
Matching Vehicle Sensors to Reference
Sensors using Machine Learning Meth-
ods
Object matching by supervised learning of extracted features
from radar and camera sensors to LIDAR reference system.

Master’s thesis in Systems, Control and Mechatronics

David Sondell
Kim Svensson

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Master’s thesis 2018:EX062

Matching Vehicle Sensors to Reference Sensors
using Machine Learning Methods

Object matching by supervised learning of extracted features from
radar and camera sensors to LIDAR reference system.

David Sondell
Kim Svensson

Department of Electical Engineering
Chalmers University of Technology

Gothenburg, Sweden 2018

Matching Vehicle Sensors to Reference Sensors using Machine Learning Methods
DAVID SONDELL
KIM SVENSSON

© DAVID SONDELL, 2018.
© KIM SVENSSON, 2018.

Advisor: Mohammad Hossein Moghaddam, Department of Electrical Engineering
Supervisor: Amar Shati, Volvo Car Corporation
Examiner: Henk Wymeersch, Department of Electrical Engineering

Master’s Thesis 2018:EX062
Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Object matching visualization indicating matches between primitive shapes
as convex hull and the objects matched.

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Matching Vehicle Sensors to Reference Sensors using Machine Learning Methods
David Sondell
Kim Svensson

Department of Electrical Engineering
Chalmers University of Technology

Abstract
Vehicle manufacturers equip their products with many sensors which are used to
analyze the surroundings. In this thesis the environment is described with a set of
high level objects where an object can be either a vehicle, a person or an animal.
These objects are given different properties such as position and heading relative to
the ego-vehicle.
It is of interest to know the accuracy of the measurements describing the high

level objects. To measure the accuracy one must first find the true state of the high
level objects. In this work measurements from a more accurate system that tracks
the same high level objects have been considered the ground truth.
A matching algorithm was developed which matches the high level objects to

ground truth objects. The matching was done using a variety of machine learn-
ing algorithms where some reach a correct classification rate of ∼ 99% with a low
sensitivity to added noise.

Keywords: Feature extraction, object matching, machine learning, lidar, radar, sen-
sor fusion

v

Acknowledgements
We would like to thank Amar Shati for going far beyond what is expected of a
supervisor especially in terms of explaining system setups, providing experimental
knowledge and guiding us through gigabytes of log data. We would also like to
thank Elías Marel at Volvo for providing insight in the early stages of the project
and for the work he did on finding additional annotated data.

David Sondell & Kim Svensson, Gothenburg, May 2018

vii

Contents

List of Figures x

List of Tables xii

List of Abbreviations xv

List of Symbols xvii

1 Introduction 1
1.1 Background . 1
1.2 Aim . 1
1.3 Scope and boundaries . 2
1.4 Outline . 2

2 Preliminaries 3
2.1 Generating high-level objects from sensor measurements 3
2.2 Origin of datasets . 4
2.3 System setup . 4
2.4 Classifying data using machine learning 6

3 Theory 7
3.1 Principal Component Analysis . 7

3.1.1 Example and intuition . 7
3.1.2 Linear PCA . 8
3.1.3 Kernel PCA (kPCA) . 9

3.2 Support Vector Machine . 11
3.2.1 Finding the first constraint . 13
3.2.2 Maximize the margin as an optimization problem 13
3.2.3 Dealing with noise and nonlinearity 14

3.3 Kernel trick . 15
3.4 Artificial Neural Networks . 16

3.4.1 Gradient descent . 17
3.4.2 Activation functions . 18
3.4.3 Expanding the network . 19
3.4.4 Training difficulties . 20

3.5 Decision Trees . 20
3.5.1 Training and building a tree 21

ix

Contents

3.5.2 Information gain and Gini impurity 21
3.5.3 Stopping criteria and pruning 22
3.5.4 Boosting . 23
3.5.5 Bagging . 24

3.6 K-nearest-neighbor . 25

4 Methodology 27
4.1 Reconstructing and aligning . 28
4.2 Similarity functions . 30
4.3 Dimensionality reduction . 31
4.4 Implementation of machine learning 32
4.5 Validation of machine learning algorithms 33
4.6 Algorithmic stability . 34
4.7 Experimental motivation for the use of similarity functions 35

5 Results 37
5.1 Dimensionality and noise reduction 37

5.1.1 PCA . 37
5.1.2 kPCA . 38

5.2 Performance on different sensor systems 39
5.3 Boosting and bagging the classifiers 40
5.4 Algorithmic stability . 41

6 Discussion 43
6.1 Extraction of samples . 43
6.2 Different machine learning methods 44
6.3 Similarity functions . 45
6.4 One to one or many to one classifications 45

7 Conclusion 47

Bibliography 49

A Proof for reordering matrices I

B Dimensionality and noise reduction tables. III

C Algorithmic stability IX

x

List of Figures

2.1 Map of the trip taken when gathering data for the datasets used. . . 5
2.2 Coordinate system definition with origin in the center of the rear

axle. The figure also shows that the lidar is placed on the roof, and
the RaCam in the windshield of the car. 5

3.1 Illustration of dimensionality reduction using linear PCA. The blue
circles originates from x < 50 and the orange from x > 50. 8

3.2 Data of class -1 and 1, to the left separated by some hyperplane. In
the right figure the margin from plane 1 to the datapoints has been
marked by a black vector and red lines have been drawn to indicate
the total margin. 12

3.3 Dataset of linearly inseparable data to the left. The same dataset is
transformed by the kernel trick to a higher dimension where they are
linearly separable to the right. 15

3.4 Showing a small neural network where wi denotes the weight and ai
denotes the signal at the edge. x denotes the input to the network
and ŷ the output. 17

3.5 Plot of three activation functions sigmoid, tanh and relu. 18
3.6 The figure shows a 2-Layer fully connected feed forward network . . . 19
3.7 Figure of classifier weights associated as a function of weighted error. 24

4.1 Flowchart of information through the matching algorithm. 27
4.2 Sampled latitude position over time for a matching pair. 28
4.3 Showing correctly selected sequence and highlighting missing data. . 29
4.4 Showing the results of linear interpolation and highlighting the time

overlap of the sensors. 29
4.5 Example of selected training folds and test fold for each iteration. In

this case k = 10, thus 10 folds and iterations are made. 33
4.6 Models used to generate noise that when added to the sensor, emulate

another manufacturer’s sensor. 35
4.7 Confusion matrix of the results running LSTM network. 36

5.1 Performance confusion matrix of three different algorithms on the
RaCam2Lidar dataset. 39

5.2 Performance confusion matrix of three different algorithms on the
Radar2Lidar dataset. 39

xi

List of Figures

5.3 Performance confusion matrix of three different algorithms on the
Cam2Lidar dataset. 40

5.4 Degradation of overall accuracy when 4 different noise models is ap-
plied to the sensor data. 42

5.5 Degradation of true positive when 4 different noise models is applied
to the sensor data. 42

6.1 Example from RaCam2Lidar dataset which highlights the issue about
new ids for a sensor object. As an object leaves the system’s line of
sight, it will be assigned a new id when reappearing. A problem exist
if the annotator don’t annotate all four ids as a match to the reference. 44

6.2 The left plot show identified objects in a top view. The right image
correspond to the current frame from the camera. 46

xii

List of Tables

3.1 Table of common kernel functions. 16
3.2 Table of stopping conditions for decision trees. 22

4.1 Example of feature matrix entries as presented to the machine learn-
ing algorithms. 33

5.1 Table showing where PCA had positive or neutral effect on the overall
accuracy for the algorithm that ran on the RaCam2Lidar dataset.
The overall accuracy is presented under the column w/o PCA and
w/ PCA. 37

5.2 Table showing where PCA had positive or neutral effect on the overall
accuracy for the algorithm that ran on the Cam2Lidar dataset. The
overall accuracy is presented under the column w/o PCA and w/ PCA. 38

5.3 Table showing where kPCA had positive effect on the overall accuracy
for the algorithm that ran on the RaCam2Lidar dataset. The overall
accuracy is presented under the column w/o PCA and w/ PCA. . . . 38

5.4 Table showing where kPCA had positive effect on the overall accuracy
for the algorithm that ran on the Cam2Lidar dataset. The overall
accuracy is presented under the column w/o PCA and w/ PCA . . . 39

5.5 Table showing effects of bagging and boosting on decision trees. . . . 40
5.6 Table of performance deterioration for different models. The second

column (w/o Noise model) show the overall accuracy (upper) or true
positive rate (lower) when no extra noise has been added. The third
to sixth column show the rate of change from without noise model to
the noise model corresponding to the number in the column. 41

xiii

List of Tables

xiv

List of Abbreviations

Volvo . Volvo Car Corporation

AD . Autonomous driving

ML . Machine Learning

ANN . Artificial Neural Network

ReLU . Rectified Linear Units

SVM . Support Vector Machine

QP . Quadratic Programming

kNN . k-nearest neighbors algorithm

PCA . Principal Component Analysis

kPCA . Kernel Principal Component Analysis

xv

List of Abbreviations

xvi

List of Symbols

X . Data matrix, rows x columns.

m . Number of rows in X.

n . Number of columns in X.

(̃·) . Centered matrix.

Im . Identity matrix of size m.

1m . Square matrix of size m, where all entries
are equal to 1.

λ . Eigenvalues.
L(. . .) . Lagrange multiplier.

Φ, φ(.) . Nonlinear transformation.

F . Feature space.

RN . Real space in N:th dimension.

κ(. . .) . Kernel function.

∀ . Universal quantifier meaning, given any.

∈ . Set membership.

|S| . Cardinality of the set S.

||V|| . Norm of the vector V.
NaN . Not a Number, missing data-sample

� . Hadamard product, element-wise multi-
plication

xvii

List of Symbols

xviii

1
Introduction

This chapter introduces the thesis as a whole, starting with some background to the
problem. In the aim section the goal of the project is presented followed by a scope
and boundaries section which states what has not been included in the thesis. A
more general outline of the rest of the thesis is presented at the end of this chapter.

1.1 Background
As advancements in automated vehicles are made, more tasks previously performed
by the human driver can be taken over by the vehicle. The increase of tasks per-
formed by the vehicle push towards the launch of fully autonomous vehicles which
is predicted to have an extensive effect on traffic-related casualties as a majority of
those are caused by human error [1], [2].
Volvo Car Corporation (henceforth referred to as Volvo) aims to employ fully

autonomous driving (AD) cars in traffic. The safety of these cars heavily relies on the
performance of multiple sensors in order to make correct decisions. Sensors including
radars, cameras, lidar, ultrasonic sensors etc. work together by sensor fusion to
interpret the environment around the car. For the output of all these sensors to
be trustworthy the sensors must be evaluated in regards to their limitations and
statistical sensor models. Evaluating the sensors and their models is important
both for verification of autonomous driving and implementation of optimal sensor
fusion.
To get insight in the performance of a sensor, another sensor with better accuracy

can be used as a reference. With the help of the difference between the sensor of
interest and the reference, an error can be estimated. To compare and evaluate the
sensors, this project will focus on the high-level outputs from the sensors. That is,
outputs after the raw sensor signals have been processed into objects surrounding
the ego-vehicle with features describing the object such as velocity, position, convex
hull and lifetime represented as multi-dimensional time series. The object matching
method and results from [3] will be used as a baseline for what object matching
algorithms without machine learning is capable of as it was also conducted at Volvo
with the same hardware.

1.2 Aim
The thesis aims to evaluate the possibilities and limitations with machine learning
techniques in the application of offline object matching.

1

1. Introduction

The algorithm presented in Offline object matching and evaluation process for
verification of autonomous driving [3], required time consuming tuning of parameters
to work well. The trained models presented in this work are intended to perform at
least on par with such an algorithm without requiring any hand tuned parameters.
This thesis also aims to evaluate the performance of different machine learning

algorithms on this automotive classification problem. Further the trained models
ability to scale between different sensors and noise will be investigated with the aim
to find a robust and accurate classifier.

1.3 Scope and boundaries
The models developed will be focused on Volvo’s system setup so implementation
and signal availability is limited by these systems. Evaluation of performance will
be done on datasets provided by Volvo where some pre-processing has already been
done. This thesis focuses on implementing an offline matching algorithm and real
time matching is outside the scope of this project. As the data is provided by
Volvo, the choices of traffic situations, setup of sensors and how the annotated
data is labeled is outside the scope of this project. For the offline algorithm to be
considered as a feasible solution, it has to be able to train a model and validate it
on a personal computer within 12 hours.

1.4 Outline
The remainder of this thesis is organized as follows. In Chapter 2 some preliminaries
of the system are covered. Chapter 3 covers in depth the theory and math behind
the different parts included in the thesis. In Chapter 4 we go over how the algorithm
is set up and how we chose to validate the numerical results that is presented in
Chapter 5. Chapter 6 includes comments on various parts in the project and makes
some suggestions for future work. Finally, in Chapter 7 a conclusion to the research
questions is answered.

2

2
Preliminaries

In this chapter we introduce the sensor configuration, the datasets and how machine
learning combine the two into classifiers.

2.1 Generating high-level objects from sensor mea-
surements

Multiple sensors are involved in a car’s interpretation of the world around it. This
section aims to introduce the sensors available in the cars used in this project and
briefly explain the transformation of raw measurement data into high-level objects.
The first sensor to discuss is the camera. The camera is a passive sensor that

captures high resolution images in its field of view. The meaning of passive in this
context is that the sensor does not emit any energy, it observes the environment.
As a consequence to this, light must be emitted from another source in order for the
camera to function. Significant research has been conducted on extracting informa-
tion about the objects in an image such as [4]. The information extracted through
image analysis algorithms is merged with historical information to create time series
of features which is part of the inputs to the high-level objects under investigation
in this thesis. Though cameras achieve high accuracy in object detection, radial
resolution and classification they have limited abilities to detect depth, especially
when they work in a monocular setup. In a stereo setup, cameras can achieve bet-
ter longitudinal accuracy but still inherit the other limitations of cameras such as
sensitivity to surrounding light conditions.
The second sensor used in this project is the radar sensor which emits and receives

millimeter-waves enabling it to accurately measure longitudinal distance even during
harsh weather conditions [5]. For automotive radars, frequencies around 24 GHz and
77 GHz are commonly used as described by J. Hasch et al. [6]. The raw measurement
cluster from the radar is merged into objects called tracklets which contain trajectory
information such as heading, speed and position.
An important finding here is that the longitudinal accuracy contained in the radar

tracklets can be fused together with camera information to gain accuracy in radial
and longitudinal measurements. Through the fusion of these measurements, objects
with high-level features are created. Note that several radar tracklets can describe
one single entity, while the camera only describes it as one.
A third sensor is a Light detection and ranging, (henceforth refereed to as lidar)

which is an additional sensor technology that works similar to the radar but emits
light, typically with a 905 nm wavelength [7], at fixed angular steps providing ex-

3

2. Preliminaries

cellent accuracy in both radial and longitudinal measurements. In contrast to the
radar, the lidar used in this project have the benefit of a 360◦ horizontal field of
view.

2.2 Origin of datasets

This project builds upon prior work done at Volvo and data gathering, annotating
and some signal processing was done before the initialization of this project. This
section aims to describe the datasets used in this project.
Prior to the initialization of this project only the matching object pairs were

annotated but for the methodology suggested in this thesis datasets containing both
matching and nonmatching pairs are required. The extraction of nonmatching pairs
is covered in the methodology chapter of this report.
There are three different datasets available for matching. The datasets are called

RaCam2Lidar, Cam2Lidar and Radar2Lidar. The two latter sets are constructed
from RaCam2Lidar as they were created by taking the data from each sensor before
the data was fused. The annotations were then inherited through object identi-
fication numbers. In all three datasets the reference is the lidar measurements
but the sensor under investigation change. The RaCam2Lidar dataset contains
sensor-objects with fused information from two radar systems and one camera, the
Cam2Lidar dataset contains objects with information from one camera and the
Radar2Lidar dataset contains objects with information from two radar systems.
All three datasets were gathered on the same expedition, a route that spanned

over Europe and went through Germany, Austria, Switzerland, Italy, France and
the UK. This route included complex motorways, country roads, ring roads around
large cities and city traffic. The trip can be seen in figure 2.1.

2.3 System setup

The RaCam is mounted in the front windshield while the lidar is mounted on top
of the roof. The coordinate system for all latitudinal and longitudinal signals is the
same. It has the origin in the center of the rear axle with positive longitudinal axis
in the driving direction of the car. Positive latitudinal direction increases in the
right to left direction perpendicular to the car’s driving direction, see figure 2.2. As
the lidar and RaCam are located along the logtitudinal axis, two different offsets to
the origin emerge. A compensation for these offsets has been incorporated into the
sensor models.

4

2. Preliminaries

Figure 2.1: Map of the trip taken when gathering data for the datasets used.

Figure 2.2: Coordinate system definition with origin in the center of the rear axle.
The figure also shows that the lidar is placed on the roof, and the RaCam in the
windshield of the car.

5

2. Preliminaries

2.4 Classifying data using machine learning
The objective of this project is to classify objects from different sensor setups as
matching or nonmatching pairs. This section introduces the machine learning tech-
nologies investigated and applied to classify the objects. This section will give a
brief overview, but more in depth explanations are available in the theory chapter,
3.
One of the technologies used within machine learning is Artificial Neural Networks

(ANN) which are models inspired by the human brain where a set of neurons are
linked with weighted connections and these weights are being adjusted according to
some optimization algorithms such as gradient decent [8]. There exists a number of
different types of neural networks for example convolutional neural networks which
have shown great performance in image classification tasks [9] and recurrent neural
networks who excels in applications such as language translation [10]. The main
drawback of these algorithms is the difficulty to train them as they require a lot of
data to perform well.
The second algorithm introduced was the Support Vector Machine (SVM) which

finds a hyperplane that best separates data based on a set of features. This is
especially useful in a binary classification setting (where there are only two classes).
The benefits of a SVM is that it generally does not overfit, but the drawback is
that the input parameters might have to be chosen with more care since it does not
handle abstract concepts as well as an ANN [11].
Another machine learning technique of interest in this project is Decision Trees,

a technique that traverses down a tree selecting branches based on if statements
starting from the root and commits to a classification once it reaches a leaf node
[12]. What makes decision trees interesting is the ability to backtrack the results. If
a miss-classification happens one can backtrack through the tree to find the source of
the error which in this application could give indications of which sensor is providing
inadequate information.
The last algorithm to be introduced here is the k-Nearest Neighbor (kNN) [13]

which classifies an entry based on a vote taken by the k Nearest Neighbors where
k denotes the number of participants in the vote. This is a fairly simple algorithm
but has a few cons in that it needs to keep all old data-points to act as neighbors for
newer entries resulting in a memory intensive model. In general one of the major
drawbacks of the kNN algorithm is that it can be fooled by irrelevant features, but in
this case where the features will be carefully selected, this should not be a problem.

6

3
Theory

In the following sections, the theory behind the methods used to classify objects
from the sensor and reference systems as matches or non-matches is introduced.
This chapter aims to give a deeper understanding of the methods used and will aid
discussion of the results.

3.1 Principal Component Analysis
Principal component analysis (PCA) has been proven useful in feature extraction
in conjunction with machine learning applications. Some applications include digit
recognition and noise reduction. In this section PCA will be explained by an example
followed by the details of how PCA is calculated.

3.1.1 Example and intuition
PCA finds a transformation from the current feature space onto a principal compo-
nent space where each dimension is orthogonal and spans in the directions of the
datasets largest variance. For PCA to be useful in this project an assumption has
to hold, which is that features with a high variance have high variance because they
capture some dynamics that has a correlation to whether the objects are matching
or not. One of the properties of the principal components is that they are ordered
in regards to largest variance which is helpful in dimension reduction since the least
informative principal components can be disregarded if the corresponding eigenvalue
is small.
Let us consider a simple linear example where the sequence x = {1, 2, . . . , 100} is

transformed through a function

f(x) = 2x+ 5 (3.1)

and the output is then observed by 20 different sensors with a large uncertainty of
normally distributed noise with 0 mean and standard deviation of σ = 150. The
feature space has then 20 dimensions where each dimension is the measurements of
one sensor. Let’s say the task is to classify which measurements from the sequence
come from inputs less than 50.
By performing a PCA on the measurements, the data that is captured in a 20

dimensional space is transformed to a new space where the first direction has the
largest variance, this direction become the first principal component. The second
component becomes the vector that is orthogonal to the first and spans in the

7

3. Theory

-0.2 0 0.2 0.4

Dimension 1

-0.2

0

0.2

0.4

D
im

e
n
s
io

n
 2

-0.2 0 0.2 0.4

Dimension 3

-0.2

0

0.2

0.4

D
im

e
n
s
io

n
 4

-0.2 0 0.2 0.4

Dimension 5

-0.4

-0.2

0

0.2

0.4

D
im

e
n
s
io

n
 6

-0.2 0 0.2 0.4

Dimension 7

-0.2

0

0.2

0.4

D
im

e
n
s
io

n
 8

-0.05 0 0.05 0.1 0.15 0.2

Principal component 1

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

P
ri
n
c
ip

a
l
c
o
m

p
o
n
e
n
t
2

Figure 3.1: Illustration of dimensionality reduction using linear PCA. The blue
circles originates from x < 50 and the orange from x > 50.

direction that has the largest variance and so on. The original data in 20 dimensions
can then be transformed by the transformation matrix obtained in the PCA process
and projected on a lower dimensional plane.
In figure 3.1 one can see the original 1-8 dimensions shown as 2D scatter plots

and the first and second principal components can be seen as a 2D scatter plot
to the right. The PCA algorithm has in this case been able to effectively find the
underlying dimensionality of the system even though the data was disturbed by large
noise. The PCA performed here also shows how dimensionality reduction from 20
to 2 can be done. By only looking at the first principal component, one could easily
classify where the circles originated from with a simple threshold value.

3.1.2 Linear PCA
In the example from section 3.1.1, the data was in the form of an 100 by 20 matrix,
where the rows represent samples and the columns the 20 different sensors. Lets call
this matrix X with dimension m by n. The mapping from the original data into the
principal components is mathematically defined as a linear transformation. First,
let us center the data matrix X by its column. This is for mathematical convenience
when writing the variance in equation 3.4 as we can avoid subtracting the mean µ
all the time.

X̃ = (Im − 1
m

1m)X (3.2)

where Im is the identity matrix and 1m is a matrix full of ones (1), both with the
size m by m.
Using a set of vectors known as loads wk = (w1, . . . , wn)T(k) that map each of the

rows in matrix X̃ to principal component column scores t(p) = (t1, . . . , tm)(p)

ti = xk · wk for i = 1, . . . , p k = 1, . . . ,m (3.3)

where x(i) is a row vector from X̃ then one have to find the loading vectors, w that
transform X̃ that end up in the direction of the maximum variance. Thus the first
loading vector has to satisfy

8

3. Theory

w(1) = max
w

V ar(ti) = 1
m

∑
i(t1)2

(i)

subject to ||w|| = 1
(3.4)

By substituting 3.3 into 3.4 and change to matrix form, we get

w(1) = max
w

{
1
m
||X̃w||2

}
= max

w

{
wTCw

}
, where C = 1

m
X̃T X̃

subject to ||w|| = 1
(3.5)

At this point, equation 3.5 can be written as in 3.6 where it is recognized as the
Rayleigh quotient [14] which is a known engineering problem and has the solution
of w being the eigenvectors of C.

w(1) = max
w

{
wTCw

wTw

}
(3.6)

The result can easily be confirmed by Lagrange multipliers.

L(w) = wTCw − λ(wTw − 1) (3.7)
∂L(w)
∂w

= 2Cw − 2λw (3.8)

∂L(w)
∂w

= 0 ⇒ Cw = λw (3.9)

As C is a square matrix, equation 3.9 can be solved by eigendecomposition. Hense
the solution to the problem is eigenvectors w (from 3.9) of C with the largest cor-
responding eigenvalue will project the data onto the new component space. The
first loading vector will be the eigenvector with the largest eigenvalue λ, the sec-
ond loading vector will then be the eigenvector corresponding to the second largest
eigenvalue etc.
The number of loading vectors that is extracted determines the dimensionality

reduction as not all the principal components need to be kept. In the example in
section 3.1.1, where the original data was in 20 dimensions, by only keeping the first
two principal components, a new dimension of 2 was achieved. A point to notice
is that C is the covariance matrix of X̃. There are more ways of calculating the
principle components that does not require the use of eigen demoposition but with
the help of singular-value decomposition [15].

3.1.3 Kernel PCA (kPCA)
If the data is structured in a more complex and nonlinear way, the standard version
of PCA will not be able to represent the nonlinear relation within its linear subspace.
A solution to this is to use a nonlinear transformation φ(x) from the original space

into a new feature space F where ordinary PCA can be applied. However, this can
be very computational heavy and inefficient. Luckily there is a way to use kernel
methods (described more in section 3.3) to avoid having to calculate φ(x) explicitly
[16].

9

3. Theory

First, consider the nonlinear map

Φ : RN → F , where X̃ ∈ RN

X̃ → X
(3.10)

and assume that X is centered. Then the covariance matrix in F looks like

C = 1
m

m∑
i=1

φ(xi)φ(xi)T , where xi is a vector in X̃. (3.11)

X̃ =


. . . xT1 . . .

. . .
... . . .

. . . xTi . . .


And the eigenvectors

Cwk = λwk. (3.12)
By combining equation 3.11 and 3.12, we get

1
m

m∑
i=1

φ(xi)φ(xi)Twk = λwk, (3.13)

where the eigenvectors can be expressed as linear combination of features

wk =
m∑
i=1

αiφ(xi). (3.14)

Now by substituting 3.14 into 3.13 we get

1
m

m∑
i=1

φ(xi)
m∑
j=1

αjφ(xi)Tφ(xj) = λ
m∑
i=1

αiφ(xi) (3.15)

Note that the following is true, (see appendix A for proof)

φ(x)φ(x)Tw = {φ(x) · w}φ(x)T . (3.16)

We define a kernel function as

κ(xi, xj) := φ(xi)Tφ(xj), (3.17)

and by multiplying 3.15 from the left with φ(xl)T , for all l = 1, . . . ,m. We get an
expression that can be written using the kernel function from equation 3.17 and the
product from 3.16.

1
m

m∑
i=1

φ(xl)Tφ(xi)
m∑
j=1

αjφ(xi)Tφ(xj) = λ
m∑
i=1

αiφ(xl)Tφ(xi)

1
m

m∑
i=1

κ(xl, xi)
m∑
j=1

αjκ(xi, xj) = λ
m∑
i=1

αiκ(xl, xi) (3.18)

Rewriting the sums over the kernel functions as the m by m matrix K = κ(xi, xj)
and a as a column vector with all the α entries, a = [α1, . . . , αm]T , we get equation

10

3. Theory

3.19 which can be solved by having one K removed from each side. Note that all
solutions of 3.20 also satisfies 3.19 [17].

1
m

K2a = λaK. (3.19)

Ka = mλa (3.20)
From the beginning we have assumed that the projected data in F is centred.

Even though the input data X̃ is centered, the mapping done by Φ to the feature
space leaves no guarantee that the mapped data will be centred. As we want to avoid
working in the feature space and utilize the kernel method instead, the projected
centralized data points φ̃(xi) has to be expressed in terms of the kernel function
3.17. Substitute centralizing from equation 3.2 into 3.21.

K̃i,j =φ̃(xi)T φ̃(xj) (3.21)

=(Im −
1
m

1m)φ(xi)T (Im −
1
m

1m)φ(xi)

=
(
φ(xi)T −

m∑
l=1

φ(xl)T
)(
φ(xj)−

m∑
j=1

φ(xj)
)

=φ(xi)Tφ(xj)−
1
m

m∑
l=1

φ(xi)Tφ(xl)−
1
m

m∑
l=1

φ(xl)Tφ(xj)

+ 1
m2

m∑
j=1

m∑
l=1

φ(xj)Tφ(xl)

=κ(xi, xj)−
1
m

m∑
l=1

κ(xi, xl)−
1
m

m∑
l=1

κ(xl, xj) + 1
m2

m∑
j=1

m∑
l=1

κ(xj, xl) (3.22)

Expressed in matrix notation this is equivalent to

K̃ = K− 1
m

1mK−K
1
m

1m + 1
m2 1mK1m (3.23)

where 1m is a matrix of dimension m by m with all entries equal to one.
Now the principal components can be calculated by combining the results from

above to avoid computing φ(x) explicitly.
m∑
i=1

α̃iκ̃(x, xi) (3.24)

To summarize, first create the matrix K (3.17) and use it to create the centered
kernel matrix K̃ (3.23). Then find the eigenvectors to K̃ from (3.20). With the
eigenvectors and eigenvalues, extract kernel principal components with the use of
equation 3.24.

3.2 Support Vector Machine
This section aims to explain the main ideas behind support vector machines (SVM).
In its simplest form the SVM finds the hyperplane that best separates linearly

11

3. Theory

separable data of two classes [11]. The datapoints xi are of some p dimension such
that xi ∈ Rp, i ∈ {1, 2 . . . N} where N is the number of datapoints to separate. The
class is denoted y ∈ {−1, 1} and the dataset D can then be defined as

D = {(xi, yi)|xi ∈ Rp, yi ∈ {−1, 1}}Ni=1 (3.25)

The SVM will try to seperate the data with a hyperplane as illustrated in the 2D
example in figure 3.2. In the 2D example the hyperplanes are lines

y = ax+ b⇒
[
a
−1

]T [
x
y

]
+ b = 0⇒ wTx+ b = 0 (3.26)

that can be generalized into the hyperplane formula wTx + b = 0 which will be
used as the formula for the separating hyperplane throughout this section. As can
be seen in figure 3.2 there may be different hyperplanes that separate the classes
and the optimization task for the SVM is to find the hyperplane that maximizes the
margin. By eyeballing the right figure of 3.2, a naive approach could be to introduce
a hyperplane in the middle of the two red lines. Eyeballing the problem works in a
2D setup but when dimensionality increases it is no longer possible and the solution
found is rarely optimal. The margin refers to the shortest Euclidean distance from
any datapoint xi to the hyperplane. The scaling of the data does not effect the linear
separability so from now on w will refer to a vector perpendicular to the hyperplane
of unit length.

0 0.5 1 1.5

Dimension 1

0

0.5

1

1.5

D
im

e
n
s
io

n
 2

N=20, p=2

Class -1

Class 1

Plane 1

Plane 2

Plane 3

0 0.5 1 1.5

0

0.5

1

1.5

Figure 3.2: Data of class -1 and 1, to the left separated by some hyperplane. In
the right figure the margin from plane 1 to the datapoints has been marked by a
black vector and red lines have been drawn to indicate the total margin.

Since the SVM is supposed to classify the samples, a formula for classification is
needed. Everything on the right side of the plane should be positive and everything
on the left side should be negative.{

wTxi + b > 0 if yi = 1
wTxi + b < 0 if yi = −1 (3.27)

12

3. Theory

3.2.1 Finding the first constraint
The constraint in equation 3.27 could classify samples of either side of a plane but
it does not help in finding the optimal separating hyperplane since no separating
region has been introduced. By requiring{

wTxi + b ≥ 1 if yi = 1
wTxi + b ≤ −1 if yi = −1 (3.28)

a margin where no samples are located is introduced. This margin is the distance
between the two red lines in figure 3.2. The requirement can be rewritten as

yi(w · xi + b)− 1 ≥ 0 (3.29)
which will be used as a constrain in the optimization problem.

3.2.2 Maximize the margin as an optimization problem
A point on the lower red line in figure 3.2 would satisfy

w · xi + b+ 1 = 0 (3.30)
and by taking a step of length m in the perpendicular direction to this plane

towards the upper red line a point on that line would satisfy

w · (xi +mw) + b− 1 = 0 (3.31)
where m becomes the margin which we seek to maximize. Putting equation 3.30

and 3.31 together gives

w · xi + b+ 1 = w · (xi +mw) + b− 1
m = 2

||w||2
(3.32)

where optimizing for maximizing the margin has the same solution as minimiz-
ing the reciprocal which will be used when setting up this constraint optimization
problem [18].

min
w,b

1
2‖w‖

2

subject to yi(w · xi + b)− 1 ≥ 0
(3.33)

By changing to a Lagranian formulation of the problem, the constraint is replaced
with a series of Lagrange multipliers αi. The Lagrange multipliers are subjected to
constraint which is easier than the above constraint to handle but more importantly
results in the property that the training data will only appear in the form of dot
products between vectors which is crucial for generalizing to the nonlinear case using
kernel methods described in section 3.3. With the Lagranian formulation

L(w, b, α) = 1
2‖w‖

2 −
N∑
i=1

αi[yi(w · xi + b)− 1] (3.34)

the duality principle can be utilized for this convex optimization problem where
both Slater’s condition and strong duality holds. By utilizing the duality principle

13

3. Theory

the Wolfe dual Lagrangian function can be found which results in the Wolfe dual
problem

max
α

∑N
i=1 αi − 1

2
∑N
i=1

∑N
j=1 αiαjyiyjxi · xj

subject to αi ≥ 0 ∀i ∈ 1 . . . N∑N
i=1 αiyi = 0

(3.35)

which can be solved by a QP (Quadratic Programming) solver [19] and thus
finding the optimal separating hyperplane.

3.2.3 Dealing with noise and nonlinearity

In many real world scenarios the data might be affected by noise which makes a
linear separation impossible. To handle these scenarios slack variables ξi will be
introduced which are designed to penalize samples within the margin through some
function f [20]. The amount of penalty is configured using a design parameter C.
The optimization problem with these slack variables included becomes

min
w,b

1
2‖w‖

2 + C
∑N
i=1 f(ξi)

subject to yi(w · xi + b)− 1 + ξi ≥ 0 ∀i
ξi ≥ 0 ∀i

(3.36)

Introducing the slack variables improves handling noisy data but when the data
is not linearly separable as in figure 3.3 another solution is needed namely increas-
ing the dimensionality. The dimensionality is increased using the kernel trick as
described in section 3.3 which might lead to linearly separable data in higher di-
mensions. Figure 3.3 shows a 2D dataset to the left which can not be linearly
separated but when transformed into a 3D dataset using a similarity function based
on the radial basis kernel

κ(x, x′) = e
−
‖x− x′‖2

2σ2 (3.37)

the separation becomes an easy task [21]. In figure 3.3 the σ parameter has been
set to 0.6 and a plane at z = 0.7 has been added as an example of a separating plane.
The σ parameter will be called kernel scale throughout this report. In literature and
in this report both the names Gaussian kernel and radial basis kernel are used to
describe the same kernel function.

14

3. Theory

Figure 3.3: Dataset of linearly inseparable data to the left. The same dataset
is transformed by the kernel trick to a higher dimension where they are linearly
separable to the right.

3.3 Kernel trick

This section aims to give a brief introduction to the kernel trick used in both SVM
and kPCA. In short it is an approach where one uses a kernel function in order to
substitute for a inner product between data to end up in a high dimension.
If we have data that we are not linearly able to classify but we can describe it as

inner products, then we can use a mapping φ, from the input space into a higher
dimension feature space F where the data is linearly separable, see figure 3.3.

a = [a1, a2]T → φ(a) = [a2
1, a

2
2, a1a2, a2a1]T

b = [b1, b2]T → φ(b) = [b2
1, b

2
2, b1b2, b2b1]T (3.38)

Lets consider an example where the input space of 2-D is mapped by φ(·) to a
feature space of 4-D as in equation 3.38. After the mapping, the inner product
becomes:

〈φ(a), φ(b)〉 = φ(a)Tφ(b) = a2
1b

2
1 + a2

2b
2
2 + 2a1a2b1b2 (3.39)

This process can also be recognized as taking the squared inner product between
a and b.

〈a,b〉 = (aTb)2 (3.40)

We have now shown that the square of this inner product is the inner product
in the feature space thus verifying the kernel κ(a,b) = (aTb)2. This is known as a
polynomial kernel of second degree [22], see table 3.1 for more popular kernels.

15

3. Theory

Kernel name κ(x,y) Comment
Polynomial (aT b+ c)d Constant c > 0
Gaussian Radial Basis Func-
tion (RBF)

e−
||x−y||2

2σ2 Design parameter σ > 0

Laplacian e−α||x−y|| Design parameter α > 0
Abel e−α|x−y| Design parameter α > 0
Sigmoid tanh(γ · xTy + r) Design parameter γ and r

Table 3.1: Table of common kernel functions.

With that said, there exists many more valid kernels and one does not have to
find the map φ to verify it. The requirements for a kernel to be valid can be stated
through two theorems [23]:

Theorem 1 Let κ(x, y) be a real symmetric function on a finite input space,
then it is a kernel function if and only if the matrix K with components κ(xi, xj)
is positive semi-definite.

Theorem 2 (Mercer’s theorem) If κ(x, y) is a continuous symmetric kernel of
a positive integral operator T, i.e.

(Tf)(y) =
∫
C
κ(x,y)f(x)dx (3.41)

with ∫
C×C

κ(x,y)f(x)fy)dxdy ≥ 0 (3.42)

for all f ∈ L2(C) then it can be expanded in a uniformly convergent series in
the eigenfunctions ψj and positive eigenvalues λj of T , thus:

κ(x,y) =
ne∑
j=1

λjψj(x)ψj(y) (3.43)

where ne is the number of positive eigenvalues.

3.4 Artificial Neural Networks
Artificial Neural Networks (ANNs) are machine learning models inspired by the
human brain which consists of a network of neurons. This section aims to explain
the neural network model and mathematical strategies involved in making these
models computationally efficient and introduce the design choices involved.
A neuron will be modeled as a sum of weighted inputs sent through an activation

function.

σ(
∑
k

wkak + b) (3.44)

In equation 3.44, ai denotes inputs to the neuron, wi denotes the weights, b denotes
bias and σ denotes the activation function.

16

3. Theory

Lets consider the simplest possible network consisting of only 2 neurons, with one
input to each.

σ(∑wkak) σ(∑wkak)
w1

a1 = x
x

w2

a2 = σ(w1a1)
ŷ

ŷ = σ(w2a2)

Figure 3.4: Showing a small neural network where wi denotes the weight and ai
denotes the signal at the edge. x denotes the input to the network and ŷ the output.

In figure 3.4 a network that takes an input x and feeds it forward to produce an
output ŷ depending on the weights is shown. The weights will be changed so that
the network approximates some function which is generally unknown. The idea is
to give the network a set of training samples for which the output is known and
adjust the weights until the output of the network is close to the sampled output of
the function one seeks to approximate. Once the model has been trained it can be
used to estimate the output of new input data.

3.4.1 Gradient descent
To change the weights some kind of cost function is needed to evaluate the per-
formance of the network with the current weights. The cost function should be
differentiable so that the partial derivatives with respect to the weights can be used
for gradient descent. For conciseness lets introduce the notation h(xi,w) = ŷi for
the neural network where ŷi is the predicted output for some input xi given the
weights w. One choice of cost function is the quadratic loss function

L(w) =
∑
i

(h(xi,w)− yi)2 (3.45)

where yi is the true output of the function the network seeks to approximate. The
gradient of the cost function becomes

∂

∂w
L(w) =

∑
i

2(h(xi,w)− yi)
∂

∂w
h(xi,w). (3.46)

With a simple activation function σ(w, a) = w · a the partial derivative of the loss
function can be solved by first calculating

∂
∂wh(xi,w) =

(
∂
∂w1

h(xi, w1), ∂
∂w2

h(xi, w2)
)

=(
∂
∂w1

w2w1xi,
∂
∂w2

w2w1xi

)
=

(
w2xi, w1xi

) (3.47)

and then by using the results from equation 3.47 in 3.46 the gradient can be found
as

∆wL =
(∑

i

2w2xi(ŷi − yi),
∑
i

2w1xi(ŷi − yi)
)

(3.48)

17

3. Theory

which can be used to update the weights according to

w = w− η∆wL (3.49)

where η is the step size which is a design parameter. A small η causes the model
to converge very slowly and a large might cause the model to become unstable. In
this project η will be set dynamically so that large steps are taken in the beginning
to speed up training and as the model settles on a solution the step size will be
smaller to gain stability.

3.4.2 Activation functions
In the gradient descent section a very simple activation function was assumed. The
activation function is a design choice so a few alternatives will be presented here.

-5 0 5

-1

0

1

sigmoid

-5 0 5

-1

0

1

tanh

-5 0 5

-1

0

1

relu

Figure 3.5: Plot of three activation functions sigmoid, tanh and relu.

The first activation function to discuss is the sigmoid function shown to the left
in figure 3.5 which takes any real value and maps it between 0 and 1. The formula
for the function is

σ(x) = 1
1 + e−x

(3.50)

and as explained in section 3.4.1 the derivative of the activation function is part of
the gradient descent used to update the weights so it is important that the derivative
can be computed in an efficient way. Looking at the derivative of the sigmoid
function gives

d
dx
σ(x) = d

dx
(1 + e−x)−1 = −(1 + e−x)−2(−e−x) =

e−x

(1+e−x)2 = 1+e−x−1
(1+e−x)2 = 1+e−x

(1+e−x)2 − 1
(1+e−x)2 = 1

(1+e−x) −
1

(1+e−x)
2 =

σ(x)(1− σ(x))
(3.51)

which is an important finding since the derivative can be represented as one simple
multiplication operation and one subtraction operation with respect to the function
value. In a neural network setting this means that if the value of σ(x) is saved when
propagating forward through the network the gradients can be calculated efficiently.
The second function to discuss is the tanh function which is the hyperbolic tangent

[24] shown in the middle of figure 3.5. The function takes a value and maps it to a
value between -1 and 1. One could use the derivations of the sigmoid function for
the tanh by letting

18

3. Theory

tanh(x) = 2σ(2x)− 1 (3.52)
and thus the same computationally efficient properties are preserved.
The third activation function to discuss is ReLU, short for rectified linear units.

It is defined as
ReLU(x) =

{
x if x > 0
0 if x ≤ 0 (3.53)

and can be seen in figure 3.5 to the right. For ReLU the derivative is 1 for
x > 0 and 0 for x < 0 which is also computationally efficient. Using ReLU has
shown increased performance and reduced training time [25] [26] but may cause
dead neurons since some weight might be changed during training so that a neuron
never fires again [27].

3.4.3 Expanding the network
The network presented in figure 3.4 is a highly simplified version of a network with
only two weights and all biases set to zero to simplify derivations. Using such a sim-
ple network does not provide any useful results in this project so it will be expanded
in this section. In the previous subsections two design parameters have been high-
lighted namely the choice of step size in gradient descent and the choice of activation
function. This section aims to introduce the third design parameter which is the
design of the network and the fourth which is the batch size. Detailed derivations
of the algorithms used will not be part of this section as they are documented in the
references.
Neural networks follow a column wise layering of neurons where the neurons in a

column are connected to some or all (fully connected) neurons in the neighboring
columns. As a naming convention N-Layer networks refers to the number of columns
in a network where the input is not counted. The size of a network will also be
described in terms of number of weights. In figure 3.6 an example of a 2-Layer
network with n inputs and m outputs is shown.

...
... ...

xi,1

xi,2

xi,n

yi,1

yi,m

Input
layer

Hidden
layer

Ouput
layer

Figure 3.6: The figure shows a 2-Layer fully connected feed forward network

19

3. Theory

The structure of the network is a design parameter and should be chosen according
to the application, for instance in image classification networks of millions of neurons
have been used in 10-20 layers [26] [9] to capture the hierarchical structure of objects
in images.
To update the weights associated with all those neurons an algorithm called back

propagation [28] is used which preforms an approximation of gradient descent de-
scribed in section 3.4.1 and utilizes the efficiently computed derivatives of the ac-
tivation functions described in section 3.4.1. A few tricks are introduced in the
algorithm to handle large dataset. From section 3.4.1 the loss function was defined
as the sum of the squared error of all samples which is not feasible with large datasets
so instead another parameter called the batch size is introduced. The batch size is
the number of samples to consider in each iteration of the gradient descent in the
back propagation algorithm. Recall from equation 3.45 that the loss is the sum over
all samples i but in back propagation a subset of the samples is used and the size
of the subset is called batch size.

3.4.4 Training difficulties

Solid results have been achieved using deep neural networks [26] but they are hard
to train properly and come with a couple of issues that affect the design choices
which will be addressed in this section [29].
The unstable gradient problem will be used as a term for both the vanishing

gradient problem and exploding gradient problem where the gradient will get small
as it is propagated back through the network according to the back propagation
algorithm causing very small updates to the weights in the earlier layers or get large
causing too large updates in the earlier layers.
It has been shown that the unstable gradient problem can be addressed with

proper initialization of the network [30] and by considering the choice of activation
function and their respective derivatives as presented in section 3.4.2 [31].

3.5 Decision Trees

This section will describe decision trees as a machine learning strategy for classifica-
tion. The topics include building trees recursively, constructing a loss function and
tuning the size of the tree.
The underlying strategy for decision trees is to ask true or false questions until

either the algorithm is confident in its classification or it is not allowed to ask more
questions. The amount of questions allowed is a design parameter referred to as the
maximum size of the tree. The questions to ask will be decided by traversing down
the tree where each node contains a question and the answer to this question will
decide which branch to take. The traversing stops once a leaf node is reached and
the data point is predicted to be of the class associated with that leaf node.

20

3. Theory

3.5.1 Training and building a tree

The first node called the root receives the whole dataset denoted D. The dataset is
split by a true or false statement. To decide on a statement the algorithm will go
through every entry in D and for every entry it will go through every feature and
split D by the value of that feature. Each split will be evaluated by the information
gain function (see section 3.5.2) and the split with the highest gain will be chosen
as the statement of the root node. The split is then performed and the dataset D
is divided into two sets D0 and D1 where D1 contain the entries where the split
statement evaluates to true and D0 contains everything else. The datasets are then
sent to their respective child node. For each child node every possible split in the
divided dataset will be evaluated and the split that produces the most information
gain will once again be chosen. This strategy is repeated until some stopping criteria
is met (see section 3.5.3). Once some stopping criteria is met the node becomes a
leaf and gets associated with a class, in this thesis a match or nonmatch. The class
of the node is determined by the most common label of the dataset in the node.

3.5.2 Information gain and Gini impurity

To decide which split to chose when building the tree a function to evaluate the
effectiveness of a split is needed. In this section the Gini impurity (equation 3.54)
function will be introduced as a loss function and information gain will be defined as
the decrease in Gini impurity for a particular split. There exists alternatives to the
Gini impurity function but this section will not discuss them since empirical results
[32] have not been able to determine if there is a benefit of using them over the Gini
impurity.
The Gini impurity function evaluates how likely two randomly selected samples

from the dataset at a node are to be of different classes. This is calculated as

Gini(n) = 1−
∑
i

p(i|n)2 i ∈ {0, 1} (3.54)

where n is the dataset at the node, i spans over all labels and p(i|n) is the prob-
ability of randomly picking a sample of label i from the dataset n. Since this thesis
focuses on a binary classification problem i only takes two values where 0 corresponds
to nonmatching and 1 corresponds to matching samples.
The information gained by preforming a particular split is defined as

IG(n, l, r) = Gini(n)− |l|
|n|

Gini(l)− |r|
|n|

Gini(r) (3.55)

where n is the dataset at the node, l is the dataset in the left branch after the
proposed split and r is the dataset in the right branch. Note that the impurity is
weighted by the fraction of the samples since it is better to classify a large number
of samples correctly than a few. The split that produces the maximum information
gain (IG) is chosen at each node.

21

3. Theory

3.5.3 Stopping criteria and pruning
At some point the splitting of the nodes have to stop so that the algorithm termi-
nates. If the splitting stops too early performance suffers since the leaves are impure,
if the splitting stops too late the model is likely to overfit.
The main stopping condition is if a node is pure, that is when all samples in the

node are of the same class. The node will then be marked as a leaf and will not be
split. There exists a number of optional stopping conditions that may be used to
limit the size of the tree. These are presented in table 3.2.

Name Description

Purity
threshold

If a node reaches a predefined purity this can be used as a stopping
condition.

Samples
threshold

One could implement a limit on the minimum amount of samples in
a node. If the number of samples goes below this value the splitting
is stopped.

Maximum
size

If the allowed maximum number of nodes is reached that can be used
as a stopping condition.

Maximum
depth

If there is a defined maximum number of steps from the root to a leaf
the splitting is stopped when this depth is reached.

Feature
equality

If all the features are equal no rule can be constructed to split the
data.

Validation
testing

By using a validation dataset splitting can be stopped when the per-
formance on the validation set is not improving anymore.

Table 3.2: Table of stopping conditions for decision trees.

Implementing all or some of the stopping criteria presented in table 3.2 can pro-
duce working decision trees but occasionally stopping criteria tend to suffer from
lack of global knowledge [33] and some of them introduce additional design param-
eters which then have to be tuned. An alternative to using stopping criteria is to
prune the trees instead.
When using pruning the first step is to let the tree fully grow until every leaf

node is pure. Pruning then removes subtrees until the desired size of the tree is
reached. In this thesis reduced error pruning has been used. Reduced error pruning
is an algorithm where the summed error over a subtree is compared to the received
error if the subtree was converted to a leaf node with the majority class label. If
the conversion from subtree to leaf node is not harmful then the tree is pruned and
the subtree is converted into a leaf node with the majority class label. The error is
evaluated on a validation dataset and subtrees are compared in a bottom up manner
as suggested by Elomaa and Kääriäinen [34].

22

3. Theory

3.5.4 Boosting

Boosting is a technique used to combine weak classifiers in a meaningful way to
increase the overall accuracy [35]. Weak classifiers are classifiers that classify the
dataset better than random chance. The boosting algorithm used in this thesis is
called Adaboost. Boosting can be done with any weak classifier but more complex
classifiers will take longer to train, especially in a boosting setup since many classi-
fiers have to be trained and weighted together in the boosting setup. In this section
the weak classifiers are assumed to be a decision trees of size 20.
Let xi be sample i and yi be the corresponding label where i = 1, ...,m. In this

binary classification setup yi ∈ {−1,+1} where −1 correspond to a nonmatching
sample and +1 corresponds to a matching sample. Each weak classifier will be de-
noted ht(x) and the number of weak classifiers weighted together is denoted T, in
this thesis a T value of 30 has been used. Pseudo code for adaboost is found in
algorithm 1.

input : Samples xi ∈ X and corresponding labels yi ∈ Y
output: Classifier H(x)
Initialize: D1(i) = 1/m for i = 1, ...,m
for t = 1 to T do

ht = train tree using samples drawn using distribution Dt

ŷ = ht(X)
εt = Pri∼Dt [ŷi 6= yi] (3.56)

αt = 1
2ln

(1− εt
εt

)
(3.57)

for i = 1 to m do

Dt+1(i) = Dt(i)exp(−αtyiŷi)
Zt

(3.58)

end
end

H(x) = sign(
T∑
t=1

αtht(x)) (3.59)

Algorithm 1: Pseudo code of adaboost algorithm

In equation 3.56 the error is calculated as the probability of a sample being classi-
fied incorrectly when drawing samples from the distribution Dt, in other words the
weighted error. In equation 3.58 Zt is a scaling factor to make Dt+1(i) a distribution.
One property of adasboost is that it focuses more on the samples that are hard

to solve, equation 3.58 changes the distribution so that failed samples become more
important and the next weak learner (ht+1) will be trained more on these hard
samples.
A second property of adaboost comes from equation 3.57 where each weak classifier

is weighted based on performance, in figure 3.7 one can see that a classifier with

23

3. Theory

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ǫ

-4

-2

0

2

4
α

α =
1

2
· ln(

1− ǫ

ǫ

)

Figure 3.7: Figure of classifier weights associated as a function of weighted error.

weighted error of 0.5 (random guess) will be given a weight of 0 and not be taken
into account in the combined classifier. Also note that a classifier that performs
worse than random guessing will be given a negative weight essentially making it
perform better than random guessing.

The third propert of adaboost to highlight is the distribution built by equation
3.58. Since failed samples are given a higher weight in the distribution these samples
will be picked more often when training the next tree. This has the effect that
adaboosting focuses more on hard samples which can be beneficial because hard
problems require more attention but can be harmful on noisy datasets [36].

3.5.5 Bagging

Bagging or Bootstrap aggregating is a technique used to reduce the variance in the
learned representations of the dataset [37]. It works by training T different classifiers,
in this case trees, and train them using N datapoints drawn from the original input
data X with replacement. Once all T classifiers have been trained they classify new
datapoints by taking a vote and the most common class is returned. In algorithm
2 the pseudo code for bagging can be found. In this thesis T will be set to 30 and
the number of splits in each tree has be set to 20. N has been set to the number of
entries in X.

24

3. Theory

input : Samples xi ∈ X, corresponding labels yi ∈ Y , Number of samples to
draw N

output: Classifier H(x)
for t = 1 to T do

X̄ = empty set
while |X̄| < N do

x← random sample from X
X̄.add(x)

end
ht = train tree using X̄

end
H(x) = sign(∑T

t=1 ht(x))
Algorithm 2: Pseudo code of bagging algorithm

3.6 K-nearest-neighbor
In this section the machine learning algorithm K-nearest-neighbor will be introduced.
This is a simple algorithm that keeps all the datapoints in the training data and
when making a classification a vote will be taken among the K closest neighbors.
The datapoint will be classified by the majority class of the neighbors.
The idea is that datapoints that are similar in feature space are probably of the

same class. To determine which points are the closest a few different comparison
functions are used [38]. In this thesis euclidean distance and cosine similarity has
been used. The K value determines how many neighbors are allowed to vote in a
classification and for this thesis values of 1, 10 and 100 has been used. One drawback
of using K-nearest-neighbor is that every training datapoint has to be stored and
for every classification the distance to every point has to be calculated. This makes
the models large and slow for bigger datasets.

25

3. Theory

26

4
Methodology

This chapter explain the methods used to obtain the results in this thesis. First
an overview of the algorithm and the steps taken to retrieve the data will be given.
Secondly the methods for reconstruction, interpolating and time aligning of the
data will explained. After that the each of the core parts of the algorithm will be
explained. The core parts include the choice of similarity functions, the choice of
machine learning algorithms and verification methods.
The first step to this project was to gather sensor data to perform the matching on.

This was done using a set of hand annotated matched objects. No nonmatches were
annotated so every matched object was given five nonmatches. To find nonmatches
the five longest lived sensor objects that were found within the lifespan of the ref-
erence object were extracted and given the nonmatch label. If the matched sensor
object was among the five extracted objects the label was changed to matching. If
the matched sensor object was not extracted it was added to the dataset. When com-
pleted the dataset contained 4128 matching objects and 21625 nonmatching objects.
The quality of the signals describing these objects varied so some reconstructing was
necessary which is presented in section 4.1.
In figure 4.1 a flowchart of the steps taken in the matching algorithm are shown.

The object signals are described in more detail in the setup section 2.2 of this
report. The object signals are used to find a set of features through various similarity
functions. The dimensionality of the features can be higher than what is suitable
for the machine learning step and some may be uninformative so an option is to
send these features through a dimensionality reduction function. After the optional
mapping to a lower dimensionality the machine learning algorithms are used to
classify the data.

Figure 4.1: Flowchart of information through the matching algorithm.

27

4. Methodology

4.1 Reconstructing and aligning

The raw measurements of the sensors have been processed to produce signals describ-
ing the objects detected but when the sensors do not provide adequate information
the processing will assign these samples NaN values. When NaN values appear in
short series an attempt to reconstruct the missing data can be made. This section
will describe the methods used to reconstruct and align the data.
Both the reference and sensor system gives each object it finds an id. The range

of numbers available as ids is limited and thus an id is reassigned to a new real
world object after some time. When annotating the data the annotator marks two
objects as matches which also generates a timestamp for the matching. In the cases
where the same id has been used for multiple real objects the correct sequence of
sampled data has to be selected to perform the matching on. In figure 4.2 there are
3 reference sequences with the same id which have been matched against a sensor
sequence. A sequence has been defined as finished after a set number of NaN values
occur in a row. This number has been set to 40 since it generated correct sequence
splitting for all tested objects when testing on the dataset.

0 10 20 30 40 50 60 70 80 90

Time

-12

-10

-8

-6

-4

-2

0

2

4

L
a
ti
tu

d
e
 P

o
s
it
io

n

Reference

Sensor

Ref sequence 1

Ref sequence 2

Ref sequence 3

Sensor sequence

Figure 4.2: Sampled latitude position over time for a matching pair.

The sequences that best matches the annotated timestamp and has some time
overlap are selected as the sequences to compare. In figure 4.3 the selected sequences
from the the signals in figure 4.2 are shown. Within these sequences there can
be short sections of NaN values due to flickering in the sensor signals. This is
undesirable for the matching algorithm so missing samples are reconstructed using
linear interpolation which is implemented as

pmiss = (tmiss − tprev)(pnext − pprev)
tnext − tprev

(4.1)

where subscript miss denotes the missing sample, prev denotes the previous valid
sample and next denotes the next valid sample.

28

4. Methodology

10 15 20 25 30 35 40

Time

-4

-3

-2

-1

0

1

2

3

L
a
ti
tu

d
e
 P

o
s
it
io

n

Reference

Sensor

Missing data

Figure 4.3: Showing correctly selected sequence and highlighting missing data.

Once the sequence has been repaired the samples can be used in similarity func-
tions (described in section 4.2). In figure 4.4 the repaired sequences are shown and
the time overlap has been highlighted. The overlap has been highlighted since it is
the most important area of the sequence.

5 10 15 20 25 30 35 40 45

Time

-4

-3

-2

-1

0

1

2

3

L
a
ti
tu

d
e
 P

o
s
it
io

n

Reference

Sensor

Overlap indicator

Figure 4.4: Showing the results of linear interpolation and highlighting the time
overlap of the sensors.

The sensor and reference sequences in this section have been plotted over time to
show the similarity of the sequences but since they are sampled at different rates
they are not as similar in sample domain. To achieve the similarity seen in the
figures in sample domain aswell the signals from the slower reference system are
upsampled.Upsamling and synchronizing the reference signals is done using a clock
that timestamps every sample of both systems. Since the time of measurement is
known the samples from the slower system are placed at the corresponding time in
the faster sample domain. The samples that does not have a corresponding sample
are given values through linear interpolation as in equation 4.1.

29

4. Methodology

4.2 Similarity functions
Similarity functions take the object signals from both the reference and sensor system
and transform these signals into a feature. This section describes how and which
similarity functions have been used in this project.
One similarity function that has been used to compare similarity of sets for in-

stance in image segmentation is the Jaccard index [39]. In this project Jaccard
index has been used to describe time overlap. The formula for Jaccard index in this
context is

J(Tr,i, Ts,j) = |Tr,i ∩ Ts,j|
|Tr,i ∪ Ts,j|

(4.2)

where Tr,i and Ts,j are sets of sample times and |Tr,i| denotes the number of
elements in the set Tr,i.By letting Tr,i be the time where object i is found by the
reference system and Ts,j be the time where object j is found by the sensor system.
J(Tr,i, Ts,j) is then a relative measurement of how much time the two objects have
been seen together.
The difference of signals is used for a couple of similarity functions

∆Plat = Pr,lat − Ps,lat (4.3)

where P is a column vector of all position values for the time samples Tr,i ∩ Ts,j.
The difference is used for a number of different similarity functions such as the
max, min, mean and by considering the column vector P a vector in R|P | vector
comparisons such as norm of ∆P and cosine similarity of Pr and Ps can also be
applied.
By squaring ∆P element-wise in latitude and longitude, then taking the element

wise square root gives the euclidean distance in each point which is also used as a
measurement for similarity. The formula

D =
√

∆Plat �∆Plat + ∆Plgt �∆Plgt (4.4)

where � denotes Hadamard product and the square root is taken element wise
resulting in the euclidean distance in each sample from which the min, max, mean
etc. can be taken to produce matching features. An alternative measure of distance
that has been used is the Manhattan distance which is the sum of the difference in
latitudinal and longitudinal direction.
Additional similarity functions such as applying the position methodology pre-

sented above to velocity measurements has been experimented with throughout the
project. Another feature that was experimented with is the distance from the ego-
vehicle to the reference object. The argument for this similarity function was that
the sensor may behave differently for close objects compared to objects further away.
Additionally the probabilities of the measurements as normal distributions has been
experimented with such that an object pair has been rated based on how often the
reference position is within the 3σ-level ellipse of the sensor position. Research sug-
gests that adding features such as these additional similarity functions may hurt the
algorithmic stability. [40] and experiments showed little gain in accuracy so these

30

4. Methodology

additional similarity functions were not included in the results presented in chapter
5.

4.3 Dimensionality reduction
In order to evaluate PCA we used the PCA function supplied with MATLABs
Statistics and Machine Learning Toolbox [41].
kPCA was not applied to the whole dataset of 25753 samples, as a feasible solution

could not be found for it. The restriction in kPCA is the eigenvalue decomposition of
the centered kernel matrix. As the decomposition in equation 3.20 (or eigs command
in algorithm 3) involves a time complexity of O(N3) it became very time consuming
and occupied large amounts of memory. Here N is the number of samples. If all
25753 samples would be in use, the kernel matrix K which is a square matrix with
width and height equal to the number os samples would take up roughly 5GB of
space.
The trivial solution was to use a subset of 5000 samples an algorithm implemented

as described in 3. The only tested kernel funciton was a RBF with σ = 1 from table
3.1.

31

4. Methodology

input : data_in. Matrix of samples with number of samples equal to N.
input : dim_out. Dimension of the output, ie. the number of principle

components to be extracted.
output: data_out. Principle components, dim_out by number of samples.
for row = 1 to N do

for col = 1 to row do
K(row, col)← κ(row,col) ; // construct kernel matrix

end
end
K← K + KT ; // as for loops only did half the matrix

for row = 1 to N do
K(row, row)← K(row, row)/2 ; // rescale the diagonal as it is
added twice

end

K̃ = K− 1
m

1mK−K 1
m

1m + 1
m2 1mK1m ; // center the kernel matrix

a, λ← eigs(K̃) ; // calculate eigenvectors and -values

out_index← sort(λ) ; // sort in descending order to export dim_out
number of principle components.

for component = 1 to dim_out do

data_out← a(out_index(component)). ∗ K̃; // fill data_out with
most important component first and continue.

end
Algorithm 3: Pseudo code of kPCA implementation.

4.4 Implementation of machine learning

The machine learning algorithms take the outputs from the similarity functions
and learn to classify objects as matching or not. This section will explain how the
machine learning tools have been used in this project.
The machine learning algorithms have been implemented in MATLAB using the

Statistics and Machine Learning Toolbox [41] which provide implementations of algo-
rithms such as Support Vector Machines [11], Decision trees [12], k nearest neighbour
[13] etc. Artificial neural networks [8] will also be implemented in MATLAB using
the Neural Network Toolbox [42].
The data is presented to the machine learning algorithms as entries in a feature

matrix. Each row represents a pair of objects, one from the reference and one from
the sensor system. The pairs of objects are described by the outputs of the similarity
functions. An example of how some samples are presented to the machine learning
algorithms are show in table 4.1.

32

4. Methodology

isMatch ∆LatPos ∆LgtPos Euclidean Manhattan TimeOverlap
0 0,52 45,65 45,65 46,17 0,89
0 9,52 27,41 29,02 36,93 0,84
0 1,09 24,26 24,31 25,35 0,73
1 0,27 3,58 3,59 3,85 0,43

Table 4.1: Example of feature matrix entries as presented to the machine learning
algorithms.

Decision trees have been used with the Gini impurity function and three different
sizes of 4, 20 and 100. In bagging and boosting 30 trees of size 20 have been
used. For the support vector machine linear, gaussian and polynomial kernels have
been used. The order of the polynomial kernels was set to 2 and 3. In k nearest
neighbour the euclidean and cubic distance in feature space was used to evaluate
which neighbours were nearest. The neural networks were designed with a 2-layer
layout and 10 hidden neurons in the hidden layer. The tanh activation functions
was used.

4.5 Validation of machine learning algorithms
This section will describe the validation methods considered to evaluate the per-
formance of different machine learning algorithms and present the decision process
involved in choosing a method to evaluate performance within this thesis.
To evaluate the performance of an algorithm a method know as k-fold cross val-

idation was used. In k-fold cross validation the dataset is divided into k randomly
selected subsets of equal size, see figure 4.5.

Figure 4.5: Example of selected training folds and test fold for each iteration. In
this case k = 10, thus 10 folds and iterations are made.

Each subset acts as validation data once and training data k-1 times. In this thesis
the value chosen for k was 10 which means every machine learning algorithm was
trained and tested 10 times. A sample was given the classification it got from the

33

4. Methodology

machine learning algorithms when the sample was in the validation data. When all
k models had made their predictions the results were compared to the labelled data
and the algorithms were ranked based on their error rate and the type of errors made.
The type of errors are presented using confusion matrices where classifying a pair as
matching when it is not is considered worse than classifying a pair as nonmatching
when they actually match. The type of error matters since the samples falsely
classified as matching might be used to evaluate the performance of a sensor.
An alternative method for validation was the hold out validation method where

a predefined subset of the data is selected for validation and the rest is used as
training. The benefit of using k-fold cross validation over holdout validation is that
there is no ambiguity in the choice of validation data and results from k-fold cross
validation tend to better describe the performance of the algorithm [43].

4.6 Algorithmic stability

This section will describe how a trained model was tested for algorithmic stability.
The notion of algorithmic stability is used in this thesis to describe the generalization
abilities of the model as it is used to classify unseen data with added noise. The
added noise is supposed to emulate the change of sensor, say from manufacturer A
to manufacturer B’s counterpart. Different noise models will also give insight in how
model degradation occur. To explore the algorithmic stability the models shown in
figure 4.6 was used. Noise model 1 is represented by a third degree polynomial,
created in collaboration with a test engineer at Volvo to give it characteristics and
scaling that closely correspond to a real example. Model 2, 3 and 4 (2 and 3 are
polynomial, 4 is sigmoid) are similar functions with exaggerated features with the
purpose to further deteriorate the models. The noise generation works by letting
the noise models generate a relative error depending on how far away the object
is. The relative error times the current distance generate a standard deviation that
can be used in an Gaussian distribution with mean µ = 0 N (µ, σ2) to generate a
suitable additive noise.
For example, if an longitudinal noise shall be added with model 1 and the object is

80m away, a standard deviation of 10% of the current distance will be used to draw a
random number from the a Gaussian probability density function. σ = 0.1 · 80 = 8,
so a noise from the distribution N (µ, 82) is added.
The algorithmic stability is checked by the combination of k-fold validation as

described in section 4.5 and data augmentation with different noise models, figure
4.6.
The combination works as follows:
1. Divide the data in 10 subsets.
2. Train a classifier 9 of the subsets and leave one part for testing.
3. Process the testing subset in the noise model.
4. Classify the subset with the added noise.
5. Store results and repeat from step 2 but with a different subset for training

and testing.

34

4. Methodology

0 5 10 15 20 25 30

Distance [m]

0

5

10

15

20

25

30
R

e
la

ti
v
e
 e

rr
o
r

m
a
g
n
it
u
d
e
 [
%

]

Latitude noise models

Noise model 1

Noise model 2

Noise model 3

Noise model 4

0 20 40 60 80 100 120

Distance [m]

0

5

10

15

20

25

30

R
e
la

ti
v
e
 e

rr
o
r

m
a
g
n
it
u
d
e
 [
%

]

Longitude noise models

Noise model 1

Noise model 2

Noise model 3

Noise model 4

Figure 4.6: Models used to generate noise that when added to the sensor, emulate
another manufacturer’s sensor.

4.7 Experimental motivation for the use of simi-
larity functions

This section describes an alternative methodology where the similarity functions
have been replaced by a larger machine learning model which takes sampled time-
series as input and returns a classification.

The model takes the sampled positions of object pairs as four timeseries, the two
first are latitude and longitude position from the sensor and the second two are
latitude and longitude position from the reference. The motivation for this setup
was that since the similarity functions aim to produce a descriptive scalar value
from sampled series some dynamics within the series might be lost. A model such
as Long Short Term Memory (LSTM) neural networks that can handle historical
information might capture information lost in the similarity functions. This type
of setup would also remove the engineering work required to find suitable similarity
functions.

A test was performed using a network with a LSTM layer with 100 nodes fol-
lowed by a fully connected layer with 2 nodes followed by a softmax and finally a
classification layer. The model was evaluated using 5-fold cross validation.

35

4. Methodology

Not match Match

Predicted

Match

Not match

A
n

n
o

ta
te

d

LSTM

14.72 %

97.81 % 2.19 %

85.28 %

607

21107 472

3518

Figure 4.7: Confusion matrix of the results running LSTM network.

In figure 4.7 the results from the LSTM classification can be found. Only 85.28%
of the matching object pairs were correctly classified which is not on par with the
results achieved using similarity functions, shown in chapter 5. Since this experiment
did not show promising results LSTM networks were not further investigated as a
solution in this thesis.

36

5
Results

This chapter presents the results of the thesis. The results include effects of using di-
mensionality reduction, performance of different machine learning (ML) algorithms
and results from noise rejection tests.

5.1 Dimensionality and noise reduction

The procedures of PCA and kPCA described in section 3.1 have a record of improv-
ing the outcome of classifiers in certain cases [44], [45]. All results and information
about the different configurations can be found in appendix B for both PCA and
kPCA.
In short, the results told that PCA and kPCA had in general a negative effect

across the board.

5.1.1 PCA
When PCA was applied in conjunction with machine learning to classify the data
in the set RaCam2Lidar, it showed a few improvements but mostly a tendency to
decrease the performance of the classification. On the Cam2Lidar dataset, the PCA
decreased the performance in all cases except one where there were no difference.
In table 5.1 and 5.2 the cases that received a positive or neutral effect from PCA on
the overall accuracy can be seen.
In table 5.1 the best combiation of ML and PCA was the medium tree with a

dimensionality reduction from 5 to 4 ending up with an overall accuracy of 99.40%.
A boosted tree without PCA had an overall accuracy of 99.44%, which is the highest
accuracy of all tested algorithms for the RaCam2Lidar dataset.

Dataset Algorithm Dim. reduction w/o PCA w/ PCA Change
RaCam2Lidar KNN Cubic 5 to 2 99.29% 99.30% 0.02%
RaCam2Lidar KNN Cubic 5 to 3 99.29% 99.30% 0.02%
RaCam2Lidar Tree Medium 5 to 4 99.39% 99.40% 0.00%
RaCam2Lidar Boosted Trees - 99.44% - -

Table 5.1: Table showing where PCA had positive or neutral effect on the overall
accuracy for the algorithm that ran on the RaCam2Lidar dataset. The overall
accuracy is presented under the column w/o PCA and w/ PCA.

37

5. Results

When it came to the Cam2Lidar dataset, see table 5.2, the only combination of
ML and PCA that did not have a negative effect was a Gaussian SVM. Without
a performance increase it scored even with a boosted tree and a Gaussian SVM
without PCA.

Dataset Algorithm Dim. reduction w/o PCA w/ PCA Change
Cam2Lidar SVM RBF 6 to 5 98.09% 98.09% 0.00%
Cam2Lidar Bagged Trees - 98.09% - -
Cam2Lidar SVM RBF. - 99.09% - -

Table 5.2: Table showing where PCA had positive or neutral effect on the overall
accuracy for the algorithm that ran on the Cam2Lidar dataset. The overall accuracy
is presented under the column w/o PCA and w/ PCA.

In the instances where the algorithm improved in performance, the combination
of PCA and ML never performed better then the best performing algorithm without
PCA.

5.1.2 kPCA
When kPCA was applied in conjunction with machine learning to classify the data in
the set RaCam2Lidar it did show a stable increase in performance when working with
cosine kNNs but mostly a tendency to decrease the performance of the classification.
On the Cam2Lidar dataset, the kPCA decreased the performance in all cases except
when working with cosine kNNs. In table 5.3 and 5.4 the cases that received a
positive effect from kPCA on the overall accuracy can be seen.

Dataset Algorithm Dim. reduction w/o kPCA w/ kPCA Change
RaCam2Lidar SVM Cubic 5 to 2 99.02% 99.20% 0.18%
RaCam2Lidar kNN Cosine 5 to 2 97.36% 99.44% 2.14%
RaCam2Lidar SVM Cubic 5 to 3 99.02% 99.40% 0.38%
RaCam2Lidar SVM Fine G. 5 to 3 99.44% 99.52 0.08 %
RaCam2Lidar kNN Cosine 5 to 3 97.36% 99.48 2.18 %
RaCam2Lidar SVM Cubic 5 to 4 99.02% 99.40 0.38 %
RaCam2Lidar SVM Fine G. 5 to 4 99.44% 99.48 0.04 %
RaCam2Lidar kNN Cosine 5 to 4 97.36% 99.52 2.14 %
RaCam2Lidar SMV Cubic 5 to 5 99.02% 99.44 0.42 %
RaCam2Lidar kNN Cosine 5 to 5 97.36% 99.46 2.16 %
RaCam2Lidar Boosted Trees - 99.58% - -

Table 5.3: Table showing where kPCA had positive effect on the overall accuracy
for the algorithm that ran on the RaCam2Lidar dataset. The overall accuracy is
presented under the column w/o PCA and w/ PCA.

When it came to the Cam2Lidar dataset, see table 5.4, the only combination of ML
and kPCA that did not have a negative change was a fine Gaussian SVM. Without

38

5. Results

a performance increase it scored even with a boosted tree and a fine Gaussian SVM
without PCA.

Dataset Algorithm Dim. reduction w/o kPCA w/ kPCA Change
Cam2Lidar KNN Cosine 6 to 2 98.26% 98.48% 0.22%
Cam2Lidar KNN Cosine 6 to 3 98.26% 98.44% 0.18%
Cam2Lidar KNN Cosine 6 to 4 98.26% 98.88% 0.63%
Cam2Lidar KNN Cosine 6 to 5 98.26% 98.82% 0.57%
Cam2Lidar KNN Cosine 6 to 6 98.26% 99.06% 0.81%
Cam2Lidar Bagged Trees - 99.54% - -

Table 5.4: Table showing where kPCA had positive effect on the overall accuracy
for the algorithm that ran on the Cam2Lidar dataset. The overall accuracy is
presented under the column w/o PCA and w/ PCA

As in the case of PCA, kPCA did not enter amongst the top tier classifiers show
any improvement for the classifiers, thus ending any further investigation into im-
proving the speed and increasing the sample size of kPCA.

5.2 Performance on different sensor systems
This section will present results achieved when testing the same algorithms on the
three different dataset RaCam2Lidar, Cam2Lidar and Radar2Lidar. The features
used in this section are ∆LatPos, ∆LgtPos, Euclidean, Manhattan, TimeOverlap.

Not match Match

Predicted

Match

Not match

A
n

n
o

ta
te

d

Medium Tree

1.09 %

99.37 % 0.63 %

98.91 %

45

21489 136

4083

Not match Match

Predicted

Match

Not match

A
n

n
o

ta
te

d

SVM Fine Gaussian

1.31 %

99.51 % 0.49 %

98.69 %

54

21518 107

4074

Not match Match

Predicted

Match

Not match

A
n

n
o

ta
te

d

kNN Medium

1.16 %

99.35 % 0.65 %

98.84 %

48

21484 141

4080

Figure 5.1: Performance confusion matrix of three different algorithms on the
RaCam2Lidar dataset.

Not match Match

Predicted

Match

Not match

A
n

n
o

ta
te

d

Medium Tree

60.04 %

99.58 % 0.42 %

39.96 %
2478

21533 91

1649
60.04 %

99.58 % 0.42 %

39.96 %
2478

21533 91

1649

Not match Match

Predicted

Match

Not match

A
n

n
o

ta
te

d

SVM Fine Gaussian

59.24 %

99.57 % 0.43 %

40.76 %
2445

21530 94

1682
59.24 %

99.57 % 0.43 %

40.76 %
2445

21530 94

1682

Not match Match

Predicted

Match

Not match

A
n

n
o

ta
te

d

kNN Medium

58.32 %

99.19 % 0.81 %

41.68 %
2407

21448 176

1720
58.32 %

99.19 % 0.81 %

41.68 %
2407

21448 176

1720

Figure 5.2: Performance confusion matrix of three different algorithms on the
Radar2Lidar dataset.

39

5. Results

Not match Match

Predicted

Match

Not match

A
n
n
o
ta

te
d

Medium Tree

11.65 %

99.48 % 0.52 %

88.35 %

481

21512 113

3647

Not match Match

Predicted

Match

Not match

A
n
n
o
ta

te
d

SVM Fine Gaussian

11.43 %

99.50 % 0.50 %

88.57 %

472

21517 108

3656

Not match Match

Predicted

Match

Not match

A
n
n
o
ta

te
d

kNN Medium

11.63 %

99.53 % 0.47 %

88.37 %

480

21523 102

3648

Figure 5.3: Performance confusion matrix of three different algorithms on the
Cam2Lidar dataset.

Comparing the results when matching on RaCam2Lidar (figure 5.1) data to both
Cam2Lidar (figure 5.2) and Radar2Lidar (figure 5.3) data one can see a decrease
in accuracy. Matching on radar measurements alone gives results that are only
slightly better than using an always false strategy. All algorithms do however benefit
from the information gained by fusing the radar measurements with the camera
measurements.
The medium tree used is a tree with 20 splits using the Gini impurity function,

SVM Fine Gaussian uses a Gaussian kernel with a scale of 0.6 and kNN Medium
uses the 10 nearest neighbours with euclidean distance as it’s cost functions.

5.3 Boosting and bagging the classifiers
By applying techniques such as boosting and bagging to the learning algorithms the
performance may be increased. This section presents the results and performance
difference when applying these techniques on decision trees. Decision trees are used
since they provided best results in the previous tests and are fast to train.

Dataset Algorithm Overall accuracy Change
RaCam2Lidar Tree Medium 99.37% -
RaCam2Lidar Boosted Trees 99.41% 0.04%
RaCam2Lidar Bagged Trees 99.29% -0.08%
Cam2Lidar Tree Medium 97.69% -
Cam2Lidar Boosted Trees 97.76% 0.07%
Cam2Lidar Bagged Trees 97.62% -0.07%
Radar2Lidar Tree Medium 90.02% -
Radar2Lidar Boosted Trees 90.07% 0.05%
Radar2Lidar Bagged Trees 90.13% 0.11%

Table 5.5: Table showing effects of bagging and boosting on decision trees.

In table 5.5 one can see that boosting increased the performance in all three cases
while bagging decreased the performance for two of the dataset but increased the
performance for the Radar2Lidar case. Since the RaCam data is used when the car
makes decisions the results from this dataset are more important.

40

5. Results

5.4 Algorithmic stability
By adding four different types of noise to the unseen data as described in section
4.6, we can track how the different models react to noise. Table 5.6 show the change
for the different algorithms and noise models. This table show that the overall
accuracy rate decreases with 0.03 - 5.35%. The true positive rate decreases with 0 -
34.08%. All results and information about the different configurations can be found
in appendix C.
Figure 5.4 and 5.5 show that there is a clear difference between the models. De-

cision trees and boosted trees still perform with a true positive rate above 95% but
kNN and SVMs fall below 95% after noise model 2.

Algorithm w/o Noise model 1 2 3 4
Model degradation with respect to overall accuracy

Tree Medium 99.39% -0.03% -0.23% -0.55% -1.34%
SVM Quadratic 99.06% -0.14% -0.74% -3.17% -5.17%
SVM Fine G. 99.32% -0.11% -0.70% -2.85% -5.35%
KNN Cubic 99.29% -0.07% -0.55% -2.26% -4.36%
Boosted Trees 99.44% -0.23% -0.43% -0.79% -0.92%

Model degradation with respect to true positive
Tree Medium 99.39% 0.00% -0.68% -2.52% -7.91%

SVM Quadratic 99.06% -0.19% -4.31% -20.45% -33.04%
SVM Fine G. 99.32% -0.78% -4.65% -18.36% -34.08%
KNN Cubic 99.29% -0.56% -3.68% -14.61% -28.08%
Boosted Trees 99.44% -0.94% -2.03% -4.26% -5.35%

Table 5.6: Table of performance deterioration for different models. The second
column (w/o Noise model) show the overall accuracy (upper) or true positive rate
(lower) when no extra noise has been added. The third to sixth column show the
rate of change from without noise model to the noise model corresponding to the
number in the column.

41

5. Results

w/o Noise model

Noise model 1

Noise model 2

Noise model 3

Noise model 4
93

94

95

96

97

98

99

100

O
v
e
ra

ll
a
c
c
u
ra

c
y
 r

a
te

 [
%

]

Tree Medium

SVM Quadratic

SVM Fine Gauissian

kNN Cubic

Boosted Trees

Figure 5.4: Degradation of overall accuracy when 4 different noise models is applied
to the sensor data.

w/o Noise model

Noise model 1

Noise model 2

Noise model 3

Noise model 4
60

65

70

75

80

85

90

95

100

T
ru

e
 p

o
s
it
iv

e
 a

c
c
u
ra

c
y
 r

a
te

 [
%

]

Tree Medium

SVM Quadratic

SVM Fine Gauissian

kNN Cubic

Boosted Trees

Figure 5.5: Degradation of true positive when 4 different noise models is applied
to the sensor data.

42

6
Discussion

This chapter will provide discussions about the results presented and methodology
used in this thesis. Each section covers a subject the authors found interesting to
discuss and they are written to be read in any order.

6.1 Extraction of samples

The matching object pairs used in this thesis were, as mentioned in the preliminaries,
annotated prior to the initialization of this thesis. Some of the faulty classifications
that the classifiers makes are due to incorrect annotations or ambiguous cases. The
original annotation of these cases has been kept since it was decided that the judg-
ment of the original annotator should influence the data rather than the judgment
of the authors to guarantee that the samples were not changed to agree with the
algorithm and thus exaggerate the results presented in this thesis.

The nonmatching object pairs were, as mentioned in the methodology section,
found by taking the longest lived vehicle objects with some time overlap. The
argument for this methodology was that objects that are detected for a longer period
often correspond to some real world object. The objective of this thesis was to
match object pairs to each other and by choosing the longest lived objects classified
as vehicles the dataset was not flooded by false detections i.e sensor noise.

One issue with this methodology is that in some cases a detected object, such as
a car, might change id throughout its lifespan. For example if a car temporarily
exit the sensor’s line of sight (without leaving the reference’s line of sight) and then
reappear it will be given a new id, see figure 6.1. The annotator might not notice the
new id and thus a matching pair might be falsely considered nonmatching and would
contribute to a higher false positive rate. These issues have not been compensated
for in the dataset because they capture an unwanted behaviour of the sensor and
correcting them would require a person to go through every entry in the dataset
which was considered too time-consuming for this project.

43

6. Discussion

200 400 600 800 1000 1200 1400 1600 1800 2000

Samples

-10

0

10

L
a

ti
tu

d
e

 [
m

]

Ref

Sensor id 3

Sensor id 30

Sensor id 47

Sensor id 48

200 400 600 800 1000 1200 1400 1600 1800 2000

Samples

0

50

100

L
o

n
g

it
u

d
e

 [
m

]

Figure 6.1: Example from RaCam2Lidar dataset which highlights the issue about
new ids for a sensor object. As an object leaves the system’s line of sight, it will
be assigned a new id when reappearing. A problem exist if the annotator don’t
annotate all four ids as a match to the reference.

6.2 Different machine learning methods

Boosted trees have shown the best results so for pure accuracy the machine learning
algorithm of choice is the boosted trees. The boosting increased the performance
of decision trees on the RaCam2Lidar dataset by 0.04% which is an increase that
comes at a cost. The boosting was performed with 30 trees which means 30 times
as much training is required. On the dataset in this thesis that was not an issue
but boosting also makes analyzing the errors more complex. If a single tree would
be used one could easily traverse the tree by hand to see what feature caused a
miss-classification. This is not as easy with the boosted trees since one would have
to traverse 30 trees and then look at the weights corresponding to each tree to find
out why and where the algorithm made the crucial mistake. If 0.04% increase in
accuracy is worth more than 30 times the work and losing the interpretability is a
design choice.
When analyzing the results of the support vector machines on all datasets they

perform almost on par with the trees but since they do not outperform them and
are more time-consuming to train, harder to analyze and generalizes worse to noisy
data. The summary is that they show no real benefit over the decision trees.
The kNN algorithm show classification abilities on par with the decision trees but

since the kNN model saves all datapoints, which with a dataset of 25753 entries
and a dimensionality around 5 the space complexity of such a model is much larger
than the complexity of a decision tree. As a comparison a tree with size 20 which
was used in section 5.2 only needs to store 20 feature-value pairs in a binary tree
structure.

44

6. Discussion

6.3 Similarity functions

The task of the similarity functions was to describe how similar a reference and a
sensor object are as a scalar value. In this work the main source of information has
been the relative position to the ego-vehicle. Expanding the amount of similarity
functions could possibly improve the accuracy of the algorithm but since research
suggests that such expanding comes at a cost of reduced algorithmic stability [40]
and given that five features resulted in 99.4% correct classifications the amount of
similarity functions were not increased further.
The similarity functions return scalar values describing time-series which means

some information is lost when calculating the output. In section 4.7 an attempt to
classify matches based on sequences of data was made. Since the LSTM network
presented had access to more information one might suspect that it would produce
better classifications but it turns out this strategy was not very effective. The
underwhelming results are probably due to the difficulty to train neural networks
properly and perhaps lack of data. Disciplines where LSTM networks are used
successfully include translation tasks [46] where the amount of available data is
far beyond what was available in this thesis. The network architecture used may
have been too naively designed but since the initial testing showed poor results
investigating other methods such as SVM and decision trees rather than configuring
the network was decided to be the better option.

6.4 One to one or many to one classifications

In a traffic scenario there are often many different detected objects present at any
given time and one strategy could be to assume that each reference object should
be matched to the most likely object among the objects found by the sensor. Using
such a strategy would try to answer the question Which sensor object corresponds
to this reference object?. This is what is meant by many to one classification.
Alternatively one could pick a pair of objects, one from each system, and com-

pare them to answer the question Do these two measured objects describe the same
physical object?. This is what is meant by one to one classification.
In this thesis the designed algorithm answers the second question which introduces

a few errors in cases where two different objects found by the sensor can be matched
to a single reference object. This type of error tends to happen when driving behind
a truck transporting other vehicles since the reference system usually consider truck
and cargo as one object while the sensor separate the transporting and transported
vehicles. In figure 6.2 a truck is carrying tractor. The reference has considered
the truck and the cargo as one object while the sensor has classified them as two
separate vehicles. In this case the algorithm classify both the truck and the cargo as
matching the reference object but the annotation says that only the tractor should
be considered a match. This type of error can be considered acceptable since it has
more to do with how the two systems differentiate between different objects rather
than the actual matching.

45

6. Discussion

Latitude [m]

L
o
n
g
it
u
d
e
 [
m

]

General objects

True false

classification

True positive

classification

Reference object

Figure 6.2: The left plot show identified objects in a top view. The right image
correspond to the current frame from the camera.

The first alternative introduces other problems such as guaranteeing that every
reference object has a detected sensor object to match against. This is not always
the case since the reference system is located on the roof of the car and the sensor is
placed in the windshield which means that the sensors field of view might be blocked
by an obstacle while the reference can see over it.

46

7
Conclusion

This chapter will present a conclusion to the thesis project. It consists of a selected
machine learning algorithm and a suggested implementation of how to use these
findings to automate the verification of sensor performance.
We have concluded that it is possible to classify whether two sources describe the

same object or not with an overall accuracy of ∼ 99%. According to the experiments
a good choice of machine learning strategy is to use decision trees with boosting.
Finding few informative features rather than many semi-informative has shown bet-
ter results which also makes dimensionality reduction with PCA unnecessary.
A classifier such as the one above could be used to find biases in a system compared

to the chosen reference system. Thanks to the low degradation rate of a tree for
example, one could perform sensor analysis on several different sensors with the
same model.

Future work
The research questions asked is answered which lead to scalability related questions
and implementation. In terms of scalability it would be of interest to see how many
types of objects can be incorporated into the classification; pedestrians, signs, road
edges etc.
The matching performance found in this thesis shows that using boosted trees to

match object pairs for automatic sensor verification could be an effective verification
method. The future work is then to integrate the matching algorithm found here in
the existing verification toolchain at Volvo.

47

7. Conclusion

48

Bibliography

[1] D. Sleet D. Mohan A. A. Hyder E. Jarawan C. Mathers M. Peden, R. Scurfield.
World report on road traffic injury prevention. In World Health Organization
Geneva Tech. Rep., 2004.

[2] S. Singh. Critical reasons for crashes investigated in the national motor vehi-
cle crash causation survey. In National Highway Traffic Safety Administration
(NHTSA) Washington DC Tech, Feb 2015.

[3] J. Florbäck, L. Tornberg, and N. Mohammadiha. Offline object matching and
evaluation process for verification of autonomous driving. In 2016 IEEE 19th
International Conference on Intelligent Transportation Systems (ITSC), pages
107–112, Nov 2016.

[4] D. M. Gavrila and V. Philomin. Real-time object detection for ldquo;smart
rdquo; vehicles. In Proceedings of the Seventh IEEE International Conference
on Computer Vision, volume 1, pages 87–93 vol.1, 1999.

[5] Nick Hillier Julian Ryde. Performance of laser and radar ranging devices in
adverse environmental conditions. In Journal of Field Robotics, volume 26,
page 712–727, Sep 2009.

[6] J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt.
Millimeter-wave technology for automotive radar sensors in the 77 ghz frequency
band. IEEE Transactions on Microwave Theory and Techniques, 60(3):845–860,
March 2012.

[7] Radar, camera, lidar and v2x for autonomous cars. https://blog.nxp.com/
automotive/radar-camera-and-lidar-for-autonomous-cars. Accessed:
2018-01-12.

[8] J. J. Hopfield. Artificial neural networks. IEEE Circuits and Devices Magazine,
4(5):3–10, Sept 1988.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recogni-
tion. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, June 2016.

[10] S. P. Singh, A. Kumar, H. Darbari, L. Singh, A. Rastogi, and S. Jain. Machine
translation using deep learning: An overview. In 2017 International Conference
on Computer, Communications and Electronics (Comptelix), pages 162–167,
July 2017.

[11] Alexandre Kowalcyk. Support vector machines succinctly. In Support Vector
Machines Succinctly, Oct 2017.

[12] L. Deng and J. Y. Song. Decision tree classification algorithm based on cost
and benefit dual-sensitive. In IEEE International Conference on Electro/Infor-
mation Technology, pages 320–323, June 2014.

49

https://blog.nxp.com/automotive/radar-camera-and-lidar-for-autonomous-cars
https://blog.nxp.com/automotive/radar-camera-and-lidar-for-autonomous-cars

Bibliography

[13] D. Jamma, O. Ahmed, S. Areibi, G. Grewal, and N. Molloy. Design exploration
of asip architectures for the k-nearest neighbor machine-learning algorithm. In
2016 28th International Conference on Microelectronics (ICM), pages 57–60,
Dec 2016.

[14] Klaus-Jürgen Bathe. Finite element procedures. Klaus-Jurgen Bathe, 2006.
[15] Rasmus Elsborg Madsen, Lars Kai Hansen, and Ole Winther. Singular value

decomposition and principal component analysis. Neural Networks, 1:1–5, 2004.
[16] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlin-

ear component analysis as a kernel eigenvalue problem. Neural computation,
10(5):1299–1319, 1998.

[17] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006.

[18] CHRISTOPHER J.C. BURGES. A tutorial on support vector machines for
pattern recognition. Data Mining and Knowledge Discovery 2, pages 121–167,
1998.

[19] C. Schmid and L.T. Biegler. Quadratic programming methods for reduced
hessian sqp. Computers & Chemical Engineering, 18(9):817 – 832, 1994. An
International Journal of Computer Applications in Chemical Engineering.

[20] Wei-Lun Chao. A tutorial for support vector machine. http://disp.ee.ntu.
edu.tw/~pujols/Support%20Vector%20Machine.pdf. Accessed: 2018-02-02.

[21] Matthew Bernstein. The radial basis function kernel. http://pages.cs.wisc.
edu/~matthewb/pages/notes/pdf/svms/RBFKernel.pdf. Accessed: 2018-02-
05.

[22] Cynthia Rudin. Kernels mit 15.097 course notes. (Massachusetts Institute
of Technology: MIT OpenCouseWare), http://ocw.mit.edu (Accessed [2018-02-
26]). License: Creative Commons BY-NC-SA, Spring 2012.

[23] Colin Campbell. An introduction to kernel methods. Studies in Fuzziness and
Soft Computing, 66:155–192, 2001.

[24] Mathworks documentation. https://se.mathworks.com/help/matlab/ref/
tanh.html. Accessed: 2018-02-07.

[25] Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann ma-
chines vinod nair.

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bot-
tou, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

[27] Course material for cs231n at standford uni. http://cs231n.github.io/
neural-networks-1/. Accessed: 2018-02-08.

[28] R. Hecht-Nielsen. Theory of the backpropagation neural network. In Interna-
tional 1989 Joint Conference on Neural Networks, pages 593–605 vol.1, 1989.

[29] Michael A.Nielsen. Neural Networks and Deep Learning. Determination Press,
2015.

[30] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the
importance of initialization and momentum in deep learning. In Proceedings
of the 30th International Conference on International Conference on Machine
Learning - Volume 28, ICML’13, pages III–1139–III–1147. JMLR.org, 2013.

50

http://disp.ee.ntu.edu.tw/~pujols/Support%20Vector%20Machine.pdf
http://disp.ee.ntu.edu.tw/~pujols/Support%20Vector%20Machine.pdf
http://pages.cs.wisc.edu/~matthewb/pages/notes/pdf/svms/RBFKernel.pdf
http://pages.cs.wisc.edu/~matthewb/pages/notes/pdf/svms/RBFKernel.pdf
https://se.mathworks.com/help/matlab/ref/tanh.html
https://se.mathworks.com/help/matlab/ref/tanh.html
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/

Bibliography

[31] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In In Proceedings of the International Conference
on Artificial Intelligence and Statistics (AISTATS’10). Society for Artificial
Intelligence and Statistics, 2010.

[32] Laura Elena Raileanu and Kilian Stoffel. Theoretical comparison between the
gini index and information gain criteria. Annals of Mathematics and Artificial
Intelligence, 41(1):77–93, May 2004.

[33] Lecture notes from the course cse 802 pattern recognition and analysis at michi-
gan state university. http://www.cse.msu.edu/~cse802/DecisionTrees.
pdf. Accessed: 2018-03-27.

[34] Tapio Elomaa and Matti Kääriäinen. An analysis of reduced error pruning.
CoRR, abs/1106.0668, 2011.

[35] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-
line learning and an application to boosting. J. Comput. Syst. Sci., 55(1):119–
139, August 1997.

[36] X. Liu, Y. Dai, Y. Zhang, Q. Yuan, and L. Zhao. A preprocessing method of
adaboost for mislabeled data classification. In 2017 29th Chinese Control And
Decision Conference (CCDC), pages 2738–2742, May 2017.

[37] Thomas G. Dietterich. An experimental comparison of three methods for con-
structing ensembles of decision trees: Bagging, boosting, and randomization.
Machine Learning, 40(2):139–157, Aug 2000.

[38] J. Laaksonen and E. Oja. Classification with learning k-nearest neighbors. In
Neural Networks, 1996., IEEE International Conference on, volume 3, pages
1480–1483 vol.3, Jun 1996.

[39] R. Shi, K. N. Ngan, and S. Li. Jaccard index compensation for object segmen-
tation evaluation. In 2014 IEEE International Conference on Image Processing
(ICIP), pages 4457–4461, Oct 2014.

[40] H. Xu, C. Caramanis, and S. Mannor. Sparse algorithms are not stable: A
no-free-lunch theorem. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(1):187–193, Jan 2012.

[41] Statistics and machine learning toolbox. https://se.mathworks.com/
products/statistics.html. Accessed: 2018-01-11.

[42] Neural network toolbox. https://se.mathworks.com/help/nnet/index.
html. Accessed: 2018-04-09.

[43] S. Yadav and S. Shukla. Analysis of k-fold cross-validation over hold-out vali-
dation on colossal datasets for quality classification. In 2016 IEEE 6th Inter-
national Conference on Advanced Computing (IACC), pages 78–83, Feb 2016.

[44] S. Xie and S. Krishnan. Signal decomposition by multi-scale pca and its ap-
plications to long-term eeg signal classification. In The 2011 IEEE/ICME In-
ternational Conference on Complex Medical Engineering, pages 532–537, May
2011.

[45] M. S. Reza and J. Ma. Ica and pca integrated feature extraction for classifica-
tion. In 2016 IEEE 13th International Conference on Signal Processing (ICSP),
pages 1083–1088, Nov 2016.

51

http://www.cse.msu.edu/~cse802/DecisionTrees.pdf
http://www.cse.msu.edu/~cse802/DecisionTrees.pdf
https://se.mathworks.com/products/statistics.html
https://se.mathworks.com/products/statistics.html
https://se.mathworks.com/help/nnet/index.html
https://se.mathworks.com/help/nnet/index.html

Bibliography

[46] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Re-
cent trends in deep learning based natural language processing. CoRR,
abs/1708.02709, 2017.

52

A
Proof for reordering matrices

Showning that
φ(x)φ(x)Tw = {φ(x) · w}φ(x)T (A.1)

where φ(x) = [φ(x1), . . . , φ(xi)]T and w = [w1, . . . , wi]T

φ(x)φ(x)Tw =


φ(x1)φ(x1) φ(x1)φ(x2) . . . φ(x1)φ(xi)
φ(x2)φ(x1) φ(x2)φ(x2) . . . φ(x2)φ(xi)

...
φ(xi)φ(x1) φ(xi)φ(x2) . . . φ(xi)φ(xi)



w1
w2
...
wi

 (A.2)

=


φ(x1)φ(x1)w1 + φ(x1)φ(x2)w2 + · · ·+ φ(x1)φ(xi)wi
φ(x2)φ(x1)w1 + φ(x2)φ(x2)w2 + · · ·+ φ(x2)φ(xi)wi

...
φ(xi)φ(x1)w1 + φ(xi)φ(x2)w2 + · · ·+ φ(xi)φ(xi)wi

 (A.3)

=


{φ(x1)w1 + φ(x2)w2 + · · ·+ φ(xi)wi}φ(x1)
{φ(x1)w1 + φ(x2)w2 + · · ·+ φ(xi)wi}φ(x2)

...
{φ(x1)w1 + φ(x2)w2 + · · ·+ φ(xi)wi}φ(xi)

 (A.4)

=
[
φ(x1)w1 + φ(x2)w2 + · · ·+ φ(xi)wi

]

φ(x1)
φ(x2)

...
φ(xi)

 (A.5)

= {φ(x) · w}φ(x)T (A.6)

I

A. Proof for reordering matrices

II

III

B. Dimensionality and noise reduction tables.

B
Dimensionality and noise

reduction tables.

IV

B. Dimensionality and noise reduction tables.

V

B. Dimensionality and noise reduction tables.

VI

B. Dimensionality and noise reduction tables.

VII

B. Dimensionality and noise reduction tables.

VIII

C
Algorithmic stability

IX

	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Background
	Aim
	Scope and boundaries
	Outline

	Preliminaries
	Generating high-level objects from sensor measurements
	Origin of datasets
	System setup
	Classifying data using machine learning

	Theory
	Principal Component Analysis
	Example and intuition
	Linear PCA
	Kernel PCA (kPCA)

	Support Vector Machine
	Finding the first constraint
	Maximize the margin as an optimization problem
	Dealing with noise and nonlinearity

	Kernel trick
	Artificial Neural Networks
	Gradient descent
	Activation functions
	Expanding the network
	Training difficulties

	Decision Trees
	Training and building a tree
	Information gain and Gini impurity
	Stopping criteria and pruning
	Boosting
	Bagging

	K-nearest-neighbor

	Methodology
	Reconstructing and aligning
	Similarity functions
	Dimensionality reduction
	Implementation of machine learning
	Validation of machine learning algorithms
	Algorithmic stability
	Experimental motivation for the use of similarity functions

	Results
	Dimensionality and noise reduction
	PCA
	kPCA

	Performance on different sensor systems
	Boosting and bagging the classifiers
	Algorithmic stability

	Discussion
	Extraction of samples
	Different machine learning methods
	Similarity functions
	One to one or many to one classifications

	Conclusion
	Bibliography
	Proof for reordering matrices
	Dimensionality and noise reduction tables.
	Algorithmic stability

