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Reconstructing Missing Data in Event Logs using Deep Learning Methods
LINDA HAMP
OSKAR JÖNEFORS
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Advances in computational power and deep learning methods enable many indus-
tries to use their data to gain more meaningful insights than previously possible.
The data is commonly found in event logs from software systems where events are
delivered via network connections. Consequently, the deliveries could be adversely
affected by network congestion or weak signals. Unless care is taken to resend data
that is not successfully delivered, events can be lost.

In this project, the aim is to reconstruct missing events using recurrent neural net-
works. The models evaluated are a bidirectional recurrent neural network (BRNN)
and a sequence-to-sequence model. Deep learning methods have previously been
used to reconstruct missing data in sequences, but the locations of the gaps have
then been declared in the input and are thus known in advance by the models. In
this project, deep learning models have been trained to reconstruct incomplete se-
quences where the locations of missing events are not given in advance. This makes
them more useful for real applications.

In our proposed method, the models are trained using supervised learning with
complete sequences as target output. The input consists of both incomplete and
complete sequences, where the incomplete sequences are constructed by removing
events from complete ones. In this project, the dataset comprises event data pro-
vided by the company where this thesis was conducted, and contains events related
to the navigation of their application.

Our findings are that the sequence-to-sequence model succeeds in reconstructing
75.42% of all missing events with a 95% confidence interval of [74.81%, 76.02%],
whereas the BRNN is only able to reconstruct 64.99% of all missing events, with a
95% confidence interval of [64.16%, 65.83%]. From this we conclude that both models
can be successfully used for the task of event reconstruction, with the sequence-to-
sequence model being the best candidate.

Keywords: deep learning, bidirectional recurrent neural networks, sequence-to-sequence
model, event logs, reconstruction.
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1
Introduction

In many software systems, event logs are used to store a record of activities occurring
during operations [1]. Collecting logs enables system owners to, for instance, debug
systems and analyze system failure. To ensure reliability of the analyses, the event
logs should be as complete as possible. In fact, Cinque et al. [2] state that when
conducting failure analysis, the reliability of the analyses depends on the accuracy
of the event logs.

In network transmission, data can be lost due to network congestion [3] or transmis-
sion errors suffered by network links [4]. In cases where events are sent over networks
without a handshaking procedure, such events may be silently dropped. This results
in an incomplete or inconsistent record of events, which can lower the credibility of
statistical analyses of a dataset. If missing events could be recovered they could
improve statistical analyses and thereby help the system owners to maintain and
develop quality products.

1.1 Background

The problem of reconstructing incomplete or corrupt sequences can be found in
many areas, and several approaches have been used to solve it.

The noisy channel model introduced by Shannon [5] has among other problems been
used in spelling correction [6]. Given a word or n-gram of words (a sequence of n
words) which may have been modified in some way (via deletions, substitutions
or insertions of characters) when passed through a noisy channel, it models the
probabilities of the most likely intended word or n-gram.

Rule-based systems are built to incorporate human knowledge into a set of if-then
rules. Their ability to evaluate contextually relevant rules makes them able to solve
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1. Introduction

a variety of different tasks [7]. A requirement for rule-based systems to perform well
is that the necessary human expertise within the problem area can be translated
into if-then rules [8].

Hidden Markov Models (HMMs) are probabilistic graphical models with hidden
states [9]. They are commonly used to model sequential data, and can be applied
in areas such as pattern recognition and signal processing. An advantage of HMMs
is that it is possible to use a forward-backward algorithm to predict a state at any
given time [10].

Recurrent neural networks (RNNs) have been used to model time series and to gen-
erate sequential data. For instance, Berglund et al. [11] used a bidirectional RNN
(BRNN) to fill in missing data in time series with complex dynamics. However, in
their research, the locations of missing data in sequences were known beforehand.
The network was trained on sequences that in place of the removed data points con-
tained special missing tokens, meaning that the network had to reconstruct missing
data but not predict its location in the sequences. In this project, the locations of
gaps in sequences are not stated in the input data.

The approach chosen for event reconstruction in this thesis is to use RNN-based
models. The noisy channel model cannot be adapted to event reconstruction since
it uses a dictionary of valid words or n-grams of words as a basis, and the number
of possible valid sequences for the event data used in this thesis is too large to allow
their efficient computation. Rule-based systems are, as previously mentioned, built
on if-then rules. Precisely capturing the dynamics of event data from a software ap-
plication in a rule-based system would essentially require a reimplementation of the
logic of the application, which is too cumbersome to be considered for this project.
HMMs could be applied to the problem, but have been used extensively for similar
problems, whereas RNNs are less studied in the context of event reconstruction and
are therefore considered a more interesting option.

1.2 Goal

The goal of this project is to reconstruct missing data in event logs by using RNNs.
The models are fed with both complete and incomplete sequences and should re-
construct missing events where they determine that input sequences are incomplete.
The success rate of this project is evaluated on how well the network succeeds in
reconstructing missing events.

2



1. Introduction

1.3 Approach

The ability to reconstruct events could vary between neural network architectures.
Therefore, the performance of two different models are evaluated in this project,
namely a BRNN and a sequence-to-sequence model. A BRNN is the network con-
struction used by Berglund et al. [11], mentioned in Section 1.1, and this project
will extend their work by investigating the success rate of a BRNN that both has to
predict where data is missing and to fill in the gaps. Sequence-to-sequence models
have previously been used when translating one language into another, but to the
best of our knowledge, no one has so far used sequence-to-sequence modelling on
incomplete event logs.

In order to fill in missing data in event logs, the models must also be able to pro-
duce complete sequences. They are therefore trained using supervised learning on
both complete and incomplete sequences. However, to be able to perform super-
vised learning, complete target sequences must be available for all input sequences.
Therefore, incomplete sequences are constructed by removing events from complete
ones. The models are then trained on their ability to reconstruct these events.

The networks are implemented using Python, and the underlying library is the
popular TensorFlow.

1.4 Scope

This project has been conducted at a company providing an application for desktop
and mobile platforms. The dataset used in this thesis is not public, but consists
of event logs provided by the company. These are logs of user interactions, which
can be used to analyze user behavior and evaluate the effectiveness of, for instance,
the navigational structures of the company’s application. Events are sent over the
internet to the company’s servers from the application, and certain types of events
are not always guaranteed to arrive.

3
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2
Theory and background

This chapter aims to describe deep learning and the deep artificial neural network
techniques required to fully understand how this project was conducted. We briefly
review the general concepts in deep learning, followed by a more detailed description
of the two models used in this project, a BRNN and a sequence-to-sequence model.
In addition, concepts such as feed-forward neural networks, LSTM and GRU are
explained, some common problems of artificial neural networks are pointed out, and
possible solutions to these problems are presented.

2.1 Artificial Neural Networks and Deep Learning

Inspired by the complex networks of neurons found in human and animal brains,
artificial neural networks (ANNs) are computational models consisting of intercon-
nected units, so-called neurons, structured in layers. The typical structure consists
of one input layer and one output layer, with a varying number of hidden layers in
between. Data is fed to the input layer and then transmitted through the network
to the output layer. The connections between neurons are assigned weights which
amplify or reduce the transmitted signals. By adjusting these weights, the output
of the network is altered.

To be more precise, a neuron ni receives a set of inputs x = {x1, ..., xn} that are
passed together with a bias term of the neuron through an activation function f
that produces the output of the neuron. This output is then multiplied by the
outgoing weights of the neuron when passed on to the next layer of neurons. Some
common activation functions are the non-linear sigmoid, logistic and tanh functions,
or the Rectified Linear Unit (ReLU) which is defined as max(0, x). A frequently used
activation function for the final layer of neural classifiers is softmax, which squeezes
the values in its input vector between 0 and 1 and produces an output vector where

5



2. Theory and background

all values add up to one. In other words, it creates a valid probability distribution
from its input.

One of the more typical structures of neural networks is the Feed-forward Neural
Network (FFNN). FFNNs are networks where all outputs of neurons lead to neurons
in subsequent layers. Consequently, they contain no cycles.

ANNs with few layers have been around for decades (McCulloch and Pitts [12]
introduced an early version of an artificial neuron in 1943). However, a functional
multi-layered structure – so called deep neural network – has been harder to achieve.
Artificial neural networks were well studied during the 1990s, but the concept of very
deep networks was not relalised until the 21st century [13]. Today, deep learning
architectures often outperform conventional neural networks and have been proven
to be particularly successful in pattern recognition.

2.2 Training of neural networks

To improve the performance of ANNs, they undergo a training procedure. When
using ANNs for problems where the desired output is known, so-called supervised
learning problems, the weights in the networks are adjusted to minimize the value
of a loss function. The loss function measures the degree of error between the de-
sired output and the actual output of the network. A common way to measure the
degree of error between two sequences is a metric called the Levenshtein distance,
also known as the edit distance. This metric is often used to compare strings and
measures the difference between two sequences by calculating the number of edits
(insertions, deletions or substitutions) needed to transform one sequence into an-
other. A loss function based on such a metric could prove highly useful in solving the
problem posed in this paper. However, the Levenshtein distance is non-differentiable
and TensorFlow is not able to perform optimization on it directly.

The data used in this project mainly comprises of categorical features, which makes
the cross-entropy (CE) a suitable choice of loss function. The concept of the CE
method was first proposed by Rubinstein [14] in rare-event simulation. It measures
the divergence between a measured probability distribution and an expected one.
Soon after its introduction, CE was adjusted to become a randomized objective
function [15] and can nowadays be used to for instance solve classification problems.

6



2. Theory and background

The CE method is shown in (2.1), where y is the target output and ŷ is the predicted
output from the network.

H(y, ŷ) = −
∑

i

yilog(ŷi) (2.1)

To minimize the gradient of the loss function with respect to the weights, gradient
descent is commonly used. The gradient is usually computed using the backpropa-
gation algorithm.

Gradient descent is an optimization algorithm used to find the minimum of a func-
tion. This is done by taking steps in the negative gradient direction, as seen in (2.2),
where ∆a denotes the change in input from one step of the algorithm to the other,
η is the step size and ∇F the gradient of the function F . Similarly, the modifica-
tion of a weight wij in a neural network is shown in (2.3), where ∂E

∂wij
is the partial

derivative of the error E with respect to the weight wij.

∆a = −η∇F (a) (2.2)

∆wij = η
∂E

∂wij

(2.3)

Gradient descent in the context of neural networks can be used in a number of
ways. Batch gradient descent computes the gradient of the loss function for an en-
tire dataset, and can therefore be slow when dealing with large amounts of data.
Stochastic gradient descent computes the gradient of a single training example in
each update. Consequently, updates can be computed very quickly and the algo-
rithm avoids getting stuck in local minima. Mini-batch gradient descent combines
the strengths of the previous two approaches and computes the gradient for small
batches of training examples.

A very important detail in gradient descent is the learning rate. Choosing a learning
rate that is too small will result in a very slow convergence, and a learning rate that
is too large may result in the algorithm overshooting the target, fluctuating around
a minimum but not quite reaching it. To combat these challenges, many popular
optimizing algorithms modify the learning rate throughout the optimization process
by means such as learning rate decay or momentum [16, 17].

7



2. Theory and background

2.2.1 Overfitting

A common problem associated with neural networks is their tendency to overfit.
Overfitting occurs when a model does not succeed in generalizing from a specific
dataset. As a result, the model performs extremely well on training data but fails
miserably when applied to a validation or test set. One of the regularization tech-
niques commonly used to prevent overfitting is dropout [18]. When applying dropout,
units and their connections are randomly and temporarily excluded from the net-
work during the training phase [19], see Figure 2.1. Removing units makes the
network more robust as it decreases the risk of neurons developing co-dependencies,
which is one common cause of overfitting.

Figure 2.1: Two ANNs: the left one without dropout and the right one with
dropout applied.

Another regularization technique used to prevent overfitting in neural networks is
called early stopping. Simply put, early stopping means that the training phase is
interrupted when the performance of the network has not improved for a certain
number of training steps.

2.3 Recurrent Neural Networks

A common deep learning method is the recurrent neural network (RNN). In contrast
to FFNNs, RNNs are neural networks that contain cycles and accordingly map all
previous inputs to every subsequent output instead of just the current one [20].
This construction allows RNNs to possess an internal memory structure not found
in FFNNs. RNNs do not restrict the input and output lengths as FFNNs do, but
allow them to vary. As a result, RNNs are superior to FFNNs when it comes to
sequential input data, such as time-varying patterns. A simple illustration of an
RNN structure is displayed in Figure 2.2.

8



2. Theory and background

Figure 2.2: RNN structure with one hidden layer unrolled over t time steps.

Equation (2.4) describes an update of a hidden state in an RNN, where ht is the
hidden state for time t, xt the network input vector at time t, ht−1 the hidden state
for the previous input, Wij the weight matrix for the input, U the weight matrix
for the hidden state, b the bias and f the activation function. h0 is often defined as
a constant.

ht = f(Wijxt + Uht−1 + b) (2.4)

The network output is given in (2.5), where yt is the output at time t, Wjk the
weight matrix between the hidden layer in the network and the output layer, ht the
hidden state at time t, b the bias and f the activation function.

yt = f(Wjkht + b) (2.5)

As illustrated by (2.4), the new hidden state at each time step depends on the
hidden state of the previous time step. In other words, when training a network,
subsequent multiplications are made to calculate the states of the network. Two
problems associated with these calculations are vanishing gradients and exploding
gradients, meaning that the calculated derivatives become very small or very large.
As a result, the weights of the network are either not updated at all, or the network
becomes unstable due to extremely large weight updates. Gradient clipping can be
used to avoid exploding gradients [21]. The gradients are then simply cut off at
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2. Theory and background

some threshold value, which prevents them from becoming too large. Additional
ways of reducing the gradient problems are RNN mechanisms such as long short-
term memory or the gated recurrent unit.

2.3.1 Long Short-Term Memory

Long short-term memory (LSTM) is a special type of RNN cell. Proposed in 1997
by Hochreiter and Schmidhuber [22] as a way of mitigating the problem of vanishing
or exploding gradients, LSTM maintains an internal memory cell state c which is
used in combination with the input when updating the hidden state of the unit.
Avoiding vanishing or exploding gradients enables the LSTM unit to capture long-
term dependencies that standard RNNs are ill-equipped to handle. One limit of
the standard LSTM design is that cell states may grow in an unbounded fashion
when presented with a continuous input stream [23]. To counter this problem, the
LSTM model was improved by Gers et al. [23] with the addition of a forget gate that
enables the cell to reset its state at appropriate times. In this thesis, only LSTMs
with forget gates are considered.

The main components of an LSTM unit are the forget gate, the input gate, the
output gate, and most importantly the memory cell. They are used in conjunction
to produce the final output of the unit, and the three gate activations determine
what to forget from the previous state, which values to update in the cell, and which
values to emit as the new unit output. The output ht of the LSTM unit at time t is
calculated as seen in (2.6a), where ot is the output gate activation, ct is the current
cell state and � denotes element-wise multiplication.

The output gate activation ot in (2.6b) is a vector of values between 0 and 1, and
decides to which extent the various parts of the cell state contributes to the final
output. It is produced by adding a bias term bo to the current unit input xt and the
previous unit output ht−1 scaled by their respective weight matrices Wo and Uo.
This is passed through the sigmoid function to scale the output vector components
between 0 and 1.

The current cell state vector ct in (2.6c) comprises two terms. The first determines
what will be remembered from the previous cell state, and is produced by filtering
the previous cell state with the forget gate activation ft in (2.6d). The second term

10



2. Theory and background

combines the current input with the previous output and filters it with the input
gate activation it shown in (2.6e).

ht = ot � tanh(ct) (2.6a)

ot = σ(Woxt + Uoht−1 + bo) (2.6b)

ct = ft � ct−1 + it � tanh(Wcxt + Ucht−1 + bc) (2.6c)

ft = σ(Wfxt + Ufht−1 + bf ) (2.6d)

it = σ(Wixt + Uiht−1 + bi) (2.6e)

2.3.2 Gated Recurrent Unit

The gated recurrent unit (GRU) was first introduced by Cho et al. [24] and is
a simpler version of the LSTM. A GRU cell provides the same advantages as an
LSTM cell, with an effective long-term memory and ability to solve the problems
with vanishing or exploding gradients, but its simpler structure makes it easier than
the LSTM to both implement and compute. While the LSTM has three gates: the
forget gate, the input gate and the output gate, the GRU has only two: the update
gate and the reset gate. The GRU also lacks the memory cell that is an essential
component of the LSTM.

The main formula for a GRU is described in (2.7a), where ht is the output from the
GRU, h̃t the candidate update in (2.7b) and ut is the update gate. The update gate
is calculated according to (2.7c), with σ being the sigmoid function taking on values
between 0 and 1. The reset gate rt illustrated in (2.7d) is similar to the update gate.
The difference between the two gates is that the update gate decides what to read
of the candidate update, and the reset gate is selecting which part of the hidden
state to overwrite.

ht = (1− ut)� ht−1 + ut � h̃t (2.7a)

h̃t = tanh (Wxt + U(rt � ht−1) + b) (2.7b)
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2. Theory and background

ut = σ(Wuxt + Uuht−1 + bu) (2.7c)

rt = σ(Wrxt + Urht−1 + br) (2.7d)

The new hidden state for each time step is calculated based on the previous hidden
state and the new input. However, sometimes it can be more useful to carry infor-
mation from even further back to calculate a new hidden state. While multiplication
along every time step in a regular RNN causes the network to only remember a few
time steps, carrying information from further back in a GRU creates a longer mem-
ory structure. If the update gate has values close to 1, a new hidden state will be
calculated, while values close to 0 means the previous state is kept. If the reset gate
has values close to 0, the previous hidden state is thrown away and a new hidden
state is calculated based on the new input.

2.4 Bidirectional Recurrent Neural Networks

RNNs process the input one time step at a time, continuously producing output
based on previous time steps. However, for problems where input data past the
current state is readily available (unlike time-series prediction where future events
are unknown), the network performance could be improved if the network had access
to both previous and subsequent inputs at each time step. Bidirectional recurrent
neural networks (BRNNs), first proposed by Schuster and Paliwal [25], consist of two
RNNs that read input from two different directions and then merge the results (see
Figure 2.3). By doing so, available information both before and after the current
time step can be taken into account when producing the output.

12



2. Theory and background

Figure 2.3: Simple BRNN structure with one bidirectional layer, unrolled over t
time steps. The forward layer is in this figure illustrated in red, and the backward
layer in dark blue.

2.5 Sequence-to-sequence models

One network construction suitable for mapping one sequence to another is the
sequence-to-sequence model. This model was first introduced for machine trans-
lation and consists of two neural networks combined: an encoder and a decoder
[24, 26]. The encoder takes an input sequence and outputs a feature vector. The
decoder takes the feature vector and generates an output sequence token by token
by taking its own output from the previous time step as input. Since the training
and validation processes for a sequence-to-sequence model are slightly different, they
are both illustrated in Figures 2.4 and 2.5.
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Figure 2.4: The training process of a sequence-to-sequence model translating an
English sentence into a Swedish one. The English sentence is fed to the encoder one
word at a time. After the whole sentence has been passed through the encoder, the
resulting internal state of the encoder is used as a feature vector to represent the
sentence. The decoder takes two inputs: the feature vector from the encoder and the
expected output sentence. That is, the final internal state of the encoder becomes
the initial state of the decoder. The target sentence is also fed to the decoder word
by word, starting with a start-of-sequence token. The decoder then produces an
output sentence word by word ending with an end-of-sequence token.

Figure 2.5: The validation process of a sequence-to-sequence model translating
an English sentence into a Swedish one. The difference between the validation and
training process is that the decoder is not given the target sentence as input. Instead,
the decoder takes the last word it generated and uses as input for the next time step.
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2.5.1 Attention

Although the sequence-to-sequence model performs well on short sequences, Cho
et al. [27] show that the performance gradually decreases when the number of un-
known input tokens and sequence lengths increase. The main reason for the worsened
performance is that a sequence-to-sequence model relies on the encoder to compress
all important aspects of the input sequence into a feature vector of fixed length.
As the lengths of input sequences grow, their content becomes increasingly hard to
capture in the fixed-size feature vector.

One mechanism devised to remedy the situation is called attention. At each time
step, attention gives the decoder access to parts of the input sequence through
context vectors [28]. A context vector ci is calculated as described in (2.8a), where
aij is a weight, hj is the hidden state of the encoder at time step j, and n is the
number of hidden states in the encoder. Weights are calculated according to (2.8b),
where eij is an alignment measure, calculated from an alignment model a in (2.8c).
The alignment model measures to which extent the input around index j corresponds
to the output at position i. That is, the weight aij is a probability for how well the
input xj corresponds to the output yi, and si−1 is the state of the decoder at time
step i-1.

ci =
n∑

j=1
aijhj (2.8a)

aij = exp(eij)∑n
k=1 exp(eik) (2.8b)

eij = a(si−1,hj) (2.8c)

The decoder can then use the context vector ci along with its so far generated output
to produce its ith output. Correspondingly, the decoder does not have to rely solely
on the last hidden state from the encoder when producing an output sequence, but
can also incorporate information from the context vectors at each time step.
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3
Methods

This chapter begins with a description of the datasets used in this project, both
real and synthetic. The architectures of the BRNN and the sequence-to-sequence
model are then shown, followed by the loss function used during training. The fixed
and adjusted hyperparameters of the models are stated followed by a brief outline
of the training process. Finally, the metrics constructed to evaluate the results are
explained.

3.1 Datasets

Two main datasets are used in this project. One contains the real event data pro-
vided by the company where this thesis was conducted, and the other consists of
synthetic data generated in order to test the performance of the models on simpler
data. The size of both datasets, the number of complete and incomplete sequences
they contain, and the maximum sequence length of each dataset are illustrated in
Table 3.1. The percentage split between the training, validation and test set were
70/20/10 for both datasets.

Table 3.1: Illustration of the number of sequences, the split between complete and
incomplete sequences, and maximum sequence length for the two datasets used in
this project.

Number of sequences

Dataset Total Complete Incomplete
Maximum
sequence
length

Synthetic data 10,000 5,000 5,000 100
Real event data 100,000 50,000 50,000 136
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3.1.1 Real event data

The logs of user interactions collected by the company where this thesis was con-
ducted contain information about the navigational patterns of users in the applica-
tion. Such information can be used to for instance improve the navigational structure
of the application based on user behavior. The number of different event types are
many, but only a few are investigated and used in this project. The events have
some attributes in common, but also contain information specific to each event type.
An example of a common attribute present in a majority of events is a timestamp.
Based on the timestamp, events can be ordered chronologically. The partition of
sequences in this project is based on so-called sessions in the event logs. A session
is a record of events occurring during a specific period of time. Sessions can be of
different lengths and contain different types of events.

The event types of interest for this project have in this thesis been called PageEn-
terEvent, PageExitEvent and InteractionEvent. The PageEnterEvent represents the
action of entering a page in the application, and the PageExitEvent represents ex-
iting it. The InteractionEvent represents an interaction between a user and a page,
which could result in leaving one page to enter another one – when tapping a link
for instance – or staying on the same page. There are two distinct patterns in these
sessions. First, two PageEnterEvents should not occur without a PageExitEvent in
between them. That is, when entering a new page, one first has to exit the previous
page. Second, an InteractionEvent has to occur before a PageExitEvent, since it is
not possible to exit a page without interacting with the application first.

As previously mentioned each event type contains multiple attributes. All of these
are not used in this project and will therefore not be mentioned in this thesis. How-
ever, in order to understand the metrics used to evaluate the results, the attributes
used in this project need to be named. The core attributes are type, page and time.
Type describes what kind of event it is, page describes what page each event is con-
nected to, and time when the event occurred (the previously mentioned timestamp).
The InteractionEvent also contains information of how the user taps or clicks in the
application and what the intention of the interaction is. These two attributes are in
this thesis called interaction type and intent. For clarification, all three event types
and their attributes are illustrated in Table 3.2.
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Table 3.2: Definitions of the event types in the real event dataset.

Attributes
Event type Categorical Scalar User action

PageEnterEvent Type, Page Time Entering a page
InteractionEvent Type, Page, Interaction type, Intent Time Interacting
PageExitEvent Type, Page Time Exiting a page

Events of the same type always contain the same attributes, but the attributes can
vary between events of different types. In the session illustrated in (3.1), all events
contain the attributes type, page and time. The InteractionEvent also contains
interaction type and intent, while the PageEnterEvents and PageExitEvents do not.
The size of each event, meaning the number of attributes it contains, can also vary.
As shown in (3.1), the PageEnterEvent and PageExitEvent are of the same size
while the InteractionEvent has one attribute less than the other two.



PageEnterEvent Page1 Time1 < Attribute > < Attribute > < Attribute >

InteractionEvent Page1 Time2 InteractionType1 Intent1
InteractionEvent Page1 Time3 InteractionType1 Intent2
PageExitEvent Page1 Time4 < Attribute > < Attribute > < Attribute >

PageEnterEvent Page2 Time5 < Attribute > < Attribute > < Attribute >


(3.1)

The lengths of sessions used in this project range between 6-136 events. Outlier ses-
sions with atypically few or numerous events have been excluded from the data, as
sessions of negligible length leave little room for predictions and sessions of extreme
length would waste a lot of computational power when training the models. The
number of distinct event types is five, namely a start-of-sequence token, the PageEn-
terEvent, the InteractionEvent, the PageExitEvent and an end-of-sequence token.
The number of distinct pages is much larger than the number of event types. To
create the input sequences, half of the complete sequences were kept intact, whereas
events were dropped with a 10% probability in the other sequences. To be able
to train both the BRNN and the sequence-to-sequence model within the restricted
time frame of this project, the number of sequences was limited to 100,000.
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3.1.2 Synthetic data

Since the real event data is rather complex, much simpler synthetic data was gen-
erated and used as the input in the early stages of the network building phase.
The first version of synthetic input data consisted of 10,000 single-feature event se-
quences, which is ten times fewer sequences than the real event dataset contains.
We reason that to account for the complexity of the real event data and enable the
models to learn its dynamics, the size of that dataset had to be substantially larger
than the simpler synthetic dataset. The lengths of sequences in this first version of
the synthetic dataset ranged between 6-30 events, where each event contained no
other information than its type. An example of a sequence consisting of such events
is illustrated below:

E, I, I,X,E, I, I,X,E, I,X,E, I, I,X,E, I,X (3.2)

As displayed, the sequences contained three different event types. The E event
is a very simple version of the PageEnterEvent described in Section 3.1.1 since it
represents the event type but has no additional attributes. Similarly, the I event is a
simplification of the InteractionEvent and X a simplification of the PageExitEvent.
The simplified events are shown in Table 3.3.

Table 3.3: Definitions of the event types in the synthetic dataset.

Attributes
Event type Categorical Scalar User action
E Type, Page Time Entering a page
I Type, Page Time Interacting
X Type, Page Time Exiting a page

In order to adapt the categorical input to the neural networks, it was transformed
into one-hot vectors. A one-hot vector is a vector with a size equal to the number
of categorical classes, each index representing a class. Each index can take on the
values of either 0 or 1 and only one index can be set to 1 at the time. An illustration
of a matrix of one-hot vectors for the three event types E, I and X is given below:

E, I,X ⇒


1 0 0
0 1 0
0 0 1

 (3.3)
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The complexity of the synthetic input data was increased by adding additional
features, first a time variable and later the ID of the page that the event occurred
on.

In the real application, pages have unique elements and properties, meaning not all
interaction types or intents are possible on all pages. Furthermore, the time users
spend on any given page depends on the properties of the page.

For the synthetic data, a navigational structure of pages with distinguishing features
was deemed unnecessarily complex and thus no such navigational structure was
incorporated into the data generating process, and the number of pages was limited
to five.

Since interaction type and intent depend on a navigational structure, they were not
added to the synthetic events. Accordingly, the synthetic data only contains event
types, page IDs and timestamps. The generated timestamps are evenly spaced
between 0 and 1 for each sequence. This allows models to at least learn the regular
spacing of events. A sequence of synthetic events is illustrated in 3.4, where the
event structure is (Type, Page, T ime).

(E, 0, 0.00), (I, 0, 0.17), (X, 0, 0.33), (E, 4, 0.50), (I, 4, 0.67), (I, 4, 0.83), (X, 4, 1.00)
(3.4)

Each event was transformed into a one-hot vector with 11 indices. The first five
indices represent a start-of-sequence token, the E event, the I event, the X event
and an end-of-sequence token. The next five indices hold the different page classes,
and the final index contains the continuous time variable. Note that the number of
pages in the synthetic data is very low compared to the number of pages in the real
event data. In the sequence illustrated by the matrix below, the user enters page 1,
taps or clicks something to switch page, and then the page changes from page 1 to
page 2.

(E, 1, 0.00), (I, 1, 0.33), (X, 1, 0.67), (E, 2, 1.00)⇒


0 1 0 0 0 0 1 0 0 0 0.00
0 0 1 0 0 0 1 0 0 0 0.33
0 0 0 1 0 0 1 0 0 0 0.67
0 1 0 0 0 0 0 1 0 0 1.00


(3.5)
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As mentioned in Section 3.1.1, the lengths of sequences in the real event data range
between 6-136 events. The sequences in the first version of the synthetic dataset
were kept quite short (6-30 events per sequence) and were only intended as a way
to test the basic network structures. When increasing data complexity by adding
multiple features, two different datasets were created – one with short sequences and
one with longer sequences – to be able to evaluate the performance of the models
on data of varying complexity. Each synthetic dataset contained 10,000 sequences,
but the sequence lengths in one dataset ranged between 6-30 events, and the other
between 20-100 events, which is similar in length to the real user sessions. The
evaluation of model performance on simpler and more complex data was conducted
on the synthetic dataset consisting of sequences of lengths 20-100 events, and the
real event dataset described in Section 3.1.1.

When creating the input sequences, 50% of the complete sequences were kept intact.
From the other sequences, E and X events were removed with a 10% probability.
Since the synthetic data lacks a navigational structure, where some pages could be
inaccessible from others, no I events were removed. If a sequence of E, I and X events
related to the same page were removed, the model could therefore never deduce that
a whole page was missing in the resulting sequence.

3.2 Description of models

Two models are chosen for this project, a BRNN model and a sequence-to-sequence
model. In this section, an overview of the architectures of these models is given, along
with descriptive figures. For simplicity, the figures depict networks with only one
hidden layer, whereas the number of layers for both models was adjusted iteratively
to find the best performing model for event reconstruction. Likewise, only LSTM
cells are shown. However, GRUs were also evaluated to ascertain the best cell
structure for the task.

3.2.1 Bidirectional Recurrent Neural Network

Since the project entailed generation of sequences of variable length, a recurrent
network structure was a natural choice. A BRNN was considered a more suitable
model to reconstruct events than a regular RNN since BRNNs process input se-
quences from two different directions. For instance, if a certain event must always
be produced during a user’s visit on a particular page, a BRNN could refrain from
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producing it prematurely if knowing that the event in question is present in a sub-
sequent time step of the input data. It is likely that both detecting that an event
is missing and reconstructing that event is easier done if the network has access to
events both before and after the gap(s). The structure of the BRNN is illustrated
in Figure 3.1.

Figure 3.1: Illustration of the BRNN architecture, where the forward layer is
illustrated in red, and the backward layer in dark blue. x is the input vector, o the
output vector before it is passed through the dense layer, and y the output vector
after it has been passed through the dense layer.

3.2.2 Sequence-to-sequence model

Sequence-to-sequence models have been used extensively for tasks like neural ma-
chine translation and image captioning. However, to the best of our knowledge,
they have not been used for data reconstruction, which is why they were deemed
interesting to explore for that purpose. The sequence-to-sequence model allows the
lengths of sequences to vary, which is beneficial in this project due to the different
lengths of sessions in the real event data. Figure 3.2 mirrors the high level architec-
ture for the sequence-to-sequence model proposed in this project (compared to the
general case presented in Figure 2.4).
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Figure 3.2: The training process of the sequence-to-sequence model used in this
project. The state of the encoder is passed on to the decoder, which during training
takes the target sequence as input and then produces an output. In this illustra-
tion the model is fed an input sequence where an X event is missing, succeeds in
reconstructing the missing event, and produces the correct output sequence.

As mentioned in Section 2.5.1, the sequence-to-sequence model might encounter
problems with increasingly long input sequences. Therefore, when training on
datasets containing sequences with a maximum length equal to or greater than
100, separate models were trained with and without attention. Figure 3.3 shows the
sequence-to-sequence architecture for this project with attention. The final state of
the encoder is still used to set the initial state of the decoder, but the decoder can
also access information from the input sequence through context vectors as described
in Section 2.5.1.
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Figure 3.3: Illustration of the sequence-to-sequence architecture with attention.
To keep the figure easy to overview, attention has only been illustrated in one case,
namely how it works when the model is generating output in time step t. Attention
can be removed, in which case this figure illustrates a standard sequence-to-sequence
model. For each time step t in the input sequence, xt is an input vector and oe

t and
od

t are output vectors from the encoder and decoder. The encoder output is not used
in a standard sequence-to-sequence model, as the input sequence is to be represented
as a fixed-length vector. However, the decoder output is passed through the dense
layer and becomes the final output y. st is the final state of the encoder, which is
the aforementioned fixed-length vector used as the initial state of the decoder.

3.3 Loss function

The same CE-based loss function was used to train both the BRNN and the sequence-
to-sequence model. Specifically, the CE loss was computed for each categorical fea-
ture, and the mean squared error (MSE) was computed for the scalar time feature.
All of these values were then added together and scaled by the number of features
to produce the final loss. To penalize predictions of the wrong length, the constant
1.0 was added to the loss for any event position where the length of the target and
output sequences differed.
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3.4 Training process

The models were continuously optimized on shuffled training data in small batches,
and the training and validation losses were calculated at the end of each epoch. Early
stopping was used on the validation loss, meaning that training was stopped once
the validation loss had not improved for a number of epochs. During the training
of both models, certain hyperparameters were fixed whereas others were adjusted in
order to find the best set of parameters for the task at hand. Once we had settled
on the best hyperparameters for each dataset, the models were evaluated on test
sets. That is, sets containing data which the models had previously not seen during
training or validation.

3.4.1 Fixed hyperparameters

Due to time constraints, certain parameters were not tweaked during training, but
instead set to values commonly known as good choices. These are detailed below:

• The optimizer used was Adam [17] (derived from adaptive moment estima-
tion), which is a popular choice and known to achieve good results fast.

• The learning rate was set to 0.001. The Adam optimization algorithm then
computes and adapts individual learning rates for each weight in the network.

• The activation function used internally in both the LSTM and GRU cells
was the tanh function. For the final dense layer of both models, the softmax
function was used.

• Dropout was used on the input for both models (for both the encoder and
decoder of the sequence-to-sequence model), with the rate set to 50%, which
in a large number of cases of neural network constructions is near-optimal [19].

3.4.2 Adjusted hyperparameters

To achieve optimal performance for the two models, the following hyperparameters
were adjusted between training runs:

• The number of units in each layer was initially low and subsequently in-
creased until no performance improvement was achieved.
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• The number of layers for each model was similarly set as low as possible at
the start, with a single-layer BRNN and a sequence-to-sequence model with
both a single-layer encoder and decoder. The models were then made deeper
until no gains in performance were made.

• Various batch sizes for the different models were tried until the best choice
for each model and dataset had been established.

• The cell structures LSTM and GRU were both evaluated.

• The sequence-to-sequence model was trained both with and without the at-
tention mechanism to evaluate its impact on the model performance.

3.5 Model evaluation

Model performance has been evaluated in two ways. Firstly, event-level metrics
based on the Levenshtein distance were created in order to evaluate how well the
models succeeded in retaining input events and reconstructing missing events accu-
rately. Secondly, sequence-level metrics that classify entire sequences were created
to show model accuracy on a sequence-level. In this thesis, the event-level metrics
are considered the better choice to evaluate model performance since they are in-
dependent of sequence length. A sequence-level classification can be changed by a
single mistake. The probability of the presence of such mistakes is higher for longer
sequences.

3.5.1 Metrics

Although the Levenshtein distance, mentioned in Section 2.2, cannot be used by
TensorFlow directly as a loss function during optimization it can be used to eval-
uate the output of a network. Based on the Levenshtein distance, metrics were
constructed to assess the performance of the models. Since the real event data used
in this project contains multiple attributes, events from the input and target se-
quences were matched with the output sequence using the categorical features time
and page. The matching was done with a dynamic programming algorithm for Lev-
enshtein distance as a basis. The original algorithm calculates the distance as the
sum of all insertions, substitutions and deletions needed to transform one sequence
into another. In this project, the actions needed to transform the output sequence
into the target sequence are tracked. Substitutions are regarded as a combination
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of an insertion and a deletion. Events from the two sequences which the algorithm
regard as equal are paired together, and events present in the target sequence but
missing from the output sequence and vice versa are kept track of.

The metrics are called deletions, insertions and reconstructions:

• Deletions (D) measure the percentage of events present in the input sequences
but missing from the output sequences. Since all of the events in the input
sequences are expected to be part of the output sequences, deletions should
be as low as possible for good network performance.

D = |Input events \Output events|
|Input events| (3.6)

• Insertions (I) measure the percentage of events that are present in the output
sequences but not in the target sequences. These are events that have been
mistakenly added, and therefore insertions should also be as low as possible.

I = |Output events \ Target events|
|Target events| (3.7)

• Reconstructions (R) measure the percentage of removed events that the
model succeeds in reconstructing, meaning that a higher percentage is better.

R = |Output events ∩ (Target events \ Input events)|
|Target events \ Input events| (3.8)

To illustrate these metrics with an example, the three matrices in (3.9) represent the
input fed to the model, the output produced by the model, and the target sequence
(the expected output). Each row in the matrices represents an event with structure
(Type, Page, T ime).

Input
E 1 0.00
I 1 0.33
E 2 1.00


Output
E 1 0.02
I 1 0.28
I 2 0.73
X 1 0.97



Target
E 1 0.00
I 1 0.33
X 1 0.67
E 2 1.00

 (3.9)

In (3.9), the event (E, 2, 1.00) is present in the input sequence but not in the output
sequence, resulting in deletions of 0.25. The insertions are 0.25 as well, since the
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event (I, 2, 0.73) is present in the output sequence but not in the target sequence.
Reconstructions are equal to 1 since only the target event (X, 1, 0.67) is missing in
the input sequence and that event is successfully recreated in the output sequence
as (X, 1, 0.97). This event does have a timestamp that deviates quite a bit from the
target event but is considered correct by having the correct type and page.

Except for the deletions, insertions and reconstructions, an evaluation of how well
the models perform in reconstructing features other than type and page is done as
well. The other features considered are the timestamp, interaction type and intent.
Since the interaction type and intent are not present in the PageEnterEvents or
PageExitEvents, these will be set to missing in the input data. The metrics are
called time MSE, accuracy interaction type and accuracy intent. The MSE is used to
calculate the accuracy for the timestamp. The accuracy for the categorical features
is calculated by taking the total number of correct interaction types/intents in the
output sequences divided by the total number of events.

During the training of the models, early stopping is applied to the value of the
CE-based loss function. The hypothesis was that although the optimization is con-
ducted on the loss function, the metrics improve as the CE-based loss decreases.
To test this hypothesis, the CE-based loss and a weighted sum of the metrics were
investigated and compared. The weighted metrics loss is defined by first multiplying
each metric with a weight and then adding them all together. These weights could
be chosen according to the characteristics desired in a predicted sequence and could
consequently vary from case to case. In this project, the weights were set based on
the logic that a deletion is worse than both a failed reconstruction and an inser-
tion, since a deletion should never occur. A failed reconstruction is worse than an
extra insertion, since we would rather see the models reconstructing missing events
and accidentally adding extra events than failing to reconstruct missing events. In
turn, an insertion is worse than getting the wrong interaction type, intent or time.
The weighted metrics loss function adapted in this project is given in (3.10). In
this equation, the weighted metrics loss is notated as losswm, D is the deletions, R
the reconstructions, I the insertions, ait the accuracy for interaction type, ai the
accuracy for intent, and MSEt the time MSE.

losswm = 5D + 2R + I + 0.5((1− ait) + (1− ai) + MSEt) (3.10)
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3.5.2 Accuracy matrices

In addition to the metrics, a modified version of confusion matrices was created to
present the accuracy of the models on a sequence level. In classification problems,
confusion matrices can be used to illustrate the performance of a classifier for each
individual class. The rows and columns in a confusion matrix show the actual and
predicted classes respectively. That is, the number at row m and column n shows
how many elements belonging to class m that were classified as belonging to class
n. Applying similar logic to the task of reconstructing incomplete sequences, we
devise the classes complete and incomplete since a sequence must belong to either
class. However, a regular confusion matrix does not fully capture the complexity
that this project proposes since the output of each model is a sequence and not just
an indicator to which class the input belongs. In order to present our results in a
format similar to a confusion matrix we therefore have to define when we considered
the model to have made a correct assumption regarding the completeness of the
sequence when producing an output sequence. The number of classes are still two –
complete and incomplete – but we have added another dimension to the predicted
output called failed. Our full definitions of the different classes are listed below:

• An output sequence is considered complete if all events present in the input
sequence are passed through to the output sequence. No additional events are
added to the output sequence compared to the input sequence.

• An output sequence is considered incomplete if all events present in the input
sequence also exist in the output sequence, and at least one additional event
has been added to the output sequence.

• An output sequence is considered to be failed if not all of the events in the
input sequence are present in the output sequence.

To clarify, Table 3.4 holds a complementary definition of the classes.

Table 3.4: Definitions of the different classes.

Class Condition
Complete Input events = Output events
Incomplete Input events ( Output events
Failed Input events *Output events

These complete, incomplete and failed classes are in this thesis used to build what we
will refer to as accuracy matrices. An example of an accuracy matrix is illustrated in
Table 3.5. In this example, the model has successfully classified a% of all complete
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sequences and e% of all incomplete sequences. These are the correct classifications,
which is indicated by the bold font. In b% of all complete sequences, the model has
added events and these sequences are therefore classified as incomplete. In d% of all
incomplete sequences, the model has instead generated an output identical to the
input sequence and accordingly these sequences are classified as complete. In c% of
all complete sequences and f% of all incomplete sequences the model has removed
events in the output sequence compared to the input sequence, meaning that these
sequences are classified as failed.

Table 3.5: Example of an accuracy matrix used in this project to evaluate the
number of successful/unsuccessful sequence predictions.

Actual
Predicted Complete Incomplete Failed

Complete a b c
Incomplete d e f

The accuracy is calculated as the number of correctly classified sequences divided by
the total number of sequences. In the example illustrated in Table 3.5 the accuracy
is a+e

a+b+c+d+e+f
.
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4
Results and Evaluation

This chapter summarizes the results and performance of the models when run on the
test sets. The values of the hyperparameters for both the BRNN and the sequence-
to-sequence model are described, and model performance is evaluated and reflected
on. If nothing else is specified, the synthetic dataset referred to in this chapter
contains sequences of 20-100 events per sequence.

4.1 Setups

Each experimental setup was run four times, and the results presented in this chapter
show the average results for the best performing BRNNs and sequence-to-sequence
models. The datasets used are presented in Sections 3.1.1 and 3.1.2, and the per-
centage split between the training, validation and test set was 70/20/10. The models
were run on Google ML Engine instances with a single NVIDIA Tesla K80 GPU
and TensorFlow version 1.7.

The fixed hyperparameter values were the same for both models and are detailed in
Section 3.4.1. The values of the adjusted hyperparameters for the best performing
BRNNs are illustrated in Table 4.1, and for the best sequence-to-sequence models
in Table 4.2. As can be seen, both models used in this project contain fairly few
units. The maximum number of units is 500 and is used in the BRNN that handles
synthetic data, all other models only have 250 units each. In comparison, Berglund
et al. [11] used a BRNN with 684 units and 2 layers to achieve their results. Although
we tried structures with more units and fewer layers, we did not manage to improve
the performance of the BRNN. Therefore, the networks contain fewer units but more
layers than the BRNN used by Berglund et al. [11].
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Table 4.1: Best values of the adjusted hyperparameters for the BRNNs.

Dataset Units Layers Batch size Cell structure
Synthetic 500 5 30 LSTM
Real 250 5 30 LSTM

Table 4.2: Best values of the adjusted hyperparameters for the sequence-to-
sequence models.

Layers
Dataset Units Encoder Decoder Batch size Cell structure
Synthetic 250 3 3 30 LSTM
Real 250 3 3 100 LSTM

The values of the hyperparameters were adjusted as follows:

• The number of units was initially set to 50 when applied to the synthetic
single-feature data. When adding complexity to the data, the number of units
was increased until the model performance plateaued. The highest number
of units tried out in this project was 1000. It turned out that the BRNN
performance on synthetic data peaked when the networks contained 500 units
each, and 250 units each for the real event data. The sequence-to-sequence
model contains 250 units for both datasets.

• The number of layers was adjusted from a single-layer BRNN and both a
single-layer encoder and decoder for the sequence-to-sequence model. When
increasing the number of layers it was noted that models with twice as many
layers were better than models with twice as many units. However, increasing
the depth beyond 5 layers for the BRNN and 3 layers for both the encoder
and decoder in the sequence-to-sequence model did not improve the results.

• The batch size was varied from 1 to 500. For the BRNN it was noted that
batch sizes less or greater than 30 worsened the performance. The sequence-
to-sequence model had the same optimal batch size of 30 for the synthetic
data, but a batch size of 100 for the real event data. Batch sizes over 100
worsened the performance of the model.

• The cell structures used in this project were LSTM and GRU cells. Each
parameter setting was run multiple times with both LSTM and GRU cells.
LSTM cells proved to generate better results than GRUs, so LSTM cells are
exclusively used in the models.
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4.2 Model performance

This section presents the model performance on both datasets in several ways. Re-
sults of the Levenshtein distance-based metrics are presented, followed by the train-
ing and validation losses. The correlation between the aforementioned metrics and
the loss function is shown along with the final test losses. In addition, the effects of
using attention on the sequence-to-sequence model is presented. Finally, accuracy
matrices are presented as a way to measure the accuracies of both models on a
sequence level.

4.2.1 Metrics

As illustrated in Table 4.3, the average number of reconstructions in the real event
test set is 64.99% for the BRNN and 75.42% for the sequence-to-sequence model.
These are the means of four runs with the same hyperparameters for each model. To
give an idea of the distribution of reconstruction rates in these runs, 95% confidence
intervals were calculated for both models. A 95% confidence interval shows that in
95% of all runs, the mean of the reconstruction rates is found between a lower and an
upper limit. For the BRNN, the 95% confidence interval is [64.16%, 65.83%], while
the reconstruction rates for the sequence-to-sequence model have a 95% confidence
interval of [74.81%, 76.02%]. These confidence intervals show that the reconstruction
rates are not likely to overlap for the BRNN and the sequence-to-sequence model.
Accordingly, the sequence-to-sequence model can be considered a better performing
model for event reconstruction in this project.

Table 4.3: Average deletions, insertions and reconstructions of four independent
runs with the best parameter settings on the test sets. The synthetic dataset contains
10,000 sequences of size 20-100 events, and sequences in the real event dataset are
100,000 with a length of 6-136 events.

Model Dataset Deletions Insertions Reconstructions
BRNN Synthetic 2.86% 3.14% 82.82%
BRNN Real 8.18% 9.23% 64.99%
Sequence-to-sequence Synthetic 0.20% 0.14% 98.71%
Sequence-to-sequence Real 1.50% 2.04% 75.42%

To be able to evaluate how well the models succeeded in getting the other attributes
right, Table 4.4 illustrates the time MSE, the accuracy for interaction type and the
accuracy for intent for the real event data.
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Table 4.4: Average time MSE, accuracy for interaction type and accuracy for intent
of four independent runs with the best parameter settings on the real event test set.

Accuracies
Model Time MSE Interaction type Intent

BRNN 0.0611 72.74% 65.83%
Sequence-to-sequence 0.0659 94.69% 88.78%

The fact that the models perform better on the synthetic data compared to real
event data is expected since the synthetic data contains events evenly distributed
over time, I events present for every page visited, and only a small number of pages to
choose from. Although the models have a harder job with the increased complexity
in the real event data, the real event data has an advantage that the synthetic
dataset does not have. The page IDs in the synthetic data were chosen uniformly
at random for each set of subsequent events relating to the same page. In the
real event data however, the event sequences conform to the navigational structure
of the application, meaning that some pages are impossible to access from others.
Furthermore, the real event pages have unique characteristics which make the level
of interaction or time spent on any given page vary greatly. These patterns are
something that the models could learn and use to predict where events are missing
from input sequences.

4.2.2 Training and validation losses

The training and validation losses for the best performing BRNNs are plotted in
Figure 4.1, and for the best performing sequence-to-sequence models in Figure 4.2.

36



4. Results and Evaluation

(a) Synthetic data. (b) Real event data.

Figure 4.1: Illustration of both the training and validation loss for the best per-
forming BRNNs.

(a) Synthetic data. (b) Real event data.

Figure 4.2: Illustration of both the training and validation loss for the best per-
forming sequence-to-sequence models.
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Figure 4.2 shows the decrease of the training and validation losses for the sequence-
to-sequence models, which looks as expected. However, as seen in Figure 4.1 the
validation losses for the BRNNs are lower than the training losses, which is unusual.
We have evaluated the construction of our models and cannot find any errors, so we
do not know why this occurs.

4.2.3 CE-based loss and weighted metrics loss correlation

The hypothesis, mentioned in Section 3.5.1, was that the weighted metrics loss
decreases in line with the CE-based loss. This hypothesis was tested, and Table
4.5 contains the average final CE-based and weighted metrics losses for the BRNNs
and the sequence-to-sequence models after four independent runs on the test set. In
Figures 4.3 and 4.4, the weighted metrics loss is plotted together with the validation
loss for the four different runs.

Table 4.5: Mean of the CE-based loss and the weighted metrics loss for four
independent runs with the best parameter settings on the test sets. The intervals
of epochs in this table illustrate the ranges in which the four runs of each model
achieved the lowest CE-based loss.

Losses
Model Dataset CE-based Weighted metrics Epochs

BRNN Synthetic 0.0545 0.5189 [17, 41]
BRNN Real 0.0590 1.3854 [11, 14]
Sequence-to-sequence Synthetic 0.0729 0.0377 [73, 134]
Sequence-to-sequence Real 0.1756 0.6616 [26, 60]

As illustrated in Table 4.5, the CE-based loss for the real event data for the BRNN
is much lower than the CE-based loss for the sequence-to-sequence model although
the weighted metrics loss is higher for the BRNN than for the sequence-to-sequence
model. The CE-based loss for the BRNN is not as well correlated with the weighted
metrics loss as it is for the sequence-to-sequence model, which is illustrated in Figures
4.3 and 4.4.
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Figure 4.3: Illustration of the relationship between the validation and weighted
metrics loss in four runs of the best BRNN on the synthetic validation set.
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Figure 4.4: Illustration of the relationship between the validation and weighted
metrics loss in four runs of the best sequence-to-sequence model on the synthetic
validation set.

In order to statistically validate the relationships between the CE-based loss and
the weighted metrics loss, Spearman’s rank correlation coefficient was calculated
on the four runs for both models. This coefficient is defined in (4.1), where x̄
and ȳ are sample means of variables x and y. It measures correlation between
two variables and takes on values between ±1, where a value of ±1 is a perfect
correlation. The alpha value was set to the commonly used 0.05, meaning that a
p-value smaller than 0.05 indicates that Spearman’s rank correlation coefficient is
statistically significant and that the probability is less than 5% that the correlation
between the variables is coincidental. In this case, Spearman’s rank correlation
coefficient for the four sequence-to-sequence model runs in Figure 4.4 ranges between
[0.82, 0.93], with p-values in range [1.37× 10−56, 9.97× 10−22]. Since all results are
statistically significant, the probability is less than 5% that the correlation between
the losses occur by chance. The coefficients are all very strong and accordingly,
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optimizing the loss function can also be considered improving the weighted metrics
loss.

r =
∑

i(xi − x̄)(yi − ȳ)√∑
i(xi − x̄)2 ∑

i(yi − ȳ)2
(4.1)

For the BRNN however, Spearman’s rank correlation coefficient ranges between
[0.28, 0.49] with p-values in range [8.13 × 10−6, 0.021]. With an alpha value of
0.05, all results are significant, but compared to the very strong correlation for
the sequence-to-sequence model, the correlation between the loss function and the
weighted metrics loss is merely weak to moderate for the BRNN.

A hypothesis to why the correlation is weaker for the BRNN than for the sequence-
to-sequence model, is that the model learns some patterns internally that minimizes
the loss function, but that does not minimize the weighted metrics loss. The higher
weighted metrics loss value could accordingly be explained by the composition of the
weighted metrics loss. Since each metric is assigned a weight based on the logic that
some types of errors are worse than others (explained in Section 3.5.1), the weighted
metrics loss can differ between models although the CE-based loss is similar. In
this project, a high rate of deletions is considered worse than any other errors. The
BRNN could hence be doing more deletions than the sequence-to-sequence model,
and would in that case be assigned a higher weighted metrics loss. This is confirmed
by Table 4.3, which illustrates the deletions, insertions and reconstructions when
both models are run on the test set.

4.2.4 Effects of using attention

Attention was one of the adjusted hyperparameters, and improved model perfor-
mance dramatically. The sequence-to-sequence model was run both with and with-
out attention, for synthetic sequences of 6-30 and 20-100 events. The results are
illustrated in Table 4.6.
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Table 4.6: Summary of the effects that attention has on the sequence-to-sequence
model’s ability to reconstruct events in sequences of different lengths.

Events per sequence Attention Deletions Insertions Reconstructions
6-30 No 4.36% 5.14% 94.96%
6-30 Yes 0.76% 0.28% 97.29%
20-100 No 81.29% 132.55% 17.36%
20-100 Yes 0.44% 1.99% 98.46%

For short sequences, attention improved the number of deletions, insertions and
reconstructions by a few percentage points. However, as sequences grew longer and
more rich in content than the encoder could capture in its internal state, attention
had an enormous effect on the model’s performance. Accordingly, attention was
always activated when the models ran on real event data.

A hypothesis as to why attention is a good choice for the sequence-to-sequence
model in this project, is that the access to context vectors can help the model
recover if it generates the wrong event. Since the sequence-to-sequence model takes
its previously generated output as input during the validation process, it seems
possible that if the model generates the wrong event, it is more likely to make
additional mistakes in the same sequence since the wrong event would be fed to the
model as input. However, by having access to context vectors, the model can more
easily recover from a mistake since it does not only have to rely on the fixed-size
feature vector and its own generated output, but can incorporate information from
the context vectors as well.

4.2.5 Accuracy matrices

The accuracy matrices for the BRNNs are presented in Tables 4.7 and 4.8. Table 4.7
holds the results from the synthetic data and Table 4.8 from the real event data. In
the same way, accuracy matrices for the sequence-to-sequence models are presented
in Tables 4.9 and 4.10.
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Table 4.7: Accuracy matrix, illustrating the number of successful/unsuccessful
sequence predictions on the synthetic test dataset for the BRNN. The accuracy is
68.8%.

Actual
Predicted Complete Incomplete Failed

Complete 99.42% 0.10% 0.48%
Incomplete 0.05% 38.18% 61.77%

Table 4.8: Accuracy matrix, illustrating the number of successful/unsuccessful
sequence predictions on real event test data from event logs for the BRNN. The
accuracy is 57.2%.

Actual
Predicted Complete Incomplete Failed

Complete 86.47% 3.65% 9.88%
Incomplete 4.82% 27.94% 67.24%

Table 4.9: Accuracy matrix, illustrating the number of successful/unsuccessful
sequence predictions on synthetic test data for the sequence-to-sequence model. The
accuracy is 91.6%.

Actual
Predicted Complete Incomplete Failed

Complete 98.02% 0.24% 1.74%
Incomplete 0.00% 85.27% 14.73%

Table 4.10: Accuracy matrix, illustrating the number of successful/unsuccessful
sequence predictions on real event test data from event logs for the sequence-to-
sequence model. The accuracy is 69.4%.

Actual
Predicted Complete Incomplete Failed

Complete 87.57% 5.69% 6.74%
Incomplete 6.06% 51.30% 42.64%

The sequence-to-sequence model performs very well on the synthetic data and cor-
rectly outputs 98.02% of all complete sequences, as illustrated in Table 4.9. For
85.27% of all incomplete sequences, the model succeeds in retaining all events from
the input sequence and to add at least one additional event in its output. On the
real event data, with additional pages and the features interaction type and intent,
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the sequence-to-sequence model succeeds in correctly outputting 87.57% of all com-
plete sequences, and to retain all input events and add new events into 51.30% of
all incomplete sequences (see Table 4.10). We consider the results for both datasets
to be good for a model that has – to the best of our knowledge – never been used
for event reconstruction before.

As seen in Tables 4.7 and 4.9, the BRNN outperforms the sequence-to-sequence
model when it comes to correctly classifying complete sequences from the synthetic
dataset, with 99.42% compared to 98.02%. For the corresponding classification in
the real event dataset, the sequence-to-sequence model actually performs slightly
better with 87.57% compared to the BRNN’s 86.47% (see Tables 4.10 and 4.8).
The huge difference between the models is the number of correctly classified in-
complete sequences. The BRNN is then remarkably worse than the sequence-to-
sequence model with a correct prediction of only 38.18% compared to the sequence-
to-sequence model’s 85.27% (see Tables 4.7 and 4.9). Accordingly, the latter is more
than twice as good at classifying incorrect sequences compared to the BRNN. For
the real event dataset the difference in performance is similar. As illustrated in
Table 4.8, the BRNN has a correct classification rate of 27.94% for all incomplete
sequences, and the corresponding percentage for the sequence-to-sequence model is
– as displayed in Table 4.10 – 51.30%.

4.3 Discussion

When comparing the accuracy matrices to the number of reconstructions, illustrated
in Table 4.3, one thing to note is that although the sequence-to-sequence model
succeeds in reconstructing 75.42% of all missing events in the real event dataset, it
also incorrectly classifies 48.70% of all incomplete sequences as either complete or
failed. However, what to keep in mind when viewing these accuracy matrices is that
the problem we are aiming to solve in this project is not a classification problem.
Therefore, the conditions for different classes are not obvious and have instead been
defined in Section 3.5.2. A sequence is classified as failed if any event in the output
sequence has been deleted compared to the input sequence. This condition is very
strict considering that real sequences are up to 136 events in length, which makes
one deleted or inserted event in a complete sequence quite plausible.

Another important thing to be aware of when studying the results presented in this
chapter is that some events in the real event data are impossible to reconstruct. To
be able to recreate missing events in sequences, an important prerequisite is that the
information given in the available events together with the information learned from
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the training data is sufficient to infer what has been left out. As such, the process
generating the events must possess some degree of determinism which makes some
sequences more likely than others and implies some interdependence between events.
To pose an example, a partially incomplete sequence of events from a completely
stochastic process such as a coin tossing process would be impossible to reconstruct
with any accuracy, especially if the number of missing events is unknown. Regarding
the events used in this project, there are other patterns which make reconstruction
challenging when only given access to the three available event types. For instance,
if a user stays on a page and repeatedly produces repetitions of identical Interac-
tionEvents to alter some application state which is unrelated to the navigation, such
InteractionEvents would be difficult to reconstruct without the model having access
to additional information. For instance, if a user were to repeatedly increment the
value of a numeric counter in the application before switching pages, thereby pro-
ducing InteractionEvents only stating an increment but not the resulting value, lost
interactions could never be reconstructed without knowing the final value of the
counter. Accordingly, the inability to reconstruct certain events is a contributing
factor to the lower rate of reconstructions for the real event data compared to the
synthetic data.

What could be interesting is to compare the results presented in this thesis to a
baseline model. For instance, for the synthetic data, a rule-based model much
simpler than an RNN would probably be able to reconstruct all missing events. We
state that this is the case since the timestamps are evenly distributed in the synthetic
data, and the logic is very simple. It would therefore most likely be possible for a
simpler model to match E and X events with each other.

As for the performance of a baseline model on the real event data, we state that it
will not be as high as the performance of our models. In the real event data, the
basic logic for PageEnterEvents and PageExitEvents is the same as for the synthetic
data, namely that a PageExitEvent has to be followed by a PageEnterEvent, and a
PageEnterEvent and a PageExitEvent cannot occur without an InteractionEvent in
between them. However, it is likely that the navigational structure of the application
producing the events is too complex for a simple model to capture. We reason that
a baseline model would therefore not be able to reconstruct the InteractionEvents,
but only PageEnterEvents and PageExitEvents.

Importantly, if both a PageEnterEvent, intermediate InteractionEvents and a Page-
ExitEvent were removed for the same page, the resulting sequence would seem valid
to a baseline model which has no knowledge of the navigational structure of the
application. The baseline model could therefore never reconstruct such lost event
sequences. However, we can calculate the baseline performance in the best case,
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when every page visited has either a PageEnterEvent or PageExitEvent present in
the input data for each page visited.

The number of missing events of each type in the real event dataset is illustrated
in Table 4.11. Accordingly, a baseline model would in the best case be able to
reconstruct 64.85% of all missing events (all PageEnterEvents and PageExitEvents).
As shown in Table 4.3, the BRNN succeeded in reconstructing 64.99% of all missing
events, which is slightly better than the baseline model’s best case performance. The
sequence-to-sequence model on the other hand succeeded in reconstructing 75.42%,
outperforming the baseline model’s best case performance by over 10 percentage
points.

Table 4.11: Illustration of how many of the missing events in the real event data
test set that belong to each event type. The rate is calculated by dividing the
number of removed events of the specified event type by the total number of missing
events in the dataset.

Event type Number of removed events Rate of removed events
PageEnterEvent 4934 32.20%
InteractionEvent 5387 35.15%
PageExitEvent 5004 32.65%

Lastly, a possible flaw of the Levenshtein distance-based algorithm described in
Section 3.5.1 is worth mentioning. As previously mentioned, it matches events in
the target sequence with the events deemed as equal in the output sequence to
deduce the actions needed to transform an output sequence into a target sequence.
The possible flaw is that it only judges equality by the two attributes type and page,
which opens up for the possibility that the models insert another event with the same
type and page before a more suitable event, and that the algorithm matches with
that event instead of the latter one. Although this event will have the same type and
page as the original event, the other attributes might be different. The number of
insertions, deletions and reconstructions will remain the same with the mismatched
event, but values of other metrics could change. The time MSE along with accuracies
for interaction type and intent – illustrated in Table 4.4 and presented in Section
3.5.1 – might therefore worsen.

4.4 Challenges

During the course of this project, we faced a number of challenges. Transitioning
from synthetic data to real event data greatly increased the complexity of the learn-
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ing task. Just as in the synthetic dataset, the real event dataset contains five event
types and one scalar feature, namely the time. However, the maximum sequence
length is 136 instead of 100, and the total number of distinct pages is much larger
than in the synthetic dataset. Additionally, the real event data is dynamic in both
the temporal and behavioral sense. That is, the timing and content of the real events
vary according to real user actions in a real software application, which may also
change in functionality from version to version. In contrast, the synthetic data is
more regular with evenly spaced timestamps and pages chosen uniformly at random.

When adjusting the models to be able to handle real event data we encountered
some problems. During the initial implementation stages, we used Keras, a high-
level neural networks API, with TensorFlow as the underlying library. Initially,
synthetic sequences were stored in and parsed from text files. However, due to the
large amounts of input data in the real event sequences we had to switch to a more
efficient way of reading and storing data, the TensorFlow-native TFRecord format.
Commonly, the reading of contents from TFRecords are included in the TensorFlow
computation graph in the form of data tensors. Unfortunately, feeding data tensors
as input to the Keras training loop is currently not possible, which is why the models
had to be reimplemented in TensorFlow instead.
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5
Conclusion

The goal of this project was to reconstruct missing data in event logs by using RNNs.
Two models were used to solve the problem, namely a BRNN and a sequence-to-
sequence model. The models were given either complete or incomplete sequences as
input, and were trained to output complete sequences. One thing that complicated
the task was that the locations of the missing events in the input sequences were
not revealed to the models.

After conducting this project we can state that for our real event dataset it is possible
to reconstruct up to 75.42% of all missing events using a sequence-to-sequence model.
It is also possible to use a BRNN to solve this problem, but it only manages in
reconstructing 64.99% of all missing events. However, both models perform better
than the baseline model we have compared them to in this thesis, which means that
both models can successfully be used for the task. To the best of our knowledge,
sequence-to-sequence models have not previously been used for data reconstruction.
Also, as far as we know, RNNs have never been used for data reconstruction without
stating the locations of missing data in the input. Accordingly, we consider this
project a success.

Future work could include training the models on larger datasets than 100,000 se-
quences to increase the variation in the dataset. Additionally, adding new event
types could be interesting, to see how the models would handle increases in com-
plexity and contextual information. Lastly, our algorithm based on the Levenshtein
distance deem events as being equal only by checking the attributes type and page.
It would be interesting to incorporate a more sophisticated distance measure which
takes the other attributes into account when pairing events.
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