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Unsupervised Disambiguation of Abstract Syntax
A language independent unsupervised model for abstract syntax disambiguation
Oscar Kalldal and Maximilian Ludvigsson
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Disambiguating natural text is the task of choosing the correct meaning among
several possible interpretations. This thesis focus on disambiguating parse trees
created by Grammatical Framework — a formal language that represent meaning
of natural language sentences with abstract syntax trees in order to do machine
translation. Since one tree represents a meaning, for every sentence there exists
several interpretations for which the most probable one should be chosen.

In order to achieve this, a language model on trees is defined. This is then
used to compare possible trees and choose the one with the highest probability.
In order to estimate the parameters of the model, the probability of the different
meanings behind a word needs to be estimated. This is done using the Expectation
Maximization algorithm.

Experiments are done on seven different languages to show that the method
is generalizable. Different smoothing techniques as well as different dictionaries are
evaluated. A novelmerged Wordnet is constructed in order to avoid sparseness.

The method is evaluated by doing word sense disambiguation (a subtask of tree
disambiguation) on standard data sets. The model is shown to be comparable to
other unsupervised methods in the SemEval 2015.

Keywords: natural language processing, grammatical framework, language mod-
els, expectation maximization
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1
Introduction

Ambiguity in language has been studied extensively in the Natural Language Pro-
cessing community. It is one of the defining traits of human language often used
as a vehicle of poetry and humor. To illustrate, this is a quote from the American
comedian Groucho Marx:

“One morning I shot an elephant in my pajamas. How he got in my
pajamas, I don’t know.”

The quote highlights the ambiguity present in the first sentence. Who is wearing
the pajamas, I or the elephant? For a human, the absurdness of the interpreta-
tion implied by the second sentence is a source of humor, but for a computer that
doesn’t know what an elephant is, the elephant wearing the pajamas is a completely
valid interpretation. Ambiguity in language is one of the biggest obstacles when it
comes to computers understanding language and it naturally influences many down-
stream tasks within NLP, such as sentiment analysis, part of speech tagging, and
translation.

Disambiguating language is mostly done using context. For a human reading the
first sentence in Marx’ quote the context provided by the reader’s prior knowledge
seems to make the meaning clear: elephants don’t wear pajamas. Continuing reading
provides a new broader context that implies another interpretation of the sentence.
For a computer, drawing these conclusions is not trivial and in methods used by
computers, context usually enters as a statistical model.

1.1 Background
In this thesis, we will consider Grammatical Framework (Ranta, 2004), a language
formalism that aims to connect the world of formal language with the one of natural
language. GF was originally designed for multilingual text generation in controlled
natural language and recently there has been successful research aimed at extending
the scope to wide-coverage parsing (Angelov and Ljunglöf, 2014).

Adapting current statistical parsing methods such as those described by Jurafsky
and Martin (2009, Chapter 14) to the GF parser is a problem due to the unique
internal representation of language in GF: abstract syntax trees. Inspired by the
representation used in compilers for programming languages, abstract syntax trees
are defined so that the same type of trees is shared across languages in a way
such that translations of the same sentence correspond to the same abstract syntax
tree (Kolachina and Ranta, 2016). Language dependent linearization rules merely
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1. Introduction

define how an abstract syntax is converted to a string in a language, while syntactic
information is encoded in a language independent way in the tree. The linearization
rules are designed to be reversible for use in parsers in order to convert strings into
abstract syntax trees. The difficulty in using statistics to enhance parsing is to do
so in a way that preserves the language-independent approach unique to GF —
most state-of-the-art parsers need heavy customization when dealing with a new
language.

In order to be truly language independent, abstract syntax trees must do away
with much of the ambiguity in language as different languages are often ambiguous
in different ways. In turn, this means that disambiguation in parsing is of utmost
importance. Today disambiguation is done by considering every ambiguous word
and every ambiguous grammatical rule in a tree separately and independently. This
context-free model, although powerful as is, can be improved by being expanded to
use contextual information, information that has been shown to be very important
for the task.

1.2 Problem
This thesis aims to develop a language model for GF’s abstract syntax trees to be
used for disambiguating possible trees, especially the ones generated by the current
parser of GF. This means that we have to develop a language model capable of
assigning probabilities to abstract syntax trees. The reason this is a unique challenge
is twofold:

One, we have to define a probabilistic model over a tree structure as opposed
to linear text, as well as find data to estimate parameters for such a model. By
utilizing the correspondence between GF and dependency trees tagged in the Uni-
versal Dependencies (UD) scheme (Kolachina and Ranta, 2016) and limiting us to
modeling probabilities of syntactic head-child dependency relationships between leaf
nodes in the GF abstract syntax trees we are able to define a probabilistic model
for abstract syntax trees that is not dependent or large amounts of data in the form
of GF treebanks. Instead, we can use UD gold standard treebanks and data from
automatically UD-parsed corpora. Unlike GF, there is plenty of data available with
high-quality UD trees (Ginter et al., 2017).

Two, because of the language independence inherent in GF abstract syntax trees,
the leaf nodes in the abstract syntax trees does not consist of words in one language,
but rather of language independent word senses. As the model is defined over the
leaf nodes in the tree and since there is very little sense annotated training data
available, unsupervised methods must be used so when estimating parameters for
the model. This is done by using non-annotated text in several languages together
with a knowledge source of possible sense interpretations for each word in each
language. Estimation is then done using Expectation Maximization, a method for
estimating unobservable variables, further explained in section 2.7.

Although we are training our model with data from a handful of languages, the
goal is to have a model that is also useful for languages where data doesn’t exist.
The only assumption we make is that we have a linguistic knowledge base, i.e. a
dictionary which maps the senses of a word in the target language to the languages
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1. Introduction

used for training.

1.3 Contributions
In this thesis, we present a probability model for ranking of parse trees of natural
language. Although based on the trees generated using Grammatical Framework, it
supports any tree structure with Universal Dependency-like parent and child rela-
tionships. We have implemented Expectation Maximization and shown that it can
be scaled up to a model with over 108 parameters.

Other contributions is within smoothing. We created a separate Wordnet dictio-
nary with similar synsets merged together, in this way both reducing the size of the
model as well as making the signal stronger.

1.4 Outline
In chapter 2, the theory behind our methods are further described. First, a general
overview of ambiguities in languages, grammars, and parsing is given. Then, we fur-
ther describe the resources used: Grammatical Framework, Universal Dependencies,
and Wordnet. Last, n-gram language models and the Expectation-Maximization al-
gorithm is explained.

In chapter 3, we describe our original work and how it was carried out. It contains
a description of how we define our language model, and how we estimate the param-
eters of the model. Our work with the Wordnet clustering is also described.

Chapter 4 presents the results of the evaluation of our models, which is further
discussed in chapter 5 together with pointers to areas of further research.
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2
Theory

In this chapter, the theory behind our methods is described. In order to give an
overview of the context of the research, a general description of ambiguities in lan-
guages, grammars, and probabilistic language models is given. Grammatical Frame-
work, Universal Dependencies, and Wordnet are three important resources for the
methods in this thesis and are also described. Last, we give an account of the
theoretical foundations of the Expectation-Maximization algorithm.

2.1 Ambiguities in Language
When interpreting a sentence, ambiguities in natural language will inevitably be a
problem. We will here introduce two kinds of natural language ambiguities: lexical
ambiguity and syntactic ambiguity.

A simple example of a lexical ambiguity in natural language is the word bass.
It might refer to a type of fish in one sentence (I am fishing bass) and to a type
of instrument in another (I play the bass). These ambiguities are highly language
dependent and words are often ambiguous in different ways in different languages.
As an example, the Swedish words for bass the fish and bass the instrument are
different (aborre vs. bas).

To understand syntactic ambiguity, we look at the sentence I eat the food in the
kitchen, where the clause in the kitchen could potentially refer either to the location
where the eating is done or as an attribute to the food that was eaten (I am in
the kitchen and I eat the food or I eat the food that is in the kitchen). This kind of
ambiguity does not depend on the vocabulary of the language but on the grammar.
Depending on the intended meaning, this sentence would be translated differently
into Chinese as we can see in the following example:

(1) 我
wo
I

在
zai
in

厨房
chufang
kitchen

吃
chi
eat

饭
fan
food.

‘I eat the food in the kitchen’
(2) 我

wo
I

吃
chi
eat

在
zai
in

厨房
chufang
kitchen

的
de
[attributive]

饭
fan
food

‘I eat the food in the kitchen’

These two examples illustrate that there are sentences that are syntactically am-
biguous in one language but not in others. This has great implications for applica-
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2. Theory

Figure 2.1: Trees illustrating the dependency and constituency relations, adapted
from Wikimedia (2011).

tions such as machine translation, as there must be a model describing how to choose
the right interpretation of a sentence in order to make the correct translation.

2.2 Grammars and Syntax

In linguistics, syntax is a set of formal rules that govern how sentences are con-
structed and structured in a given language, such as in which order the subject, the
verb and the object should appear (Chomsky, 1957). Together with the morphol-
ogy, how individual words change in a language depending on the sentence they are
in, these rules constitute the grammar of the language.

One type of grammars is phrase structure grammars, which focus on describing a
sentence by identifying sub-phrases in the sentence recursively. A simple example of
this is how in the sentence Bob kicks the green ball one can identify kicks the green
ball as functioning as a verbal phrase in which one, in turn, can identify the green ball
to function as a noun phrase. A different type of grammar is called dependency
grammar. The focus of this type of grammar is on the relationship between words
(Nivre, 2005), for example, in the same sentence, one can identify the words Bob
and ball as depending on kicks, and green as depending on ball. In both these cases,
the rules of the grammar can be used to draw up a hierarchical tree, called a syntax
tree, that describes which rules were used to build a certain sentence. Examples of
phrase structure trees and dependency trees are displayed in figure 2.1.

The process of deciding the syntax tree of a given sentence is called parsing.
This process is non-trivial because in many cases it is non-deterministic, for one
given sentence there can be many different valid syntax trees. An example is the
sentence I eat the food in the kitchen from section 2.1 would have different syntax
trees depending on the interpretation of the sentence, one of which is illustrated in
figure 3.2. The fact that syntax trees can serve to formalize which one of the many
syntactic interpretations a sentence is correct makes it an excellent tool for use in
computers understanding and processing language.
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2.3 Probabilistic Language Models
Probabilistic models for language work by computing the probability of observing
a certain type of linguistic item in text or speech. Examples of such models are
language models that assign probabilities to sentences or fragments of sentences in
a certain language, such as n-gram models. One can also define probabilistic models
over possible interpretations of the same sentence, such as the different valid syntax
trees of a sentence, which can then be used as a toll for disambiguation tasks.

2.3.1 N-Gram Models
N-gram models are generative models in the sense that they assume that the proba-
bility of a certain word appearing in a sentence only depends on the history of that
word, that is the words preceding it, and that the probability of a word occurring
is location invariant. More specifically, n-gram models assume that the probability
of a certain word appearing only depends on the previous n words for some fixed n.
These models can assign a certain probability to every possible sentence by using
the chain rule, can be used to predict the next word in a sentence, and can easily be
used generatively to sample new sentences according to the probability distribution
defined by the model. N-gram models are well researched and are considered one of
the most important tools in speech and language processing (Jurafsky and Martin,
2009).

For most disambiguation tasks, probabilistic or statistical models are used. These
probabilistic models are different from models such as n-grams in that they assign
a probability to each sentence, computing the probability that a certain sentence
should be interpreted in a certain way in the face of ambiguity. A model for syntactic
disambiguation could, for example, define a probabilistic model assigning probabil-
ities for all possible syntax trees of a sentence. With such a model disambiguation
can then be done by computing the probability for each possible interpretation and
choosing the one with the highest probability.

2.3.2 Probabilistic Context-Free Grammars
Among probabilistic grammar models for phrase structure grammars the most com-
mon ones are Probabilistic Context-Free Grammars (PCFG). According to
Manning et al. (1999), PCFG:s adhere to the three assumptions of place invariance,
context freeness, and ancestor freeness. Place invariance means that the probability
of a sub-tree of the syntax tree occurring does not depend on where in the sentence
the words that subtree spans are. As such a certain noun phrase would have the
same probability regardless of whether it is first or last in the sentence. Context free-
ness means that the probability of a given subtree does not depend on any words
outside the span of that sub-tree. For example, the probability of a given noun
phrase does not depend on the main verb in the sentence. Last, ancestor freeness
means that the probability of a subtree does not depend on any nodes outside that
subtree, for example, the probability of a given noun phrase would not depend on
it being a part of a verb phrase or a prepositional phrase.
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It is obvious that these assumptions do not hold for real text and Jurafsky and
Martin (2009) indeed writes that the main drawback of the PCFG is that the sweep-
ing independence assumptions automatically discards many structural dependencies
in the syntax tree. In addition, it is also insensitive to lexical information. This
can be somewhat remedied by various modifications to the PCFG and Jurafsky
and Martin (2009) mentions techniques such as lexicalization and splitting non-
terminals.

2.3.3 Syntactic N-Grams over Dependency Trees
In order to improve the n-gram model Sidorov et al. (2014) introduced syntactic
n-grams. These differ from ordinary n-grams in what is considered the history in
the model. Instead of defining the history as the previous words in the original
sentence order, a syntactic n-gram instead considers the predecessors in a depen-
dency tree of the sentence as the history of a word. This allows for some long-range
dependencies to be accounted for easier than in a normal linear n-gram model. For
example, in Bob kicks the green ball the word kicks is the immediate predecessor of
ball in the dependency tree and the predictive information of kicking ball occurring
often together would be captured using only a syntactic bigram model, in the linear
n-gram case, this particular case would require a 5-gram model in order to be able
to capture the same relation. Due to the fact that word order is a highly language
dependent property, syntactic n-grams are more suited for cross-lingual comparison
(Sidorov et al., 2014).

A more generalized generative language model based on the syntactic nature of
the dependency tree structure is developed by Richardson et al. (2016). Richardson
et al. defines the history of each node in the tree as all nodes preceding that node
given a defined traversal order. By denoting the i:th node in the tree wi and the
history of the i:th node (that is all nodes preceding wi) as Hi, Richardson et al. also
defines the ‘t-treelets of size l for wi’ as all connected subtrees S ′ ⊂ Hi where wi ∈ S ′
and |S| = l. t-treelets can be divided into several types depending on the topology
of the trees and a generative probabilistic model can be defined by assuming that
the probability of a certain node given its history is equal to the probability of a
node given all t-treelets for the node that is of certain type and size. Examples
of such models are all t-treelets of size l ≤ 3 that only consists of nodes that are
ancestors to wi or all t-treelets of size l = 3 that only consists of the parent node and
one sibling node to wi. The fact that one needs a well-defined traversal order of the
tree to define the history of each node is important in order to create a generative
model, as there would otherwise appear circular dependencies in the model.

2.4 GF and Abstract Grammars
Grammatical Framework (Ranta, 2004) is a framework for writing and implement-
ing formal grammars mainly for natural languages. The defining feature is that
grammars are divided into an abstract syntax and a concrete syntax, a con-
cept borrowed from programming language design. According to Ranta the abstract
syntax defines “the hierarchical structure of the language” and the concrete syntax
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“what the language looks like as it is read and written”. In GF different languages
can share the same abstract syntax describing the semantics, i.e. the meaning, of
statements in all languages, while each language has its distinct concrete syntax.
The concrete syntax can be seen as a description of how the abstract syntax should
be rendered in the textual form of the corresponding language, which means that
by describing a statement in abstract syntax we can linearize that statement to
the textual versions of that statement into all supported languages. Angelov (2009)
then describes a method to parse text to get all valid representations in abstract
syntax for a statement given in linearized textual form in a language that have a
defined concrete grammar over the abstract syntax.

Together, the ability to parse and linearize statements for all languages with
a concrete syntax over the same abstract syntax means that meaning preserving
translation is possible between those languages, in effect using the abstract syntax
as a pivot language or an interlingua.

The main problem in doing translation by this approach is that the parsing step
in many cases is not deterministic, that is, for a given statement in textual form,
there might be several valid abstract representations of that statement. This is not
surprising in and is, in fact, unavoidable if one wants the abstract syntax to accu-
rately describe the semantic meaning of each statement, and for accurate translation
using the interlingua approach to work. As an example, the ambiguous sentences
given in section 2.1, I like bass and I eat the food in the kitchen would have differ-
ent abstract representations depending on the interpretation of each sentence, and
must be disambiguated in order to be translated accurately to Swedish and Chi-
nese respectively. That means that one must choose which of the possible abstract
representations should be used as the immediate representation.

The algorithm for fast statistical parsing presented by Angelov and Ljunglöf
(2014) introduces a statistical element to parsing by giving each possible abstract
parse a probability score that aims to reflect the likelihood of a given possible ab-
stract representation being the correct one. Angelov and Ljunglöf’s parsing method
has many similarities to the PCFG method and can indeed be seen as being a
context-free probabilistic model in the abstract domain. Virk et al. (2014) also use
statistical parsing of abstract syntax trees together with word sense disambiguation
to disambiguate lexical ambiguities to show that it is possible to parse arbitrary
English text, and show improvements in translation with the interlingua approach
using GF.

2.5 Universal Dependencies
Universal dependencies is an annotation scheme with the mission to create dependency-
style treebanks with a common tag set for a large number of languages. It was born
from Stanford dependencies (De Marneffe et al., 2006) and Google universal part-
of-speech tags (Petrov et al., 2011).

Just as De Marneffe et al. (2006) has mapped the Stanford parser’s constituency
trees to dependency trees, there has been done work on mapping the abstract trees
in GF to UD, and the opposite (Kolachina and Ranta, 2016; Ranta and Kolachina,
2017). The problem with transforming UD trees into GF trees is twofold: Firstly,
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Figure 2.2: Example of a possible abstract syntax tree representing the sentence I
eat the food in the kitchen.

the tree structure in GF is not completely determined by the UD trees; there can
be several dependency trees mapping to the same GF tree. Secondly, in order to be
completely language independent, GF need to know to which sense every word in
the tree corresponds. This lead to the introduction of an abstract dependency
tree by Kolachina and Ranta (2016), which is a UD tree with words annotated with
their abstract meaning. The problem of annotating the word correctly, which this
thesis deals with, is thus of big importance in the work of transforming UD trees
into GF trees.

2.6 Wordnet
Wordnet (Miller, 1995) is a lexical and semantic resource developed at Princeton
University aimed to provide traditional lexicographical information for use in com-
putational applications. The database, originally developed for English, provides
relational information over a wide array of words and lexical items such as syn-
onymy, the notion that two words mean the same thing, and hyponymy, the notion
that one thing is a sub-name for another thing (e.g. a car is a type of vehicle). The
main relation in the database is synonymy and is described by assigning each word
to one or several synsets. All words that are part of one particular synset can be
said to mean the same thing in some sense. As an example, the words pipe and
tube can be seen as synonyms in some contexts meaning a hollow cylindrical shape,
and they are thus part of the same synset. However, because of the fact that many
words are ambiguous, some words can belong to several synsets. As an example,
the words tube and subway will have one synset in common, since they can both
refer to a type of railway operating under ground. It is thus possible to say that
each synset represents one particular semantic concept or notion, something that is
utilized by (Virk et al., 2014) to use wordnet synsets as abstract representations of
words in GF grammars.

The Open Multilingual Wordnet (Bond and Paik, 2012; Bond and Foster, 2013)
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is a project designed to standardize the format and usage of several wordnets for
different languages, as well as provide links between synsets in those wordnets by
using the synsets in the English wordnet as pivots. Since linking is done at the synset
level lexical ambiguities otherwise encountered when linking multilingual dictionaries
are avoided.

2.7 Expectation Maximization
The EM algorithm (Dempster et al., 1977) can be described as a method to calcu-
late maximum likelihood estimates in the face of incomplete data. That the data is
incomplete means that we have a model which includes certain variables that we can
not readily observe, variables that can also be called latent variables. In our case
this means assigning probabilities of occurence and co-occurence of the meanings of
words, meanings which we can’t observe. A good introduction to the algorithm can
be found in Do and Batzoglou (2008) which describes EM as an iterative method
to get increasingly accurate approximations of the maximum likelihood estimate for
model parameters where each iteration of the algorithm consists of two steps: the
expectation and the maximization step. First, in the expectation step, one calcu-
lates the expected value of the latent variables given the model parameters obtained
in the previous iteration. Second, in the maximization step, these expected values
are used in lieu of the actual values of the latent variables in order to compute the
maximum likelihood estimate for the model parameters.

2.7.1 Problem Formulation
The example problem used by Do and Batzoglou (2008) to illustrate the algorithm
is one where there are two weighted coins of different weights, and one wishes to
estimate the weights of each of the coins. Five separate experiments are done where
for each experiment one of the coins are chosen randomly with equal probability,
and then that coin is flipped ten times. The amount of times the chosen coin showed
head is recorded for each of the five experiments, but it is not known which of the
two coins were chosen for any of the experiments. The problem is now to estimate
the weights of the coins. this could be trivially done with maximum likelihood if we
had complete information of both the counts and which coin was chosen for each
experiment, but as the coin chosen for each of the experiments is unknown, we can
not trivially do this.

More formally, the problem the EM algorithm sets out to solve is described by
McLachlan and Krishnan (2007) as involving two data vectors x, y drawn from the
two random vectors X and Y , where we know that X is completely determined
by Y , that is X = X(Y ). The data vector X is called the incomplete information
and the data vector Y is called the complete information. In the prior example of
the coin flip experiment, the data vector X would correspond to the counts of the
amount of heads and tails for each experiment but not what coin was used, while the
data vector Y would correspond to both the head and tail counts as well as the coins
used. By assuming that X and Y has the probability density functions g(x, θ) and
gc(y, θ) respectively, where θ is a set of parameters, we have defined a probability
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model for our data and we now want to calculate a maximum likelihood estimate
of the parameter set θ, given the incomplete data vector X. The EM algorithm
is often used in situations where the probability model for the complete data, gc,
takes a simpler form than the model for the incomplete data or in instances where
one have a problem which can be formulated as an incomplete data problem where
computation of maximum likelihood estimates is easier in the complete data model.
To go back to the coin flip example, while it is theoretically possible to derive a
closed form expression for the likelihood functions of the coin weights given the
incomplete data, such an expression would be unwieldy and unfeasible to maximize,
especially if the amount of experiments done increases. Computing the maximum
likelihood estimates given the complete data however is trivial why the expectation
maximization method is especially well suited for this problem.

2.7.2 The Algorithm
The maximum likelihood estimation for model parameters can be obtained by max-
imizing the log-likelihood function for the observed data, where the log-likelihood
function looks like

log(L(θ)) = log(g(x, θ)).

However, since we want to avoid using the probability model for the incomplete data
we instead chose to maximize the likelihood function for the complete data:

log(Lc(θ)) = log(g(y, θ)),

since both models share the same parameter set. However, since this log likelihood
is defined in terms of the complete data that we do not have we instead define the
function

Q(θ, θ̂) = Eθ̂(log(Lc(θ))|x), (2.1)

that is the conditional expectation of the log-likelihood for the complete data given
the incomplete data calculated using the parameter set θ̂. The EM algorithm now
requires an initial value θ0 and then proceeds in an iterative fashion by calculating
θt = arg maxθQ(θ, θt−1), until the convergence criterion L(θt) − L(θt−1) < C for
some threshold C is satisfied. It can be proved that by following the EM method,
the sequence L(θt) will be increasing which means that convergence is assured and
that it will produce better or equally good approximations of the true maximum
likelihood estimates with iteration.
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A shortcoming in the current probabilistic model used by the GF parser is that it
is context-free. The current model cannot use information such as the fact that in
the phrase eat bass, the word bass is much more likely to refer to the fish bass than
the instrument bass, as each part of the tree is scored separately and independently
of all other parts. The probabilistic model proposed is a way to use the ability to
convert GF abstract syntax trees into abstract dependency trees in order to take
context-based information into account. Abstract dependency trees as introduced in
(Ranta and Kolachina, 2017) are basically sense tagged dependency trees using fea-
ture, part-of-speech and dependency labels according to the Universal Dependencies
scheme.

The approach taken to disambiguation in this thesis is not a constructive approach
in the sense that no focus is put on the parsing process and trying to find the correct
abstract representation. Rather the approach taken is to develop a probabilistic
model over abstract dependency trees able to score any abstract dependency tree
according to the likelihood of that particular abstract dependency tree occurring in
a text. This can then be used to evaluate parses done by the existing GF parser
through conversion from abstract syntax to abstract dependencies and re-rank the
k-best parses from the GF parser similar to what was done by Kolachina and Ranta
(2015) to improve disambiguation in the GF parser. A secondary application used
as an evaluation task is general purpose word sense disambiguation on dependency
parsed sentences.

The probabilistic model over abstract syntax tree is a syntactic n-gram model
over the abstract functions (the word senses) in the ADT, where the probabilities of
a tree only depend on its subtrees of the form of one node and its (n−1) immediate
ancestors. Parameters for the statistical model is estimated from a large corpus of
text in several different languages parsed with UD-pipe. There is no need for sense-
tagged training data or parallel corpora. To circumvent the need for sense-tagged
data, the sense tags are treated as latent information in the text and Expectation
Maximization is used together with a knowledge source of the possible senses for
each word in every language for parameter estimation. The knowledge sources used
are the current GF dictionary, and synset information from the Open Multilingual
Wordnet.
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3.1 Tree Probabilities
In implementation and experiments focus have been limited to the exploration of
syntactic bigrams only, mainly because of computational and memory complexity
of the algorithm used for parameter estimation. In the bigram model used the
probability for a tree T is calculated by the following product:

P (T ) = P (N0)
n∏
i=1

P (Ni|H(Ni)) = P (RT )
∏n
i=1 P (Ni, H(Ni))∏n
i=1 P (H(Ni))

, (3.1)

where N0 is the root node of the tree and H(Ni) is the head node of Ni. Information
contained in each node could in addition to the abstract function in the node include
the dependency relation of the node and in the work both probabilities taking into
account the dependency label and probabilities not taking this into account have
been considered.

As a baseline to make comparisons to the current probabilistic model used in the
GF parser possible a unigram model have also been used in which the probability
for a tree T is calculated by the following product:

P (T ) =
n∏
i=0

P (Ni), (3.2)

that is a completely context free model where each node is assumed indepen-
dent.

3.2 Parameter Estimation
In order for the probabilistic model to be useful one needs accurate estimations
of the probabilities P (Ni, H(Ni)), P (Ni), P (H(Ni)). Since there is very little data
labeled with abstract functions available to do such estimations directly through
a method like maximum likelihood, the estimation is done through the use of a
knowledge source of possible linearizations of every abstract function and corpora
of untagged but dependency parsed text in several different languages. The method
used is based on Expectation Maximization and is described in terms of estimating
probabilities for subtrees of arbitrary size. It shall later be seen that the method
does not scale very well computationally or memory wise to larger sub-trees, which
is why experiments have been limited to subtrees of size two.

We assume that the set of all possible function tagged sub-trees is known and
finite and we denote it

F = {yi}Ni=1.

The set of possible untagged subtrees will depend on the language the subtrees are
defined over and in this work which language a subtree is defined over is always
assumed to be known. The set of possible untagged subtrees for each language s is
also assumed to be known and finite and is denoted

Ws = {xsi}Mi=1.
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Lastly, we also assume that we for each language have knowledge of a possibility
set

Ds ⊆ Ws × F,

where (xsi, yj) ∈ Ds if and only if yj is a possible function tagged subtree given the
untagged subtree xsi. The possibility sets used in this work are mostly derived using
Wordnets and are discussed further in section ??.

In the estimation of parameters using data from one or several corpora or tree-
banks, we consider a sequence of observations

O = (Xi, si)Ki=1, Xi ∈ Wsi
,

and assume that to every subtree Xi in the set, there is a fixed and pre-determined
Yi ∈ F such that (Xi, Yi) ∈ Dsi

. That is, we assume that there is one correct abstract
representation for each observed subtree. However, these Yi are unobservable and
thus unknown. O is also called the observable information while the observable
information together with the correct abstract representation is called the complete
information.

The goal is to calculate the probability of seeing a certain abstract representation
and we denote the probability of seeing the subtree yi ∈ F as

P (Y = yi) = πi.

Our goal will be to estimate the parameters π = (π1, π2, ...). In order to facilitate
the use of the Expectation-Maximization algorithm, we will also as a byproduct
calculate the probability of an (untagged) sub-tree given that it has a certain abstract
representation and we denote these probabilities

P (X = xsj|Y = yi, s) = ϕsij

.

3.2.1 Using a Maximum Likelihood Approach
Using a Maximum-likelihood approach to estimate the parameters (π, ϕ) means that
we need to find the maximum of

P (π, ϕ|O) = P (O|π, ϕ)P (π, ϕ)
P (O) ,

where P ((π, ϕ)) is our prior belief of (π, ϕ) and P (O|(π, ϕ)) = l(O, (π, ϕ)) is the
likelihood function for the used data set. The problem at hand is to maximize this
likelihood function with respect to the parameters .

Since we assume observations are independent the likelihood function for all ob-
servations will just be the product of the likelihood functions of each individual
observation and we thus look at the likelihood function for each observation, that is
P (X|π, ϕ), separately. Now by the law of total probability, we have
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P (X = xj|π, ϕ) =
∑

i:(xj ,yi)∈Ds

P (X = xj, yi|π, ϕ) =

∑
i:(xj ,yi)∈Ds

P (X = xj|yi, π, ϕ)P (yi|π, ϕ) =

∑
i:(xj ,yi)∈Ds

πiϕij,

which can be calculated without knowledge of the value of Y , since that variable
was mariginalized out. However, as we want to calculate the total likelihood of all
the observations

P (O|π, ϕ) =
K∏
n=1

P (X = xj(n)|π, ϕ) =
K∏
n=1

∑
i:(Xn,yi)∈Ds(n)

πiϕij(n),

which unless the sets Ds are shaped very nicely will quickly become computationally
intractable to maximize as the number of observations get large. However, this is
almost the problem formulation that the Expectation Maximization algorithm is
designed to find approximate solutions to.

3.2.2 Using Expectation Maximization
Using the expectation maximization method we look at maximizing the log-likelihood
for the observations L(O, π, ϕ), which becomes L(O, π, ϕ) = ∑ log(∑

ϕsi
jiπi). Calling

the complete parameter set θ = (π, ϕ) in the expectation step we get the expres-
sion

Q(θ, θt−1) = Eθt−1 (L(C, θ)|O)

=
K∑
n=1

N∑
j=1

L(Xn, yj, θ)P (yj|X, θt−1)

=
∑
s∈S

Ns∑
i=1

M∑
j=1

L(xi, yj, π, ϕ)csiP (yj|xi, θt−1)

=
∑
s∈S

Ns∑
i=1

M∑
j=1

(log(ϕsij) + log(πj))csiP (yj|xi, θt−1),

where csi denotes the count of the observations of the form (xi, s). By rewriting the
conditional probability of yi given xi in terms of the parameters in our model

P (yj|xi, θt−1) = P (xi|yj, θt−1)P (yj, θt−1)∑
k:(xi,yk)∈Ds

P (xi|yk, θt−1)P (yk, θt−1)

=
csiϕ

t−1
sij π

t−1
j∑

k:(Xn,yk)∈Ds
ϕt−1
ik πt−1

k

,

and denote the expected counts for the complete information at iteration t as

ĉtsij =
csiϕ

t−1
sij π

t−1
j∑

k:yk∈F ϕ
t−1
sik π

t−1
k

= csiP (Y = yj|X = xi, s, π
t−1, ϕt−1)
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for all s, i, j such that (xi, yj) ∈ Ds we see that we can write the expected value of
the log likelihood in the expectation step as:

Q(θ, θt−1) =
∑
j

log(πj)
∑
s,i

ĉtsij +
∑
sij

log(ϕsij)ĉtsij,

where the sums are all taken with respect to the sets Ds that is such that ĉtsij
is defined. For the maximization step we can maximize each of the parameter
subsets: π and ϕs.j separately as they only occur in separate terms and have no
interdependent constraints.

πt = arg max
π

∑
j

log(πj)
∑
s,i

ĉtsij,
∑
j

πj = 1

ϕts.j = arg max
ϕs.j

∑
i

log(ϕsij)ĉtsij,
∑
i

ϕsij = 1

Applying lagrange multipliers and setting derivative to zero gives:

πtj =
∑
s,i ĉ

t
sij∑

s,i,j ĉ
t
sij

=
∑
s,i

ĉtsij
N

ϕtsij =
ĉtsij∑
i ĉ
t
sij

,

(3.3)

again with the sums taken only over terms such that ĉtsij is defined. Note that the
computational complexity of updating the probabilities will depend on the size of
the sets of the possible function tagged sub-trees and the possible untagged sub-trees
but most importantly of the set of possible combinations of these, that is the sets Ds.
If this set would be choosen to be the full product sets Ws × F the computational
complexity would be of the order O(|S|∗|F |∗|W |), while if we use a knowledge based
source, such as a dictionary to prune the set of possible combinations, we reduce
the complexity to down to O(k ∗ |S| ∗ |F |) where k is the average number of possible
untagged subtrees that can be paired with each function tagged sub-tree.

3.3 Defining Possibility Sets for Sub-Trees
A key process for the parameter estimation to work is that there is a way to generate
a proper mapping between observed and latent set for each language, that is Ds.
This is done by assuming that the dependency structure will remain unchanged in
the transition from observed dependency trees to abstract dependency trees. This
means that the only thing that needs to be done is to translate each word in the tree
to an abstract representation of the meaning of the corresponding word. Thus the
only knowledge needed by the algorithm prior to parameter estimation on corpus
data are dictionaries specifying possible abstract representations for each word in
each language. Three different such dictionaries were used:

1. The current GF wide range translation dictionary.
2. Open Multilingual Wordnet.
3. A modified Wordnet where low-frequency noun synsets are merged with their

hypernym synset.
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For subtrees containing several words, the possible abstract subtrees are simply
taken to be the Cartesian product of the possible representations for each word in
the subtree together with the dependency structure for the tree. The particular
model evaluated in this work focused on sub-trees of size two only and was lim-
ited to looking only at the lemma, part of speech tag, and the dependency relation
between every two connected words in a dependency tree. The dictionary infor-
mation given was dictionaries specifying a mapping from triples on lemma, part of
speech and language to a list of possible abstract representation. As seen in fig-
ure 3.1, an example of a possible observed subtree would be (bass, noun, obj, play,
verb), which would mean that we observed a subtree where the noun bass was the
child to the verb play with the dependency label obj — meaning the bass was the
object of play. If in the possibility dictionary used there are two abstract represen-
tations each for the lemma/part of speech pairs, for example bass.n.1, bass.n.2 and
play.v.1, play.v.2 respectively, the possible abstract subtrees would be (bass.n.1,
obj, play.v.1), (bass.n.2, obj, play.v.1), (bass.n.1, obj, play.v.2) and (bass.n.2, obj,
play.v.2).

Since the number of possible abstract representations of a subtree is equal to the
number of possible combination of choices of abstract representation for each word
in the subtree, the number of possibilities per tree will grow exponentially with the
tree size, which is the main reason why experiments were limited to subtrees of size
two.

Figure 3.1: Illustration of the possible abstract representations for different sub-
trees of size one and two given the same dictionary of possible abstract representa-
tions..

3.4 Splitting Calculations into Sub-Problems
One way to reduce the computational complexity is to realize that in many cases the
problem of estimating parameters often can be divided into several sub-problems,
depending on the nature of the vocabulary sets, dictionary sets, and the abstract
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set. In particular we consider sets F , and for each language s Ws, Ds that can
be partitioned into subsets F ′, W ′

s, D′s, F ′′, W ′′
s , D′′s , such that for any language,

observation and abstract representation s, x, y

(x, y) ∈ D′s, s ∈ S =⇒ x ∈ W ′
s, y ∈ F ′

(x, y) ∈ D′′s , s ∈ S =⇒ x ∈ W ′′
s , y ∈ F ′′.

This means that if two words could possibly represent the same abstract function
they must necessarily be in the same partition and if two abstract functions can
linearize to the same word they must necessarily be in the same partition.

Assuming such a partition is possible we have that

xsi ∈ W ′
s, yj ∈ F ′′ =⇒ ϕtsij = P (X = xsi|Y = yj) = 0 =⇒ ĉtsij = 0,

for all t. Looking at equations 3.2.2 and 3.3 it is now easy to see that for any
s, i, j such that xi ∈ W ′

s, yj ∈ F ′ and any k, l,m such that xl ∈ W ′′
k , ym ∈ F ′′, the

updated parameters corresponding to observations and abstract representations in
the first set of partitions πtj, ϕtsij will not depend on parameters corresponding to the
second set of partitions πt−1

m , ϕt−1
klm and vice versa. This means that all calculations

can be done separately for each of the two partitions. This kind of division into
sub problems can of course be done recursively by applying the same procedure
iteratively on the partitioned sets in order to ultimately divide the problem into a
set of minimal sub problems.

In the setup used in the experiments we have used that the part of speech tag for
each word in a dependency tree is known, meaning that given a bigram with a verb as
the head and a noun as the dependent the abstract representation must necessarily
have abstract functions of those two categories. In the setup where dependency
labels are used and incorporated in the abstract representation these also further
allow partitioning, as all observations of bigrams with a certain dependency label
must necessarily be represented by an abstract representation containing the same
dependency label.

Cursory experiments showed that for the Wordnet dictionaries, attempts of fur-
ther partitioning apart from the use of the obvious partitions mentioned above likely
were to get very small gains as soon as several languages were used for estimation.
This because almost all of the synsets within one word-class would be in one large
partition. Due to this, no investigation was done to do further partitioning.

3.5 Merged Wordnet
To reduce the size of the abstract function set a custom dictionary of possible ab-
stract representations based on wordnet was compiled where abstract representations
of each word were composed of merged clusters of wordnet synsets. These clusters
were made by using the hypernym relations defined for nouns and verbs in wordnet
such that rarely seen synsets were merged together with other rare synsets that
share the same hypernym. For example, a possible such merge would be to take
the two rarely seen synsets corresponding to the fishes bass and trout, bass.n.1 and
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trout.n.1, and merge them into their common hypernym synset fish.n.1. As can be
seen in figure ??, representing the two fishes with a common synset will as a result
also make the two subtrees (bass, obj, eat) and (trout, obj, eat) share a common
abstract representation.

The procedure for merging synsets is based on probabilities estimated using a
unigram model based on the wordnet dictionary as described in the previous section,
that is a model only looking at sub-trees of size one. These probabilities can be
interpreted as estimations of the frequency with which each synset appears in the
text. Using these probabilities, the information content of each synset is defined as

I(y) = − log
∑

y′∈h(y)
P (y′), (3.4)

where h(yi) is the set of all subsumers in the hypernym hierarchy of yi. This defi-
nition of synset information content is the same as the one used in (Resnik, 1995).
An information cutoff C is made and one cluster is created for each synset with an
information content lower than C. All synsets with an information content higher
than C are then assigned to the cluster represented by its subsumer subset with the
highest information content lower than C. That is, each synset y is assigned to the
cluster represented by f(y) where

f(y) = arg max
y′∈h(y),I(y′)<C

I(y′). (3.5)

A new abstract function set and new dictionary sets can now be constructed by
replacing each abstract function in the wordnet dictionary with the clustered repre-
sentation of that synset.

Figure 3.2: Illustration of the possible abstract representations for different sub-
trees using the clustered dictionary. Note that both the words trout and bass point
to the cluster fish.n.1 allowing us to capture the information that fish is something
that often is the object of eat from a wider range of observations.
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3.6 Data Sources and Parsing
The data used to estimate the parameters for the probabilistic model is the au-
tomatically parsed training data used for CoNLL 2017 shared task (Ginter et al.,
2017). This data has been dependency parsed with the tool UDPipe and come in
CoNNL-U format. From the parsed trees all subtrees of size two were counted using
the lemma, part of speech tag and the dependency relation between the two nodes
for each language separately. For each of the dictionaries used all subtrees contain-
ing unknown words was discarded since many trees contained nonsense words likely
originating from faulty parsing by the Common Crawl, which is one of the data
sources used for the CoNLL 2017 data.

3.7 Evaluation Models
For evaluation purposes, five variations of the basic model was defined. First, in
order to assign probabilities for bigrams not observed in the training data, two
different backoff strategies was chosen. In the first model, we utilized stupid back-
off, introduced by Brants et al. (2007). Stupid backoff doesn’t define a normalized
probability, but the “score” for one bigram is defined as following:

S(word|head) =


count(word, head)

count(head) if count(word, head) > 0

λ · count(word)
N

otherwise,

where N is the total number of counts and λ = 0.4 a standard backoff constant.
This is a very simple and memory-effective smoothing method, and it has been show
to approach state-of-the-art methods such as Kneser-Nay smoothing in large-scale
models (Brants et al., 2007).

The second model is an interpolation model which also has been shown to yield
good results (Chen and Goodman, 1996). It is a linear combination between the
unigram and bigram together with the part-of-speech bigram and unigram. The
score for an example bigram in this model is defined as follows:

S(football|play) = λ0P (football|play) + λ1P (football)
+ λ2P (noun|verb) + λ3P (noun),

with the interpolation constants set to λ0 = 0.4 and λ1 = λ2 = λ3 = 0.2.
Except for these two models, we also created a variant where the bigram models is

not only conditioned on the abstract function of the head, but also the dependency
relation label between the dependent and the head node in the tree. This means
that the stupid backoff model is updated as follows:

S(word|head, deprel) =


count(word, head, deprel)

count(head, deprel) if count(word, head, deprel) > 0

λ · count(word)
N

otherwise,
,
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with N and λ = 0.4 as before. The interpolation model was extended in a similar
way, which means that we in total have five variations on our model:

1. Unigram.
2. Bigram with stupid backoff.
3. Bigram with stupid backoff and dependency relation label.
4. Interpolation.
5. Interpolation with dependency relation label.
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The problem with unsupervised methods like ours is that there is no good standard-
ized tests to use in order to evaluate performance. Since the main goal is to define a
probability model for disambiguating abstract syntax trees, the obvious evaluation
metric would be how well it ranks the trees generated by the GF parser. To do
this, we defined a few example sentences with known ambiguous meanings. Another
evaluation metric used is sense disambiguation. The advantage in looking at this
subproblem is that we can compare ourselves to other known methods. Here, we
utilize the standard measurements precision, recall and F1:

Precision = TP

TP + FP

Recall = TP

TP + TN

F1 = 2 ·Precision ·Recall
Precision + Recall

For this task, two datasets are used. One is “trainomatic” created by Pasini
and Navigli (2017), an automatically generated dataset with high quality sensed
tagged data. Another is the Semeval 2015 disambiguation task (Moro and Navigli,
2015), a word sense disambiguation task where all words in a sentence need to be
disambiguated.

4.1 Dictionaries

As our model is dependent on the underlying knowledge graph, or dictionary, we
made experiments using three different variants:

1. Current GF dictionary
2. Wordnet
3. Merged Wordnet

Currently, it’s only the GF dictionary that is compatible with doing experiments
with the GF parser, but for the words disambiguation evaluations we also did exper-
iments on Wordnet and the merged Wordnet created by us. This merged Wordnet
was created as described in section 3.5, some statistics is shown in table 4.2, and an
example of the merged synset is shown in table 4.3.
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Dictionary Language Lemmas Ambiguous lemmas
GF dictionary English 64,710 8.1%
GF dictionary Finnish 40,907 35.5%
GF dictionary Bulgarian 31,078 25.8%
GF dictionary Swedish 30,196 21.2%
GF dictionary French 23,901 23.5%
Wordnet English 156,889 16.9%
Wordnet Finnish 122,961 16.7%
Wordnet French 57,252 23.6%
Wordnet Bulgarian 6,699 22.7%
Wordnet Swedish 5,980 16.8%

Table 4.1: Statistics about Wordnet and the GF dictionary. Ambigiuous lemmas
have more than one meaning.

Average number of merged synsets per cluster: 6.3
Number of clusters: 5302
Number of synset merged: 33402

Table 4.2: Statistics about the merged Wordnet.

Cluster spiritual_leader.n.01 investigation.n.02 sketch.n.01
Synsets rabbi.n.01 inquest.n.01 draft.n.03

cantor.n.02 inquiry.n.03 vignette.n.03
patriarch.n.01 tabulation.n.02
catholicos.n.01 wiretap.n.01
evangelist.n.02 empiricism.n.02

Cluster seafood.n.01 bank.n.01
Synsets octopus.n.01 riverbank.n.01

coral.n.03 waterside.n.01
whelk.n.01
roe.n.01

caviar.n.01
prawn.n.01
seafood.n.01

Table 4.3: A few example of the synsets merged together in our ‘cluster’ model.
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4.2 Training
We trained our models using parsed data from English, Swedish, Finnish, French,
and Bulgarian, in total over 109 sentences. We performed the training for each
model three times: First, using all five languages, second, we removed English from
the training data and trained the model using the other four languages, and third,
we only trained the model using English data.

4.3 GF Parser
In order to develop a small test set of sentences for qualitative evaluation, we utilized
the GF gold tree database which contains a small number of trees tagged correctly.
Using these, we constructed a list of simple sentences where the GF parser strug-
gled. One such sentence is “I work at the bank” where the GF parser have troubles
disambiguating between “work” in the sense of laboring and in the sense of func-
tioning. The model was a stupid backoff model as described in section 3.7, trained
on all seven languages. A summery of the results are available in table 4.5 and for
the full list of sentences, see appendix A.1

The top parsing results from the sentence “he works at the bank” can be seen
in table 4.4. This sentence contains two ambiguous words: work can mean to labor
or to function, bank can be the river bank and the institution. We can see that
our model correctly is able to determine that the probability that he works as in
earn his living is much more probable than he works in the sense that a machine
is functioning. The model has more problems with disambiguating between the
different senses of bank though, which can be traced to the sparseness of these
expressions in the dataset.

“He works at the bank”
GF parser Rerank Interpretation
26.398 16.542 he earns his living at the bank institution
29.458 16.802 he earns his living at the river bank
26.398 45.383 he functions at the bank institution
29.458 37.562 he functions at the river bank

Table 4.4: The complete phrases that the GF parser generate for the phrase “he
works at the bank”. The numbers are the negative log probabilities from the GF
parser and from our reranking. We can see that our model successfully assigns a
high probability to earn a living as opposed to is functioning at a bank.

4.4 Word Sense Disambiguation I: Trainomatic
In addition to the qualitative evaluation described in the previous section we also
wanted to do a quantitative evaluation. In order to do so it is vital to define a
clear testing criteria with a clear right or wrong answer. Here, the word sense

25



4. Results

Test sentences
GF 21
Rerank 36
Total # of sentences 47

Table 4.5: Total number of successful rankings of trees by the GF parser and our
reranking model.

disambiguation is a suitable subtask. It is important to point out that this is only
one part of tree disambiguation.

The first dataset we utilized was the Trainomatic dataset (Pasini and Navigli,
2017), a large automatically tagged set of sentences where one word has been tagged
with its wordnet synset. This gives us a large testing dataset and the results can
be seen in table 4.6 and 4.7. The evaluation is run on English language data and
our model is trained with the tree different datasets described in section 4.2. As
described in section 3.7, we defined five different variations of our model:

1. Unigram.
2. Bigram with dependency relationship label information.
3. Bigram without dependency relationship label information.
4. Interpolation with dependency relationship label information.
5. Interpolation without dependency relationship label information.

each of which was trained on the tree different language constellations defined in
section 4.2. As a baseline, one random synset in our dictionary was selected. The
results for the models using the GF dictionery is shown in table 4.6. We see that
the precision is very high across the board, but the improvement from the random
baseline is very low. This can be explained by that the ambiguity of the English
dictionary is very low (see table ??). This means that the sentences we are able to
assign a abstract function to will generally be correct.

In table 4.7, the results from using the Wordnet dictionary is displayed. Here
we can see a better improvement over the random baseline. We see that we get a
performance boost for using the merged Wordnet. Additionally, we can see that the
performance is consistent over the language variants, which was one of the goals.
This also means that much of the signal comes from synonyms in the Wordnet graph.
This is also supported by the fact that the models only trained on English generally
performs the same or better than the ones trained on all languages, but on the
unigram model (where we are unable to get information from synonyms) the model
only trained on English are significantly worse than the random baseline.

4.5 Word Sense Disambiguation II: Semeval
The second word sense disambiguation dataset is from the Semeval 2015 task 13
(Moro and Navigli, 2015). Titled Multilingual All-Words Sense Disambiguation and
Entity Linking, the task focus both on word sense disambiguation and entity linking,
while our method only performs word sense disambiguation. We used the five differ-
ent models from section 3.7 and annotated the given sentences with our predicted
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Model Training Data Precision Recall F1

GF Unigram
5 languages 95.3 47.0 63.0
No English 95.3 47.0 63.0
Only English 95.4 47.1 63.1

GF Interpolation Deprel
5 languages 94.9 46.8 62.7
No English 89.1 44.0 58.9
Only English 94.3 46.5 62.3

GF Interpolation
5 languages 95.6 47.2 63.2
No English 95.1 47.0 62.9
Only English 95.1 46.9 62.8

GF Bigram Deprel
5 languages 94.9 46.9 62.8
No English 89.2 44.0 59.0
Only English 94.1 46.5 62.2

GF Bigram
5 languages 95.7 47.2 63.2
No English 95.3 47.0 63.0
Only English 95.1 46.9 62.8

Random Baseline 95.4 47.1 63.1

Table 4.6: Results for models using the GF dictionary on the Trainomatic evalua-
tion set.

Wordnet senses. The authors of the task provided a scorer which we used, and got
the results given in table 4.8 for normal Wordnet and in table 4.9 for the merged
Wordnet. Our results are compareble to the TeamUFAL system described in the
Semeval task description (Moro and Navigli, 2015). TeamUFAL is a unsupervised
method using Wikipedia and Wordnet senses to disambiguate senses.
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Model Training Data P R F1

Wordnet Unigram
5 languages 30.2 24.7 27.2
No English 32.8 27.1 29.7
Only English 27.5 22.9 25.0

Wordnet Interpolation Deprel
5 languages 32.7 27.1 29.6
No English 29.2 24.0 26.3
Only English 34.4 28.1 30.9

Wordnet Interpolation
5 languages 31.2 25.8 28.3
No English 32.4 26.7 29.3
Only English 32.8 26.6 29.4

Wordnet Bigram Deprel
5 languages 32.8 27.1 29.7
No English 30.0 24.7 27.1
Only English 34.8 28.2 31.1

Wordnet Bigram
5 languages 33.1 27.3 29.9
No English 31.9 26.0 28.7
Only English 34.7 28.2 31.1

Clustered Interpolation Deprel
5 languages 48.4 43.2 45.7
No English 46.6 41.6 44.0
Only English 49.0 44.2 46.4

Clustered Interpolation
5 languages 48.2 43.0 45.5
No English 49.1 43.9 46.3
Only English 48.6 43.8 46.0

Clustered Bigram Deprel
5 languages 49.2 43.9 46.4
No English 47.3 42.6 44.8
Only English 49.9 44.6 47.1

Clustered Bigram
5 languages 49.2 43.9 46.4
No English 48.8 43.5 46.0
Only English 49.3 44.4 46.7

Random Baseline 33.0 27.3 29.9

Table 4.7: Results for models using the Wordnet dictionary on the Trainomatic
evaluation set.

28



4. Results

Model Training Data P R F1

Wordnet Bigram Deprel
5 languages 47.7 43.1 45.3
No English 44.9 40.5 42.6
Only English 44.5 40.2 42.2

Wordnet Bigram
5 languages 46.9 42.3 44.5
No English 45.3 40.9 43.0
Only English 44.2 39.9 42.0

Wordnet Interpolation Deprel
5 languages 46.4 41.9 44.0
No English 42.6 38.5 40.4
Only English 44.4 40.1 42.1

Wordnet Interpolation
5 languages 44.3 40.0 42.1
No English 43.1 38.9 40.9
Only English 44.2 39.9 42.0

Wordnet Unigram
5 languages 45.0 40.6 42.7
No English 46.7 42.1 44.3
Only English 40.3 36.3 38.2

Table 4.8: Results for models using the Wordnet dictionary on the Semeval 2015
test data set.

Model Training Data P R F1

Clustered Bigram Deprel
5 languages 44.7 40.3 42.4
No English 43.8 39.5 41.5
Only English 46.0 41.5 43.7

Clustered Bigram
5 languages 45.8 41.3 43.4
No English 46.4 41.9 44.0
Only English 47.2 42.6 44.7

Clustered Interpolation Deprel
5 languages 44.2 39.8 41.9
No English 44.2 39.8 41.9
Only English 46.7 42.1 44.3

Clustered Interpolation
5 languages 44.8 40.4 42.5
No English 46.9 42.3 44.5
Only English 45.8 41.4 43.5

Clustered Unigram
5 languages 44.7 40.3 42.4
No English 46.1 41.6 43.8
Only English 44.8 40.4 42.5

Table 4.9: Results for models using the Clustered Wordnet dictionary on the
Semeval 2015 test data set.
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5
Conclusion

In this thesis we have implemented a method for disambiguating between parse trees,
especially focused on the abstract syntax trees created by the GF parser. In order to
do this, we developed a language model able to assign probabilities to these trees, we
decided to work with a bigram model defined on a syntactic tree. In order to estimate
the parameters of this model it is necessary to assign probabilities to the underlying
meaning of the words, and not the lemmas themselves. This was done by utilizing
the Expectation Maximization, an unsupervised method for estimating unobserved
variables. We adapted the method to our context and ran test to show that we got
useful signals. The evaluation was done on both a small set of hand-crafted gold
trees, but also on datasets with sense-tagged data with which we could test the word-
sense-disambiguation part of our problem. Our results show that a syntactic bigram
model is enough to get signal, and can be compared to other supervised methods
competing in Semeval 2015. We can also note that the quality of the dictionary is
important as the performance varies widely across different dictionaries.

5.1 Discussion
One big challenge of unsupervised methods like ours is develop good evaluation cri-
teria, and the evaluation methods we used has a few problems. First, one problem
of the task with re-ranking trees parsed by the GF parser, is that we can do evalu-
ation with any other dictionary than the one built into GF. Instead, evaluation for
other dictionaries was left at doing word sense disambiguation over UD dependency
trees using the Trainomatic and Semeval evaluation sets. In this evaluation the GF
dictionary performed relatively poorly together with the method compared to the
Wordnet based dictionary. Although our experiments indicate that the method is
able to produce results in doing lexical disambiguation it does not give any indica-
tion on whether the method is able to rank syntactic ambiguities in a meaningful
way or not.

For the word sense disambiguation/entity linking SemEval 2015 shared task the
results are comparable to those of TeamUFAL, a unsupervised method based on
Wikipedia. However, it is important to remember that this kind of task is a sec-
ondary application and should only be seen as an indicator of the methods capability
of disambiguating trees in the lexical sense.

A shortcoming of the method is the disk space needed to store the estimated
parameter sets even for the clustered bigram models. This points to that in order
to expand the method to larger models estimating probabilities for larger subtrees,
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a way to shrink the parameter space through some kind of dimension reduction
or pruning is necessary. Possible solutions would be to encode the information
more densely through some kind of vector embeddings. The fact that the clustered
wordnet dictionary, which can be seen as a type of dimension reduction, performs
well can be seen as a positive indicator that investigating such techniques have merit
and could in fact increase the performance because due to alleviation of the problem
of data sparsity.

In analyzing the results it is hard to isolate where in the stack improvements
would yield a higher performance in the model due to the many different parts of
the model. Possible points where improvement could be of importance include the
parsing of UD trees, the syntactic n-gram probability model used, the parameter
estimation done through EM and the knowledge source used as dictionary. The point
most thoroughly investigated in this work is the usage of different dictionaries, which
was shown to be very significant.

5.2 Conclusion

We believe that this thesis shows that it is possible to combine the GF parser with
more advanced statistics than is currently used, while still preserving the unique
strengths of GF: to be explainable and language independent. This thesis could
then be the starting point of several interesting research direction in which the
strengths of GF and formal language methods is married with recent advances in
statistical language processing.

From the results from the word sense disambiguation evaluation task it can be
concluded that the test data and model where the most significant results are seen is
the clustered wordnet evaluated on the trainomatic data set. For the same data set
the ordinary bigram model barely performs better than choosing a synset randomly
and in some cases in fact performs worse. However, for the semeval task the non-
clustered dictionary performs better, but the best model, which is the bigram model
with dependency labels, only performs marginally better than the unigram model
trained on data from all languages except English.

5.3 Future Work

One of the largest drawback with the proposed model is that it currently doesn’t
scale very well with respect to the size of dictionary and the size of context used.
However, as the experiments with the clustered Wordnet dictionary have shown
that there is potential to maintain and in some cases even improve performance by
using a simplified lower dimensional parameter space to approximate the full model.
Further investigation could be done on using dimensionality reduction techniques
such as singular value decomposition on the estimated parameters, which could
possibly address the issue of the trained parameters taking very large disk space,
although it is unclear whether this can be used to address computational issues
experienced during parameter estimation.
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Finding a way to scale the method would allow for the use of larger and different
types of context in the models, such as the types of context used by Richardson et al.
(2016) adapted to be invariant to the linear word order of sentences. This will most
likely require some kind of dimension reduction and smoothing of the parameter
space not only for computational reasons, but also to avoid problems pertaining
to sparsity in the training data, problems that can already be seen in the bigram
model.

Further application of the current model that merits exploration is further use
of the language dependent parameters denoted ϕ. These are the conditional prob-
abilities that a certain abstract representation is linearized to a certain observable
subtree and could be used to improve disambiguation for languages where they are
available, but could also be used to allow for probabilistic language generation.

As it is seen that the type of dictionary used very much influences performance
of the model it would be of interest to explore other sources of knowledge to build
vocabularies of possible abstract representations from. Suggestions include the use
of Babelnet, which incorporates knowledge from a range of sources, the main ones
including the Open Multilingual Wordnet and Wikipedia.

Finally an application of interest to investigate would be the possibility of enhanc-
ing the current context free GF parser to include context. It would be interesting
to investigate whether it is possible to adapt head driven lexicalized parsers like the
ones developed in (Collins, 2003) to parsing abstract syntax by discarding language
specific features such as linear distance and direction.
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A
Appendix

A.1 Example sentences
List of example sentences used for evaluation. The checkmark is present if there is no
false trees that get a higher probability than the real tree and if not the other parser
performs better, that is, if one of the methods has assigned the same probability to
a large set of trees while the other assigns it to only a correct subset of this set, then
only the latter gets a checkmark.

Sentence GF parser Reranker
woman that sleeps X X
woman who sleeps X
woman who sleeps here X
woman that sleeps here X X
woman who is old X
woman that is old X X
whom does she see X X
because she sleeps X X
between you and me X X
both here and there X X
he works at the bank X
he works every day X
she works with many people X X
my computer works perfectly X
my computer works X
my computer doesn’t work X
I like sleep X
I am sleeping X
I am working X
he is working X X
she is a little girl
she is a girl X X
I play football X
he plays the trumpet X X
the child plays with a doll X
the children play in the park X
the play is over soon X X
I went to school this morning
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he is in the cooking area
area of the circle is small X X
fire the canons
the work is considered canon
you are in good company X X
this is company business X
what is the date today? X X
to go on a date
he ate a date X
the future is uncertain X X
investing in futures is risky
you need to lie down X
do not tell lies X X
submit the application
the applications of this theory are numerous X X
he uses an application on his computer X
my arm hurts X
the right to bear arms is important X
visiting relatives can be boring X
total out of 47 sentences: 21 36
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