

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Testing Approach for Haskell SQLite
Bindings

Master’s Thesis in Computer Science

JIMMY SVENSSON

VICTOR EVERTSSON

MASTER THESIS 2018:NN

Testing Approach for Haskell SQLite Bindings

Master’s thesis in Computer Science

JIMMY SVENSSON

VICTOR EVERTSSON

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Gothenburg, Sweden 2018

iv

Testing Approach for Haskell SQLite Bindings

Jimmy Svensson

Victor Evertsson

© Jimmy Svensson, Victor Evertsson, 2018

Chalmers Supervisor: Michał Palka, Department of Computer Science and Engineering

Examiner: Alejandro Russo, Department of Computer Science and Engineering

Master’s Thesis 2018:NN

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

SE-412 96 Gothenburg

Telephone +46 31 772 1000

Gothenburg, Sweden 2018

v

Testing Approach for Haskell SQLite Bindings

Jimmy Svensson

Victor Evertsson

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Abstract

To make an SQLite database as accessible as possible, it is important that it can be used from

several programming languages such as Haskell. Haskell is a purely functional programming

language that supports higher-order functions and has a rich type system. In order to use an

existing database in Haskell, a binding could be created between the database and the

programming language. The binding needs to handle many different type conversions in order

to convert the types between Haskell and the database properly.

This thesis presents one testing approach on how to find potential bugs in SQLite bindings to

the programming language Haskell. The approach uses a predefined sequence of database

queries that is constructed in such a way that the correct answer easily can be decided. The

approach makes use of two custom made test cases that are created in Haskell. The properties

are used together with the testing tool QuickCheck to perform automatic random tests.

After the tests are performed, the found bugs are presented. The method we have developed

gives an easy way to find bugs in bindings between Haskell programs and SQLite databases.

Keywords: Binding, Database, Haskell, Properties, Test and QuickCheck.

vi

Acknowledgements

We would like to thank our supervisor Michał Palka for good guidance, good feedback on the

report and that he always has been available during the project.

We also want to thank our examiner Alejandro Russo for good feedback and ensuring the

quality of the report.

Contribution

The authors of this report have contributed equally to the work and the writing.

Jimmy Svensson & Victor Evertsson, Gothenburg, 2018

vii

Contents

1 Introduction .. 1

1.1 Problem Description ... 3

1.2 Contribution ... 4

1.3 Limitations .. 4

2 Haskell FFI Bindings ... 5

2.1 FFI Tool ... 6

2.2 Database Bindings .. 6

3 Testing Background ... 8

3.1 Black box testing ... 8

3.2 White box testing ... 10

3.3 QuickCheck ... 11

3.3.1 Property-based Testing ... 11

3.3.2 Generators .. 12

3.3.3 Applying Generator in Property .. 17

4 SQLite.. 18

4.1 Data types in SQLite.. 18

4.2 Binding Values to Prepared Statements ... 19

4.3 Result Values from a Query .. 20

5 Testing SQLite Bindings .. 22

5.1 The Tested Bindings .. 22

5.1.1 The persistent-sqlite binding .. 23

5.1.2 The groundhog-sqlite binding ... 24

5.1.3 The sqlite-simple binding .. 25

5.1.4 The direct-sqlite binding ... 26

5.1.5 The HDBC-sqlite3 binding ... 27

5.1.6 The sqlite binding ... 28

5.1.7 The simplest-sqlite binding ... 29

5.2 Implemented Properties ... 31

5.3 Testing the properties .. 38

6 Bugs .. 39

6.1 Conversion Bug Involving the UTF-8 Encoding ... 39

6.2 Incorrect Double Value ... 41

viii

6.3 Null-termination of ByteString ... 44

6.4 Memory Allocation Bug .. 46

7 Related Work .. 48

7.1 RQG .. 48

7.2 SQLsmith ... 48

7.3 Mysqltest .. 48

7.4 Csmith... 49

8 Discussion ... 50

8.1 Problems that were not Bugs ... 50

8.2 Other Tools Applicability on our Testing Approach .. 50

8.3 Future Work ... 51

9 Conclusion ... 52

ix

List of Figures

Figure 1.1: The paths to and from the binding .. 1

Figure 1.2: SQL-code for the database requests and its output .. 2

Figure 2.1: Compiler pragma for FFI .. 5

Figure 2.2: An import of the sin function from C ... 5

Figure 2.3: The binding function of the c_sin function .. 6

Figure 2.4: The functions in the HSC file .. 7

Figure 2.5: The connections between the files .. 7

Figure 3.1: A black box example .. 8

Figure 3.2: A boundary value analysis example ... 8

Figure 3.3: Pseudocode example of statement coverage ... 10

Figure 3.4: Pseudocode example of branch coverage ... 10

Figure 3.5: Pseudocode example of maximum branch coverage .. 11

Figure 3.6: A property that tests the reverse function .. 11

Figure 3.7: A QuickCheck run of the prop_reverse .. 11

Figure 3.8: A property that tests the function isDigit on the numbers (represented as Strings)
 .. 12

Figure 3.9: A QuickCheck run of the prop_digit that failed ... 12

Figure 3.10: The Arbitrary type class ... 12

Figure 3.11: A sample of the String arbitrary generator .. 13

Figure 3.12: The First example of a generator that creates a String with only numbers 14

Figure 3.13: The second example of a generator that creates a String with only numbers ... 15

Figure 3.14: An example with vectorOf that generates fixed length of Strings with only
numbers ... 16

Figure 3.15: An example of sized that generates Strings within a specific length range 16

Figure 3.16: A new Arbitrary instance of the type StringOfNumbers...................................... 17

Figure 3.17: A property that tests the function isDigit on the Number generator 17

Figure 3.18: A QuickCheck run of the updated prop_digit that failed 17

Figure 4.1: The type declaration of sqlite3_bind_blob and an example of how to use it 19

Figure 4.2: The type declaration of sqlite3_bind_text... 20

Figure 4.3: The type declaration of sqlite3_column_blob and an example of how to use it .. 20

Figure 4.4: The type declaration of sqlite3_column_bytes and an example of how to use it 21

Figure 5.1: An example of predefined SQL queries and order of them 22

Figure 5.2: An example of the persistent-sqlite binding .. 23

Figure 5.3: An example of the groundhog-sqlite binding .. 24

Figure 5.4: An example of the sqlite-simple binding ... 25

Figure 5.5: An example of the direct-sqlite binding .. 26

Figure 5.6: An example of the HDBC-sqlite3 binding ... 27

Figure 5.7: An example of the sqlite binding ... 28

Figure 5.8: An example of the simplest-sqlite binding .. 29

Figure 5.9: The type signature of the function packCString and an example of it 30

Figure 5.10: The type signature of the function packCStringLen and an example of it 30

Figure 5.11: The type signature of the function useAsCString and an example of it 30

Figure 5.12: The type signature of the function useAsCStringLen and an example of it 31

Figure 5.13: Pseudocode for the properties behaviour ... 31

Figure 5.14: The data type of the SQLiteBind .. 32

x

Figure 5.15: Defining the sqlite binding’s functions with the SQLiteBind type 33

Figure 5.16: Generators for Strings .. 34

Figure 5.17: Arbitrary instance of the table and column names ... 34

Figure 5.18: ByteString generator for the property prop_bind_string 35

Figure 5.19: The property prop_bind_string ... 36

Figure 5.20: The property prop_bind_value .. 37

Figure 5.21: How to perform the testing on the bindings ... 38

Figure 6.1: The output from the test that failed .. 39

Figure 6.2: An example when the bug occurred and its output .. 40

Figure 6.3: An example that were tested with Double values... 41

Figure 6.4: An example of how to bind Double values in HDBC-sqlite3 41

Figure 6.5: An example of how Double can be truncated in GHCi .. 41

Figure 6.6: Pseudocode for testing the SQLite values ... 42

Figure 6.7: Cross join example ... 43

Figure 6.8: An example when the null-termination of ByteString can appear 44

Figure 6.9: The solution to the null-termination bug .. 44

Figure 6.10: An example of the problem where \NUL is added at the end of the ByteString 45

Figure 6.11: The solution to remove the additional Null ... 45

Figure 6.12: An output when the property prop_bind_value was tested on simplest-sqlite . 46

Figure 6.13: The solution to the memory allocation bug .. 46

Figure 6.14: An example of another String problem in the memory allocation bug............... 47

xi

List of tables

Table 1: Example of differences in type systems ... 3

Table 2: An example of a decision table .. 9

Table 3: Differences between the HDBC-sqlite3 binding and the sqlite binding 42

xii

Definitions

FFI FFI (Foreign Function Interface) is a programming mechanism

that makes it possible to use services from another

programming language.

Differential testing A testing technique used in random testing. The technique uses

two or more systems that perform the same task and compare

them with each other. Randomly generated test cases are used

as inputs to the systems and the outputs are compared for

differences, infinite loops or crashes. [1]

Tuple A data type in Haskell that contains values separated with a

comma inside a parenthesis.

1

1 Introduction

Today, there are a large number of libraries that is implemented in one programming language

and needs to be accessed in another. There can be various reasons why a specific

programming language can be beneficial compared to others. The programmer may lack

experience in other programming languages or simply prefer one programming language over

another. Therefore, the implemented libraries should preferably be available in as many

programming languages as possible. The obvious solution would be to recreate the libraries in

every programming language. However, this would be very time-consuming and unnecessary

since the programming code for executing the library already exists. One way to reuse a

library in another programming language is by using a binding.

Assume that we prefer to use a library in one programming language, for instance Haskell but

the library is implemented in another language, for instance C. The library can then be used in

Haskell if we use a binding between the two languages (shown in Figure 1.1). A binding is a

connection between two programming languages that runs the code for both languages as one

process. However, code written in two different languages can communicate without a

binding, for instance, they can agree to exchange information of a certain format that is

supported in both languages. Assume that we use a binding and we would like to use the sinus

function from the C library in Haskell. To use the function, we start by sending a Double

value that we would like to use in the sinus function, let us say the value 90.0, to the binding.

The binding, which must handle any type conversions between the languages, will convert the

type of the Double to CDouble, which the binding uses to represent C’s double type. The

binding then sends the value with the converted type to the library’s function. The function

executes the sinus calculation that gives the result 1.0 (sinus 90.0 = 1.0). The result is sent

back to the binding that converts the value back to Haskell’s type. Finally, it sends the value

back to Haskell.

Figure 1.1: The paths to and from the binding

Databases are often important when building user applications. Many clients for databases

such as SQLite and MySQL are implemented in C. Without bindings, it will force developers

to use C as their programming language. C is a low-level programming language that can

make that the programmer focuses more on the details instead of the algorithms for their

application. However, it is important that the binding’s type conversions are correct and

therefore testing is necessary. This thesis aims to test the correctness of database bindings.

2

A common problem that can appear in a database binding is incorrect type conversions. An

example of a bug that was found in the SQLite binding: sqlite [2] is shown in Figure 1.2,

where the SQLite code is executed by Haskell by sending a request to insert the Haskell

String "ø" (a letter of the Latin alphabet) in a database table. Then, it sends another request to

receive the value from the table but the output of the request is the Haskell String "Ã¸".

In the example, Haskell uses the type String and the database uses the C programming

language type char * (a char pointer to the first char in the String, stored in memory) using

the UTF-8 encoding. The binding converts the Haskell String to the C char * and the other

way around. The code of the binding was examined and it showed that the database returned a

correct value in the UTF-8 format but a bug occurred when the value was received from the

binding and it means that the value of the type char * using the UTF-8 encoding was

incorrectly converted to a value of the Haskell type String.

𝑖𝑛𝑠𝑒𝑟𝑡 𝑖𝑛𝑡𝑜 𝑡𝑎𝑏𝑙𝑒 (𝑐𝑜𝑙𝑢𝑚𝑛1) 𝑣𝑎𝑙𝑢𝑒𝑠 (′ ø ′);
𝑠𝑒𝑙𝑒𝑐𝑡 ∗ 𝑓𝑟𝑜𝑚 𝑡𝑎𝑏𝑙𝑒;

Output

"Ã¸"

Figure 1.2: SQL-code for the database requests and its output

The types in different programming languages often differ and it makes it nontrivial to write

the code for all the type conversions in a binding. Literature confirms that it is a difficult task

to write a binding [3].

The chosen programming language in this thesis is Haskell. Most Haskell bindings are written

for C since Haskell’s FFI (a tool that can be used in a binding to make it easier for Haskell to

communicate with other languages) has support for calling C functions from Haskell. This

means that there are many bindings to databases (since many databases are implemented in

C). However, bindings for other programming languages can be used but they have less

support by default for calling functions in their programming language from Haskell.

There are many testing techniques that are possible to use when testing bindings. Two of the

alternatives are Unit testing [4] and QuickCheck’s random testing [5]. The difference between

these test techniques is that Unit testing uses static tests where the programmer specifies each

input while QuickCheck runs randomly generated inputs for every test. A large number of

values should be tested when a database binding is used, in order to verify that the binding

converts every value correctly. Therefore, we preferred to use QuickCheck’s random testing

as the testing technique since it can generate random values of Haskell types. Most databases

take Strings as input and they can be generated with QuickCheck. The results from database

bindings are Haskell values and they can be verified for correctness with QuickCheck.

This thesis tests the seven most downloaded SQLite bindings from Hackage [6] (last checked

in September 2016). The testing is performed with two properties (shown in section 5.2) and

the testing tool QuickCheck. We found four bugs in three different bindings and these are

presented in chapter 6.

3

1.1 Problem Description

Many well-known databases such as SQLite and MySQL are carefully tested in order to

guarantee correctness [7], [8]. However, bindings from databases to other programming

languages have not been targeted in the same way, even though they must be correct in order

to receive the correct values from a database. A binding is simpler than a database since it

only handles type conversions while the database handles the core functionalities. However,

the binding has to handle a number of type conversions that is nontrivial in many cases.

There are several challenges when writing a binding between a library in one programming

language and another programming language. To make a binding work, the programmer

needs to understand the type system, calling conventions, memory allocation, data structures

and the linking strategy of the language [3]. Errors in each of these areas can lead to incorrect

outputs from bindings.

An example of different type systems is shown in Table 1, where Haskell types, Haskell

representation of the C types and C types are compared.

Haskell types Haskell’s representation of C

types

C types

Int CInt int

Int CUInt unsigned int

String CString char ∗

Table 1: Example of differences in type systems

The C types int and unsigned int are converted to the Haskell type Int since Haskell’s native

types only use signed Integers. To represent a C int and unsigned int, the Haskell types CInt

and CUInt are used. The C type char * points to the first char of a char-sequence in the

memory while Haskell stores the whole char-sequence with the String type. The C char * is

represented in Haskell with the type CString.

There are some problems that can appear when type conversions are performed to the Haskell

type Int. An Int in Haskell is guaranteed to be able to store at least a 30 bits signed Integer but

it can store a 64 bits signed Integer when a 64 bit GHC (Glasgow Haskell Compiler) is used.

The data types CInt and CUInt consist of 32 bit types, which means that they can be larger

than an Int in Haskell. This is unsafe when using standard Haskell functions for number

conversions like fromIntegral that will return completely wrong values if the value is larger

than the target type. It is also possible to use Haskell's Integer type that has no defined max

size limit. However, if conversion to Haskell's Int should be made then it is important to

check the size of CInt or CUInt to make sure that it will fit in the Haskell Int. The types String

and CString have no defined max limit.

A particular challenge between Haskell and for instance C is that the individual types are very

different and therefore it is difficult to make the type conversions correct in the binding. To

verify the correctness of the type conversions, it is important to test many values of the
supported types since some values might be incorrectly converted. Our aim is to test database

bindings with random testing, especially to verify the correctness of the type conversions but

also to verify other problems that result in incorrect outputs, for example memory allocation.

4

The data structures in the languages can also differ, as shown in Table 1, Strings are handled

by pointers to memory locations by the user in C while Haskell handles the memory

management without involving the user. The binding needs to ensure that the data structure is

converted to an equivalent data structure in the other programming language.

An example of a memory problem that can appear is when the type from Haskell should be

represented in C since, for some types, Haskell and C have a different amount of memory

allocated. The binding needs to assure that the memory allocation is handled correctly and

that it does not allocate insufficient memory (memory out of bounds).

1.2 Contribution

• We develop a testing approach for testing database bindings and we implement it in

Haskell using QuickCheck. The approach uses a predefined sequence of queries

(create, insert and select) that have random names and values. The sequences are

constructed in such a way that the expected result of running them is easily

determined. Our purpose for this approach is to give the user the possibility to run

multiple tests on one binding in isolation.

• We have found four bugs in the tested bindings. The bugs are in the bindings HDBC-

sqlite3, simplest-sqlite and sqlite. The bugs involve three different types, ByteString,

Double and String and all bugs have been reported to the developers of the bindings.

One bug has already been fixed. The bug affected unusual symbols (such as "ø"),

inserted as chars in an SQLite database table since they were retrieved as different

chars in Haskell. The problem was that the char encoding in the database was not

correctly converted to the char encoding that Haskell uses.

1.3 Limitations

There are a few limitations of the testing approach. One limitation is that the approach only

uses the queries, create, insert, select and drop/delete. These queries are executed in a

predefined sequence. If there are type conversion errors that occur with random sequences of

queries, then these errors will not be found. Similarly, errors that appear with other kinds of

queries will not be found. Another limitation is that the testing approach does not cover all

functions of the bindings since they have similar functions or that the functions are not useful

in our properties.

5

2 Haskell FFI Bindings

Haskell code can call functions from foreign libraries written in other programming languages

by using bindings. To create a binding for Haskell, every function in a library needs to be

treated separately and be called in the right way by Haskell. For this task, an FFI (Foreign

Function Interface) can be used. FFI is a programming mechanism that makes it possible to

use services from another programming language. The FFI has default enabled the possibility

to call any programming code that uses the C calling convention from Haskell.

To use the FFI, a compiler pragma needs to be included at the top of a Haskell file (shown in

Figure 2.1).

{ −# 𝐿𝐴𝑁𝐺𝑈𝐴𝐺𝐸 𝐹𝑜𝑟𝑒𝑖𝑔𝑛𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 #−}

Figure 2.1: Compiler pragma for FFI

The types for the input and output of C functions must have a C type representation in Haskell

to be able to distinguish C types and Haskell types. The C type representation must be

converted to native Haskell types to complete a binding. The supporting definitions for calling

C functions from Haskell are contained in the Foreign package. The package contains C

functions such as CString, CInt, malloc (memory allocation on the heap) and alloca (allocates

memory within the current function's stack frame). The names of the C types representation in

Haskell are indicated with a C in front of the type, for instance CDouble. The next step is to

import the C function(s).

When the import is made, the programmer must specify the name of the C function with

quotes and its C type represented in Haskell. For instance, Figure 2.2 demonstrates an import

of the sin function from C. The sin function calculates sine of a given angle.

𝑓𝑜𝑟𝑒𝑖𝑔𝑛 𝑖𝑚𝑝𝑜𝑟𝑡 𝑐𝑐𝑎𝑙𝑙 "sin" c_sin ∷ CDouble → CDouble
Figure 2.2: An import of the sin function from C

This defines a function with the name c_sin that uses the C calling convention, indicated by

the ccall keyword in the import. The function takes a CDouble and returns a CDouble.

Whenever the c_sin function is called with a CDouble, then Haskell will at runtime pass the

CDouble to the sin function in C, execute its calculations and finally return a CDouble to

Haskell. The function (c_sin) can have any name the programmer chooses. However, the

normal naming convention when using FFI is to add “c_” in front of the name, of the C

function when native Haskell types are not used. This is a good practice since it can avoid

using the unconverted version by mistake.

6

The last step is to convert the c_sin function’s input and output to native Haskell values. This

step is where errors easily can occur if the programming code is not written correctly. The

Haskell compiler cannot type-check the arguments to the C function and will therefore accept

incorrect types. This can cause errors like C compiler warnings, crashes or even silent errors

that might appear later in the execution of a program. A binding function that takes a Haskell

Double value as input, convert it to a CDouble, use it as input to the c_sin function (that

outputs a CDouble) and converts the output back to a Haskell Double value, is shown in

Figure 2.3.

𝑠𝑖𝑛𝑐 ∷ 𝐷𝑜𝑢𝑏𝑙𝑒 → 𝐷𝑜𝑢𝑏𝑙𝑒
𝑠𝑖𝑛𝑐 𝑑𝑜𝑢𝑏 = 𝑟𝑒𝑎𝑙𝑇𝑜𝐹𝑟𝑎𝑐 (𝑐_ sin (𝑟𝑒𝑎𝑙𝑇𝑜𝐹𝑟𝑎𝑐 𝑑𝑜𝑢𝑏))

Figure 2.3: The binding function of the c_sin function

A Double is a double precision floating-point type and the function realToFrac can be used

for conversion between floating-point values (the function fromIntegral is used for Integers).

In the example, the function sinc uses the function realToFrac to convert its input (doub)

from Double to CDouble. The function c_sin is then executed with the CDouble input and

calculates the sinus value and the result of the function will be CDouble that realToFrac

converts back to Double. The sin function in C can now be used as any other Haskell function

by using sinc.

2.1 FFI Tool

To make it easier to create bindings, the tool Hsc2hs can be used. Hsc2hs makes it easier to

bind Haskell to C code since some parts are automatically done. The tool reads an hsc file

containing the code for the binding, C headers, C types and processing rules and outputs a

Haskell file containing processed information from the C headers. The information that is

added can for instance be field offsets in a C struct. The hsc file is used to connect Haskell to

C in our approach but it supports more programming languages [3].

2.2 Database Bindings

Databases can use bindings to connect to one or more programming languages. In order to use

the database correctly from the other programming language, it is necessary that the bindings

make all type conversions properly. Incorrect type conversions can result in incorrect database

behaviour and therefore, it is important to test the bindings.

SQLite [9] is a serverless database that is very popular and it is easy to configure. For

instance, SQLite is often used to store data on mobile devices. The difference between SQLite

and most other databases is that SQLite is normally used locally to read and write directly to

files on the disk. The file management makes it easier to use in testing since setting up and

removing the contents of the database can be done by creating and deleting a file instead of

managing a database. It is also faster than many other databases when it is used with small

amount of data.

7

A simplified function that executes queries using a Haskell database binding is shown in

Figure 2.4. Assume there is a C function runCommand that executes queries and is

implemented in C. There is also a Haskell file that is able to use the function runCommand

through the binding. The connection between the Haskell file and the C file is made with an

hsc file (the connection is shown in Figure 2.5). The file contains two functions. The first is

the c_runCommand function and it is an imported version of runCommand in the C file with

corresponding C types as inputs and outputs. The second is the runComHaskell function that

the Haskell file uses.

The function is created in the same way as in the sin example but with String instead of

Doubles. To execute the query, a Haskell String with a query is sent to the runComHaskell

function (shown in Figure 2.4). The query must be converted to a CString in order to be used

by the C function and then call the c_runCommand with CString to execute the query. The

type conversion is made with withCString and it also uses the c_runCommand function to

execute the query (which is a CString). When the query is executed it will return the result as

IO CString. The CString is extracted from the IO and stored to the variable ans. The

peekCString function takes the CString ans and converts it to IO String. The runComHaskell

function uses only native Haskell types and it is therefore safe to use in a Haskell file.

The conversions of Strings performed by the functions peekCString and withCString are more

complicated than with Doubles since the functions must use the char * to retrieve each char

in the char-sequence and they have to be converted and allocated in memory, compared to

Doubles that are passed and returned directly.

𝑓𝑜𝑟𝑒𝑖𝑔𝑛 𝑖𝑚𝑝𝑜𝑟𝑡 𝑐𝑐𝑎𝑙𝑙 "𝑟𝑢𝑛𝐶𝑜𝑚𝑚𝑎𝑛𝑑"
 𝑐_𝑟𝑢𝑛𝐶𝑜𝑚𝑚𝑎𝑛𝑑 ∷ 𝐶𝑆𝑡𝑟𝑖𝑛𝑔 → 𝐼𝑂 𝐶𝑆𝑡𝑟𝑖𝑛𝑔

𝑟𝑢𝑛𝐶𝑜𝑚𝐻𝑎𝑠𝑘𝑒𝑙𝑙 ∷ 𝑆𝑡𝑟𝑖𝑛𝑔 → 𝐼𝑂 𝑆𝑡𝑟𝑖𝑛𝑔
𝑟𝑢𝑛𝐶𝑜𝑚𝐻𝑎𝑠𝑘𝑒𝑙𝑙 𝑞𝑢𝑒𝑟𝑦 = 𝑑𝑜
 𝑎𝑛𝑠 ← 𝑤𝑖𝑡ℎ𝐶𝑆𝑡𝑟𝑖𝑛𝑔 𝑞𝑢𝑒𝑟𝑦 𝑐_𝑟𝑢𝑛𝐶𝑜𝑚𝑚𝑎𝑛𝑑
 𝑝𝑒𝑒𝑘𝐶𝑆𝑡𝑟𝑖𝑛𝑔 𝑎𝑛𝑠

Figure 2.4: The functions in the HSC file

Figure 2.5: The connections between the files

8

3 Testing Background

The testing techniques that will be explained in this chapter are black box testing, white box

testing and some different test design techniques. QuickCheck, which is a black box testing

tool used in this thesis, will be also explained.

3.1 Black box testing

Black box testing [10] is a technique that takes some input to a function and tests the outputs

from it without knowing anything about the internal code of the function. For example,

consider a black box function that takes a degree in Celsius as input and returns the

corresponding Fahrenheit degree. How the black box function makes the calculations to

convert the Celsius to Fahrenheit is unknown to the user. Figure 3.1 demonstrates the

function, where 10∘ Celsius is used as input and the function returns 50∘ Fahrenheit. To the

user it may seem like the function multiply the input by 5, but it multiplies the input by 1.8

and adds 32. Testing functions without looking at the code is a good approach to find

unexpected bugs, especially for complex functions.

Input: 10∘ Celsius ⇒ ⇒ Output: 50∘ Fahrenheit
 Black box

Figure 3.1: A black box example

Black box testing can be performed with different design techniques. One of them is boundary

value analysis [10]. In boundary value analysis, the tests are focusing on the minimum and

maximum inputs and outputs. This is useful since programmers often make mistakes in corner

cases when using comparison operators (i.e. greater than, less than, greater or equal and less

or equal). An example of boundary value analysis for inputs is shown in Figure 3.2, where a

black box function takes the number of months you would like to pay for a service as input.

For this example, six tests should be performed on the black box function that only accepts

values from 1 to 12. The first two tests take the input values 1 and 12 that test values exactly

as the input boundaries. The third and fourth tests take the input values 0 and 11 that test

values just below the boundaries while the last two tests use values just above the boundaries.

Test 1: 1
Test 2: 12
Test 3: 0
Test 4: 11
Test 5: 2
Test 6: 13

⇒
⇒
⇒
⇒
⇒
⇒

Black box function

⇒

Output: Boolean

Figure 3.2: A boundary value analysis example

9

Another black box design technique is decision table testing [10] where the goal is to test

specific predicates that should hold or not hold for the program. The technique uses a

sequence of predicates that test cases fulfill or not. A test case defines a number of Boolean

values for the predicate and that will give a certain result. The test cases should also have a

unique combination of the possible values (True/False) in order to test new functionality.

An example of a decision table is shown in Table 2, with three test cases, two predicates and

one result. If both predicate have the value True, then the result is accomplished (Player A

stays in game) and has the value True. It is also accomplished if predicate 1 (Player A lands

on player B’s property) is False, independently on the second predicate. If the first predicate is

True while the second predicate is False, then the result is not accomplished and has the value

False (it means that player A is not in the game anymore).

 Test case 1 Test case 2 Test case 3

Predicate 1:

Player A lands on

player B’s property

True

False

True

Predicate 2:

Player A has enough

money to pay rent

True

--

False

Result:

Player A stays in

game

True

True

False

Table 2: An example of a decision table

Decision tables could be useful in testing since it provides a systematic way of finding bugs.

In our testing it could be used by defining a number of predicates such as insert UTF-8

Strings. The expected result would be that the binding can handle UTF-8 inserts.

Random testing is a black box design technique that generates random inputs to a program

that should be tested. The output of the program must be possible to verify against a

specification to be able to decide if the output is correct. If the service payment function (the

example in Figure 3.2) would be tested with random testing, it would generate a random

number as input to the function and test if the number is within the accepted value range and

compare it with the output from the service payment function.

Random testing covers many unexpected inputs that can cause bugs, which is very efficient

when testing bindings since they usually have many inputs and it is not possible to test every

input within a reasonable time.

There are similarities between the three design techniques. All three techniques test input

values on a condition. However, a difference is that a decision table uses all of the possible

input values to get the action’s result while boundary value analysis and random testing does

not have to test all possible values since they analyses corner cases and uses random inputs.

To test bindings with a decision table, all possible errors have to be defined as test cases and

boundary value analysis has to define what the boundaries are in each binding, which is not

trivial. However, random testing does not require to define every possible error that can occur

in bindings, only that the input generations is appropriate and it ensures that a large amount of

inputs are tested.

10

3.2 White box testing

White box testing [11] is a technique where the tester uses the knowledge of the internal code

from a program to maximize the code coverage. Code coverage is used to measure the amount

of code that is tested by a test suite. The test suite consists of test cases where the inputs often

are chosen by the tester to cover as many reachable paths as possible in the program. This is

important since untested code has a higher probability of containing bugs. To measure the

code coverage, one or several coverage criteria may be used. The three most used coverage

criteria are statement coverage, branch coverage and path coverage. Statement coverage

means that every line of the programming code is executed at least once. An example

demonstrating statement coverage is shown in Figure 3.3, where the value 20 is given as input

and therefore the if condition is fulfilled so it performs every line of the code.

INPUT a = 20

if (a > 10)
 Print “Statement coverage is fulfilled”

Figure 3.3: Pseudocode example of statement coverage

The branch coverage criterion means that if there are different paths in the program, for

example an if statements, it checks that each if statement has been tested with both the

Boolean value True and False, at least once. The example in Figure 3.3 has 50% branch

coverage since it does not test the if statement with the value False.

The path coverage criterion means that every possible code execution path of the given

program is tested. For example, in Figure 3.4, it means that every possible combination of

clauses of the three if-else statements (for example one if statement True and the others False)

will be executed. The total number of tests performed in the example will then be 8.

INPUT Boolean a, b, c

if a then Print “The first if statement is true”
else Print “The first if statement is false”

if b then Print “The second if statement is true”
else Print “The second if statement is false”

if c then Print “The third if statement is true”
else Print “The third if statement is false”

Figure 3.4: Pseudocode example of branch coverage

Sometimes it is impossible to get 100% path coverage, for instance, two if-else statements

with the same condition will not be able to take the path True, False or False, True (shown in

Figure 3.5). The maximum path coverage is therefore bounded by a certain percentage, for

instance, the path coverage in the two if-else statements are bounded to 50%. There are no

defined stopping rules for path coverage (i.e. when the maximum path coverage is reached) of

a program but it is possible to avoid writing if-else statements that uses the same condition,

which makes it possible to reach 100%.

11

INPUT Boolean a

if a then Print “The first if statement is true”
else Print “The first if statement is false”

if a then Print “The second if statement is true”
else Print “The second if statement is false”

Figure 3.5: Pseudocode example of maximum branch coverage

For a given program, it is often theoretically possible to reach 100% statement- and branch

coverage but in practice it is difficult since many programs have code that handles error

conditions or code that never should be executed.

3.3 QuickCheck

QuickCheck [12] is a testing tool that generates and runs automatic random tests based on a

predicate defined in a property. The property specifies the data types that are used in the

testing of a function, what the expected output of the function should be and possible

preconditions that the input must fulfill when it performs testing. When QuickCheck is used

on a property, it will run a predefined number of tests and if a test fails during the run, it will

show a counterexample (the input to the property that made the test fail). Otherwise it will

print that all tests have passed.

Unlike unit testing, that uses static tests, QuickCheck generates random inputs for each test.

This means that QuickCheck will be able to test new inputs in each test while unit testing tests

the same values each time.

3.3.1 Property-based Testing

Property-based testing uses properties to define how the program under test should behave.

For instance, a simple property can be created to, test the reverse function in Haskell (shown

in Figure 3.6).

𝑝𝑟𝑜𝑝_𝑟𝑒𝑣𝑒𝑟𝑠𝑒 ∷ 𝑆𝑡𝑟𝑖𝑛𝑔 → 𝐵𝑜𝑜𝑙
𝑝𝑟𝑜𝑝_𝑟𝑒𝑣𝑒𝑟𝑠𝑒 𝑠𝑡𝑟𝑖𝑛𝑔 = 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (𝑟𝑒𝑣𝑒𝑟𝑠𝑒 𝑠𝑡𝑟𝑖𝑛𝑔) == 𝑠𝑡𝑟𝑖𝑛𝑔

Figure 3.6: A property that tests the reverse function

The property tests that applying the reverse function twice yields the same String as not

applying the reverse function at all. The property itself is a function and it is tested with

QuickCheck that inputs randomly generated Strings to the property and verifies it. The result

of the tests is shown in Figure 3.7.

∗ 𝑀𝑎𝑖𝑛 > 𝑞𝑢𝑖𝑐𝑘𝐶ℎ𝑒𝑐𝑘 𝑝𝑟𝑜𝑝_𝑟𝑒𝑣𝑒𝑟𝑠𝑒
+ + + 𝑂𝐾, 𝑝𝑎𝑠𝑠𝑒𝑑 100 𝑡𝑒𝑠𝑡𝑠

Figure 3.7: A QuickCheck run of the prop_reverse

12

This indicates that the property holds for at least 100 generated values. It may or may not be

necessary to run QuickCheck with more tests to ensure that the property holds for more

values.

Another property is defined (shown in Figure 3.8) to demonstrate how QuickCheck can give a

counterexample for a property that does not hold.

𝑝𝑟𝑜𝑝_𝑑𝑖𝑔𝑖𝑡 ∷ 𝑆𝑡𝑟𝑖𝑛𝑔 → 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦
𝑝𝑟𝑜𝑝_𝑑𝑖𝑔𝑖𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 = 𝑎𝑛𝑑 [𝑖𝑠𝑁𝑢𝑚𝑏𝑒𝑟 𝑐ℎ𝑎𝑟 | 𝑐ℎ𝑎𝑟 ← 𝑠𝑡𝑟𝑖𝑛𝑔] ==>

𝑎𝑛𝑑 $ 𝑚𝑎𝑝 𝑖𝑠𝐷𝑖𝑔𝑖𝑡 𝑠𝑡𝑟𝑖𝑛𝑔
Figure 3.8: A property that tests the function isDigit on the numbers (represented as Strings)

The property is a function that gets a String as argument. The String is used in a precondition

(the second line in Figure 3.8) that test each Char of the String with the function isNumber. If

the function returns false for any Char, then the precondition will evaluate to false and the

String will be discarded. If this happens, a new String will be generated. This means that the

property only tests Strings that represent numbers. It checks that every Char (which

represents a number) in the String is an ASCII digit in the range 0-9 (with the function

isDigit). The property is run with QuickCheck and the result in shown in Figure 3.9.

∗ 𝑀𝑎𝑖𝑛 > 𝑞𝑢𝑖𝑐𝑘𝐶ℎ𝑒𝑐𝑘 𝑝𝑟𝑜𝑝_𝑑𝑖𝑔𝑖𝑡
∗∗∗ 𝐹𝑎𝑖𝑙𝑒𝑑! 𝐹𝑎𝑙𝑠𝑖𝑓𝑖𝑎𝑏𝑙𝑒 (𝑎𝑓𝑡𝑒𝑟 44 𝑡𝑒𝑠𝑡𝑠 𝑎𝑛𝑑 2 𝑠ℎ𝑟𝑖𝑛𝑘𝑠): "\189"

Figure 3.9: A QuickCheck run of the prop_digit that failed

QuickCheck was able to run 44 tests (and 2 shrinks and it mean that the size of the

counterexample has been decreased twice) until it found a counterexample that was the String

"\189". QuickCheck uses the Show class to print its result but since show has a limited

charset, some UTF-8 symbols are shown with a backslash followed by the UTF-8 number that

represents the symbol. By running putStr on the String, the correct symbol is displayed and in

this case, the output gives: "1/2", which indeed is a number. However, the function isDigit

does not accept such a symbol and it is the reason why the property failed.

3.3.2 Generators

QuickCheck has good support for generating random values of basic Haskell types. It uses the

Arbitrary type class shown in Figure 3.10 to define the test data generators for the types.

𝑐𝑙𝑎𝑠𝑠 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑎 𝑤ℎ𝑒𝑟𝑒
 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 ∷ 𝐺𝑒𝑛 𝑎
 𝑠ℎ𝑟𝑖𝑛𝑘 ∷ 𝑎 → [𝑎]

Figure 3.10: The Arbitrary type class

13

The Arbitrary type class contains the arbitrary function of the type Gen a, which is a

generator for values of type a. The Arbitrary type class also contains the shrink function,

which given an argument of type a will create a list of smaller values of the same type. An

Arbitrary instance for the data type a is used by QuickCheck to generate random values of

this data type. In the instance, it is possible to restrict the values of type a to, for example,

only contain numbers within a certain range. When QuickCheck tests a property that takes a

value of type a as input then the Arbitrary instance for this type will be used to generate the

values used for testing. For example, the property prop_reverse used the Arbitrary instance

for String to generate Strings.

QuickCheck has predefined Arbitrary instances for all the basic Haskell types such as Integer,

Float, Double, String, pairs and lists of any values that can be generated [13]. The types can

easily be used in a property.

It is possible to test a generator with the function sample to generate some values of an

arbitrary generator. An example of this is shown in Figure 3.11 where an arbitrary generator

of the type String is used. Each line in the figure is a new String created by the arbitrary

generator.

∗ 𝑀𝑎𝑖𝑛 > 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 ∷ 𝐺𝑒𝑛 𝑆𝑡𝑟𝑖𝑛𝑔)
""
"𝑊"

"\𝑣𝑢𝑌\𝑆𝑈𝐵"

"𝑅 > "

"\𝐸𝑀 > ℎ\211"

"𝑋\𝑆𝑇𝑋^%"

"𝐻𝐵𝐻\155\𝐷𝐶4𝑑 = 𝑟𝑜\161𝑡\𝑆𝑂𝐻"

"𝐿}𝐸\182~\160|𝑓\𝐸𝑁𝑄\𝑆𝑈𝐵3𝑗\𝐸𝑁𝑄"

"_\𝐷𝐶4𝑉\184\213\𝑆𝑌𝑁\𝐷𝐿𝐸𝐽\182\172\198 <\𝑁𝑈𝐿𝐾"

"\152𝐸𝑋\210\𝑏"

"\"\223\149𝑅𝑟"

Figure 3.11: A sample of the String arbitrary generator

The shrink function in the Arbitrary instance is used to make a counterexample as small as

possible. This is useful in random testing since the counterexample could be very large, which

makes debugging more difficult. However, the same error can occur with smaller inputs. The

shrink function takes the input that made the property fail and shrinks the input to a list of

smaller versions of the inputs. QuickCheck uses the Strings in the shrunk list and runs the

property again with each of them to check if the property still fails. If it does not, then it takes

the next String in the list otherwise it shrinks the String again until it found the smallest String

it can find in the current list that makes the property fail. The shrink function is implemented

for the basic Haskell types. However, a custom shrink function may have to be implemented

when a custom made Arbitrary instance is used in a QuickCheck property (an example of a

custom made shrink function is shown later in Figure 3.16).

14

QuickCheck also has plenty of functions for creating custom generators. Some of them are

shown here:

• suchThat :: Gen a → (a → Bool) → Gen a

Given a generator and a predicate function, it generates a value that satisfies the

predicate. If the predicate is difficult to fulfill, it could be beneficial to specify a

generator that satisfies the predicate.

• listOf1 :: Gen a → Gen [a]

Given a generator, it generates a non-empty list of a random length.

• vectorOf :: Int → Gen a → Gen [a]

Given a length and a generator, it generates a list of the specified length of the given

generator.

• sized :: (Int → Gen a) → Gen a

QuickCheck uses a size parameter for the generators to generate small tests at first

which then increases with every new test. The generators may use the size parameter

differently, for instance, the list generator uses it as the upper bound for the length of

the list that is generated. The function sized can be used to access the size parameter

by specifying a function that given an Int, creates the desired generator which size

depends on the Int. For instance, sized $ \n → choose (0,n) will generate numbers from

0 to the size parameter.

The functions listOf1 and vectorOf are useful when a generator that creates values, should

change the values to a random or specific length. SuchThat is able to restrict the values that a

generator creates. However, caution should be taken when using the function since it will try

to generate a value and if it does not fulfill the predicate, it will retry to generate a different

value. This can cause problems with the distribution of the generated values and will also take

a lot of time to generate values if the predicate is difficult to satisfy. Consider the examples in

Figure 3.12 and Figure 3.13, where two different generators for Strings that only contains

numbers, are specified.

∗ Main > sample $ suchThat arbitrary (\x → (and $ map isNumber x) && length x > 0)

"\189"
"\189"

"\8"

"\178"

"2"

"4"

"5"

"0"

"2"

"2"

"\179"

Figure 3.12: The First example of a generator that creates a String with only numbers

15

∗ 𝑀𝑎𝑖𝑛 > 𝑠𝑎𝑚𝑝𝑙𝑒 $ 𝑙𝑖𝑠𝑡𝑂𝑓1 $ 𝑠𝑢𝑐ℎ𝑇ℎ𝑎𝑡 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑖𝑠𝑁𝑢𝑚𝑏𝑒𝑟
"4"
"5"

"14"

"9227\190\190"

"233439"

"524660"

"57235321364"

"9"

"4567\178\&374\178\&2470"

"502\190\&6646495669"

"\188\185\&1\188\&84014\188\&7"
Figure 3.13: The second example of a generator that creates a String with only numbers

In the first example (Figure 3.12), each String is randomly generated and tested against the

predicate. The predicate in the example is a function, which tests that every Char is a number

in the String and also that the String is non-empty. The sample function in this example uses a

generator that generates Strings of very short lengths. In the example, the Char ‘\189’

represents the Unicode Char ‘½’ in Haskell, which isNumber accepts as a number. The reason

is that a generated String with more Chars has a lower probability to consist of only numbers.

In the second example (Figure 3.13), this is solved by specifying a Char generator (arbitrary

in this case) that uses the suchThat function and the isNumber predicate to remove non-

numeric Chars. The function listOf1 is then used to generate a non-empty list of Chars (which

is the same as a String).

In this example, only one Char will be generated at a time and tested with the predicate

instead of generating a String and check all Chars of the String with the predicate. The

generated String will have a uniform distribution of each Strings length since the generator

does not depend on the probability to find a random String where each Char of the String is a

number, but rather on finding a random Char that is a number. The generated Chars are then

used to create a String with random length. The result of the sample is more similar to the

values generated by the String generator from Figure 3.11.

16

The function vectorOf can be used to generate Strings of a given length (which represent the

numbers). An example of the function is shown in Figure 3.14, where the length is specified

as 3.

∗ 𝑀𝑎𝑖𝑛 > 𝑠𝑎𝑚𝑝𝑙𝑒 $ 𝑣𝑒𝑐𝑡𝑜𝑟𝑂𝑓 3 $ 𝑠𝑢𝑐ℎ𝑇ℎ𝑎𝑡 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑖𝑠𝑁𝑢𝑚𝑏𝑒𝑟
"243"
"611"

"773"

"627"

"797"

"082"

"86\178"

"561"

"864"

"28\189"

"\742"
Figure 3.14: An example with vectorOf that generates fixed length of Strings with only

numbers

The function sized is used to access the QuickCheck’s size parameter. Let us assume that we

would like to only generate Strings that have a length that depends on the sized parameter.

The example in Figure 3.15 shows how the sized function can be used and an output of

running it. The generated Strings (that represent numbers) are small at first but increases after

each test.

∗ 𝑀𝑎𝑖𝑛 > 𝑠𝑎𝑚𝑝𝑙𝑒 $ 𝑠𝑖𝑧𝑒𝑑 $ \𝑛 →
 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 [𝑠𝑢𝑐ℎ𝑇ℎ𝑎𝑡 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑖𝑠𝑁𝑢𝑚𝑏𝑒𝑟 | _ ← [1. . 𝑘]]

""
"41"

"9172"

"50405\185"

"2\178\&944696"

"8\178\&9374\185\&930"

"511913\185\&22502"

"8\178\178\&59276260425"

"48\188\&6\189\&5144930886\185"

"\188\&13654637\189\&5034\189\178\&75"

"56944120\188\&120940\189\&3636"
Figure 3.15: An example of sized that generates Strings within a specific length range

17

Consider the example shown in Figure 3.16, that creates an Arbitrary instance for the String

generator of numbers.

𝑛𝑒𝑤𝑡𝑦𝑝𝑒 𝑆𝑡𝑟𝑖𝑛𝑔𝑂𝑓𝑁𝑢𝑚𝑏𝑒𝑟𝑠 = 𝑆𝑡𝑟𝑖𝑛𝑔𝑂𝑓𝑁𝑢𝑚𝑏𝑒𝑟𝑠 𝑆𝑡𝑟𝑖𝑛𝑔 𝑑𝑒𝑟𝑖𝑣𝑖𝑛𝑔 (𝑆ℎ𝑜𝑤, 𝐸𝑞)

𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑆𝑡𝑟𝑖𝑛𝑔𝑂𝑓𝑁𝑢𝑚𝑏𝑒𝑟𝑠 𝑤ℎ𝑒𝑟𝑒
𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 = 𝑑𝑜
 𝑙 ← 𝑙𝑖𝑠𝑡𝑂𝑓1 $ 𝑠𝑢𝑐ℎ𝑇ℎ𝑎𝑡 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑖𝑠𝑁𝑢𝑚𝑏𝑒𝑟
 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑆𝑡𝑟𝑖𝑛𝑔𝑂𝑓𝑁𝑢𝑚𝑏𝑒𝑟𝑠 𝑙)
𝑠ℎ𝑟𝑖𝑛𝑘 (𝑆𝑡𝑟𝑖𝑛𝑔𝑂𝑓𝑁𝑢𝑚𝑏𝑒𝑟𝑠 𝑙) = [𝑆𝑡𝑟𝑖𝑛𝑔𝑂𝑓𝑁𝑢𝑚𝑏𝑒𝑟𝑠 𝑥 | 𝑥 ← 𝑠ℎ𝑟𝑖𝑛𝑘 𝑙, 𝑎𝑙𝑙 𝑖𝑠𝑁𝑢𝑚𝑏𝑒𝑟 𝑥]

Figure 3.16: A new Arbitrary instance of the type StringOfNumbers

A new String type with the name StringOfNumbers is defined to create a new arbitrary

instance. The instance generates a non-empty list of Chars where each Char is tested with

isNumber to guarantee that it is a number. A custom shrink function is also defined, which

given the String l applies Haskell’s standard shrink function on l. Each Char of each String in

the shrunk list is then tested with isNumber and if all Chars are accepted, the String is added

to a list of all accepted Strings, which is returned.

QuickCheck uses the Strings in the shrunk list and runs the property again with each of them

to check if the property still fails. If it does not, then it takes the next String in the list

otherwise it shrinks the String again until it found the smallest String it can find that makes

the property fail.

3.3.3 Applying Generator in Property

The Arbitrary instance from Figure 3.16 can be used in a property to only generate inputs of

the StringOfNumbers type. For instance, it is possible to change the property prop_digit from

Figure 3.8 to use the type StringOfNumbers as shown in Figure 3.17. QuickCheck will then

use the Arbitrary instance to generate values of the type StringOfNumbers instead of

generating Strings with Char that need to be filtered out using a precondition.

𝑝𝑟𝑜𝑝_𝑑𝑖𝑔𝑖𝑡 ∷ 𝑆𝑡𝑟𝑖𝑛𝑔𝑂𝑓𝑁𝑢𝑚𝑏𝑒𝑟𝑠 → 𝐵𝑜𝑜𝑙
𝑝𝑟𝑜𝑝_𝑑𝑖𝑔𝑖𝑡(𝑆𝑡𝑟𝑖𝑛𝑔𝑂𝑓𝑁𝑢𝑚𝑏𝑒𝑟𝑠 𝑛) = 𝑎𝑛𝑑 $ 𝑚𝑎𝑝 𝑖𝑠𝐷𝑖𝑔𝑖𝑡 𝑛

Figure 3.17: A property that tests the function isDigit on the Number generator

The use of the Arbitrary instance for StringOfNumbers also means that the found

counterexample will be shrunk to the minimal possible String that only consists of numbers.

A run of the updated property is shown in Figure 3.18, that finds the counterexample with

fewer tests than the previous property (6 tests now and 44 earlier). It does not discard any

tests and it shrinks the counterexample 3 times.

∗ 𝑀𝑎𝑖𝑛 > 𝑞𝑢𝑖𝑐𝑘𝐶ℎ𝑒𝑐𝑘 𝑝𝑟𝑜𝑝_𝑑𝑖𝑔𝑖𝑡
∗∗∗ 𝐹𝑎𝑖𝑙𝑒𝑑! 𝐹𝑎𝑙𝑠𝑖𝑓𝑖𝑎𝑏𝑙𝑒 (𝑎𝑓𝑡𝑒𝑟 6 𝑡𝑒𝑠𝑡𝑠 𝑎𝑛𝑑 3 𝑠ℎ𝑟𝑖𝑛𝑘𝑠): 𝑆𝑡𝑟𝑖𝑛𝑔𝑂𝑓𝑁𝑢𝑚𝑏𝑒𝑟𝑠 "\178"

Figure 3.18: A QuickCheck run of the updated prop_digit that failed

18

4 SQLite

This chapter explains SQLite’s types and a few of its interface functions. The types and the

functions are necessary in order to understand the testing of the SQLite bindings and the

found bugs.

4.1 Data types in SQLite

Data types in SQLite are dynamically determined while in most other databases they are

statically determined. The type of the stored value depends on the value that is inserted in the

database rather than the specified column type. For example, a floating point value 1.2 can be

stored in an Integer column. However, it uses storage classes (the actual type) to store the

values and type affinity (preferred column types) to prefer to store the value within a specific

storage class, which can affect how the value is stored. Consider an example where a table

with two columns has the type affinities Real and Integer. The Float 1.0 is inserted in both

columns but the stored values will differ. The stored value will be 1.0 in the Real column but

1 in the Integer column.

There are five storage classes Null, Integer, Real, Text, Blob [14]. A Null value is simply used

when no value specified, Integer values are represented using 1, 2, 3, 4, 6 or 8 bytes as a

signed Integer, a Real value is stored as an 8-byte IEEE floating point number, a Text value is

stored as UTF-8, UTF-16BE or UTF-16LE Text String, while a Blob value is stored as binary

data.

SQLite supports five type affinities: Text, Numeric, Integer, Real, Blob [14]. Text can use

Null, Text or Blob types. Numeric can use all five classes. Integer and Numeric works in the

same way but have differences when casting/converting values of some affinity type to the

Integer or Numeric affinities types. Real works like Numeric but forces Integer values to be

represented as floating points. Blob does not prefer any storage class.

Consider an example where a table t has the columns names: te of affinity Text, n of affinity

Numeric, r of affinity Real, b of affinity Blob. An insertion is made with the value ‘100.0’

(String representation) in all columns. The storage classes for the columns te and r are

unchanged, but n have the storage class of Integer and b have the storage class of Text (Blob

does not prefer any storage class). This means that the value ‘100.0’ is stored in te and b as a

String without changing the value, in n the value is stored as the Integer 100 since 100.0 is

equal to the Integer 100 and in r the value is stored as the Real 100. However, if the inserted

value would have been 100.2 (as a floating-point number) all columns except Text would have

to use the Real storage class to be able to store the value 100.2.

19

4.2 Binding Values to Prepared Statements

Database values can be stored in an SQLite database in two ways: either by representing them

directly in the SQL query String, or by binding them to a prepared statement. This section

explains the C and Haskell functions that are used for binding values to statements and

retrieving the values from the database and is relevant for some bugs that were found.

The first of the two Haskell functions are sqlite_bind_blob. The function is used to bind a

single value to a column of a query that is of the type ByteString (Blob in the database). The C

type declaration of the function and an example of how most SQLite bindings use it in

Haskell is shown in Figure 4.1. The example starts by using the function prepare to create a

prepared statement for inserting a ByteString in the database table (abc). The value is bound

to the first column in the database table since ?1 is in the position that corresponds to A. The

number 1 means that the value will be inserted at the first occurrence of the variable ?1. The

second line calls the bind function with the statement, the column index and the ByteString.

The third line uses the function step to execute the query.

The bind function is defined in the bindings and therefore it looks different depending on

which binding that is chosen, but the bind function roughly looks like in Figure 4.1. The bind

function executes the Haskell function sqlite_bind_blob that performs the conversion and then

calls the C function sqlite3_bind_blob. The function sqlite3_bind_blob takes 5 parameters as

input, the statement, the index column, a pointer (ptr) to the Blob value, the length of the Blob

pointer (lenPtr, in number of Bytes) and a destructor that is used to dispose the Blob pointer

after it has finished.

Type declaration
int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*) (void*));

Example
stmt ← prepare db "insert into abc (A) values (?1)"
bind stmt 1 ((ByteString.pack "ò") :: ByteString)
step stmt

bind = sqlite_bind_blob
sqlite_bind_blob (Stmt sm) intCol bs =
 sqlite3_bind_blob sm (fromIntegral intCol) ptr lenPtr nullPtr

Figure 4.1: The type declaration of sqlite3_bind_blob and an example of how to use it

In order to use the fourth parameter in the sqlite3_bind_blob function, the third parameter

cannot be a Null pointer since then the fourth parameter will be ignored. Note also that if the

value of the fourth parameter is negative then the behaviour of the function is undefined.

20

The second function that is important to recognize in order to understand the bugs is

sqlite3_bind_text. The structure of the function is similar to sqlite3_bind_blob, but it is used

for the database type Text instead. The type declaration of the function is shown in Figure 4.2.

The function is used in the same way as sqlite3_bind_blob but it takes a String value as the

third input value.

int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int, void(*)(void*));
Figure 4.2: The type declaration of sqlite3_bind_text

One difference is that if the fourth parameter to sqlite3_bind_text is negative then the length

of the String will be the number of Bytes up to the first zero terminator. If the parameter is

positive, then it must be the Byte offset where the Null-terminator would occur (assuming it is

Null-terminated).

4.3 Result Values from a Query

The different database values can be retrieved with different functions and for each type there

are one or more approaches to retrieve the value. Three of the functions, which are important

in order to understand three of the found bugs, will be explained in this section.

The first of the three functions is sqlite3_column_blob. The function is used to retrieve a

single column of the current result row of a query where the column is of the type ByteString

(Blob in the database). The type declaration of the function and an example of how to use it is

shown in Figure 4.3. The example starts by creating a statement (stmt) that reads everything

from the database table (abc). The second line uses the function step that executes the

statement. The statement is used on the third line to call the column function together with the

value 0 and it indicates that the first column of the result will be retrieved within the column

function (to get the second column of the table use 1 instead of 0 and so on). The column

function uses the function sqlite_column_blob that performs the conversion and then call the

C function sqlite_column_blob. The C function will retrieve the first column of the database

table where the column is of the type Blob. The function sqlite3_column_blob is only used

when the column type is Blob, for other types other column functions are used.

Type declaration
const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);

Example
stmt ← prepare db "select * from abc;"
step
column stmt (0 :: Int)

column = sqlite_column_blob
sqlite_column_blob (Stmt sm) intCol = sqlite3_column_blob sm (fromIntegral intCol)

Figure 4.3: The type declaration of sqlite3_column_blob and an example of how to use it

21

In order to retrieve a valid result, the statement must point to a valid row and the column

index must be valid (not index out of range). If the Blob is empty (zero-length) then the

function (sqlite3_column_blob) will return a Null pointer.

The function sqlite3_column_bytes can be used to retrieve the length of the stored Blob value

in bytes (or a C String). The returned count of the function does not include the zero

terminator at the end of the C String. The type declaration of the function

sqlite3_column_bytes and an example of how to use is shown in Figure 4.4.

Type declaration
int sqlite3_column_bytes(sqlite3_stmt*, int iCol);

Example
stmt ← prepare db "select * from abc;"
step
column stmt (0 :: Int)

column = sqlite_column_blob
sqlite_column_blob (Stmt sm) intCol=do sqlite3_column_blob sm (fromIntegral intCol)
 sqlite3_column_bytes sm (fromIntegral intCol)

Figure 4.4: The type declaration of sqlite3_column_bytes and an example of how to use it

When type conversions occur, the function sqlite3_column_text may return invalid values. If

the stored value is, for instance a Blob, then it might be necessary to add a zero-terminator at

the end. The safest way to invoke sqlite3_column_text or sqlite3_column_blob is by using the

function sqlite3_column_bytes after the function to ensure that the whole content of the Blob

is retrieved from the database.

The third and last function that will be explained is sqlite3_column_double. The function is

similar to the other two functions and can be used as their examples but with

sqlite3_column_double instead of sqlite3_column_text or sqlite3_column_bytes. However, the

function will return the C Double without any conversions. If the function

sqlite3_column_text is used to retrieve the C Double, it will create a textual representation of

the number as a C String that holds only up to 15 significant digits.

22

5 Testing SQLite Bindings

Our approach of testing SQLite bindings uses a predefined sequence of queries. The queries

have some elements that are chosen at random, for example, table names, values and column

names. The sequences of queries are constructed in such a way that the expected result of

running them is easily determined.

An example sequence of queries that was generated is shown in Figure 5.1. The first SQL

query (line 1) creates a random table name, tab1 containing random column names (col1 –

col4), that have the types Text, Integer, Real and Blob. The second line inserts one random

value into each of the columns, where the type of each value is the same as the column type.

For instance, a random Double value, dou is inserted into col3. The last query reads the

contents of the table. The result from the last query can be compared with the inserted random

values, which are known at runtime, to verify that they are unchanged.

𝑐𝑟𝑒𝑎𝑡𝑒 𝑡𝑎𝑏𝑙𝑒 𝑡𝑎𝑏1 (𝑐𝑜𝑙1 𝑇𝑒𝑥𝑡, 𝑐𝑜𝑙2 𝐼𝑛𝑡𝑒𝑔𝑒𝑟, 𝑐𝑜𝑙3 𝑅𝑒𝑎𝑙, 𝑐𝑜𝑙4 𝐵𝑙𝑜𝑏);
𝑖𝑛𝑠𝑒𝑟𝑡 𝑖𝑛𝑡𝑜 𝑡𝑎𝑏1 (𝑐𝑜𝑙1, 𝑐𝑜𝑙2, 𝑐𝑜𝑙3, 𝑐𝑜𝑙4) 𝑣𝑎𝑙𝑢𝑒𝑠 (𝑠𝑡𝑟, 𝑖𝑛𝑡, 𝑑𝑜𝑢, 𝑏𝑦𝑡𝑒𝑆𝑡𝑟);
𝑠𝑒𝑙𝑒𝑐𝑡 ∗ 𝑓𝑟𝑜𝑚 𝑡𝑎𝑏1;

Figure 5.1: An example of predefined SQL queries and order of them

5.1 The Tested Bindings

In our thesis, we have tested seven SQLite Haskell bindings. The selected bindings were the

most downloaded ones from Hackage [6] the last 30 days (as of September 2016). The names

and the number of download the last 30 days of the packages are the following:

• persistent-sqlite, 148 downloads [15]

• sqlite-simple, 54 downloads [16]

• direct-sqlite, 45 downloads [17]

• groundhog-sqlite, 31 downloads [18]

• HDBC-sqlite3, 30 downloads [19]

• sqlite, 29 downloads [2]

• simplest-sqlite, 26 downloads [20]

The bindings use different functions to connect, insert and receive values from the database.

The approach of how to run a test case for each binding is therefore quite different. The

following sections describe and give examples of how each binding communicates with the

database. The bindings use prepared statements in order to insert the values in the database

table.

23

5.1.1 The persistent-sqlite binding

The persistent-sqlite binding’s approach for creating a table and executing queries (an

example is shown in Figure 5.2) is similar to groundhog-sqlite but different from most of the

other tested bindings. In the example, it uses the share function to define a database table with

the name Machine and a column with the name cost which is of the type Double. The

Machine data type must be defined before runtime in order to run the binding.

In the main function, the example (shown in Figure 5.2) starts by using runSqlite that creates

a single connection to an existing database file or creates a new file with the given name. The

function runMigration together with migrateAll creates the database table. The function insert

creates a new record in the database and returns its ID. The ID can be used in the function get

to retrieve the inserted value. The ID is unique for each table which means that persistent-

sqlite will give a compile error if an ID from another table is used. Note that the get function

can be used to retrieve one value but in order to retrieve more values, the function selectList

can be used instead.

The return type of the function runSqlite will be Maybe Machine running in the IO monad.

Machine is a Haskell record and the field machineCost (table name and column name

together) will hold the inserted Double.

share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|
Machine
 cost Double
|]

main =
 runSqlite "test.db" $ do
 runMigration migrateAll
 insID ← insert $ Machine 12.34
 get insID :: ReaderT SqlBackend (NoLoggingT (ResourceT IO)) (Maybe Machine)

Figure 5.2: An example of the persistent-sqlite binding

24

5.1.2 The groundhog-sqlite binding

The groundhog-sqlite binding uses a data type defined by the user to specify the table name

and the types of columns. The data type must be defined statically in order to run the binding.

An example of this is shown in Figure 5.3, where the name of the data type, Machine, is the

database table name and cost is the column name with the type Double in the database table.

The entity contains the name of the table. To use more tables, another entity needs to be

added.

In the example, the function withSqliteConn is used to open or create a database file. The

function runDbConn is performed to run actions such as insert and get within the connection.

To create the table Machine, the function runMigration together with migrate (undefined ::

Machine) is used. Then it uses similar functions as persistent-sqlite and it evaluates Maybe

Machine in the IO monad to retrieve the Double from the database table.

data Machine = Machine { cost :: Double }

mkPersist defaultCodegenConfig [groundhog|
- entity: Machine
|]

main =
 withSqliteConn "test.db" $ runDbConn $ 𝑑𝑜
 runMigration $ migrate (undefined :: Machine)
 ins ← insert $ Machine 12.34
 get ins :: DbPersist Sqlite (NoLoggingT IO) (Maybe Machine)

Figure 5.3: An example of the groundhog-sqlite binding

25

5.1.3 The sqlite-simple binding

The sqlite-simple binding uses a data type (TestField in this case) defined by the user to hold

the values of the rows (shown in Figure 5.4). The function open is executed to open or create

a database file. The function execute_ is used to create a database table and to insert a value in

the table, the function execute (without underscore) is used. The inserted value can then be

retrieved with the function query_. The return type of the query_ function needs to be

constrained in order to get the correct row type. The instance needs to be defined to read a

row creating a value of TestField.

The [TestField] type represents a list of rows where TestField is one row. An instance

FromRow needs to be defined to map the values from the TestField type to SQLData. The

value can then be extracted from the SQLData type by pattern matching on the value

constructor SQLiteFloat.

data TestField = TestField Double

instance FromRow TestField where
 fromRow = TestField <$> field

main = do
 db ← open "test.db"

 execute_ db "create table Machine (cost Double)"
 execute db "insert into Machine (cost) values (?)" (Only (12.34 :: Double))

 query_ db "select * from Machine" :: IO [TestField]
 close db

Figure 5.4: An example of the sqlite-simple binding

26

5.1.4 The direct-sqlite binding

The direct-sqlite binding uses the function open to create or open a database file (shown in

Figure 5.5). The function takes a filename represented as the Text datatype and therefore the

String needs to be converted to Text using the function pack from the package Data.Text. The

function exec executes a given query that in this case creates a database table. To insert a

value in a statement, a statement needs to be created using the function prepare, the value

needs to be inserted using the function bindSQLData and then the statement needs to be

executed using the function step. To retrieve the values from the database, a select statement

needs to be prepared and then executed using the function step. In order to get the value, the

function columns needs to be used and it has the return type [SQLData].

In order to retrieve the value from the column function, the IO action needs to be executed

and its result will be in the IO monad. The return type of the column function has the type

[SQLData], which represents all column values of a row. In the example, [SQLData] will

have the Double 12.34 packed with the value constructor of SQLFloat that can be extracted

by pattern matching. To get a new row, the function step must be executed again.

main = do
 db ← open (pack("test.db"))

 exec db (pack "create table Machine (cost Real)")
 stmt ← prepare db (pack "insert into Machine (cost) values (?1)")
 bindSQLData stmt 1 (SQLFloat 12.34)
 step stmt

 statement ← prepare db (pack "select * from Machine")
 step statement
 columns statement :: IO [SQLData]
 close db

Figure 5.5: An example of the direct-sqlite binding

27

5.1.5 The HDBC-sqlite3 binding

HDBC [21] provides bindings to for instance MySQL, Oracle, PostgreSQL, SQLite, ODBC-

compliant databases, where the HDBC-sqlite3 is the binding to SQLite. To connect to a

database, the function connectSqlite3 (shown in Figure 5.6) is used with the filename of the

database as the argument. The function runRaw can be used to execute a query. In order to

insert a value, a prepared statement needs to be created and then executed. This is performed

using the functions prepare and execute. To retrieve the value from the database, the

functions prepare and execute needs to be performed on the select query. The result is used by

the function fetchAllRowsAL’ to retrieve the values represented using the type [[(String,

SqlValue)]]. The function commit is used to commit all the changes to the database file.

The type [[(String, SqlValue)]] represents list of database rows where [(String, SqlValue)] is

one row. The String is the column name paired with the value in that column. The SqlValue

can be converted to Haskell values with the function fromSql in the HDBC package.

main = do
 db ← connectSqlite3 "test.db"

 runRaw db "create table Machine (cost Real)"
 insert ← prepare db "insert into Machine (cost) values (?)"
 execute insert [(toSql (12.34 :: Double))]

 select ← prepare db "select * from Machine"
 execute select []
 fetchAllRowsAL’ select :: IO [[(String, SqlValue)]]

 commit db
 disconnect db

Figure 5.6: An example of the HDBC-sqlite3 binding

28

5.1.6 The sqlite binding

The sqlite binding opens a connection to a database by using the function openConnection

(shown in Figure 5.7) that takes the name of the database as the argument. The function

execStatement uses the connection to the database (the first argument) and evaluates the

query, which is the second argument to the function. The return value of the IO action is

Either String [[Row Value]]. In order to insert a value in the database table, a prepared

statement needs to be created and then executed together with a query, which can be

performed with the function execParamStatement_.

The select query returns Either String [[Row Value]]. The Either type makes it possible for a

function to either return one type or another. In this case, the select query will return either the

Left constructor, which holds a String that displays why the query failed or the Right

constructor, which contains the result of the query using the type [[Row Value]]. The [[Row

Value]] represents list of rows that is selected (one list is unnecessary) and Row Value

represents a single row and it is of the type [(ColumnName, Value)], where columnName is a

String and Value is a type holding all types that sqlite can return. The Double value from

Figure 5.7 can easily be extracted by pattern matching on Double.

main = do
 db ← openConnection "test.db"

 execStatement db "create table Machine (cost Real)" :: IO (Either String [[Row Value]])
 execParamStatement_ db "insert into Machine (cost) values (?1)" [("?1", Double 12.34)]
 execStatement db "select * from Machine" :: IO (Either String [[Row Value]])

 closeConnection db

Figure 5.7: An example of the sqlite binding

29

5.1.7 The simplest-sqlite binding

This section describes an example of how to use the binding but it also explains four

important functions that will be necessary to understand for two of the bugs.

The simplest-sqlite binding uses the function withSQLite (shown in Figure 5.8) to open a

connection to a database, which is used to execute SQL statements. All the statements use the

function withPrepared that takes a function as input to be able to define the action that should

be performed with the given statement. The input function needs to use the function step to

execute the query. In order to insert a value in the table, the value needs to be bound to a

prepared statement using the bind function and the step function needs to be used to execute

the query. To retrieve the answer from the select query, the function column is used together

with a column index (zero represents the first column).

The answer from withSQLite will have the return type (Double, String) running in the IO

monad. The Double is the inserted value 12.34 and the String displays potential errors that

occurred by executing the query.

𝑚𝑎𝑖𝑛 = 𝑑𝑜
 𝑤𝑖𝑡ℎ𝑆𝑄𝐿𝑖𝑡𝑒 "𝑡𝑒𝑠𝑡. 𝑑𝑏" (\𝑑𝑏 → 𝑑𝑜
 𝑤𝑖𝑡ℎ𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑑 𝑑𝑏 ("𝑐𝑟𝑒𝑎𝑡𝑒 𝑡𝑎𝑏𝑙𝑒 Machine (cost 𝑅𝑒𝑎𝑙)") (\𝑠𝑡𝑚𝑡 → 𝑠𝑡𝑒𝑝 𝑠𝑡𝑚𝑡)
 𝑤𝑖𝑡ℎ𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑑 𝑑𝑏 ("𝑖𝑛𝑠𝑒𝑟𝑡 𝑖𝑛𝑡𝑜 Machine (cost) 𝑣𝑎𝑙𝑢𝑒𝑠 (? 1)") (\𝑠𝑡𝑚𝑡 → 𝑑𝑜
 𝑏𝑖𝑛𝑑 𝑠𝑡𝑚𝑡 "? 1" (12.34 ∷ 𝐷𝑜𝑢𝑏𝑙𝑒)
 𝑠𝑡𝑒𝑝 𝑠𝑡𝑚𝑡)
 𝑤𝑖𝑡ℎ𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑑 𝑑𝑏 ("𝑠𝑒𝑙𝑒𝑐𝑡 ∗ 𝑓𝑟𝑜𝑚 Machine") (\𝑠𝑡𝑚𝑡 → 𝑑𝑜
 𝑠𝑡𝑒𝑝 𝑠𝑡𝑚𝑡
 𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑡𝑚𝑡 0) ∷ 𝐼𝑂 (𝐷𝑜𝑢𝑏𝑙𝑒, 𝑆𝑡𝑟𝑖𝑛𝑔))

Figure 5.8: An example of the simplest-sqlite binding

The binding uses two functions internally (packCString and useAsCString) that were involved

in causing two of the bugs that we found. Two other relevant functions, packCStringLen and

useAsCStringLen, will also be explained.

The first function that the binding uses is packCString from the package Data.ByteString. Its

type signature and an example of how to use it are shown in Figure 5.9. The example first

creates a CString using the function newCString. The CString is packed to a ByteString using

the function packCString and then the ByteString is unpacked and printed. As shown in the
Output, it prints the String abc and it means that the original String has been cut at \NUL (a

Null-terminator). In the documentation for the packCString, it is stated that the CString must

be Null-terminated, which causes it to be cut prematurely.

30

Type signature
packCString :: CString → IO ByteString

Example
cstr ← newCString "abc\NULdef"
bytStr ← packCString cstr
print $ unpack bytStr

Output
“abc”

Figure 5.9: The type signature of the function packCString and an example of it

A function that is similar to packCString is packCStringLen. The difference is that the

function takes a CStringLen that contains a pointer to the first Char and the length of the Char

sequence as input. The String does not need to be Null-terminated since it will be managed on

the Haskell heap. An example of using packCStringLen is shown in Figure 5.10, where the

whole string containing \NUL is stored in a ByteString, and subsequently printed.

Type signature
packCStringLen :: CStringLen → IO ByteString

Example
cstr ← newCStringLen "abc\NULdef"
bytStr ← packCStringLen cstr
print $ unpack bytStr

Output
“abc\NULdef”

 Figure 5.10: The type signature of the function packCStringLen and an example of it

The second function that the binding uses is useAsCString from the package Data.ByteString.

Its type signature and an example of how it can be used are shown in Figure 5.11. The

function takes a ByteString and a function that requires a Null-terminated CString. The

ByteString is converted to a CString and the function is applied on the CString, where the

resulting type depends on the return type of the function. In the example, useAsCString will

cut the ByteString at \NUL if the length of the Bytestring is not calculated.

Type signature
useAsCString :: ByteString → (CString → IO a) → IO a

Example
let byteStr = pack "abc\NULdef"
useAsCString byteStr (\cs → packCString cs)

Figure 5.11: The type signature of the function useAsCString and an example of it

31

The function usAsCStringLen (shown in Figure 5.12) is similar to usAsCstring but it provides

a CStringLen instead of a null-terminated CString.

Type signature
useAsCStringLen :: ByteString → (CStringLen → IO a) → IO a

Example
let byteStr = pack "abc\NULdef"
useAsCStringLen byteStr (\csl → packCStringLen csl)

Figure 5.12: The type signature of the function useAsCStringLen and an example of it

5.2 Implemented Properties

Two different properties have been created (shown later). The properties test the bindings by

combining most of the functions that they use to interact with the database. The difference

between the properties is that the first one, prop_bind_string, inserts the values as String

while the other property, prop_bind_value, binds the values and inserts them as their types.

The reason for creating prop_bind_string was to test that the binding is able to convert the

Strings from Haskell containing the values to CStrings and execute the CString correctly in

the database. The reason for creating the prop_bind_value property is to test that the Haskell

types are correctly converted in the binding, for instance that a Double is converted to a

CDouble and then inserted correctly in the database.

Both of the properties use the structure shown in Figure 5.13 as pseudocode. First, a

connection to the database is created, and then a table with four columns of the types Text,

Integer, Real and Blob is created. After the table is created, the values are inserted in the

respective columns. Then the properties select everything from the table and store the result in

a variable (answer). Finally, they drop the table and close the connection. The database

connection is now closed, but since the result from the select query is stored, it is possible to

test if the read values are the same as the inserted ones.

open “test.db”;
create table tab1 (col1 Text, col2 Integer, col3 Real, col4 Blob);
insert into tab1 (col1, col2, col3, col4) values (str, int, dou, byteStr);
answer ← select ∗ from tab1;
drop table tab1;
close “test.db”;
let [String retStr, Int retInt, Double retDou, ByteString retBytStr] = answer
assert (str == retStr && int == retInt && dou == retDou && byteStr == retByteStr)

Figure 5.13: Pseudocode for the properties behaviour

32

In order to make the properties as general as possible, the Haskell record data type

SQLiteBind (shown in Figure 5.14) was created. A value of the SQLiteBind data type consists

of functions that a specific binding uses to perform different actions involving the database.

For example, the functions openConn and closeConn are used by both properties to open and

close the connection to the database. The function openConn takes a String as input, which

contains the database name and returns a database handle running in the IO monad. The

function closeConn takes the database handle as input and returns an empty IO action.

The functions createQ, insertQ, selectQ, deleteQ, getVal and static are used in the property

prop_bind_string. The function getVal is used to retrieve the results from a select query as a

list since the return type of the query often differs between the bindings. The function static

indicates if the binding needs to use the same table name during testing or not (the persistent-

sqlite and groundhog-sqlite bindings need this, shown in section 5.1.1 and 5.1.2).

The functions prepCreateQ, prepInsQ, prepSelQ, prepDelQ, prepGetVal and prepParam are

used in the property prop_bind_value. The functions execute the same queries as before but

with prepared statements instead of directly as Strings. The function prepGetVal has the same

functionality as getVal, but is used with queries involving prepared statements. The function

prepParam is used to create prepared statements by defining a list of Strings that represent

each value’s position when it is inserted in the prepared statement. For instance, the function

prepParam can have the value ["?1", "?2", "?3", "?4"].

data Vals = I Int | D Double | S String | B ByteString | N Int
 deriving Show

data SQLiteBind conn res prepRes =
 SQLiteBind :: { openConn :: String → IO conn
 , closeConn :: conn → IO ()
 , createQ :: conn → String → IO ()
 , insertQ :: conn → String → IO ()
 , selectQ :: conn → String → IO res
 , deleteQ :: conn → String → IO ()
 , getVal :: res → [Vals]
 , static :: Bool

 , prepCreateQ :: conn → String → IO ()
 , prepInsQ :: conn → String → [Vals] → IO ()
 , prepSelQ :: conn → String → IO prepRes
 , prepDelQ :: conn → String → IO ()
 , prepGetVal :: prepRes → [Vals]
 , prepParam :: [String]

 }

Figure 5.14: The data type of the SQLiteBind

33

An example value of the SQLBind record providing the operations of the sqlite binding is

shown in Figure 5.15. Similar values needed to be provided for all tested bindings. In this

example, the binding uses the function openConnection to open a database connection. In

order to execute queries, the binding uses the function execStatement in most cases. The only

exception is the function execParamStatement that is used to insert prepared statements.

let sqliteBindSqlite = SQLiteBind {
 openConn = openConnection,
 closeConn = closeConnection,

 createQ = \conn query → (execStatement conn query
 :: IO (Either String [[Row Value]])) >> return (),
 insertQ = createQ sqliteBindSqlite,
 selectQ = \conn query → (execStatement conn query
 :: IO (Either String [[Row Value]])),
 deleteQ = createQ sqliteBindSqlite,
 getVal = \val → if isRight val then
 map (\(x,y) → (getValueSqlite y)) $ concat $ concat
 $ fromRight' (val :: (Either String [[Row Value]]))
 else [S "", I 0 ,D 0.0],
 static = False,
 prepCreateQ = createQ sqliteBindSqlite,
 prepInsQ = \conn query [S str,I int,D dou,B bytStr] →
 (execParamStatement conn query [(":1",Text str),
 (":2",Int (fromIntegral int)),(":3",Double dou),
 (":4",Blob bytStr)]
 :: IO (Either String [[Row Value]])) >> return (),
 prepSelQ = selectQ sqliteBindSqlite,
 prepDelQ = deleteQ sqliteBindSqlite,
 prepGetVal = getVal sqliteBindSqlite,
 prepParam = [":1",":2",":3",":4"]}

Figure 5.15: Defining the sqlite binding’s functions with the SQLiteBind type

34

We chose to use random table and column names to test whether the bindings can handle

UTF-8 Chars. The table and the column names cannot be empty or contain spaces or non-

alphabetic Unicode characters. The reason why non-alphabetic Unicode characters cannot be

used is that SQLite does not support ASCII symbols like "+" and "–" in a table name or

column name without using brackets. The names cannot either contain SQL keywords, such

as select, without using brackets.

To create a valid table and column name, the generators letterGen and WordGen (shown in

Figure 5.16) were created and also a forbidden list that contains all SQL keywords. The

letterGen only generates Unicode letters by testing a generated Char using the function

isLetter. The letterGen generator is then used in WordGen in order to create a non-empty

String from the letters. The String cannot be a SQL keyword since it is compared with the

forbidden list. The generator WordGen is used in an arbitrary instance for the type Word, as

shown in Figure 5.17 (not related to the Haskell type Word), which is used to generate table

names. To generate column names, we also need to make sure that their names in a single

table are different. Therefore, the function allDifferent was created and it checks that every

String in the list is unique. Two more arbitrary instances for the types ThreeWords and

FourWords (shown in Figure 5.17) were created that generate three or four Strings using the

generator WordGen making sure that they are unique.

letterGen :: Gen Char
letterGen = suchThat arbitrary isLetter

WordGen :: Gen String
WordGen = suchThat (listOf1 letterGen) (\x → map toLower x `notElem` forbidden)

Figure 5.16: Generators for Strings

newtype Word = Word String
 deriving (Show,Eq)

instance Arbitrary Word where
 arbitrary = do
 l ← WordGen
 return (Word l)

newtype FourWords = FourWords [String]
 deriving (Show,Eq)

instance Arbitrary FourWords where
 arbitrary = do
 l ← suchThat (vectorOf 4 WordGen) allDifferent
 return (FourWords l)

Figure 5.17: Arbitrary instance of the table and column names

35

Generators for each of the types String, Int64, Double and ByteString were also created,

mainly to disable shrinking since it took additional calculation time and did not contribute to

finding the cause of the problem. The Int64 type was chosen since most SQLite bindings use

Int64 to make sure that 64-bit Integers are representable. QuickCheck does not support direct

generation of ByteString, but it can generate a list of Word8 values that then can be converted

to a ByteString using the function pack (from the package Data.ByteString).

In order to insert a Bytestring as a String in SQLite without converting the Bytestring directly

to a String (and possibly lose data due to Bytestring to String conversion), we chose to insert

the Bytestring in hexadecimal format. The hexadecimal format and the corresponding

ByteString was generated using the Arbitrary instance ByteStringS (shown in Figure 5.18).

The generator starts by generating a ByteString and then calls the function bsToHex that

creates a String that contains the hexadecimal representation of the ByteString. The function

converts the ByteString to a list of Word8, which is a list of 8-bit Ints and converts each

Word8 to Int and runs the function intToHex on each Int. The instance then returns a pair that

contains the hexadecimal representation of Bytestring as a String and the corresponding

Bytestring.

For instance, if the function intToHex takes Int 26 as input, then it is used by the function

DivMod which divides 26 with the value 16 and returns the value 1 and the remainder 10. The

function intToDigit convert the values to ‘1’ and ‘a’, which is combined to “1a” and returned

by the intToHex function.

newtype ByteStringS = ByteStringS (String, B.ByteString)

deriving (Show,Eq)

instance Arbitrary ByteStringS where

 arbitrary = do

 bytStr ← arbitrary :: Gen B.ByteString

 let str = bsToHex bytStr

 return (ByteStringS (str,bytStr))

bsToHex :: ByteString → String

bsToHex bs = concatMap (intToHex . fromIntegral) (B.unpack bs)

 where intToHex :: Int → String

 intToHex n = let (qu, re) = n `divMod` 16

 in [intToDigit qu, intToDigit re]

Figure 5.18: ByteString generator for the property prop_bind_string

The first tested property was prop_bind_string (shown in Figure 5.19) that takes seven

parameters. The first parameter (bind) is the SQLiteBind value of the binding that will be

tested. The second (table) is a random table name of the type Word. The third is a list of four

random Strings that are used as column names. The last four parameters (str, num, dou and a

tuple of hexStr and BytStr) represent a String, an Int, a Double and a pair containing a String

and a ByteString where the String is the hexadecimal representation of the ByteString. These

values (except BytStr, which is represented by hexStr) are the values that will be inserted in

the table.

The property starts execution by connecting to a database, creating the table and inserting the

values. The values are then retrieved before the table is removed and the connection is closed.

The retrieved values are then compared with the inserted values.

36

To create the table, the property uses the function createTable’ (its implementation is not

shown) that takes three parameters, a Bool, a String and a list of Strings, and returns a SQL

String. The Boolean argument determines if a static table name needs to be used, which is

required by the persistent-sqlite and groundhog-sqlite bindings. This means that if the

Boolean argument is False, then the table name needs to be defined outside of the property.

Otherwise, the randomly generated table name is used as the second parameter of the

createTable’ function. The last parameter is a list of column names. The function simply

creates the SQL String that is used to create the table with the specified name, the column

names and the types of the columns. When the SQL String is created, the property uses the

function from the SQLiteBind value, createQ to execute the query. For instance, in the case of

the sqlite binding, createQ refers to the function execStatement that executes the query.

The insert and select queries are performed in a similar way as creating the table. They use

the functions insertTable and selectTable that both create the Strings containing the respective

queries. The result from the select query is extracted and stored to a variable (ans). The table

is then deleted (the function dropTable creates the SQL String) from the database and the

connection is closed.

The result from the select query is then used with the function getVal from SQLiteBind in

order to retrieve the values that the database has returned. The values are compared against

the inserted values in the assertion (in the last line). The monitor function in the property will

print the inserted and expected values if a counterexample is found.

prop_bind_string bind (Word table) (FourWords [colStr, colNum, colDou, colBytStr])
(Word str) (IntS num) (DoubleS dou) (ByteStringS (hexStr, bytStr)) = monadicIO $ do

 ans ← run $ do
 conn ← (openConn bind) "test.db"
 (createQ bind) conn $ createTable' (static bind) table
 [colStr, colNum, colDou, colBytStr]
 (insertQ bind) conn $ insertTable (static bind) table
 [colStr,colNum,colDou, colBytStr]
 [str, show num, show dou, "x'"++ hexStr ++ "'"]
 ans ← (selectQ bind) conn $ selectTable "*" table ""
 (deleteQ bind) conn $ dropTable table
 (closeConn bind) conn
 return ans
 let [S a, I b, D c, B d] = (getVal bind) ans
 monitor (
 whenFail'
 (putStrLn $ "--------- Database: str: " ++ a ++ " expected: " ++ str
 ++ " num: " ++ show b ++ " expected: " ++ show num
 ++ " dou: " ++ show c ++ " expected: " ++ show dou
 ++ " bytStr: " ++ T.unpack d ++ " expected: "
 ++ T.unpack bytStr))
 assert(a == str && b == num && c == dou && d == bytStr)

Figure 5.19: The property prop_bind_string

37

The second property, prop_bind_value (shown in Figure 5.20), is similar to prop_bind_string

but it uses a prepared statement and binds the values to the statements before their execution.

Another difference is how the ByteString values are inserted. In prop_bind_string, they are

inserted as String values using the hexadecimal representation of the ByteString, while in

prop_bind_value they are inserted directly as ByteString values.

The property prop_bind_value uses prepCreateQ instead of createQ and so on, since some

bindings use different functions to create and insert values with prepared statements. In the

insert function, it also uses the function prepParam (from the SQLiteBind value). The

function defines in which position the values should be inserted in the prepared statement.

The function insertTablePrep creates the String query using the Strings from prepParam and

it is used in the prepared statement. For instance, a String query from insertTablePrep could

be "Insert into abc (A,B,C,D) values (?1,?2,?3,?4)", where the provided values are bounded

to the four question mark variables, which corresponds to the columns A, B, C and D

(Binding Values to Prepared Statements was described in section 4.2).

prop_bind_value bind (Word table) (FourWords [colStr, colNum, colDou, colBytStr])
(Word str) (IntS num) (DoubleS dou) bytStr = monadicIO $ do

 ans ← run $ do
 conn ← (openConn bind) "test.db"
 (prepCreateQ bind) conn $ createTable' (static bind) table
 [colStr, colNum, colDou, colBytStr]
 (prepInsQ bind) conn (insertTablePrep table [colStr, colNum, colDou, colBytStr]
 (prepParam bind)) [S str, I num, D dou, B bytStr]
 ans ← (prepSelQ bind) conn $ selectTable "*" table ""
 (prepDelQ bind) conn $ dropTable table
 (closeConn bind) conn
 return ans
 let [S a, I b,D c, B d] = (prepGetVal bind) ans
 monitor (
 whenFail'
 (putStrLn $ "--------- Database: " ++ " str: " ++ a ++ " expected: " ++ str
 ++ " num: " ++ show b ++ " expected: " ++ show num
 ++ " dou: " ++ show c ++ " expected: " ++ show dou
 ++ " bytStr: " ++ T.unpack d ++ " expected: "
 ++ T.unpack bytStr))
 assert(a == str && fromIntegral b == num && c == dou && d == bytStr)

Figure 5.20: The property prop_bind_value

38

5.3 Testing the properties

This section explains how the tests of the SQLite bindings are performed using the testing tool

QuickCheck and the two properties. In order to test a binding with a property, an SQLiteBind

value referencing the binding’s functions needs to be chosen. We tested both properties with

every binding. An example of how the tests are performed is shown in Figure 5.21, where the

function quickCheckWithResult is used. The function takes two parameters, the first is the test

arguments and the second is the property that should be tested. The first parameter can

specify, for example, the maximum number of passed tests (it stops earlier if an error occurs)

with the constructor maxSuccess, on top of the record stdArgs that contains the default test

arguments. In the example, QuickCheck will run 500 000 tests with both properties on the

sqlite binding (since sqliteBindSqlite is used).

Runs the property prop_bind_string
quickCheckWithResult stdArgs {maxSuccess = 500000} (prop_bind_string sqliteBindSqlite)

Runs the property prop_bind_value
quickCheckWithResult stdArgs {maxSuccess = 500000} (prop_bind_value sqliteBindSqlite)

Figure 5.21: How to perform the testing on the bindings

In order to decide when the testing is complete, many parameters can be considered. For

instance, code coverage, the number of tests, the number of bugs that should be found and the

amount of testing time. We cannot ensure that all bindings have bugs so that is not an option

for us. The code coverage of the bindings does not increase by performing more tests since a

single test will likely cover all the functions that are tested in the bindings. The tests after the

first one will be testing the different values for each type but not increasing the code coverage.

Therefore, we consider the number of tests and testing time as the best options for our

approach. All the bugs in the performed testing are found in less than 1 million tests and it

could be considered as a lower bound for the testing. It is difficult to know when the random

testing has tested enough, but we consider our testing to be complete when the tests run for at

least a day.

39

6 Bugs

This chapter explains four bugs that we have found. Examples are given to understand what

the bugs are, why they appear and to show the solutions to the bugs. The bugs involve three

different data types: String, Double and ByteString. The bugs were found with the two

properties prop_bind_string and prop_bind_value, (described in section 5.2) and in three

different bindings: sqlite, HDBC-sqlite3 and simplest-sqlite.

6.1 Conversion Bug Involving the UTF-8 Encoding

The first bug was found when we performed random testing of the property prop_bind_string

but the bug can also occur with the property prop_bind_value. Figure 6.1 shows the output of

QuickCheck testing the property when the bug is triggered, reporting a discrepancy in a String

returned from the database.

--------- Database: str: Ã¸ expected: ø num: 1 expected: 1
dou: 0.40735100738214747 expected: 0.40735100738214747
bytStr: \US expected: \US

*** Failed! Assertion failed (after 1 tests):
Word “h”
FourWords [“MR”, ”mO”, ”PG”, “J”]
Word “\248”
IntS 1
DoubleS (0.40735100738214747)
ByteString (“1f”, “\US”)

Figure 6.1: The output from the test that failed

Figure 6.1 shows a counterexample that was found with the property prop_bind_string. The

output lists the returned values from the database (after the select query) and the expected

values that were inserted from Haskell. There are four returned values: str (String Ã¸), num

(Int 1), dou (Double 0.40735100738214747) and bytStr (ByteString \US). The lines after

Assertion failed are QuickCheck’s default output when a counterexample has been found and

it shows all the inputs to the property which made it fail. The input Word is the table name,

FourWords is the column names, the rest are the input values (str, num, dou and bytStr). The

reason that the property failed is that the received String is "Ã¸" while the expected one is "ø"

(also represented as \248).

After a small number of tests with QuickCheck, it was shown that the bug only occurred with

non-ASCII Chars. A recreated example of the programming code that demonstrates the

problem is shown in Figure 6.2. The code simply inserts a String containing the non-ASCII

character ‘ø’ into the database and then executes a select query on the table it was inserted

into.

The first two lines printed by the function contain the Strings "ø" and "Ã¸" (note the comma

after Ã) which represent the inserted String and the received String from the database. These

two lines should both print "ø". Furthermore, the last two lines prints the Strings "/248" and

"195/184" (it should be "/248") which represent the Unicode code points that the Strings

correspond to.

40

The bug was caused by the sqlite binding package not converting the UTF-8 representation

("\195\184") of the String "ø" to Unicode code points ("\248") which Haskell's Char type

uses.

To fix the bug, the binding had to convert the returned String after executing a select query

from the database. The String is converted to Unicode code points used by the Haskell Char

type and could then be returned from the binding.

The bug was found in the sqlite binding package 0.5.2.2 on Hackage and it has been reported.

However, the package’s GitHub repository had a recent commit that had already fixed the

bug. Version 0.5.3 of the package was released on Hackage after our report and included a fix

for the bug.

𝑚𝑎𝑖𝑛 = 𝑑𝑜
 𝑑𝑏 ← 𝑜𝑝𝑒𝑛𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 “𝑡𝑒𝑠𝑡. 𝑑𝑏”
 execStatement_ db "create table abc (A text);" ∷ 𝐼𝑂(𝑀𝑎𝑦𝑏𝑒 𝑆𝑡𝑟𝑖𝑛𝑔)
 execStatement_ db "insert into abc (A) values (′ ø ′); " ∷ 𝐼𝑂(𝑀𝑎𝑦𝑏𝑒 𝑆𝑡𝑟𝑖𝑛𝑔)
 table ← 𝑒𝑥𝑒𝑐𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝑑𝑏 "select * from abc;" ∷ 𝐼𝑂(𝐸𝑖𝑡ℎ𝑒𝑟 𝑆𝑡𝑟𝑖𝑛𝑔 [[𝑅𝑜𝑤 𝑉𝑎𝑙𝑢𝑒]])

 𝑙𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 = 𝑠𝑛𝑑 $ ℎ𝑒𝑎𝑑 $ 𝑐𝑜𝑛𝑐𝑎𝑡 $ 𝑐𝑜𝑛𝑐𝑎𝑡 $ 𝑓𝑟𝑜𝑚𝑅𝑖𝑔ℎ𝑡 𝑡𝑎𝑏𝑙𝑒
 𝑝𝑢𝑡𝑆𝑡𝑟𝐿𝑛 "ø"
 𝑝𝑢𝑡𝑆𝑡𝑟𝐿𝑛 $ 𝑔𝑒𝑡𝑉𝑎𝑙𝑢𝑒 𝑣𝑎𝑙𝑢𝑒
 𝑝𝑢𝑡𝑆𝑡𝑟𝐿𝑛 $ 𝑠ℎ𝑜𝑤 "ø"
 𝑝𝑢𝑡𝑆𝑡𝑟𝐿𝑛 $ 𝑠ℎ𝑜𝑤 $ 𝑔𝑒𝑡𝑉𝑎𝑙𝑢𝑒 𝑣𝑎𝑙𝑢𝑒
 𝑤ℎ𝑒𝑟𝑒 𝑓𝑟𝑜𝑚𝑅𝑖𝑔ℎ𝑡 (𝑅𝑖𝑔ℎ𝑡 𝑏) = 𝑏
 𝑔𝑒𝑡𝑉𝑎𝑙𝑢𝑒 (𝑇𝑒𝑥𝑡 𝑎) = 𝑎

Output:
"ø"
"Ã¸"
"\248"
"\195\184"

Figure 6.2: An example when the bug occurred and its output

41

6.2 Incorrect Double Value

Many bindings seemed to exhibit an incorrect behaviour when some Double values were

inserted as Strings when running the property prop_bind_string. An example of such

behaviour is shown in Figure 6.3, where the Double 62.027393 is inserted as a String and the

retrieved value turns out to be 62.027393000000004, which means that the returned value is

slightly larger than the inserted one. This test was performed on all seven tested bindings and

only one (HDBC-sqlite3) retrieved the correct value 62.027393.

𝑐𝑟𝑒𝑎𝑡𝑒 𝑡𝑎𝑏𝑙𝑒 𝑡𝑎𝑏1 (𝑐𝑜𝑙 𝑅𝑒𝑎𝑙);

𝑖𝑛𝑠𝑒𝑟𝑡 𝑖𝑛𝑡𝑜 𝑡𝑎𝑏1 (𝑐𝑜𝑙) 𝑣𝑎𝑙𝑢𝑒𝑠 (62.027393);

𝑠𝑒𝑙𝑒𝑐𝑡 ∗ 𝑓𝑟𝑜𝑚 𝑡𝑎𝑏1;

Output:

62.027393000000004

Figure 6.3: An example that were tested with Double values

However, all tested bindings returned the inserted value if the value was inserted as a Double

using prepared statements. An example of how a Double value is bound to a prepared

statement using the binding HDBC-sqlite3 is shown in Figure 6.4.

insert ← prepare db "insert into Machine (Cost) values (?)"
execute insert [(toSql (12.34 :: Double))] >> return []

Figure 6.4: An example of how to bind Double values in HDBC-sqlite3

Sometimes when Doubles are converted to Strings in for instance GHCi, their values can be

truncated. An example of this is shown in Figure 6.5, where both values output the same

result. This could be a problem both when the value is inserted in the database since it can

insert a truncated value but also in testing since two different values will be printed in the

same way, which might make it difficult to say why a test case is failing.

show 1.1234567890123456
show 1.12345678901234567

Output
“1.1234567890123456”
“1.1234567890123456”

Figure 6.5: An example of how Double can be truncated in GHCi

42

To avoid this problem, we used differential testing to compare the results returned by two of

the tested bindings, HDBC-sqlite3 and sqlite. The differential testing is performed by creating

a table with six different combinations of insert and select statements (shown in Table 3).

These statements are executed with different bindings (note that sqlite is used with and

without bind when the value is inserted).

The left-most column in Table 3 indicates which binding that was used to select the value and

the first line is how the value was inserted in the table. For instance, the left bottom value

(62.027393000000004) uses HDBC-sqlite3 to insert the value in the table but sqlite to retrieve

it. If we assume that the slightly larger value is the correct value, then HDBC-sqlite3 gives an

incorrect value when it performs both the insert and select but it is also incorrect when sqlite

without bind inserts the value and HDBC-sqlite3 select the value. This means that a bug can

occur when the value is retrieved in the HDBC-sqlite3.

 Insert

Select

HDBC-sqlite3 sqlite with bind sqlite without bind

HDBC-sqlite3 62.027393 62.027393 62.027393

sqlite 62.027393000000004 62.027393 62.027393000000004

Table 3: Differences between the HDBC-sqlite3 binding and the sqlite binding

In order to increase the probability that all bindings except HDBC-sqlite3 had an incorrect

behaviour, the pseudocode in Figure 6.6 was executed in C (it will eliminate any potential

type conversion errors that can appear when executing SQLite code from Haskell). The third

to the fifth line inserts the value as a prepared statement where the value is bound to the

question mark. The sixth and seventh lines insert the value directly as a String. The last two

lines select all values and the output of it is 62.027393 in both cases. The select statement is

performed to find differences in the results.

1 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 𝑐𝑟𝑒𝑎𝑡𝑒 𝑡𝑎𝑏𝑙𝑒 𝑡𝑎𝑏1 (𝑐𝑜𝑙1 𝑅𝑒𝑎𝑙);
2 step
3 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 𝑖𝑛𝑠𝑒𝑟𝑡 𝑖𝑛𝑡𝑜 𝑡𝑎𝑏1 (𝑐𝑜𝑙1) 𝑣𝑎𝑙𝑢𝑒𝑠 (?);
4 𝑏𝑖𝑛𝑑 𝑣𝑎𝑙𝑢𝑒 62.027393
5 step
6 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 𝑖𝑛𝑠𝑒𝑟𝑡 𝑖𝑛𝑡𝑜 𝑡𝑎𝑏1 (𝑐𝑜𝑙1) 𝑣𝑎𝑙𝑢𝑒𝑠 (62.027393);
7 step
8 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 𝑠𝑒𝑙𝑒𝑐𝑡 ∗ 𝑓𝑟𝑜𝑚 𝑡𝑎𝑏1;
9 step

Figure 6.6: Pseudocode for testing the SQLite values

43

If the stored values are compared with for instance a cross join (shown in Figure 6.7), then the

result table should have four rows if the values are equal and two rows if they are not equal.

𝑝𝑟𝑒𝑝𝑎𝑟𝑒 𝑠𝑒𝑙𝑒𝑐𝑡 ∗ 𝑓𝑟𝑜𝑚 𝑡𝑎𝑏1 𝑎𝑠 𝑎 𝑐𝑟𝑜𝑠𝑠 𝑗𝑜𝑖𝑛 𝑡𝑎𝑏1 𝑎𝑠 𝑏 𝑤ℎ𝑒𝑟𝑒 𝑎. 𝑐𝑜𝑙1 = 𝑏. 𝑐𝑜𝑙1;
step

Figure 6.7: Cross join example

The result from the query in Figure 6.7 is two rows and it means that they differ. Therefore,

the value 62.027393000000004 was bound in the prepared statement instead of 62.027393

(line 4 in Figure 6.6). The cross join test was run again and returned four rows which mean

that the inserted values are equal. This means that if the value 62.027393 is inserted as String,

then the value is changed to 62.027393000000004. This may be a bug in the SQLite database

and the behaviour has been reported to SQLite.

To understand why HDBC-sqlite3 did not return the value 62.027393000000004 that the

SQLite database stored, we have to know if the bug occurred when the value was inserted or

retrieved. After inspecting the function that retrieves data in the HDBC-sqlite3 binding, it

became apparent that the binding uses the function sqlite3_column_text, which truncates the

Double after the first 15 significant digits. This means that the Double 62.027393000000004

becomes 62.0273930000000 (the two last digits are removed), which is the same as

62.027393. Therefore, the value seems to be correct since the function cuts it, but it is

incorrect because the stored value is larger.

The bug appears since the SQLite function sqlite3_column_text is used to fetch values of all

types except Null, and therefore truncates Doubles that contain more than 15 significant

digits. To fix the bug, the SQLite function sqlite3_column_double was used instead, which

does not truncate the stored Double.

44

6.3 Null-termination of ByteString

The third bug involved null-termination of ByteStrings that were stored in the database. The

bug was found with the property prop_bind_value and it only appeared in the simplest-sqlite

binding. An example input that made the property fail is shown in Figure 6.8. It also shows

the ByteString that was retrieved by the property.

Input:
"Y\191\210\187\DC1\"\NULWeD"

Output:
"Y\191\210\187\DC1\""

Figure 6.8: An example when the null-termination of ByteString can appear

The bug appears when the simplest-sqlite binding uses the function packCString (its type

signature is shown in Figure 6.9) to retrieve a value from the database. The function truncates

the ByteString at \NUL and therefore the result in the example becomes shorter. In order to fix

the bug, the function packCStringLen can be used, which takes a CStringLen as input instead

of a CString. The data type CStringLen contains a CString and an Int that specifies the length

of the CString in bytes. This extra information means that it is possible for the function

packCStringLen to retrieve a ByteString that contains Null characters correctly, since the Null

character is not used for termination. In addition, we need to use the C function sqlite3

_column_bytes that retrieves the number of bytes used to store a particular value in the

database. An example of actions performed by the original and new code is shown in Figure

6.9.

Type signatures
packCString :: CString → IO ByteString
packCStringLen :: CStringLen → IO ByteString
type CStringLen = (Ptr CChar, Int)

Original code
cStr ← sqlite3_column_blob stmt intCol
packCString (castPtr cStr)

New code
cStr ← sqlite3_column_blob stmt intCol
bytes ← sqlite3_column_bytes stmt intCol
packCStringLen (castPtr cStr, fromIntegral bytes)

Figure 6.9: The solution to the null-termination bug

45

Another problem appeared when the null-termination bug was fixed. The problem was that a

Null-termination was added to the ByteString. An example of an input that demonstrates the

problem is shown in Figure 6.10. Note that even though \NUL appears in the ByteString, it is

also added to the end of it.

Input:
"\184<<\ETB\GS\234\132\&36?\DLE\232z\NUL3"

Output:
"\184<<\ETB\GS\234\132\&36?\DLE\232z\NUL3\NUL"

Figure 6.10: An example of the problem where \NUL is added at the end of the ByteString

The problem appeared since the bind function uses the function useAsCString, which expects

a Null-terminated CString (the type signature is shown in Figure 6.11). Figure 6.11 also

shows an example of how the function useAsCString was used within the bind function and

how we used useAsCStringLen instead.

The problem in the original code is the fourth parameter to the function c_sqlite3_bind_blob.

The SQLite’s documentation states that “If the fourth parameter to sqlite3_bind_blob() is

negative, then the behavior is undefined”. Instead, the fourth parameter should be the number

of Bytes for the value that will be inserted. Our code simply passes the number of bytes

provided by useAsCStringLen as the fourth argument.

Type signatures
useAsCString :: ByteString → (CString → IO a) → IO a
useAsCStringLen :: ByteString → (CStringLen → IO a) → IO a

Original code
sqlite3BindBlob :: Stmt → Int → BS.ByteString → IO ()
sqlite3BindBlob (Stmt sm) i s = BS.useAsCString s $ \cs → do
 ret ← c_sqlite3_bind_blob sm (fromIntegral i) cs (- 1) nullPtr
 when (ret /= sQLITE_OK) $ sqliteThrow "Cannot bind text" ret

New code
sqlite3BindBlob :: Stmt → Int → BS.ByteString → IO ()
sqlite3BindBlob (Stmt sm) i s = BS.useAsCStringLen s $ \(cs,bytes) → do
 outPtr ← mallocBytes bytes
 memcpy outPtr cs (fromIntegral bytes)
 ret ← c_sqlite3_bind_blob
 sm (fromIntegral i) (castPtr outPtr) (fromIntegral bytes) nullPtr
 when (ret /= sQLITE_OK) $ sqliteThrow "Cannot bind text" ret

Figure 6.11: The solution to remove the additional Null

46

6.4 Memory Allocation Bug

Another bug appeared when QuickCheck was run on the property prop_bind_value with the

binding simplest-sqlite, which led to an exception shown in Figure 6.12. The output indicates

that it is a problem with decoding a Text, which in our property corresponds to a String

packed as a Text.

*** Failed! Exception: 'Cannot decode byte '\x9d':
Data.Text.Internal.Encoding.decodeUtf8: Invalid UTF-8 stream' (after 4813 tests)

Figure 6.12: An output when the property prop_bind_value was tested on simplest-sqlite

There are only two possible places where this problem can appear, either when the value is

inserted in the database or when it is retrieved. After the code was examined, we concluded

that the bug occurs when the value is inserted.

When the binding simplest-sqlite gets a Text as input, it converts the Text to a ByteString and

then sends it to the function sqlite3BindByteString, which binds the ByteString to a SQLite

statement. The statement is then executed with the function step that performs an insert to the

database.

Our fix for the bug and the original code are shown in Figure 6.13. The problem was that the

ByteString 'cs' was incorrectly allocated in the memory and was therefore incorrectly inserted

in the database. After the ByteString was retrieved from the database, the Text package tried to

decode the incorrect ByteString and therefore raised an exception.

Our code first extracts the length of the Bytestring (the byte offset where the Null-terminator

would occur assuming the Bytestring was Null-terminated) and allocates enough memory to

store the ByteString. A pointer to the stored ByteString is used as the third parameter and the

length of the ByteString as the fourth parameter to the function sqlite3_bind_text. The

exception disappears after these changes.

Original code
sqlite3BindByteString :: Stmt → Int → BS.ByteString → IO ()
sqlite3BindByteString (Stmt sm) i s = BS.useAsCString s $ \cs → do
 ret ← c_sqlite3_bind_text sm (fromIntegral i) cs (- 1) nullPtr
 when (ret /= sQLITE_OK) $ sqliteThrow "Cannot bind text" ret

New code
sqlite3BindByteString :: Stmt → Int → BS.ByteString → IO ()
sqlite3BindByteString (Stmt sm) i s = BS.useAsCStringLen s $ \ (cs,bytes) → do
 outPtr ← mallocBytes bytes
 memcpy outPtr cs (fromIntegral bytes)
 ret ← c_sqlite3_bind_text
 sm (fromIntegral i) (castPtr outPtr) (fromIntegral bytes) nullPtr
 when (ret /= sQLITE_OK) $ sqliteThrow "Cannot bind text" ret

Figure 6.13: The solution to the memory allocation bug

47

The changes also fixed another problem that appeared during the testing. An example of it is

shown in Figure 6.14. The figure indicates that it was a problem with the encoding or

decoding of the String since it returned a non-ASCII Char (represented with an underscore in

the figure) instead of the expected String. This was also caused by incorrect memory

allocation but the Text package managed to decode it but the result is incorrect. However, the

problem was solved when the solution to the other problem was implemented.

str: _ expected: dJdÃ«KgwALkbgÃ±Ã¶tÃ¡PmibwIpÃ¯ti
*** Failed! Assertion failed (after 734 tests)

Figure 6.14: An example of another String problem in the memory allocation bug

48

7 Related Work

7.1 RQG

RQG [22] (Random Query Generator) is a tool that can generate random queries based on a

grammar file specified by the user or use the predefined test grammars. The generator can

generate queries in MySQL databases, or any Perl DBI, JDBC or ODBC-compatible SQL

databases such as JavaDB and PostgreSQL. The generated queries are executed by different

databases or the same database with different settings. Differences in the output of the

database(s) are then compared to detect potential bugs. It also supports 3-way database

comparison of MySQL, JavaDB and PostgreSQL, which can compare the output of the three

databases at the same time.

RQG’s testing approach is similar to our testing since they use random values in their tables

and queries. A difference is that RQG mainly focuses on generating random queries and

comparing different databases or differences between releases, while our approach is focused

on testing bindings for a single database and asserting the expected value. However, we also

used differential testing to verify Double values for two bindings and it was very useful in

order to decide the correctness.

7.2 SQLsmith

SQLsmith [23] is a random SQL query generator that is based on the testing tool Csmith. It

focuses on testing the PostgreSQL database, but also supports SQLite. It is possible to use

other databases but the user has to implement C++ classes for schema information about the

database. SQLsmith uses fuzz testing (checks for crashes) and benchmarking to test

databases. During its development, the tool has found 30 bugs in PostgreSQL.

SQLsmith is a great tool for fuzz testing PostgreSQL but does not check the correctness of

answers.

7.3 Mysqltest

Mysqltest [24] is a tool that runs test cases on a MySQL or MariaDB database and is able to

compare the output with a result file. It supports connection to one or more MySQL servers

that it can switch between. To run mysqltest, a test file needs to be written in a special test

language that specifies which SQL statements that should be run.

Mysqltest is somewhat similar to our testing approach, since it uses predefined SQL

statements. The inputs to mysqltest are also static, while our testing uses randomly generated

inputs, which mean that we can test more values of each data type. It also becomes harder to

perform more tests since it is more or less a Unit test tool for MySQL, while our approach can

use the testing tool QuickCheck to generate a large number of different tests easily. The

number of databases is also limited in mysqltest since it can only be used with MySQL and

MariaDB. Our testing method can be used with any other databases, but a few modifications

are needed in order to test another database. For example, the types used by the database need

to be defined, which is described in Future Work in section 8.3.

49

7.4 Csmith

Csmith [25] is a random test case generator for C compilers that uses differential testing to

find bugs. This is necessary because the widely used verification tools need specifications to

find bugs, which can be impractical for bugs regarding, for instance, inadequate optimization

safety, unsound static analyses and flawed transformations. Csmith differs from other similar

testing tools in the generation stage by expressing more of the C language features and use

more complex C programming code. When a random C program is generated, it will use

several compilers to compile the C program, run the programming code and finally compare

the outputs. The tool has been very successful. It has found more than 325 new compiler bugs

for the first three years.

Csmith’s approach is somewhat similar to our differential SQL testing but it is applied in

another area. The approach is shown to have good potential to find bugs.

50

8 Discussion

The testing of the SQLite bindings only involves the SQL statements create, insert and select.

In order to evaluate whether it was beneficial to use more SQL statements, operators and

subclauses, some of them such as delete, update, or and join were used for testing of two of

the bindings (HDBC-sqlite3 and sqlite). The result was that it did not find any more bugs. We

do not think it is necessary to test them on the other bindings, since bindings can mostly be

affected by bugs involving type conversations or memory allocation problems, and these can

be found by using create, insert and select statements. Type conversions problems are only

dependent on the data types and specific values that are converted between Haskell and

SQLite. This means that by using insert we test that the value can be converted correctly from
Haskell to SQLite and select tests the opposite direction. Any mismatches in the inserted

value and the retrieved value will indicate a problem in one of the type conversion paths.

Therefore, we chose not to test other statements.

In order to extend our testing approach, we also implemented testing that used random

sequences of the queries: insert, select and delete, and was otherwise the same as earlier. The

effects of every random query are difficult to specify, as it requires modelling the semantics

of SQL. Therefore, differential testing was used to compare the outputs from three bindings.

However, it did not find any more bugs and it was decided to not continue to test the other

bindings with this testing technique.

8.1 Problems that were not Bugs

Initially, the HDBC-sqlite3 binding seemed to have many problems. One problem was that the

HDBC-sqlite3 binding seemed to return incorrect ByteString values compared to the inserted

values. However, in the HDBC documentation [26], it is stated that the returned ByteStrings

contain Text encoded using the UTF-8 encoding, and to extract the Text, the function fromSql

should be used (it converts an SQL value to a Haskell value). The problem disappeared after

the property was modified to use fromSql instead of using the value directly.

8.2 Other Tools Applicability on our Testing Approach

The mysqltest tool would be infeasible to test binding conversions. The reason is that

mysqltest uses static inputs for bindings and since many values should be tested for each data

type, makes writing static tests for all values are inefficient

The query generation of RQG and SQLsmith supports more SQL queries than our approach.

It would be possible to use RQG’s and SQLsmith’s random query generators by printing the

queries to the STDOUT (standard output) that Haskell can read to create SQL queries in our

testing approach.

51

8.3 Future Work

The testing approach could be applied to other databases than SQLite. Examples of databases

that could use this approach are MySQL, Oracle and PostgreSQL. To test another database,

the main area that has to be modified is the handling of database types. For instance, MySQL

has more data types representing Integers than SQLite. There are also other types that SQLite

does not use but other databases have that should be added to the property, such as Time and

Date. This means that new generators and column(s) need to be defined for the generation of

the SQL queries.

52

9 Conclusion

Seven different SQLite bindings have been tested and four bugs have been found. The bugs

are from three different bindings (HDBC-sqlite3, simplest-sqlite and sqlite), and there are

three different data types (String, Double and ByteString) involved in the bugs. The bugs have

been found by using QuickCheck with the two created properties prop_bind_string and

prop_bind_value.

The first bug is a conversion bug that occurred (in the sqlite binding) since a UTF-8 String

had not been converted to Unicode code points, which Haskell's Char type uses. The second

bug appeared since a few Double values were incorrectly retrieved after being inserted as
Strings. The reason was that the binding (HDBC-sqlite3) truncates the Double values after the

first 15 significant digits. The third bug involves a null-termination problem of the type

ByteString (in the simplest-sqlite binding) and it returns a shorter ByteString if \NUL is

included in the inserted ByteString. It happens since the binding uses the function

packCString that cuts the ByteString at \NUL. The last bug is a memory allocation problem

and it occurs since the binding (simplest-sqlite) did not allocate the correct amount of memory

in the function sqlite3_bind_text.

We have realized that non-ASCII characters and values are needed to find type conversion

bugs. It is necessary to use a testing approach that executes multiple tests. The tests of the

bindings can use a predefined sequence of queries (it means that the correct answer easily can

be detected) since type conversion errors appear with specific values and they have to be

stored and retrieved from the binding, which can be done in a few SQL statements. It means

that more advanced statements are not likely to increase the probability of finding more errors

in the bindings; it rather tests the database itself. However, it is important to test the bindings

since it is the connection between the library and the preferred programming language.

The testing approach presented in this thesis is an efficient way of finding bugs in bindings,

and we sincerely recommend people to use it. It is user-friendly and includes tests of the

seven most downloaded SQLite bindings the last 30 days from Hackage (as of September

2016). It also has many possibilities such as extension with other databases. It is free and

accessible at our Github repository [27].

53

Bibliography

[1] W. M. McKeeman, “Differential Testing for Software,” Digital Technical Journal, vol. 10,
no. 1, pp. 100-107, 1998.

[2] G. Inc, “The sqlite package,” Hackage, 21 April 2008. [Online]. Available:
http://hackage.haskell.org/package/sqlite. [Accessed 7 March 2016].

[3] B. O'Sullivan, “Interfacing with C: the FFI,” in Real World Haskell, Sebastopol, o'Reilly
Media, Inc., 2008, pp. 405-428.

[4] P. Hamill, Unit Test Frameworks: Tools for High-Quality Software Development,
Sebastopol: O'Reilly Media, Inc., 2005.

[5] J. H. Koen Claessen, “QuickCheck: A Lightweight Tool for Random Testing of Haskell
Programs,” ICFP ’00. ACM, p. 268–279, 2000.

[6] Hackage, “Hackage,” Hackage, [Online]. Available: https://hackage.haskell.org/.
[Accessed 7 March 2016].

[7] SQLite, “How SQLite Is Tested,” SQLite, 2016. [Online]. Available:
https://www.sqlite.org/testing.html. [Accessed 10 february 2016].

[8] MySQL, “What to Do If MySQL Keeps Crashing,” Oracle Corporation, 2016. [Online].
Available: http://dev.mysql.com/doc/refman/5.7/en/crashing.html. [Accessed 10
february 2016].

[9] S. Haldar, “Chapter 2. SQLite Overview,” in SQLite Database System Design and
Implementation, Sunnyvale, Motorola mobility, Inc. , 2015, pp. 35-70.

[10] H.-S. J. T. W. Jerry Zeyu Gao, “Black box testing methods for software components,” in
Testing and Quality Assurance for Component-based Software, Norwood, Artech House,
Inc., 2003, pp. 119-140.

[11] K. A. Saleh, “Black box, white box, and grey box testing,” in Software Engineering,
Florida, J.Ross Publishing, Inc., 2009, pp. 224-241.

[12] A. S. Mena, “Randomized Testing with QuickCheck,” in Beginning Haskell: A Project-
Based Approach, New York, Apress, 2014, pp. 364-371.

[13] B. O'Sullivan, “Testing and Quality Assurance,” in Real World Haskell, Sebastopol,
o'Reilly Media, Inc., 2008, pp. 255- 265.

[14] M. O. Grant Allen, “SQL for SQLite,” in The Definitive Guide to SQLite, Second Edition,
New York, Springer Science+Business Media, LLC., 2010, pp. 47-86.

[15] M. Snoyman, “The persistent-sqlite package,” Hackage, 22 June 2010. [Online].
Available: http://hackage.haskell.org/package/persistent-sqlite. [Accessed 7 March
2016].

[16] L. P. S. J. H. Bryan O'Sullivan, “The sqlite-simple package,” Hackage, 15 August 2012.
[Online]. Available: http://hackage.haskell.org/package/sqlite-simple. [Accessed 7
March 2016].

[17] D. Knapp, “The direct-sqlite package,” Hackage, 13 March 2010. [Online]. Available:
http://hackage.haskell.org/package/direct-sqlite. [Accessed 7 March 2016].

[18] B. Lykah, “The groundhog-sqlite package,” Hackage, 16 June 2011. [Online]. Available:
http://hackage.haskell.org/package/groundhog-sqlite. [Accessed 7 March 2016].

[19] J. Goerzen, “The HDBC-sqlite3 package,” Hackage, 24 September 2006. [Online].

54

Available: http://hackage.haskell.org/package/HDBC-sqlite3. [Accessed 7 March 2016].

[20] Y. Jujo, “The simplest-sqlite package,” Hackage, 20 November 2015. [Online]. Available:
http://hackage.haskell.org/package/simplest-sqlite. [Accessed 7 March 2016].

[21] J. Goerzen, “The HDBC package,” Hackage, 24 September 2006. [Online]. Available:
https://hackage.haskell.org/package/HDBC. [Accessed 7 March 2016].

[22] P. Stoev, “Random Query Generator,” Oracle, 17 July 2012. [Online]. Available:
https://github.com/RQG/RQG-Documentation/wiki/RandomQueryGenerator. [Accessed
4 February 2016].

[23] A. Seltenreich, “SQLsmith,” Andreas Seltenreich, 26 April 2015. [Online]. Available:
https://github.com/anse1/sqlsmith/releases. [Accessed 5 February 2016].

[24] Oracle, “mysqltest — Program to Run Test Cases,” Oracle, 2016. [Online]. Available:
https://dev.mysql.com/doc/mysqltest/2.0/en/mysqltest.html. [Accessed 9 February
2016].

[25] Y. C. E. E. J. R. Xuejun Yang, “Finding and Understanding Bugs in C Compilers,” in 32nd
ACM SIGPLAN Conference on Programming Language Design and Implementation, San
Jose, ACM, 2011, pp. 283-294.

[26] J. Goerzen, “Database.HDBC,” John Goerzen, 2011. [Online]. Available:
https://hackage.haskell.org/package/HDBC-2.4.0.1/docs/Database-HDBC.html.
[Accessed 20 April 2016].

[27] V. E. Jimmy Svensson, “QuickChecking_foreign_languages,” GitHub, [Online]. Available:
https://github.com/MasterThesis-
JimmyVictor/QuickChecking_foreign_languages/tree/master/SQLite. [Accessed 30
January 2017].

