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An investigative report on the use of robust design methods for autonomous R/C
trajectory control
FREDRIK MACINTOSH
JOHAN LUND
Department of Electrical Engineering
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Abstract
Usually (nominal) models used for controller design are simplified neglecting many of
the components of the real system that is described. This calls for design techniques
where the controller ensures stability and performance for a set of (uncertain system)
models rather than a single one.

This M.Sc. thesis aimed at using techniques that are intrinsically designed
to meet robust design conditions. We implement robust H∞ control design and
experimentally test it on small-scale radio controlled cars that autonomously track
a pre-defined trajectory.

First, in order to understand how robustness can be interpreted, the theory of
H∞, the principles of optimal control and their relation to signal and system norms
are described.

Second, by using an experimental setup for self driving R/C cars, uncertain
vehicle models are derived and controller objectives for tracking are defined. Distur-
bance, performance, and uncertainties (in terms of dynamic weightings) are added
to the nominal design when creating an augmented system model. Both pure dis-
turbance rejecting and reference tracking dynamic output feedback robust design
concepts are used to develop 1- and 2- DoF (Degree of Freedom) controllers. Results
are evaluated in a comparative experimental setup. This means that the designed
H∞-controllers are compared to the more common PID- and LQR-controllers, ex-
amining if there is any clear gain using a more complex theory. Data from real world
experiments as well as simulations are analysed. Results show that the H∞ control
strategy is highly beneficial in terms of tracking performance at higher velocities
and other variations of vehicle characteristics.

Keywords: H∞, Robust control, Autonomous drive, Trajectory tracking, Uncertain
systems.
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1
Introduction

1.1 Background
Tracking performance of controllers is a highly sought after trait, after all, why use
a controller in the first case if it doesn’t yield desirable results? When mentioning
control theory, one of the first things that comes to mind is probably the Propor-
tional, Integral, Derivative- controller, known as the PID. PID control is the most
common form of controller type in the world. In fact, around 95% of the world’s
control loops are PID (or rather PI) [1], and there’s a reason for that. It’s simple
and versatile. A PID is for example a very suitable control type for cruise control
in a car.

The PID controller typically has a large trade-off between performance and
robustness. It is difficult to achieve both[2]. It performs badly under uncertain
dynamics of a system. As is found, this can have devastating effects.

For more advanced systems, such as autonomous drive, Model Predictive Con-
trol (MPC) is currently the norm. MPC is however computationally heavy and
might not be suited for all such applications. MPC can be designed to be robust[3],
but again at the cost of computation. The method also relies of non-linear strate-
gies, which might be undesirable simply because of the inherent complexity level.
For this reason, a linear robust controller can often be an effective way to tackle the
problem as it allows for performance while maintaining robustness.

1.2 Scope of Thesis
• The thesis aims to develop a miniature radio controlled (R/C) platform on

which to evaluate the use of robust control. The goal is to design controllers
that maintain a high tracking performance under increased velocities of the
R/C car.

• The R/C car is restricted to movement in the plane, although 3D changes (e.g
pitch) are partially accounted for.

• To ease testing and design, the vehicle platform is restricted to indoor use only
and under very consistent traction conditions.

• All controller designs are strictly linear. Implementations include some very
minor non-linearities.

1



1. Introduction

1.3 Outline
We will start by describing the required theory for the project, this includes a few
concepts of linear algebra, a description of the mathematical model used in the design
and simulation. Next follows an introductory description of robust control as well
as the more specific LQR (Linear Quadratic Regulator) and H∞ parts. The thesis
then continues with the description of the vehicle platform, what it includes, what it
doesn’t include and how it is realised. This includes descriptions of the hardware as
well as the software. After that, results are given consisting of comparisons between
simulations and reality for the different controllers, as well as the actual robustness.
Finally, a small discussion of the newly found results is presented that ends with a
conclusion, which should wrap up the thesis.

2



2
Theory

2.1 Linear Algebra
The following section covers a few concepts of linear algebra that are very useful for
control theory. They are also necessary in order to fully understand the following
chapters on control theory.

2.1.1 Signals and System Norms
Comparing different signals is no different than comparing other different entities
with each other, they have to be compared against the same framework. For signals
(vectors) and systems (transfer functions) alike, it turns out that norms are an
excellent way of normalising them. A norm is a function that yields a strictly
positive size of a vector or matrix. The p-Norm is here, as in most other uses,
denoted || ∗ ||p where p is the dimension. The definition of the p-norm is as follows,

|| ∗ ||p ≡
(

n∑
i=1
| ∗i |p

) 1
p

(2.1)

For a function applied to a quantity, vector, scalar, matrix, or transfer function, X
to be considered a norm, the following conditions have to hold

||X||p ≥ 0 - Positive
||X||p = 0⇔ u(t) = 0, ∀t - Positive definite
||kX||p = |k|||X||, ∀k ∈ Rfinite - Scalability

||X + Y ||p ≤ ||X||+ ||Y || - Triangle inequality

(2.2)
(2.3)
(2.4)
(2.5)

Note that the fourth condition (and thereby norms) is only defined for p > 1.
While norms may exist for infinitely many dimensions, a lot of them are simply
impossible to calculate, so most often the p = 1, 2 and ∞ -norms are used. Following
(2.1), the 2-norm for a signal x(t) is denoted as a fraction of vector norms:

||x(t)||2 =
(∫
|x(t)|2dt

) 1
2
. (2.6)

The perceptive reader will note that this is indeed the definition of Euclidean
distance.

3



2. Theory

A highly beneficial way of describing system norms is via a induced p-norm.
Simply meaning that the system norm is induced by the signal norm in the following
way

||A||p := sup
x 6=0

||Ax||p
||x||p

(2.7)

The induced H∞ norm has a slightly different notation. It is the worst case
gain of all possible ||A||2 gains. That is

||A||∞ := sup
x 6=0
x∈L2

||Ax||2
||x||2

(2.8)

where L2 is the set of all square integrable signals.
The reason for this being beneficial for the description of system behaviour is

its similarity to the notion of a transfer function from an input to an output.

G(s) = Y (s)
U(s)

This makes it possible to interpret the system norm as a form of gain, i.e. the
amplification of one selected input on another selected output, a metric crucial in
robust control.

An important note on the matrix norm is that it’s definition is slightly more
strict than that of the vector norm. In addition to the 4 conditions stated above,
the so called consistency equation has to be satisfied[4].

||AB||p ≤ ||A||p · ||B||p (2.9)

2.1.2 Singular Value
Whilst the matrix norm is a useful measure of absolute maximum gain of a system
(matrix), it is unsuitable for any type of frequency analysis. For scalar systems
(SISO, Single Input, Single Output), the bode plot is crucial for such analysis and is
fairly straight forward. For matrices (MIMO, Multi Input, Multi Output) however,
the bodeplot might not be sufficient. While it is perfectly valid, it analysis the system
piece by piece. Input1 → Output1, Input2 → Output1, ..., Inputn → Outputm etc.
(for n inputs and m outputs). In effect, it handles each and every subsystem as a
SISO system, meaning it can’t capture possible dynamics in between them.

The singular values of a matrix are also good measure of the size of a matrix,
but unlike the matrix norm, they can be made frequency dependent by calculating
the singular values of the frequency response of a system. The frequency dependent
singular values of a matrix can be seen as an extension of the bode analysis, for
MIMO systems.

Given a matrix A ∈ Rm×n or ∈ Cm×n, it can be shown[4] that there exists
unitary matrices
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V ∈ Rn×n or ∈ Cn×n (2.10)
U ∈ Rm×m or ∈ Cm×m (2.11)

A = UΣV T . (2.12)

Where

Σ =
[
Σσ 0
0 0

]
,Σσ =


σ1 0 · · · 0
0 σ2 · · · 0
... ... . . . ...
0 0 · · · σk

 (2.13)

and
σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0, k = min(m,n) (2.14)

σi are the so-called singular values of A.

Now, if A is given as a transfer function matrix, the singular values can be
calculated for each and every desired frequency and plotted as such to form the
MIMO version of the bodeplot and the same input-output gain relations can be
analysed.

2.1.3 Spectral Radius
The spectral radius of a matrix (system) G is defined as the magnitude of the largest
eigenvalue of said matrix G.

ρ(G) = max|λi(G)| (2.15)

While it resembles a norm, it is not a norm as it does not satisfy conditions 3
of (2.2) or (2.9). Even though it is not a norm, it has a useful property. It sets a
lower bound on any matrix norm.

2.1.4 Linear Fractional Transformations
Linear fractional transformations (LFT) as it turns out, are useful for interconnect-
ing matrices with each other.

Consider the matrix A, with dimensions (n1 + n2)× (m1 + m2) partitioned as
follows

P =
[
P11 P12
P21 P22

]
(2.16)

Now let two other matrices, called ∆ and K (the somewhat peculiar choice of
names becomes apparent later) with dimension m1 × n1 and m2 × n2 respectively.
The linear fractional transformation is now defined as follows
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Fl(P,K) , P11 + P12K(I − P22K)−1P21 (2.17)
Fu(P,∆) , P22 + P21∆(I − P11∆)−1P12 (2.18)

where u and l denote the upper and lower half of P . Note that the invertability of
(I − P22K) and (I − P11∆) is a strict criteria for the LFT to exist.

2.2 Dynamic Vehicle Model
Controller design doesn’t necessary need a detailed model, however robust control
in the form of H∞ depends upon it. A proper model also provides a firm basis
for analysis able to identify various aspects of the system that affects the controller
design and performance. The ideal model should of course describe the real system
as good as possible. However, since the tools used for analysis and calculation of
H∞-controllers are based on linear systems, the model must also be based on linear
equations. The model should if possible also make use of parameters that are readily
available in the actual system so that they can be easily measured. Any model is also
easier to understand and therefore analyse if the physical equation are somewhat
intuitive.

Since vehicle dynamics is a well explored area, the models described in Vehicle
Dynamics and Control by Rajesh Rajamani [5] were used as foundation.

2.2.1 Bicycle Model of Lateral Vehicle Dynamics
To describe the dynamic motion of the vehicle a Two degree of freedom (2DoF)
bicycle model is used as described by Rajamani [5]. Such a model describes the
lateral and rotational dynamics of the vehicle under the assumption of constant
forward velocity and small steering, and thereby also small slip angles. It also
assumes dry conditions, meaning a friction coefficient of 1.

Figure 2.1: 2DoF bicycle model

The model consists of a front and a rear tire. It has a mass m and the distance
to the CoG from the front and rear axis are `f and `r respectively. The front wheel
is steerable with the angle δ. To give the bicycle the ability to rotate, `f and `r
are seen as levers and the friction between the tires and the road is the force acting
upon them under the assumption of no skid[6].

may(t) = Fyf (t) + Fyr(t) (2.19)
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ay(t) is composed of the lateral acceleration ÿ(t) and the centripetal acceleration
Vxψ̇(t), where Vx is the longitudinal velocity and ψ̇ is the yaw rate of the vehicle.
Fyf (t) and Fyr(t) are the lateral tire forces.

m(ÿ(t) + Vxψ̇(t)) = Fyf (t) + Fyr(t) (2.20)

Using moment balance around the z axis results in the following description for
the yaw dynamics, where the difference in force between front and rear tires yields
a torque around the CoG (center of gravity).

Izψ̈(t) = `fFyf (t)− `rFyr(t) (2.21)

Since the tire forces are non-linear, a linear approximation has to be used. For
small slip angles, the tire force is proportional to the slip angle. The slip angle of the
tire is the difference between the steering angle and the heading of the tire, the tire
will resist the twisting motion depending on its stiffness. In figure 2.2 the difference
for the front wheel is calculated as

αf (t) = δ(t)− θV f (t).

The slip of the rear tire is similar, except it can’t be turned.

αr(t) = −θV r(t),

where θV f (t) and θV r(t) are the heading angles of the tires with respect to the
longitudinal axis of the vehicle.

Figure 2.2: Illustration of tire slip angle

The non-linear equations for the tire heading angle are as follows

tan(θV f (t)) = Vy(t) + `f ψ̇(t)
Vx

(2.22)

tan(θV r(t)) = Vy(t)− `rψ̇(t)
Vx

(2.23)
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which for small angles simply yield

θV f (t) = Vy(t) + `f ψ̇(t)
Vx

(2.24)

θV r(t) = Vy(t)− `rψ̇(t)
Vx

(2.25)

The angle of the tires velocity angle is hence the ratio of the lateral velocity and an
addition from the yaw rate of the vehicle, and its longitudinal velocity.

The only thing left to calculate the force is the tire stiffness, Cα.

Fyf (t) = 2Cyf (δ(t)− θV f (t)) = 2Cyfαf (t). (2.26)

Fyr(t) = 2Cyr(−θV r(t)) = 2Cyrαr(t). (2.27)

where the 2 is to account for the fact that the bicycle model has to be augmented
with additional wheels in order du more correctly model a car.

Linearising around Vy(t) = 0, ψ̇(t) = 0 and a constant velocity Vx, the state
space form of the bicycle model is as follows,


ẏ(t)
ÿ(t)
ψ̇(t)
ψ̈(t)

 =


0 1 0 0
0 −2Cαf+2Cαr

mVx
0 −Vx − 2Cαf `f−2Cαr`r

mVx

0 0 0 1
0 −2Cαf `f−2Cαr`r

IzVx
0 −2Cαf `2f+2Cαr`2r

IzVx



y(t)
ẏ(t)
ψ(t)
ψ̇(t)

+


0

2Cαf
m

0
2Cαf `f
Iz

 δ(t)
(2.28)

.

Table 2.1: States of the lateral dynamics bicycle model

δ(t) Steering angle of the wheel(s). [radians]
y(t) The vehicle lateral position is the perpendicular distance from the center

of mass of the car to the tangent of the road curvature. [m]
ψ(t) Yaw angle; orientation angle of the vehicle with respect to global X axis. [radians]

This model is the starting point of the model used. A more suitable definition
is however described next which allows for easier introduction of reference signals.

2.2.2 Dynamic Model in Terms of Error with Respect to
the Road

To be able to follow a desired track, the model is expressed in terms of errors
measuring the deviation from the track [5]. Just as the dynamic lateral vehicle
model expressed in terms of position and heading, the error based model is linearised
around a constant velocity Vx. This model uses the same assumptions and equations
as the model described in 2.2.1 but expresses the states as deviations from the
reference path. Since the desired yaw rate is described by the track, with it’s own
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dynamics, it is separated into its own matrix description showing how it enters the
dynamics.

Table 2.2: How lateral error and yaw error are derived

e1(t) Lateral position error with respect to road. ë1(t) = ÿ(t) + Vx(ψ̇(t)− ψ̇des)
e2(t) Yaw angle error with respect to road. e2(t) = (ψ(t)− ψdes)
ψ̇des Desired yaw rate determined from road radius R. ψ̇des = Vx

R

ė(t) = Aee(t) +Be1δ(t) +Be2ψ̇des (2.29)


ė1(t)
ë1(t)
ė2(t)
ë2(t)

 =


0 1 0 0
0 −2Cαf+2Cαr

mVx

2Cαf+2Cαr
m

−2Cαf lf+2Cαrlr
mVx

0 0 0 1
0 −2Cαf lf−2Cαrlr

IzVx

2Cαf lf−2Cαrlr
Iz

2Cαf l2f+2Cαrl2r
IzVx



e1(t)
ė1(t)
e2(t)
ė2(t)



+


0

2Cαf
m

0
2Cαf lf
Iz

 δ(t) +


0

−2Cαf lf−2Cαrlr
mVx

− Vx
0

−2Cαf l2f−2Cαrl2r
IzVx

 ψ̇des
(2.30)

This error model now has the benefit of an added reference signal ψ̇des. As
seen when comparing the error based model, (2.30), with the local lateral model,
(2.2.1), the input matrix for δ(t) (B1) remains the same in both models. This is
a natural consequence since, even though the description changes somewhat, the
input dynamics of the system remains the same.

2.2.3 Simplified Yaw and Yaw Rate Based Model
As a result of the track description used, see section 3.5.1, the lateral distance is
no longer important, since any path between way points is allowed. In practice this
means that the lateral error will always be zero, resulting in the removal of the
lateral states. Which results in the following state space representation

[
ė2(t)
ë2(t)

]
=
 0 1

2Cαf lf−2Cαrlr
Iz

2Cαf l2f+2Cαrl2r
IzVx

 [e2
ė2

]

+
[

0
2Cαf lf
Iz

]
δ(t) +

 0
−2Cαf l2f−2Cαrl2r

IzVx

 ψ̇des.
(2.31)

With this simplified model only the dynamic related to yaw and yaw rate are
retained. While this makes it’s impossible to directly control the position, it does
provide a way to see the overall movement of the vehicle as a result of the current
heading and it’s relation to waypoints.
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2.2.4 Track Representation within the Model
Using a block diagram to illustrate the system described by the expression in (2.31),
in feedback with a controller, it is clear that the track reference affects the error
state directly but also that all the errors evolve in a in a fashion dependant upon
each other. This is to be expected, a yaw error will, for example, lead to a position
error over time. This means it is keeping the car close to the desired position by
using only the orientation.

◦ B2

B1 +
∫

A

K

ψ̇des

ė e

δ

Figure 2.3: Block diagram of the error based model

When the controller in implemented in a real world application the description
of how the reference enters the system can be described in a different way. The
error is still described by ė(t) = Ae(t)+B1δ(t)+B2ψ̇des but is sampled as the actual
estimated states of the vehicle subtracted from a reference orientation described by
the track. This representation of the system is illustrated by the block diagram in
Figure 2.4, where x(t) is a vector describing the orientations, t is the track described
in the same global coordinate frame and T describes how the error vector e(t) is made
up from a comparison of the vehicle orientation and the desired track orientation.
P is the car model found in section 2.2.1, but that too stripped of its two lateral
states. Note that the system T is not described in any detail. It just represents that
the track itself can be seen as dynamics shaping the output of the dynamics of the
car into new states described as errors from the wanted states.

Even though ψ̇des can be seen as a reference signal, it enters the system as a
disturbance that affects the states as described by matrix B2. This means that the
feedback controlled system (A − B1K) will not be able to converge the tracking
errors to zero [5].
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P T

K

x e

δ

t

Figure 2.4: Block diagram illustrating how the track is described as an error.
Where the dynamics from the track t to the states e(t) lies within T .

The following figure provides a more visual representation of the system in
terms of local and global coordinates and the track.

Figure 2.5: A representation of the vehicles local coordinate frame in a global
frame with track description included

2.3 Robust Control
The principle of robust control is an area of control that targets uncertainties and/or
uncertain dynamics of systems. These could range from simple measurement noise
to the more extreme case of completely broken components of a system. Different
types of controllers yield different levels of robustness, even controllers that are not
robust by nature (by nature here meaning by mathematical design) can be robust
under certain circumstances. While this level of robustness might be sufficient for
many applications, there is no way of guaranteeing tracking performance.
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Consider the exemplary explanation of the impact of uncertain parameters and
performance criteria below. To keep it simpler, it uses a single performance weight
along with the parametric uncertainties as well as a weighted disturbance input.
Should it be required, more can of course be added.

The effect of uncertain parameters can be seen as a multiplicative (or additive)
error on either the input or the output of a nominal plant Pnom. Output multiplica-
tive uncertainty is fairly intuitive as it is simply the (hopefully) expected nominal
output and some relative errors added, forming the following

Preal = (I +W1∆W2)Pnom. (2.32)

For simplifying purposes, consider a scalar plant, preal is in that case a signal
comprised of the nominal output, pnom, and a weighted additional response added
to it, (w1∆w2)pnom. w1 and w2 shapes the additional response in both frequency
and magnitude and ∆ norm bounds the signal (||∆||∞ ≤ 1), as stated in 2.1.1,
allowing signals to be compared regardless of type (this notion makes more sense in
a MIMO/SIMO situation where the state outputs often are different units). Finally
an additional weight w2 can be added to further shape the signal if desired.

The Block Schematics of this is the following figure 2.6

Figure 2.6: Nominal plant with parametric uncertainty described as multiplicative
output error

The weights W1 and W2 are design criteria, but they should strictly match the
expected parametric uncertainty or the controller will either not be able to handle
the errors or it will over-compensate, which might result in a controller difficult to
realise. This requires the weights to match the resulting frequency behaviour of the
parametric errors as well as magnitude discrepancies.

Having defined the parametric uncertainty of the system, focus is now on per-
formance. While the controller primarily has to remain stable for all possible per-
turbations resulting from the changes in parameters, some level of performance is
desired. To analyse performance, some or all outputs are chosen as so-called perfor-
mance outputs. This output is weighted according to desired levels of performance
for each signal, with added (weighted) disturbance and added to the system, see
figure 2.7.
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Figure 2.7: Plant Pnom with added parametric uncertainties, performance output
and disturbance weighting

For the next couple of steps, a new structure is defined, the so-called ∆PK
structure. Given the perturbations ∆ above, it is possible to ’extract’ these signals
and give them their own block. Knowing that

||∆||∞ ≤ 1

, the desired stability analysis of the system can then be done without violating the
small gain theorem. To do this, a slight adjustment to the plant given in figure 2.7
is made, see figure 2.8

Figure 2.8: Plant Ptot

As evident from the figure, the ∆-block has been extracted, and its input and
output are now instead included into Ptot. A controller K has also been added to the
description. Inputs to the plant are the normalised perturbations u∆, the exogenous
disturbances w and the control signal u. Outputs of the plant are the weighted
perturbations y∆, the so-called performance outputs zn and the measured output y.
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Figure 2.9: ∆PK representation of a system

To analyse this in terms of robustness, yet another structure is used, the N∆-
structure. This structure considers the control signal u to be an internal signal and
thus creates a more suitable basis of analysis for the robustness as the control signal
is excluded from the loop transfers.

Figure 2.10: ∆N representation of a system

The N is derived by deriving all the loop transfer functions of figure 2.8 above
while treating the control signal as an internal signal (ergo not an input), yielding

N =
[
N11 N21
N12 N22

]
=
[
−W1PnomK(I + PnomK)−1W2 −W1K(I + PnomK)−1Wn

−WperfPnomK(I + PnomK)−1W2 −WperfPnomK(I + PnomK)−1Wn

]
(2.33)

The same result is achieved via LFT, N = Fl(Ptot, K), see section 2.1.4, given
the inputs [

u∆
w

]
(the control signal is a part of the loop and hence not considered an input to the
system) and the outputs [

y∆
z

]
.

To verify and guarantee performance and stability, a few metrics are defined,
namely:
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• NS - Nominal stability.
– Given the plant Ptot (perturbations ∆ = 0), is the controller K

providing internal stability?
– Verification: Internal stability of N .

Note: Stability analysis can of course be done on Pnom directly, as the
added weight simply scales the output and thus does not affect stability

• NP - Nominal performance
– Given NS, are the performance criteria met for the nominal plant Pnom?
– Verification: ||N22||∞ < 1

• RS - Robust stability
– Given the uncertain plant, effectively a set of plants, Punc, is the controller
K providing internal stability?

– Verification: ||N11||∞ < 1
• RP - Robust performance

– Given RS, are the performance criteria still met?
– Verification: ||N ||∞ ≤ 1

2.3.1 The Standard Linear Quadratic Regulator
Given a state space representation of a time-invariant system on the form

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(2.34)

where x(t) are the states and y(t) are the measured outputs. A is the transition ma-
trix describing the linear or linearised differential equations of the modelled system.
B is the input transition matrix, it is formed in the same way as A, but describes
how the input propagates through the states. C is the output matrix, and describes
how the states, together with the input and the feedthrough matrix D effects the
output of the system.

In order to achieve the desired states, the control input can be designed to do
so. This is done by ensuring that the control policy of the system relocates the poles
(eigenvalues) of the closed loop system, (A−BK)x(t), to satisfactory positions.

Placing these poles turns out to be an excellent use for optimisation, specifically
Lagrangian optimisation. By creating a cost functional on the form

J = 1
2

∫ ∞
0

x(t)TQx(t) + u(t)TRu(t)dt =
∫ ∞

0
V (x(t), u(t)), (2.35)

the poles can be located optimally in the sense of Q and R.
Q ∈ Rn×n and sets the level of white noise process noise, this is what yields

the robustness of the LQR. It can perhaps more intuitively be seen as the cost of
having the state incorrect where as R ∈ Rm×m sets the cost of control signal use. n
being the number of states and m being the number of inputs.

The task is now to minimise J by the location of poles. This is done by solving
the Euler-Lagrange equation,
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[
∂V

∂x(t)

]∗
− d

dt

[
∂V

∂ẋ(t)

]∗
= 0, ∀t ∈ [t0, tf ] (2.36)

where t0 is the initial time and tf is the final time.
To solve this equation, or rather the optimisation problem that it describes,

first a few assumptions have to be made regarding the system:
• The control signal is unconstrained, that is to say u(t) ∈ [−∞,∞]
• The initial conditions x0 = x(0) are given.
• The two weighting matrices Q and R are symmetric and positive semi-definite.
R also has to be strict positive definite.

• The LTI system has to be detectable (any unobservable states of the system
must be asymptotically stable) and stabilisable (any uncontrollable states of
the system must be asymptotically stable).

Under these assumptions, and additionally the assumption of an optimal solution
the Hamiltonian of the system is formed,

H∗(x(t), u(t), λ(t)) =
1
2x
∗T (t)Qx∗(t) + 1

2u
∗T (t)Ru(t) + λ∗T (t)(Ax∗(t) +Bu∗(t)) =

V (x∗(t), u∗(t)) + λT (t)(Ax∗(t) +Bu∗(t))

(2.37)

where λ(t) is the well known Lagrange multiplier, here denoted co-states.
To find an optimal solution, there are a few conditions that need to be fulfilled[7].(

∂H

∂u(t)

)∗
= 0 (2.38)

(
∂H

∂λ(t)

)∗
= ẋ∗ (2.39)

(
∂H

∂x(t)

)∗
= −λ̇∗(t) (2.40)

[
H∗ +

(
∂S

∂t

)∗]
tf

δtf +
[(

∂S

∂x(t)

)∗
− λ∗(t)

]T
tf

δxf = 0 (2.41)

The last condition is for this case fulfilled automatically. The S-term relates
to the more general case of LQR control where the system has a desired final state
and time and cost can be applied to those as well. Since this particular case is a so
called infinite-time optimal control problem, this term is 0 (there can be no cost on
a final state if there is none).

The optimal controller is given from the first condition as a function of the
states and the co-states as:

(
∂H

∂u(t)

)∗
= Ru∗(t) +BTλ∗(t) = 0 =⇒ u∗(t) = −R−1BTλ(t). (2.42)

This optimal controller is now inserted into the second condition, yielding the
following

16



2. Theory

(
∂H

∂λ(t)

)∗
= ẋ∗(t) = Ax∗(t) +Bu∗(t) = Ax∗(t)−BR−1BTλ∗(t)︸ ︷︷ ︸

u∗

(2.43)

And finally, the third condition results in

− λ∗(t) =
(
∂H

∂x

)∗
= Qx∗(t) + ATλ∗(t). (2.44)

In (2.42) the optimal controller is expressed as a function of the co-state λ(t).
Since however a state feedback controller is desired, this is merely a help along the
way. What is needed is a way to relate the co-state λ(t) and the state x(t). Therefore
a linear transformation matrix is assumed to exist between the optimal state and
the optimal co-state,

λ∗(t) = P (t)x∗(t) (2.45)

Next step is to differentiate the new co-state equation and repeat the previously
stated optimality conditions.

λ̇∗(t) = Ṗ (t)x∗(t) + P (t)ẋ∗(t) (2.46)

ẋ∗(t) = Ax∗(t)−BR−1BT λ∗(t)︸ ︷︷ ︸
P (t)x∗(t)

= Ax∗(t)−BR−1BTP (t)x∗(t) (2.47)

λ̇∗(t) = −Qx∗ − ATλ∗(t) = −Qx∗(t)− ATPx∗(t) (2.48)

Substituting (2.47) and (2.48) into (2.47) yields the following form,

−Qx∗(t)− ATP (t)x∗(t) = Ṗ (t)x∗(t) + P (t)
(
Ax∗(t)−BR−1BTPx∗(t)

)
(2.49)

By means of algebra gymnastics, this can be written as

x∗(t)
(
Ṗ (t) + P (t)A+ ATP (t) +Q− P (t)B−1BTP (t)

)
= 0 (2.50)

This is still however dependent on the state, what is desired is a solution valid for
arbitrary states x∗. To achieve this, a solution to the following nonlinear differential
equation has to be found

Ṗ (t) + P (t)A+ ATP (t) +Q = P (t)BR−1BTP (t) (2.51)

which is indeed on the form of a matrix Riccati[8] equation, in fact, it is called the
matrix differential Riccati equation.

P (t) is obviously time-dependent, it can however be shown[7] that P (t) remains
near constant while t << tfinal. In the case of the very common infinite-time control
problem, tfinal = ∞ meaning that any and all lengths of time can be considered
<< tfinal and therefor the solution to P (t) is constant. Effectively, limt→∞ P (t) = P .

The controller K is then given by
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K = R−1BTP (2.52)
Finally yielding the state feedback controller as

ẋ(t) = Ax(t)−BKy(t) +Br(t)
y(t) = Cx(t)−DKy(t) +Dr(t)
u(t) = Ky(t)

(2.53)

2.3.2 The H∞ Control Problem
To ease the transition to H∞ controller which works on the basis of norms, the LQR
controller can be described in terms of a norm minimisation, namely the 2-norm.
Following (2.35) and (2.1), the cost functional can be defined as

J = 1
2
(
||Q

1
2x(t)||22 + ||R 1

2u(t)||22
)

(2.54)

Also working off of the basis of norms is the H∞-controller. The sole purpose of
the H∞ synthesis is to find a stabilising controller that, given the uncertain plant,
ensures

||N ||∞ ≤ γmin.

||N ||∞ = ||F`(P,K)||∞ = max
w(t)6=0

||z(t)||2
||w(t)||2

(2.55)

The effect of this is that for any and all perturbations, exogenous disturbances
and measurement noise within the specified bounds will be attenuated to such a
degree that the overall gain of the system (the H∞-norm) never exceeds γmin < 1.
Where γmin is the cost of the optimal controller. That is to say, the system remains
stable while performance criteria are met.

Finding such an optimal controller is in theory great, but in reality often not
necessary or computationally difficult. Instead, a sub-optimal H∞-controller is cal-
culated where γ > γmin and γ < 1 is still a requirement to maintain stability
according to the small gain theorem.

The task of finding the suboptimal controller is easier to explain if the system
is given on a more standard state-space representation.

If a plant P is given as a transfer function matrix (weights are often comfortably
described as transfer functions) it first has to be translated to state-space form. If
P is a state space (weights are defined as state-spaces), it is possible to partition
the plant giving the following structure,

P =

 A B1 B2
C1 D11 D12
C2 D21 D22


Given this standard structure, the task of finding a controller depends on a

fulfilling a few criteria. It can be shown [4][9] that such a controller exists if and
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only if I, II and III are met.

• (I) X∞ ≥ 0 is a solution to the algebraic riccati equation:
– ATX∞ +X∞A+ CT

1 C1 +X∞(γ−2B1B
T
1 −B2B

T
2 )X∞ = 0,

such that Re λi(A + (γ−2B1B
T
1 − B2B

T
2 )X∞) < 0. Where λi(·) are the

eigenvalues.
• (II) Y∞ ≥ 0 is a solution to the algebraic riccati equation:

– ATY∞ + Y∞A+B1B
T
1 + Y∞(γ−2CT

1 C1 − CT
2 C2)Y∞ = 0,

such that Re λi(A+ Y∞(γ−2CT
1 C1 − CT

2 C2)X∞) < 0.
• (III) The spectral radius of X∞Y∞ never exceeds γ2

– ρ(X∞Y∞) < γ2

From this a controller structure is created,

K =

 A∞ −Z∞L∞ Z∞B2
F∞ 0 I
−C2 I 0


Where

F∞ = −BT
2 X∞ (2.56)

L∞ = −Y∞CT
2 (2.57)

Z∞ = (I − γ−2Y∞X∞)−1 (2.58)
A∞ = A+ γ−2B1B

T
2 X∞ +B2F∞ + Z∞L∞C2. (2.59)

Given K, all possible solutions to the controller problem are then created from
K∞ = LFT (K,Q) where Q is a stable LTI matrix where ||Q||∞ < γ. Q is an
additional design parameter that can be used to further tune the behaviour of the
controller. The simplest solution satisfying all the criteria is to simply set Q = 0
(what system is more stable than one that does nothing?).

With a Q = 0 the solution for the controller K∞ is,

K∞ = −F∞(sI − A∞)−1Z∞L∞ (2.60)
K∞ is now a controller containing an observer part and a state feedback part.

Extruding the observer, it can be seen that is is very similar in structure to the
Kalman filter, this can be used to create robust filtering (not covered in this thesis),
although it of course has different content and also an added part estimating the
worst case disturbance.

˙̃x(t) = Ax̃(t) +B1γ
−2BT

1 X∞x̃(t) +B2u(t) + Z∞L∞(C2x̃(t)− y(t)) (2.61)

the feedback controller part is given by

u(t) = F∞x̃(t). (2.62)
Now that all the conditions for finding and constructing a stabilising controller

are given, what remains is to find a suitable algorithm for doing this. Manual
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calculations would prove to be extremely time consuming, with the use of a computer
the calculations can be done in a couple of seconds.

Since the goal is to find the smallest possible ||N ||∞ < γ given the above stated
criteria, an iterative search over ever decreasing values of γ is a rather simple solu-
tion. The Bisection search algorithm is commonly used and fairly straightforward,
hence it is quickly summarised below.

Algorithm 1 Bisection search algorithm
1: Give an initial γ, a step size d and a tolerance ε.
2: if I,II and III satisfied then
3: Decrease γ by d.
4: if γ − γold ≤ ε then
5: Done.
6: else
7: Go to 2.
8: end if
9: else

10: Increase γ by d
2

11: Set d = d
2

12: Go to 2.
13: end if

It is obvious that (γ + ε) > γmin hence the controller will be suboptimal to a
degree depending on epsilon. In reality, commercial software such as Matlab is
used to calculate a controller. hinfsyn() is an example of a command available in
Matlab that given the partitioned plant Ptot calculates a sub-optimal controller.

2.4 Position and Direction Estimation
All feedback based control are dependant on measurements. In the case of controlling
a vehicle, position, velocity, yaw and yaw rate are all quantities of interest. While
some of these can be measured directly, such as position by the camera, or the yaw
rate by the IMU, there is still a need to merge these measurements and calculate
the quantities not directly available. The reliability of the measurements available is
also something that needs to be taken into consideration. While numerous different
strategies exist, the de facto standard[10] for position estimation is the extended
Kalman filter. The reason being the ability to use non-linear models of motion,
relatively low complexity and ease of implementation.

2.4.1 Extended Kalman Filter
The extended Kalman filter is a variation of the Kalman filter allowing the use of
nonlinear models. The underlying process is the linearisation about the current
estimate of the mean and covariance. Even though the extended Kalman filter is
not the only flavour of Kalman filters able to perform nonlinear state estimation,
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is has been considered to be the standard way[10], as long as the transition models
used is well defined. It is also the standard when dealing with problems similar to
the one at hand such as navigation systems and GPS.[11]

Implementation wise it can be practical to describe the Kalman filter algorithm
in two parts, prediction and update. The prediction part updates the state as they
would evolve according to the model and the update evaluates the measurements and
updates the states with the measurements weighted according how likely they are to
be correct. Following a standard formulation of the EKF such as described in [12],
with slightly changed notation for readability (with the knowledge that Wikipedia
would be a first stop for those not acquainted with Kalman filtering), the algorithm
works as follows.

f() the state-transition model
h() the observation model
Qk the covariance of the process noise
Rk the covariance of the observation noise

The prediction part estimates the state x̂ by propagating the current state
through the model f(). The covariance matrix P also changes to reflect the increased
uncertainty caused by predicting the next state without measurement data.

Predicted state estimate x̂k|k−1 = f(x̂k−1|k−1,uk)
Predicted covariance estimate Pk|k−1 = FkPk−1|k−1F

T
k + Qk

(2.63)

The measurement part compares the actual measurements z with the expected
measurement from the model h(). This is then used to calculate the Kalman gain
K (not optimal since the extended Kalman filter isn’t optimal), which is used to
update the states and the covariance matrix.

Innovation or measurement residual ỹk = z − h(x̂k|k−1)
Innovation (or residual) covariance Sk = HkPk|k−1H

T
k + Rk

Near-optimal Kalman gain Kk = Pk|k−1H
T
k S−1

k

Updated state estimate x̂k|k = x̂k|k−1 + Kkỹk

Updated covariance estimate Pk|k = (I −KkHk)Pk|k−1

Where Fk = ∂f

∂x

∣∣∣∣∣
x̂k−1|k−1,uk

and Hk = ∂h

∂x

∣∣∣∣∣
x̂k|k−1

.

(2.64)
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3.1 Prototype Platform
One of this project goals is having a functioning, relatively easy to set up proto-
type platform to see continued use in labs and other control evaluating experiments.
The goal is for the software of the platform to be highly modularised. Modular-
isation allows for each and every part to be designed individually, so long as the
communication between parts is standardised, more on this later.

3.1.1 Hardware
The prototype platform is based on a number of vehicles as well as a track to run
them on. It also includes a vision system and a few micro processors and sensors.
All of the control is done from a laptop computer and control signals are then sent
to the car. This introduces time delays to the system, but ensures that there is
enough processing power for all calculations.

3.1.1.1 Vehicles

To verify the functionality of a designed controller on real R/C cars, cars are needed.
For this purpose the platform uses two Kyosho Mini-Z MR-03S[13] RWD RC 1:27
scale RC cars.

3.1.1.2 Micro Processor

To send data from the car to the main computer, a NodeMCU development[14] kit
is used. Communication is easily achieved using the built in ESP8266-12E WiFi
module. It also supports the use of ROS topics via the rosserial_arduino[15]
package. WiFi support is however not natively supported by the rosserial package
and additional libraries[16] have to be installed in order to serve as a translating
bridge between the WiFi and the serial communication.

3.1.1.3 Sensors

The vision system consists of a Point Grey FL3-U3-13Y3M-C [17] camera, capable
of 150 frames per second at a resolution of 1280x1024 pixels, yielding a very high
quality image. This camera is coupled with a lens with a focus length of 4.5 mm
and an angle of view of 79° × 59.4° giving a good picture at the intended distance
to target (∼ 2.3m, height of a standard ceiling).
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Onboard each of the cars is also one MPU-6050 IMU used to collect local motion
data from the car to be used in later sensor fusion.

3.1.1.4 Controller

To be able to send control signals to the cars, the included controller has been
modified so that instead of a user physically controlling the potentiometers on the
controller, a micro processor now handles those signals. This is done due to some-
what limited space, and weight restrictions of the cars. Control signals are sent from
the main computer to an Arduino Uno[18] prototype board via USB which in turn
sends signal to a controller shield that uses a pair of MCP4877 2-channel DACs to
control the voltage in place of the potentiometers. A circuit diagram of the two
controllers, the two DACs and the arduino is found in Figure 3.1

Figure 3.1: Circuit diagram of the controllers

3.1.1.5 Tracking LEDs

Mounted on top of each of the cars are IR LEDs in very specific arrangements,
see figure 3.4. The center LEDs are used as a way of identifying which car that is
detected and the outer triangularly placed LEDs are used to track the position and
heading of the car.

3.1.1.6 Power

In order to power the onboard sensors and IR LEDs, a battery solution is designed
using a single 3.3v LiPi battery and a Adafruit PowerBoost 1000[19]. The Power-
Boost 1000 allows for charging of the 3.3V battery during use, which is of great help
during testing of the tracking. It also regulates the 3.3V up to 5.2V allowing use
with the Node MCU board.
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3.1.1.7 Mounting Superstructure for the Kyosho Vehicles

To augment the cars with extra sensors, power supply and Infrared LEDs for the
vision system, they need to be mounted on the chassis. To do this physically, such
hardware is designed in Autodesk Fusion 360[20] and then manufactured using a
laser cutter. The result of this is found in figure 3.2.

(a) Drawings of the three lasercut
components.

(b) Rendered picture of the assem-
bly, including electronics (board for
the LED is not pictured, although its
mounting points are marked in red.)

Figure 3.2: CAD of the superstructure mounted on the cars.

Furthermore, the LEDs require the correct setup to function properly. This is
achieved through the use of a circuit board, which consists of a stripboard and a
few appropriate components. See figure 3.3.

(a) Circuit diagram for car 0

R1

47 

R3

33 

D1

D2 D3

D4

+

-

5.2V

D5

R2

33 

(b) Circuit diagram for car 1

Figure 3.3: Circuit diagram of the stripboard configuration for the two different
cars

3.1.2 Software
Different hardware components of the platform require different types of software to
function as intended. Some of this software is readily available and some of it has
to be written from scratch.

3.1.2.1 ROS - Robot Operating System

Contrary to what the name suggests, ROS is not an operating system, it is a frame-
work for writing software, specifically targeted towards robots. It aims to distribute
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tasks in so called nodes. A node is a program, an executable, that uses the ROS
framework to send and receive data from other nodes. The node can of course also be
written to also perform any other external task, controlling a servo or receiving data
from a sensor. The communication is done via Topics, predefined message buses.
Unless a user explicitly demands it, nodes don’t know who’s subscribing to its data
or who’s sending the data it’s publishing to and it doesn’t have to. All of that is
handled by the master (The main ROS core node). This makes modularisation and
distribution of systems very easy.

Since ROS is completely open source, there’s often a lot of readily available
packages that users are free to use. This often makes it possible to get set up fairly
quickly with developing a package for use with a desired project.

3.1.2.2 Tracking Node

The tracking of cars is mainly done visually via the camera. To do this effec-
tively, specific software has to be written. This is handled via a ROS node called
blob tracker which makes use of the camera video feed and OpenCV libraries to
detect and track the IR LEDs mounted on the cars. The code functions as follows:

Algorithm 2 Track cars
1: Fetch a single frame from the video feed.
2: As a simple filter threshold the image, sorting it into white and black parts.
3: Dilate all white parts (make them larger).
4: Find the contours of all white areas.
5: if minArea < Area of contour < maxArea then
6: Contour accepted
7: else
8: Contour discarded
9: end if

10: Find the center of the accepted white areas
11: Create a sub-image of the non-dilated image at the newly found centers.
12: if Number of detected contours == 4 then
13: Find triangularly spaced dots.
14: Get the 2D pose of the found dots and set car ID to 0.
15: else if Number of detected contours == 5 then
16: Find triangularly spaced dots.
17: Get the 2D pose of the found dots and set car ID to 1.
18: else
19: Do nothing.
20: end if
21: Publish each of the 2D poses on their own topics.
22: Go to 1.

Creating the sub images and doing the tracking in them is a way of further
trying to make sure that the areas detected actually belong to a car and aren’t parts
of something else.
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To make best use of the camera, this loop needs to run at 150Hz as to not lose
any frames and thereby position data of the cars.

Figure 3.4: IR LED arrangement for car 0 (left) and car 1 (right)

Local orientation of the car is achieved via the onboard IMU, which is fused
together with the camera measurements to form a better tracking estimate than any
of the two would achieve by itself.

3.1.2.3 Extended Kalman Filter Node

Considering the assumption that even though the position measurements from the
camera tracking are accurate, the update frequency is around 150 Hz limited by the
camera. This means that the filters primary function in this case is to estimate the
intermediate values using the motion model. In order to get a smoother position, the
EKF node is run at 500 Hz. The node can subscribe to the position measured by the
tracking node or the IMU data or both. Using these measurements in conjunction
with the motion model it estimates position, velocity, acceleration, yaw and yaw
rate which it then publishes.

3.1.2.4 Controller Node

3.1.2.4.1 Steering Control Having designed the controller in Matlab it has
to be implemented on the car. To realise this, the H∞ controller, discretised and
in state space form is simply read by the controller code and combined with the
measurements of the car to form the next control signal. This is done through the
use of a few matrix multiplications,

xc(k + 1) = Acxc(k) +Bcx(k)
u(k + 1) = Ccxc(k) +Dcx(k).

(3.1)

Where xc(k) are the current internal states of the controller, x(k) are the current
measured states of the car, and Ac, Bc, Cc and Dc are the state space matrices of
the controller.
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The control signal u(k + 1) is then sanity checked (if it’s above maximum, set
it to maximum vice versa for minimum) and sent to the Arduino connected to the
controller hardware.

Similar strategies are used for the LQR and PID controller. The LQR is a simple
vector multiplication and the PID uses the yaw to form a yaw error and uses the
actual yaw rate form the Kalman filter instead of the forward Euler approximation
at each time instance for the differentiating pat.

The connection between the ROS node on the Arduino and the Controller node
is done via TCP/IP. It is actually a serial communication running over a USB
cable, but the information is packaged as a TCP/IP package. This communication
has a maximum baudrate which must not be exceeded. If the rate is exceeded,
the connection will start queuing messages (because of the delivery guarantee of
the TCP/IP package) potentially causing huge latency problems with the control
signals. To combat this, the control node is run fairly slowly at 100Hz.

3.1.2.4.2 Velocity Control In the model used for description of the vehicle
dynamics, the velocity is assumed constant. This has the effect that the model
used to calculate steering control cannot be directly applied to full control of both
steering and velocity of the vehicle. Since the velocity needs some form of control a
simple PID is implemented and tuned using the Ziegler-Nichols method[21].

While a PID designed this way does have a good tracking performance of refer-
ence, this velocity reference has to be decided. A simple strategy is to let the vehicle
reach maximum accepted velocity for straight parts of the track and reduce velocity
before corners. This is achieved by calculating the angle between the angle of the
vehicle and the next two way points of the track.

heading
Track[i]

Track[i+ 1]

αt

Figure 3.5: Angle between vehicle and future way points

As shown by the illustration in figure 3.5, the maximum possible angle is π
radians. This allows for a normalisation of the angle by dividing by π giving ratio
with a maximum value of 1 if the heading of the vehicle is identical to the track.
Using this normalised value a reference can be shaped for suitable velocity depending
on the curvature of the path.

In practice this is made by scaling according to a linear equation on the form
y = kx+m where m is the minimum wanted velocity, k+m is the maximum wanted
velocity and x is the normalised angle αt. This yields a reference signal y linearly
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dependent on the track. Of course, should a constant velocity be desirable, y can
be set accordingly.

3.1.2.5 Visualisation Node

As it is useful to be able to keep track of the virtual representation of the car a
simple visualisation is implemented. In figure 3.6 presented below, both position
and yaw, as well as angle error and reference point can be seen.

Figure 3.6: A visualisation of position, yaw, angle error to track as well as current
reference point, track way points and ≈ 2 seconds of travelled path

3.2 Parameter Analysis
In order for any valid design of robust control to be made, the parametric uncer-
tainties of the system have to be defined. To do this, the uncertain parameters are
created using the Matlab command ureal(), where nominal value, range and type
of uncertainty is specified. This yields a set of models, which in turn can be used to
analyse the impact of errors in the different parameters.

3.2.1 Frequency Response Analysis of Error Model
To find the parameters causing the largest change in dynamics, singular value plots of
the open loop system, see Figure 2.3, are compared for different uncertain parameters
and since the model is linearised around a constant velocity, also different velocities.
The nominal parameters are given in table 3.1 below.
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Table 3.1: Model parameters

m = 0.207 Mass of the vehicle. [kg]
`f = 0.0495 Distance from centre of mass to front axis. [m]
L = 0.102 Wheel base. [m]
`r = L− `f = 0.0525 Distance from centre of mass to rear axis. [m]
`w = 0.06 Width of the vehicle body [m]
Iz = m

12(L2 + `2
w) = 0.00024 Rotational inertia of vehicle, z-axis. [kg ·m2]

Cαf = 20 Tire stiffness constant, front wheel. [N/rad]
Cratio = `f

`r
= 0.9429 Tire stiffness ratio (cornering stiffness is load dependent)

Cαr = CαfCratio = 18.86 Tire stiffness constant, rear wheel. [N/rad]
Vx = 1.8 Velocity used for linearisation.

The choice of Vx is done because simulations show that linearising around a
higher velocity makes for a model with wider range of suitable velocities. That is
to say, a model linearised around a higher velocity has more reasonable dynamics
at lower velocities than one that has been linearised at a low velocity and run at a
higher.

The parameters that yield a significant cause of concern, or rather those that
require either extra attention when designing a robust controller or extra carefulness
when measuring them are found using singular values.

3.2.1.1 Vehicle Mass

The mass of the vehicle is measured using a kitchen scale, this is assumed to have
a few % error. On top of that, the mass might change over the lifetime of the car.
Different batteries weigh differently from other brands, parts might be exchanged
etc. Therefore another couple of % is added yielding a total expected deviation of
±5%. Such a deviation from nominal mass of the vehicle yields the sigma plot below,
showing that the undesirable changes, albeit small, are located in higher frequencies.
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Figure 3.7: Sigma plot containing 20 samples of G with uncertain mass. Nominal
plant shown in red.

3.2.1.2 Centre of Gravity

Next uncertainty in the system is the distance from centre of gravity (CoG) to the
front axle (distance to rear axis being the remainder of L − `a, where L = 0.102m
is a certain and known value). Centre of gravity is fortunately easy to measure
for the stationary vehicle, but the mounting solution of the battery means that it
might change slightly between runs. Moreover, the fact the CoG is not at the same
height as the wheel axes, the distance from CoG to front axle (and rear) will differ
as the vehicle brakes and accelerates, inducing pitch as visualised in figure 3.8. The
maximum possible deviation is easily measured yielding a good approximation for
the magnitude of the uncertainty.

Figure 3.8: Visualisation of brake induced pitch motion of the vehicle

The pitch angle θ is measured to be a maximum of 1.68° and the vertical
distance from the longitudinal axis through the wheels to the CoG (l = 15mm)
(Note that this value too is fairly uncertain and adds to the total uncertainty of the
CoG) yielding an expected maximum deviation in the longitudinal direction of

CoG∆ = 15sin(θ) = 0.48mm (3.2)

This is equal to 0.48
`f

= 0.48
49.5 ∼ 1%. This is doubled to account for uncertainties

31



3. Methods

in the vertical position of the CoG yielding a final uncertainty of 2%. Setting this
uncertainty yields the results found in figure 3.9.
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Figure 3.9: Sigma plot containing 20 samples of G with uncertain centre of gravity.
Nominal plant shown in red.

3.2.1.3 Tire Stiffness

The nominal value for this is taken from an article[22] that measures this value for
slightly larger R/C vehicles. Since the rubber compound, surface and not to mention
size of the tires differ from the R/C car used, this parameter is highly uncertain.
As figure 3.10 verifies, changes in this parameter causes shifts in the dynamics at
higher frequencies.
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Figure 3.10: Sigma plot containing 20 samples of G with uncertain tire stiffness.
Nominal plant shown in red.

3.2.1.4 Tire Stiffness Ratio

Since the rear and front tires have differing width, radius, and load, it makes sense
that they don’t share the same tire stiffness. A ratio is therefore set between them
based on the ratio of the load on the front and rear axes, see (3.3) below. To account
for difference in radius and width differences an error of ±5% from the nominal value
is specified.

stiffnessRatio = `f
`r

(3.3)
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Figure 3.11: Sigma plot containing 20 samples of G with uncertain tire stiffness
ratio. Nominal plant shown in red.

3.2.1.5 Longitudinal Velocity

What perhaps is most disconcerting is what happens when the car is driven at
velocities other than the one used to linearise the model.
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Figure 3.12: Sigma plot containing 20 samples of G with uncertain longitudinal
velocity used for linearisation. Nominal plant shown in red.

The deviation for this test is defined as a set of [0.1, 4]m/s. With such a large
uncertainty in velocity, it would be difficult to realise a controller that is not far too
”careful”.
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3.2.1.6 Total Uncertainty

The total deviation from nominal plant can also be shown if all parameters are
uncertain at the same time, which is of course somewhat more realistic. Linearisation
velocity is here omitted because setting the velocity as an uncertain parameter could
possibly yield a too restrictive controller.
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Figure 3.13: Sigma plot containing 20 samples of G with all uncertain parameters
simultaneously. Nominal plant shown in red.

3.2.2 Estimation of Physical Steering Delay
When sending a steering input to the car, it would be naïve to assume that the
wheels instantly assume the desired angle. Although it turns out that the change is
indeed fast, it is far from instant.

To measure this delay and design a suitable transfer function, the steering is
set to it’s minimum steering angle of −25° and the steering linkage is filmed with
a frame rate of 240 using a smartphone. The steering is then set to the maximum
steering angle of 25°, the number of frames required for the wheel angle to switch
from −25° to 25° are counted and from that a time is calculated. It is found that
the wheels require an average of 8 frames to reach it’s desired angle, yielding a

8
240 = 1/30 ≈ 33ms delay. Adding a simple time delay would be the easy way
out, but what does not capture the dynamics very well. Instead a simple first
order transfer function is designed and added as an input dynamic to the system.
While the correctness of this transfer function is difficult to verify due to the lack of
measurements, it is assumed to be as close as possible with the information available.

A transfer function on the form,
1

s/100 + 1 , (3.4)

yields the step response found in Figure 3.14 below.
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Figure 3.14: Step response of the designed steer delay transfer function

3.3 Controller Synthesis
Using what is described in section 2, four types of controllers for direction control
are designed in order to evaluate performance of the platform. Due to lack of the
longitudinal dynamics of the car, described by the model used for controller design,
the velocity control of the car is handled by a PID controller separate from the
steering. This velocity control implementation is the same regardless of direction
controller implementation.

3.3.1 Directional Controlling PID
The PID controller is a simple non-filtered one, designed according to the Ziegler-
Nichols method[21] and a bit of manual tweaking. It also implements a very simple
anti-windup. Such a controller results in the following parameters:

Table 3.2: PID controller parameters

Kp 1900
Ki 500
Kd 150

The PID is simply an output feedback controller and is not based off of a
model description, hence designing it towards an uncertain plant is no different
than doing it towards a nominal one. Due to the specific software implementaion the
PID control signal output differs from the other controller by not being in degrees.
Instead u ∈ (−1600 1600) which corresponds to the voltage range in millivolt of the
hardware controller described in section 3.1.1.4.
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3.3.2 Linear Quadratic Controller
The first form of robust controller is the LQR. The parameters for this controller
is the expected gaussian process noise and the input cost, since the longitudinal
velocity is not included in the state, the controller is only designed to handle the
steering and will have to do so under varying velocity conditions.

Q =
[
130 0
0 100

]
, R = 6700 (3.5)

signifying an expensive control strategy, yielding a state feedback vector on the
form

KLQR =
[
0.0622 0.0549

]
(3.6)

The LQR controller is based off of a model, but it cannot take the uncertain
parameters into consideration at the same level as the H∞-synthesis, thus, it’s ro-
bustness is limited. In fact, the robustness of the LQR is only described by adequate
phase and gain margins.

3.3.3 1DoF H∞ Output Feedback Controller
Designing a controller often gets more difficult the more demands on performance
you include, knowing that, the first controller is a pure disturbance rejecting one.
Since the controller is decoupled from the longitudinal dynamics, the controller can
not account for it in a robust way, but as with the LQR, the heading and turn rate
of the vehicle are robustly controlled.

The weights used for the 1DoF design are listed and explained below

Table 3.3: System weights for the 1DoF H∞-control design

W1 Uncertainty shaping
W2 Uncertainty penalisation
Wu Performance weight, penalises the control signal use
Wd Disturbance shaping
Wperf Performance weight, penalises the error in Ψ̇
Wn Noise shaping

The weights described in Table 3.3 are designed to achieve this as follows:
Following the analysis in 3.2, W1 and W2 describe the parametric uncertainty

and are created using the Matlab function ucover()[23] which fits an uncertain
system to a set of LTI responses. The function also outputs the multiplicative
uncertainty as weights, W1 and W2. The structure of the ucover() output sets
W2 = 1 and W1 is shaped according to the relative error from the nominal model
caused by the parametric errors.

Figure 3.15 below shows the result of the ucover(), the maximum relative
difference from nominal behaviour over frequencies.
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Figure 3.15: Relative errors of uncertain plant, W1

Wu penalises the use of control input. This weight is set fairly low to allow for
more control signal. Frequency wise it is set according to figure 3.16 to ensure that
jittery behaviour is limited by penalising higher frequencies.
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Figure 3.16: Performance weight for the control signal, Wu

The weight assigned to the disturbance Wd should resemble the actual distur-
bance as close as possible. This can be achieved by collecting data from simulations
runs. As the yaw rate ψ̇ can be calculated as V elocity

Radius
, the desired yaw rate is easily

obtainable from the current velocity of the vehicle and the current calculated radius
of the track. The resulting desired yaw rates can then be analysed with for exam-
ple a fast Fourier transform. This analysis is however tricky in the sense that the
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frequency and magnitude content varies with different controllers. Given this slight
catch 22, empirical results proved that a Gaussian noise with a magnitude of 1.9
gave the best performance.

Wperf = Wp1 is a weight that penalises the state, in this case the errors. It’s
designed to keep performance high up until a bit below the bandwidth of the input
(the control loop is run at 100Hz ≈ 628rad/s), but is fairly relaxed to keep control
use down (the weights influence each other). See figure 3.17.
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Figure 3.17: Performance weight for the error Ψ̇, Wp1

Wn is just as expected a description of the noise that enters the measurements.
It is designed as a static matrix with the expected co-variance of the measurement
noise. These values are easily measured.[

0.02 0
0 0.5

]
(3.7)

The weights are then used to build a system with the structure shown in figure
3.18,
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Figure 3.18: Preal with added design weights for 1DoF H∞ design

The goal is then to assure

||Tdz||∞ = sup ||z||2
||d||2

< γ < 1. (3.8)

In this case, since the controller is purely disturbance rejecting, the reference
signal is seen as a disturbance. This means that what actually is assured is

||Trz||∞ = sup ||z||2
||r||2

< γ < 1. (3.9)

Since the performance state z in this case is the errors, what is minimised is
the reference signals impact onto the errors.

The number of states in the final controller is directly proportional to the num-
ber of signals, the number of weights and the number of outputs. The 1DoF H∞
controller ends up being 10 states. The same number of states as in Ptot.

3.3.4 2DoF H∞ State Feedback Controller
In the case of the purely disturbance rejecting 1DoF controller, even the reference
signal is considered a disturbance signal. Although this might yield satisfactory
results, it is possible to further augment the controller with reference input as well.
This results in a so called 2DoF controller. It has knowledge about both the system
and the reference signal.

Designing a plant for the 2DoF system is very similar to the 1DoF, but the
reference signal is now introduced to the system in a different way. Instead of
the reference signal being treated as a disturbance, it is being treated in the more
common way of comparing it to the output of the plant, weighted and treated as a
performance metric.
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z(t) = ez(t)Wperf = (u(t)Puc − r(t))Wperf (3.10)

The weights used for the 2DoF design are similar in design, but now weighs
other metrics.

Table 3.4: System weights

W1 Uncertainty shaping.
W2 Uncertainty penalisation.
Wu Control weight, penalises the control signal use.
Wd Disturbance shaping.
Wideal Reference behaviour shaping.
Wp1 Performance weight, penalises the difference between Ψr and Ψ
Wp2 Performance weight, penalises the yaw rate Ψ̇
Wn Noise shaping

Again, the W1 and W2 are related to the actual plant and therefore unchanged.
Wu still penalises the use of control input. But it has a slightly different weight-

ing than in the 1DoF case, see figure 3.19, to counteract the effects of the other added
weights.
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Figure 3.19: Difference in control signal performance weight between the 1DoF
and 2DoF design

Wd remains identical to the 1DoF design for the same, the input from the track
doesn’t differ.

Wp1 still penalises errors in Ψ̇. See figure 3.17.
Wp2 penalises the difference between the state behaviour and the desired be-

haviour reference, Wideal, where the reference behaviour is on the yaw, Ψ. Note that
since the output of Preal are the errors, the reference in yaw is always 0, See figure
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3.20 to see the frequency design of Wp2. This shape denotes that it is relatively
expensive to have low frequency errors, meaning we force a low frequency behaviour
of the reference tracking.
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Figure 3.20: Performance weight for the deviation from reference signal

Wideal represents the desired plant response to a reference. The fact that for this
case the reference signal is constantly 0 makes this part some what non-intuitive.
But if seen as a behaviour shaper it should dawn, that while having an instant
tracking of reference would be great, it’s not realistic and might cause the controller
to have very erratic behaviour. Because of this and the fact that the reference is
really on the desired error, the ideal behaviour is described as a first order lead
compensator.

Wideal = s+ 0.00045
s+ 0.045

The step response of in figure 3.21 this shows that error is allowed to begin
with, but should quickly decline towards 0.
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Figure 3.21: Step response of the desired reference behaviour

Using these weights, the following structure is designed, see figure 3.22.

Figure 3.22: Preal with added design weights for 2DoF H∞ design

What makes the 2DoF controller a 2DoF is that it not only receives information
about the plant output, it also is fed with the reference signal (which can be weighted
if needed) giving it more information about the system and thus should yield higher
performance.

The 2DoF H∞ controller ends up being 11 states. Again, the same number of
states as in Ptot
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3.3.5 Velocity Control PID
The PID used to control velocity is a simple non-filtered one, manually tuned. A
simple anti-windup is again implemented. Since there is no feedback on the actual
rotation of the wheels a rate limiter is added to the output to decrease the risk of
’burn out’s. To ensure that the rate limit doesn’t interfere with the integrating part
of the controller, or perhaps the other way around, the integral error is limited to
0.1m/s. To be able to brake more freely, the integrating error is not increasing if
we are braking. The controller parameters are as follows,

Table 3.5: Velocity PID controller parameters

Kp 560
Ki 150
Kd 63

and the rate limiter is set to ensure that the throttle can’t increase more than
4h of maximum per time sample.

The output of the velocity controller relates to a millivolt scale that corresponds
to the throttle controls input which span from 0 to 3200.

3.4 Extended Kalman Filter Implementation

3.4.1 Coordinated Turn Motion Model
To describe the movement of the vehicle a model that can capture the motion
behaviour is needed. While simple models such as constant acceleration usually
can describe most motion, the limited turn radius and the behaviours this give rise
to, encourages the use of the motion model known as coordinated turn[24]. It is
suitable in describing the motion as it describes position changes as a consequence
of the velocity and the changes in bearing of the vehicle. The model, as it is usually
described consists of five states px, py, vx, ψ, ψ̇, but since the vehicle is equipped with
an accelerometer within the IMU, the acceleration in the local x-axis coordinate
frame, ax, is added providing a possible simplification of the measurement model
seen later. Since the heading of a vehicle isn’t the same as the angle of the body, the
vehicle slip angle β is added. It is calculated using the current angle of the wheels
relative to the body combined with some physical measurement of the distance of the
wheel axles to the centre of gravity. However, the kinetic model used for controller
calculation does not make use of the heading of the vehicle (ψ + β)[5] but the yaw
angle of the vehicle body, ψ, as seem in section 2.2.2.

Using the assumption that a known control input of wheel angle will have a
known effect, the β is considered to be known and therefore isn’t estimated by the
Kalman filter but rather added directly from the output of the controller.

β = tan−1
(
`r tan δf + `f tan δr

`r + `f

)
(3.11)

44



3. Methods

px[k + 1] = px[k] + vx[k] · cos (ψ[k] + β) · dt
py[k + 1] = py[k] + vx[k] · sin (ψ[k] + β) · dt
vx[k + 1] = vx[k] + ax[k] · dt
ax[k + 1] = ax[k] + qax [k]
ψ[k + 1] = ψ[k] + ψ̇[k] · dt
ψ̇[k + 1] = ψ̇[k] + qψ̇[k]

(3.12)

Jacobian

1 0 cos (ψ[k] + β) · dt 0 −vx[k] · sin (ψ[k] + β) · dt 0
0 1 sin (ψ[k] + β) · dt 0 vx[k] · cos (ψ[k] + β) · dt 0
0 0 1 dt 0 0
0 0 0 1 0 0
0 0 0 0 1 dt
0 0 0 0 0 1


(3.13)

3.4.2 Camera Measurement Model
The camera measurements of position and heading are states that is directly repre-
sented in the state space used by the motion model. This means that these states
can be updated directly from measurements. Since the camera is also considered to
have a high degree of accuracy, the associated covariance values describing the noise
is set to very small values. Calculating the resolution of the camera, each pixel sees
3×3 mm providing a lower limit. The distance between the IR LED combined with
the resolution in each axis of 3 mm gives a lower limit to yaw resolution of 0.055
radians.

h(x̂k|k−1) =

pxpy
ψ



z =

pxcampycam
ψcam



Hk = ∂h

∂x

∣∣∣∣∣
x̂k|k−1

=

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0



(3.14)

3.4.3 Accelerometer Measurement Model
The IMU is capable of measuring acceleration in the local x-,y- and z-axis coordinate
frame. It is also capable of measuring the velocity of rotations around these axis.
With the simplification of considering the vehicle as moving in a two dimensional
plane with no local sideway movement, only the x-axis acceleration and the yaw
rate around the z-axis needs to be measured.
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h(x̂k|k−1) =
[
ax
ψ̇

]

z =
[
axIMU

ψ̇IMU

]

Hk = ∂h

∂x

∣∣∣∣∣
x̂k|k−1

=
[
0 0 0 1 0 0
0 0 0 0 0 1

] (3.15)

3.4.4 Desired Outcome of the Kalman Filter
The desired outcome of the Kalman filter implementation is of course a noise free and
accurate estimation of position, velocity and yaw angle. In this case the constructed
filter is also designed to provide a higher sample rate than possible from the camera,
upsampling from the 150 Hz camera measurements to 500 Hz. The control loop is
run at only 100 Hz, but the sync of the measurements and the control loop cannot
be guaranteed, hence the need for higher resolution in the positional data.

Since the filter is dependent on design parameters, the filter needs to be decided
and evaluated to guarantee performance. The evaluation of the filter is made by
comparing the Kalman filter output with the camera data. Eyeballing the data
should be enough to evaluate both noise reduction and time delays in the filtered
data compared to the camera measurements, making sure the filter output both
agrees with the camera position as well s being able to predict and fill in the missing
positions in between measurements. The indirect measurements such as velocity
are evaluated with regard to the physical limitation of velocity changes decided by
the vehicle itself. In practice this means tweaking the parameters until the position
agrees with the camera measurements, the intermediate positions look reasonable
and that the velocity calculated by the filter is both smooth and reasonable in
magnitude.

3.5 Track Description
The track that the vehicle follows is described using a ordered list of position coor-
dinates. To ease the construction of the track a Matlab script is used where mouse
pointer input is translated to a track that can be used both in simulation as well as
loaded to the actual control system. There are no real constraints in the creation of
a track, however, physical limitations such as the turning radius of the vehicle will
cause some tracks to be impossible for the vehicle to successfully follow.

3.5.1 Reference Generation from Track
As the track is described using positions defined as X- and Y -coordinates, and the
controller relies on errors in yaw and yaw rate of the vehicle, the associated errors
are calculated. The difference in the yaw of the vehicle compared to where it should
be headed, is calculated using a vector description of vehicle yaw and a line through
the centre of gravity of the vehicle and the next reference point.
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The error in yaw rate is calculated through the description of a circle passing
through the vehicle centre of gravity, a point slightly in front of the vehicle and the
reference point. Using this circle and the current velocity the desired yaw rate is
obtained.

heading

×

reference point

e2

Figure 3.23: Yaw error describing the difference in heading and angle to reference
point.

As the controller performance is dependant on the frequency behaviour of the
disturbance, a simple algorithm to handle reference points in relation to the track is
implemented. This lets the reference point move ahead of the vehicle in a predictable
fashion, sliding between track points at a distance dependent on the vehicle velocity.

3.6 Restrictions and Reductions

3.6.1 Model
The model used for control design is the simplified version described in section 2.2.2
in equation (2.31) where the only two states are the yaw and yaw rate.

3.6.2 Comparison between Simulation and Reality
As much of the collected data comes from simulation runs, a comparison with real
world performance gives valuable insight on how much the simulation runs can
actually tell us. By iterative runs it also enables the fine-tuning of parameters that
are hard to estimate or measure. However, as no model, especially a linearised one
as the one used, can be expected to represent the real system the discrepancies
between the simulations and reality are expected.

3.6.3 Exclusion of IMU Measurements
Due to latency issues in the communication protocol used to send the IMU data,
the IMU remains unused throughout all testing. This turns out to not cause any
issues regarding position estimation, but one would assume that such measurements
would be even more exact with more data available.

3.6.4 Number of Cars
Since the verification of robustness and performance in terms of tracking isn’t de-
pendent on the number of cars, the decision was made to focus the work on a single
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car. If a racing aspect of it is to be considered, that is still possible simply by
comparing lap times between controllers assuming that the track is less forgiving (if
the controller has too poor tracking abilities it shouldn’t be able to complete a lap
because it would be off the track).

3.7 Performance Evaluation

3.7.1 Parameter Variation
As the controllers are supposed to handle uncertain parameters to a varying degree,
changing the physical parameters of the vehicle is the obvious way to evaluate the
robustness in this aspect.

Since single values (not to be confused with a singular value) don’t tell much
about the system behaviour, the trajectories of the vehicles are also presented for
each case.

3.7.1.1 Velocity Variation

As the model uses a constant velocity and analysis show that any deviations from this
value have a high impact on the system, it is suitable to evaluate performance with
different reference velocities. For this, three different maximum desired velocities
for the PID speed controller are used; 1.5m/s, 2.0m/s and 2.5m/s. This yields a
more ’racing’ aspect to the test where the car brakes in corners and accelerates on
the straights.

Also tested is the system response to a constant velocity, such that the tracking
performance is not impacted by the velocity control to the same extent. For this
test, the reference velocities are 1.0m/s, 1.5m/s and 1.7m/s. The choice of the
highest value at 1.7m/s becomes very apparent later.

3.7.1.2 Mass and CoG Variation

For the real experiments, a mass is added to the rear of the frame increasing the
total mass to .222kg (7.4% increase from Nominal) and shifting the CoG backwards
by 2mm (4% of maximum). Note that this shift in CoG and mass is 4 and 1.5 times
above the estimated difference respectively, so the uncertainty levels are technically
out of range of what the controller is designed for. We however do know from
figure 3.15 that the relative errors of the system remains fairly low, so an increase
above this should not cause too many issues (although the robust performance can
of course no longer be guaranteed). Since the mass and position of CoG influence
all the parameters, the parameters for this case are updated as follows in table 3.6

Simulation gives a bit more freedom in the ability to change parameters, so a
worst case parameter scenario is also tested using the same constant velocities as
for the experiments.
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Table 3.6: Parameters used for the real world uncertainties

m = 0.22 Mass of the vehicle. [kg]
`f = 0.0515 Distance from centre of mass to front axis. [m]
L = 0.102 Wheel base. [m]
`r = L− `f = 0.055 Distance from centre of mass to rear axis. [m]
`w = 0.06 Width of the vehicle body [m]
Iz = m

12(L2 + `2
w) = 0.00027 Rotational inertia of vehicle, z-axis. [kg ·m2]

Cαf = 20 Tire stiffness constant, front wheel. [N/rad]
Cratio = `f

`r
= 1.019 Tire stiffness ratio (cornering stiffness is load dependent)

Cαr = CαfCratio = 20.4 Tire stiffness constant, rear wheel. [N/rad]

3.7.2 Test Setup
Data is collected by saving all the available information related to position, velocity
and yaw. That is, the output of the Kalman filter is sampled at its output frequency
of 500 Hz. The output of the controller is also collected consisting of steering and
throttle signal, as well as which track indices that are positioned behind and in front
of the vehicle. These track indices can then be used to calculate the vehicle distance
to the track, Ed[i], for each collected sample i. Ed is then analysed to further under-
stand the behaviour of different controllers during the different scenarios. It should
be noted that the indices sampled might in cases of index update be misaligned,
causing a slight amount of outliers in the data.

The performance is evaluated by using the following metrics.

Table 3.7: The different metrics collected from the data.

M(Ed) Mean distance from track. [m]
M(Vx) Mean velocity [m/s]
Mode(Ed) Mode of the lateral error (Most common value) [m]
M(Ed)/M(Vx) Mean distance from track divided by mean velocity [s]
M(T) Mean time to complete one lap of the track [s]
D Total distance travelled by the vehicle [m]

Table 3.8: The test setup

Number of laps: 4
Total track length (for 4 laps): 45.0817 m
Velocity
Vmax: 1.5 m/s 2.0 m/s 2,5 m/s
Vconstant : 1.0 m/s 1.5 m/s 1.7 m/s
Controllers: PID LQR 1 DoF 2 DoF
System characteristic: Nominal Added fixed weight

The track setup remains identical for each of the simulated responses as well
as for the experiments. As for the initial states of the car, they too remain near
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identical for each of the runs. The car is placed at a fix position and orientation on
the track and always starts from 0 velocity. In an effort to keep the friction coefficient
similar during testing, the track is cleaned using a brush and any dust on the tires
of the car is wiped off. Although these things would count toward uncertainties in
the system, quantifying them and designing for them would require the possibility
of measuring the differing tire forces. This is a measurement unavailable to us.

Noticing that the battery levels have an impact on the acceleration of the car,
efforts where made to change the batteries often and also to change the order of
tested controller as to spread the variation over multiple controllers, not giving any
a clear advantage.
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4
Results

4.1 Position Estimation Verification

4.1.1 Test and Evaluation of Kalman filter
Sampling data from both the camera and the Kalman filter, a rough performance
estimation may easily be made. Since the Kalman filter is well known, the process
of parameter tuning is omitted. The filter was is this case tuned to allow for un-
expected movement such as sideways skidding not possible in the motion model by
increasing trust in the camera measurements. This leads to a small amount of noise
remaining in the measurements even after filtering. As illustrated by figure 4.1 the
filter estimates closely track the camera measurement but manages to provide inter-
mediate values by up sampling as well as reducing the level of noise to reasonable
levels.
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Figure 4.1: Estimated states from the Kalman filter together with camera mea-
surements

4.2 Model Verification
To verify that the used nominal model is sufficient to describe the real world dy-
namics, simulated results are compared with nominal real world experiments. To
keep the simulations tests closer to reality, they use the same velocities as the real
experiments (velocities at each given time point are stored). One key difference
between real dynamics and that of the model is that the model can’t skid, it always
has infinite grip. Knowing this, the high speed performance of the model might
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surpass that of the real experiment. To avoid unnecessary clutter in the plots, all
simulations are only the first 20 seconds.
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(a) Nominal simulation
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(b) Nominal experiment

Figure 4.2: The 4 different controllers in simulation and real experiment for 1.5
m/s desired velocity
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(a) Nominal simulation
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(b) Nominal experiment

Figure 4.3: The 4 different controllers in simulation and real experiment for 2.0
m/s desired velocity
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(a) Nominal simulation
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(b) Nominal experiment

Figure 4.4: The 4 different controllers in simulation and real experiment for 2.5
m/s desired velocity

Although the tracking is not identical, the general behaviour is recognisable
from the simulated response. Interesting to note is that the real experiments are a
lot more consistent for each lap. The car is let run for four laps, and often the car
drives wheel-in-wheel. The differences in jittery behaviour could emerge due to the
fact that very fast changes in direction are not possible due to lack of grip at the
front wheels, larger steps in steering angle could cause larger levels of understeer. In
effect, the tires of the simulated car can exert more force thus torque, causing the
car to turn faster.

The most important results taken from this test is that although the exact
tracking behaviour is not transferable to real world application, the behaviour stays
similar, which is helpful for further design.

4.3 Performance in Simulation
In order to verify the controllers performance in simulation, they are again simulated
using the same velocity as for the real tests.

4.3.1 Varying Velocities
To verify that the controllers can achieve nominal performance and stability as well
as their robust counterparts, the different controllers are simulated at the three
different velocities found in the real experiments. The nominal parameters used
for the vehicle are found in section 2.2.2 and the uncertain values used are found
in section 3.7.1.2. The results of these experiments are presented below. The left
figures represent the nominal parameters (they are identical to the left side plots in
of the previous section) and the right side represent the uncertain parameters for
each given velocity.
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(a) Nominal parameters, 1.5 m/s
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(b) Varied parameters, 1.5 m/s

Figure 4.5: The 4 different controllers in simulation for 1.5 m/s desired velocity
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(a) Nominal parameters, 2.0 m/s
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(b) Varied parameters, 2.0 m/s

Figure 4.6: The 4 different controllers in simulation for 2.0 m/s desired velocity
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(a) Nominal parameters, 2.5 m/s
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(b) Varied parameters, 2.5 m/s

Figure 4.7: The 4 different controllers in simulation for 2.5 m/s desired velocity
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From the simulated results it is clear that the parameter change does not alter
the performance of any controller in a noteworthy way. The differences are small
enough to most likely be contributed to the different velocities over the two experi-
ments. What is however very clear is that the PID controller has a significant decline
in tracking performance with increasing velocity, a decline that is not as pronounced
for the robust controllers.

4.3.2 Constant Velocity under Worst Case Uncertainty
Since the possibility of changing the parameters in a controlled way is somewhat
limited in real life, the simulation is used to verify stability for the more extreme
cases. In this case, extreme means simulations with the parameters at values which
cause the largest relative error. Such parameters are given with the help of the
Matlab command wcgain() which return the highest gain of the system and what
values of the uncertain parameters that yield that increase. The parameters used
for this test are found in table 4.1 The velocity is kept constant as to not skew the
results by having different velocities for each given controller.

Table 4.1: Parameters used for the worst case uncertainties

m = 0.2136 Mass of the vehicle. [kg]
`f = 0.05 Distance from centre of mass to front axis. [m]
L = 0.102 Wheel base. [m]
`r = L− `f = 0.052 Distance from centre of mass to rear axis. [m]
`w = 0.06 Width of the vehicle body [m]
Iz = m

12(L2 + `2
w) = 0.00025 Rotational inertia of vehicle, z-axis. [kg ·m2]

Cαf = 14 Tire stiffness constant, front wheel. [N/rad]
Cratio = `f

`r
= 0.99 Tire stiffness ratio (cornering stiffness is load dependent)

Cαr = CαfCratio = 13.86 Tire stiffness constant, rear wheel. [N/rad]
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(a) Worst case simulation, 1.0 m/s
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(b) Worst case simulation, 1.5 m/s
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(c) Worst case simulation, 1.7 m/s

Figure 4.8: The 4 different controllers simulated using (left to right, top to bottom)
1.0m/s, 1.5m/s and 1.7m/s constant reference velocity

For these parameters, the difference in performance is not as apparent. Al-
though the robust controllers fair better, they still see a similar relative increase in
error. This can most likely be contributed to the fact that the parameters are at their
designed limits, so the robust controllers remain stable, but they start exhibiting
some unwanted behaviour. As stated before, the actual tracking of the controllers
is very likely not the same as the real world experiments. As it turns out, this is
exactly the case, with a significant change for the PID controller under the same
criteria of constant velocity.

4.4 Performance in Real World Application
Perhaps more important, or rather more interesting, than the simulation results are
the real world results.
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4.4.1 Varying Velocities
The different controllers are all run at the same track with the same starting point.
Three different velocities are used, 1.5 m/s, 2.0 m/s and 2.5 m/s as maximum
reference velocity for straights and sharing a minimum reference velocity of 0.2
m/s (so that we don’t risk coming to a full stop in sharp turns). To gather data
about robustness the vehicles are tested both nominally and with an added weight,
changing both the centre of gravity and the mass, see section 3.7.1.2.
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(a) Nominal parameters, 1.5 m/s
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(b) Varied parameters, 1.5 m/s

Figure 4.9: The 4 different controllers in real experiments for 1.5 m/s desired
velocity
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(a) Nominal parameters, 2.0 m/s
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(b) Varied parameters, 2.0 m/s

Figure 4.10: The 4 different controllers in real experiments for 2.0 m/s desired
velocity
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(a) Nominal parameters, 2.5 m/s
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(b) Varied parameters, 2.5 m/s

Figure 4.11: The 4 different controllers in real experiments for 2.5 m/s desired
velocity

The results are very similar to that of the simulation, that the difference between
nominal and uncertain parameters are not really significant. Deciding on a few
measurable performance metrics, it is however clear that the robust controllers are
showing a more consistent behaviour over the range of velocities than the PID.

4.4.2 Constant Velocities
As done in the simulations the controllers are run at a constant velocities for the
real test as well. This no longer biases the velocity control towards poor tracking
and allows for better analysis of the ability to reject such a signal.

0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

(a) Nominal parameters, 1.0 m/s
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(b) Varied parameters, 1.0 m/s

Figure 4.12: The 4 different controllers in real experiments for 1.0 m/s desired
velocity
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(a) Nominal parameters, 1.5 m/s
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(b) Varied parameters, 1.5 m/s

Figure 4.13: The 4 different controllers in real experiments for 1.5 m/s desired
velocity
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(a) Nominal parameters, 1.7 m/s
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(b) Varied parameters, 1.7 m/s

Figure 4.14: The 4 different controllers in real experiments for 1.7 m/s desired
velocity

As evident by the figures, these results truly prove the superiority of the robust
controllers. All of the robust controllers complete their 4 laps, while the PID can’t
handle the higher velocity and runs off the track.

4.5 Numerical Analysis of Test Data

4.5.1 Varying Velocities
Analysing table 4.2 below, where perhaps theMode(Ed), the most common value in
the data set, andMode(Ed)/M(VX) are the most important ones. Before calculating
the mode, the values are rounded to the closest cm. The reason for this is to limit
the amount of unique values to a more suitable amount. Without this method,
the Mode result would be more random than conclusive. Because of the way the
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velocity reference is created, worse tracking performance can lead to favourable
reference velocities thus higher overall velocities and better lap times. Diving the
Mode(Ed) by the mean velocity, gives a measurement on how much the errors scale
with velocity indicating the robustness of the controller to velocity. As for theMode,
it shows that the PID controllers most frequent error is a lot higher than that of the
other controllers.

Table 4.2: PID, LQR, 1DoF, 2DoF. Nominal parameters, with track dependent
reference velocity

Vmax 1.5 m/s PID LQR 1DoF 2DoF
M(Ed) 0.0588 0.0613 0.0405 0.0391

Mode(Ed) 0.07 0.02 0.01 0.01
M(VX) 1.0984 1.0922 1.0898 1.0791

Mode(Ed)/M(VX) 0.0637 0.0183 0.0092 0.0093
M(T ) 9.5655 10.8791 10.4603 10.5513

D 42.0277 47.5325 45.6054 45.5556
Vmax 2.0 m/s

M(Ed) 0.0733 0.0711 0.0496 0.0487
Mode(Ed) 0.1 0.02 0.01 0.01

M(VX) 1.3918 1.3952 1.3883 1.3857
Mode(Ed)/M(VX) 0.0719 0.0143 0.0072 0.0072

M(T ) 7.5723 8.5065 8.1926 8.2160
D 42.1595 47.4796 45.4955 45.5519

Vmax 2.5 m/s
M(Ed) 0.1163 0.1085 0.0835 0.0722

Mode(Ed) 0.1 0.01 0.01 0.01
M(VX) 1.6468 1.6519 1.6529 1.6420

Mode(Ed)/M(VX) 0.0607 0.0061 0.0060 0.0061
M(T ) 6.8801 7.5776 7.3158 7.2267

D 45.3290 50.0756 48.3754 47.4538

Noticing the difference between the mean and the median of the sampled dis-
tance errors Ed, box plots are used to illustrate the underlying distribution, see
figure 4.15. To give a short introduction to box plots, the central mark indicates
the median, and the bottom and top edges of the box indicate the 25th and 75th
percentiles. The whiskers extend to the most extreme data points not considered
outliers.

What can be seen from the box plots is that each controller has a distinct
behaviour when regarding the distance to the track. Where the robust controllers
it is also clear that the robust controllers have and maintain a lower error.
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(a) Nominal parameters,
Vmax = 1.5m/s
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(b) Nominal parameters,
Vmax = 2.0m/s
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(c) Nominal parameters,
Vmax = 2.5m/s,

Figure 4.15: Box plots over the sampled errors Ed, with track dependant reference
velocity, nominal

All of the controllers are performing increasingly worse, but the PID is the one
showing the most significant decrease in performance between different velocities.
From figures 4.4.1, 4.10 and 4.11 it is also very apparent that the PID is consistently
cheating by running a shorter track, contributing to it’s faster lap times.

Table 4.3: PID, LQR, 1DoF, 2DoF. Altered parameters, with track dependant
reference velocity

Vmax 1.5 m/s PID LQR 1DoF 2DoF
M(Ed) 0.0574 0.0676 0.0416 0.0386

Mode(Ed) 0.07 0.04 0.02 0.01
M(VX) 1.0963 1.0867 1.0820 1.0811

Mode(Ed)/M(VX) 0.0639 0.0368 0.0185 0.0092
M(T ) 9.5853 11.0714 10.6150 10.5412

D 42.0314 48.1335 45.9455 45.5922
Vmax 2.0 m/s

M(Ed) 0.0721 0.0783 0.0511 0.0472
Mode(Ed) 0.09 0.05 0.03 0.01

M(VX) 1.3877 1.3988 1.3986 1.3825
Mode(Ed)/M(VX) 0.0649 0.0357 0.0214 0.0072

M(T ) 7.5819 8.6285 8.1994 8.2458
D 42.0921 48.2737 45.8783 45.6060

Vmax 2.5 m/s
M(Ed) 0.1193 0.1144 0.0831 0.0761

Mode(Ed) 0.14 0.07 0.01 0.01
M(VX) 1.6485 1.6705 1.6595 1.6311

Mode(Ed)/M(VX) 0.0849 0.0419 0.006 0.00610
M(T ) 6.9355 7.6017 7.2281 7.2895

D 45.7346 50.8128 47.9902 47.5614
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(a) Varied parameters,
Vmax = 1.5m/s
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(b) Varied parameters,
Vmax = 2.0m/s
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(c) Varied parameters,
Vmax = 2.5m/s,

Figure 4.16: Box plots over the sampled errors Ed, with track dependant reference
velocity, uncertain

4.5.2 Constant Velocities
The different controllers are all run at the same track with the same starting point.
Three different speeds are used, 1.0m/s, 1.5m/s and 1.7m/s and the velocity control
strives to keep this constant. This is done to ensure that none of the controllers can
benefit from poor tracking. The maximum velocity of 1.7m/s is chosen as it is
slightly below the maximum velocity at which the 2DoF H∞ is able to complete the
track.

62



4. Results

Table 4.4: PID, LQR, 1DoF, 2DoF. Nominal parameters, constant reference ve-
locity

V 1.0 m/s PID LQR 1DoF 2DoF
M(Ed) 0.0528 0.0720 0.0472 0.0544

Mode(Ed) 0.06 0.03 0.02 0.03
M(VX) 0.9517 0.9561 0.9539 0.9529

Mode(Ed)/M(VX) 0.0630 0.0314 0.0210 0.0315
M(T ) 11.2114 12.7877 12.2497 12.4086

D 42.6793 48.9137 46.7474 47.3053
V 1.5 m/s

M(Ed) 0.0805 0.0975 0.0650 0.0729
Mode(Ed) 0.1 0.04 0.02 0.03

M(VX) 1.4128 1.4232 1.4176 1.4158
Mode(Ed)/M(VX) 0.0708 0.0281 0.0141 0.0212

M(T ) 7.8098 8.8289 8.4095 8.4725
D 44.1424 50.2645 47.6818 47.9879

V 1.7 m/s
M(Ed) n/a 0.1257 0.0943 0.1031

Mode(Ed) n/a 0.01 0.03 0.04
M(VX) n/a 1.6100 1.5981 1.5988

Mode(Ed)/M(VX) n/a 0.0062 0.0188 0.0250
M(T ) n/a 8.1303 7.7851 7.8230

D n/a 52.3701 49.7686 50.0363
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(a) Nominal parameters,
Vref = 1.0m/s

 PID  LQR  DOF:1  DOF:2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b) Nominal parameters,
Vref = 1.5m/s
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(c) Nominal parameters,
Vref = 1.7m/s,

Figure 4.17: Box plots over the sampled errors Ed, constant reference velocity,
nominal
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Table 4.5: PID, LQR, 1DoF, 2DoF. Altered parameters, constant reference velocity

V 1.0 m/s PID LQR 1DoF 2DoF
M(Ed) 0.0507 0.0699 0.0458 0.052

Mode(Ed) 0.06 0.03 0.02 0.03
M(VX) 0.9512 0.9587 0.9571 0.9609

Mode(Ed)/M(VX) 0.0631 0.0313 0.0209 0.0312
M(T ) 11.2469 12.7240 12.1888 12.2451

D 42.7955 48.7970 46.6667 47.0676
V 1.5 m/s

M(Ed) 0.0796 0.0951 0.0662 0.0735
Mode(Ed) 0.11 0.03 0.03 0.03

M(VX) 1.4129 1.4268 1.4231 1.4263
Mode(Ed)/M(VX) 0.0779 0.0210 0.0211 0.0210

M(T ) 7.8256 8.7495 8.3653 8.4212
D 44.2362 49.9433 47.6210 48.0475

V 1.7 m/s
M(Ed) n/a 0.1222 0.1030 0.1122

Mode(Ed) n/a 0.03 0.01 0.03
M(VX) n/a 1.6097 1.6061 1.6109

Mode(Ed)/M(VX) n/a 0.0186 0.0062 0.0186
M(T ) n/a 8.0420 7.8315 7.8734

D n/a 51.7898 50.3197 50.7363
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(a) Varied parameters,
Vref = 1.0m/s
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(b) Varied parameters,
Vref = 1.5m/s
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(c) Varied parameters,
Vref = 1.7m/s,

Figure 4.18: Box plots over the sampled errors Ed, constant reference velocity,
uncertain

Both table 4.4 and 4.5 lack data for the PID controller at 1.7m/s, caused by
the PID controllers inability to complete the track at this velocity. It literally ran
into the wall. The trend in the errors are very similar to that of previous test, with
updated reference velocities. The PID sees a significant decrease in performance
until it ultimately fails to track entirely. It still has the fastest lap times thanks to
its cheating.
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Although what is presented in the above chapter is definitely satisfactory, it
might also be a bit difficult to grasp. Therefore, one final metric is presented.
Robustness is now seen as level of repeatability. How does the performance of the
controller differ over varying system dynamics?

In figure 4.19 and 4.20. What is shown are plots of the trajectories for each
controller over all the experiments (where the controller did not fail), that is to
say nominal system, uncertain system and each of the different velocities of those
systems, all in the same plot.
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(a) PID (b) LQR

(c) 1DoF (d) 2DoF

Figure 4.19: All the trajectories at different velocities. With track dependant
reference velocity.
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(a) PID (b) LQR

(c) 1DoF (d) 2DoF

Figure 4.20: All the trajectories at different velocities. With constant reference
velocity.

What becomes very apparent is that no matter what we throw at the robust
controllers, their behaviour remains very similar for all experiments. What this
means is that the robustness of the controller is designed very well, but the per-
formance aspect of it needs a bit of tuning. In other words, the variance of the
trajectory is minimised, now it just needs to be shaped.

4.6 Comments
Trying to make sense of all the measurements presented seems at a first glance to
be a daunting task. What must be asked is which aspects of the controllers that are
examined. Some numbers might at a first seem to indicate that the PID controller
is the highest performing one judging on average lap times, M(T ) in tables 4.2 to
4.5. However, looking at the total distance travelled for each scenario it is shown
that the PID travels a shorter path than any of the other controllers. This of course
adds a fair bit of doubt to the PIDs seemingly superior performance in terms of lap
time. This clearly differing behaviour from the other controllers, can be explained
by the underlying kinetic motion model which both the LQR- and the two H∞ -
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controllers use. The PID is more or less blind to anything else than pure input, so
is technically also the LQR. But the H∞ controllers have a knowledge of the motion
of the vehicle. The PID was also designed using a hardware in the loop approach,
using a constant input signal to the engine. While performing more than adequate
close to the velocity in which is was designed the tests show a pronounced decrease
in performance when deviating from it.

Even though the conditions of the test runs are identical, the fatal failure of the
PID controller is due to how the reference trajectory is calculated. It works fine up
until too large tracking errors result in the car having to attempt tracking a point
that’s too close or even behind it. This means that the actual tracking stability
of the system heavily relies on the trajectory calculation, which is outside of the
motion model.
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Conclusion

The robust approach for trajectory control of a self-driving R/C car sees
high levels of performance for increased velocities. It is not without its
twists and turns, but with those sorted out the payoff is clear.

Collecting data from both simulation and more importantly from hardware in
the loop tests both tell a similar story; the different metrics calculated from the data
and how it relates to robustness seem to indicate that for this case, repeatability is
the main metric of robustness. That is, a similar performance over a wider range
of uncertain dynamics, where the velocity proved to be the most prominent one.
Overlaying the different paths taken by each controller at the different velocities and
altered parameters, did illustrate clearly how well the different controllers were able
to keep a consistent performance no matter the circumstances. In other words, they
are robust. The tracking performance of the robust controllers might not be quite
as obviously improved over the PID as one would desire, but with a bit of tuning
of the performance aspect of the robust controllers, we are certain they would more
clearly outperform the lesser controllers.

Does the robust approach provide a significant gain in performance over the
more common control strategies? Well, as with everything, it’s a trade-off. The
PID controller is quick to implement and will evidently often provide the user with
the performance it desires. Even though the PID might outperform the robust
controller for a given scenario it’s design clearly has inherent flaws (such as running
into the wall at high velocities) that just are not found in the robust designs.

The H∞ controllers might seem complex, but one must not forget that many
of the parameters are often measurable or bear an intuitive physical meaning easing
the design of the dynamic weights. That being said, it is far from an easy task and
the superiority over less complex design methods might not always be apparent.

In the end of the day however, one may sleep comfortably knowing that in a
system riddled by uncertainties, the H∞ controller rules supreme.

69



5. Conclusion

70



Bibliography

[1] “Control System Design,” https://www.cds.caltech.edu/~murray/courses/
cds101/fa02/caltech/astrom.html, accessed: 2018-05-20.

[2] O. Garpinger, T. Hägglund, and K. J. Åström, “Performance and robustness
trade-offs in pid control,” Journal of Process Control, vol. 24, no. 5, pp. 568 –
577, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0959152414000730

[3] D. A. Allan, M. J. Risbeck, and J. B. Rawlings, “Stability and robustness of
model predictive control with discrete actuators,” in 2016 American Control
Conference (ACC), July 2016, pp. 32–37.

[4] K. Zhou and J. Doyle, Essentials of Robust Control, ser. Prentice
Hall Modular Series for Eng. Prentice Hall, 1998. [Online]. Available:
https://books.google.se/books?id=QviHQgAACAAJ

[5] R. Rajamani, Vehicle dynamics and control. Springer Science & Business
Media, 2011.

[6] H. Pacejka, Tire and vehicle dynamics. Elsevier, 2005.
[7] D. S. Naidu, Optimal control systems 1st.Ed. CRC Press, 2002.
[8] J. Riccati, “Animadversiones in aequationes differentiales secundi gradus,” http:

//www.17centurymaths.com/contents/euler/rictr.pdf, 1724(Translated by Ian
Bruce, 2007), accessed: 2018-04-30.

[9] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis
and Design. USA: John Wiley &#38; Sons, Inc., 2005.

[10] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,”
Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004.

[11] E. Wan, “Sigma-point filters: An overview with applications to integrated nav-
igation and vision assisted control,” in Nonlinear Statistical Signal Processing
Workshop, 2006 IEEE. IEEE, 2006, pp. 201–202.

[12] S. S. Haykin et al., Kalman filtering and neural networks. Wiley Online Library,
2001.

[13] “Kyosho MR-03S,” http://www.kyoshoamerica.com/MR-03-Sports_c_1166.
html, accessed: 2018-02-06.

[14] “NodeMCU Development Kit,” https://www.seeedstudio.com/
NodeMCU-v2-Lua-based-ESP8266-development-kit-p-2415.html, accessed:
2018-02-06.

[15] “rosserial_arduino,” http://wiki.ros.org/rosserial_arduino, accessed: 2018-02-
08.

[16] “ESP8266 Arduino,” https://github.com/esp8266/Arduino, accessed: 2018-02-
08.

71

https://www.cds.caltech.edu/~murray/courses/cds101/fa02/caltech/astrom.html
https://www.cds.caltech.edu/~murray/courses/cds101/fa02/caltech/astrom.html
http://www.sciencedirect.com/science/article/pii/S0959152414000730
http://www.sciencedirect.com/science/article/pii/S0959152414000730
https://books.google.se/books?id=QviHQgAACAAJ
http://www.17centurymaths.com/contents/euler/rictr.pdf
http://www.17centurymaths.com/contents/euler/rictr.pdf
http://www.kyoshoamerica.com/MR-03-Sports_c_1166.html
http://www.kyoshoamerica.com/MR-03-Sports_c_1166.html
https://www.seeedstudio.com/NodeMCU-v2-Lua-based-ESP8266-development-kit-p-2415.html
https://www.seeedstudio.com/NodeMCU-v2-Lua-based-ESP8266-development-kit-p-2415.html
http://wiki.ros.org/rosserial_arduino
https://github.com/esp8266/Arduino


Bibliography

[17] “Flea3 USB3 Vision,” https://www.ptgrey.com/flea3-usb3-vision-cameras, ac-
cessed: 2018-06-01.

[18] “Arduino Uno,” https://store.arduino.cc/arduino-uno-rev3, accessed: 2018-04-
09.

[19] “Adafruit PowerBoost 1000,” https://www.adafruit.com/product/2465, ac-
cessed: 2018-04-27.

[20] “Autodesk fusion 360,” https://www.autodesk.com/products/fusion-360/
overview, accessed: 2018-04-19.

[21] J. G. Ziegler and N. B. Nichols, “Optimum settings for automatic controllers,”
trans. ASME, vol. 64, no. 11, 1942.

[22] “Scale-model vehicle analysis for the design of a steering controller,” https:
//pdfs.semanticscholar.org/ff27/25b35aa255d5f5bee92b54ee5a046e6bd947.pdf,
accessed: 2018-05-20.

[23] “ucover(),” https://se.mathworks.com/help/robust/ref/ucover.html, accessed:
2018-05-26.

[24] L. Svensson, “A coordinated turn model,” Lecture Notes, Signal Processing
Group, Department of Signals and Systems at Chalmers University of Technol-
ogy, 2015.

72

https://www.ptgrey.com/flea3-usb3-vision-cameras
https://store.arduino.cc/arduino-uno-rev3
https://www.adafruit.com/product/2465
https://www.autodesk.com/products/fusion-360/overview
https://www.autodesk.com/products/fusion-360/overview
https://pdfs.semanticscholar.org/ff27/25b35aa255d5f5bee92b54ee5a046e6bd947.pdf
https://pdfs.semanticscholar.org/ff27/25b35aa255d5f5bee92b54ee5a046e6bd947.pdf
https://se.mathworks.com/help/robust/ref/ucover.html

	List of Figures
	List of Tables
	Introduction
	Background
	Scope of Thesis
	Outline

	Theory
	Linear Algebra
	Signals and System Norms
	Singular Value
	Spectral Radius
	Linear Fractional Transformations

	Dynamic Vehicle Model
	Bicycle Model of Lateral Vehicle Dynamics
	Dynamic Model in Terms of Error with Respect to the Road
	Simplified Yaw and Yaw Rate Based Model
	Track Representation within the Model

	Robust Control
	The Standard Linear Quadratic Regulator
	The H-inf Control Problem 

	Position and Direction Estimation
	Extended Kalman Filter


	Methods
	Prototype Platform
	Hardware
	Vehicles
	Micro Processor
	Sensors
	Controller
	Tracking LEDs
	Power
	Mounting Superstructure for the Kyosho Vehicles

	Software
	ROS - Robot Operating System
	Tracking Node
	Extended Kalman Filter Node
	Controller Node
	Steering Control
	Velocity Control

	Visualisation Node


	Parameter Analysis
	Frequency Response Analysis of Error Model
	Vehicle Mass
	Centre of Gravity
	Tire Stiffness
	Tire Stiffness Ratio
	Longitudinal Velocity
	Total Uncertainty

	Estimation of Physical Steering Delay

	Controller Synthesis
	Directional Controlling PID
	Linear Quadratic Controller
	1DoF H Infinity Output Feedback Controller
	2DoF H Infinity State Feedback Controller
	Velocity Control PID

	Extended Kalman Filter Implementation
	Coordinated Turn Motion Model
	Camera Measurement Model
	Accelerometer Measurement Model
	Desired Outcome of the Kalman Filter

	Track Description
	Reference Generation from Track

	Restrictions and Reductions
	Model
	Comparison between Simulation and Reality
	Exclusion of IMU Measurements
	Number of Cars

	Performance Evaluation
	Parameter Variation
	Velocity Variation
	Mass and CoG Variation

	Test Setup


	Results
	Position Estimation Verification
	Test and Evaluation of Kalman filter

	Model Verification
	Performance in Simulation
	Varying Velocities
	Constant Velocity under Worst Case Uncertainty

	Performance in Real World Application
	Varying Velocities
	Constant Velocities

	Numerical Analysis of Test Data
	Varying Velocities
	Constant Velocities

	Comments

	Conclusion

