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Abstract
Many industries are currently being disrupted by new technology. Perhaps one of
the clearest examples is the automotive industry, where autonomous driving, elec-
tric vehicles, and new business models disrupt the very core of what used to be a
more linear development process (McKinsey, 2017). In the midst of this, incumbent
automotive companies need to re-evaluate and update their technology base to stay
relevant. Technology managers need to choose which technologies to include in their
products and services, and such decisions are getting harder as the speed of change
accelerates (Kurzweil, 2001). To exclude human biases from the equation, strategy
consultants (McKinsey 2017; Roland Berger, 2014) believe that incumbents will have
to use technology indicators and make deliberate decisions based on probabilities.

The purpose of this study was to create and test a framework for how technology
managers can use patent data to reach insights for positioning their firms within dif-
ferent technological fields. To do this, the viability of patent data as an information
source was assessed, and its drawbacks and benefits were evaluated. A literature
review about previous patinformatics studies was performed, and the most impor-
tant technology indicators were evaluated. A framework was built based on current
best practices in patinformatics research, and the framework was tested to extract
insights for the sensing technologies lidar, radar, and sonar.

One of the main conclusions of this study is that patents contain a vast amount
of information. Patent data can be used to predict things ranging from how fast a
technology is improving to how much effort is being invested in inventive activities
and how mature the technology is in the technology life cycle. Another conclusion
is that a well-structured patinformatics process is key to reach valuable insights.
Patent sets that accurately represents the technological field need to be retrieved,
the right metrics need to be computed over a relevant period of time, and the ex-
tracted insights need to be communicated in a clear and concise manner. This was
tested on the three case study technologies, where a number of insights were gained.
For example, sonar seems to be the furthest along in its technology life cycle, and
companies are decreasing their inventive activities within this field.

The study was based on a foundation of three existing theoretical frameworks.
Petrusson’s (2015) Intellectual Asset management (IAM) framework was used as an
overarching framework for how knowledge-based (and thus also technology-based)
businesses should position themselves to maximize the utilization of their resources
and capabilities. Gregory’s (1995) process framework for technology management
complements this by putting technology selection into context as one of the key
issues in technology management. Finally, Moehrle et al.’s (2009) framework for
patinformatics research process served as a base for designing the patinformatics
efforts of the study.

v



Acknowledgements
This master thesis is a result of a master thesis project conducted at Volvo Cars
during the spring of 2018 in Gothenburg, Sweden. We would like to show our grati-
tude for the experience and the opportunity to learn from our client Erik Hjerpe at
Volvo Cars, who introduced us to the research problem. Another shout-out of grat-
itude goes to our company supervisors, Dawan Mustafa and Linnéa Claesson, who
continuously supported us throughout the process, and to Ivar Hammarstedt, for all
your insightful guidance through the jungle of competitive analysis. It has been a
pleasure working with a future-oriented automotive company, and we’re excited to
follow Volvo Car’s future journey.

The master thesis was written as a part of a larger project, and the one person
that has helped most deserves not just a thank you but a standing ovation. Our
deepest gratitude, therefore, goes to our friend and fellow student Hannes Forssberg
Malm. Much of the data science results have also been reached in collaboration with
our group member Elmar Aliyev. Thank you, Elmar for bearing with us as we’ve
entered into the for us unknown territories of data science.

We would like to direct a special thank you to our faculty supervisor, Bowman
Heiden, for awesomeness, guidance, and feedback during the thesis process. This
shout-out should also be extended to the rest of the CIP team and everybody con-
tributing to our master education. Throughout the past two years, we’ve been
challenged, stressed, and somewhat traumatized. But most of all, we’ve learned a
great deal about the world. We can only hope that we have given back a fraction of
this through asking the right questions and together reimagining what we’ve been
doing and why.

This thesis would not have been possible without the help gained from academics
and industry professionals. In particular, we’d like to thank Marcus Malek from
the AI-startup Aistemos, Leonidas Aristodemou from the Centre for Technology
Management (CTM) at the University of Cambridge, and Christopher Magee and
Christopher Benson from Massachusetts Institute of Technology. The support from
you have been outstanding, and we can not help but wonder if kindness and help-
fulness are salient characteristics of IP professionals.

Finally, we would like to show gratitude to our friends and families for the motivation
and support during this spring.

David Genelöv & Lili Yun, Gothenburg, May 2018



Contents

List of Figures x

List of Tables xii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Technological Change . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Automotive Industry in a Time of Change . . . . . . . . . . . 3
1.1.3 Sensor Fusion in Autonomous Vehicles . . . . . . . . . . . . . 5
1.1.4 Patinformatics for Technology Positioning . . . . . . . . . . . 6

1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Main Research Question . . . . . . . . . . . . . . . . . . . . . 7
1.4.2 Sub Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Reading Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Theoretical Foundation 11
2.1 Existing Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Intellectual Asset Management . . . . . . . . . . . . . . . . . 11
2.1.2 Process Framework for Technology Management . . . . . . . . 13
2.1.3 Patinformatics Research Process . . . . . . . . . . . . . . . . . 15

2.2 Constructed Framework . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Methodology 19
3.1 Research Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Linking Theory and Research . . . . . . . . . . . . . . . . . . 19
3.1.2 Epistemological and Ontological Considerations . . . . . . . . 20
3.1.3 Quantitative and Qualitative Research Strategies . . . . . . . 20

3.2 Research Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 Research Methods . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Required Data . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 Research Process . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.4 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.4.1 Literature Review . . . . . . . . . . . . . . . . . . . 24

vii



Contents

3.2.4.2 Case Study . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.4.3 Patent Retrieval and Analysis . . . . . . . . . . . . . 25

3.3 Quality of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Replicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.3 Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Framework Construction 29
4.1 Patents and the Patent System . . . . . . . . . . . . . . . . . . . . . 29
4.2 Patent Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Primary Patent Information . . . . . . . . . . . . . . . . . . . 31
4.2.2 Complementary Patent Information . . . . . . . . . . . . . . 35
4.2.3 Advantages and Disadvantages of Using Patent Information . 35

4.3 Patinformatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.1 Patent Data Pre-processing . . . . . . . . . . . . . . . . . . . 38

4.3.1.1 Boolean Search Methods . . . . . . . . . . . . . . . . 38
4.3.1.2 Hybrid keyword-classification method . . . . . . . . . 39
4.3.1.3 Cipher Automotive Method . . . . . . . . . . . . . . 40

4.3.2 Patent Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.2.1 Previously Used Patinformatics Metrics . . . . . . . 41

4.3.3 Discovered Knowledge . . . . . . . . . . . . . . . . . . . . . . 51
4.4 HELD patinformatics Framework for Technology Selection Insights . 51

4.4.1 Theme 1: Technology Overview . . . . . . . . . . . . . . . . . 53
4.4.2 Theme 2: Investment Volume . . . . . . . . . . . . . . . . . . 53
4.4.3 Theme 3: Technology Life Cycle . . . . . . . . . . . . . . . . . 54

5 Findings and Analysis 55
5.1 Case Study Technologies . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Lidar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1.2 Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.3 Sonar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.1 Patent Retrieval Process . . . . . . . . . . . . . . . . . . . . . 58
5.2.2 Retrieved Patent Data . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Patent Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.1 Theme 1: Technology Overview . . . . . . . . . . . . . . . . . 60

5.3.1.1 Cumulative Number of Patent Applications . . . . . 60
5.3.1.2 Cumulative Number of Assignees . . . . . . . . . . . 61
5.3.1.3 Average Patent Scope . . . . . . . . . . . . . . . . . 61
5.3.1.4 Average Patent Centrality . . . . . . . . . . . . . . . 62
5.3.1.5 Average number of Forward Citations . . . . . . . . . 63
5.3.1.6 Average Generality Index . . . . . . . . . . . . . . . 64
5.3.1.7 Average Originality Index . . . . . . . . . . . . . . . 64

5.3.2 Theme 2: Investment Volume . . . . . . . . . . . . . . . . . . 65
5.3.2.1 Yearly Number of Patent Applications . . . . . . . . 65
5.3.2.2 Yearly Number of Assignees . . . . . . . . . . . . . . 66
5.3.2.3 Average Renewal Time . . . . . . . . . . . . . . . . . 67

viii



Contents

5.3.2.4 Average Grant Lag . . . . . . . . . . . . . . . . . . . 67
5.3.2.5 Average Patent Family Size . . . . . . . . . . . . . . 68

5.3.3 Theme 3: Technology Life Cycle . . . . . . . . . . . . . . . . . 69
5.3.3.1 Average Science Intensity . . . . . . . . . . . . . . . 69
5.3.3.2 Recency . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.3.3 Average Citation Lag . . . . . . . . . . . . . . . . . . 70
5.3.3.4 Relative Patent Growth . . . . . . . . . . . . . . . . 70
5.3.3.5 Relative Assignee Growth . . . . . . . . . . . . . . . 71

5.3.4 Discovered Knowledge . . . . . . . . . . . . . . . . . . . . . . 72
5.3.4.1 Discovered knowledge from Theme 1: Technology

Overview . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.4.2 Discovered knowledge from Theme 2: Investment

Volume . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.4.3 Discovered knowledge from Theme 3: Technology

Life Cycle . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Conclusion 75

7 Discussion 78

Bibliography 80

ix



List of Figures

2.1 Intellectual Asset Management framework (adapted from Petrusson,
2015 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Process framework for technology management (adapted from Gre-
gory, 1995 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Patinformatics research process (adapted from Moehrle et al. (2009) 15
2.4 The core process of pre-processing (adapted from Moehrle et al. 2009 ) 16
2.5 The core process of patent analysis (adapted from Moehrle et al.

2009 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 The process of discovered knowledge (adapted from Moehrle et al.

2009 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 The theoretical framework constructed for this study . . . . . . . . . 18

3.1 Data required to answer the research questions . . . . . . . . . . . . 22
3.2 Research process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Data collection process for case studies . . . . . . . . . . . . . . . . . 25

4.1 Patent granting procedure . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Sample patent document front page. . . . . . . . . . . . . . . . . . . 31
4.3 A complete classification symbol (IPC code), representing sonar sys-

tems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Advantages and disadvantages of using patent information as a tech-

nology indicator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 SPNP calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.6 HELD patinformatics framework for technology selection insights . . 52

5.1 Cumulative number of patent applications . . . . . . . . . . . . . . . 60
5.2 Cumulative number of assignees . . . . . . . . . . . . . . . . . . . . 61
5.3 Average patent scope . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 Average SPNP percentile score . . . . . . . . . . . . . . . . . . . . . 62
5.5 Average number of forward citations . . . . . . . . . . . . . . . . . . 63
5.6 Average generality index . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.7 Average originality index . . . . . . . . . . . . . . . . . . . . . . . . 65
5.8 Yearly number of patent applications . . . . . . . . . . . . . . . . . . 66
5.9 Yearly number of assignee . . . . . . . . . . . . . . . . . . . . . . . . 66
5.10 Average renewal time . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.11 Average grant lag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.12 Average geographic patent family size . . . . . . . . . . . . . . . . . 68

x



List of Figures

5.13 Science intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.14 Citation lag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.15 Relative patent growth . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.16 Relative assignee growth . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.17 Discovered knowledge from theme 1 . . . . . . . . . . . . . . . . . . 73
5.18 Discovered knowledge from theme 2 . . . . . . . . . . . . . . . . . . 73
5.19 Discovered knowledge from theme 3 . . . . . . . . . . . . . . . . . . 74

6.1 HELD patinformatics framework for technology selection insights . . 76

xi



List of Tables

4.1 Patent features contained in a patent document . . . . . . . . . . . . 32
4.2 Complementary patent features . . . . . . . . . . . . . . . . . . . . . 35
4.3 Patent metrics devised from backward citations . . . . . . . . . . . . 42
4.4 Patent metrics devised from forward citations . . . . . . . . . . . . . 43
4.5 Patent metrics devised from NPL citations . . . . . . . . . . . . . . . 43
4.6 Patent metrics devised from IPC classes . . . . . . . . . . . . . . . . 44
4.7 Patent metrics devised from the number of patents . . . . . . . . . . 45
4.8 Patent metrics devised from patent family size . . . . . . . . . . . . . 45
4.9 Patent metrics devised from assignees . . . . . . . . . . . . . . . . . . 46
4.10 Patent metrics devised from claims . . . . . . . . . . . . . . . . . . . 47
4.11 Patent metrics devised from patent renewal fees . . . . . . . . . . . . 47
4.12 Patent metrics devised from patent grants . . . . . . . . . . . . . . . 48
4.13 Patent metrics devised from inventors . . . . . . . . . . . . . . . . . . 48
4.14 Patent metrics devised jointly from several features . . . . . . . . . . 51

5.1 Data distribution over technology fields and years . . . . . . . . . . . 59

xii



1
Introduction

This thesis focuses on how patent data can be used to help position companies in
technology-intensive environments. Following chapter consists of a project back-
ground, a problem definition, a purpose and the research questions the study aims
to answer. Taken together, these subjects provide an exposition of the underlying
need to research the topic. A brief overview of the delimitations that have been made
and an outline of the thesis disposition is then provided to give the reader a better
picture of the scope of the study and the structure of the report. Finally, the chapter
is concluded with a reading guide.

1.1 Background
This section presents the current situation in the industry being studied and the need
for better methods for companies in technology-intensive environments to position
their technological offerings. It further aims to bring clarity into why patinformatics
may be a valuable tool for that purpose.

1.1.1 Technological Change
When reading technology management literature, there seems to be an agreement
that the rate of technological change in society is increasing and that companies
therefore need better ways to quantitatively assess technology characteristics to
keep their technological offerings relevant. This is no new phenomena, as suggested
already by Basberg (1987) who claimed that “How to measure technological change
has concerned economists, economic historians, historians of technology and research
analysts for a long time. However, no widely accepted method has been developed
so far”. While many consultancy reports (e.g. McKinsey, 2017) claim that the speed
of technological change is increasing, academics have reached different conclusions
about both the definition and the correctness of this statement (Magee & Devezas,
2011). While a full investigation of the actual changing rate in society is outside
the scope of the study, this subsection aims to highlight the issue of exponentially
improving technologies and how they affect technology-intensive companies.

One way to reason about technological change is that complexity increases both
when the rate of technological change increases and when the number of things that
change increases (Modis, 2002). Consequently, by devising metrics to measure the
progress of individual technological fields, we can come a step closer to assessing

1



1. Introduction

the rate of technological change in society. One change metric is the technology
improvement rate (TIR), which denotes the yearly rate of progress for a technologi-
cal field. In his 1965 paper “Cramming more components onto integrated circuits”,
Gordon Moore noted that the number of components per unit cost integrated circuit
had doubled just about every year since the introduction of such circuits in 1958.
He further predicted that the of change would remain constant for at least ten years.
Moore revisited his predictions in 1975 and then established that the actual time be-
tween performance doublings was closer to 18-months, and that future rates could
be expected to be around two years (Moore, 1975). Nevertheless, the prediction
turned out to be surprisingly accurate and has given rise to the well-known phe-
nomena called Moore’s law.

In a narrow sense, Moore’s law asserts that the number of transistors in a dense
integrated circuit doubles about every two years. The term is, however, often used
in a broader meaning, to denote the speed of change for any technology that shows
an exponential growth pattern. Since Gordon Moore, many different researchers
(e.g. Sahal 1979 and Nordhaus 2014) have found that technological performance in
a field increases exponentially with time and that the percentage change per year is
constant. If p is the performance at time t and p0 is the performance at a starting
time t0, then

p = p0 exp(k(t − t0)

In these terms, while the percentage rate of change k is constant, the exponential na-
ture of the equation leads to growing absolute changes in performance levels. Thus,
the rate of technological change for transistors is constant on a logarithmic scale
and increasing on an absolute scale. Famous futurist Ray Kurzweil describes this as
an evolutionary process, where “Evolution applies positive feedback” and “the more
capable methods resulting from one stage of evolutionary progress are used to create
the next stage” (Kurzweil, 2001). Kurzweil also means that the human brain has
been developed throughout thousands of years of relatively slow development and
that exponential improvement is counter-intuitive to how we view the world. As an
example of this, he tells an old story about invention and mathematical thinking
(here recited by Brynjolfsson & McAfee, 2011):

”In one version of the story, the inventor of the game of chess shows his creation
to his country’s ruler. The emperor is so delighted by the game that he allows the
inventor to name his own reward. The clever man asks for a quantity of rice to be
determined as follows: one grain of rice is placed on the first square of the chess-
board, two grains on the second, four on the third, and so on, with each square
receiving twice as many grains as the previous. The emperor agrees, thinking that
this reward was too small. He eventually sees, however, that the constant doubling
results in tremendously large numbers. The inventor winds up with 264-1 grains of
rice, or a pile bigger than Mount Everest. In some versions of the story the emperor
is so displeased at being outsmarted that he beheads the inventor.”

Studies show that Moore’s law can be applied to other fields than just integrated
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1. Introduction

circuits (e.g. internet data traffic (Coffman & Odlyzko, 2002) and magnesium re-
finement (Nagy et al., 2013)). If we accept the proposition that humans find it
difficult to grasp exponential change, it follows that technology managers in the
21st century will need to become more data-driven in their assessment of technolog-
ical change and in technology selection decisions as we move into the second half of
the chessboard.

1.1.2 Automotive Industry in a Time of Change
While the pace of technological change across many industries is accelerating, many
industries are on the verge of disruption. This is extra prominent in the automotive
industry where technological fields like autonomous driving and electrical vehicles
disrupt the core of what used to be a linear development process. At the same time,
high-tech software players are moving into the sector by means of major efforts and
investments. According to McKinsey (2017), the number of patents filed annually
in autonomous technology has almost doubled since 2012 and patents filed by new
tech players have increased by an average of 25 percent each year.

Experts deem that there is a clear set of factors that will disrupt the traditional
automotive industry, including innovation, electrification, software and data (Butler
& Martin, 2016). Along with the accelerating pace of innovation, companies have to
innovate faster than their competitors to not risk losing current positions and get-
ting lapped in one technology cycle. In the automotive industry, the new high-tech
actors seem to be taking a different approach to cars than more traditional actors,
and with changing user preferences it is hard to say what technological solutions
and business models will ultimately prove successful. Companies like Apple, Tesla
and Google are expected new car entrants concentrating on their development and
design around electric vehicles (Butler & Martin, 2016). For traditional car manu-
factures to be able to keep up with these companies and their move from combustion
engines, transmissions emission, carburetor and exhaust systems and fuel economy
management to batteries, charging systems, engine controllers and power optimiza-
tion, the core expertise of the traditional industry leaders will have to be revamped.

Furthermore, tech companies and automakers are striving to deploy fully automated
driving to the roads within the next couple of years (Steinbaeck, 2017), which may
carry the potential to completely change the industry (Butler & Martin, 2016).
As cars achieve initial self-driving thresholds, some supporters insist that fully au-
tonomous driving is around the corner, while others argue that the technology tells
a different story (Butler & Martin, 2016). Although many of the required tech-
nologies already exist, there is without a doubt still challenges to overcome be-
fore autonomous driving can be practical as the industry has not yet determined
the optimum technology archetype for autonomous vehicles (Roland Berger, 2014).
Nonetheless, while analysts still debate the current state of autonomous driving tech-
nology, pace of change, and the dynamics between new entrants and incumbents,
many strategy consultant companies seem convinced that autonomous driving is
going to happen, and that the questions is when it is going to happen rather than

3
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if (Butler & Martin, 2016).

In the deployment of electrical and autonomous cars, car components are increas-
ingly being operated by embedded coding systems. The move from hardware to
software might perhaps be the most significant shifting of the automotive tectonic
change (Butler & Martin, 2016). New interfaces between the driver and car are to be
expected, and a large number of driving decisions based on lots of sensory data will
need to be made to enable autonomous capabilities. The many layers of software
cause lots of consternation in the traditional automotive companies since it has not
traditionally been their main area of expertise and, therefore, further complicates
the automotive industry’s ability to rapidly innovate in their usual way. Instead,
new actors take the opportunity to fight for dominance in the auto space to quickly
move into position. Given their huge cloud-based computing resources, it is not a
surprise that Google has emerged as one of the leading actors in the development of
autonomous vehicles.

An additional reason for why incumbent automotive companies are unlikely to ex-
cel in these areas is data. To reach full autonomous driving the system first have
to learn how to act and adapt in a safe manner to many different circumstances,
and given that there is yet no existing set of rules that can be programmed into a
car to prepare it to avoid and anticipate all dangerous situations it may eventually
encounter, effective autonomous driving systems must use new techniques such as
machine learning and deep learning to develop sophisticated models entailing the
intelligence needed. In doing this, large data sets are required. Again, although
Tesla is heavily focused on this, Google takes the lead in reaching performance lev-
els others cannot match in terms of using data at scale (Butler & Martin, 2016).

To succeed in the changing automotive landscape, original equipment manufacturers
(OEMs) will have to focus strongly on developing and producing market-leading
technologies (McKinsey, 2017). According to Ernst (2003), the allocation of research
and development (R&D) resources to different types of technology is one of the most
important decisions that technology managers make. But while these companies are
hurrying to develop their own autonomous vehicles, their efforts may be too late.
The latitude to make the right strategic decisions before anyone else does, and
the opportunity to make exploratory decisions, becomes more and more limited,
and as cost, complexity, and rate of technological change increases, the issues of
managers being able to deliver value and competitive advantage through strategic
technology management becomes more critical (Phaal et al, 2001). To stand the best
chance of keeping up with a successful transformation that results in sustainable
profitability, strategy consultants (McKinsey, 2017; Roland Berger, 2014) believe
that incumbents will have to find a way to obtain strong navigators and learn how
to to make deliberate decisions based on probabilities.
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1.1.3 Sensor Fusion in Autonomous Vehicles

One of the most critical puzzle pieces of developing autonomous cars is replacing
human senses with sensory functions using various technologies simultaneously. To
enable full autonomy, one fundamental problem that needs to be solved is the visual
perception problem of providing cars with the ability to sense their surroundings
(Wolcott & Eustice, 2017). Companies operating in the autonomous driving space
are thus continuously trying to perfect self-driving cars by achieving reliable levels
of perception, mapping, and localization with the smallest number of test and val-
idation miles needed. To do this, there are two approaches that appear in regular
practice by the majority of autonomous vehicle players;

1. The first approach uses radars, sonars and camera systems to perceive vehicles
and other objects in the environment. The environment is not assessed on a
deeply granular level using this approach, but it requires less processing power.

2. The second approach uses lidar in addition to the traditional sensor suit of
radar and camera systems. This approach is more robust in various of en-
vironments (especially in tight, traffic-heavy ones) but requires more data-
processing and computational power.

Lidar, short for light detection and ranging, is the latest development in surveying
technology, advancing from its predecessors; radar (radio detection and ranging) and
sonar (sound navigation and ranging) sensors. The three technologies aim to fulfill
similar purposes, but instead of using radio waves or sound to scan its environment,
lidar utilizes laser light pulses. Because of its ability to map its surrounding at
the speed of light, lidar systems can achieve a much finer scan accuracy than other
existing technologies can allow (Schwarz, 2010). Thus, lidar is the preferred tech-
nology of Google’s self-driving car company, Waymo. Scholars claim that Waymo’s
development in lidar has become so advanced that it is able to create an accurate
three-dimensional image that is almost as good as human eyes (Häne et al, 2017).
Radar may not be as smart, but it is reliable, affordable and has a longer “eyesight”.
Among the autonomous car development companies, Tesla is fairly unique in forgo-
ing lidar entirely in its development. Tesla’s CEO and founder Elon Musk does not
believe that lidar is a critical component in autonomous driving systems, and Tesla
instead uses a passive camera, sonar, and radar systems to provide a complete set
of sensor capabilities (Tesla, 2018).

Many thought leaders seem to have reached the conclusion that lidar augmentation
will become important for many autonomous car players. But due to the cost of
lidar still being unreasonably high for the technology to be incorporated in cars
(Wolcott & Eustice, 2017), it has motivated the development and investments in
other solutions and the question of which technology that will become the industry
standard remains open (Steinbaeck, 2017). The interesting technology dynamics and
fast-changing market conditions for autonomous cars therefore make lidar, radar,
and sonar sensors exceptionally interesting cases for applying novel methods to gain
new insights and aid managers in their technology selection decisions.
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1.1.4 Patinformatics for Technology Positioning
The term technology positioning is used in this study to denote the sum of all tech-
nology selections made by an organization, resulting in a distinct set of technologies
used in the creation of goods and services. A successful technology positioning thus
means that the organization’s technology selection decisions have been well-aligned
with its overarching objectives.

With perfect information and a complete understanding of different technology op-
tions and their trajectories, companies could consistently select optimal technologies.
In the real world, however, perfect information is an illusion and companies have to
be content with using various indicators and clues to aid their decisions. Archibugi
& Pianta (1996) wrote that “Within firms, detailed information about technological
advance is needed to take the right decisions concerning the amount of resources to
devote to innovation, to select the fields where innovation promises economic re-
turns and to manage innovative strategies within companies”. Similarly, Kassicieh
and Rahal (2007) expressed their views as “predictions of benefits from investment
in a new technology is of great interest. Forecasting the success of future technology
is key to decision makers. Because, knowing or predicting the success of invested
technology provides important clues, such as the current technology life cycle of the
technology under consideration, diffusion potential and technology scope. In technol-
ogy and business, it provides planners to choose the right strategies for the future.”

Patent data is the world’s largest repository of technological innovation (WIPO,
2015) and patinformatics is defined as the science of analyzing patent information
to discover relationships and trends (Trippe, 2003). Since patents represent inven-
tive activity, patinformatics can help companies to target their innovative efforts
and decide how much of the R&D budget should be spent on different technological
fields (Basberg, 1987; Ernst, 2003). Companies that fail to file patents and pro-
cess patent information therefore risk losing market competitiveness (Trappey et al.
2012).

In recent years, the traditional use of patent information has evolved into a more
strategic use of the information thanks to the development of more computer-
ized databases (Jun & Lee, 2012). Today, analytical software products, electronic
databases and private service providers with their own proprietary value-added tech-
nology or patent databases are available for assisting in the patinformatics process.
This emerging technology reflects a change in emphasis from using computers and
patent information to support record keeping toward using computers to facilitate
decision-making. Policymakers, economists, and other professionals are increasingly
making use of patent information to analyze for examples patent activities in a
sector, technological field, or company, to forecast the direction of technical devel-
opment and change, or to ascertain a company’s relative technological position in
a marketplace (WIPO, 2015). Hence, an expanded use of patent information can
be seen across many different strategic and tactical businesses, research and policy-
making activities at institutional, national and enterprise levels.
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Despite this increased use of patents as an information source, there is a lack of
an overarching understanding of how patents can be used to support technology
selection decisions and technology positioning. Current research articles in the field
mostly evaluate how well different patent indicators correlate with the phenomena
they supposedly represent, but this makes research somewhat fragmented and cre-
ates a need for joining previous studies in a larger setting.

1.2 Problem Definition
The speed of technological change is increasing and companies have to make deci-
sions about which technological fields to use in their goods and services. Specifically,
in the context of autonomous driving, there is currently a technological development
where different types of sensors; lidar, radar, and sonar, are used to detect objects
and map out surroundings. Technology managers should use all information at their
disposal to make optimal decisions regarding how to position their technological of-
ferings, but due to fragmented research and the limited data processing capabilities
of humans, patent data is currently underutilized as a source of information to guide
decisions. There is thus a need for an overarching framework for how the world’s
largest repository of technological information can be used in technology positioning.

1.3 Purpose
The purpose of this study is to create and test a framework for how technology
managers can use patent data to reach insights for positioning their firms within
different technological fields.

1.4 Research Questions
Research questions have been formulated to progressively focus down the study from
a general field of research to a researchable thesis subject (Bryman & Bell, 2011).
They have also served as guidance for fulfilling the purpose and relieving the research
problem. To this end, the main research question (MRQ) was first defined and then
broken down into four sub research questions (SRQs).

1.4.1 Main Research Question
Due to fragmented research and low degree of industry integration, patent informa-
tion is currently underutilized as an information source. Simultaneously, technology
managers need to continuously position their organizations in fast-changing indus-
tries. Thus, there is a need for an overarching framework that merges insights from
previous research. The main research question is:

MRQ: How can a patinformatics framework be constructed to help technology man-
agers gain valuable insights for selecting which technologies to invest in?
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1.4.2 Sub Questions
At the core of patinformatics lies patents, and one can not build a good patinformat-
ics framework without understanding patents characteristics and the drawbacks and
benefits of using patents as an information source. The first sub research question
is thus:

SRQ1: What information can be found in patent data?

Previous research includes a plethora of different metrics that have been used and
tested as technology indicators. To build a comprehensive framework, there is a
need to understand what those metrics are and how they have been used. The sec-
ond sub research question is therefore:

SRQ2: What patent data metrics can be used to reach insights about technologies?

Having understood the individual metrics and their properties, a selection has to be
made regarding which are most relevant for the problem of technology positioning.
This leads to the third sub research question:

SRQ 3: How can a patinformatics framework be constructed for use in technology
selection?

Finally, the constructed framework should be applied to real cases and evaluated.
The technological fields of sonar, radar, and lidar are at the epicenter of the dis-
ruption of the automotive industry and no dominant design has yet emerged. The
fourth and final research question thus reads:

SRQ4: What insights can the constructed framework give about the technological
fields of lidar, radar, and sonar?

1.5 Delimitations
Due to the beforehand stipulated resource constraints, the study will be delimited
by a number of factors. First, the project will be studied through an Intellectual
Property (IP) perspective studying only patent data, meaning that financial, regu-
latory and market considerations will be left outside of the research scope. Secondly,
the study is limited to patinformatics for technology selection. Hence, it will not
deal with analyzing competitive positions for competitive intelligence or mergers and
acquisitions (M&A:s), or comparing innovative activity between actors, countries or
other entities. While new patents and innovations might affect how technologies
should position themselves, the framework created here is to be used at discrete
points in time when evaluating different technology options, and patent monitoring
will thus be left outside the scope of the study.

Moreover, technology selection is a complex issue involving a number of factors,
such as assessing the economic and technical feasibility of different options, eval-
uating the company’s current research position in the different fields and that of
its competitors, and determining how well the different options align with the com-
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pany’s overarching strategy and business objectives. Naturally, not all information
for these decisions can be found in patent data, and this study is not an attempt
to build an all-encompassing framework for technology selection. The focus here is
instead exclusively on patinformatics and what technology insights can be gained
by analyzing patents.

1.6 Thesis Outline
This study is divided into seven chapters according to the following disposition:

Chapter one serves as an Introduction to the study. It includes an account for the
background leading up to the problem being studied, a problem definition, the pur-
pose of the study, the research questions to be answered and the delimitations of
the study.

The second chapter, Theoretical Foundation, entails the fundamental frameworks
from previous research that this study has built upon. The three most prominent
frameworks are then merged to construct the theoretical framework that has been
applied in this study.

The third chapter comprises the Methodology of the study. This includes an exposi-
tion of the research strategy, research design, and research method applied, as well
as an outline of what measurements have been taken to assure a high quality of the
research.

In chapter four, the Framework Construction is presented. This includes a back-
ground to patents, the patent system, what information that can be found in patent
data, and the advantages and disadvantages of using patent information. A patin-
formatics framework for technology selection insights is then created.

In chapter five, Findings and Analysis, the previously created framework is applied
to the technological fields of lidar, radar, and sonar. First, an introduction to the
technological fields is presented. Further, the results from the analysis of the three
technological fields are visualized, and possible business implications and insights
are extracted.

Chapter six, Conclusion, presents the key findings of the study, including the an-
swers to the research questions.

Finally, chapter seven, Discussion, addresses the theoretical and practical implica-
tions of the study, its limitations, and a call for further research in the field.

1.7 Reading Guide
This study addresses a well-defined problem in technology management and its main
target audience is, therefore, technology managers that want to make more well-
informed and data-driven technology selection decisions. For such readers, chapters
four, five and six are recommended.
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Apart from technology managers, actors within academia, and especially within the
fields of intellectual property and data science may find the study interesting. Such
readers are advised to start with chapter one and then review the thesis outline
above to choose areas of further interest.
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2
Theoretical Foundation

This chapter introduces a selection of the existing technology positioning and pat-
informatics frameworks. A new framework for use in this study is then created by
combining the frameworks.

2.1 Existing Frameworks
This section introduces two technology management and one patinformatics frame-
work that has been used as a foundation for creating the new framework used in the
study. The choices of frameworks build on the underlying belief that technology can
be understood as a special kind of applied knowledge. This belief is reinforced by
Floyd’s (1997) definition of technology as “the practical application of scientific or
engineering knowledge to the conception, development or application of products or
offerings, processes or operations”. By defining technology in this way, tools from
knowledge management can be applied to effectively manage it. In line with this
reasoning, the first framework introduced is Petrusson’s (2015) Intellectual Asset
Management (IAM) framework, covering a structured procedure for claiming, po-
sitioning and utilizing intellectual phenomena. Secondly, Gregory’s (1995) process
framework for technology management and its usefulness as a well-defined process
for companies developing or reevaluating their technology base is presented. Finally,
Moehrle et al.’s (2010) framework for how patinformatics research can be performed
in a structured way is explained.

2.1.1 Intellectual Asset Management
The IAM framework used in this study emerged as a result of the Knowledge Man-
agement Platform (KMP) programme conducted jointly by the Swedish government
agency for state funding of research and development (VINNOVA) and the Univer-
sity of Gothenburg. Building on previous models created by the Center for Intel-
lectual Property (CIP) in Gothenburg, the framework was originally built to aid
people in academic environments to increase the utilization of their research results
(Petrusson, 2015). The framework has since been adapted to also suit the need
of technology-based companies and has been successfully deployed as a technology
management tool in companies like SKF (Konsert Strategy & IP, 2018). There is,
however, still a need to distinguish between IAM for technology-based businesses
and IAM for academic environments, and where necessary, such distinctions have
been made in the following paragraphs.
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The foundation for the IAM framework is the degunkification of the otherwise elusive
term “know-how” into Intellectual Assets. By applying a structured process for
how different kinds of know-how can be created and managed, organizations can
achieve both a better alignment of their internal value creation efforts with their
external environment and a larger degree of utilization of those results. As shown in
Figure 2.1 below, the framework is built around four key processes that characterize
value creation processes in knowledge-based organizations, namely 1) Claiming 2)
Positioning 3) Deciding and 4) Organizing. Furthermore, the framework offers a
support system including procedures, sources of information and process support
tools for each key process (Petrusson, 2015).

Figure 2.1: Intellectual Asset Management framework (adapted from Petrusson,
2015 )

Key process 1), claiming, concerns how organizations should identify, analyze and
eventually claim intellectual assets that exist or are created within their organiza-
tional contexts. The support system for this process includes a set of procedures for
mapping out intellectual assets, analyzing their characteristics and value, and claim-
ing that value through the use of different control mechanisms. The support system
for key process 2), Positioning, advocates a more proactive approach by focusing
on what is happening in the outside world to develop and utilize the organization’s
relative position. By identifying relevant knowledge fields and creating knowledge
trees, the organization can visualize the strengths of weaknesses of itself and others,
which in turn can lead to a roadmap for future developments and collaborations.
Key process 3), Deciding, covers the decision-making process concerning how to best
utilize the organization’s intellectual assets for value creation. The support system
for this process includes a set of tools for how organizations can license their intel-
lectual assets, utilize collaboration potentials for research diffusion, and templates
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for managing contractual relations. Finally, key process 4), Organizing, concerns
the administrative governance of intellectual assets (Petrusson, 2015).

Since this study mainly focuses on key process 2), Positioning, it is worthwhile to
identify some key concepts for this stage. The IAM framework should not be seen as
a linear process with well-defined starting and ending points. In most cases, a proac-
tive approach starting with considerations about what is happening in the external
world is more relevant than starting by claiming knowledge assets (Petrusson, 2015).
Thus, understanding the world outside the organization and aligning technology
initiatives accordingly is of utmost importance for technology-intensive companies.
From this reasoning, it also seems fair to deduce that a continuous reevaluation of the
current positioning strategy becomes of great importance in fast-changing industries.

With the framework being adapted from academia, it is also worthwhile to reflect
on the difference between the positioning process in the context for which Petrusson
originally developed the framework and a corresponding process in the technology-
intensive companies that are the current subject of study. For one, the IAM tool for
academic environments was developed to assist in societal value creation (Petrusson,
2015), whereas companies generally use commercialization to maximize the appro-
priation of the value they create. Furthermore, academic research is mainly focused
on the creation of new knowledge and making academic contributions, whereas a
technology-intensive company might consider it sufficient to acquire off-the-shelf
technologies in certain technological fields, focusing their efforts on acquiring a com-
petitive advantage through others. The positioning process therefore becomes more
a process of deciding which areas the company wants to lead in, which areas to
follow in, and which possible technologies to acquire or develop for each area.

2.1.2 Process Framework for Technology Management

While the IAM framework can be seen as a research policy or technology transfer-
based view of technology management, Gregory’s (1995) process framework for tech-
nology management instead approaches the subject from an operations background.
Gregory reacted to the narrow scope and low degree of industry integration of ex-
isting frameworks and aimed to create a new framework that could help technology
managers understand the status and implications of technology across their busi-
ness. To make the framework easily assimilated, it centers around natural labels and
a logical language for characterizing the key processes and issues that occur in man-
agers’ everyday working situations. According to the framework (see Figure 2.2),
the five main processes in technology management is; 1) Identification, 2) Selection,
3 Acquisition, 4) Exploitation and 5) Protection.
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Figure 2.2: Process framework for technology management (adapted from
Gregory, 1995 )

Key process 1), Identification, concerns developing an awareness of the technologies
that are important to the business. This may include the systematic scanning of
which technologies exist or are emerging from outside the organization, as well as
acknowledging the business’s own technology development efforts. Once the orga-
nization understands which technologies exist in their context, they need to select
the optimal ones, according to how well the technologies’ characteristics align with
the technology strategy and the overarching business strategy. Key process 2), Se-
lection, is the process closest to the focus of this study, and the main goal of this
process is to assess the relative importance of already identified technologies to the
business and select how it should position itself in the technological landscape (Gre-
gory, 1995). With this assessment done, the business can go ahead to key process
3), Acquisition, to purchase, license or otherwise obtain the right technologies. For
this process, each organization should create a framework that explicitly outlines
the processes needed to choose what acquisition routine to perform and how to
execute the chosen approach. Having acquired the technologies, key process 4), Ex-
ploitation, concerns their systematic conversion into marketable products, services,
or value extraction through other commercialization efforts such as technology li-
censing or joint ventures. Finally, key process 5), Protection, involves how to best
protect the performed technology investment and includes the creation of processes
for e.g. licensing contracts and patenting (Gregory, 1995).
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2.1.3 Patinformatics Research Process

The last framework introduced in this section has been chosen for its clarity into
how a patinformatics research process can be carried out. Moehrle et al.’s (2009)
framework (see Figure 2.3) divides the process into three distinct “core processes”; 1)
Patent pre-processing for easy access, 2) Data analysis to reach business insights and
3), Discovered knowledge (the utilization of analysis results for business decision-
making).

Figure 2.3: Patinformatics research process (adapted from Moehrle et al. (2009)

The core process of pre-processing focuses on preparing patent documents for other
tasks. From the time when the patent is registered at the patent office, it must be
converted to digital format and stored in a database. Once this is done, further
value might be gained from generating metadata about documents, e.g. extract-
ing keywords and summarizing content. The analyst may then choose to limit the
number of documents by certain criteria and finally extract the resulting data from
the database. Today, patents in a digital form with a limited selection of metadata
can be easily obtained from publicly available databases (Altuntas, Dereli & Ku-
siak, 2015). The pre-processing task for the modern patinformatics researcher is,
therefore, mainly focused on limiting the range of search through retrieving patent
sets that are representative of the company, industry, technology or country being
studied. This can be done by managing the trade-off between precision and recall,
which means to include a large enough portion of the desired documents while ex-
cluding the undesired documents.

When limiting the range of search, the choice might be between using single patents,
groups or classes of patents, or using data for total patenting activity (Basberg,
1987). Furthermore, the researcher must choose whether to study only granted
patents, pending applications, or a combination. While granted patents might have
higher average quality due to the screening performed by patent authorities, they
also suffer from the additional time lag of the patent prosecution procedure, making
them less well suited for studying recent developments and fast-evolving technolo-
gies. Document selection may also be based on regular patent search methods like
binary word searches in patent titles (Altuntas, Dereli & Kusiak, 2015) or using the
four-digit-codes of the patents’ IPC classification (Gao et al., 2013).

The core process of pre-processing is shown in Figure 2.4 below.
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Figure 2.4: The core process of pre-processing (adapted from Moehrle et al. 2009 )

Once the relevant patent data is available in a digital database, the next core process
is the actual patent analysis. An overview of this process can be seen in Figure 2.5
below.

Figure 2.5: The core process of patent analysis (adapted from Moehrle et al. 2009 )

The patent analysis starts with querying and retrieving the previously generated
patent sets. With a relevant set of patent documents, the information in the patents
may be analyzed. This can either be done by studying the content on a per patent
basis (content analysis and non-text analysis) or by studying the relationships be-
tween documents (document relationship analysis). Aggregated metrics, such as the
average number of citations per patent family or the number of new applications per
year can be derived for different points in time, to show both the historical situation,
the current situation and the current trajectory.

Having performed the patent analysis, the final step of a patinformatics research
process is to evaluate and refine the results in order to support operational patent
decisions or strategic decision-making (Moehrle et al. 2009). This process is seen in
Figure 2.6 below.

Figure 2.6: The process of discovered knowledge (adapted from Moehrle et al.
2009 )

Visualization of analysis results provides a quick overview of the results and helps
managers and analysts to reach insights from a single impression. Moehrle et al.
propose that the two methods of patent mapping and network-diagrams are well-
suited for this purpose, but there is a plethora of other possible methods available.
Having visualized the results in a suitable way, the implications of the research
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results can be evaluated and business insights can be extracted. Finally, the analysis
results should be documented to allow for later revisitation or modification of the
analysis.

2.2 Constructed Framework
The three presented frameworks together form the theoretical foundation upon
which this study was based (see Figure 2.7). The IAM framework presents an
overarching framework for how knowledge-based (and thus also technology-based)
businesses should position themselves to maximize the utilization of their resources
and capabilities. The framework also introduces patents and patent data as an im-
portant source of information. The process framework for technology management
complements this by putting technology selection into context as one of the key
issues in technology management, and further proposes important considerations
to be made regarding how selection should be performed, including a competitive
analysis, predicting technology trajectories, and understanding the strategic impli-
cations of the decisions on the overall business.

An understanding of how technology-based businesses should think about position-
ing and technology selection was crucial to design a patinformatics research process
that could provide managers with valuable insights. For the more technical aspects
of designing the patinformatics research process, Moehrle et al.’s framework was em-
ployed and the process was split into pre-processing, patent analysis and discovered
knowledge.
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Figure 2.7: The theoretical framework constructed for this study
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Methodology

This chapter outlines the underlying methodology that has been applied in the study,
including the research strategy, research design, research process and a discussion
about the quality of the research.

3.1 Research Strategy
According to Bryman and Bell (2011), the research strategy is dictated by the na-
ture of the research and is further guided by different considerations made by the
researchers. The following subsections aim to explain the most important considera-
tions made for this study, including how theory has been linked to research and how
epistemological and ontological issues have been handled. With these considerations
as a fundament, the chosen research strategy is explained.

3.1.1 Linking Theory and Research
To recap, the purpose of this study was to build and test a framework for using
patinformatics for technology selection insights.

Raw patent data concerns individual patent documents, and to study technological
fields as a whole, metrics need to be aggregated for each technological field. The
researcher thus has to go through the inherently deductive process of choosing what
features to include and how to represent them. At the same time, a number of previ-
ous studies have investigated the efficiency of different aggregated patent metrics as
technology indicators, and setting up hypotheses about all these metrics and testing
them again was deemed unfeasible. In this study, a subset of existing metrics was
used to gain insights about the field of study, and the existing theories about the
connection between the metrics and the phenomena they supposedly represent were
accepted on an “as-is” basis in the creation of the framework.

Since this study concerned both the creation and the testing of a framework, it is
useful to consider how significant each of those two parts was. The theory creation
part was inherently inductive, while the subsequent testing of theory was more
deductive. Since the framework was tested on fields without an existing "ground
truth", no real insights about the deductive power of the model could be reached.
The framework creation was therefore considered to be of greater importance than
the testing. The primary mode of reasoning employed in this study can thus be

19



3. Methodology

described as inductive, with the ultimate objective of merging previously fragmented
research together into a coherent study of what insights patinformatics can bring to
the technology selection process in organizations.

3.1.2 Epistemological and Ontological Considerations
Decisions about what should be regarded as acceptable knowledge (epistemology)
and the nature of existence (ontology) have impacted both how the research ques-
tions were formulated and what the most logical way of answering them was. The
epistemological and ontological considerations have been based in the mode of rea-
soning described in Linking theory and research in line with academic best practices
(Bryman & Bell, 2011).

Since patents are the result of human creation, the phenomena being studied can be
considered ontologically subjective. Thus, it would seem logical for a study like this
to employ a constructivist position, acknowledging that social order is in a constant
state of change and that people continuously create and recreate their surrounding
social reality. There is no law of nature that generates patents and patent data,
but rather people and their everyday decisions. Nonetheless, valuable insights can
be gained by applying scientific methods to find patterns in human behavior. For
instance, advanced statistical methods such as artificial neural networks can be used
to predict how likely a customer is to quit his or her wireless carrier contract (to
churn) given characteristics of that person’s cell phone usage (Pendharkar, 2009).
Thus, a considerable value can be extracted through applying scientific methods
to the study of human behavior, even while acknowledging the fact that there is
no one true social reality. To balance the constructivist nature of the phenomena
being studied with the apparent value creation possibilities for positivistic research
methods, this study uses a pragmatic research paradigm. This allows for a mixed-
method research design where a constructivist worldview can be employed in a scien-
tific study to answer questions in a way that can be practically useful (Feilzer, 2009).

3.1.3 Quantitative and Qualitative Research Strategies
While the distinction between quantitative and qualitative research may be some-
what ambiguous, it is continuously used as an umbrella term to denote two different
strategies concerning a range of issues within the practice of business research (Bry-
man & Bell, 2011). The terms build on separate epistemological and ontological
orientations, as well as different views on how theory should be linked to research.
While qualitative research is typically associated with inductive reasoning, construc-
tivism, and interpretivism, quantitative research is more commonly connected with
deductive reasoning, positivism, and objectivism (Bryman & Bell, 2011).
Building on the stance taken in Linking theory and research and epistemological and
ontological considerations, and in particular, on the explained need for positivist
methods to study human behavior, this study employs a mixed-methods research
strategy where quantitative methods are used to generate patent data metrics that
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can be evaluated qualitatively.

3.2 Research Design
This study adopted a comparative research design where identical methods were
applied to examine multiple cases (Bryman & Bell, 2011). The reasoning for us-
ing a multiple-case study design was based on the logic that a multiple-case study
helps improve theory building, and by comparing two or more meaningful cases, re-
searchers can generate theoretical insights uncovered through the comparison (Yin
1984; Eisenhardt 1989). In this case, the comparative design was used to study de-
velopmental trends of patent data metrics as technology indicators across different
technological fields. However, rather than building entirely new metrics for how to
evaluate technologies, the goal with this study was to concentrate on using existing
metrics in a new framework to give a comprehensive image of the development of
different technological fields. According to Bryman & Bell (2011), this approach is
relatively popular for business and management research, but a general objection
towards studying multiple cases is the risk of losing attention to the specific context
and therefore the study poses a high risk of being generalized. To mitigate this risk
the study concentrates on allowing the distinguishing characteristics of the cases to
act as a springboard for theoretical reflections about the findings (Bryman & Bell,
2011).

3.2.1 Research Methods
According to Bryman & Bell (2011), research methods constitute different tech-
niques and instruments for collecting data. This section presents the data that was
considered necessary for conducting the study in line with the constructed theo-
retical framework. Furthermore, it also presents the research process and the data
collection techniques used in the data collection process.

3.2.2 Required Data
To answer the research questions, different types of data was required. Since the
study was centered around patent data, it was deemed necessary to get a solid grasp
of patents and the patent system. To exhaustively answer what information can be
found in patent data, both the information fields on the patent documents and in-
formation aggregated by other actors needed to be considered and an evaluation of
drawbacks and benefits helped shine the light on the limitations of patents as an
information source.

The second research question focuses on which different patent data metrics can
be constructed to provide insights about technologies. Two separate data collec-
tion efforts thus needed to be undertaken. First, an overview of different possible
patent data metrics needed to be built, and then each metric needed to be evaluated
based on how well it functioned as a technology indicator and thus provided insights.
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The third research question concerns how to build a framework for using patinfor-
matics for technology selection insights. In line with the patinformatics research
process framework, this question can be seen as an optimization problem where
data is needed on three key issues; how to best pre-process the data to create a
good representation of the technology being studied, what metrics to use to best
analyze the chosen data, and how to best communicate the discovered knowledge to
help decision-makers reach insights and ultimately perform better technology selec-
tion decisions.

The fourth and final research question concerns the testing of the constructed model
on the technological fields of sonar, radar, and lidar. To be able to evaluate the anal-
ysis results and make sense of the information being presented, a basic understanding
of the technological fields and their historical development was deemed necessary.
Furthermore, patent data sets corresponding to the different fields needed to be
constructed, the analysis needed to be performed, and the results needed to be eval-
uated. The different research questions and a summary of the data needed to answer
each question can be seen in Figure 3.1 below.

Figure 3.1: Data required to answer the research questions
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3.2.3 Research Process
Formulating the research process includes defining the different stages of the research
and their timing in the overarching process (Bryman & Bell, 2011). This study was
completed through three separate phases, as shown in Figure 3.2 below.

Figure 3.2: Research process

A literature review was conducted iteratively during the entire study to facilitate
for new theories to be discovered and formulated. Reviewing literature also gave a
more in-depth understanding of the different concepts, so that the right theories to
use could be selected.

Given a research topic from a commercial automotive actor, the initial phase in-
cluded an extensive background study to create a problem definition and to for-
mulate a research problem of scientific relevance. By reviewing prior research, the
research problem could be formulated to ensure that the research topic had not yet
been addressed in literature, that it had an academic contribution as well as to aid
an industry actor to build a solid foundation for their new patinformatics initiative.

The second stage started with the formulation of purpose and research questions
based on the research problem. By scanning theories and models relevant to an-
swering the research questions a framework with the purpose of providing scientific
adjudication and guidance to the study could then be constructed. When construct-
ing the framework, valuable insights and understanding of the research field were
gained. To explore the research field even further, a chapter summing up the rest
of the literature study and the basic understandings of different key concepts was
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created. During this step, patent metrics likely to be related to technology selection
insights were identified. Next, an evaluation of which metrics to test was performed.
In doing so the feasibility and implication of using each metric in the technology
selection process were assessed. When an understanding of all relevant key concepts
had been obtained, the analysis part of the study could be executed.

In the third and final stage, the constructed patinformatics framework was applied
to three case subjects (lidar, radar and sonar) that the patent metrics were tested
on. The initial step of this process was to extract patents representing the three
different technological fields. By interpreting all the findings from the previous
steps and from examining the different technological fields using the patent metrics,
different technology selection insights could be identified. These insights were then
analyzed to arrive at a final conclusion that satisfied the research questions and
overall purpose of the study.

3.2.4 Data Collection
The research method used in this study was two-pronged with an equal emphasis
on a literature review and a retrieval and analysis of patent data.

3.2.4.1 Literature Review

A comprehensive literature review using a variety of sources was conducted to create
a theoretical foundation while providing a deeper understanding of the different
concepts included in the study. Using Chalmers University Library and Google
Scholar as the main search engines, relevant publications were collected, whereof
articles from academic journals held for the majority of sources. To ensure high
validity on these, the publication year and the number of citations were considered.

3.2.4.2 Case Study

Yin (1984) defines the case study research method as “an empirical inquiry that in-
vestigates a contemporary phenomenon within its real-life context; when the bound-
aries between phenomenon and context are not clearly evident; and in which multiple
sources of evidence are used”. As already mentioned, literature clearly emphasizes
the risk of generalization when performing case studies (Bryman & Bell, 2011).
Therefore, rather than creating a generalized theory from the studied case subjects,
the case study concentrated on identifying the differences between the cases to then
take all the pieces and bits of seemingly unrelated information from each case to-
gether, to synthesize into a new understanding and insights.

The goal of conducting this case study was to understand what insights the previ-
ously constructed patinformatics framework could give for the task of technology
selection. In deciding which technologies to proceed with in the case study, three
technological fields appeared to be exceptionally interesting cases for applying novel
methods to gain new insights; lidar, radar, and sonar. First, basic knowledge about
the technological fields and their historical development needed to be understood.
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This data was collected using company websites, articles, and reports. To test the
constructed framework on real patent data corresponding to the different fields,
patent data sets corresponding to the fields needed to be constructed. The analysis
then needed to be performed, and finally the results needed to be evaluated.

3.2.4.3 Patent Retrieval and Analysis

The data collection process for the case study involved a) retrieving relevant sets
of patent documents that represented each of the three technological fields being
studied and b) analyzing the retrieved documents to create the aggregated patent
metrics to be used in the analysis. The process of data collection for the case studies
is visualized in Figure 3.3 below.

Figure 3.3: Data collection process for case studies

First, the IP Business Intelligence tool Cipher and the Cipher Automotive platform
(red logo) was used to generate representative patent sets. Since Aistemos, the com-
pany behind the platform, has already performed an extensive work in categorizing
patents into technologies together with automotive actors, the patent sets generated
this way were both more relevant and more complete than what the researchers
would have been able to generate with their limited industry understanding. This
process resulted in a list of patent numbers that represented each technology, and
some additional data about each document that Cipher had already gathered.

Concurrently with the generation of the patent sets, EPO’s PATSTAT1 patent
datasets with more than 100 million unique patent applications was purchased. The
rationale for this was twofold. First, the PATSTAT dataset gave access to a number
of data features not present in the Cipher dataset and thus allowed for creating a
larger amount of different patent metrics. Secondly, the PATSTAT dataset allowed
for a larger study to be performed outside of the one currently being explained. Once
purchased, the data was downloaded as .txt-files to the local computers. The pro-
gramming language Python (yellow and blue logo) and its interactive development

1More information and sample data of the PATSTAT dataset can be found through the following
link: https://www.epo.org/searching-for-patents/business/patstat.html#tab-1
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environment Spyder was then used to upload the patent data into a local MySQL
database instance. MySQL (blue logo) is an open-source relational database man-
agement system and in this case, the unified visual database tool MySQLWorkbench
was used for easier construction of queries and evaluation of results.

With the limited processing power of the computers used and the large size of the
full PATSTAT database in SQL ( 300GB), regular data analysis tasks and methods
such as joining or querying tables became painfully slow. All information concerning
the three case study patent sets were consequently extracted into a second database
(the “sample database”) for efficient management. This database was then used to
analyze the patent metrics under research for different points in time for each of the
three technologies.

Finally, the numerical values for all different patent metrics were imported into
Python and their dynamic trends were visualized using the open source 2D-plotting
Python library Matplotlib.

3.3 Quality of Research
To assess the quality of the study, Bryman and Bell’s (2011) framework for eval-
uating quantitative research has been employed. In line with this framework, this
section concerns the reliability, replicability, and validity of the study.

3.3.1 Reliability
Reliability refers to the consistency of a measure or a concept, and in particular
whether the measures used would remain stable when replicated. To put it simply,
the measurements of a reliable study can be expected to show a high correlation
with the measurements of a replication of the study. According to Bryman and Bell
(2011), three factors should be considered when assessing whether or not a measure
is reliable.

Stability refers to whether or not a measure is stable over time, and thus whether
or not the researchers can trust that the results for a certain sample do not fluc-
tuate. When doing social research, and in particular when performing interviews,
this can prove difficult since social settings can be hard to replicate and people tend
to change their opinions over time. Internal reliability concerns whether or not the
indicators that make up an aggregated measure are consistent. If researchers want
to use several simple metrics as attributes to describe a larger feature, the metrics
should be expected to correlate with each other. Inter-observer consistency is im-
portant when different people use their subjective judgment, e.g. when grouping
data into categories or recording observations. In such settings, measures should be
taken to assure that all observers use a consistent methodology.

Since the data used in this study may be considered ontologically subjective, steps
have been taken to assure the reliability of measurements. First, clear guidelines have
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been created for how to extract data. A reliable online patent analytics platforms
have been used and an interview was conducted with the head of strategy of the
company behind the platform to assure that it was used in a correct way. Since all
patent documents are marked with a timestamp that indicates when the documents
were made available to the public, future researchers should be able to limit their
searches to only obtain patent documents that were available at the time of this
analysis. The use of patent data thus makes for a fairly easy extraction of data that
gives stable and reliable results.

3.3.2 Replicability
The replicability of a study concerns its capacity to be replicated by other re-
searchers. To be replicable, the procedures used in a study must be spelled out
in great detail. By making their study replicable, researchers enable others to assess
the reliability of a measure of a concept (Bryman & Bell, 2011).

Measures have been taken to ensure the replicability of this study. An effort has
been put into explaining data extraction procedures and the procedures that make
up the different measurements that have been used.

3.3.3 Validity
Validity is a multi-faceted criterion that is concerned with the integrity of the con-
clusions generated from business research. According to Bryman and Bell (2011),
the main types of validity generally distinguished are measurement validity, internal
validity, external validity and ecological validity.

Measurement validity applies primarily to quantitative research and evaluates whether
or not a measure that is devised of a concept really reflects the concepts it is supposed
to denote. For instance, if IQ tests really measure intelligence. Internal validity is
concerned with causal connections and if researchers can be certain that the direc-
tion of causality is as claimed. External validity concerns whether or not the results
of a study can be generalized beyond the specific research context, and highlights
the importance of choosing samples that are representative of larger populations.
Finally, as the Hawthorne studies have shown, while some research may be techni-
cally valid, they may have little to do with what actually happens in people’s lives.
Ecological validity therefore concerns the degree to which social scientific findings
are applicable to people’s everyday, natural social settings.

This study has employed various measures to assure a high degree of validity to the
findings. To increase measurement validity, any measure that was constructed was
tested on previously established positive and negative examples. External validity
was considered when choosing the samples of cases to be studied, and effort went
into choosing cases for which literature could provide insights, while still assuring an
interesting study on a current topic. Nonetheless, the limited sample of studied cases
means that a generalization to the general patent landscape cannot be guaranteed.
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Internal validity has been deemed to be a minor issue in this study since the aim
of the study is not to establish any causal relationships but to build a framework
of patent data metrics with previously established correlations. Likewise, ecological
validity has been considered adequate since the study is performed on static data
rather than by interfering in people’s everyday lives.
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4
Framework Construction

The following chapter presents the construction of a new patinformatics framework
for how patents can be used to gain insights for technology selection, and the knowl-
edge needed in the process. The chapter is divided into four different sections. The
first section introduces the foundation upon which the whole thesis is built, namely
patents and the patent system. Section two presents an in-depth analysis of patent
information, including which different data features can be studied and their draw-
backs and benefits. The third section presents the findings about patinformatics, and
in particular which aggregated patent data metrics previous researchers have used
to study technological fields. Finally, the fourth section brings the knowledge from
the previous sections together in the creation of a new patinformatics framework for
technology selection insights.

4.1 Patents and the Patent System
A patent is a set of exclusive rights granted by an intergovernmental organization
or a sovereign state to an inventor or assignee to exchange detailed public disclosure
of an invention for a limited period of exclusivity (WIPO, 2015). Implicit in this,
the patent protection confers its owner the right to prevent third parties from using,
making, selling, or importing the claimed invention for up to 20 years (WIPO, 1994).

In order for an invention to be accepted as patentable under the World Trade Orga-
nization’s (WTO) TRIPS agreement (ratified by the majority of the world’s nation-
states) it must, in general, satisfy the following three requirements; (1) the invention
must show an element of novelty, (2) it must show an inventive step, and (3) be capa-
ble of industrial application (WIPO, 1994). For patents to be granted, a generalized
procedure is visualized in Figure 4.1.

Figure 4.1: Patent granting procedure

The first step in securing a parent is to file an application at either a national,
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regional, or international patent office. This initial filing is considered as the “prior-
ity filing” from which additional national, regional, and international filings can be
made within one year (priority period). Using the above criteria for patentability,
one or more patent examiner(s) from the patent office is then assigned to ensure that
all the administrative formalities have been complied with, and furthermore check
the invention’s susceptibility of industrial application. To assess the subject matter’s
degree of novelty and inventive step, the examiner(s) conducts a prior art search.
Regardless of the outcome of the examination process, the patent application is, in
most countries, published 18-months after its priority date. Once the substantive
examination has been completed, the applicant has the opportunity to amend the
application if the patentability requirements are not met. If the examiner(s) decide
to grant the patent, many patent offices allow third parties to oppose the granted
patent within a specified time period to assure that the patentability requirements
really are satisfied. Generally, patent grant or patent refusal decisions can be chal-
lenged before a court or an administrative body (WIPO, 2015).

The main rationale for adopting a patent system is to provide incentives to individ-
uals by recognizing their creativity and offering the possibility of reward for their
inventions. A patent carries two important functions. First, it serves as a protec-
tion allowing the patent holder to exclude others from commercially exploiting the
invention covered by the patent in a certain country or region in which the patent
was granted and for a specific period of time (generally not exceeding 20 years from
the filing year). The patent prevents competition and thus gives the patent holder
the opportunity to profit from the patent by selling the invention for a higher price
than would have been the case without a patent. The second important function of
the patent system is disclosure. By giving the public access to information regarding
new technologies, available to any individual or organization worldwide, anyone is
allowed to learn and build on the knowledge contained in the patent document. This
enriches the total body of technical knowledge in the world, while simultaneously
providing valuable information and inspiration for future generations of inventors
and researcher, stimulating innovation and contributing to economic growth (WIPO,
2015).

4.2 Patent Information

Patent information comprises all information which has either been published in a
patent documents or can be derived from other complementary documents. This
includes technical information but also legal information, business-relevant informa-
tion, and public policy-related information. With some databases containing more
than 100 million patents (EPO, 2018), patent information constitutes the largest,
most up-to-date and well-classified collection of technical documents on new and
innovative technologies in the world (WIPO, 2015).
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4.2.1 Primary Patent Information

A patent document is divided into several sections which provide different types of
information regarding the invention. The sections comprised in the patent document
is shown in Figure 4.2 below and then explained further in Table 4.1.

Figure 4.2: Sample patent document front page.
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Table 4.1: Patent features contained in a patent document

No. Primary Patent
Feature

Description

1 Title Brief one-paragraph description of the invention covered
by the patent.

2 Inventor Name of the person(s) who invented and developed the
new technology.

3 Assignee Name of the individual or company assigned to have
ownership of the protected invention.

4 Filing Date Date when an individual patent application was submit-
ted at a particular patent office.

5 Priority Filing Original first filing number of the patent application,
from which further national, regional and international
filings can be made within the priority period of one
year.

6 Priority Date Date of the first filing from which the one-year priority
period for further applications starts.

7 IPC Codes Code classifying the technological characteristics of the
invention in a uniform manner according to hierarchical
classification systems.

8 Patent Number Identifier following a set standard typically consisting
of six to eight digits, to distinguish published patent
documents according to type and status. Assigned by
the Patent Office.

9 Application Number A unique identifier assigned by the Patent Office once
the patent application is filed.

10 Citations and Refer-
ences

Prior art references to related invention uncovered by
the applicant or the examiner.

11 Examiner(s) Names of the examiner(s) involved in examining the
patent.

12 Abstract A summary of the general nature and core of the patent’s
subject matter.

13 Drawings Some patents contain drawings illustrating the inven-
tion, its embodiments or prior art.

14 Background Describes the general nature of the problem to be solved
by the invention and the state of prior arts.

15 Description A detailed explanation of known existing technologies
related to the new invention, specific embodiments of
the new invention and explanation on how this invention
could be applied to solve problems not addressed by the
existing technologies.

16 Claims The legal definition of the subject matter for which pro-
tection is sought or granted. The invention and its
unique features are defined in the claims, where each
claim is one single sentence in a clear, concise and legal-
istic form, fully supported by the description.
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Patent features can be classified into structured and unstructured feature groups.
Feature 1-11, generally referred to as a patent’s bibliographic data, appear on the
front page of a patent document and follows a uniform format across each patent
and are thus know as structured features. The same semantic structure follows in
the rest of the document where the information is divided into sections with fixed
headings constituting the background, description, and claims of the invention. This
information is, however, formulated in free text, varying in content and length, and
is consequently considered to be unstructured data containing the technical infor-
mation

To facilitate the access to the information contained in patent documents every
patent is classified to a technological field using classification schemes, i.e a system
of codes that groups patented inventions according to technical areas. The Inter-
national Patent Classification (IPC) system comprises approximately 70 000 IPC
codes for different technical areas and is the primary classification scheme used by
patent offices worldwide (EPO, 2017). The primary purpose of the IPC system is
to obtain an internationally uniform classification of patent documents to establish
an effective search tool for the retrieval of patents. Based on the IPC system, the
Cooperative Patent Classification (CPC) system has been jointly developed by the
European Patent Office (EPO) and the US Patent and Trademark Office (USPTO).
The CPC is a more detailed classification including an additional Y section that
monitors new technological developments and cross-sectional technologies that do
not fit in any section of the IPC (EPO, 2017).

In brief, the IPC system follows a hierarchical structure of classification, where
whole bodies of technical knowledge are broken down using the hierarchical levels of
classification symbols. Each patent is assigned to at least one classification symbol
indicating which subject the invention relates to, but additional classification sym-
bols and indexing codes can be assigned to the patent to give further details of the
content. Figure 4.3 below shows a classification symbol of the form “G01S 13/00”
(IPC code representing sonar systems), according to the classification system’s lay-
out.
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Figure 4.3: A complete classification symbol (IPC code), representing sonar
systems.

Sections, represented by the first letter in the IPC code, are the highest hierarchi-
cal classification level and are to be considered as a very broad indication of the
patent’s content. Each section is then subdivided into classes, consisting of the
section symbol followed by a two-digit number. Classes are the second hierarchical
level, and each class can be broken down into subclasses comprising the third hier-
archical level of classification. These are represented by the class symbol followed
by a capital letter. Finally, subclasses are broken down into groups, which are either
main or subgroups depending on the main group of the classification (WIPO, 2018).

The embodiments or technical features of a patented invention are comprised in the
claims of the regarded patent, further defining the scope of the legal protection of
the invention conferred by the patent or patent application (WIPO, 2015). These
are stipulated by the applicant who is required to point out and distinctly claim the
subject matter which he or she considers as his or her invention (EPO, 2017). Two
main types of claims exist; (1) independent and (2) dependent claims. All patents
contain one or more independent claims, which are stand-alone claims directed to
the essential embodiments and features of the invention (WIPO, 2017). There are
two types of independent claims; a product claim (such as for a composition of
matter, machine, apparatus or device) and a process claim (for a process/method,
activity or use) (EPO, 2017). An independent claim is followed by one or more
dependent claims concerning particular embodiments of the invention (EPO, 2017).
A dependent claim may refer back to one or more independent claims, to one or
more dependent claims, or to both independent and dependent claims (EPO, 2017).
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Furthermore, published patents can build or be built on previous work (prior art).
The phenomena of referencing to a prior art that is considered relevant to a current
patent application refers to the term backward citations. A cited document can
either be a patent document or an item of non-patent literature (WIPO, 2015).
These may be added by the patent examiner and/or the applicant of the patent
and has the general purpose of helping the examiners assess the patentability of a
claimed invention (WIPO, 2015).

4.2.2 Complementary Patent Information
Except the information written on the patent document itself, other sources aggre-
gate information about patents over the course of their lifespan. Previous literature
suggests that complementary patent information can be used as a source of informa-
tion about patents and patenting activity and thus provide some business insights
about companies’ technology investments (Lanjouw et al, 1998). A list of the main
categories of complementary patent information can be seen in Table 4.2 below.

Table 4.2: Complementary patent features

No. Complementary
patent feature

Description

1 Designated states Countries which the rights may be extended if the ap-
plication is regional or international.

2 Legal status Indicates whether the patent application has been
granted or not, and if so, which countries and regions
the patent has been granted, and whether the patent
still is valid, or if it has been expired or invalidated in a
particular country or region.

3 Forward citations Additional patent documents citing a particular patent
after publication.

4 Renewal fee payments In most countries, the patent holder(s) must pay peri-
odic renewal fees to maintain granted patents.

5 Litigation data Document relating to legal processes which unfold when
a patent owner enforces their right by suing another for
patent infringement.

6 Prosecution data Data revealing correspondence between the patent ap-
plicant(s) and the examiner(s) throughout the patent
prosecution process for the invention.

4.2.3 Advantages and Disadvantages of Using Patent Infor-
mation

Since patents contain a large amount of technological information, patent informa-
tion can be used to support technology management (Ernst, 2003). As for any
technology indicator, the use of patent information has both advantages and disad-
vantages (Archibugi & Pianta, 1996).
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Bonino et al. (2010) distinguish between three main classes of patinformatics tasks:
patent search, analysis, and monitoring. Trippe (2002) also emphasized the differ-
ence between searching and analyzing, when he wrote that patent searchers try to
find a needle in a haystack on a microscopic level of patent data, while patent ana-
lysts try to “identify a haystack from space” on a macroscopic level. In accordance
with section 1.5 Delimitations, this thesis focuses on the tasks within patent analysis.

Archibugi & Pianta (1996) mention four distinct advantages:
1. Since patents aim to capture the inventions which are expected to have a

commercial impact, they are a direct result of the inventive process and suc-
ceeds in capturing the commercial and proprietary aspects of technological
development.

2. Since patents are divided into different technological fields, they contain infor-
mation on both the rate of inventive activity and its direction.

3. Patents are available for long time series and in large numbers.
4. Patents are public documents, and no information is covered by confidentiality.

Furthermore, Asche (2017) means that a large portion of the information disclosed
in patents is never published anywhere else and that patents thus provide a unique
source of information. One of the patent requirements is that the invention must be
explained in sufficient detail for a “person skilled in the art” to be able to carry it
out. Thus, patents carry much more detailed information about the technology than
other types of technical or scientific publications. Basberg (1987) writes that “one
of the advantages of patent statistics used as a technology indicator, is the possibility
of constructing long and complete time-series.” and that “It is possible to main-
tain that in using aggregated patent statistics, sheer quantity will secure meaningful
mean values”. Furthermore, Ernst (2003) means that patents, unlike information
published on e.g. company websites, have been examined and granted by a patent
office, and is therefore a more objective measure of R&D activities.

Among the disadvantages of using patent data is that the propensity to patent differs
between companies, industries, and countries. Not all inventions can be patented,
and not all inventions that can be patented are. For instance, the software industry
has historically relied on copyright protection, and firms often choose to protect
inventions by the use of trade secrets (Archibugi & Pianta, 1996). Secrecy might be
particularly preferred when the expected life of the invention is very short and an
invention might be obsolete before the patent is granted, or when the expected life
of the invention far exceeds the usual 20 year protection period of patents. Each
national patent office has its own characteristics which affect the propensity of in-
ventors to file for patents. Furthermore, the economic and technical value differs
greatly from patent to patent, and using simple patent counts may consequently not
be a complete indicator of larger trends (Ernst, 2003). Finally, most jurisdictions
publish patent applications 18-months after they are filed. As such, there is always
a time lag between the point in time the patent application is being published and
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the time at which the invention is completed. One could, however, argue that in
many industries, R&D times for new products and services exceed 18-months and
the products based on the patents are therefore introduced to the market behind
the patent is published.

The advantages and disadvantages of patent information are summarized in Figure
4.4 below.

Figure 4.4: Advantages and disadvantages of using patent information as a
technology indicator.

As a conclusion, the American economist Jacob Schmookler seemed to have under-
stood a great deal about patent information fifty years ago when he wrote that

“We have a choice of using patent data cautiously and learning what we can from
them, or not using them and learning nothing about what they alone can teach us.”
(Schmookler, 1966).

4.3 Patinformatics
Previous researchers have used different definitions to describe the process of us-
ing patent information to support business decision-making. Trippe (2003) used
the term patinformatics, which he means encompasses all macro-level kinds of an-
alyzing patent information to educe business decisions. The term thus includes all
three steps in the framework presented in section 2.1.3. Patinformatics research pro-
cess. Aristodemou et al. (2017) instead suggested that the term “patent analytics”
could be defined as “the science of analysing large amounts of patent information
to derive meaningful insights to support decision-making, which constitutes of the
deployment of different technologies, techniques, and approaches”. This study has
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adopted Trippe’s definition for two reasons. First, the term patent analytics suggests
a focus on data analysis tasks and techniques, while the term patinformatics instead
emphasizes the information aspect and thus edges closer to the actual value creation.
Secondly, chosen definitions should allow for precise and meaningful distinctions be-
tween different concepts, and the term “patent analytics” might be confusing if used
to denote a larger concept than just the data analysis tasks included in “patent
analysis” or “patent data analysis”.

The following subsections are structured according to the patinformatics research
process presented in section 2.1.3. Relevant findings from the literature review
are therefore presented about the key issues of patent data pre-processing, patent
analysis, and discovered knowledge. Furthermore, the section ends with the creation
of a framework for how patinformatics can be used for technology selection, where
the previously presented findings are put in the context of the current research
problem and their relevance is discussed.

4.3.1 Patent Data Pre-processing
To recap from the theoretical framework, patinformatics researchers today have
access to publicly available databases with most of the pre-processing work already
performed. The pre-processing task is therefore focused on limiting the range of
documents to be analyzed through patent retrievals which generate patent sets that
represent the phenomena (technology, company, country) being studied. A good
patent set should be both complete (i.e. the set should include as many as possible
of the relevant patents), relevant (a large share of the patents in the set should
indeed be relevant) and possible to replicate with a new search (Benson & Magee,
2012). This subsection will present the most common patent retrieval methods along
with newly developed methods that might be useful in the study at hand.

4.3.1.1 Boolean Search Methods

The most basic patent retrieval method is the boolean keyword and classification
search (Benson & Magee, 2012). This method relies on keyword search terms, tech-
nology classifications and boolean operators (like AND, OR and NOT) to generate
relevant and complete sets of patents. This method has been relatively unchanged
since its introduction over thirty years, ago, and getting the right search results still
require understanding set theory and exclusion. The process is often iterative where
each iteration represents an evaluation of the previously generated results and de-
cisions to include or exclude certain new keywords or technology classes from the
search query. Extensive domain knowledge of the phenomena being studied is often
a prerequisite to making these kinds of judgments. For instance, Traijtenberg (1997)
used knowledge from his previously performed case-study on the field to generate
search terms for his well-known study of computer tomography. Traijtenberg also
read the abstracts of every patent in his result set to exclude inappropriate patents.

Needless to say, not all patent searches can be performed with the same amount
of domain-specific knowledge and resources as Traijtenberg’s. The boolean search
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method is especially hard to apply when creating many different independent patent
searches, since the resources needed for each search is high, and the time needed
scales linearly with the number of searches to be performed.

4.3.1.2 Hybrid keyword-classification method

To combat the drawbacks of the classic boolean search method, Benson & Magee
(2012) proposed a less work-intensive patent retrieval method specifically to retrieve
patent sets that represent different technological fields. Their hybrid keyword search
method was tested on granted US patents and consists of three steps:

1. A pre-search, where a two-word keyword search is made to find the most
relevant documents for the technology being retrieved. Benson & Magee ex-
emplifies this by searching for “Solar Photovoltaic” in the titles and abstracts
of the patents in their database.

2. A ranking of IPC and UPC classes on the retrieved patents, where the most
commonly occurring IPC and UPC classes are listed first.

3. Selecting the overlap of the most representative IPC class and UPC class.
That is, searching the database for patents that are classified both in the most
representative IPC class and in the most representative UPC class.

The intuition behind this search method is that the patent classification is based on
the expertise of the patent examiner, and if he or she classifies the documents into
the most representative class in two separate classification systems, the chance is
high that the patent is indeed representative of the keyword being searched. With
only three simple steps, the hybrid keyword-classification (HKC) method takes sub-
stantially less time to carry out than an iterative boolean search method. This
enables a single patent analyst to create hundreds of patent sets in just a single day.
Furthermore, the use of classification overlaps makes the method more robust than
a simple two-word keyword search. For instance, the search queries “photovoltaic
electricity” and “solar power” share the same most representative IPC and UPC
classes, and while a simple keyword search gives very different resulting patent sets,
the HKC method returns the same set.

Since the HKC method builds on specifically using both IPC and UPC classes, a
limitation of the method is that it can only be applied to patents classified by both
systems, e.g. US patents. While one could make the case that the same method
could be applied to the overlap of CPC and IPC classes as well, this idea has not
been tested empirically, and since the CPC system is basically an extension of the
IPC system, the information gained from considering the overlap between those
two systems may not be as high. While the HKC method results in more robust,
complete, and relevant patent sets than a simple keyword search, it is important
to consider that it is not intended to be a replacement for expertly selected sets of
patents (Benson & Magee, 2012). When trying to reproduce Traijtenberg’s (1987)
patent set, the HKC method reached a relevancy of 26% and a completeness of 30%.
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4.3.1.3 Cipher Automotive Method

In 2017, Aistemos launched the Cipher Automotive extension, which they call “the
first sector analytics platform to focus on the automotive sector”. They further write
that ”Cipher Automotive includes a comprehensive taxonomy of technologies devel-
oped in collaboration with a number of OEMs and Tier 1s. It is the latest on AI
and machine learning.”.

Cipher Automotive encompasses a machine-learning based search engine that lets
users search for patents and tag the results as positives or negatives. This trains
a so-called classifier and the search results are refined continuously through a su-
pervised learning process, where patents that are marked as positive generates new,
similar documents into the set, and patents that are marked as negative excludes
other similar documents from the set. The similarity between documents is based
on their claims, abstracts, CPC codes, and citations. According to Aistemos2, this
leads to much higher levels of both precision and recall than traditional boolean
searches. Marcus also mentions that the search engine is less prone to simple errors,
such as missing characters, than boolean searches, and that boolean searching is
limited to semantic searching and does not have the same deep ability to find links
that machine learning has. In addition, the classifier ranks every document in the
set, and lets you see not only which patents were included in the set, but also which
were excluded and how narrowly. In boolean searches, you only see the patents in
your search result and there is no way of knowing what was left out.

For users that want to look at existing automotive technologies, Cipher’s team of ar-
tificial intelligence, intellectual property, and automotive industry professionals, has
worked together to train classifiers to retrieve patent sets for more than 200 automo-
tive technologies. These pre-defined patent sets combine the extensive knowledge
of the industry experts with the benefits of the supervised learning based search
engine, and thus offers patent sets that are very representative of the technology
being studied. One important point that should be expressed is that Cipher has
limited the range of assignees on the automotive patents to only automotive com-
panies (OEMs), their first-tier suppliers, and non-practicing entities (NPEs). This
creates a risk that patent searches through Cipher might miss out on non-automotive
companies patenting in the field. At the same time, the list of assignees covers hun-
dreds of companies (including autonomous drive leaders like Waymo, Uber, Tesla,
and GM) that together own close to seven million patent families, which can be
considered a reasonably large number for most studies.

4.3.2 Patent Analysis
The main task of the patinformatics process is to analyze the retrieved patent sets
in order to gain insights that can support business decision-making. In line with
Basberg (1987), this can be done by defining certain patent data metrics as tech-
nology indicators, where an indicator is as a proxy that may help discover trends.

2Interview performed 2018-05-10 with Marcus Malek, Head of Strategy at Aistemos
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This approach is based on the underlying assumption that patents do indeed reflect
the underlying inventive activity in the fields being studied.

This subsection starts with a review of previously used patent data metrics. After
presenting the previously used metrics, the section concludes with a subsubsection
about best practices within patinformatics research.

4.3.2.1 Previously Used Patinformatics Metrics

Metrics used in previous research are here presented in order according to what
patent data feature they are based on, meaning that for instance all metrics based
on citations are presented together. For each metric, a formula for how to calculate
the metric is given together with the underlying rationale of the metric (what phe-
nomena it is supposed to indicate), and a review of how well it actually correlates
with that phenomena, as shown by previous research. To put the metrics into the
context of this study, their relevance for technology selection decisions were also
assessed.

4.3.6.1.1 Metrics Based on Backward Citations
Previous research indicates fragmented views about the implications of backward
citation as a patent metric. On one hand, fewer backward citations might indicate
a larger degree of novelty and thus a higher economic value. On the other hand,
fewer patent citations may indicate a less thorough prior art analysis and a higher
chance of patent invalidation in court proceedings.

Harhoff et al. (2003) found that the number of backward citations correlated pos-
itively with the economic value of patents. Lai & Che (2009) found that the sum
of all backward NPL citations (strength of patentability) showed a small but sig-
nificant correlation to the damages awarded plaintiffs in US patent litigation cases.
Benson & Magee (2015) used the metric backward citation immediacy (or average
citation lag), which they defined as the average age of backward citations for each
patent (averaged over the domain) at the time of the citing patents publication, and
showed that this metric was strongly correlated with the technological improvement
rate of a domain. This metric built on the rationale from Price’s (1965) study, which
showed that fast improving scientific fields are close to a research frontier that relied
on recently cited papers. They also investigated a joint metric which they called
recency and immediacy, which they defined as the average date of publication for
backward citations from patents in a domain.
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Table 4.3: Patent metrics devised from backward citations

Metric Definition
Average number of
backward citations

Total number of backward citations in a patent set /
total number of documents

Breakthrough inven-
tions

Total number of foreign patent citations, domestic
patent citations and non-patent citations / total number
of documents

Average citation lag Average age of backward citations for each patent (aver-
aged over the patent set) at the time of the citing patents
publication

Recency and immedi-
acy

Average publication date for backward citations from
patents

4.3.6.1.2 Metrics Based on Forward Citations
As presented in section 4.2, assignees are obliged to cite the inventions and scientific
research that has been fundamental for the creation of their invention. The cita-
tions given to a patent document after its publication (forward citations) are often
considered the most important indicator of the technological impact of a patented
invention (Archibugi & Pianta, 1996). Harhoff et al. (1997) found that the economic
value of individual patents, as measured through a survey with the assignees, rose
with the number of forward citations. For the most valuable patents, a single cita-
tion implied an average of more than 1 million USD in value. Hall et al., (2005) also
showed that the average number of forward citations per patent correlated strongly
with the market value of firms, and concluded that “If a firm’s quality of patents
increases so that on average these patents receive one additional citation, the firm’s
market value would increase by 3%”. Furthermore, forward citations are positively
correlated to patentees decisions to pay renewal fees (Hegde & Sampat, 2009), which
indicates the economic value of individual patents.

In accordance with the indications that forward citations indicate both technical
impact and economic value, the first metric introduced here is the average number
of forward citations. This is simple to calculate, yet gives a good overview. The
drawback with this metric is that older patents have, on average, more citations
than newer ones, and the metric thus becomes distorted when used for comparing
technologies of different age. One way to solve this is to group patents according to
their application or publication year, and then rank different technologies according
to their mean percentile score of citations. For instance, Squicciarini (2013) defined
what he called breakthrough inventions as the top 1% cited documents for each year.
Benson & Magee (2015) instead devised a metric they called immediate importance
as the average number of citations that a patent receives within 3 years of publica-
tion. Both rank percentile scores and age-based citation metrics relieve some of the
problems with comparing patent citations across technologies and over time.
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Table 4.4: Patent metrics devised from forward citations

Metric Definition
Average number of
forward citations

Total number of citations in a patent set / total number
of documents

Breakthrough inven-
tions

Number of breakthrough patents in a patent set / total
number of documents in patent set, where breakthrough
patents are defined as the top 1% most cited patents in
the same cohort

Immediate importance Average number of citations that a domain patent re-
ceives within 3 years of publication

4.3.6.1.3 Metrics Based on NPL Citations
Non-patent literature (NPL) citations are backward citations from patent documents
to other kinds of documents, of which a majority is scientific papers (Callaert et al.,
2006), but also conference proceedings and databases (Squicciarini, 2013). Callaert
et al. (2006) found that NPL citations were consequently a good indicator of the
‘science intensity’ of the inventions contained in the patents. Branstetter (2005) also
found that the number of NPL citations of patents was correlated to certain quality
indicators, like the number of forward citations or the generality index. On this
point, Harhoff et al. (2003) contradicted Branstetter in their findings, only finding
statistically significant relationships between NPL citations and patent value within
the fields of pharmaceuticals and chemicals. NPL citations can also be indicative
of the current stage of the technological life cycle of a technology since technologies
tend to be more science-intensive in early stages of the cycle.

An easy way to track science intensity in a technological field is the average number
of NPL citations. This metric has been used by several previous researchers (e.g.
Trappey et al., 2013; Squicciarini, 2013). Benson & Magee (2015) instead proposed
to use the NPL Ratio, that is, the ratio of scientific citations to patent citations in
a field.

Table 4.5: Patent metrics devised from NPL citations

Metric Definition
Science intensity Total number of NPL citations / total number of docu-

ments
NPL ratio Ratio of scientific citations to total citations

4.3.6.1.4 Metrics Based on IPC Classes
IPC classes indicate the technological breadth of a patent. If a patent set contains
documents from many distinct IPC classes, the set covers a broad range of technolo-
gies. The number of different IPC classifications on a patent is sometimes referred
to as the “patent scope”, and can be calculated either on an individual patent basis
or as the scope of a range of patents, like a company’s patent portfolio. Lerner
(1994) found that the scope of companies’ patent portfolios was highly correlated
with the value of biotechnology firms in venture capital funding rounds and that
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one standard deviation larger patent scope was associated with a 21% increase in
company value.

Squicciarini (2013) defines patent scope as the number of distinct 4-digit IPC sub-
classes listed in a patent document. An aggregate metric, average patent scope can
be constructed by calculating the average patent scope for each patent. Another
aggregate metric was proposed by Altuntas et al. (2015), who call the total number
of distinct IPC classes in a patent set its expansion potential and the average expan-
sion potential patent power.

Table 4.6: Patent metrics devised from IPC classes

Metric Definition
Average patent scope Average number of IPC classes assigned to a patent
Expansion potential Total number of distinct IPC codes
Patent power Total number of distinct IPC codes / total number of

patents

4.3.6.1.5 Metrics Based on Number of Patents
Many previous studies have constructed metrics based on the number of patents
in a field. The simplest way to do this is to just count the number of patents per
field. Since patenting and R&D spending are strongly correlated (Basberg, 1987),
the total amount of patents in a field indicates how much money has been spent on
R&D efforts. Similarly, to estimate the current R&D efforts in a field, the yearly
number of patents or patent applications can be counted.

One of the most prominent use cases for metrics based on the number of patents is
estimating so-called technology life cycles (TLC) or s-curves. Altuntas et al. (2015)
used the cumulative number of alive patents in a field as a boolean indicator for
TLC; if the number of patents was increasing, the technology was considered to
be in the growth stage of the TLC, whereas fields with a decline in the cumulative
number of patents were considered to be in the saturation or decline phases. Benson
& Magee (2015) instead chose to refer to the cumulative number of patents as
effort. Likewise, if the time period being studied is recent and few documents have
been granted, the cumulative number of patent applications or the yearly number of
patent applications can be assessed. Ernst (2003) assessed the relative patent growth,
meaning the patent growth in recent years related to the total number of patents
in the field, with the rationale that technological fields with high relative patent
growths are more attractive than those with low relative patent growth. Finally,
Benson & Magee (2015) used the term recency to denote the average publication
year for all patents in a domain and found that more recent technological fields were
developing faster.
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Table 4.7: Patent metrics devised from the number of patents

Metric Definition
Technology life cycle Boolean; if cumulative number of patents increase, then

technology is in the growth stage
Effort Number of issued patents
Cumulative number of
patent applications

Total number of patent applications

Yearly number of
patent applications

Number of patent applications in a given year

Relative patent growth Yearly number of patent applications / cumulative num-
ber of patent applications

Recency Average publication year for all patents

4.3.6.1.6 Metrics Based on Patent Family Size
The patent family size (also called international scope or geographic family size) of
a patent family is often defined as the number of distinct jurisdictions that share
the same priority document (e.g. Ernst, 2003; Squicciarini, 2013). This shows the
areas of exploitation of an invention, with the intuitive meaning that companies
will aim to get broader protection for those inventions they consider more valuable.
Lanjouw et al. (1998) found that the international scope of patents does correlate
with payment of patent renewal fees, which indicates that companies assign greater
value to those patents.

Patent family size, or average patent family size in aggregate studies, has been used
as an indicator of patent value in many different studies (e.g. Ernst, 2003; Lai &
Che, 2009; Archibugi & Pianta, 1996).

Table 4.8: Patent metrics devised from patent family size

Metric Definition
Average patent family
size

Sum of all patent family sizes in patent set / total num-
ber of priority documents

4.3.6.1.7 Metrics Based on Assignees
According to Basberg (1987), the number of assignees patenting in a field indicates
the interest in the technology. This can be used as a cumulative metric (cumulative
number of assignees) or on a year to year basis (yearly number of assignees). Fur-
thermore, the yearly number of new entrants in a field can be calculated by assessing
how many companies are filing their first patent applications in a field in the given
year. This number can be compared to the total number of applicants in a field
to obtain its relative assignee growth. Bass & Kurgan (2009) also used the metric
“in top assignees”, defined as a boolean variable assigned to 1 if the patent has an
assignee in the 95th percentile of citations, and found that this metric was strongly
correlated to the number of citations patents got. For aggregate studies, the number
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of top assignees in a field can be assessed.

Table 4.9: Patent metrics devised from assignees

Metric Definition
Cumulative number of
assignees

Count all distinct assignees having filed patent applica-
tions

Total number of as-
signees

Count all distinct assignees

Yearly number of as-
signees

Count all distinct assignees filing patent applications for
a given year

Number of new en-
trants per year

Number of companies filing their first patent application
in the patent set on the given year

Relative assignee
growth

Number of new entrants per year / total number of as-
signees up to that year

Number of top as-
signees

Sum of all patents where the assignee has an average
incoming citation count greater than the 95th percentile

4.3.6.1.8 Metrics Based on Claims
Claims are the sole determinant of what aspects of a patented invention that can
be legally protected and enforced (Squicciarini, 2013). A larger number of claims
therefore makes patents harder to invalidate and gives the right a broader scope,
which is the rationale behind some researchers referring to the number of claims as
the strength of the property right. Archibugi & Pianta (1996) also mean that the
number of claims gives information about the range of novelties in a patent.

Previous studies (e.g. Lai & Che, 2009) have sometimes made a difference between
independent claims and dependent claims, with the rationale that the independent
claims are more important than dependent claims. Lanjouw & Schankerman (2001a)
found that patents with more claims were much more likely to be involved in US
lawsuits, and meant that this indicated value. Furthermore, patent renewal rates
increase with the number of claims in a patent (Trappey et al., 2012), and the
average number of citations a patent receives decrease with the length of claims
(Okada et al., 2016). Thus, it can be useful to study the average length of claims
as a proxy for patent strength. Squicciarini (2013) instead proposed to simply use
the average number of claims as a measure of patent strength, whereas Lai & Che
(2009) also investigated the average number of independent claims.
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Table 4.10: Patent metrics devised from claims

Metric Definition
Average length of
claims

Sum of all characters in all claims in all patents / total
number of patent documents

Average number of
claims

Total number of claims / total number of patent docu-
ments

Average number of in-
dependent claims

Total number of independent claims / total number of
patent documents

4.3.6.1.9 Metrics Based on Patent Renewal Fees
In most countries, patent protection is limited to 20 years from filing the patent ap-
plication. Simultaneously, most countries have progressively increasing annual (or
semi-annual) renewal fees (Basberg, 1987), meaning that not all patents are kept
alive for the full 20-year period. Decisions from assignees to pay renewal fees thus
indicates that the assignees consider the legal protection granted by the patent more
valuable than the fee, and technological fields where patents are being kept alive for
a longer period can be thought to be more economically viable than other fields.
Svensson (2012) found that renewed patents were indeed commercialized to a larger
degree than those allowed to expire.

Squicciarini (2013) proposed the use of simple metrics such as the renewal time.
This metric is, however, skewed by design, as it is prone to exhibit higher values for
older technological fields than younger, but can be corrected for by splitting the data
into year-based cohorts. Archibugi & Pianta (1996) also proposed that the average
cumulative renewal fees per patent should be calculated, but this task grows very
complex with large patent sets from different geographies and application years.

Table 4.11: Patent metrics devised from patent renewal fees

Metric Definition
Average renewal time The total time from application to lapse (or current date

if still alive) for all granted patents / total number of
granted patents

Average renewal fees The total cost of renewal fees paid to maintain the legal
value of the patents

4.3.6.1.10 Metrics Based on Patent Grants
Since only granted patents are enforceable in judiciary systems, it follows that
companies may want to speed up the examination process for the inventions they
deem most valuable. Harhoff & Wagner (2009) performed a study of over 200 000
randomly chosen patent documents, where they found that companies accelerate
prosecution for their most valuable patents, but also that they prolong the battle
for those patents if they are likely to be refused. Nonetheless, the overall con-
clusion was that short grant proceedings were a good indicator of patent value.
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Ernst (2003) proposed using the ratio of granted to filed patents as an indicator of
patent value, and Squicciarini (2013) measured the grant lag in the number of days
between patent applications and grant dates.

Table 4.12: Patent metrics devised from patent grants

Metric Definition
Ratio of granted to
filed patents

Number of granted patents / number of filed patent ap-
plications

Average grant lag Sum of the number of days between application and
grant date for all granted patents / total number of
granted patents

4.3.6.1.11 Metrics Based on Inventors
Previous literature is sparse when it comes to using inventor data for predicting
valuable technologies. However, Bass & Kurgan (2009) used a number of inventor-
based features in a regression model trying to predict the most cited patents. The
most predictive feature of more than 40 metrics used in this study proved to be
“in top inventors”, defined as a boolean variable with a value of one if at least
one of the inventors had an average citation count greater than the 95th percentile.
Furthermore, the inventor’s average inventing time, that is, the average difference
between the first and last filed patent application by the same inventor, added
further predictive power to this feature. The rationale given by the authors was
that inventors that have been active for a long time, and also filed impactful patents,
were more likely to do so again.

Table 4.13: Patent metrics devised from inventors

Metric Definition
Number of top inven-
tors

Boolean variable; assigned to one if at least one of the
inventors has an average incoming citation count greater
than the 95th percentile

Inventor’s average in-
venting time

Sum of all inventors’ time between first and last patent
application / total number of patents in set

4.3.6.1.12 Metrics Based Jointly on Several Features
Some of the most predictive factors in patent analysis are not based on assessing a
single patent data feature but rather on assessing the relationships between several
features. This section thus serves as a catch-all for such metrics before moving onto
the next key process in the patinformatics research framework.

To assess the degree of maturity of a technological field, Basberg (1987) proposed
using a joint boolean metric based on the number of assignees and the number of
patent applications. His rationale was that the number of assignees reflects the in-
terest in the technology and the number of patent applications reflects the actual
technological activity. If both of these rise, he considered the technological field to
be in the developing stage, if both decrease he considered it to be in the maturity
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stage, and combinations of positive and negative values were considered to be in the
R&D stage.

Another much used joint metric is the so-called originality index, first proposed by
Trajtenberg et al. (1997). Patent originality refers to the breadth of the technologi-
cal fields that a patent relies on according to its backward citations. The originality
index can thus be seen as a metric for assessing the knowledge diversity behind a
patent, and a high value of originality means that the patent cites prior art from
many different IPC-classes. Harhoff &Wagner (2009) found that patents with higher
originality had longer grant lags. Furthermore, Kaplan & Vakili (2012) performed
a topic modeling of patents, where they found that patents with higher originality
to be less likely to generate new topics (i.e. create technical breakthroughs) but
more likely to be well-cited. This could be interpreted as original patents having
larger economic, but lower technical, value than less original patents. Hall (2002)
showed that the originality measure by design would be biased against patent sets
with fewer patents, and the definition shown in Table 4.14 below uses the adjusted
Hirschman-Herfindahl index to correct for that bias.

Following the rationale behind the originality index, Trajtenberg et al. (1997) also
proposed a generality index. Whereas the originality index is based on backward
citations and the breadth of knowledge applied to create the patented invention, the
generality index is created from forward citations and indicates the range of later
generations of inventions that benefit from a patent. The generality index will be
high if the invention is cited by patents from many different IPC classes, i.e. the
knowledge contained is more generally applied. As with the originality index, the
generality index needs to be corrected for bias and the definition with the adjusted
Hirschman-Herfindahl index is therefore shown below.

As previously explained, simple patent counts are often used to compare two com-
panies’ patent portfolios or to assess two different technological fields. Numerous
studies have shown that the economic value of patents is very skewed, with a few
patents amounting to a majority of many firm’s patent portfolio values, and a long
tail of low valued patents. Ernst (2003) proposed that this should be corrected for
by multiplying the patents in a portfolio with some measure of patent quality (e.g.
forward citations). In theory, this adjusted technology value would give a more ac-
curate view of the value in the different patent sets.

Finally, there has been a number of studies where patent data has been used to
predict technology improvement rates (TIR). Benson & Magee (2015) and Triulzi
et al. (2017) both found robust and strong correlations between known technology
improvement rates and different patent metrics for a wide range of technological
domains. In fact, Triulzi et al. obtained a Pearson correlation coefficient (r) value
of 0.795 (R2 of 0.63) over 30 different technological fields using a single feature. The
feature used (mean centrality cited ZRP) is a measure of how central the patents
in the technological field are. This centrality measure is in turn calculated by the
Search Path Node Pair (SPNP) values first introduced by Hummon and Doreian
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(1989). SPNP is a joint metric based on both forward and backward citations and
is calculated by multiplying the number of ingoing citation links to a patent with its
number of outgoing citation links, both augmented by one. This is shown in Figure
4.5 below.

Figure 4.5: SPNP calculation

By defining centrality this way, it depends not only on the number of incoming and
outgoing citations from the patent itself but also on the citations to and from the
patents citing or being cited. Central patents cite other central patents and are
being cited by other central patents in turn. Due to the dependency on forward
citations, older patents have on average higher SPNP values than newer. To get a
more informative measure of patent centrality, it is consequently useful to group and
assess values in yearly cohorts. Triulzi et al. (2017) calculated the z-score (number
of standard deviations from the mean value) for each patent’s SPNP value, but
patents could also be scored according to what percentile their SPNP values fall in.
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Table 4.14: Patent metrics devised jointly from several features

Metric Definition

Degree of maturity

If both the number of assignees and the number of
patent applications increase, technology is in develop-
ing stage. If both decrease, the technology is mature,
and combinations describe the R&D stage

Originality index

number of patentsi

number of patentsi − 1 ∗ (1 −
ni∑
j

s2
pj)

where spj is the percentage of citations made by patent
p to patent class j out of the np IPC 4-digit (or 7 digit)
patent codes contained in the patents cited by patent p.

Generality index As for originality index but using forward citations
Adjusted technology
value

Number of patents in a portfolio multiplied by some
measure of patent quality

Average patent cen-
trality (average SPNP
value)

Average of ((number of links in backward citation chain
+ 1) * (number of links in forward citation chain + 1))

4.3.3 Discovered Knowledge

After the patent data metric section, it seems clear that patent data can be used
in many different ways. A comprehensive patinformatics research process can be
performed by analyzing all metrics and then leaving the reader to interpret the
analysis results and link them to important insights for technology selection. How-
ever, communicating the results in this manner suffers from a number of drawbacks.
First, it requires a thorough understanding of the different metrics and their im-
plications, for anybody that wants to use the analysis results. Secondly, even with
a basic grasp of patent data, understanding and communicating the results on a
metric-to-metric level is very time-intensive and might be ill-suited for the C-suite
managers that perform technology selection decisions. Thus, even though this com-
munication strategy might maximize the absolute information available, the actual
appropriation of information to knowledge and insights may be very low.

4.4 HELD patinformatics Framework for Tech-
nology Selection Insights

The HELD patinformatics framework for technology selection insights has been cre-
ated as a communicative tool for maximizing the appropriated value of a patinfor-
matics process. The main idea behind the framework was to optimize each part of
the patinformatics process, with a special emphasis on the patent analytics process.
The framework is shown in Figure 4.6 below.
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Figure 4.6: HELD patinformatics framework for technology selection insights

As has been previously mentioned, the task of pre-processing patent data is mostly
about creating representative patent sets. The patinformatics researcher should
therefore choose the best way to represent a technological field. Since this depends
on the skills and knowledge of the researcher, there can be no one single best prac-
tice for this process. Researchers with in-depth industry knowledge of the field
to be studied might be able to construct good boolean searches or manually tag
documents in a supervised-learning based search engine, while less knowledgeable
researchers might have to use pre-defined patent sets or consult external expertise
to create complete patent sets with good recall.

The HELD framework groups patent data metrics together in “themes” based on
what insights can be derived from them. Initially, the goal was also to do this in a
MECE (mutually exclusive, collectively exhaustive) manner, but due to the multi-
faceted nature of many of the patent metrics, this proved unfeasible. For instance,
the total number of patent applications in a field might be an important factor for
analyzing where in the technology life cycle a technological field is, but it can also be
useful as a proxy for the amount of resources that has been invested in a field. Con-
sequently, the framework consists of three themes that are not completely MECE,
but where each field nonetheless might contribute valuable information about tech-
nological fields to a technology manager. Furthermore, each theme is built on a
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number of patent data metrics. Since the dynamic development over time might be
as important as current figures (Ernst 2003), all metrics in the framework should be
evaluated and visualized over time.

Finally, the insights gained from the patent analysis should be communicated in a
clear and concise manner to allow for a high appropriation of the information to rel-
evant stakeholders. How this communication should be done depends on both the
target audience and the skillset of the patinformatics researcher, but can include
videos, powerpoint decks, and posters.

The following three subsections present the three different themes for the patent
analysis process and the rationale behind the presented clustering of the metrics.

4.4.1 Theme 1: Technology Overview
Theme one serves as an introduction to the technologi-
cal field and an overview of its technical characteristics.
First, the total number of patent applications filed in a
field is introduced as an indicator of how much effort
has been put on development activities within that field.
Secondly, the centrality of the patents within the field is
presented as a proxy for how fast the technological field
is improving. Thirdly, the average number of forward
citations indicates how technically impactful the inven-
tions in the field is. The patent scope indicates how technologically niched and
concentrated the inventions are, with higher scope meaning less niched inventions.
Originality is a measure of the patent scope of the inventions being cited in a field,
adding another level to the analysis of how technologically niched it is. Finally, the
generality of a field is a measure of the patent scope of citing patents, thus indicating
how broadly the inventions are being applied.

4.4.2 Theme 2: Investment Volume
The second theme deals with signals about the invest-
ment volume and economic value that the actors in a
field assign to their patents. First, the yearly number of
patent applications is examined as an indicator of how
much resources are currently being put into inventive ac-
tivities within the field. Secondly, the yearly number of
assignees complements this by measuring the interest in
the technology. Thirdly, renewal time is introduced as
an indicator of how highly companies in the field value
their intellectual property rights. Fourthly, the grant lag for patents within the
field is examined, with the rationale that lower grant lags indicate that companies
spend time and money to accelerate the patent prosecution process within the field.
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Finally, the average patent family size is presented as an indicator of how widely
companies try to protect their property right, where larger family sizes indicate that
companies value their property rights higher.

4.4.3 Theme 3: Technology Life Cycle
One of the most important considerations when in-
vesting in new technology is understanding how ma-
ture the technology is (Gao et al. 2013). Ac-
cording to Altuntas et al. (2015), successful tech-
nology investments are most often performed when
the technology is in the growth stage of the
TLC.

A number of patent data metrics can be used as indica-
tors of how mature a technology is, and the third theme of the HELD framework
consequently focuses on technology life cycle considerations. First, science intensity
can be measured, since technological fields are generally closer to science in earlier
stages of the technology life cycle. Secondly, the recency in a field indicates the age
of the field. Thirdly, citation lag indicates how old the knowledge used in the patent
applications are. Thus, if a field is both more recent and has shorter citation lag
than another, it is likely to be at an earlier stage in the TLC. Finally, the relative
growth and the relative assignee growth indicate if the development expenses and
interest in that field are growing or declining. High percentual increases indicate
that a field is at an early stage in the TLC, whereas lower increases indicate that
the field is more mature.
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This chapter presents the patinformatics research process applied to three case study
technologies, lidar, radar, and sonar sensors. The chapter first gives a brief back-
ground to the technologies and their historical development. Further, the chapter
is split into three parts in accordance with the HELD patinformatics framework for
technology selection insights. First, a section explains how the pre-processing was
performed and what patent sets ultimately came to represent the different tech-
nologies. Secondly, the three patent analysis themes from the HELD framework
are applied to the task of patent analysis and the different metrics are evaluated.
Finally, the insights gained from the analysis are communicated in the section about
discovered knowledge.

5.1 Case Study Technologies
According to Altuntas et al. (2015), it is hard to quantitatively assess technologies
in the growth stage of the TLC based on market data. This study has therefore used
the three cases of lidar, radar, and sonar sensors for autonomous vehicles to test and
evaluate the constructed patinformatics framework for technology selection. The
following subsections will introduce the three technologies and thus give the basic
understanding needed to conduct the case study.

5.1.1 Lidar
Light detection and ranging (lidar) sensors are commonly perceived as the key tech-
nology to enable full autonomous driving (Steinbaeck, 2017; McKinsey, 2017). The
basic principle of the technology builds on using pulsed infrared light to measure
distances that can be used to create three-dimensional models and maps of objects
and environments in real-time (Schwarz, 2010). More specifically, lidar systems
emit rapid pulses of laser light at a target, and based on the logic known as “time of
flight” measurements, lidar calculates distances from the time it takes for the speed
of light to hit an object or surface and reflect back (Himmelsbach, et al, 2008). Each
measurement is constituted by a point in the resulting point-cloud which combines
to create a virtual representation of the target object or area. Given the known
and constant speed of light, distance calculations can be performed with high ac-
curacy, and with the rich three-dimensional information contained in the returned
point-cloud, autonomous machines are given enough amounts of data to sense their
immediate environment and identify and react to obstacle and threats in sufficient
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time (Wang et al, 2017).

Laser ranging has been around since the early 1960s, where its high performance
in mapping large-scale swaths of land was largely recognized. Thus, one of its
most popular use cases has long been archeology (Wang et al, 2017). The concept
of this sensing technology was first deployed in the automotive industry in 2005
when David Hall, the founder of Velodyne, entered the Defense Advanced Research
Project Agency’s (DARPA) grand challenge (a prize competition sponsored by the
United States’ Department of Defense to spur technological innovation in the field
of autonomous vehicles) with a spinning lidar (Schwarz, 2010). Instead of using the
typical single spinner laser that fires into a rotating mirror generating up to 200,000
points per second, David designed a system using a rotating unit encompassing 64
spinning lasers, each firing up to 20,000 times per second (Young, 2011). With its
spinning unit and millions of data points generated each second, objects at distances
over 100 meters and in 360 degrees field-of-view could be identified in both light and
dark.

Since then, and especially during the DARPA Challenges in 2005 and 2007, lidar
sensors have shown great potential for automotive applications (Wei et al, 2013).
Many of today’s prototype vehicles targeting fully autonomous driving are highly re-
liant on a spinning lidar sensor mounted on the top of the vehicle (Steinbaeck, 2017)
supporting ADAS systems, such as lane change assist, autonomous emergency brak-
ing, blind spot detection, collision warning systems, cross-traffic alerts and adaptive
cruise control. But due to its high cost and performance challenges in rain and fog,
the research area remains open (Wang et al, 2016).

The need for advancements to make lidar systems adequate for automotive use and
its many applications, has created an entire ecosystem containing many talented
founders and teams engaged in the space. While the industry is marching ahead,
the shared focus builds on the idea of decreasing cost, while increasing range and
resolution (LeddarTech; LuminarTech; Velodyne LiDAR; Moebius, 2017).

5.1.2 Radar
Radar (radio detection and ranging) sensors use radio waves instead of light pulses
to determine the angle, velocity, and range of objects (Steinbaeck, 2017). Electro-
magnetic waves are emitted towards an object, reflected, and returned to a receiver.
The returned waves allow information to be given about the object’s speed and
location (Ragonese et al, 2009; US3604805A, 1971). Radar sensors were initially
developed for military use before, and during, World War II, with the purpose of
locating sea, ground and air targets (Militaryradar, 2018). Due to its possibility to
directly measure the relative angular velocity of the detected targets (Doppler ef-
fect) with relatively little computational effort and its ability to work in bad weather
conditions (Wei et al, 2013; Steinbaeck 2017), the technology has evolved into the
automotive area and has become an established and fundamental component in as-
sisted driving systems (Steinbaeck, 2017).
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The large number of potential applications of automotive radar sensors are deployed
in almost identical features as for lidar, including autonomous emergency braking,
collision warning systems, cross-traffic alerts and adaptive cruise control. The appli-
cation of radar to enable safety systems has increasingly become a standard equip-
ment in even lower-cost vehicles (Ragonese et al, 2009), and according to Grand
View Research (2017) radar accounts for more than 35% of the collision avoidance
sensor market. Thanks to its potential use in a wide range of active safety features
and its high probability of spreading downwards from what was once just used in
high-end cars to being adopted in less expensive models the next coming year, schol-
ars seem confident that the penetration and use of radar sensors in cars will grow at
a substantial rate (Grand View Research, 2017; Steinbaeck, 2017; Lanchner, 2013).

Leading automotive electronics manufacturers such as Texas Instrument, Continen-
tal AG, and Robert Bosch GmbH are characterizing the radar sensor market today.
But in spite of it being widely acknowledged as high performing, cost-effective and
reliable, the sensors are not alone sufficient to provide a car with reliable environ-
ment information to navigate fully autonomous (Steinbaeck, 2017). In approaching
the challenge of utilizing the full potential of radar, there are a four clear focus areas
that seem to be prominent to improve the technology; reducing the size and thereby
the cost of radar systems, obtaining high resolution using higher frequencies while
promoting the use of one single technology for all applications in order to reduce
the risk of mutual interference (Ragonese, 2009; Roselli 2005; Russell, 1997; Hasch
2012; Steinbaeck, 2015).

5.1.3 Sonar
Sonar, short for sound navigation and ranging, is a technique relying on sound waves
to detect objects (Kim et al, 2005). In the same way as bats use sound for aerial
navigation, sound-based echolocation was put in good use in various fields before
the introduction of lidar and radar systems. Among other application areas, sound
pulses with extremely high ultrasonic acoustic frequency were used to calculate the
distance of an object by measuring the time of flight for reflected pulses (Carullo &
Parvis, 2001; Kim et al, 2005).

Before the technology was recognized to have civilian uses, echo-ranging devices were
initially developed to detect icebergs in 1906 and further developed during the World
War I for military applications (Hill, 1962). Sonar systems are generally known to
have a very poor range due to its short wavelengths, thus the sensor will not alone be
able to figure out what pedestrians or other drivers are doing, or be able to respond
to unexpected situations (Carullo & Parvis, 2001). But thanks to sound waves being
comparatively slow, sonars are good for very near range three-dimensional mapping,
as well as detecting differences of a centimeter or less and works regardless of light
levels and conditions like rain, fog, or snow. The sonar sensor are thus being actively
used in cars today for short-distance applications (usually below 10 meter distance)
at driving speeds less than 10 km/hour (Park et al, 2008), primarily in the form
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of parking sensors as it has not yet proven to work at the type of ranges that an
unmanned car demands (Kim et al, 2005).

Although their cars are not yet fully autonomous in all situations, Tesla has shown
that sonar sensors, in combination with radars and camera sensors, can allow cars
to drive themselves. With 12 ultrasonic sensors per sonar system, the system helps
enable 360 degrees of visibility around the car allowing for detection of both hard
and soft objects and any blind spot at up to 250 meters range (Tesla, 2018).

The performance of a sonar system’s detection and localization depends primarily
on two factors; the environment and the targeted object (Zhao, 2010). As ultra-
sonic signals are absorbed by the atmosphere, errors in the classification of surfaces
may anticipate. The temperature, the air pressure, and the humidity may affect
the accuracy of the measurements, and furthermore, the amplitude of the pulse can
vary depending on the noise in the open-air condition and what type of surfaces it is
reflected from (Carullo & Parvis, 2001). To reduce these errors, additional measure-
ments given by sound attenuation correction as well as temperature and humidity
sensors are often used to supply further information and support an adequate sys-
tem (Bystrov et al, 2016).

The second factor highly affecting the correctness of a system relying on sound waves
to visualize the environment is the shape, size, surface, and density of the object.
Detection can be hindered in case of soft objects with strong sound absorption,
when a flat object angled from the vertical deflects return sound waves away from
the sensors, or if the object is insufficiently large to reflect sound (Zhao, 2010).

5.2 Pre-processing
This section explains how the patent sets for lidar, radar, and sonar were created,
why this way was the best available, and what the resulting patent sets looked like.

5.2.1 Patent Retrieval Process
The main tool used for the patent retrieval process was the IP business intelligence
platform Cipher from London-based Aistemos. Cipher Automotive’s pre-classified
patent sets, from the category “Autonomous and ADAS”, the subcategory “ADAS
components”, and the three patent sets for “lidar sensors”, “radar sensors” and “ul-
trasonic sensors” belonging to all automotive IP owners in Cipher’s search engine.
This search generated a list of patent numbers, publication numbers, and application
numbers, along with some limited information that could be exported through the
platform. To enable a study of the previously defined patent data metrics, the list
of publication and application numbers was then used to create a sample database
based on EPO’s PATSTAT - 2017 autumn edition database.

The use of Cipher Automotive’s pre-classified patent sets was motivated by the
limited automotive knowledge of the researchers and the large amount of work al-
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ready put into perfecting the Cipher patent sets by industry experts. Should the
researchers instead have decided to create their own boolean search strings or man-
ually tag documents, this would likely have resulted in smaller sets of patents with
a poorer recall and many documents outside the automotive scope.

5.2.2 Retrieved Patent Data
After retrieving the patents from Cipher automotive, the resulting PATSTAT sam-
ple database contained data about a total of 12630 patent applications, of which
the earliest were filed in 1862 and the most recent in 2017. The set covers a total
of 132 distinct corporations, and since multinational automotive companies often
have operations under several organizational entities, this amounts to 696 distinct
company names.

As presented in chapter 4, patinformatics can yield the most insights about tech-
nological fields when the dynamic development of the different technologies over
time is analyzed. With an 18-month publication lag and the 2017 autumn edition
of the PATSTAT dataset containing data until the end of July 2017, some of the
applications for 2016 and 2017 are missing, and the last full year for which the
complete set of patent applications exists is 2015. This study has therefore focused
on the 10-year window of 2006-2015, and all metrics have been evaluated based on
patent applications filed in those years. Over the course of these years, the dataset
contains 7029 distinct patent applications, of which 872 concern lidar sensors, 3124
concern radar sensors, and 3033 concern sonar sensors. The distribution of the data
in year/technology cohorts can be seen in Table 5.1 below.

Table 5.1: Data distribution over technology fields and years

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
Lidar 27 39 48 73 93 75 78 134 138 167
Radar 236 264 240 207 184 275 349 419 433 517
Sonar 236 211 279 202 264 344 403 405 363 326

As can be seen in the table, the lidar patent set contains much fewer patents than
the radar and sonar sets. This lowers the statistical significance of the results from
the lidar set analysis and creates larger year-to-year fluctuations in the metrics. On
the total, a sample of 872 distinct lidar patent applications was still considered to
be an adequate sample size, and the results have thus been trusted to be correct for
the period as a whole.

5.3 Patent Analysis
This section presents the result of the patent analysis in three subsections according
to the three themes outlined in the HELD framework from subsection 4.3.8. The
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underlying metrics for each theme are evaluated over the years of 2006-2015, and ex-
planations for how the metrics were calculated can be found in subsubsection 4.3.6.1.

In some cases it proved meaningful to analyze and compare how the mean values
for a metric differs between the three technological fields. In those cases, a one-
way analysis of variance (ANOVA) test has been run. The ANOVA tests the null-
hypothesis that the values observed for two or more groups were in fact drawn from
groups with the same mean value (University of Kent, 2018). It is important to
understand that the ANOVA test does not, however, say specifically which of the
different means were statistically significantly different from each other. Showing a
statistically significant difference was deemed adequate for this study, and p-values
below 0.001 were considered to be statistically significant.

5.3.1 Theme 1: Technology Overview
In this subsection, the analyzed metrics for theme 1
are analyzed and visualized over the years of 2006-2015.
This includes the cumulative number of patent applica-
tions, the cumulative number of distinct assignees, aver-
age patent scope, average patent centrality, average num-
ber of forward citations, average originality index, and
average generality index.

5.3.1.1 Cumulative Number of Patent Applica-
tions

An initial overview of the three different fields can be gained from assessing the
cumulative number of patent applications, as seen in Figure 5.1 below.

Figure 5.1: Cumulative number of patent applications

As can be seen in the figure, the largest effort has been put into radar technology,
followed closely by sonar. The lidar technology contains less than a third of the
patent applications as either that of radar or sonar, and all three fields have seen
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at least half of their total patenting activity occur in the past ten years. Since the
number of filed patent applications is strongly correlated to the effort spent on R&D
and inventing, this implies that much more resources have been spent on both radar
and sonar sensors than on lidar sensors. It does not, however, say anything about
the current investment levels in the different fields.

5.3.1.2 Cumulative Number of Assignees

The cumulative number of assignees has been calculated and is shown in Figure 5.2
below.

Figure 5.2: Cumulative number of assignees

The cumulative number of assignees follow a distribution similar to that of the cu-
mulative number of patent applications. The growth rate of assignees is, however,
lower than that of the number of patent applications. This indicates that not only
is the number of assignees increasing but so is also the number of patent applica-
tions per assignee. Furthermore, the graph shows that many more companies have
pursued inventions within radar than in sonar and lidar respectively.

5.3.1.3 Average Patent Scope

The third metric to be assessed in theme one is the average patent scope, meaning
the average number of IPC classes per patent. The average patent scope is shown
in Figure 5.3 below.
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Figure 5.3: Average patent scope

While it may be hard to discern a clear trend from this image, the average patent
scope for the whole time period is 2.99 for lidar, 3.04 for sonar, and 3.23 for radar.
The difference in mean values is statistically significant (p < 0.001). This shows that
patented radar inventions are somewhat less niched than lidar and sonar inventions.
Although statistically significant, the difference is relatively small.

5.3.1.4 Average Patent Centrality

In accordance with the SPNP ranking process outlined in section 4.3.2, patent cen-
trality has been assessed by computing SPNP values for all patent applications and
then calculating percentile scores for those values in year-based cohorts. For in-
stance, if the max SPNP score was 450 for a patent in 2008, then patents from
2008 with an SPNP value of 450 were assigned a score in the 100th percentile. The
dynamic development of this metric over time can be seen in Figure 5.4 below.

Figure 5.4: Average SPNP percentile score

Two things should be noted from the figure above. First, the SPNP percentile
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for lidar shows a big peak in 2009. When analyzing the data, the reason for this
becomes clear; 20 separate patent applications from GM all cite each other. With
the SPNP values being calculated based on all patents in the backward and forward
citation chains, all those patents get the same SPNP value in the 99th percentile.
With only 73 lidar patent applications for 2009, this is enough to skew the data.
Secondly, all values seem to converge in 2015. This again is due to the design of the
SPNP metric, where newly filed patent applications that have not yet received any
forward citations all have approximately the same SPNP value. Despite these two
shortcomings it is possible to calculate meaningful averages for all three technologies
over the period. The average lidar patent was scored in percentile 57.8, while the
average radar patent was scored in the percentile 58.7 and sonar patents averaged
in percentile 56.2. The difference in mean values is statistically significant (p <
0.001). This indicates that the fields of radar and lidar may be developing at faster
technology improvement rates (TIRs) than sonar.

5.3.1.5 Average number of Forward Citations

There are many different ways to calculate forward citations. In this study, the
citations have been computed on a family-to-family basis, meaning that the number
of distinct patent families citing each patent family in the database has been cal-
culated, and the average for each technology/year cohort has been computed. The
resulting graph can be seen in Figure 5.5 below.

Figure 5.5: Average number of forward citations

As expected, older patents have more forward citations than newer patents. Another
interesting point is that both lidar and sonar patents from 2009 and 2010 experience
large surges in their numbers of forward citations, indicating that the inventions in
these fields and years have been very important for the technical progress of their
respective domains. Over the ten year period, the average lidar patent has gotten
cited 15 times, the average radar patent has gotten cited 11 times and the average
sonar patent has gotten cited 7 times. The difference in mean values is statistically
significant (p < 0.001). This is a clear indication that lidar patents have larger

63



5. Findings and Analysis

technological impacts than their radar and sonar counterparts and also that their
economic value is higher.

5.3.1.6 Average Generality Index

The generality index has been calculated and can be seen in Figure 5.6 below.

Figure 5.6: Average generality index

As seen in the figure, lidar patents are more general than sonar and radar patents,
meaning that they get cited by other patents from a larger range of IPC classes.
The mean value for lidar is 0.55, for sonar 0.46, and for radar 0.41. The difference in
mean values is statistically significant (p < 0.001). This indicates that the knowledge
contained in Lidar patents gets more generally applied than that in sonar and lidar
patents and that the expansion potential for lidar inventions may consequently be
larger. As expected, the metric drops with age due to its dependency on forward
citations.

5.3.1.7 Average Originality Index

The originality index has been calculated and can be seen in Figure 5.7 below.
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Figure 5.7: Average originality index

With the only exception of 2010, Figure 5.7 gives a clear and consistent picture of the
fields’ originality indexes. With an average originality index of 0.67, lidar patents
are most original, followed by sonar patents (0.60) and radar patents (0.51). The
difference in mean values is statistically significant (p < 0.001). This means that
lidar patents cite other patents from a larger number of IPC classes, and indicates
that a more diverse knowledge might be needed to carry out inventions in the field
of lidar, whereas sonar and radar require more niched knowledge.

5.3.2 Theme 2: Investment Volume

In this subsection, the analyzed metrics for theme 2 are
analyzed and visualized over the years of 2006-2015. This
includes the yearly number of patent applications, the
yearly number of assignees, average renewal time, average
grant lag, and average patent family sizes.

5.3.2.1 Yearly Number of Patent Applications

The yearly number of patent applications for the three
technology fields can be seen in Figure 5.8 below.
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Figure 5.8: Yearly number of patent applications

The field of lidar has been growing the slowest over the
ten-year period with an average of 87 patent applications per year, followed by sonar
at 303 and radar at 312. It is, however, worth noting that the yearly number of
radar and lidar patent applications have been increasing steadily over the past few
years, whereas sonar applications maxed out in 2013 and have been decreasing since.
In total, this implies that radar technology attracted most investments as of 2015,
followed by sonar and radar, but also that the investments in radar and lidar are
growing while those in sonar are decreasing. If the trend from the years 2012-2015
continues linearly, lidar applications will outnumber sonar applications in 2018.

5.3.2.2 Yearly Number of Assignees

The yearly number of assignee figures were calculated based on how many distinct
assignees filed patents in each technology/year cohort, and are shown in Figure 5.9
below.

Figure 5.9: Yearly number of assignee
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Among the three technologies, radar attracts interest from the largest number of
assignees, followed by sonar and lidar. The number of assignees filing sonar and
lidar patents has been quite constant over the last 6 years, whereas interest in radar
technology has been growing.

5.3.2.3 Average Renewal Time

The average renewal time has been calculated as the number of years that an average
patent from each technology/year cohort has been kept alive and renewed. The
results are shown in Figure 5.10 below.

Figure 5.10: Average renewal time

It is hard to discern a general pattern from Figure 5.10 and the meaning of averages
is distorted when performing dynamic analysis about time-dependent variables like
the case here. It seems as though renewal time is not a very informative metric for
the current analysis, and maybe there are better metrics to analyze and visualize
companies’ propensity to renew their patents.

5.3.2.4 Average Grant Lag

The average time between application and first grant dates has been calculated and
is presented in Figure 5.11 below.
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Figure 5.11: Average grant lag

Sonar has had the longest grant lags in five of the last seven years, which indicates
that companies may not be putting as much resources into speeding up the prose-
cution of sonar patents as they do for lidar and radar. Since the grant lag is only
calculated for patents that have been eventually granted, patent applications from
newer years have lower grant lags than older applications. No average values have
therefore been calculated for this metric.

5.3.2.5 Average Patent Family Size

The average geographic patent family size has been calculated and can be seen in
Figure 5.12 below.

Figure 5.12: Average geographic patent family size

This metric suffers from large year to year fluctuations and it’s hard to discern a
general pattern.Numbers for 2015 are misrepresentative since not all applications
that claim 2015 patent applications as priority documents have been published as
of the creation of this database. An average radar family consists of 3.04 patents,
a lidar family consists of 3.13 patents and a sonar family consists of 3.18 patents.
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These results are however not statistically significant with a p < 0.001, and patent
family size was therefore not considered an informative feature for the purpose of
this analysis.

5.3.3 Theme 3: Technology Life Cycle
In this subsection, the analyzed metrics for theme 3 are
analyzed and visualized over the years of 2006-2015. This
includes the average science intensity, recency, average
citation lag, relative patent growth and relative assignee
growth.

5.3.3.1 Average Science Intensity

Science intensity has been calculated as the average num-
ber of NPL citations per patent application and is pre-
sented in Figure 5.13 below.

Figure 5.13: Science intensity

Two distinct anomalies should be pointed out from the figure. First, the science
intensity for lidar experiences a strong peak in the year 2009, which is again due to
the 20 GM patent applications that all cite the same 12 NPL documents. Secondly,
the sudden peak for radar in 2015 is due to one single US patent (US9643605)
that alone cites 502 different NPL publications. With those two years exempt, the
average science intensity over the period is 0.55 for lidar, 0.46 for radar, and 0.18
for sonar. The difference in mean values is statistically significant (p < 0.001). This
difference implies that sonar is further away from basic research, and thus at a later
stage in the TLC than radar and lidar.

5.3.3.2 Recency

The recency of all fields has been calculated as the average age of all documents in
the sets. For this figure to give an accurate representation of the whole field, all
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patent applications in the set have been used, and the analysis has thus not been
limited to the years between 2006 and 2015.

Lidar is the most recent of the fields, with an average patent application being filed
in January 2008. An average sonar patent application was filed in November 2006,
while an average radar patent was filed in June 2005. The difference in mean values
is statistically significant (p < 0.001). Lidar is thus the most recent field, which
implies that it may also be earliest in the technology life cycle.

5.3.3.3 Average Citation Lag

Citation lag has been calculated as the average age of cited patent publications, at
the time of the citing patents’ publication. The results are shown in Figure 5.14
below.

Figure 5.14: Citation lag

Once again, the values for lidar patents are skewed by GM’s large patent family that
was applied for in 2009 and published in 2010. When excluding patent publications
from 2010, lidar patents have an average citation lag of 1212 days, sonar patents
have an average citation lag of 2294 days, and radar patents have an average citation
lag of 2632 days. This difference is statistically significant (p < 0.001). This means
that the field of lidar builds on more recent knowledge and thus might be earlier in
the TLC. It goes well in line with the fact that the lidar field is more recent, and
citations to other documents within the field are therefore also likely to be more
recent. Similarly, radar was identified as the oldest (least recent) field, and it also
has the highest citation lag.

5.3.3.4 Relative Patent Growth

Relative patent growth has been calculated as the number of yearly patent appli-
cations divided by the total number of patent applications in a field and gives an
indication of how much effort is being put into development in a field relative to its
size. The results are shown in Figure 5.15 below.

70



5. Findings and Analysis

Figure 5.15: Relative patent growth

Except for a temporary decline in 2011-2012, the relative growth of lidar patent
applications has increased steadily over the past ten years, with a current yearly
growth of around 14%. Thus, the field is not only growing, but it is growing at
an increasing rate compared to its existing knowledge base. The same goes for the
field of radar over the past six years, though its growth rate is somewhat smaller at
around 9%. The field of sonar is growing by about 8% per year, but this speed has
been decreasing over the past four years. The decline in relative growth in the sonar
field implies that it is at a later stage in the TLC, where companies are cutting back
their development efforts. Similarly, high and increasing relative growth rates for
lidar and radar implies that these fields are earlier in the TLC and companies are
increasing their inventive activity within these fields.

5.3.3.5 Relative Assignee Growth

Similarly as relative patent growth, relative assignee growth has been calculated
as the number of new assignees in a field divided by the total number of distinct
assignees in a field and gives an indication of how many new entrants a field is
attracting, relative to its size. The results are shown in Figure 5.16 below.
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Figure 5.16: Relative assignee growth

Lidar is the smallest field and has attracted the largest relative share of new entrants
for six out of the past ten years, with an average relative assignee growth of 4.7%.
This rush of new entrants into the field indicates that it is earlier in the TLC than
sonar and radar, which are both experiencing relative assignee growths of 3.2% per
year.

5.3.4 Discovered Knowledge

Having analyzed all patent data metrics that could give insights, the results need to
be interpreted and the most important insights communicated to decision makers.
This subsection thus aims to show an example of how they could be communicated
efficiently.

5.3.4.1 Discovered knowledge from Theme 1: Technology Overview

For this analysis, relative patent growth, relative assignee growth, number of cita-
tions, originality index and generality index proved to be informative features, while
it was hard to draw any conclusive insights from the patent scope and patent cen-
trality. The insights from theme 1 can thus be concluded as shown in Figure 5.17
below.
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Figure 5.17: Discovered knowledge from theme 1

5.3.4.2 Discovered knowledge from Theme 2: Investment Volume

For this analysis, yearly numbers of patent applications, yearly numbers of assignees
and grant lag proved to be informative features, while it was hard to draw any
conclusive insights from the average renewal time and average patent family size.
The insights from theme 2 can thus be concluded as shown in Figure 5.18 below.

Figure 5.18: Discovered knowledge from theme 2
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5.3.4.3 Discovered knowledge from Theme 3: Technology Life Cycle

For this analysis, recency, science intensity, citation lag, relative patent growth, and
relative assignee growth all proved to be informative features. In total, the metrics
for theme 3 give a good overview of the TLC situation for each one of the analyzed
technologies. The insights from theme 3 can be concluded as shown in Figure 5.19
below.

Figure 5.19: Discovered knowledge from theme 3
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6
Conclusion

The overarching aim of this study was to find out if, and how, patent data can
be used to guide technology selection decisions in rapidly changing technology-
environments. This chapter revisits the research questions that helped reach the
purpose and explains the conclusions that have been reached throughout the pro-
cess, both regarding the suitability of patent data as an information source, how a
structured process of analyzing it can be constructed, and what results this process
yielded when applied to a case study of three technological fields. To recall, the
main research question was: How can a patinformatics framework be constructed to
help technology managers gain valuable insights for selecting which technologies to
invest in?

To answer this, four sub research questions were answered (presented here in logical
order):

SRQ1: What information can be found in patent data?

Information found in patents encompasses a wide number of areas, including techni-
cal, legal, business-relevant or public-policy. This includes information that is either
written on the patent application itself, which we refer to primary patent data,
or information that can be found in secondary patent data features that amasses
over the lifespan of a patent. Patent databases are the world’s largest repository of
technological information, and patent data is well-structured and pre-classified into
technological fields. Patent applications are a direct result of an inventive process
and capture the commercial and proprietary aspects of technological development,
and since they are granted by authorities, it is also an objective information source
for measuring companies’ inventive activities. Previous researchers have successfully
used patent data to predict the value of companies, assess success levels of techno-
logical fields, and predict the rate of technological progress within different fields.

SRQ3: How can a patinformatics framework be constructed for use in technology
selection?

We have identified three main tasks that are crucial for using patinformatics to
gain technology selection insights.The first task, pre-processing, concerns the patent
retrieval process. In particular, the aim of the task is to create patent sets that rep-
resent the technology being studied with high completeness, relevance, and replica-
bility. Traditionally, this has been done using boolean searches, but newer methods
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include the hybrid-keyword-classification algorithm and search engines based on su-
pervised machine learning. Overall, the supervised machine learning method seems
most promising due to its ability to achieve high levels of completeness and recall
while still being explainable and relatively easy to use. Once the researcher has re-
trieved good patent sets for the technology or technologies being studied, he or she
can start the actual patent analysis. In this task, the researcher chooses which ag-
gregated metrics should be computed and performs the calculations over a relevant
period of time. In case of a comparative analysis where different technologies are
analyzed, the results can be visualized next to each other in graphs or tables to show
the relevant levels and their dynamic trajectory. If a single technology is analyzed, it
might instead be fruitful to normalize the values using year-based cohorts and thus
show how the technology is developing compared to other patented technologies as
a whole. Finally, the discovered knowledge needs to be communicated in a clear and
concise manner to technology selection decision-makers. This should include a pur-
poseful revisitation of the results to extract the most valuable insights and scrap the
metrics that proved uninformative. The informative metrics should then be visual-
ized and described using available communication tools, such as slide decks or videos.

Building on these insights, the HELD patinformatics framework for technology se-
lection insights was created, and the main steps are shown in figure 6.1 below.

Figure 6.1: HELD patinformatics framework for technology selection insights

SRQ2: What patent data metrics can be used to reach insights about technologies?

The HELD framework groups patent metrics into three broad themes of insights.
Theme one, technology overview, includes metrics that are helpful to give a first
overview of the technological field. This includes the total effort spent on inventive
activities, the technology improvement rate, and a number of indicators concerning
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the technical aspects of patents, such as their technological breadth, diffusion, and
impact. Theme two, investment volume, includes metrics that measure how much
resources are being spent on inventive activities within the field. This includes the
yearly number of patent applications, the interest in the field from different actors,
and indicators of the patents’ economic value. Finally, theme three, technology life
cycle, contains indicators about the current maturity level of the technology. This
includes the patent growth relative to previous years, the number of new entrants,
and the science intensity of the technological field.

SRQ 4: What insights can the constructed framework give about the technological
fields of lidar, radar, and sonar?

The framework was applied in a case study and many insights were gained about
the technological fields of lidar, radar, and sonar for autonomous vehicles. Lidar is
the youngest technology, with by far the least historical effort spent on inventing
activities. The field of lidar technology has, however, been growing at an increasing
rate and a steady flow of new entrants are attracted yearly. Lidar patents are
also the broadest, most generally diffused, and most technically impactful of the
analyzed patent sets. Lidar thus seems to be at an early stage of its technology
life cycle, and many companies seem convinced about its future importance. Radar
is the largest field, with the most interested companies and the oldest patents.
However, like lidar, radar is also experiencing a surge in the level of inventive activity,
attracting increasingly larger numbers of yearly patent applications and assignees.
Radar can thus be summarized as a large technology field still in the growth stage
of its technology life cycle. Finally, sonar was the second largest field, covering
three times as many patent applications as lidar and still growing at a faster yearly
rate. However, metrics indicate that sonar patents cite almost no scientific literature
and that interest and investments in the technology are starting to decline. Other
indicators still indicate that companies are willing to invest resources in keeping
their sonar patents alive. In total, this describes a patent field in the maturity stage
of the technology life cycle, where the need for basic research and development
activities are starting to decline, and companies are now increasingly focused on
commercializing their existing assets.
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7
Discussion

This chapter reflects on the theoretical and practical implications of the study, ad-
dresses the limitations of the research and provides suggestions for future research.

This study was based on the practical problem of positioning companies’ technology
bases in increasingly changing technology-environments. Patent data is currently
underutilized as a source of information to guide these decisions, much due to the
thorough understanding of the field of patents needed to conduct analyses. Even
for those that know and understand patents, there’s a long way to go before rec-
ognizing what insights can be gained from studying different patent metrics. Our
hope is that the findings from this study help change this through degunkifying
and disambiguating the existing techniques for using patinformatics in technology
selection and outlining existing metrics in a clear and understandable manner. We
hope that the study can help emphasize the value of patent information and bring
the topic of patinformatics into more companies, more management meetings, and
more technology selection decisions.

This study was performed as a part of a master thesis project, and the research
findings are limited by a number of factors. First, the constructed framework was
based solely on patent data metrics. It is important not to think of the framework
as a stand-alone method for technology selection but rather as a way to gain insights
about technological developments. Secondly, the constructed framework was tested
on three different sensor technologies for autonomous vehicles. Since no dominant
design has yet emerged, it is impossible to say conclusively whether or not the in-
sights gained from the analysis would have helped technology managers to make the
right decisions. Simultaneously, the use of such technologies can be considered a
strength of the study, since there was no way to fit the analysis results and insights
to a known outcome. The choice of solely using patent data in the case study also
limited the range of conclusions that could be made. Some metrics were hard to
interpret, and it is quite possible that more information could have been gained by
“connecting the dots” between the patent data and other data, such as known market
conditions and investment figures. Furthermore, the three fields might have different
propensity to patent, especially if some rely more on software than the others. An
extensive technology mapping of the fields could have helped identify such problems
but was outside the scope of the study. Finally, the patent sets used to represent the
three technologies were based on Cipher Automotive’s pre-performed patent group-
ing, and any flaws inherent in this grouping will have impacted the analysis. For
instance, the patent sets include data from known automotive companies and their
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first-tier suppliers, which can be misleading if one of the technologies is unpropor-
tionally being developed by other companies, such as start-ups. The patent sets
were originally created for both advanced driving assistance systems (ADAS) and
autonomous driving (AD) technologies, which means that they represent a larger
technology than just autonomous driving, and the inclusion of ADAS might have
skewed the analysis. At the same time, ADAS and AD are technologically insepara-
ble since one is just a more complete application of the technologies than the other.
We mean that analyzing multi-purpose technologies for a subset of their use case
is difficult and that this should be considered an inherent problem in patent analysis.

Throughout the course of this project, a number of interesting topics for further
research have been uncovered. For one, the proposed framework could be applied to
other technological fields. It would be interesting to test the metrics on technology
battles with known outcome and see if there exist trends and similarities between the
dynamic development in the technological fields which ultimately proved success-
ful. If such similarities exist and it is possible to create formal definitions of what
characterizes technology success, this data could be used as training examples to
train a supervised machine learning model to predict successful technologies based
on their patenting development. Another thing that could help extend the value of
this study would be to integrate the patinformatics framework with other data to
create a more complete framework for technology selection. By assessing not only
the patent characteristics of the technologies but also their fit into the company’s
product, strategies, and capabilities, a more general process for making technology
selection decisions could be defined.
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