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Detection of child-like objects inside vehicles using deep learning.

A proof of concept study investigating if pruned CNNs deployed on mobile devices
can detect child-like objects situated in vehicles.
HENRIK HALLBERG
VICTOR WESSBERG
Department of Electrical Engineering
Chalmers University of Technology

Abstract
This master’s thesis project comprises a proof of concept study with the aim to
investigate if computer vision is a suitable tool for detecting child-like objects situ-
ated in vehicles. The developed system consists of a Raspberry Pi equipped with a
camera sensor and the system is able to classify images in real time, using a convo-
lutional neural network. Datasets were constructed, consisting of annotated images
collected using both online sources, as well as with an experimental setup. The
annotated images in the datasets show vehicle interiors with and without child-like
objects present. These datasets were used to train, validate and test the convolu-
tional neural networks in this project. Several convolutional neural networks were
evaluated, showing that the well-known VGG16 architecture would yield the best
results for this classification task. The convolutional neural network, based on the
VGG16 architecture, was compressed with network pruning to accelerate the per-
formance, while still maintaining the classification accuracy.

The results imply that a computer vision approach generate promising performance
for the task of detecting child-like objects with high accuracy, which states that
the proof of concept was successful. However, the system developed was not able
to correctly classify all scenarios presented, and more data is needed to develop a
system able to provide even more reliable detections, which would be a necessary
step in order to commercialize the system.

Keywords: Convolutional Neural Networks, Deep Learning, Machine Learning, Net-
work Pruning, Compression, Mobile Devices, Raspberry Pi, Embedded Systems,
Image Classification.

v





Acknowledgements
We would like to thank our inspiring supervisor, Jennifer Alvén, who has contributed
with valuable knowledge concerning the project. We would also like to thank all
people working at Alten - Embedded Systems for their kind hospitality, support
and coffee.

Henrik Hallberg & Victor Wessberg
Gothenburg, June 2018

vii





Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Hyperthermia . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Vehicle Heat Dynamics . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 Child Detection Systems . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Classification of Objects Using Computer Vision . . . . . . . . 6
1.3.3 CNNs for Living Object Detection . . . . . . . . . . . . . . . . 7
1.3.4 Image Classification Using Mobile Devices . . . . . . . . . . . 8

1.4 Report Disposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Theory 9
2.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Before Training . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 During Training . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 After Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.5 Well Established Network Structures . . . . . . . . . . . . . . 18
2.1.6 Development Frameworks . . . . . . . . . . . . . . . . . . . . 20
2.1.7 Network Compression . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Embedded Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Raspberry Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Methods 25
3.1 Preparations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Our Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Web Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.3 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.4 Datasets Overview . . . . . . . . . . . . . . . . . . . . . . . . 30

ix



Contents

3.3 Network Development . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 Determining Architectures . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Modifying the Architectures . . . . . . . . . . . . . . . . . . . 33
3.3.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Network Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Network Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.1 Pruning Operations . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.2 Phase 1 - Determining Amount of Pruning . . . . . . . . . . . 38
3.5.3 Phase 2 - Fixed Training Scheme . . . . . . . . . . . . . . . . 38
3.5.4 Phase 3 - Comparison . . . . . . . . . . . . . . . . . . . . . . 40

3.6 System Test - Proof of Concept . . . . . . . . . . . . . . . . . . . . . 42

4 Results 45
4.1 Network Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.1 Baseline Model - VGG16 . . . . . . . . . . . . . . . . . . . . . 48
4.2 Network Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Phase 1 - Determining Amount of Pruning . . . . . . . . . . . 50
4.2.2 Phase 2 - Fixed Training Scheme . . . . . . . . . . . . . . . . 52
4.2.3 Phase 3 - Comparison . . . . . . . . . . . . . . . . . . . . . . 56

4.3 System Test - Proof of Concept . . . . . . . . . . . . . . . . . . . . . 61

5 Concluding Discussion 65

Bibliography 69

A Appendix I
A.1 Appendix 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II
A.2 Appendix 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV
A.3 Appendix 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI

x



1
Introduction

This chapter aims to provide the reader with background information on why this
master thesis project was conducted. The chapter will also present a definition of
the problem as well as, aim and limitations of the project. To give the reader an
overview of the task, previous work conducted on the subject will also be presented.

1.1 Background
Sunny days is by many people often considered as a pleasant time with ice cream,
ocean swims and long hot days. Unfortunately, this is not the case for everyone.
For some, this time is related to tragic events caused by the dangerous rays from
the sun. One group highly affected by these rays are small children incapable of
protecting themselves. Leaving a child inside a vehicle, where heat rapidly builds
up on a sunny day, will quickly lead to severe consequences or even death. In the
United States, these sunny days have recently been highly associated with tragic
accidents concerning children entrapped in vehicles. Occurrences of children killed
by heat inside vehicles increase during the summer, but these accidents are reported
even in the colder months. The rays from the sun can quickly make the passenger
compartment of a vehicle a very dangerous place for children even when it is rela-
tively cold outside [1]. In the U.S. alone, one child is killed every 10 days from being
trapped inside a hot vehicle [2].

The website KidsAndCars.org has been collecting data regarding non-traffic inci-
dents involving children and cars in the U.S. during the last 25 years, and as of
today this database got the most comprehensive data of heat related child vehicle
deaths. The data shows that the main reason behind these tragic events are parents
forgetting that their child was in the vehicle all along. Other reasons are children ac-
cidentally locking themselves in and children being intentionally left in the vehicles
when the parents leave to do quick tasks such as shopping, often without knowledge
of the dangers they are exposing the children to.

The modern vehicles of today, often connected to cloud services, could prevent
the cases of children being accidentally left inside vehicles by sending the parent a
notice through the phone if a child is detected inside a parked vehicle. To provide
such a notice, a sensor-system providing highly reliable detection is required. Time
magazine released an article in 2014, stating that vehicle manufacturers did not
think that technology yet existed to provide this detection in a way reliable enough
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1. Introduction

[3]. The vehicle manufacturers stated fear of misuse of the parents and malfunction
that could lead to expensive lawsuits in situations where the system had failed and
resulted in a lethal outcome [3].

Extensive literature studies show that there are still today no vehicle manufactur-
ers offering a system to detect children alone in vehicles and thus preventing these
kinds of accidents in a reliable way. However, such a system could be of great use to
reduce child death and should be developed as quickly as possible. The tremendous
increase in popularity for deep learning in recent years, both within academia as
well as for commercial purposes, might yield a possibility to use such an approach
when implementing child detection systems in future vehicles. The quickly evolv-
ing methods for classifying objects in images using deep learning might lead to a
possibility to construct a computer vision system robust enough to cope with the
task of detecting children inside vehicles. This project aims to investigate if such an
approach would be feasible.

1.1.1 Statistics
The National Highway Traffic Safety Administration (NHTSA) has been working to
prevent heat-related child deaths for several years. Statistical data of death occur-
rences in the U.S. have been gathered since 1998, yielding a overview of the current
situation. The data shows that 742 children under the age of 14 have died between
1998 and 2017, yielding an average of 37 fatalities yearly. It also shows that the
problem is not decreasing, rather the opposite. The latest reports show that 43
fatalities were reported during 2017 [4].

The increase of fatalities during the recent years have led to the U.S. Congress
issuing a bill on the subject, suggesting that "all new passenger motor vehicles to be
equipped with a child safety alert system" [5].

1990 1995 2000 2005 2010 2015

Year

0

5

10

15

20

25

30

35

40

45

50

D
e
a
th

s

Fatalities to children in non-crash situations

Hyperthermia

Carbon Monoxide Poisoning

Hypothermia

Power Window Strangulation

Seat Belt Strangulation

Figure 1.1: A graph showing child deaths from inside a vehicle in non-crash inci-
dents over the years 1990 to 2014. Data summarized by Zonfrillo [6], but originally
from NHTSA [7]. The blue line, representing hyperthermia, cover a majority of the
cases.
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1. Introduction

1.1.2 Hyperthermia

Exposing the body to high temperatures can quickly lead to severe implications.
The cellular processes of the body is directly affected by heat, and the body will
try to reduce the response by cooling the body with sweat. This mechanism will
distribute the blood flow away from the core of the body, putting large stress on the
heart, which ultimately may fail to produce adequate cardiac output. This stress will
eventually lead to cardiovascular collapse, multiorgan failure and ultimately death
[8]. A child is more vulnerable to damage from heat than an adult, both because
the body of a child heats up 3 to 5 times as quickly than the body of an adult, and
also because a child has an immature and not yet fully developed thermoregulation
system [8]. Studies show that the body of a child will reach lethal temperatures
within 125 minutes on a hot summer day, and within 350 minutes during the winter
months in Austin Texas, while situated in an enclosed environment like a vehicle
[9]. This show that during a full day of work, the child could perish even during the
coldest months.

1.1.3 Vehicle Heat Dynamics

On a sunny day the temperature inside an enclosed vehicle will rapidly increase,
making the cabin dangerously hot. Research show that on a sunny day with ambient
temperatures of 20◦C the internal vehicle temperature will reach 40◦C within the
first half hour of being turned off, and then continue to increase even further. In
a report from 2005, vehicles were placed in the sun for 60 minutes. The study
showed that 80% of the total temperature increase occurred within the first half
hour, meaning temperatures in the 40◦C region. It was also shown that an ambient
temperature of 20◦C or 35◦C did not significantly change the rate of temperature
increase, which pose a big threat to unaware parents not knowing that the vehicle
will heat up rapidly, even though it is not very hot outside [10, 11]. In the worst
case, the internal vehicle temperature can reach child-lethal levels within 10 minutes,
according to NHTSA [12].

1.2 Problem Description

There have been many approaches for trying to solve the problem of detecting for-
gotten children in vehicles, as stated in the previous section. Within the field of
computer vision and more specifically within the image classification field, the use
of machine learning is becoming more and more popular for all kinds of classification
tasks, since it has shown great results in terms of classification speed and accuracy
compared to other techniques [13].

The main problem addressed in this project is the development of a system aimed
to detect child-like objects (CLOs) in vehicles using image classification with means
of machine learning. The project is conducted as a proof of concept study and tries
to answer the following research questions:

3



1. Introduction

• Is it possible to detect CLOs using machine learning running on cheap hard-
ware?

• What classification robustness is achievable?
• Is it possible to extract enough training data during the time frame for this

project?
• What limitations does the implemented detector exhibit?
• Do the results of this thesis imply that a similar software system for detecting

real children would be possible?
The thesis is conducted at Alten Sweden AB, in collaboration with with the Com-
puter vision and Medical image analysis research group at Chalmers University of
Technology. Alten provides with necessary hardware and facilities as well as knowl-
edge considering development of embedded systems. The machine learning and
computer vision expertise is mainly supplied by Chalmers.

1.2.1 Aim
The aim of this masters thesis is to develop an embedded system capable of detecting
CLOs inside vehicles. The detection should be carried out using computer vision
with a machine learning approach. Data will be collected, augmented and used for
training a Convolutional Neural Network (CNN), that finally should be deployed
on an embedded system placed inside a vehicle. The aim is to collect at least
500 images, with 100 positive samples where the CLO is visible, and 400 negative
samples.

1.2.2 Limitations
• The automotive industry put high demands on keeping the component cost

low. The developed system must therefore be implemented with low-cost com-
ponents, leading to limitations on available computational power from the mi-
crocomputer in the embedded system and the resolution of run-time images.

• The computational power delivered from the relatively low-cost hardware used
in the embedded system will put limitations on how complex the classification
algorithm can be. The system must be able to analyze images from the pas-
senger compartment of the vehicle, within a suitable time frame and with a
high accuracy. Also, the performance of the provided computers for the devel-
opment will put limitations on the complexity of the classification algorithm.

• Due to practical considerations, CLOs (i.e. dolls) will be used to mimic small
children.

• Due to the relatively short time frame of a 30 credits master thesis project the
experimental data collection will be limited in regards to vehicle variation and
subject variation.

• The project will focus on heat stroke prevention only, not scenarios where the
environment is dark and the vehicle will not heat up to dangerous tempera-
tures.

• The run-time of a classification will have to be less than 1 minute.
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1. Introduction

1.3 Previous Work
With the increasing problem of heat-related child deaths, the development of various
solutions for detecting children in vehicles have been initiated, on multiple fronts. In
this section, a range of third-party solutions, currently on the market, is presented.
Thereafter, a brief introduction to computer vision for image classification follows,
to later lead into how CNNs today are used to solve a wide range of problems.

1.3.1 Child Detection Systems
Over the past 30 years there has been a significant increase in safety-related tech-
nology surrounding vehicles. However, this technology have mainly been aimed
towards reducing crash-related incidents, like lane-following and collision avoidance
warnings. As mentioned in Section 1.1.1, non-crash related incidents are increasing
and forgotten children dying from hyperthermia cover a substantial part of these
cases.

In 2015, NHTSA compared the functionality of a range of commercial products,
many of which focused on detecting the weight of the child using a pressure sen-
sor installed in the child restraint system, where system activation was achieved
through smartphone notification, vehicle horn or an auditory signal from the device
itself [14]. Many of these products rely on a key fob to detect when the driver walks
away from the vehicle. Some, more complex solutions utilize a connection between
the vehicle computer and a built in logic chip on the child protection system, to
detect if the child is still strapped to the child car seat (CS) when the vehicle is
locked.

Other solutions include passive infrared motion sensors, temperature sensors, mi-
crowave sensors, capacitive sensors or microwave sensors [15, 16]. These techniques
have, to the best of our knowledge, not yet succeeded in providing proper reliability
to detect forgotten children inside vehicles. Several of the developed systems rely
on sensors installed in CSs, which limits the detection capabilities to infants only,
since the system will only detect the child if it is placed in a CS [16].

The most recent and promising development within the field was presented at the
Consumer Electronics Show 2018 by a company called Guardian Optical Technolo-
gies, who have come up with an integrated sensor capable of detecting motion down
to one micrometer in scale, meaning that the sensor is capable of detecting the heart
beat of a small child, even without a direct line of sight [17, 18]. The sensor make use
of video image recognition (2D), depth-mapping (3D), and micro- to macro-motion
detection to create this passenger-aware-sensor, which could also work as a detector
of forgotten children inside a vehicle [19, 20].

Detection systems of adults using camera based sensors show promise and could
be found in a various range of other applications today, some of them are pose
estimation, face recognition, counting individuals in crowded spaces and various
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safety systems like eye-tracking in modern vehicles [21, 22, 23, 24]. The applica-
tion areas for small children within computer vision seem to be focused toward the
medical imaging arena and not very much development have been made towards
child-focused applications such as child detection in images.

1.3.2 Classification of Objects Using Computer Vision

Machine learning has become an important tool for several real world applications
such as suggestions to web-users, understanding hand-writing and image classifica-
tion. Focusing on the computer vision area, machine learning has recently shown
great results, both considering the accuracy of which it manages to classify objects in
images and also the computation time for the classification. These promising results
can be explained by several factors, but the main breaktroughs are the increased
availability of image data and computing power [25, 26].

The internet and web-based applications surround almost everything in modern
society, and with them, the amount of content available is increasing. By 2017 there
were over 95 million images being uploaded to Instagram, each day. The same trend
can be seen with the amount of video data uploaded, with over 300 hours of video
being uploaded to Youtube, each minute [27]. In terms of medical images there
were over 60 billion medical images generated in the U.S. alone by 2015, with an
expectancy to keep growing exponentially over the coming years [28]. Much of this
data contains information that could be useful for several applications, if extracted
properly, which has been the cradle for image classification during the last decades.

Image classification is the task of extracting information from image data by di-
viding images into different classes, based on what the image represents or shows.
An example could be to differentiate a cat from a dog in an image, or even to deter-
mine the specific race of the creature. The localization of the objects in the images
are not of high importance in image classification, but more associated to object
detection and localization [29].

Image classification within the learning based arena is divided into two main cate-
gories, both with their own approach to the classification problem. These approaches
are parametric and non-parametric classification, where the latter have seen a de-
crease in popularity due to the introduction of CNNs [30]. Parametric classifica-
tion methods include support vector machines (SVM), random forest and neural
networks. Non-parametric classification methods have some advantages over the
parametric methods. Firstly they do not require any training and simply base their
predictions directly on the data. This, in addition to being more robust against over-
fitting and also providing reasonable performance when dealing with large amounts
of data made the non-parametric methods popular in the early 2000’s [30]. One of
the most popular non-parametric methods is the nearest-neighbor technique, where
classification is based on similarities in image space, which makes this technique sen-
sitive to intra-class variation [30]. Even until 2012 there were still some applications
where non-parametric classification methods were shown to outperform parametric
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classification methods [31].

With the technology advancing, especially Graphical Processing Units (GPUs), the
advantages of non-parametric classification methods were diminished by the amount
of data that could be used together with parametric classification methods. The first
technique to take major leaps in classification performance within this branch was
the SVM classifier, which was the leading approach by 2008 [30, 32, 33]. The funda-
mental idea behind the SVM was to find the hyperplane that manages to separate
the different classes as well as possible [34].

For several computer vision tasks, CNNs have proven to outperform the other tech-
niques available today [35]. The outstanding performance of CNNs in several image
recognition and classification task has led to a continuous increase in their usage.
Several research groups have created CNNs capable of outperforming human-level
accuracy in image recognition, classification and detection tasks [36].

There are several CNNs that have obtained astonishing results in competitions such
as the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), where some
examples of the most popular and high-performing CNNs are AlexNet, VGGNet and
ResNet [36]. The common factor among these high performing CNNs is the high
complexity. The large amount of convolutional layers allows the CNNs to extract
high level abstractions and features, and the fully connected layers can thereafter
learn non-linear combinations of these features, allowing for the high performance
in image classification tasks [36]. More on this in Chapter 2.

As of today, there are a wide range of more modern applications in which im-
age classification is utilized, some of the more well known areas are face recognition
tasks [37, 38, 39], satellite remote sensing [40, 41, 42] and medical image classifica-
tion [43, 44, 45]. With the technology, knowledge and methods advancing, many
more areas where image classification could be applied in a sufficient manner are in
development. Some examples are autonomous vehicles, safety systems in subways
and stores without cashiers.

1.3.3 CNNs for Living Object Detection

CNNs are, as mentioned earlier, very powerful tools to use when classifying objects
in images. Image classification can be used in several applications, in a wide range
of sectors. Alertness monitoring, lane tracking and collision avoidance are just a few
examples of where object classification has been used in the automotive sector for
some time [46]. There are several applications where classification of living objects
can be of great use, for instance pedestrian detection [47].

CNNs can also be used to estimate human poses, [48] shows how a CNN is used
on a human pose dataset with promising results. The network successfully esti-
mates most poses, however the network experience some problems when uncommon
poses are presented, or the subject limbs are concealed by clothes or other structures.

7
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In another study from 2016, the different network architectures AlexNet, VGGNet,
GoogLeNet and ResNet were used to classify animals captured by a low quality cam-
era system. To further increase the performance of these classifiers a hierarchical
classification cluster was used where the input initially is classified as either a bird
or "other". After this, the "others" are classified as either small or big mammals and
so on. With this approach it was shown that good results could be obtained even
though images are of low quality and in gray scale. The results also showed that
a deeper net increased the accuracy for this task up to a certain limit, after which
the accuracy did not improve [49], These results suggests that a CNN with similar
structure but more depth (number of hidden layers) does not automatically improve
the accuracy of classification.

1.3.4 Image Classification Using Mobile Devices
One major drawback of these high complexity CNNs is the need of large amounts
of computing power and memory [36]. In some applications these demands can be
met, however there are a number of applications where the computing power and
memory are limited, and the complexity of the previously mentioned CNNs are too
large. One notable example where this applies is in mobile devices.

To solve this issue, there have been several methods proposed to decrease the com-
plexity while still keeping the high performance. One interesting method recently
released is called network slimming, or pruning. [50] suggests a solution able to
decrease the memory-usage and amount of computations of the original CNN. This
method can be applied to most popular CNNs and does not require any special
hardware or software to be implemented. The method succeeded to decrease the
model size of the VGGNet with a factor of 20 and also decreased the number of
computation operations with a factor of 5, while still maintaining the performance
of the original model. The suggested method automatically prunes the insignificant
filters of the original model during the training phase, yielding a slimmer model, but
with comparable performance [50].

1.4 Report Disposition
The project will be presented in four main chapters on top of the introduction.
Firstly, theoretical background information is presented in Chapter 2, followed by
a description of the methods used in the project in Chapter 3. The results of the
project, i.e. design choices and performance metrics, are presented in Chapter 4 in
form of graphs, images and conclusions. Finally, Chapter 5 presents a concluding
discussion on the project results.

8



2
Theory

This chapter aims to provide the reader with the theoretical knowledge needed to
understand the methodology and results of the project. The chapter is mainly pre-
senting theory on CNNs, but other important theory concerning the development of
CNNs is also presented. The theory is based on literature studies of well-established
papers on the subject and knowledge retrieved by the authors of this report during
their education.

2.1 Convolutional Neural Networks
A variant of CNNs were introduced already in the 70s [51], back then known as
"Neocognitron". However, in 1989 a CNN named LeNet-5 [52] was introduced. This
network was constructed to classify handwritten digits, and it laid the foundation
regarding how many of the later network structures were to be developed. Over
the last decade, the popularity for the CNNs in the computer vision and image
analysis area has grown immensely. The key factor for this popularity growth is the
proven performance by the CNNs in tasks such as image classification [53] and object
detection [54]. The supporting factors which has allowed for the CNNs to achieve
this remarkable performance in these fields are mainly the increased availability of
annotated datasets and the increased power of GPUs, but also a consequence of
new ideas, algorithms and network structures [55]. Below, a brief overview of CNN
architectures and building-blocks will follow, as well as details on network training.

2.1.1 Architecture
CNNs are, just as artificial neural networks (ANNs), biologically inspired and the
architecture originated from how the visual cortex of the brain is constructed. The
architecture of the CNNs can be constructed in several different ways, however they
generally consist of various numbers of convolution and pooling layers, combined
into different modules, sometimes followed by one or more fully connected layer. It
is generally assumed that architectures with filters of smaller sizes stacked on top
of each other leads to better performance than a more shallow architecture with
wider filters. However, this assumption is still under debate, and research shows
that deeper networks are not always performing better than more shallow networks
[56].

An example image of the basic CNN architecture can be seen in Figure 2.1. The
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2. Theory

information flows in both directions, with one forward pass for inference followed by
backpropagation, where the error is fed back to update the weights.

Figure 2.1: An image showing the basic structure of CNNs. The image includes an
input layer which in this project will be represented by one image, a convolutional
layer with the corresponding filter channels, a pooling layer with it’s own filter
channels and smaller spatial dimension, and lastly the fully connected layers with
predicted probabilities in the output layer.

A CNN consists of large numbers, often millions, of trainable parameters. All these
parameters allow for the networks to model in theory any function. The CNNs
consist of one input layer, one output layer and one or several hidden layers. In
image classification, the entire images are fed to the input layer and conditional
probabilities over predetermined classes can generally be extracted from the output
layer. The amount of classes in the output layer can be set to fit the problem at
hand; if the network is constructed to classify digits, usually 10 outputs are used,
but for other problems thousands of classes can be used. Information on the layers
in a CNNs follows below.

Convolution Layers

The convolutional layers in CNNs are used to extract features, i.e. lines, edges, blobs
etc. Depending on the depth and width of the CNN, it can learn to recognize more
complex features, for example eyes, hands or faces. The earlier convolutional layers
in the CNN are used to extract the more simple features, while the latter ones are
used to extract the more complex features.

The neurons in the convolutional layers are arranged in multidimensional arrays
where each neuron has a receptive field. These fields are connected to a subset of
neurons in the previous layers via trainable weights [57]. The inputs to each convo-
lutional layer is convolved with these weights, creating new feature maps which are
then processed by a non-linear activation function. The non-linear activation func-
tion allows the CNNs to extract nonlinear features. Since all feature maps within
the same layer is allowed to have different weights, several features can be extracted
at each location [57]. The k:th feature map Yk can be computed as

Yk = f(Wk ∗ x),
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where x denotes the network input, Wk the convolutional filter, f(·) the non-linear
activation function and where ∗ denotes the 2D convolution operation.

Pooling Layers

To reduce the spatial resolution of the feature maps, pooling layers can be applied
after the convolutional layers. This operation is used to reduce the amount of
parameters preventing undesirable effects such as overfitting and high computational
complexity. In the early days of CNNs, it was common practise to use average
pooling [58, 59, 60] to reduce the number of parameters. Average pooling computes
the average value over a neighbourhood of values, and forwards it to the next layer.
In more recent networks [61, 62, 63, 64, 65], max pooling has been used instead. An
example of the principle of max pooling can be seen in Figure 2.2.

Figure 2.2: An image showing the principle of max pooling, where the max-value
of each neighbourhood is saved, shrinking the spatial dimension by half.

Of course, Figure 2.2 only shows an example of the principle. Max pooling can be
applied with different sizes of the filter, as well as with different stride lengths.

Activation Functions

Only using linear combinations of convolutional filters in a network to perform clas-
sification would require a linear relationship between the input and the output in
order to achieve good results. This is usually not the case, instead the relationship is
most often non-linear. To enable mapping of the non-linear relationships, activation
functions are used. Some activation functions can also be seen as a tool that decides
whether a neuron is activated or not, based on the value of the neuron at a specific
time.

There are several non-linear activation functions available. Currently, the most
prominent and most widely used function is the Rectified Linear Unit (ReLU) [66].
Other activation functions include sigmoids and tanh units [66], among others. The
implementation of the ReLU in deep learning networks played a huge role for these
networks’ success. The ReLU enabled fully supervised training of state-of-the-art
networks by reducing computational complexity, and also allowed for a more easy
optimization, since gradients are allowed to flow only when the input to the ReLU
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is positive [66]. The simplicity and effectiveness of the ReLU has made it the go-to
activation function when developing deep neural networks. Looking at the compu-
tational cost of the ReLU compared to other activation functions, it is less costly.
If x is the input to the ReLU, it simply outputs x, if x is positive. Otherwise, it
outputs zero.

Since the ReLU returns zero for negative input values, sparse activation can be
achieved, which is not the case for sigmoid or tanh functions. Sparse activation
means that not all neurons must be used when processing an image, and leads to
a lighter network. The ReLU has several beneficial properties, but it is not perfect
in every way. Since the ReLU returns zero for negative input values, it can cause
neurons to stop responding to error variations since the gradient will be zero. This
is called the dying ReLU problem, and researchers have developed variations of the
ReLU to mitigate this issue, one example is the leaky ReLU, which simply outputs
a small value instead of zero, when the input is negative [67].

Dense Layers

Dense layers, often referred to as fully connected layers, are usually placed in the
last part of the CNNs, just before the output layer. A CNN can be constructed
without a dense layer, yielding a fully convolutional network. These networks are
more suitable for tasks where the input images are of arbitrary size, compared to
CNNs with dense layers where the input images has to be of the same size. The fully
convolutional networks consists of learnable filters trough out the network, even the
decision-making layer at the end consists of filters.

The standard practise when constructing a CNN is to use one or two dense lay-
ers, but more can be used depending on the problem at hand. The dense layers
used in CNNs for image classification maps the multidimensional array of data to a
1D array. This array is then used to compute the probabilities for each class. For
example, if the task at hand is to classify handwritten digits, and 10 classes are
used, the output from the last dense layer will be a 1D array of size 10. To extract
the conditional probabilities for each class, it is common practise to use a softmax
operator. However, research has shown that applying a SVM instead of a softmax
could further improve the classification performance [68, 69].
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2.1.2 Before Training
To succeed when developing CNNs, handling the data in a structured way is cru-
cial. Handling the data incorrectly can lead to bad performance or difficulties in
interpreting the results. The amount of data needed to train a CNN to achieve high
accuracy is large, for some applications thousands or even millions of labeled images
are needed to prevent overfitting, i.e. when the model performs well on the training
set, but fails to recognize not yet seen images. An overfitting model has learned
to recognize e.g. noise or data-dependent features in the training examples, rather
than general patterns [70].

Data Augmentation

To increase the dataset, augmentations can be applied to the raw data. There are
several transformations available, such as mirroring, rotations, translations and scal-
ing [71]. Even further augmentations are possible by changing the intensities in the
RGB channels [72] .To create useful additional data by augmentation it is important
to understand which augmentations that will provide realistic data. For example, if
the developed system is intended to perform image classification inside a vehicle, an
augmentation by large rotations will not generate any useful data, small rotations
might be useful though. The same goes for translations. For some applications it
could be necessary to perform augmentation during the training phase, meaning
that an image is augmented live during the network training. This makes it possible
to save a lot of disk space since the augmented images do not have to be stored
locally.

Structuring the data

The data used to train and evaluate the models is often divided into three datasets,
namely a training set, a validation set and a test set. Several different structures
of division is suggested by literature, however, one possible rule of thumb is to use
approximately 70% of the data during training, 20% of the data for validation and
10% of the data for final performance tests. It is of great importance that these
datasets does not overlap i.e. that the same image does not occur in more than one
of the datasets, since this can lead to biased results.

Transfer Learning

As previously mentioned, the amount of available annotated data will greatly impact
the result of the network training. A method to increase the amount of available
data was presented earlier, utilizing data augmentation. However, in some cases the
amount of data can still be insufficient, even when aggressive data augmentation is
used.

A widely used method to overcome this issue is transfer learning. Transfer learning
is a branch within machine learning, where knowledge from another task could be
used to improve the results of the models for the target task [73]. The method is
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based on the fact that features learned in tasks similar to the target task can be
of use, e.g. if a CNN has learned to recognize apples, this knowledge could also be
used to recognize pears, which is a completely different task, but with similarities
in image space to the task of detecting apples. [73].

The early layers of the CNNs consists of feature extractors of relatively simple na-
ture, extracting generic features such as blobs, edges and corners. If the available
data for the task at hand is limited, it could be seen as a waste to use the task
specific data when training a CNN to learn such features since they are present in
most other images. A better idea would be to transfer this knowledge from a CNN
trained on some other dataset, and use the limited data while training the final
layers, which are intended to extract highly abstract and task-specific features [74].
Utilizing transfer learning when developing CNNs has proven to significantly reduce
the amount of additional task-specific data needed to achieve high accuracy results
in image classification tasks, reduced training times by several orders of magnitude
and even eliminating the need for optimizing hyperparameters [74]. Models that
have been trained using transfer learning are often refered to as pre-trained models
in literature and code-implementations.

2.1.3 During Training

To tune the trainable parameters of the CNNs, optimization algorithms are used.
The most common algorithm for this purpose is backpropagation [58]. This algo-
rithm calculates a gradient of an objective function, which is used to determine
how to update the learnable parameters in order to minimize the objective function.
When training CNNs, there are several important aspects to take into consideration.
Two of the most important ones are to avoid overfitting and choosing hyperparam-
eters in a suitable way. These aspects are briefly explained below.

Overfitting

When a network is performing well, only for the images it has been trained on and
fails to recognize images never seen before, it is probably overfitting. An example of
this behaviour is if the model is containing too many learnable parameters in com-
parison to the amount of training data. If this is the case, the model can correctly
classify all training data by simply memorizing the dataset. CNNs containing large
amounts of parameters are keen to overfit, even when relatively large amounts of
annotated data is available [75].

To solve the overfitting issue, there are several approaches suggested by literature.
These methods include Dropout [76], regularizing the norm of the weights, weight
decay [77], and Maxout [78]. A widely used regularizer for CNNs is Dropout. This
method attempts to prevent co-adaption of neuron activities, which occurs when
two or more hidden units incorrectly rely too much on each other [75].
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The Loss Function

The loss function is used to guide the training of CNNs. The aim of this function
is to measure how the predictions differ from the ground truth. For image classifi-
cation, there are two widely used loss functions, presented below.

Mean Squared Error (MSE): MSE, also referred to as the L2 Loss is the most
common loss function in machine learning. The MSE calculates the loss by taking
the average of the squared differences between the ground truth and the prediction.
The MSE is calculated as follows

MSE := 1
n

n∑
t=1

(yt − pt)2,

where y is the ground truth, p is the predicted values and n is the number of sam-
ples. The differences between the predictions and the ground truths are squared
and summarized for each class and thereafter the average error is calculated.

Cross entropy loss: The cross entropy loss, also referred to as log loss, is also
a widely used function when calculating the loss in image classifiers. This function
is used when the output from the classifier is a probability between 0 and 1. The
cross entropy loss increases in a logarithmic fashion as the distance between the
prediction and ground truth increases. The log loss therefore put high penalties on
predictions that are confident and wrong. The cross entropy loss is calculated as
follows

CEL :=
n∑

t=1
−(ytlog(pt) + (1 − yt)log(1 − pt)),

where log is the natural logarithm, n is the samples, p is the prediction probability
and y is the ground truth (zero or one).

Optimizers

To update the trainable parameters in CNNs effectively, optimization algorithms
are used. The most common optimization algorithm is gradient descent, which can
be implemented in various ways [79]. When updating the trainable parameters in
the CNNs, gradient descent is used to minimize the loss function. This is done by
updating the trainable parameters in the opposite direction of the loss function’s
gradient with respect to the trainable parameters [79]. Some examples of commonly
used gradient descent variants are Stochastic Gradient Descent (SGD), Batch gra-
dient descent and Mini-batch gradient descent [79].

There are several optimization algorithms constructed to further increase the perfor-
mance of the gradient descent algorithms. These algorithms often aims to decrease
the convergence time during training and increase the robustness by avoiding bad lo-
cal optima [79]. A widely used optimization algorithm is SGD with Momentum[80],
but there are also many other optimizers available, such as Adagrad and RMSprop
[79].
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SGD is keen to oscillate around local optima, not progressing to the good optima
in sufficient time. Momentum is a method that accelerate the SGD in the direction
towards the global optima. This is done by adding a fraction of the update vector
from the last step to the update vector of the current step. The fraction used is
usually set to around 0.9. Using momentum can be seen as pushing a ball down a
hill, where the ball will gain momentum as it travels down the hill. The momentum
method allows for faster convergence and less oscillation [80].

Hyperparameters

When training a CNN, there are some parameters that must be set manually. These
parameters are often referred to as hyperparameters, and can greatly affect the suc-
cess of the training. Below follows a brief description of hyperparameters that are
not directly connected to the network design but rather design choices concerning
training.

Learning rate: The learning rates determines how much to update the weights
in the optimization algorithm in every iteration. There are several options for this
parameter, e.g. a fixed learning rate, a gradually decreasing learning rate, an adap-
tive learning rate or a momentum based learning rate. Every method has its own
strengths and drawbacks, and the successfulness of a method is often determined by
the chosen optimizer.

There is a trade-off between convergence speed and accuracy when choosing the
learning rate. A large learning rate leads to faster convergence, but the optima
might not be as accurate as when using a smaller learning rate. However, it is
of great importance not to choose a learning rate too big or too small, since this
might cause the optimization not to converge correctly. These cases are illustrated
in Figure 2.3.

Figure 2.3: An illustration of the effects when the learning rate is chosen too big
(left) or too small (right). In the left image, the function struggles to end up at the
centre, since the steps are too large. To the right, the function has gotten stuck in
a bad optima and would require some larger steps to continue towards the centre.

Figure 2.3 tries to illustrate the optimization problem, where the dots are the dat-
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apoints of the chosen dataset. These points determine where the optima for the
function will be situated, in other words, where the concentration of dots are as
large as possible. In this example this would be the middle of both images. The
goal during the training phase is for the optimization algorithm to end up as close
to the middle as possible, where the sum of the distances to all datapoints is mini-
mized, hence reaching a good optima.

As seen to the left in Figure 2.3, with a learning rate too large, the function jumps
around the good optima, failing to converge. With a learning rate too small, the
function can get stuck in a bad optima, as seen to the right in Figure 2.3.

Mini-batch size: When training CNNs it is common to split the training data
in mini-batches. Splitting the data will allow for more frequent updates of the
weights, which leads to a more robust convergence by avoiding bad optima. Using
mini-batches will also allow a more efficient implementation of the training, since
all training data does not have to be saved in memory during each iteration [81].

The mini-batch size, often referred to as batch size, is usually chosen between 1
and a few hundred and it is desirable to make sure that each batch represent the
entire dataset in terms of class variations [81]. Theoretically, this hyperparameter
should only affect the training time, and not the performance of the network [81].
Hence, since the batch can not completely represent the entire training dataset the
gradient calculated in the SGD will only be approximative to the true value. The
larger the batch size, the better the approximative gradient becomes.

Number of epochs: The number of epochs, i.e. the number of training itera-
tions, is a hyperparameter that can be chosen in a quite simple manner. Since the
number of epochs will determine how many times the model will see all the training
data, choosing it too high might lead to overfitting [82]. Because of this, one sim-
ple way to determine this hyperparameter is to inspect the training accuracy and
the validation accuracy. If the training accuracy is improving, while the validation
accuracy has stopped improving the training should be stopped, this is sometimes
referred to as early stopping [82].

If the validation accuracy keeps improving, the model can be further trained, and
the number of epochs is simply limited by the amount of time available for training.

2.1.4 After Training

When the network is trained, it is common to measure the performance using a
set of test-images, usually extracted from the original dataset before the training
is started. There are several metrics that can be used to evaluate the performance
of a classifier. The most used metric for image classification performance is the
accuracy of classification, which states the overall effectiveness of the classifier [82].
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The accuracy is calculated as

accuracy = #Correctly classified samples
#Samples ,

where #Correctly classified samples refers to the number of correctly classified im-
ages and #Samples refers to the total number of classified images.

This metric is often used in literature to show the performance of a model, how-
ever there are several cases where this metric does not state the actual performance
in a sufficient manner. An example of this can be observed in large-scale object
classification. If there is an abundance of samples which the model is classifying
accurately, and substantially fewer samples which the network is not classifying ac-
curately, only measuring the total accuracy can be misleading. In this case, the total
accuracy would be high, even if the classifier is not performing well on all classes.

To state the performance in a more sufficient manner, other metrics could be used.
Some well known methods are average accuracy per class, precision and recall [82].
Average accuracy per class is simply calculated as ordinary accuracy, but done for
every class and averaged over the number of classes present. The precision and recall
for binary classification is calculated as follows

precision = #True positives
#True positives + #False positives ,

recall = #True positives
#True positives + #False negatives ,

where #True positives refers to the number of correctly labeled examples in the pos-
itive class, #False positives refers to the number of examples incorrectly labeled as
positive and #False negatives refers to the number of examples incorrectly labeled
as negative.

The precision shows the fraction of the examples which are truly positive among
all examples labeled as positive. The recall shows the fraction of examples classified
as positive among the number of examples that actually should be classified as pos-
itive, indicating how effective the classifier is, when identifying positive labels. In
multiclass classification, precision and recall is often calculated for every class [82].

2.1.5 Well Established Network Structures
Several research groups and companies have created network structures with promi-
nent performance in image classification tasks. To measure the performance of the
networks, most groups tend to use the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [83]. This competition has been around since 2010 and is now
seen as the standard benchmark for large-scale object recognition.

In ILSVRC, the networks are supposed to differentiate thousands of images which
are divided into 1000 classes, and the performance of the networks are evaluated by
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inspecting top-1 and top-5 errors. These errors are computed by feeding the net-
works with a set of test images to classify. To put it simple, when a network is fed
an image, it will return the five classes which has returned the highest probabilities.
The top-1 error shows the percentage of wrongly classified images when only looking
at the class with the highest probability, and the top-5 error shows the percentage
of wrongly classified images when looking at the five most probable classes.

Below is a short overview of the network structures which has yielded the most
promising performance in this competition.

VGG16 & VGG19

The VGG16 and VGG19 CNN models were developed to investigate the effect of
depth of CNNs regarding accuracy on large-scale image recognition. The research
group utilized very small (3 × 3) convolutional filters and found that increasing the
depth to 16 or 19 layers yielded significant accuracy improvements. Both the VGG16
and VGG19 models achieved state-of-the-art accuracy results in the ILSVRC 2014
challenge [84].

Ever since these findings, the VGG models have grown popular by researchers and
enthusiasts and is as of today two of the most well-known CNNs, with over 4900
hits on Google Scholar. However, literature suggests that the VGG models are
clearly over-sized. By inspecting the accuracy per parameter researchers has found
that these models are not utilizing their full potential, compared to e.g. ResNet or
GoogleNet [85], see Figure 2.4.

Figure 2.4: Accuracy per amount of learnable weights vs. network architecture.
Information density (accuracy per parameters) is an efficiency metric that highlights
the network’s capacity of utilizing its parametric space [85].

The fact that the models are over-sized, and that relatively large amount of weights
are not utilized in a effective manner, suggests that network compression could be
applied with successful results. For more information on network compression, see
Section 2.1.7.
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MobileNet

In several real world applications, such as autonomous vehicles or robots, image
recognition is required. The computation resources available in these applications
are often limited, and deep network structures can easily lead to a latency which
is way to high for the problem at hand [86]. The development team behind Mo-
bileNet aimed to create a network structure which performed well on large-scale
image recognition tasks, while still maintaining low latency [86].

DenseNet

With technology such as powerful GPUs advancing in a rapid pace, such has the
depth of the CNNs. The general impression has over the last decade been that a
deeper model with more parameters yields better accuracy results on image recogni-
tion tasks. However, as stated earlier, this is not always the case [85]. The research
group behind the DenseNet CNN model showed that they were able to achieve state-
of-the-art performance while utilizing less parameters than their predecessors [87].

With the introduction of more and more parameters new problems seems to arise,
one example is that the information about the input or gradient vanishes while trav-
eling trough the deep networks [87]. The researchers behind the DenseNet model
have adressed this problem by providing shorter connections between early and late
(shallow and deep) layers of the network, which enables feature-reuse, leading to a
more efficient parameter utilization [87].

Deep Residual Learning - ResNets

When training CNNs with deeper structures, they require more computational
power. The research group that developed the ResNet models aimed to decrease
the computational complexity of deep networks, while still maintaining their accu-
racy on image recognition tasks [88].

The group showed that it was easier to optimize the training of referenced functions
than optimizing the training of un-referenced functions. The achieved optimization
allowed them to construct networks with depth up to 152 layers - eight times deeper
than the VGG networks, while still maintaining lower computational complexity
[88]. This model managed to win the ILSVRC 2015, with a 3.57% top-5 error.

2.1.6 Development Frameworks
Development frameworks are often used to simplify and streamline the development
of machine learning algorithms. The frameworks can often reduce the required
time for training CNNs, since the training algorithms supplied by the frameworks
are optimized. There are several machine learning frameworks available, many of
which are specified for certain tasks. This section aims to briefly introduce the
frameworks used for this master thesis project. Figure 2.5 shows the amount of
Google-searches for some of the most popular frameworks, indicating their respective
level of popularity.
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Figure 2.5: Data from Google showing the number of searches for each category:
TensorFlow, Caffe, PyTorch,Theano, Keras. The y-axis is scaled to the maximum
value of all the presented data, thus representing a percentage [89].

TensorFlow

Google’s machine learning framework TensorFlow is one of the most prominent
machine learning frameworks today [90]. It allows for high performance numerical
computations on a wide range of platforms, from mobile devices to clusters of servers.
The framework is supported by Python and GPUs can be used to reduce training
times for heavy tasks [91].

Keras

Keras was developed with user-friendliness, modularity, extensibility and Python
compatability in mind. The framework minimize the user actions needed for com-
mon use cases and allows for CPU and GPU support, mathematical optimization
and several useful functions for machine learning development [95].

Keras is the most high-level option of the frameworks in Figure 2.5, and it must
run on top of another framework. The choices available for back-end frameworks
are TensorFlow, Theano and CNTK [95]. Using a framework with such high-level
implementation has several advantages, such as compact code, fast implementation
and easy extensibility. However, low-level adjustments as e.g. changing network
structures might be more tricky than with other frameworks.

2.1.7 Network Compression
As previously mentioned, CNNs have shown impressive performance in several clas-
sification task, especially image classification. However, the CNNs achieving these
results usually require powerful hardware, and deploying them on e.g. mobile de-
vices or embedded systems with limited resources might be problematic [96]. The
resources that are limited on mobile devices and embedded systems are usually stor-
age space, computing power and battery capacity [96], all of which are required by
complex CNNs. As an example, the VGG16 model computes 15.5 million floating
point operations to classify one single image [96].

To reduce the resources required to successfully deploy CNNs on mobile devices,
several compression approaches have been suggested by literature. The methods are
generally grouped into three categories, namely approximation, quantization and
pruning [97]. Pruning is a well-studied approach, proven to effectively compress and
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accelerate CNNs [96], two aspects highly desired when when deploying CNNs on
mobile devices. Pruning have recently shown great success, where CNNs have been
compressed without any loss in accuracy [98].

Network Pruning

Pruning can be performed on filter-level or weight-level, both methods yielding dif-
ferent advantages and drawbacks. The commonality between all pruning methods
is that less significant parts of the network are removed, to increase the efficiency in
terms of speed and memory footprint [97]. Pruning is generally done in three steps,
1: Determining what to remove, 2: Remove chosen weights or filters, 3: Fine-tune
model to recover the performance.

To determine which filters or weights to remove, several ranking methods are pro-
posed by literature. Two ranking methods widely used with well-documented results
are presented below.

Magnitude-based ranking: Ranking weights or filters based on their magni-
tude is a relatively easy way to determine what to remove. Literature suggests that
weights with small values does not impact the classification performance noticeably
[97, 98]. Furthermore, it has been shown that removing parameters based on their
values, i.e. removing the smaller ones, yields better results than removing larger
or random parameters [99]. However, different suggestions at which threshold this
applies can be seen from different research groups.

The magnitude-based ranking can be done both on weight-level and filter-level.
For the weight-level, a threshold can be used, and weights with values lower than
the threshold is simply removed [98]. This approach leads to a sparse model, with
connections removed in several parts of the network. Literature suggests networks
with pruned weights instead of whole filters can be harder to accelerate because of
the lack of efficient sparse libraries [99].

Pruning entire filters using magnitude-based ranking is similar to pruning certain
weights. However, instead of comparing the values of the weights, the absolute sum
of all weights in each filter is calculated [99]. These sums are thereafter used to de-
termine which filters to remove. Pruning according to magnitude-based ranking has
been successfully applied to convolutional layers, yielding models with smaller mem-
ory requirements and less computational complexity than the original model [97, 99].

Entropy-based ranking: The discernment ability of each convolutional filter is
closely related to its activation channel [100]. High activation suggests that the
filter is important in the classification process, and low values suggests that the
filter is not very important [100]. A simple and naive approach to choose which
filters to prune would be to calculate the average percentage of zeros (APoZ) in the
activation channels, pruning the filters yielding the largest values. However, this
approach would miss filters yielding low activation, e.g. 0.001, that could in fact
be pruned successfully [100]. Furthermore, this approach would also fail to remove
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filters always yielding the same values, which suggests that the filters discernment
ability is bad [100].

A better option would be to determine which filters to remove using an entropy-based
metric. Entropy is a commonly used metric to measure uncertainty in information
theory [100]. Using this metric, filters are pruned according to the entropy value
in each activation channel. A low entropy value of the activation channel suggests
that the filter corresponding to that channel contains less information, and can
successfully be pruned [100].

Strategies Concerning Pruning

There are several different approaches to pruning, both in the aspect of how the
parameters of the network are ranked, but also in the aspect of how the parameters
are actually removed. One common approach is iterative pruning, where param-
eters are removed gradually. By conducting iterative pruning, fine-tuning can be
performed during the pruning. The fine-tuning allows for the network to regain
accuracy between iterations, which might lead to a higher performing model com-
pared to a model where all pruning was done at once [99]. Iterative pruning can be
implemented in such a way that parameters are removed globally across the entire
network and then fine-tuned, however, literature suggests that removing parameters
in a single filter, and then performing fine-tuning might allow for more pruning,
while still maintaining the original performance [99].

Determining the number of pruning iterations depends on the desired result. If
the goal is to prune the network to a certain size, the number of iterations simply
depends on how many parameters that are removed every iteration. If the goal is
to prune the network as much as possible, while keeping the same performance as
an unpruned network, one common strategy is to continue iterating the pruning
and fine-tuning until it is not possible to regain the validation accuracy during fine-
tuning.

Iterative pruning allows for a robust way to remove parameters from deep net-
works, however, the training can easily become very time-consuming, requiring
large amounts of training epochs for all fine-tuning [99]. For very deep network
structures, the required time might be too long to be feasible, and another pruning
approach might be more suitable. An approach suggested by literature is to prune
once and then retrain the network. This approach might require less time, however,
the chance of recovering the original validation accuracy is lower, compared to the
iterative strategy [99].

2.2 Embedded Systems
Electrical technology is today one of the most important building blocks of modern
society, empowering everything from construction of houses, to surgeries and making
sure that airplanes don’t collide on busy airports. It is estimated that 98% of all
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microprocessors being manufactured are used as components in embedded systems
[101]. Having a complete device or machine, an embedded system often works as a
sub-system with a specific task such as the Anti Block System (ABS) of a modern
vehicle or the climate control of a house. The embedded system is controlled by
sensors, the user and/or the parent-system [101]. By 2006 the embedded systems in
a new car contributed to over 25% of the total cost, making it a significant concern
to car manufacturers to keep this cost low. The development of these systems are
often done by different original equipment manufacturers (OEMs), which put a high
demand for interoperability between the different embedded systems of a car [102].

2.2.1 Raspberry Pi
The Raspberry Pi 3B microcomputer is supplied with a 1.2 GHz Broadcom BCM2837
64bit CPU, 1GB RAM and a Broadcom VideoCore IV GPU. Together with a Cam-
era Serial Interface (CSI) for the Raspberry Pi camera-module and a Micro SD-card
slot for storing an operating system and data makes the Raspberry Pi one of the
most popular micro computers among computer scientists [103].

Raspberry Pi supplies a camera module fully compatible with the Raspberry Pi 3,
capable of delivering 3280 × 2464 pixels for still images with good color fidelity and
low-light performance [104]. Other camera options include the Arducam OV5647
capable of still image capture of 2592 × 1944, which would be a cheaper option
[105]. There is also an option to use a USB camera, a choice that would be even
cheaper, though this would have an effect on the performance of the system since
the proprietary modules (CSI) connect directly to the GPU, making it possible for
the CPU to perform other tasks. A USB camera would connect directly to the CPU
[106].

The need for CNNs running on portable devices, powered by batteries and low-
performance components have made the Raspberry Pi 3 a popular hardware choice
when conducting experiments. It has been successfully used in a binary classifica-
tion task of detecting occupied parking spaces [107] and it has been used to power
the vision system of an autonomous model car in real time [108, 109]. The CNNs
used for these tasks have been down-scaled versions of AlexNet (5 Layers) [107],
DeepPicar (9 layers) [108] as well as GoogLeNet (27 layers), AlexNet (11 layers)
and VGG_CNN_F (13 layers) [109]. Furthermore, there have been studies made
where this hardware is capable of detecting 5 signs per second in images captured
by the Raspberry Pi camera module with a resolution of 1920 x 1080 pixels [110],
which indicates that the Raspberry Pi is capable of delivering high performance in
image classification tasks, despite the small device footprint.
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This chapter aims to present the methodology of the project and it will be struc-
tured in a chronological order according to the workflow of the project. The project
consists of six main steps, namely:

• A preparation step, where initial choices regarding hardware and software were
made.

• A data collection step, during which training data was collected and data
augmentation was performed.

• A network development step, during which interesting network architectures
were implemented for the task at hand.

• A network evaluation step, where the different network structures were com-
pared.

• A network pruning step, which aimed to slim the developed networks to comply
with the limitations determined by the chosen hardware.

• Lastly, a step where a full system test was made as a proof of concept, to
verify the achieved results in an online environment.

3.1 Preparations

Before commencing on the actual task of this project, some initial choices had to
be made. These choices included which microcomputer and camera to use, which
machine learning framework to utilize and the size of the captured images. Poor
choices could potentially lead to inefficient implementation and ultimately worse
results.

3.1.1 Hardware
The choice of hardware or embedded system to use was crucial, since it would limit
which cameras that were available. The camera was the only sensor of the proposed
system and there were a large number of viable choices, but for this thesis it was
considered of high importance that the chosen hardware was well documented and
had proven capable of similar tasks by other research groups. Because of previously
mentioned reasons, the Raspberry Pi was chosen.

Since the Raspberry Pi has a proprietary camera module that connects through
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CSI, which is not utilizing the CPU, the choice of camera was quite easy. The Rasp-
berry Pi Camera module had previously proven to work well in image classification
tasks and online reviews made it clear that this module would be sufficient for our
task.

To make attachment of a GoPro-mount possible and to protect the circuits of the
system, a protective case was also bought. All components and their respective cost
is presented below in Table 3.1.

Component Cost [SEK]
Raspberry Pi 3B [111] 350
Camera Module [112] 200
Case [113] 100
Total: 650

Table 3.1: A table showing hardware component costs. Prices from April 2018.

To simplify the process of installing different machine learning software on the Rasp-
berry Pi, an operating system (OS) called Raspbian was installed. This OS supplied
a graphical user interface. To control the Raspberry Pi during the experiments, a
Secure Shell (SSH) connection was made between the microcomputer and a personal
laptop. All images captured using the Raspberry was stored locally.

The computers used to develop, train and evaluate all network structures was pro-
vided by the company (Alten) at which the thesis was conducted. The computers
supplied were two portable working stations (PWS) from Lenovo. A Linux distri-
bution OS called Ubuntu was installed on one of the PWS, while the other one had
Windows 10 OS installed.

3.1.2 Software
In order to guide the direction of the literature studies, decisions were taken early
on regarding programming environment and frameworks to use. It was decided that
Python would be the programming language for this project, both because it is
widely used and that the group members wanted to increase their python program-
ming knowledge.

It was decided that Tensorflow would provide the machine learning framework. The
main reason for this choice was the wide range of available articles where Tensorflow
had been used, which in combination with the successful use of Tensorflow in various
applications made it a feasible choice.

Once the programming language and framework was chosen the group started to look
into different implementation approaches available in Tensorflow. Using only Ten-
sorflow could potentially lead to a time-consuming implementation and evaluation
phase. Therefore, a more high-level framework was used on-top of Tensorflow, called
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Keras, which would later prove to make implementations and changes throughout
the project much easier.

3.2 Data Collection
Machine learning requires large amounts of labelled data. Thus, data management
was a critical process in the early stages of this project. Data management covers
everything from collecting data to downloading, annotating, and in the end, struc-
turing the data in a desired way.

There are several extensive databases available that provide datasets to researchers
for free, like the Imagenet [114], CIFAR 10/100 [115] or Kaggle.com [116] databases,
just to mention a few. Although these services can provide large quantities of im-
age data for free, there are still many cases where more task-specific image data is
required.

In this thesis the goal is to provide a proof of concept, which means that the data
used have to resemble the real scenario, i.e. a child in a vehicle. The Imagenet
provides about 1000 images of children and infants, but very few, if any, where
children or infants are situated in a vehicle or even a CS. Due to this, it became a
requirement to collect appropriate data using other sources, first by collecting our
own images and later complementing these with images found using Google’s image
search.

3.2.1 Our Data
To collect our own data, a real scenario had to be mimicked in which the system
could be operable. A doll and a CS was bought and a vehicle was rented. The
aim of this task was to collect as much data as possible, since it is well-known that
machine learning methods benefit from large amounts of data.

The first step in this process was to decide on the camera position inside the vehi-
cle. A desirable solution would be to cover all seats in one image, which would be
possible with a camera placed in the middle of the vehicle in combination with for
instance, a fisheye lens mounted on the camera. This approach was first considered,
but later neglected since the group was doubtful regarding problems connected to
fisheye distortion. It was decided that only focusing on the backseats of the vehi-
cle would be sufficient for this proof of concept study, which meant that different
mounting positions for the camera could be chosen. As a final solution the camera
was placed in a case and a GoPro-mounting mechanism was used to attach the whole
hardware piece (Raspberry Pi and Camera Module) to the rear-view mirror.

From the chosen position the group started to collect training data. The images
containing the doll were considered "positive samples" while images without the doll
were named "negative samples". The positive samples were captured in a structured
way with different placement for the arms and legs of the doll, and later repeated
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for all three back-seats of the vehicle. The negative samples would require various
items to be placed in the seats. Towels, bags, humans and clothes were used. These
items were placed in a random fashion to create as much intra-class variation as
possible for the negative samples.

In terms of software, a simple photo-script was implemented that would utilize
the camera module and save an image of size 224x224 to the on-board SD-card.
The user had to chose whether a positive or negative sample was taken and the
photo-script would set up the folder structure accordingly.

Factors that were important during this step was to make sure that the image
captured the same perspective of the vehicle during different sessions, that the sur-
rounding light conditions would not differ too much and that the correct settings
were used by the photo-script in terms of image resolution and positive/negative
samples. The doll used when collecting the training data can be seen in Figure 3.1.
The clothes on this doll will be referred to as the "old clothes" in several experiments.

Figure 3.1: An example image
of the positive samples from the
data collection phase.

Figure 3.2: An example image
of the negative samples from the
data collection phase.

3.2.2 Web Data
To introduce more variation to the dataset it was desirable to collect data from
different sources, especially in this case when the own data is relatively similar be-
tween samples. By introducing new angles, subjects and illumination conditions the
network could be forced to perform classification in a new way, making the model
more robust.

During the data collection phase some time was spent online to collect images.
The Google search engine was mainly used and then the images were downloaded
from their respective site. In this process it is essential to avoid copyright protected
images, which put limitations on how many images that could be collected.
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3.2.3 Data Augmentation
Since CNNs in general require large amounts of data, different augmentation tech-
niques were used in order to reach sufficient data amounts. Some of these augmenta-
tions were performed prior to the training, like skin color changes and color channel
flip, but the majority of the augmentations were made during run-time, with Keras
built-in functions.

Skin Color Changes

To ensure that the final system was capable of detecting children of different skin
colors, the images captured in Section 3.2.1 were edited in a photo editing software
to make the skin of the doll darker, see Figure 3.3.

Figure 3.3: Changing the skin color of the CLO in our own images. The skin was
made darker, while keeping the rest of the image unchanged.

Color Channel Flip

As a measure to further enlargen the dataset, and to make the system less depen-
dent of certain colors, for instance the colors of the clothes, the group decided to
include images with flipped color channels. These images were called RGB-flipped
images. The actual pixel values for each channel were kept, but the ordering of the
channels in the image representation was flipped. The original image, RGB (Red
Green Blue) was changed into RBG (Red Blue Green) and the training data was
thus doubled.

Additional combinations of color-channel flips were tested but later neglected since
the child would become green or blue for these cases, representing unrealistic sce-
narios. The RBG-version would make the child appear red, see Figure 3.4. The
group decided this was a sufficiently realistic color of a child, hence these images
were included in the training data. This RGB-flip kept most of the vehicle interior
colors unchanged but altered the colors of the clothes, as seen below. This was a
desirable property, since the final model should be able to detect children wearing
different clothes.
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Figure 3.4: Three sample images showing the effect of the RGB-flip on different
skin colors. As seen in the images, both the CLO and the child become more red
as the color channels are flipped. Also note that the blue and green details in all
images have changed places.

Online Augmentations

Keras provide various techniques to perform image augmentation online, meaning
that the augmentation is performed as each image is processed by the network.
Therefore, several augmentations can be performed without having to store each
individual image locally on the computer. The function used was the
ImageDataGenerator, which is a part of the Keras image pre-processing package
[117]. Initially, the data was pre-processed by re-scaling, meaning all intensity val-
ues would be scaled by 1/255 to make each number smaller, in range 0-1 instead of
0-255, making it less demanding for our model to process.

The augmentations used were horizontal flip, zoom and shear. As stated earlier,
it was of great importance to keep all augmentations realistic, not to introduce
strange scenarios that would trick the model.

• Horizontal Flip: Each image can be flipped horizontally since the CLO might
be situated at all places in the vehicle.

• Zoom: Each image can be rescaled in order to allow the network to learn
recognizing CLOs of different sizes.

• Shear: By applying small amounts of shear, the shape of the CLO could be
altered within realistic limits.

These augmentations were applied to all datasets used during the project.

3.2.4 Datasets Overview
During the project, three different datasets have been used. Each dataset served a
different purpose and they are all presented in Table 3.2.

30



3. Methods

Dataset 1 (DS1) was used during the early parts of the project and consisted of
images collected according to the procedure in Section 3.2.1. This dataset was
mainly used to ensure that the tested CNNs were capable of image classification on
an easy test case. The images were all captured in the same vehicle, with similar
colors and illumination throughout all scenes. In short, DS1 introduce quite few
intra-class variations. For DS1, five different color channel flips were used, i.e. RGB
to RBG, BGR, BRG, GBR and GRB

The images obtained online, presented in Section 3.2.2 were added to DS1 resulting
in DS2. This dataset share many attributes with DS1, but contain images that
should be harder to classify, since the web-based images are highly uncorrelated
to our own data. The web data contain images of real children, with varying skin
color. Other variations included different clothes, small variations in illumination
and different vehicles. This dataset was used to evaluate the CNN performance on
harder test cases. For DS2, five different color channel setups were used, i.e. RGB,
BGR, BRG, GBR and GRB

To be able to detect children of different skin colors, skin color augmentations were
introduced to our own data, see Section 3.2.3. The new images of CLOs with darker
skin color were shuffled with the original ones, making it a 50-50 ratio between
bright and dark skinned CLOs, introducing more intra-class variations. This led to
DS3, which was used for the largest part of the project, since it was considered to
cover the most important test-cases. This dataset was used to evaluate the baseline
model and pruned models. For DS3, 2 different color channel setups were used, i.e.
RGB and RBG. All datasets are summarized below, in Table 3.2.

Data DS1 DS2 DS3
Training 3125 (700,2425) 3450 (895,2555) 1375 (358,1017)
Validation 900 (200,700) 975 (255,720) 400 (102,298)
Test 450 (100,350) 490 (125,365) 196 (50,146)
Total: 4475 (1000,3475) 4915 (1275,3640) 1971 (510,1461)

Table 3.2: The different datasets used througout the project. The separation ratios
were kept around: Training 70%, Validation 20%, Test 10%. Datasets are presented
as: #Total (#class 0, #class 1).

Each time new data was added to the datasets it was evenly divided across the
training-, validation-, and test-sets. All datasets and their compositions are sum-
marized in the following list:

• DS1: All images from Section 3.2.1 times 5 color channel flips.
• DS2: All images from Sections 3.2.1 & 3.2.2 times 5 color channel flips.
• DS3: All images from Sections 3.2.1 & 3.2.2 times 2 color channel flips, RGB

and RBG. In this dataset the skin color changes were introduced, as well as
all images from Section 3.2.3.
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3.3 Network Development
Constructing a network able to achieve high accuracy classification results from
scratch is a tedious process, which is currently being researched by numerous re-
search groups and companies. Spending the majority of the project-time re-inventing
the wheel did not seem like a good idea, and instead the focus was put on investi-
gating available architectures with proven performance in image classification tasks.
These architectures could be evaluated and thereafter modified to fit the task of this
project.

Based on the information retrieved during the literature study, it was clear that
developing a network able to achieve high accuracy results with limited data would
be greatly simplified by utilizing transfer learning. The literature clearly stated that
training networks consisting of large amounts of parameters would be very keen to
overfit with limited data. By using the transfer learning approach, the project-
specific data could be used to train only the last layers of the altered networks, and
other data could be used to train the early layers, preventing the overfitting issue
as much as possible.

3.3.1 Determining Architectures
To determine which architectures that could perform well on the task at hand, some
different aspects were taken into consideration. The first aspect investigated was how
well the architectures had performed on the ILSVRC. If the architectures were able
to achieve high accuracy results on large-scale object classification tasks, they should
be able to perform well on the task at hand as well. The second aspect was how well
the documentation of the architectures was written. Access to reliable information
on how the networks were developed could be of great use when investigating the
performance. The third aspect taken into consideration was if the architecture could
be easily implemented in the chosen framework or not, since this could save several
working hours. Based on the previously mentioned factors, the following networks
were chosen to be further evaluated: VGG16, VGG19, DenseNet121, ResNet18 and
MobileNet.

The networks chosen for further evaluation are all relatively well known and high
performing in image classification tasks. The MobileNet network stands out from
the rest since it was not developed with the goal of performing as well as possible
on large scale object recognition tasks. Instead, it was developed to perform classi-
fication as efficiently as possible, enabling deployment on mobile devices. This fact
raised interest to include it in the evaluation, since the task of this project might
suit a network of such nature.

The other networks were all developed with the aim of performing as well as possible
on large scale object recognition tasks. The classification performance of these net-
works are state-of-the-art, with remarkable results in the ILSVRC. For information
on how the networks are evaluated in the ILSVRC, see Section 2.1.5.
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3.3.2 Modifying the Architectures
Since the chosen networks were mainly developed for large-scale object recognition
tasks, modifications had to be made so that they would suit the task of the project.
The network structures chosen for further evaluation returns 1000 probabilities at
the final layer. Since the task of this project was to differentiate an empty vehicle
from a vehicle in which a CLO is present, the last layer had to be modified to return
one single output, stating if a child is present in the image or not.

To accomplish this, the final dense layers from each network were removed and
replaced with dense layers more suitable for the problem. The replacement layers
developed for this task were kept the same for all network architectures, to allow for
fair comparisons. The replacement layer was developed by utilizing the Sequental-
function in Keras. This function allows the user to create parts of, or even full
models, by stacking layers on top of each other. The replacement layer created con-
sisted of two dense layers, the first one with 256 nodes, and the second one with one
single node. This allowed for extraction of one single output from the last layer.

The activation function for the first dense layer was chosen to be the ReLU function,
based on the information stated in Section 2.1.1. To extract a probability from the
last layer, the sigmoid activation function was used. This function is a binary ver-
sion of the softmax function and thus returns a probability of the output belonging
to class 1, i.e. an empty vehicle in this project. When initializing the weights of the
replacement layers, bottleneck extraction was used. More information on this may
be found in Section 3.3.3.

3.3.3 Training
As previously mentioned, the networks chosen contains large amounts of trainable
parameters, requiring large amounts of training data to reach high classification
performance. Since the data collected during this project was limited, the network
parameters had to be trained using a combination of the collected data from Section
3.2.1, Section 3.2.2 as well as other publicly available datasets, like ImageNet. Even
if the public datasets available do not represent the child classification problem at
all, it can still be successfully used to pre-train the networks. This approach is com-
mon when training networks when the training data is limited, and is referred to as
transfer learning, see Section 2.1.2 for more information.

The training of the networks was performed in four steps, see Figure 3.5. Ex-
planations of every step can be seen below.

Figure 3.5: A flowchart showing the major steps performed during the network
training.
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Pre-training

To train the early layers of each network, pre-training was used. The pre-training
consisted of training the networks using the ImageNet dataset, containing millions
of images divided into 1000 classes. Remember, the early layers of the networks are
supposed to extract simple features, present in most images. Training the networks
to recognize these simple features using pre-training means that the limited dataset
collected for the project can be used to train the layers located later in the network,
which are used to extract more abstract and problem specific features.

Training deep networks, such as the ones used in this project, with millions of
images requires large amounts of computing power and time. During this project,
both time and available computing power were limited, hence training several deep
networks from scratch would not be feasible. Luckily, the chosen networks had been
trained on the ImageNet dataset by others, and the trained weights were publicly
available. Using Keras, the pre-trained ImageNet weights were easily imported to
the networks.

Extracting Bottleneck Features & Building Modified Model

As mentioned in Section 3.3.2, the final layers in the CNN were modified in order
to output 1 prediction probability, for this binary classification case. A common
approach when initializing the parameters of CNNs is to set them with mean 0 and
standard deviation 1. This approach can cause problems when utilizing transfer
learning, since the gradients might become too large. Instead, to initialize the
weights of the modified top layer, bottleneck extraction was used. The bottleneck
extraction was performed by feeding the task-specific training images to the pre-
trained network architectures with a modified top layer one time. By feeding the
training images trough the network one time, the weights in the modified top layer
could be updated to better fit the pre-trained network. The updated weights were
thereafter stored, and could then be used when initializing the final layers of the
modified model.

Hyperparameters and Fine-tuning

The choice of hyperparameters can have a large impact on the training of the CNNs.
Since the pre-training was conducted by downloading weights trained by others, the
hyperparameters used during that training could not be altered. The choice of hy-
perparameters for the fine-tuning were mainly based on the theory from Section 2.1.3
and observations made during training. The hyperparameters were changed several
times during the fine-tuning stage of the networks, which allowed for investigation
on how each hyperparameter affected the outcome. However, the hyperparameters
finally used during the fine-tuning of all network architectures were set as follows:

Learning rate:0.0001, Optimizer:SGD, Momentum:0.9, Batch size:25

The amount of epochs were changed when the dataset used during fine-tuning
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changed. When tuning the network architectures on DS1, 20 epochs were used,
which allowed for full convergence. Furthermore, when tuning the networks on DS2,
60 epochs were used to allow full convergence. Later during the project DS3 was
used, with varying amounts of training epochs. The hyperparameters used were not
changed between the different architectures, simply because this could allow for easy
comparison.

When the network architectures had been pre-trained and the top layer had been
replaced to fit the task at hand, the networks had to be fine-tuned. The fine-tuning
consisted of training the networks with the data collected during the data collection
phase of the project.

Locking layers: As previously mentioned, the early layers of the CNNs consist
of feature extractors intended to extract simple features present in most images.
Since the networks are already pre-trained at this point, it can be beneficial to lock
these layers [118]. Locking the layers means that the weights in these layers will
not be updated during training. By locking layers, the limited data can be used
to update only the final layers of the networks. Remember, the final layers are in-
tended to extract more task-specific features from the image. This approach will
decrease the risk of overfitting the network, since the amount of trainable param-
eters will be lower with locked layers. When fine-tuning the networks, the first 15
layers were locked, leaving only the three final convolutional layers and the dense
layers unlocked. At a later stage in the project, more layers were left unlocked, more
information on this can be seen in Section 3.5.3.

Updating the weights: To update the weights of the networks, the fit-function
supplied by Keras was used. This function updates the weights, trying to minimize
the training loss. To calculate the loss, the binary cross-entropy was used. The
training and validation accuracy as well as training and validation loss was contin-
uously saved to a file, this data could thereafter be visualized using MATLAB, which
allowed for investigation of the training results.

Output from Model

In this thesis project, binary classification is performed, indicating if the CLO is
present in the scene or not. The last layer in the chosen framework will output a
number between 0 and 1, corresponding to the predicted probability of the input
belonging to class 1. The group decided on using the classes as presented in Table
3.3.

Class 0 1
CLO Empty

Table 3.3: A table showing the class structure used in this project. In this case
"empty" refers to a scene without a CLO present.
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3.4 Network Evaluation

To evaluate the performance of the networks, several factors had to be investigated.
Firstly, the data saved during the fine-tuning of the network was evaluated. To
evaluate this data, it was visualized using MATLAB. Important factors here were the
training and validation accuracy, the training and validation loss and also whether
the models did converge during training or not.

To further evaluate the performance of the models, the test-set was used, infor-
mation on how these images were collected is presented in Section 3.2. As stated in
Section 2.1.4, only investigating the accuracy of classification is in many cases not
enough to state how well a model is performing. This applies to the task at hand,
since it is of great importance that the models correctly classifies images in which
CLOs are present. Therefore, precision and recall were calculated for every class,
for information on how precision and recall are defined and calculated, see Section
2.1.4. These metrics would provide a informative measure of the performance of
each model.

To calculate and visualize these metrics, a python script was developed, in which
each model classified all test-images in the datasets. These classifications were there-
after used to calculate all important metrics. The precision, recall and accuracy were
saved in a excel-sheet, which could thereafter be used for evaluation of the perfor-
mance.

On top of the evaluation measures presented above, the prediction values were visu-
alized on a line-chart using MATLAB. This line-chart provided a visualization on how
robust each model was while classifying the test-images. Remember, the prediction
probability returned from the models after classifying an image is a number between
0 and 1, stating with what probability the image belongs to class 1. Hence, if the
prediction probability values are close to 0.5, the model is not classifying the images
robustly.

The purpose of the network evaluation was to create a baseline model, representing
the architecture that performed the best.

3.5 Network Pruning

To reduce the memory and computing power requirements needed to classify images,
pruning was used. The pruning was aimed to compress and accelerate the networks
by removing redundant filters. The pruning was done in three main phases, pre-
sented in Sections 3.5.2 - 3.5.4. However, all pruning phases utilized the same basic
pruning operations, and these operations are presented below.
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3.5.1 Pruning Operations
The pruning algorithm implemented for this project utilizes a form of iterative prun-
ing. Redundant filters are ranked and removed in an iterative manner, with fine-
tuning of the model between the iterations to regain lost performance. A visualiza-
tion of the algorithm can be seen in Figure 3.6.

Figure 3.6: A flowchart showing how the pruning was performed, starting from
the top left corner. Fine tuning refers to the same fine tuning operation performed
in Section 3.3.3.

The algorithm visualized in Figure 3.6 was implemented in Python, utilizing func-
tions provided by the Keras API. The implemented algorithm allows the user to
select the amount of filters to remove in each layer by supplying a percentage. For
example, if the user selects to remove 1 % of filters on every iteration, the algorithm
will rank all filters in each layer independently, and thereafter remove the 1 % lowest
ranking filters in each layer. Since CNNs are often constructed with more filters in
the later layers, more filters will be removed in the later layers.

Ranking the Filters

The ranking method used in the pruning algorithm is magnitude based ranking,
presented in Section 2.1.7. The filters in each layer are ranked without respect to
other layers. As stated in Section 2.1.7, this ranking method is quite simple, only
ranking the filters based on the absolute sum of the weights in each filter, which
allows for a fast and efficient ranking.

Removing the Lowest Ranking Filters

When the ranking of the filters is completed, the algorithm removes the lowest rank-
ing filters in each layer according to the supplied percentage by the user, meaning
the lowest absolute sum. The algorithm keeps track of the indexes of the removed
filters, since the corresponding input feature maps has to be removed from the sub-
sequent layer for the network to function properly. For example, if the number of
outputs from layer N is 256, the number of inputs in layer N + 1 must be 256 as
well.

Determining the Number of Iterations

The number of pruning iterations are obviously determined by how much pruning
the user wants to achieve, and how much pruning the user wants to perform in
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every iteration. Optimally, the algorithm should remove only one filter in each
iteration, this approach would maximize the amount of pruning achievable while
still keeping original performance. However, this approach would be very time-
consuming. Hence, there will be a trade-off between the time-consumption and the
amount of pruning achievable. The smallest amount of filters removed in every
iteration during this project was set to 1 %, or at least one filter if the amount of
filters were below 100. The choice of removing 1 % of present filters in each iteration
instead of removing one filter in each iteration was based on time-constraints.

3.5.2 Phase 1 - Determining Amount of Pruning

To evaluate at which point a degradation in classification performance would occur,
the baseline model was pruned in steps of 5 %. Setting the incrementation at 5 %
would allow for a relatively fast way of finding the degradation point.

All models were trained with equally many training epochs, to enable comparison.
The way each model was trained is presented in Table 3.4.

Model Training Scheme [Epochs]
0% 60 = 60
5% 30+30 = 60
10% 20+20+20 = 60
15% 15+15+15+15 = 60
20% 12+12+12+12+12 = 60
25% 10+10+10+10+10+10 = 60
30% 9+9+9+9+9+9+9 = 63

Table 3.4: A table showing how the training was performed during Phase 1. During
this phase, all models were trained for approximately 60 epochs to ensure proper
comparison. 5% pruning was added for each iteration, except the first one that
was necessary for bottleneck extraction. For example, the 15%-model was pruned
0+5+5+5=15%.

The pruned models were thereafter evaluated in a similar manner as seen in Section
3.4. If the pruned model performed significantly worse compared to the baseline
model, it is considered to be pruned too much.

3.5.3 Phase 2 - Fixed Training Scheme

A conclusion drawn from the results presented in Section 4.2.1 was that more train-
ing epochs between each pruning iteration were needed to ensure full convergence.
Based on the earlier mentioned results, it was also decided that the final fine-tuning
of the model needed more training epochs as well. This led to a new training scheme,
presented in Figure 3.7.
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12 Epochs10 Epochs 12 Epochs 18 Epochs 18 Epochs 24 Epochs 48 Epochs = 142 Epochs

PI 1 PI 2 PI 3 PI 4 PI 5 PI 6

Figure 3.7: A table showing how the training was performed during phase 2. PI -
Pruning iteration. This fixed training scheme was used for training each model from
this point onward. In total 142 training epochs and 6 pruning iterations, where the
actions showed in Figure 3.6 could be performed.

The decision to choose this particular training scheme was based on discussions
with the project supervisor as well as trial and error. Some different versions were
tested that would later prove provide insufficient time for convergence during the
last training iterations.

With the introduction of a new training scheme for all models, different pruning
levels had to be achieved in a slightly different way than previously. By pruning 1%
at each pruning iteration a total 5%-model would be achieved. To clarify, as seen in
Figure 3.7, 6 pruning iterations are performed for each model (the first 10 epochs
are used for the bottleneck extraction). To achieve a 5%-pruned model, 1% of the
available filters are removed at each PI. For the 10%-model, 2% of the available
filters are removed at each PI. This setup means that it is not possible to achieve
the exact pruning-amount that each model name refers to. For further explanation,
see Table 3.5

Model PPI TPF Real Percentage
0% 0% 0 0%
5% 1% 198 4,9%
10% 2% 450 10,6%
15% 3% 666 15,7%
20% 4% 881 20,8%
25% 5% 1088 25,7%
30% 6% 1275 30,1%

Table 3.5: A table showing amount of pruning per iteration, amount of pruned
filters and how much each model is actually pruned. PPI - Pruning Per Iteration,
TPF - Total amount of Pruned Filters. The total number of filters in the baseline
model is 4224, hence #Pruned Filters/4224 = Real Percentage. This table is based
on results from Chapter 4.1.

The original model names were kept to ensure readability.

By evaluating the results from the first pruning phase, which indicated that re-
moving filters might have a regularizing effect on the models, led to discussions
regarding unlocking more filters. The baseline model was since the beginning of the
project kept locked for the first 15 layers to reduce the risk of overfitting. Together
with the project supervisor it was decided that each of the available models should
be trained with 10 and 15 layers locked respectively. To clarify, after completing
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this phase there were 14 models up for comparison, two of these were the baseline
with 10 and 15 layers locked respectively. From phase 2 onward, these models are
denoted as "10-Locked models" and "15-Locked models".

3.5.4 Phase 3 - Comparison

The results of the second pruning phase, presented in Section 4.2.2 showed that 6
models performed well on the images in the test-set. These models were all chosen
to be further evaluated and compared using a full system test, i.e. a test where the
models would be deployed on the embedded system. A small studio where the full
system test could be performed was built in the office. This studio would allow for
controlled conditions, e.g. good lightning. The studio can be seen in Figure 3.8.

Figure 3.8: An image showing the studio in which the model comparison was
made. The models were run on the Raspberry Pi at the centre of the image. The
screens were used for reading results from the terminal. The CLO was placed in the
seat placed on the floor.

The first step of the full system test was to decide which scenes that would be
interesting to test. To help create these scenarios, new items and doll clothes were
obtained. This meant that it was possible to construct scenes with, for the models,
unknown items. The different scenes are presented in Table 3.6.
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Scene Positive Scene Negative
1 Doll, no clothes, CS 21 Empty CS
2 Doll, no clothes, new seat 22 CS, old clothes
3 Doll, old clothes, CS 23 Empty CS, down left
4 Doll, old clothes, new seat 24 Empty CS, top right
5 Doll, new clothes, CS 25 Empty, new seat
6 Doll, new clothes, new seat 26 New seat, old clothes
7 Doll, body covered, head visible, CS 27 Empty CS, rotated 45
8 Doll, body visible, head covered, CS 28 CLO, old clothes, CS
9 Doll, half covered from head to feet, CS 29 CLO, new clothes, CS
10 Doll, objects, CS 30 Bag, Henrik, CS
11 Doll, toy, CS 31 Bag, Victor, CS
12 Doll, standing in CS 32 Plastic bag, CS
13 Doll, no clothes, white covered CS 33 Skin-colored object, CS
14 Doll, old clothes, white covered CS 34 Victor head, CS
15 Doll, new clothes, white covered CS 35 Henrik head, CS
16 Doll, no clothes, CS, CS-rotate 45 36 Umbrella, CS
17 Doll, no clothes. CS, Doll-rotate 180 37 Victor, new seat
18 Doll, no clothes, CS, Low light 38 Henrik, new seat
19 Doll, no clothes, CS-move top right 39 Towel, new seat
20 Victor, new seat, holding Doll 40 Towel, CS

Table 3.6: A table with descriptions on scenes 1-40. CS - Child Seat, CLO - Child
Like Object. Doll refers to the same doll used in Section 3.2.1. Images of all scenes
can be found in Appendix A.1.

The tests were performed in the following way: one of the scenes above was prepared
and the full system, visible in Figure 3.8, captured the scene in one image. This
image was then fed as input to all tested models sequentially; when one model
finished, the next model started. With this setup it was ensured that all models
were given the exact same input, hence their respective outputs could be compared.

Score

Throughout testing, the group realized that picking one model as a clear winner
in this phase would be impossible, and that some scoring metric had to be used to
evaluate the performance of each model over all 40 scenes. It was argued that a score
should favor the models capable of making very robust predictions, and penalize the
models that were not as robust.

A score was introduced, which was calculated in the following way. Remember,
the positive samples correspond to class 0, meaning an optimal class 0-predicted
probability would be 0. For class 1 the optimal predicted probability would be 1.
This meant that for the first 20 scenes the absolute value between the predicted
probability and 0 was calculated, and for the last 20 scenes the absolute value be-
tween the predicted probability and 1 was calculated. These distances represent
how far from the optimum each prediction was, hence these distances could be sum-
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marized over all 40 scenes, for each model individually. The score was calculated
as

score =
20∑

n=1
0 + predicted probability(n) +

40∑
n=21

1 − predicted probability(n),

where predicted probability is the output from the model, ranging from zero to one
and n is the scene number, taken from Table 3.6. This function is similar to the
loss-function, but implemented in a simplified fashion for use during the online-tests,
where the original loss-function was not available in the developed environment.

Execution Times

As a way to measure system load for each model, two different times were mea-
sured. Time for loading each model individually, as well as classification time of one
image. Over all 40 scenes the average times were calculated. The actual loading
and classification times are not that important for the application in this project,
but were mainly used as a measure of the load put on the Raspberry Pi. A shorter
time would indicate that less powerful and cheaper hardware could manage the same
classification task.

3.6 System Test - Proof of Concept

With each pruned model thoroughly compared and evaluated, one model was con-
sidered the best and was used in the final system, as a proof of concept of this project.

With the promising results shown during the earlier stages, it was desirable to make
the proof of concept study a bit more demanding for the system, to discover a range
of areas where the developed system would fail the classification, and also to discover
scenarios where the so far presented performance actually could be achieved. This
was done by performing tests in a new, unknown vehicle and by introducing a new
doll, with dark skin and new clothes.

The scenes used for this final test are presented in Table 3.7.
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Scene Description Scene Description
41 Doll 1, CS, Middle 51 CS, New Clothes
42 Doll 2, CS, Middle 52 CS, Object
43 Doll 1, CS, Left 53 Doll 1, CS, Covered Body
44 Doll 2 + Objects 54 Doll 1, CS, Covered Head
45 Doll 1, CS + Object 55 Doll 1 + CS + Object
46 Doll 1 + 2, CS + Object 56 Doll 1 + Empty + Object
47 Empty 57 Human
48 Old Clothes 58 Doll 1 + Human
49 CS, Empty 59 Objects
50 CS, Old Clothes 60 Doll 1 + Objects

Table 3.7: A table showing descriptions for each scene used during the proof of
concept stage. Images of all scenes are found in Appendix A.3.

The study was conducted in daylight using the same photo script that had been
used in the studio experiments, although this time with one model only. The scenes
were presented and the prediction probabilities saved in a text-file. The new vehicle
introduced at this stage was different from the vehicle used during data-collection
in two main aspects. Firstly, the interior was brighter in color and had a pattern,
in addition the light-conditions were somewhat different. The new CLO had darker
skin color, a somewhat different facial expression and clothes of other colors.

The hardware was mounted in the vehicle in a similar fashion to when the data
was collected and a laptop was used through SSH to control the system. As a final
note, it should be said that the system was quite sensitive to changes in perspective,
which led to many problems and strange results until it was mounted correctly.
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4
Results

In this chapter, the results are presented in a chronological fashion, with an ordering
determined by the methodology of the project. The final conclusion of the project
is based on several important results achieved along the way. An overview of the
content of this chapter can be seen in Figure 4.1, this overview aims to help the
reader understand how and why the results are structured in the way they are.

Figure 4.1: An image showing an illustrative flowchart of the results presented in
this chapter.

As seen in Figure 4.1, the project consists of several phases which all lead to impor-
tant results. The final conclusion of the project is based on the last phase, i.e. the
proof of concept phase.
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4.1 Network Evaluation

Based on the literature study, five network architectures were chosen to be further
evaluated, VGG16, VGG19, MobileNet, DenseNet121 and ResNet18. For informa-
tion on why these network architectures were chosen, see Section 3.3.1.

Figure 4.2 shows the accuracy and loss, evaluated on both the training and vali-
dation data in DS1. All network architectures show high performance, with fast
convergence.
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Figure 4.2: Graphs showing training and validation losses and accuracies of the
different models evaluated on DS1

During the training phase each model shows rapid increase in training and validation
accuracy, the exception being Resnet18 that seem to require more training than the
other models. Table 4.1 clearly shows that all network architectures are able to
classify the test images in DS1, with all models reaching top-scores and zero miss-
classifications. This result is not that surprising since the images in DS1 are very
similar and do not include much intra-class variations, others than those manually
introduced when collecting the data.
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Model Dataset Param. Pr. 0 Pr 1 Re. 0 Re. 1 #Wrong
VGG16 DS1 13M 1,00 1,00 1,00 1,00 0
VGG19 DS1 26M 1,00 1,00 1,00 1,00 0
Mobilenet DS1 16M 1,00 1,00 1,00 1,00 0
Densenet121 DS1 19M 1,00 1,00 1,00 1,00 0
Resnet18 DS1 11M 1,00 1,00 1,00 1,00 0
VGG16 DS2 13M 1,00 1,00 1,00 1,00 0
VGG19 DS2 26M 0,97 1,00 1,00 0,99 4
Mobilenet DS2 16M 0,96 1,00 1,00 0,99 5
Densenet121 DS2 19M 1,00 1,00 1,00 1,00 0
Resnet18 DS2 11M 0,89 0,99 0,97 0,96 19

Table 4.1: A table showing the results from the model tests during the evaluation
phase. The table includes number of trainable parameters (Param.), precision for
class 0 & 1 (Pr. 0 & Pr. 1), recall for class 0 & 1 (Re. 0 & Re. 1) and the amount
of incorrectly classified images (#Wrong).

To further evaluate the models, a dataset with more intra-class variations was used,
referred to as DS2. Information on how more variations were introduced can be
found in Section 3.2. Furthermore, literature studies conducted prior to the network
evaluation suggested that 20 training epochs might not be enough for all models to
fully converge on DS2, since the dataset poses a more complex classification task.
For this reason, the second evaluation used 60 training epochs on DS2, yielding the
results found in Figure 4.3.
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Figure 4.3: Graphs showing training and validation losses and accuracies of the
different models evaluated on DS2
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The results from the evaluation on DS2 can be seen in Figure 4.3 and Table 4.1.
It is evident that four of the network architectures achieve high training and vali-
dation accuracies even here. As seen in Table 4.1, the higher amount of intra-class
variations seems to affect some of the architectures. VGG16 and Densenet121 seem
to handle DS2 very well, while the other architectures show worse performance for
the test images. Figure 4.3 might indicate that the implementation and training of
Resnet18 was not performed in a proper manner, resulting in relatively high losses
and unstable validation metrics, which would also explain the high amount of miss-
classified test-images.

The overall results from the evaluation phase led to a decision regarding which
network architecture to investigate further. ResNet18, VGG19 and MobileNet were
excluded based on their test results presented above. Both Densenet121 and VGG16
showed promising results during the evaluation, however, it was argued that VGG16
was considered the most interesting choice, simply based on the fact that VGG16
contains a smaller amount of parameters than DenseNet121. The smaller amount
of parameters suggests that it will be more efficient when classifying images on
mobile devices, both when it comes to the memory aspects as well as computing
power aspects. To conclude, VGG16 was chosen as the baseline architecture for the
remainder of the project.

4.1.1 Baseline Model - VGG16
The baseline model was further evaluated using DS3, which is the dataset that was
used for the remainder of the project. This datset introduces even more variations,
for more information, see Section 3.2. Table 4.2 shows the performance of the
baseline model on DS3.

Model Dataset Param. Pr. 0 Pr 1 Re. 0 Re. 1 #Wrong
Baseline DS3 13M 0,98 1,00 1,00 0,99 1

Table 4.2: A table showing the results of the baseline model evaluated on DS3.
The table includes number of trainable parameters (Param.), precision for class 0
& 1 (Pr. 0 & Pr. 1), recall for class 0 & 1 (Re. 0 & Re. 1) and the amount of
incorrectly classified images (#Wrong).

These test results act as a reference from now on. Since the next challenge is to
prune the baseline model while still keeping classification performance the mentioned
results will be of great importance.

To further visualize the performance and robustness of the baseline model, all predic-
tions of the test data from DS3 were plotted on a line-chart. Remember, the model
performs binary classification where each prediction is a number ranging from 0 to
1. The predicted value is the certainty of the image belonging to class one. Sim-
ply speaking, a prediction of 0.5 would imply that the model does not have a clue
about how to classify the image. The prediction robustness of the baseline model is
presented in Figure 4.4.
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Figure 4.4: A line chart visualizing the baseline prediction probabilities on the test
images from DS3 (196 images) Many prediction probabilities are stacked on top of
each other, hence all can not be seen.

Figure 4.4 clearly shows that the baseline model is robust when classifying the test
images in DS3. All correct classifications are of high certainty, since the predictions
are either close to zero or close to one. However, the incorrectly classified image
is classified with a quite high certainty as well, but for class zero instead of one.
The incorrectly classified image is shown in Figure 4.5, and it is hard to tell why
the model fails here, since the model is able to correctly classify the color channel
flipped counterpart, which is shown in Figure 4.6.

Figure 4.5: An image showing an in-
correctly classified image by the base-
line model. This image is the RBG-
version.

Figure 4.6: An image showing a cor-
rectly classified image by the base-
line model. This image is the RGB-
version.

4.2 Network Pruning
Pruning can have several effects on the performance of CNNs and it is hard to
prematurely determine exactly how it will affect the task at hand. As previously
mentioned, the pruning in this project was divided into three main phases, the
results of these phases are presented below. For more information on how each
phase was conducted, see Section 3.5. From this point on, models will be referred
to as a percentage, representing the amount of filters that have been removed from
the baseline model.
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4.2.1 Phase 1 - Determining Amount of Pruning

The baseline model was pruned in steps of 5%. This pruning incrementation allowed
for investigation on how the amount of pruning affected the performance. This
phase resulted in seven different models, i.e. one baseline model and 6 pruned
models, ranging from 5% to 30 % pruned filters. The baseline model will hereafter
be referred to as 0%. The training and validation results of each model is presented
in Figure 4.7.
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Figure 4.7: Graphs showing training and validation losses and accuracies of the
pruned baseline model evaluated on DS3. The baseline model was pruned by re-
moving different amount of layers to evaluate when an accuracy degradation would
occur.

The results confirm the conclusions from Figure 2.4, i.e. that the VGG16 model con-
tain a large amount of redundant parameters. The models pruned up to 20% show
promising accuracies and manages to keep the loss relatively low during training.
The validation metrics look more messy, but does still exhibit high accuracy and
low loss. Furthermore, a clear decrease of the training accuracy is visible around 25
- 30% pruning, which could indicate that this threshold might be the pruning limit
which guarantees a preserved accuracy.

Figure 4.8 clearly shows how the pruning affects the ability to differentiate the
classes, with the predictions moving closer to 0.5 when the pruning increases. This
is completely logical, since the removal of more filters lead to less features, which
might ultimately lead to worse predictions.
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Figure 4.8: Line charts visualizing the prediction probabilities from the pruned
baseline model evaluated on the test data in DS3.

Surprisingly, the 30% model seem to perform better than the 25%-model, both when
considering training and validation metrics, as well as test predictions. Especially
when investigating the test-predictions in Figure 4.8 it becomes clear that the 30%-
model is able to more robustly separate the two classes.

As seen in Table 4.3, the file size needed to store the model decreases as the the
amount of pruning increase, but is not linearly correlated to the amount of param-
eters in each individual model. For instance, the first pruned model has lost 5% of
the initial parameters, but have been reduced 7.77% in file size.

Pruned model 0 % 5 % 10 % 15 % 20 % 25 % 30 %
File Size [Mb] 135,39 124,86 115,11 106,15 97,88 90,62 83,94
Reduction [%] 0 -7.77 -14.98 -21.60 -27.70 -33.07 -38.00
Accuracy 0.99 1 0.99 0.98 0.99 0.98 0.97
Precision 0 0.96 1 0.98 0.98 0.98 0.98 0.96
Precision 1 1.00 1 0.99 0.98 0.99 0.98 0.97
Recall 0 1.00 1 0.98 0.94 0.98 0.94 0.92
Recall 1 0.98 1 0.99 0.99 0.99 0.99 0.99
# Wrong 2 0 2 4 2 4 6

Table 4.3: A table showing total file sizes, file size reductions and test metrics for
each pruned model. The last row indicates amount of incorrectly classified images
in the test-set of DS3.

To conclude, the first phase of pruning indicates that there is a significant decrease
in classification performance when more than 20% of the convolutional filters have
been removed from the baseline model. Figure 4.7 indicates that all pruned models
have yet failed to converge, suggesting that more training epochs could increase the
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classification performance. It can also be clearly seen in Figure 4.7 that the training
and validation accuracy decreases more when the pruning increases, which ultimately
suggests that more training epochs could be needed to achieve full convergence at
higher pruning levels.

4.2.2 Phase 2 - Fixed Training Scheme
As presented in Section 4.2.1, removing more than 20% of the convolutional filters
from the baseline model leads to a significant decrease in classification performance.
As previously mentioned, the reduction of classification performance by the models
pruned more than 20% could well be due to the fact that those models have failed
to converge during training, suggesting that more training epochs could lead to
improved results. The new alternative training method developed, presented in
Section 3.5.3 led to the results seen in Figure 4.9 and Figure 4.10. Note that there
are 14 models presented in this section due to each model having 10 and 15 layers
locked respectively, more information on this can be found in Section 3.5.3.
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Figure 4.9: Graphs showing training and validation losses and accuracies of the
pruned baseline models with 10 layers locked evaluated on DS3.
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Figure 4.10: Graphs showing training and validation losses and accuracies of the
pruned baseline models with 15 layers locked evaluated on DS3.

Figure 4.9 and Figure 4.10 clearly shows that the training loss for most models
converge towards zero in the end of each pruning iteration. The only model not
converging close to zero is the 30% pruned model with 15 locked layers. This is not
surprising since this model have the highest amount of removed convolutional filters
and also most locked layers - which means that this model has the lowest amount
of trainable parameters.

The models with only 10 convolutional layers locked show better training and val-
idation performance compared to the models with 15 locked convolutional layers.
Remember, the models with only 10 layers locked contains more trainable parame-
ters than the models with 15 layers locked. Hence, this result is not very surprising,
since the models with more parameters can extract more features.

The robustness of all models is visualized in Figure 4.11 and Figure 4.12. These
line-charts clearly shows that the models with only 10 layers locked classifies the
test-images in DS3 with higher robustness than the models with 15 layers locked.
The models with only 10 layers locked manages to classify the test images well even
when they are pruned above 20%.
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Figure 4.11: Line charts visualizing prediction probabilities from the pruned base-
line models with ten locked layers evaluated on the test data in DS3.
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Figure 4.12: Line charts visualizing prediction probabilities from the pruned base-
line models with 15 locked layers evaluated on the test data in DS3.

Figure 4.12, visualizing the robustness of the pruned models with 15 layers locked,
show a degradation of classification performance when around 10 % or more con-
volutional filters are removed. The 0-class predictions in particular seem to draw
closer to 0.5, indicating that these models are struggling to classify the CLO. This
trend is less noticeable with the models with 10 layers locked, as seen in Figure 4.11.

When comparing the file sizes of the models with 10 respectively 15 locked lay-
ers it can be clearly seen that the models with 10 locked layers leads to significantly
larger file sizes. Table 4.4 and Table 4.5 shows that a model with 10 layers locked,
with 10 % pruning, yields a model of almost the same size as a model with 15 layers

54



4. Results

locked and 0 % pruning.

Pruned model 0 % 5 % 10 % 15 % 20 % 25 % 30 %
File Size [Mb] 158,44 144,84 130,76 118,26 107,14 96,57 87,38
Reduction [%] 0 -8,58 -17,47 -25,36 -32,38 -39,05 -44,85
Accuracy 0,97 0,99 1 0,98 0,99 0,99 0,98
Precision 0 0,96 1 1 1 1 1 1
Precision 1 0,98 0,99 1 0,98 0,99 0,99 0,98
Recall 0 0,94 0,96 1 0,94 0,98 0,96 0,94
Recall 1 0,99 1 1 1 1 1 1
# Wrong 5 2 0 3 1 2 3

Table 4.4: A table showing total file sizes, file size reductions and test metrics for
each pruned model with ten locked layers. Last row indicates amount of incorrectly
classified images in the test images from DS3.

Pruned model 0 % 5 % 10 % 15 % 20 % 25 % 30 %
File Size [Mb] 135,34 124,13 112,45 102,05 92,77 83,94 76,22
Reduction [%] 0 -8,28 -16,91 -24,60 -31,45 -37,98 -43,68
Accuracy 0,99 0,99 0,99 1 0,98 0,97 0,97
Precision 0 0,96 0,98 0,98 1 0,98 0,96 0,92
Precision 1 1 1 1 1 0,98 0,97 0,99
Recall 0 1 1 1 1 0,94 0,92 0,96
Recall 1 0,99 0,99 0,99 1 0,99 0,99 0,97
# Wrong 2 1 1 0 4 6 6

Table 4.5: A table showing total file sizes, file size reductions and test metrics for
each pruned model with 15 locked layers. Last row indicates amount of incorrectly
classified images in the test images from DS3.

Table 4.4 and Table 4.5 shows how the regularizing effect of pruning has affected
the test results, since models with larger file sizes perform worse than models with
smaller file sizes. Remember, since the training have been conducted with a rela-
tively small dataset, the models with large amounts of parameters are likely to be
keen to overfit.

Overall, the models with 10 locked filters perform better than the models with
15 locked layers on the test images in DS3. However, it must be taken into consid-
eration that these models are more costly when considering their memory footprint.
With all these facts in mind, there are five pruned models standing out, which will
be further evaluated. The models that chosen were: 10-Locked 10%, 10-Locked
20%, 15-Locked 5%, 15-Locked 10% and 15-Locked 15%.

The choice to further evaluate these five models was based on the models classi-
fication performance and file size. All models chosen for further evaluation had a
maximum of one incorrectly classified image from the DS3 test data.
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4.2.3 Phase 3 - Comparison
All models chosen to be further evaluated after the second pruning phase had proven
to perform well on the test data in DS3, as seen in Section 4.2.2. The high perfor-
mance of all these models was also noted in the studio environment. In general, each
model can classify most scenes presented with high reliability. Some scenes for which
all models returned correct classifications with mostly high prediction certainty can
be seen in Figure 4.13. The prediction probabilities of these images can be seen in
Table 4.6.

1 2 5

11 15 21

24 30 38

Figure 4.13: Images showing some of the scenes that all models classified correctly.
The prediction probabilities are presented in Table 4.6.
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Scene: Baseline 10L-10% 10L-20% 15L-5% 15L-10% 15L-15%
1 2.38e-14 1.87e-2 6.30e-3 8.81e-7 3.50e-3 0.19
2 1.69e-8 1.28e-2 3.60e-3 6.07e-5 1.72e-2 3.19e-2
5 5.75e-15 5.06e-4 9.10e-3 4.52e-7 3.60e-3 0.16
11 1.09e-13 7.00e-3 1.37e-2 2.10e-6 4.60e-3 0.19
15 1.08e-13 9.50e-5 0.49 4.78e-10 1.20e-3 2.70e-3
21 0.91 1.00 1.00 0.98 1.00 1.00
24 1.00 1.00 1.00 1.00 1.00 1.00
30 1.00 1.00 1.00 0.98 0.97 1.00
38 1.00 1.00 1.00 1.00 0.91 1.00

Table 4.6: A table showing the prediction probabilities for the scenes presented in
Figure 4.13.

The results presented above shows that every model perform well when classifying
images gathered in a completely new environment. One noticeable difference in per-
formance between the models can be seen in scenes 1, 11 and 15, where a decrease
in robustness is present when moving from the baseline to the pruned models. All
models are capable of classifying the CLO in most cases; where the doll is not con-
cealed too much, rotated too much, moved or in other ways manipulated to not look
like the training data. In addition, they show great adaptivity to changes of chairs
and clothes. It should be noted that the previously mentioned scenes are only a
fraction of the cases where the developed models perform well. For a full summary
of all results, see Section A.1.

Furthermore, when the models are exposed to more difficult scenes, differences be-
tween model performance are highlighted. Figure 4.14 shows three images where
some models fails to return correct classifications, as seen in Table 4.7.

7 8 9

Figure 4.14: Images showing scenes seven to nine. The prediction probabilities
are presented in Table 4.7.
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Scene: Baseline 10L-10% 10L-20% 15L-5% 15L-10% 15L-15%
7 4.05e-9 8.02e-2 0.64 1.00e-3 1.50e-3 0.92
8 8.87e-13 5.50e-3 2.74e-2 2.41e-7 3.70e-3 0.33
9 1.06e-8 0.36 0.32 1.95e-2 3.30e-3 0.65

Table 4.7: A table showing the prediction probabilities for the scenes presented in
Figure 4.14.

Scenes 7 - 9, presented in Figure 4.14 depict the doll being concealed in different
ways. As seen in Table 4.7, the 10L-20% and the 15L-15% models fails to classify
at least one of these images. Furthermore, Figure 4.15 shows three scenes where all
models fails to return reliable classifications, as seen in Table 4.8.

18 19 20

Figure 4.15: Images showing scenes 18-20. The prediction probabilities are pre-
sented in Table 4.8.

Scene: Baseline 10L-10% 10L-20% 15L-5% 15L-10% 15L-15%
18 0.64 1.00 0.66 9.10e-3 0.99 0.99
19 1.00 1.00 1.00 1.00 1.00 1.00
20 1.00 1.00 0.99 0.99 0.14 0.99

Table 4.8: A table showing the prediction probabilities for the scenes presented in
Figure 4.15.

The results presented in Figure 4.15 and Table 4.8 were expected, since these scenes
intended to show the weakness of the models caused by the limited training data.
For example, the models have not been trained on images were the light-conditions
are bad or images where the CLO is situated far away. Also, Table 4.8 show how
most models fail to classify scene 20. It was later discovered that the human subjects
were only visible on the negative training data, meaning that the models predicted
as they had been trained, although incorrectly in this case. The models seem to be
biased towards a class 1 prediction, i.e. an empty vehicle for scenes with the adult
human subjects.

Figure 4.16 and Table 4.9 shows three other scenes which are also worth investigating
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further. These results indicate that the models with the most trainable parameters,
i.e. the baseline and 15L-5% model, have been overfitted. These models failed to
classify scenes 22, 27 and 28 (15L-5% barely making a correct classification), point-
ing towards the conclusion that these models are biased towards the old doll clothes
present in scene 22 and 28. This set of clothes have only been present in the positive
training samples.

22 27 28

Figure 4.16: Images showing scenes 22, 27 and 28. The prediction probabilities
are presented in Table 4.9.

Scene: Baseline 10L-10% 10L-20% 15L-5% 15L-10% 15L-15%
22 3.02e-5 1.00 0.73 2.78e-2 0.85 0.99
27 1.12e-4 1.00 1.00 3.16e-2 1.00 0.98
28 2.94e-4 1.00 1.00 0.63 0.99 1.00

Table 4.9: A table showing prediction probabilities for the scenes presented in
Figure 4.16.

When introducing human subjects in scenes 34 and 35 there is a high misclassification-
rate, see Figure 4.17 and Table 4.10. This is obviously not desirable, and one rea-
sonable explanation for this could be the simple fact that real humans share many
similar features with CLOs, in comparison to the other test items presented. The
respective prediction probabilities reflect this issue, with many prediction probabil-
ities close to 0.5, which indicate that the models are uncertain when adult humans
are present in the image.

34 35

Figure 4.17: Images showing scenes 34 and 35. Predictions probabilities are pre-
sented in Table 4.10.
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Scenes: Baseline 10L-10% 10L-20% 15L-5% 15L-10% 15L-15%
34 4.03e-6 0.47 0.58 9.14e-2 0.20 0.43
35 1.50e-3 0.77 0.95 0.72 0.46 0.94

Table 4.10: A table showing the prediction probabilities for the scenes presented
in Figure 4.17.

Score

The score system was intended to simplify the process of determining which model
returned the most robust classifications. The score-results can be seen in Table 4.11.

Model: Baseline 10L-10% 10L-20% 15L-5% 15L-10% 15L-15%
Score 10.18 6.24 9.33 7.78 6.90 10.07

Table 4.11: A table showing the scores for all models in phase 3. See Section 3.5.4
for further explanation of score calculations (less is better).

The score once again show what have been seen throughout phase 3, i.e. that all
models perform relatively similar. However, according to the score 15% pruning is
achievable while still preserving the classification performance, and in these cases,
actually surpassing the baseline model in performance. Furthermore, the 10L-10%
model achieves the best score, by a small margin.

Execution Times

Table 4.12 shows that increased pruning lead to a decreased time consumption while
classifying images and loading models.

Model: Baseline 10L-10% 10L-20% 15L-5% 15L-10% 15L-15%
Avg tload[s] 19.27 20.47 19.14 18.76 18.27 17.67
Avg tclass.[s] 4.14 3.64 3.08 4.16 3.68 3.45

Table 4.12: A table showing the average times calculated over all 40 test images
during phase 3. Avg tload - Average model load time, Avg tclass. - Average classifica-
tion time.

Loading models seem to be a demanding task for the Raspberry Pi and is not directly
correlated to the model file size. For instance, the 10L-10% model has a smaller file
size than the baseline, but still require more loading time. For file sizes, see Tables
4.4 & 4.5.

To conclude, there are many scenarios where the models perform well and some
demanding ones where different models fail. Occlusion, light-conditions, distances
and human-CLO-combinations are some of the scenarios where the models struggle.
All models show good robustness against new clothes, objects and chairs but be-
come less certain when only humans are present in the images. The best performing
model, 10L-10%, was chosen based on these results. In addition, the 10L-10% model
have reduced classification time by 12% compared to the baseline model.
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4.3 System Test - Proof of Concept
The 10L-10% model achieved promising performance in the studio and was used
in the final proof of concept, which aims to introduce more demanding challenges,
presented in Section 3.6. Twenty different scenes were tested and the average clas-
sification time over all images were 3.48s, compared to 4.14s for the baseline model.

Initially, some easy scenes were presented, to ensure that the system was func-
tional. These easy scenes are shown in Figure 4.18, with prediction probabilities in
Table 4.13.

41 42 43

Figure 4.18: Images showing scenes 41, 42 and 43 with their respective prediction
probability in Table 4.13.

Scene 41 42 43
Prediction 2.71e-12 2.49e-10 3.43e-4

Table 4.13: A table showing the predictions probabilities for the scenes presented
in Figure 4.18.

These results show that the developed system is capable of detecting the CLOs in
the easiest conditions, even though the vehicle and one of the CLOs are new. Scene
43 show that moving the CLO to another seat will also result in a robust prediction
probability. Moving on to more challenging test scenes, Figure 4.19 and Table 4.14
show the results achieved when placing various objects in the CS.

45 46 52

Figure 4.19: Images showing scenes 45, 46 and 52 with their respective prediction
probability in Table 4.14.
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Scene 45 46 52
Prediction 1.20e-7 1.41e-6 1.00

Table 4.14: A table showing prediction probabilities for scenes presented in Figure
4.19.

An equally promising performance is seen in Figure 4.19 as well. Robust prediction
probabilities in each case, even when two CLOs are placed together. These scenes
also show that the bag does not trick the system. Furthermore, occlusion was one
of the biggest problems in Phase 3, and various levels of occlusion was also tested
inside the vehicle, see Figure 4.20 and Table 4.15.

44 53 54

Figure 4.20: Images showing scenes 44, 53 and 54 with their respective prediction
probabilities in Table 4.15.

Scene 44 53 54
Prediction 1.26e-4 4.59e-5 0.95

Table 4.15: A table showing prediction probabilities for the scenes presented in
Figure 4.20.

In the above figure it is shown how the system is capable of making correct predic-
tions even when the CLO is partly covered, however this is not the case in every
scene. When the head is covered, the model struggle to find the CLO, which point
towards the conclusion that the model in these cases focus more on the head than
the body of the CLO. These findings differs from the results found in Section 4.2.3,
where the 10L-10% model managed to classify all levels of occlusion.

To ensure that the model did not focus on finding the CS instead of the CLO,
scenes were included where this could be ruled out, see Figure 4.21 and Table 4.16.
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55 56 60

Figure 4.21: Images showing scenes 55, 56 and 60 with their respective prediction
probabilities in Table 4.16.

Scene 55 56 60
Prediction 0.21 1.02e-2 2.89e-3

Table 4.16: A table showing prediction probabilities for the scenes presented in
Figure 4.21.

Compared to earlier results, Table 4.16 show correct predictions in all cases, but
with less certainty. Scene 55 and 56 are similar, except for the CS, and the pre-
dictions show that the robustness of the prediction increase as the CS is removed.
Both scene 55 and 60 present some occlusion of the limbs of the CLO, with relatively
certain predictions.

Next, various ways of tricking the system were tested, with mixed results as seen in
Figure 4.22 and Table 4.17.

48 49 50

Figure 4.22: Images showing scenes 48, 49 and 50 with their respective prediction
probabilities in Table 4.17.

Scene 48 49 50
Prediction 1.00 0.85 1.70e-2

Table 4.17: A table showing prediction probabilities for the scenes presented in
Figure 4.22.
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Here, a problem in the developed model becomes apparent. Moving from scene
48 to 50, at first the model is very robust in it’s prediction, but when the CS is
introduced there is a noticeable drop in classification certainty. Lastly, when both
the clothes and CS are present the model is tricked into thinking the CLO is visible,
with relatively high certainty. Other challenging scenarios include the ones where
humans are visible, as seen in Figure 4.23 and Table 4.18.

57 58

Figure 4.23: Images showing scenes 57 and 58 with their respective prediction
probabilities in Table 4.18.

Scene 57 58
Prediction 0.61 4.25e-6

Table 4.18: A table showing prediction probabilities for the scenes presented in
Figure 4.23.

In scene 57 it becomes clear that the model still has a hard time with human
subjects. In contrast to this, the model makes very robust predictions when the
CLO is introduced in the scene.
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With a computer vision approach for classification there are always extreme cases
where the system will fail and provide unreliable predictions. The image space is
often highly varying; there are even cases where the human eye have problems de-
tecting changes between different scenarios. Knowing this, the overall result of this
project is promising and in line, or even above, the initial expectations. There are
several cases where the system always manages to make correct classifications and
there are some cases where the system is plain wrong or somewhat stochastic in it’s
predictions.

These results have been achieved by a model based on the VGG16 architecture
which has undergone successful pruning of 10%. The pruning made it possible to
reduce the running time by 12% while running on a Raspberry Pi.

Starting with the positive results, the developed system seem to be very adaptive
to items never seen before, for instance new chairs, new clothes, new dolls and even
putting a hat on the CLO. What is striking is the performance shown when placing
the CLO in different chairs, totally unfamiliar to the model. Since the model is
capable of classifying these images without any notable problems it seems like the
system have learned not to put too much focus on the CS itself, but rather focus
on the CLO, which of course is desirable and essential in order to prevent false
positives. In the sense of scene adaptation, the system shows high performance,
and does not show any signs of classification problems, which is beyond what was
expected. When covering the CLO, relatively high performance is achieved as well,
with some miss-classifications depending on the amount and placement of occlusion.

The offline tests showed that the model managed to classify all test-images and
achieve zero miss-classifications, which means it outperformed the baseline model
as seen in Table 4.4. This points towards a successful implementation of the prun-
ing and that the models have experienced some regularizing effects. Similar effects
are seen when looking at the 15L-15% model in Table 4.5, which raises questions
regarding what would happen if more layers were unlocked, more on this further on.

Focusing on the scenes that confuses the model, there are several areas that can
be deeper discussed. Some of the most interesting results were found when adult
humans were placed in the scene, and it was clear that the model had difficulties clas-
sifying these instances. Scenes 34 and 35 in Figure 4.17 reflect this. Initially these
findings were thought to be connected to the fact that the human face share simi-
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larities with the CLO. However, this statement contradicts with the results found in
scene 20, where the face is clearly visible, but the prediction is clearly "empty". Why
the system became uncertain on scenes 34 and 35, but not on scene 20 is interesting,
and hard to answer. One explanation could be that the heads of scene 34 and 35
are placed in the CS, which in combination with the similar face structure tricked
the system. This behaviour can also be found in Figure 4.22, where the clothes by
themselves seem easy to classify, but when they are placed in the CS the system
is deluded. One solution to solve this might be to use several different CSs when
collecting training data, reducing the possibility that the model connects the CS to
the CLO in any way.

In terms of concealment, the results found in the studio and vehicle environments
were not entirely coherent. In the studio, the 10L-10% model was quite certain
of scene 7 and 8 and less certain when predicting scene 9, but still correct in its
classifications. This goes in contradiction to the proof of concept studies where the
model miss-classified when the head of the CLO was covered. This is probably due
to the limbs being more distinguishable in the studio images, or that the way the
towel covered the head in scene 8, made it look like a head for the model.

In addition to these issues, the system experienced problems when dealing with
low light conditions, objects far away from the camera and changes in perspective.
None of these findings are very surprising, since the setup used for collecting data
was static and changes in light condition, distance or perspective were never made.
Hence, over 90% of the training data depictured these same conditions, which ulti-
mately means that the model is dependent on them being similar when using the
system.

It is of high importance to continue working on solving these classification prob-
lems to increase the safety provided by the final system. By missing a CLO in an
image it is obvious that the system has failed from a safety stand point. It is crucial
to remember that minimizing the false positives is also of high importance, since
a safety system constantly delivering false positives to the user will probably be
switched off and not used.

When looking for future possibilities, there are several aspects of this project that
could be considered. Firstly, if hardware of higher performance was available for
network development it would be possible to unlock more layers. When more lay-
ers were unlocked in pruning phase 2, Section 4.2.2, a notable increase in overall
performance was seen. Both in classification robustness and better test results at
higher pruning levels. The reason for this is probably that with less locked layers
the final models become more specialized to this specific training data, which with
relatively little intra-class variations have several common features over the entire
set, that could be picked up by the models. By being able to unlock more layers it
is possible that pruning levels could be pushed further than what have been done
here, which would mean that even cheaper hardware than the Raspberry Pi could
be used to run the final system.
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As stated throughout the project, a computer vision solution to a problem is seldom
fail-proof and there are often ways in which such a system can be fooled. For a
safety solution of this kind, where failing to classify a child could have catastrophic
consequences, we think it would be necessary to rely on more than one image taken
of the passenger cabin. Maybe several images could be taken, some seconds or min-
utes apart to account for cases where the child might have moved or become better
visible to the camera. An even safer solution would be to utilize several different
sensors, like infrared cameras to detect a child covered under a blanket or a mi-
crophone to pick up screams. This would trigger a wide range of other discussions
concerning the cost of adding more sensors, integrity and machine learning problems
of infrared images, which will not be covered here.

One of the easiest way to achieve better results in a future system is to increase
the amount of training data, focusing on making it more diverse. Maybe focusing
on different occlusion scenarios and child positions would be a good place to start.
A more complex solution could be to develop a system that captures training data
from the car owners over time, as they are utilizing the vehicle in their daily life. As
an example, an app could be developed where the owner provides inputs, telling the
system who is in the vehicle as he or she locks the doors and goes shopping. While
shopping, the vehicle would then be able to collect training data from the passenger
cabin where various scenarios could unfold. With this approach large amounts of
good training data, for that specific family, could be easily collected and in time be
used to train an even more accurate detection system.

To conclude the discussion, the research questions presented in Section 1.2 will
be answered, starting with:
"Is it possible to detect CLOs using machine learning running on cheap hardware?"
- Well, yes. In this project a 350 SEK Raspberry Pi was used, and we do not see any
obstacle as for why an even cheaper system would not work. As long as sufficient
memory and computing capability is provided.

What classification robustness is achievable? - The robustness of the performed
classification is very high in the easiest test cases. In some cases the system be-
comes unsure in it’s predictions, entirely depending on scenario.

Is it possible to extract enough training data during the time frame for this project?
- It is possible to extract enough training data for a proof of concept study, a com-
mercialized system would require much more data.

What limitations does the implemented detector exhibit? - The implemented so-
lution have problems with varying light conditions, perspective and distances from
the camera, as well as occlusion of the CLO and some cases involving human sub-
jects.
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Does the results of this thesis imply that a similar software system for detecting real
children would be possible? - It has not been possible to try the developed solution
on a real child, but considering the adaptation shown by the model while classifying
new dolls, with new clothes for instance, a qualified guess is that a child could be
detected as well.
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Figure A.1: Pruning - Phase 3 - All class 0-scenes used during phase 3 of
pruning. The same scenes are presented in Table 3.6.II



A. Appendix

Scene: Baseline 10L-10% 10L-20% 15L-5% 15L-10% 15L-15%
1 2.38e-14 1.87e-2 6.30e-3 8.81e-7 3.50e-3 0.19
2 1.69e-8 1.28e-2 3.60e-3 6.07e-5 1.72e-2 3.19e-2
3 2.99e-13 9.71e-5 0.13 1.58e-7 2.10e-3 0.86
4 5.78e-8 7.42e-5 3.00e-3 1.05e-6 8.20e-3 1.43e-2
5 5.75e-15 5.06e-4 9.10e-3 4.52e-7 3.60e-3 0.16
6 1.26e-5 8.08e-4 1.40e-3 5.50e-3 2.63e-2 4.10e-3
7 4.05e-9 8.02e-2 0.64 1.00e-3 1.50e-3 0.92
8 8.87e-13 5.50e-3 2.74e-2 2.41e-7 3.70e-3 0.33
9 1.06e-8 0.36 0.32 1.95e-2 3.30e-3 0.65
10 1.99e-16 5.44e-4 3.69e-2 2.66e-8 3.60e-3 0.14
11 1.09e-13 7.00e-3 1.37e-2 2.10e-6 4.60e-3 0.19
12 7.50e-9 4.91e-4 0.15 6.96e-5 6.20e-3 0.53
13 2.26e-11 2.80e-3 0.33 8.42e-8 2.00e-3 8.80e-3
14 5.53e-11 4.69e-4 0.35 2.58e-7 3.01e-4 4.70e-3
15 1.08e-13 9.50e-5 0.49 4.78e-10 1.20e-3 2.70e-3
16 6.39e-14 3.36e-4 3.70e-3 5.39e-8 8.67e-4 1.38e-2
17 1.71e-8 0.12 0.61 3.90e-4 2.58e-2 0.70
18 0.64 1.00 0.66 9.10e-3 0.99 0.99
19 1.00 1.00 1.00 1.00 1.00 1.00
20 1.00 1.00 0.99 0.99 0.14 0.99

Table A.1: Pruning - Phase 3 - The prediction of each model for all scenes
presented in Figure A.1.
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A.2 Appendix 2
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Figure A.2: Pruning - Phase 3 - All class 1-scenes used during phase 3 of
pruning. The same scenes are presented in Table 3.6.
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Scene: Baseline 10L-10% 10L-20% 15L-5% 15L-10% 15L-15%
21 0.91 1.00 1.00 0.98 1.00 1.00
22 3.02e-5 1.00 0.73 2.78e-2 0.85 0.99
23 1.00 1.00 1.00 0.86 1.00 1.00
24 1.00 1.00 1.00 1.00 1.00 1.00
25 1.00 1.00 0.23 0.99 0.99 0.86
26 1.4e-3 0.14 2.00e-3 6.00e-3 2.25e-2 2.04e-2
27 1.12e-4 1.00 1.00 3.16e-2 1.00 0.98
28 2.94e-4 1.00 1.00 0.63 0.99 1.00
29 5.41e-11 2.46e-4 4.74e-2 7.95e-4 1.30e-3 0.46
30 1.00 1.00 1.00 0.98 0.97 1.00
31 1.00 1.00 1.00 1.00 1.00 1.00
32 0.95 1.00 0.90 1.00 0.95 1.00
33 0.60 1.00 1.00 1.00 1.00 1.00
34 4.03e-6 0.47 0.58 9.14e-2 0.20 0.43
35 1.50e-3 0.77 0.95 0.72 0.46 0.94
36 1.00 1.00 1.00 1.00 0.99 1.00
37 1.00 1.00 1.00 0.94 3.18e-2 1.00
38 1.00 1.00 1.00 1.00 0.91 1.00
39 1.00 1.00 1.00 1.00 1.00 1.00
40 1.00 1.00 1.00 1.00 1.00 1.00

Table A.2: Pruning - Phase 3 - The prediction of each model for all scenes
presented in Figure A.1.
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41 42 43 44

45 46 47 48

49 50 51 52

53 54 55 56

57 58 59 60

Figure A.3: Results from proof of concept. Images were taken using a new
vehicle, never present in the training data.
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Scene Prediction Scene Prediction
41 2.71e-12 51 0.94
42 2.49e-10 52 1.00
43 3.44e-4 53 4.59e-5
44 1.26e-4 54 0.95
45 1.20e-7 55 0.21
46 1.41e-6 56 1.02e-2
47 0.70 57 0.61
48 1.00 58 4.25e-6
49 0.85 59 0.79
50 1.70e-2 60 2.89e-3

Table A.3: Predictions for scenes presented in Figure A.3
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