real life
shows promising results and accuracy. The accuracy on the Kitti dataset [39] for
τ0 = 3 is at 7.711% which would result in a 82nd position on the Stereo benchmark
in May 2018. The top performing network has 2.25 % outliers.

The runtime and resolution goals were further investigated. Different resolutions
were tested on the TX2 and GeForce GTX 1080 Ti and the results can be found in
Table 4.3.

Table 4.3: The average prediction time over 100 samples for the different GPUs.
The resolution was altered to find an approximate frequency of 10 Hz.

GPU Resolution [px] Average runtime[s] Frequency [Hz]
NVIDIA TX2 288×288×3 0.097 10.3
NVIDIA TX2 1920×1088×3 2.240 0.5

GeForce GTX 1080 Ti 1408×736×3 0.101 9.9
GeForce GTX 1080 Ti 1920×1088×3 0.237 4.2

4.2 Visual results
A visual evaluation of the networks were done to investigate where the network
encounters problems. The results were used to better understand the network per-
formance on different datasets and training types.

4.2.1 Representative scenes
An example of how well the self-supervised X-CNN performs on Carla data can be
found in Figure 4.1, Kitti in Figure 4.2, and on the Cityscapes data in Figure 4.3.
It can be observed that the network performs poorly on the Carla data set. The
visual results on the Cityscapes and Kitti data shows that the network has problem
with the edges of objects and at the left edges of the images.

A comparison between the X-CNN trained using supervised training and the X-
CNN using self-supervised training on the Carla data can be found in Figure 4.4.
As seen from the resulting predictions the self-supervised X-CNN shows a smoother
prediction without sharp edges, apparent in the lamp post and speed limit sign.
This is since the self-supervised network receives no information about the occluded
areas in the input images. For the Carla dataset the self-supervised X-CNN also
shows no disparity for dark areas, such as the wall of the house and shadows in
the bushes. This behaviour has not been seen to any larger extent in the netwroks
trained on the real-life datasets Kitti and Cityscapes.

4.2.2 Highest errors
To better understand the network and how it works, the test data is used to find
the images yielding the largest amount of outliers. This is done for the supervised
X-CNN on the Carla dataset and for the self-supervised on the Cityscapes dataset.

41

4. Results and discussion

(a) Ground truth left disparity (b) Predicted left disparity

(c) Outlier map (d) Left input image

Figure 4.1: Result from the self-supervised X-CNN trained on the Carla data. For
this prediction the number of outliers are 8.28 %. The maximum absolute error is
32 px.

(a) Ground truth left disparity (b) Predicted left disparity

(c) Outlier map (d) Left input image

Figure 4.2: Result from the self-supervised X-CNN trained on the Kitti dataset.
The outlier percentage for this prediction is 7.57 % and the max absolute error was
54 px.

The prediction with the highest number of outliers for supervised training on Carla
and self-supervised training on Cityscapes test data can be seen in Figure 4.5 and in
Figure 4.6 respectively. Both image pairs contain objects very close to the cameras,
which are not that common in the datasets.

42

4. Results and discussion

(a) Ground truth left disparity (b) Predicted left disparity

(c) Outlier map (d) Left input image

Figure 4.3: A prediction from the self-supervised X-CNN trained on the Cityscapes
dataset. The number of outliers for this prediction is 3.38 %, and the maximum
absolute error is 43 px.

4.2.3 Visual evaluation
It can be concluded that the self-supervised version of the X-CNN works fairly well,
especially on the real-life datasets. The results are better for the real-life datasets
than for Carla which has problems with dark areas, as seen in Figure 4.1. Also, the
problem with edges has increased using self-supervised learning. The lack of a clear
shape for all the objects in the predicted disparity maps is a result of the occluded
regions when warping the images.

By combining an image with the output disparity map, an image with depth
for every pixel can be generated. A 3D image generated from the self-supervised
X-CNN on an image pair from Cityscapes can be seen on the title page, as well as
in Figure 4.7.

4.2.4 Gbg dataset
The model that was trained on Cityscapes dataset was retrained on the Gbg dataset.
The dataset was created as a proof of concept, to show how the network and camera
rig could be used together. The dataset was not captured with the cameras exactly
horizontal, which resulted in a vertical disparity between the images. The images
were captured in series, which created a short time delay between the two images.
In Figure 4.8, an image pair, output disparity map and the warped image, I ′l , can be
seen. It is difficult to calculate the accuracy of the model, as no ground truth exists,
but the warped image compared to the original left image gives a visual indication
of the accuracy. A numerical accuracy measure might be constructed between those
images, but the results were not evaluated further. Figure 4.8 shows that the network

43

4. Results and discussion

(a) Ground truth left disparity (b) Left input image

(c) Prediction from supervised network (d) Self-supervised network prediction

Figure 4.4: A comparison between the predictions produced by the networks
trained supervised and self-supervised. The self-supervised network produces
smoother edges, seen in the lamp post. For the Carla data the self-supervised
network experiences problems with dark colors, such as shadows.

is able to generate a disparity map from pictures taken by our camera. The warped
loss assumes rectified images taken horizontally, and the vertical disparity makes the
loss faulty. To get a more correct disparity map, the images needs to be horizontally
rectified, the camera calibration more accurate, the dataset larger and the images
needs to be captured synchronously.

4.3 Discussion
In this section, the key aspects of the thesis such as the network design, computa-
tional power, new datasets and future work are discussed.

4.3.1 Network performance
The results presented show that the final network structure, the X-CNN, is not fast
enough to be able to predict a full HD disparity map at a frequency of 10 Hz on
the TX2. A prediction using the self-supervised X-CNN on the TX2 takes 2.24 s.
However, the network design is slim enough for the TX2 to be able to predict full
HD images without running out of memory. The accuracy of the network is not as
high as the best performing network on the Kitti benchmark scoreboard, but still

44

4. Results and discussion

(a) Ground truth left disparity (b) Predicted disparity

(c) Outlier heat map (d) Left input image

Figure 4.5: The data producing the most outliers from the Carla test data for the
supervised X-CNN. The outlier percentage is 13.4 % and the maximum absolute
error is 61 px.

(a) Ground truth left disparity (b) Predicted disparity

(c) Outlier heat map (d) Left input image

Figure 4.6: The data producing the most outliers from the Cityscapes test data
for the self-supervised X-CNN. The maximum absolute error for this prediction is
101 px and the outlier percentage is 19.4 %

45

4. Results and discussion

(a) Left input image (b) Left predicted disparity map

(c) Calculated 3D image by combining the image and the disparity map

Figure 4.7: A 3D image calculated with the self-supervised X-CNN using an image
pair from Cityscapes. The white areas are occluded regions.

outperforms some of the algorithms. The resolution needed to fulfill the runtime
goal for a TX2, was much lower than full HD. A trade-off between runtime and
resolution can be done to find a balance.

The supervised X-CNN trained on the FT3D dataset has an outlier percentage
of 9.4 % for τ0 = 3, and an EPE of 1.6 for one prediction, taking 0.05 s. This can be
compared to [50] which presents a network producing an outlier percentage of 6.2
% and an EPE of 1.3, but with a runtime of almost 0.5 s which is ten times as long
runtime as X-CNN.

The self-supervised X-CNN’s outlier percentage is 7.7 % for the Kitti benchmark
with a runtime of 0.05 s. This can be compared to the self-supervised network
SsSMnet [30], which is also trained on Kitti. The SsSMnet has a 3.4 % error, but
a runtime of 0.8 s on a Tesla P100 GPU which is a stronger GPU than the one we
have used. The X-CNN has not been submitted to Kitti for exact evaluation, which
means that the networks are not evaluated on the same data.

The numeric results show that the X-CNN is a network which gives rather good
results at a high frequency. The visual results shows that the predicted disparity
maps mostly have minor errors, such as the edges of different objects. We have also

46

4. Results and discussion

(a) Left image (b) Right image

(c) Calculated disparity map (d) Warped left image

Figure 4.8: A real life application of the network. As the left and right images
are not captured horizontally, close objects in the warped image are duplicated and
generates an error.

showed that the self-supervised network can be transfer trained to work in different
applications.

4.3.2 Self-supervision

A self-supervised network has generally lower accuracy than the supervised equiva-
lent. The largest advantage with self-supervised training is that no ground truth is
needed. By eliminating the need for ground truth data, the number of applications
in which the system could be used is increased drastically. The camera rig could
be used to collect data manually on which it could be trained, the network could
then be used in that environment. Datasets such as Kitti has a combination of data
with and without ground truth. On such a dataset a combination of supervised and
self-supervised training might improve the accuracy.

4.3.3 Robustness and adaptability

A network trained on a dataset that is not biased, such as the FT3D dataset, can
be trained using transfer learning to learn new environments. The adaptability is
needed to make the camera rig useful in different environments. By using the LiDAR
point distance sensor on the camera rig, a single point ground truth can be obtained
when gathering new data. This data point could be used in a loss function to make
the self-supervised training slightly supervised. The LiDAR point could also be used
to estimate the live accuracy of the disparity estimation, to verify the output of the
network.

47

4. Results and discussion

4.3.4 Computing power
As stated in the evaluations of the network designs in Section 3, the goal of predicting
full HD disparity maps on the TX2 at the frequency of 10 Hz was decided to be
unachievable. However, for the camera rig to predict in that frequency would still be
possible with a better GPU or some other kind of fast computing device. Another
way to tackle the problems of the computational demand would be to reduce the size
of the input to the network. In many applications there might be no need for full HD
resolution outputs. If the hardware onboard the camera rig had more computational
power the network could be trained online, and the produced disparity estimate be
improved during usage of the rig.

4.3.5 Trade-offs
When using ANNs, as well as when using conventional algorithms for disparity esti-
mation, there exists a trade-off between accuracy, memory usage and computational
time. The introductions of new neural network designs and techniques have allowed
for higher accuracies, but to the cost of more computational power. The need of good
accuracy for high resolution images at real-time is a difficult balance. This trade-off
exists in almost all computer vision tasks. When a network has been trained for a
dataset, the network can be pruned and retrained with the same data to optimize the
runtime. Pruning could lower the runtime, but also limit the network adaptability
to changes in the dataset and environment.

4.3.6 Applying to real life
When using the camera rig to generate new datasets, a number of problems occurred.
If the rig is mounted on a vehicle, it might not be stable around the roll axis. If
the cameras are not horizontally aligned, and the calibration does not compensate
for that, the feature matching will have to be done both horizontally and vertically,
and objects in the warped image may be duplicated. The functions for the bilinear
sampling and for calculating the mask used in the self-supervised loss functions are
not written for handling vertical disparity. All data used for network training has
been rectified, and the images have to be captured synchronously. If the images are
not captured at the exact same time, objects might move. This would lead to a
disparity between the images not correlated with depth. When the Gbg dataset was
captured the camera rig was not exactly horizontal, which it had been for calibration,
and the images were not captured at the same time. The network still produces a
disparity map, though not very accurate.

4.3.7 Disparity range
This thesis focused on using one stereo camera pair, where the design parameter of a
maximum depth of 200 has been used multiple times, for example when denormaliz-
ing the disparity in the self-supervised X-CNN. This is a design parameter suitable
for camera pairs with a short baseline and for predicting disparities corresponding

48

4. Results and discussion

to a minimum depth of a little less than a meter. However, for other camera pairs
on the camera rig the design parameter dmax has to be changed.

4.3.8 Multiple cameras in stereo
The X-CNN uses two input images and outputs two disparity maps. How to utilize
the full potential of the camera rig, using all four cameras, is something that needs
further investigation. For example a solution could be to alter the network to support
multiple stereo pairs, leading to longer runtimes, or to feed the network with an extra
number as input corresponding to the baseline. In addition, if the network produces
multiple disparity maps for different camera pairs or if multiple networks are used,
the disparity maps need to be weighted together to produce a more accurate disparity
for larger ranges.

49

4. Results and discussion

50

5
Conclusion

We have introduced a novel artificial neural network, a cross-connected CNNs, called
X-CNN, which can handle two high resolution images as input and calculate the cor-
responding disparity maps. The network is a Siamese encoder-decoder structured
CNN that is cross connected after each layer. The network’s loss functions depend
only on the input images and the predicted disparities. The loss function is de-
pendent on warping one of the images to the other by using one of the predicted
disparities. By presenting a mask to filter away the faulty errors from occluded ar-
eas in the images, a self-supervised network could be designed. The network showed
a high accuracy for supervised learning at a 4 Hz rate for a full HD stereo image
pair on a GeForce GTX 1080 Ti. Further, the network could be transfer trained to
new datasets with different camera parameters, and was for example trained self-
supervised on the Cityscapes dataset where it produced 4.89 % outliers on the test
data.

The purpose of this project was to design a self-supervised ANN which could
adapt to new situations. However, the goal of predicting full HD disparity maps
at a frequency of 10 Hz, has not been fulfilled. Connected to this are some future
work that could improve the results of the Cross-CNN. The speed of the network
can be improved by applying pruning, but pruning would also limit the networks
adaptability. There are environments that the camera rig could be used in, where
no datasets today exist. If new datasets were created, the network could be trained
for these to verify its adaptability. How to take advantage of the camera rig’s
four cameras to refine the estimation should be investigated further. In a real-world
application the camera rig could be affected by movement in roll, so that the cameras
are not horizontally aligned. We have showed that this is a problem for the network
today, and that a need for future improvement exists.

51

5. Conclusion

52

Bibliography

[1] “Volvo first in the world with self-driving truck in underground mine,” http:
//www.volvogroup.com/en-en/news/2016/sep/news-2297091.html, 2016, [On-
line; accessed: Feb. 9, 2018].

[2] “Volvo pioneers autonomous, self-driving refuse truck in the urban envi-
ronment,” http://www.volvogroup.com/en-en/news/2017/may/news-2561936.
html, 2017, [Online; accessed: Feb. 9, 2018].

[3] J. C. Knight, “Safety critical systems: challenges and directions,” in Proceedings
of the 24th International Conference on Software Engineering. ICSE 2002, May
2002, pp. 547–550.

[4] R. Andersson and O. Noresson, “Utilization of quadnocular stereo vision for si-
multaneous localization and mapping in autonomous vehicles,” Master’s thesis,
Chalmers tekniska högskola, 2015.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc.,
2012, pp. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[6] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy, A. Bachrach,
and A. Bry, “End-to-end learning of geometry and context for deep
stereo regression,” CoRR, vol. abs/1703.04309, 2017. [Online]. Available:
http://arxiv.org/abs/1703.04309

[7] C. Zhou, H. Zhang, X. Shen, and J. Jia, “Unsupervised learning of stereo
matching,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 1567–1575.

[8] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocular depth
estimation with left-right consistency,” arXiv preprint arXiv:1609.03677, 2016.

[9] Y. Movshovitz-Attias, T. Kanade, and Y. Sheikh, “How useful is photo-realistic
rendering for visual learning?” CoRR, vol. abs/1603.08152, 2016. [Online].
Available: http://arxiv.org/abs/1603.08152

[10] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the
OpenCV library. " O’Reilly Media, Inc.", 2008, pp. 371-374.

[11] ——, Learning OpenCV: Computer vision with the OpenCV library. " O’Reilly
Media, Inc.", 2008, pp. 375-377.

[12] R. B. Fisher and E. C. (e-book collection), Dictionary of computer vision and
image processing, 2nd ed. Chichester, West Sussex: John Wiley & Sons Inc,
2014;, p. 98.

53

http://www.volvogroup.com/en-en/news/2016/sep/news-2297091.html
http://www.volvogroup.com/en-en/news/2016/sep/news-2297091.html
http://www.volvogroup.com/en-en/news/2017/may/news-2561936.html
http://www.volvogroup.com/en-en/news/2017/may/news-2561936.html
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1703.04309
http://arxiv.org/abs/1603.08152

Bibliography

[13] R. Klette, B. (e-book collection), and S. (e-book collection), Concise com-
puter vision: an introduction into theory and algorithms, 2014th ed. London:
Springer, 2014, pp. 227-233.

[14] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools,
2000.

[15] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the
OpenCV library. " O’Reilly Media, Inc.", 2008, pp. 378-395.

[16] ——, Learning OpenCV: Computer vision with the OpenCV library. " O’Reilly
Media, Inc.", 2008, pp. 427-431.

[17] R. Klette, B. (e-book collection), and S. (e-book collection), Concise com-
puter vision: an introduction into theory and algorithms, 2014th ed. London:
Springer, 2014, pp. 287, 331.

[18] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J.
Comput. Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004.

[19] M. Sonka, V. Hlavac, and R. Boyle, Image processing, analysis, and machine
vision. Cengage Learning, 2014, pp. 385-388.

[20] J. Ulén, “Higher-order regularization in computer vision,” Ph.D. dissertation,
Lund University, 2014.

[21] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms,” International journal of computer vision,
vol. 47, no. 1-3, pp. 7–42, 2002.

[22] N. Buduma and N. Locascio, Fundamentals of Deep Learning: Designing Next-
generation Machine Intelligence Algorithms. " O’Reilly Media, Inc.", 2017, pp.
21-23.

[23] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org, p. 174.

[24] ——, Deep Learning. MIT Press, 2016, http://www.deeplearningbook.org, pp.
330-339.

[25] H. Habibi Aghdam, E. Jahani Heravi, S. O. service), and S. (e-book collection),
Guide to Convolutional Neural Networks: A Practical Application to Traffic-
Sign Detection and Classification. Cham: Springer International Publishing,
2017, pp. 86-90.

[26] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Riedmiller, “Striving
for simplicity: The all convolutional net,” CoRR, vol. abs/1412.6806, 2014.
[Online]. Available: http://arxiv.org/abs/1412.6806

[27] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolutional
networks,” in 2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, June 2010, pp. 2528–2535.

[28] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org, pp. 105-109.

[29] ——, Deep Learning. MIT Press, 2016, http://www.deeplearningbook.org, pp.
302-306.

[30] Y. Zhong, Y. Dai, and H. Li, “Self-supervised learning for stereo matching with
self-improving ability,” CoRR, vol. abs/1709.00930, 2017. [Online]. Available:
http://arxiv.org/abs/1709.00930

54

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1412.6806
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1709.00930

Bibliography

[31] T. Semwal, G. Mathur, P. Yenigalla, and S. B. Nair, “A practitioners’
guide to transfer learning for text classification using convolutional
neural networks,” CoRR, vol. abs/1801.06480, 2018. [Online]. Available:
http://arxiv.org/abs/1801.06480

[32] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
network with pruning, trained quantization and huffman coding,” CoRR, vol.
abs/1510.00149, 2015. [Online]. Available: http://arxiv.org/abs/1510.00149

[33] W. Luo, A. G. Schwing, and R. Urtasun, “Efficient deep learning for stereo
matching,” in 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), June 2016, pp. 5695–5703.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

[35] C. A. Glasbey and K. V. Mardia, “A review of image-warping methods,” Jour-
nal of Applied Statistics, vol. 25, no. 2, pp. 155–171, 1998.

[36] K. T. Gribbon and D. G. Bailey, “A novel approach to real-time bilinear inter-
polation.” IEEE, 2004, pp. 126–131.

[37] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, “Spatial
transformer networks,” CoRR, vol. abs/1506.02025, 2015. [Online]. Available:
http://arxiv.org/abs/1506.02025

[38] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: from error visibility to structural similarity,” IEEE Transactions
on Image Processing, vol. 13, no. 4, pp. 600–612, April 2004.

[39] M. Menze and A. Geiger, “Object scene flow for autonomous vehicles,” in Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2015.

[40] L. Caltagirone, “Deep learning applications for autonomous driving,” Ph.D.
dissertation, 2018.

[41] “Nvidia jetson tx2,” https://developer.nvidia.com/embedded/buy/
jetson-tx2-devkit, 2018, [Online; accessed: Jan. 4, 2018].

[42] “Li-imx185-mipi-cs,” https://leopardimaging.com/product/
li-imx185-mipi-cs/, 2018, [Online; accessed: Mar. 19, 2018].

[43] “Sf30-c high speed laser rangefinder - 100 m,” https://www.parallax.com/
product/28058, 2018, [Online; accessed: Apr. 26, 2018].

[44] N.Mayer, E.Ilg, P.Häusser, P.Fischer, D.Cremers, A.Dosovitskiy, and T.Brox,
“A large dataset to train convolutional networks for disparity, optical flow, and
scene flow estimation,” in IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, arXiv:1512.02134. [Online]. Available:
http://lmb.informatik.uni-freiburg.de/Publications/2016/MIFDB16

[45] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban
scene understanding,” in Proc. of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[46] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An
open urban driving simulator,” in Proceedings of the 1st Annual Conference on
Robot Learning, 2017, pp. 1–16.

[47] F. Chollet et al., “Keras,” https://keras.io, 2015.

55

http://arxiv.org/abs/1801.06480
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1506.02025
https://developer.nvidia.com/embedded/buy/jetson-tx2-devkit
https://developer.nvidia.com/embedded/buy/jetson-tx2-devkit
https://leopardimaging.com/product/li-imx185-mipi-cs/
https://leopardimaging.com/product/li-imx185-mipi-cs/
https://www.parallax.com/product/28058
https://www.parallax.com/product/28058
http://lmb.informatik.uni-freiburg.de/Publications/2016/MIFDB16
https://keras.io

Bibliography

[48] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[49] Z. Yan and X. Xiang, “Scene flow estimation: A survey,” CoRR, vol.
abs/1612.02590, 2016. [Online]. Available: http://arxiv.org/abs/1612.02590

[50] J. Pang, W. Sun, J. S. J. Ren, C. Yang, and Q. Yan, “Cascade residual learning:
A two-stage convolutional neural network for stereo matching,” CoRR, vol.
abs/1708.09204, 2017. [Online]. Available: http://arxiv.org/abs/1708.09204

56

https://www.tensorflow.org/
http://arxiv.org/abs/1612.02590
http://arxiv.org/abs/1708.09204

A
Appendix 1

The design of X-CNN can be found in Table A.1.

Table A.1: A description of the layers in the X-CNN network.

Layer Description Output Dim.
Input images W,H,C
Every layer is duplicated for the left and right network
which shares weights. Every layer is also added to the
same layer in the other network with a scalar weight
Convolutions

1 7 × 7 conv, 20 features, stride 2 W/2,H/2, 20
2 5 × 5 conv, 20 features W/2,H/2, 20
3 5 × 5 conv, 20 features W/2,H/2, 20
4-6 Repeat 1-3 with filter size 5, 3, 3 W/4,H/4, 20
7-9 Repeat 4-6 with 40 features W/8,H/8, 40
10-12 Repeat 7-9 with filter size 3, 3, 3 W/16,H/16, 40
13-15 Repeat 10-12 with 80 features W/32,H/32, 80

Deconvolutions
16 3 × 3 deconv, 80 features W/32,H/32, 80
17 3 × 3 deconv, 80 features, stride 2 W/16,H/16, 80

add layer 17 and 12 (residual connection)
18 3 × 3 deconv, 40 features W/16,H/16, 40
19-20 Repeat 17-18 with 40 features

add layer 19 and 9 (residual connection) W/8,H/8, 40
21-22 Repeat 17-18 with filter size 5, 3 and 20 features W/4,H/4, 20
23-24 Repeat 21-22 W/2,H/2, 20
25 5 × 5 deconv, 20 features, stride 2 W,H, 20

Output layer
26 5 × 5 conv, 1 feature W,H, 1

I

	List of Figures
	List of Tables
	Introduction
	Purpose
	Goals

	Scope
	Thesis outline

	Theory
	Stereo vision
	A simple camera model
	The pinhole model
	Lens distortion

	Camera calibration
	Disparity and depth calculation

	Artificial neural networks
	Convolutional neural networks
	Training neural networks
	Network learning
	Loss function
	Optimizers
	Other training methods

	Further improving a model

	Stereo vision using neural networks
	Siamese network
	Residual connections
	Reconstruction error
	Bilinear sampling
	Structural similarity between images

	Recent research
	The geometry and context network

	Applying the theory

	Method
	Correlation between disparity, depth and hardware
	Dataset selection
	Available datasets
	FlyingThings3D
	Kitti Stereo 2015
	Cityscapes

	Generated data

	Neural network
	GC-network
	Network design
	Training
	Results
	Evaluation

	Cross-CNN
	Network design
	Building blocks of the X-CNN
	Final X-CNN design

	Training
	Results
	Evaluation

	Self-supervised Cross-CNN
	Network design
	Training

	Creating a new dataset
	Summary

	Results and discussion
	Numerical results
	Visual results
	Representative scenes
	Highest errors
	Visual evaluation
	Gbg dataset

	Discussion
	Network performance
	Self-supervision
	Robustness and adaptability
	Computing power
	Trade-offs
	Applying to real life
	Disparity range
	Multiple cameras in stereo

	Conclusion
	Bibliography
	Appendix 1

