) CHALMERS |

UNIVERSITY OF TECHNOLOGY

Developer Confidence in Continuous
Integration

Definition and Supporting Aspects

Master’s thesis in Software Engineering and Technology

AYESHA ASLAM
ANNAPURNA ASHOK NAGANALLI

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Gothenburg, Sweden 2018

MASTER’S THESIS 2018

Developer Confidence in Continuous Integration

Definition and Supporting Aspects

AYESHA ASLAM
ANNAPURNA ASHOK NAGANALLI

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Developer Confidence in Continuous Integration
Definition and Supporting Aspects

AYESHA ASLAM

ANNAPURNA ASHOK NAGANALLI

© AYESHA ASLAM, 2018.
© ANNAPURNA ASHOK NAGANALLI, 2018.

Supervisor: Agneta Nilsson, Department of Computer Science and Engineering
Examiner: Eric Knauss, Department of Computer Science and Engineering

Master’s Thesis 2018

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Typeset in BTEX
Gothenburg, Sweden 2018

v

Developer’s Confidence in Continuous Integration

Definition and Supporting Aspects

AYESHA ASLAM

ANNAPURNA ASHOK NAGANALLI

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Abstract

Context Organizations are facing a lot of challenges, both social and technical,
in adopting continuous practices. In the midst of these challenges, little is known
about how software developers are dealing with the usage of continuous integration
as its immediate users.

Objective The objective of this study is to address the confidence related behaviour
of developer in the context of continuous integration by proposing its definition and
how it can be supported through features in CI tools and aspects in work environ-
ment.

Method A case study is conducted in a IT consultant company where developer’s
confidence is explored through interviews and workshop with developers having var-
ied experience levels.

Result Developer’s confidence depends on their knowledge and the quality of tests
they add. Conditionally, it also depends on their confidence in CI tool and co-
workers. Various features in CI tool and environmental aspects are identified that
can potentially support developer’s confidence in the context of continuous integra-
tion. These findings can help organizations in overcoming adoption challenges to
continuous integration by supporting developer’s confidence.

Conclusion To conclude, developer’s confidence can be potentially supported to
overcome adoption challenges in CI. Our findings for features in CI tools and envi-
ronmental aspects can be implemented in organizations to validate their effectiveness
and can serve as an inspiration to support developers for successful adoption of CI.

Keywords: Computer, science, computer science, engineering, project, thesis, con-
tinuous integration, CI tool, features, developer’s confidence, supporting aspects.

Acknowledgements

Foremost, we would like to express our sincere gratitude to our supervisor Agneta
Nilsson for her advice, guidance and immense knowledge. Besides her, we would also
like to thank our company supervisors for helping us in conducting our research.

Ayesha Aslam & Annapurna A. Naganalli, Gothenburg, June, 2018

vii

Contents

List of Figures

List of Tables

1 Introduction
2 Background
3 Research approach
3.1 Method
3.2 The case study company L
3.3 Data collection
3.4 Dataanalysis
4 Results
4.1 Confidence
4.1.1 Evolution of definition
4.1.2 Self confidence and confidence in co-workers
4.1.3 Confidence in Cltool
4.2 Support
4.2.1 Training in CI tool
4.2.2 Commit criteria
4.2.3 Featuresin Cltool
4.2.4 Environment
5 Discussion
5.1 Confidence
5.2 Support . .o ..
6 Conclusion
6.1 Implications and Conclusion
6.2 Validity Threats o
Bibliography

xi

12
12
12
16
17
18
18
18
19
21

24
24
27

31
31
32

35

ix

4.1

4.2
4.3

5.1
5.2

List of Figures

Distribution of confidence definitions in Table 2.1 based on the con-

text in continuous practices 12
Evolution of definition of developer’s confidence during case study . . 15
Examples of thematic analysis 16
Factors affecting developer confidence. 24

Supporting aspects for developer’s confidence. 27

2.1

3.1

4.1

4.2

List of Tables

Definitions of confidence in the context of continuous practices taken
from the literature on Software Engineering

Distribution of developers across different experience groups

Existing features of the CI tool used by developers that support their
confidence.
Proposed features for the CI tool used by developers that can support
their confidence.

X1

1

Introduction

‘Integration is a “pay me now or pay me more later” kind of an activity’ (Wells,
1991, p.1). If code is integrated in small bits during the project, there will be less
struggle in the end to integrate the entire system built for months or even years.
This could be achieved if developers integrate regularly into the mainline repository
based on the decided integration frequency. Continuous integration (CI) is one such
method which avoids fragmented development efforts especially when developers
are working distantly from each other. All the developers have to be on the latest
version, so that changes made to the code do not cause any integration headaches.
Therefore, all the integration issues could be avoided mainly by adopting CI, which
explains why this practice is needed in software development. CI life cycle begins
when someone checks their revised code into the shared repository, then an auto-
mated tool or system picks up the change, checks out source code and runs the
predefined tests or commands at different levels to verify that the change is good
and the code is not broken. These CI tools are designed to be unbiased in checking
the correctness of the changes, hence, ‘preventing the “it works on my machine”
syndrome’ (Meyer, 2014, p.14).

CI has a huge contribution in automated software engineering. This practice is
widely adopted by many companies because of the need to deliver fast to customers.
CI tools help in the automation of tasks such as the compilation, building, and
testing of software. Incorporating additional functionality to these tools requires in-
depth research in this area. Many tools and technologies, along with guidelines for
adoption, have been developed to get the best out of continuous integration. How-
ever, according to Shahin et al. (2017), there are social and technical challenges in
adopting continuous integration, delivery and deployment. They state that moving
towards these continuous practices necessitates significant changes in the organiza-
tion, such as changing team mindsets, organization’s way of working and quality
assurance activities among others. A general resistance to these changes is a hurdle
in adopting continuous practices.

Another major challenge in fully adopting CI is a lack of expertise and skills in the
developers which creates more pressure and high workload for them. This is further
aggravated by a sense of responsibility in developers as they are now directly re-
sponsible for affecting their customers’ experience (Shahin et al., 2017). Necessary
organizational changes and developers’ training require resources which in itself is
a challenge for many organizations. Shahin et al. (2017) also states that lack of
suitable tools and technologies is also a challenge in adopting CI and there is need

1. Introduction

for improvement in these tools.

Laukkanen et al. (2017) mentions the behavioral characteristics of developers as a
challenge to CI adoption such as experience, confidence and pressure. Since devel-
opers are the immediate CI users and practitioners, their actions directly affect the
adoption of CI practices. To exemplify, when a developer commits a buggy code,
it can lead to poor quality in the mainline and delays in feature delivery. These
situations can be avoided by supporting developers while practicing CI. Among the
various behavioural characteristics mentioned above, confidence is selected as the
focus of our study based on the need of the case study company to explore devel-
oper’s confidence in this context.

The literature provides a few statements but there is a lack of a universal definition
and understanding about developer’s confidence. The purpose of this study is to
propose a definition of confidence in the context of CI, that will be derived from an
in-depth analysis of the developers’ perception of confidence combined with existing
definitions from the literature. The main focus will be to explore developers’ us-
age of CI tools and practices as well as how their confidence drives their behaviour
when they commit code in a codebase due to the interest of the case study company
to explore how developer’s confidence can be supported both regarding aspects in
the environment and features of CI tools. Consequently, this understanding will be
used to propose, how confidence can be supported to achieve suitable behaviour of
developers with respect to committing code in CI. Based on the identified research
objectives, we have formulated the following research questions.

Research Question 1: “How can we define ’confidence’ of codecommit of
developers in continuous integration?”

Research Question 2: “How can confidence be supported to achieve suitable
developer behavior in continuous integration?”

Pinto et al. (2017) state ‘In spite of the increasing adoption, the large set of tools,
and the well-known benefits, little is known about how software developers are dealing
with the usage of continuous integration techniques’. This relates to the behavioural
characteristics of developers in the context of CI. Confidence is one of the important
characteristics in driving their behaviour, but there is no accepted definition of con-
fidence in this context. We aim to understand and analyze empirical data collected
in our study along with existing definitions in the literature to propose a definition
of this phenomenon. We assume that confidence of developers is influenced by their
environment. Therefore, we choose a case study approach, which will allow us to
explore both the environment as well as features of CI tools as potential aspects to
be used to support developer’s confidence.

The outcome of the study is a proposed definition of confidence emphasizing the fac-
tors that affect developer’s confidence when practicing CI, and identified potential
features in CI tools and environmental practices that can support developer’s con-

1. Introduction

fidence. This can help in improving CI processes by addressing confidence related
problems among developers.

The structure of the report is as follows. Chapter 2 presents the literature review
that contains background knowledge related to research questions. The design of
the case study is then presented in the Research approach chapter. Following the
research approach section, results are presented in Chapter 4 and discussed in Chap-
ter 5. Chapter 6 concludes the report along with implications and explanation of
validity threats.

2

Background

In order to keep pace with fast growing markets, companies need to deliver fast
and release often to customers. Continuous delivery and deployment are automated
ways of delivering value to the customers at a faster pace, whereas, continuous in-
tegration is about integrating work into the codebase multiple times a day (Shahin
et al., 2017) by performing tests to avoid code breakages. Continuous deployment
is only possible through continuous integration, hence, it puts continuous integra-
tion in a vital place for the entire chain to work efficiently. Some of the common
practices in continuous integration are maintaining a mainline repository, automat-
ing the build, making it self-testing, committing to mainline frequently, keeping an
up-to-date version of code on an integration machine, keeping the builds fast, fixing
broken builds immediately and making builds and its results visible (Fowler, 2006).
Carrying out these practices ensures predictable project progress, early detection of
bugs and timely maintenance.

Despite the theoretical wealth of knowledge about the practices and advantages of
CI, the implementation of these practices in industry is quite different and there
are many adoption challenges faced by industry (Shahin et al., 2017) that refrains
it from reaping the benefits of CI. Several studies (Shahin et al., 2017; Leppanen
et al., 2015; Pinto et al., 2017; Martensson et al., 2017) have shed light on the social
and technical challenges and reasons for failure in fully adopting CI in companies.

Among these challenges, developer’s confidence in relation to continuous practices
is mentioned as a reason for inefficient CI. One study mentions overconfidence as
a reason for frequent build breakages (Pinto et al., 2017). Another study claims
that immediate deployment to customers lowers developers’ confidence and refrains
them from fully adopting CI (Leppanen et al., 2015). There is also a false sense of
confidence in software quality created by CI which causes the developers to blindly
trust build tests (Pinto et al., 2017). Although the literature has various viewpoints
on confidence of developers, there is no universally shared definition of the concept
of confidence of developers in relation to CI.

We have taken a point of departure from definitions in the literature and used these
as a basis for further exploration of the confidence of developers in the context of
CI. According to Merriam-Webster dictionary, confidence is defined as ‘the feeling
of being certain that something will happen or that something is true’. In the field
of human behavior, Navajas et al. (2017, p.1) has defined confidence as ‘the “feeling
of knowing” that accompanies decision making’. They further state that ‘confidence

2. Background

s a function solely of the perceived probability of being correct’. It depicts the indi-
vidual’s faith in phenomenon.

Webster (1913) has defined confidence as a concept that comprises of trust, reliance
and belief. Therefore, trust and confidence are strongly linked together. Both these
concepts are used in decision making process, however, there are some differences
that distinguish trust from confidence. In a Canadian governmental report aiming
to distinguish trust from confidence, Adams (2005) describes trust as an issue only
in decisions that involve risk and vulnerability. ‘It is about taking a “leap of faith”
from what is known to what is unknown’ (Adams, 2005, p.1). Whereas, confidence
is involved ‘in discrete reason-based judgments related to probability of specific event
occurring that often occurs in situation without risks’ (Adams, 2005, p.3). Addi-
tionally, the scope and information used in decision making process for trust and
confidence are significantly different. In confidence based judgments, only immedi-
ately available information is used to determine the probability of occurrence of an
event, whereas, in trust-based judgments, the available information is extrapolated
to consider both the past and present behaviour as well as other life experiences
to make a judgment (Adams, 2005). In all these definitions, confidence is related
to probability or certainty of being correct in decision-making. This “feeling of
knowing” drives the human behaviour in taking different actions. The higher the
confidence, the higher is the possibility of an individual taking an action.

The software engineering literature on continuous practices includes various pointers
to the confidence of developers in different contexts (See Table 2.1). We were able to
find eight different definitions of confidence that fall into the context of continuous
integration, delivery and deployment. One of the definitions in the context of CI
describes confidence of developers in being able to reach the integration frequency
expected by their managers (e.g. once a day or every four hour). Whereas, two of
the definitions in the same context describe confidence of developers in their code
at the time of commit and resulting software state (broken or successful build) and
quality (defect-free). Four of these definitions of confidence are focused on describing
it as the confidence of teams or organizations in the quality of software at the time
of its release. Finally, one of these definitions is focused on the confidence of project
sponsor in software quality. These different definitions of confidence are put together
in the table below:

Table 2.1: Definitions of confidence in the context of continuous practices taken
from the literature on Software Engineering

No. | Reference Subject Context | Definition

Summarized as:
Confidence of a de-

Leppanen et al. veloper in software

L (2015) Developer ¢l quality and the
defect-freeness of
code.

2. Background

Pinto et
(2017)

al.

Developer

CI

Summarized as:
Confidence of CI
users(developers) in
code state and qual-
ity resulting from a
commit.

(2017)

Laukkanen et al.

Developer

CI

Summarized as:
Confidence of a devel-
oper in being able to
reach the integration
frequency expected by
managers.

Bugayenko
(2009)

Project spon-
sor

CD/CDep

Summarized as:
Confidence of project
sponsor in software
quality.

(2016, p.2)

Schermann et al.

Team
/ organization

CD/CDep

Quoted as: ‘amount
of confidence gained
on the three quality
gates automated test-
ing, manual testing,
and code reviews’

(2013)

Port and Wilf

Team
/ organization

CD/CDep

Summarized as:
Confidence in soft-
ware quality at the
time of its release.

(2017, p.7)

Stahl and Bosch

Team
/ organization

CD/CDep

Quoted as: ‘confi-
dence that software is
safe to release’.

8 Chen (2017, p.2)

Team
/ organization

CD/CDep

Quoted as: ‘Confi-
dence in release relia-
bility’.

While exploring the state of the art in CI tools, we were able to find through practi-
tioners’ viewpoint and a thesis report (Kapelonis and Engineer, 2016; Polkhovskiy,
2016) some basic requirements a tool should have to support CI. Although, we could
not find any scientific publications supporting these requirements, a wide amount of
websites describing CI tools seem to support a set of basic requirements in the CI
tools. These set of requirements were used to assess the state-of-the-art in the CI
tools used within the case study company and are described as follows:

Connectivity Connectivity is very important for any team to use a particular CI
tool. It describes how easy it is for end users to deliver code into the service. It’s a
very basic but quite important requirement in CI tools.

2. Background

Initial Setup Setting up a sample project can be easy, but setting up one’s own
project with the build server can be very time consuming. In any case, it is good to
have comprehensive guidelines for the setup process.

User Interface It can be difficult to define what could be stated as a good or bad
interface. But, as a user, one should at least be able to view their build, browse
through it and get some detailed information when required.

Build environment It includes the languages supported by the product, versions
of compilers, build systems and the easy update or installation of the software. A
build environment with extensive configuration properties would ease the job of
users.

Feedback With a CI tool, anything could go wrong like unresponsive services, incor-
rect setup environment and failed unit tests. So, many teams would like to monitor
the build in real time and logging extensively which would help them understand
the errors.

Post build steps It’s quite important to know what happens next after the builds
are tested. If one needs to update the status, send an email, move it to the next
stage or update a bug issue.

Documentation A good documentation is something which matters a lot for the
users. A guide well written would help users to setup, understand and use the CI
tool.

Support / Ease of Contact Support matters a lot when the team at hand has
some issues and is stuck with the development work costing effort and time to the
team. Especially, when the build leads to release which is quite important, support
would be needed the most.

3

Research approach

3.1 Method

To conduct our research, we have selected case study (Runeson and Host, 2008) as
a methodology to study the case in its real-life context. Developers’ confidence is a
complex phenomena which requires a deep understanding and cannot be studied in
isolation. Therefore, case study is a suitable research methodology in this case as
Runeson and Host (2008, p.2) state:

"The case study methodology is well suited for many kinds of software

engineering research, as the objects of study are contemporary phenom-

ena, which are hard to study in isolation. Case studies ... they provide

deeper understanding of the phenomena under study."
As a pre-study to our research, we started out by exploring the literature to find
the existing definitions of confidence in the context of continuous practices. These
definitions served to formulate initial definition of confidence which was used as a
starting point during data collection. We also investigated the state-of-the-art in
six commercial CI tools, which helped us to identify the basic requirements on a
CI tool to meet the organizational needs. Additionally, we evaluated two CI tools
used within our case study company to familiarize ourselves with their current CI
workflow. The insights from this pre-study guided the design of our case study.

3.2 The case study company

The case study is conducted in a company called Combitech, which is an independent
technical consulting company and is a part of Saab AB. It provides consultancy
services to other companies in automotive, telecommunication and other business
sectors. It has almost 1900 employees in 30 locations within the Nordic region, out
of which around 300 are working at Goteborg which was our site of case study.
The company is using extensive testing and integration procedures in its software
development projects. It has a comprehensive CI machinery that involves both the
automated and manual testing in different environments. It has an in-house CI
tool for continuously integrating code into the pipeline and is currently in use by
their developer teams. They are also developing a prototype of an open-source tool
called “CodeFarm”. The unit of analysis in this case study is the developers in this
company who are using these CI tools.

3. Research approach

3.3 Data collection

In order to collect data, first degree technique of interviews (Runeson and Host,
2008) was used to directly collect data from developers in real-time. These inter-
views were semi-structured with identified areas to cover in the data gathering. The
arrangement of the interviews followed a pyramid approach (Runeson and Host,
2008) where the initial questions were closed to focus on specific areas of interest,
whereas the questions towards the end of interview were open questions to welcome
further ideas from developers and gain a deeper insight into the subject of interest.
Considering the research objectives of our study three areas of interests were iden-
tified which are confidence, features and work environment practices that support
developer confidence.

Initially, some questions were asked to gain background information about develop-
ers. These questions focused on developer’s experience and current role. Another
group of questions was asked to help the developer reflect on the efficiency of cur-
rent CI practices and tools. There was also a set of questions related to developer’s
experience with CI tools, their current workflow in tools and related trainings under
the assumption that training in CI tools may support confidence of developers who
use these tools.

The eight definitions found in literature were used to propose a definition of con-
fidence which was then used to help developers reflect on their confidence in the
context of CI. In order to further help the interviewee in the reflection process, they
were asked to discuss the factors that affect their confidence and their commit criteria
for code validation before codecommit. We asked questions related to the code vali-
dation activities and effects of build breakages, due to the assumptions that detailed
code validation before commit could support developer’s confidence and build break-
ages could lower it. Developers were then asked to reflect on their performance with
the tools in order to gain insight into how they have improved/changed over time.
We also asked questions related to the co-workers and upper management based on
the assumption that support from such roles could improve developer’s confidence.
Towards the end of the interview, developers were asked to reflect openly about
existing or proposed features in the tool and environmental practices that support
their confidence.

Eyolfson et al. (2011, p.6) state that: ‘the more experienced the developers are,
the less likely that their commits are buggy’. Therefore, the selection of subjects
for interviews was made to capture the perspective of developers from different
experience levels. We only provided the selection criteria and the case company
selected the developers based on their years of experience in software development
and availability. Since all the interviewees were developers, we have interchangeably
used the terms ‘developers’ and ‘interviewees’ in subsequent sections of the report.
Additionally, in order to conceal the gender of developers, we have used third person
pronouns i.e. ‘they’ or ‘their’ throughout the report. The following table presents
the division of 10 developers that we interviewed and the distribution in the different

3. Research approach

groups of experience.

Table 3.1: Distribution of developers across different experience groups

Experience group

(Years of experience) No. of developers

Junior (< 2) 3
Medium (2 to 8) 4
High (> 8) 3

The interview sessions were recorded with the permission of developers and we as-
sured confidentiality of the data. These recordings served as a backup and were
repeatedly referred to during the analysis. Both the authors participated in the
interviews and switched roles conducting the interview and taking notes. Each in-
terview started with a brief introduction of the thesis and its objectives, had the
developer not known it before. After that, interviewee was asked questions about
their background, followed by the questions that captured data in the formulated
areas of interest. Where needed, the answers were summarized by the interviewer
to the interviewee in order to validate their answers and avoid misunderstandings.
Interviewees were also guided with examples and ideas in order to help them to
reflect on the questions. There were also some occasions where questions had to
be rephrased or asked in a different way in order to prevent the interviewee from
straying away from the topic under discussion. At the end of interview, the subjects
were asked for any further comments or input they had on the topic. Additionally,
they were also informed of where their data will be used and how the results would
be presented.

As a further activity in our study, we arranged a workshop. This workshop was
mainly planned to validate the tentative analysis and further discuss ideas on how
to support developers’ confidence. It lasted for two hours and we had 18 participants,
which included 9 developers who were interviewed before and 9 others, including two
managers, who were not interviewed before. Participants were distributed into four
groups. Guidelines for the workshop contained instructions regarding an individual
exercise, group discussions and the methods that were used in the group discussions.
Participants were asked to read through the guidelines and complete the individual
exercise prior to workshop, but they were also given ten minutes during the workshop
to complete the individual exercise. The workshop started with a presentation of the
tentative analysis from the study. The individual exercise was intended to validate
the proposed definition of confidence and the data collected from interviews, covering
existing and proposed, features and environmental practices supporting developers’
confidence. Further, discussions within each group were lead by a preassigned dis-
cussion leader and ideas from each group were presented at the end of the workshop.

For group discussions we used the cheatstorming method (Faste et al., 2013) , where
the participants were asked to ideate by using pre-existing ideas generated in the
interviews. Each group internally discussed the data presented from the interviews
to formulate new interesting ideas, provide suggestions to existing ideas and analyze

10

3. Research approach

the limitations and potential these ideas have in supporting developer’s confidence.
In order to prioritize the ideas, we asked all the participants to vote for top three
ideas within each group using post-it voting (Dam and Siang, 2017). All the ideas
generated in group discussions were written on post-it notes, which were used in
voting. It was important to understand which three ideas among the discussed ones
weigh high. Voting was done in each group using the five dollars method (Schenk,
n.d.), where every member in the group had five dollars which they assigned to
the ideas they preferred the most. Based on which ideas had the highest dollars
assigned, top three ideas were selected from each group.

3.4 Data analysis

Data was analyzed in parallel to the interviews in order to identify emerging patterns
and themes which were further used to guide the reflection process of interviewees
in later interviews. Data triangulation (Carter et al., 2014) was done, where data
collected from interviews was analyzed by both the authors in parallel through
thematic analysis (Alhojailan, 2012), where different quotes from interviews were
assigned to suitable codes, and codes with repetitive patterns were grouped under
an emerging theme. To exemplify, one interviewee stated “Can [trust the tool?”,
this quote was identified as “Trust in Tool” code. While another interviewee stated
“Are the tests lacking coverage”, which was identified as “Test Coverage” code. Both
these codes had an emerging pattern which emphasized on developers confidence in
the CI tool, thus the theme representing these codes was identified as “Confidence
in tool”.

11

4

Results

In this chapter, we present our results on how the definition of developer’s confidence
evolved throughout the case study. We then describe our findings on factors affecting
developer’s confidence and different aspects for supporting it.

4.1 Confidence

This section presents our findings with respect to the evolution of definition of con-
fidence and the factors affecting developer’s confidence in terms of themes identified
through thematic analysis.

4.1.1 Evolution of definition

All the definitions from the literature study summarized in Table 2.1 | are put
together in the figure below based on their context related to continuous practices
of integration, delivery and deployment.

Continuous Integration Continuous Delivery Continuous Deployment

Definition 1to 3
from Table 1 Definition 4 to 8 from Table 1

Confidence is defined as the confidence of teams, organization or project
sponsor in software quality and reliability at the time of its release.

Definition 1 and 2: Confidence
is defined as the confidence of
developers in the software(code)
state and guality as a result of a
commit.

Definition 3: Confidence of a
developer in being able to reach
the integration frequency
expected by managers

Figure 4.1: Distribution of confidence definitions in Table 2.1 based on the context
in continuous practices

As a starting point, we have selected the definition 1 and 2 by Leppanen et al.
(2015) and Pinto et al. (2017), respectively, in the context of CI from Table 2.1.
While discussing developers’ trust and confidence as obstacles to adopting continu-
ous deployment, Leppanen et al. (2015, p.6) state that:
‘Code going straight to production must be as defect-free as possible
developers’ reputations are on the line: deploying a broken build

12

4. Results

to customers could strain the relationship between parties and create

an unwanted user experience ... Any lack of confidence in an applica-

tion’s quality is amplified by the knowledge that any and all changes are

immediately deployed.
Additionally, Pinto et al. (2017, p.1) state that ‘CI usage increases the confidence
that the code is in a known State’. Based on our understanding of Leppanen et al.
(2015) viewpoint, developers’ concern for their reputation affects their confidence.
Since they relate developers reputation to the broken build , we have selected build
state as a factor in affecting developer’s confidence. Considering the build can be
evaluated to various states, we have added an ordinal scale from broken to successful
build for elaboration. Pinto et al. (2017) discusses that having a knowledge about
the code state improves developer’s confidence. Whereas according to Leppanen
et al. (2015), code quality which they also referred as application quality effects
developer’s confidence. They also describes code that is defect free as a qualifier
for deployment, so we consider defect-free code as a high quality code. Based on
the the correlation between developer’s confidence and code quality, we have added
code quality factor to our definition. To summarize, our literature study pertaining
to defining developer’s confidence led to the following definition of confidence as a
first proposal.

First proposal: “Confidence of a developer at the time of codecommit with
their code changes can be defined as how they perceive the result of their commit
based on the expected code quality and build state factor. In this context high
code quality will be a defect free code and build state can be evaluated on a
ordinal scale from broken to successful build”

This definition was introduced to the first three interviewees. Discussions revealed
that, the interviewees were not able to understand the definition from just reading
it. They found the definition vague and needed additional explanation. According
to them, build state and code quality were ambiguous factors. The interviewees
could not understand the relation between high code quality and defect-free code
and how a high quality code can support their confidence. According to them, code
quality depends on the test coverage of the code which supports their confidence.
Additionally, interviewees mentioned that their confidence depends more on their
knowledge of current task and the tests they add for their code. These factors helped
them in achieving high code quality. Therefore, code quality factor was replaced with
knowledge and test coverage. Also, interviewees could not relate their confidence to
the build state factor. We then explained that mainline is referred to as build and
build state corresponds to the results of the build jobs running on mainline. After
clarifications, they described that their confidence is affected by the stability of the
mainline rather than the results of the build jobs. So, after these three interviews,
the definition was re-formulated into the following:

13

4. Results

Re-formulated version: “Confidence of a developer in their code at the
time of committing it into the mainline can be defined as an outcome of their
knowledge about current task, test coverage and their conjecture of stability of
mainline after commit.”

This definition was used as an input for the subsequent interviews and interviewees
were asked to comment on and rate the definition on a scale of 1 to 5 in terms of
understandability and agreeability, with 1 being poor and 5 being excellent. Rat-
ings and comments showed that interviewees found the definition understandable
and agreeable. This definition was used for all of the remaining interviews and no
further iteration was needed. In order to validate the definition further, it was pre-
sented in the workshop and participants were asked to comment on and rate the
definition. Data from both the interviews and the workshop highlighted some inter-
esting factors that also contribute to developers’ confidence such as the experience
with the system they’re working with, code reviews from their co-workers, knowl-
edge of scope and impact of the code change and the ability to trace their commit
in the CI tool.

Data analysis highlighted three aspects of knowledge that support developer’s confi-
dence. These include knowledge about current task, already included in the previous
definition, knowledge about the whole system and knowledge about scope or impact
of code change. Therefore, in the final definition, task knowledge factor was replaced
with overall knowledge that encompasses all the three aspects mentioned above.

Data collected from workshop provided some interesting insight into the factor of
test coverage in affecting developers’ self-confidence. Participants stated that test
coverage is beneficial in a sense that it enforces developers to add sufficient tests
for their code before commit but it only partially supports their self-confidence be-
cause 100% test coverage is meaningless if test quality is low. They added that in
agile way of working, developers need to deliver fast. They add tests to meet the
test coverage criteria before commit but due to the stress on fast delivery, no one
has enough time to improve the existing tests to avoid duplication and overlapping
tests. As a results, CI tool is burdened with large number of tests added to meet test
coverage criteria, but the quality of tests decreases. Therefore, participants stated
that they cannot rely on test coverage criteria alone to support their self-confidence.
Additionally, they rely on their own efforts to add quality tests for their code before
committing to meet the test coverage criteria. Adding quality tests for their code
makes them more confident in their commit as there is a high chance that it will
pass. However, when these tests are combined with other tests written by other
developers, then it lowers their self-confidence because of not knowing the aspects
such as sufficiency or degree of overlap of these tests. So, test coverage factor in
the previous definition was replaced with test quality factor because test quality
supports developers’ self-confidence whereas test coverage only enforces adding suf-
ficient tests to meet coverage criteria. But, the test coverage metric of tool improves
developers’ confidence in CI tool as it shows that this metric forces developers to

14

4. Results

add sufficient tests for their commits, even though the quality of these test might be
uncertain. To add to their confidence in CI tool, developer stated that tool stability
and visualization of their commits and code base improves their confidence in the
CI tool at the time of commit. If they have high confidence in CI tool at the time of
commit, they find the results of their commit to be more reliable. But, developers
stated that “environment can never be stable” while talking about tool stability. So,
they cannot make the tool to be 100% stable. Hence developers cannot completely
rely on the CI tool for their confidence.

Similarly, developers mentioned that their confidence also depends on their trust
in co-workers and code reviews from them, but they do not rely completely on it.
During the study, use of code reviews was found to be arguable in supporting de-
veloper’s confidence. Junior developers considered code reviews from knowledgeable
persons helpful in supporting their confidence, whereas, experienced developers pre-
ferred testing their code themselves over code reviews. They added that their trust
in their co-workers depends on how competent they are for executing their assigned
task. Since developers had varied views on their confidence in co-workers, it is a
conditional supporter of their overall confidence at the time of commit. After ana-
lyzing the data from workshop, following definition was finalized:

Proposed definition: “Confidence of a developer in their code at the time of
committing it into the mainline can be defined as an outcome of their knowl-
edge(of task, system and scope or impact of code change) and test quality.
Conditionally, it also depends on the confidence of developers in the CI tool
and their co-workers.”

Following diagram shows the evolution of definition through interviews and work-
shop along with the ratings given by interviewees. It can be seen that the average
rating of the definition improved gradually throughout the study.

Iteration 1 Iteration 2

1 I

1 I

I I

— / Interwevx ! / Inlerwew\ / \ !

Definition ! I 3 Waorksho | I
1-3 Reformulated { 7- [P Proposed

from —" ||—|—" . — Average —|—- Fee

literature \ Average | definition \ Average ,J rating = 4.2 J, " Definition

s I , verag
\\\Iatmg —y . \‘.ratlng’y \\, / X

Figure 4.2: Evolution of definition of developer’s confidence during case study

The thematic analysis generated three themes that affect developer’s confidence,
namely self-confidence, confidence in co-workers and confidence in the CI tool as
discussed above. The diagram below shows the emergence of themes from quotations
in the data through thematic analysis:

15

4. Results

Quotes Codes Themes

"In the end everything sums N
up to knowledge” o

"_..developer knowledge is very very
important..._he must have a system

A Knowledge .
e Self Confidence
perspective. "

"I rely on the tests that | add" _*~--------="--- [> Test Quality /
“Can | trust the tool 2 * R Trust in tool \
"Are the tests lacking coverage” S Test Coverage \
. Confidence in Tool
"Was it my commit that led to R - Traceability —"/
unstable mainling”

B e = Mainline Stability

“Those guys handling the system
are new & | am giving them my code” R Trust in Co-workers
“__Reviews from the right person..* /~="""7""77 '"

Figure 4.3: Examples of thematic analysis

* It depends on what | know, if | know
things are working, | am confident”

Confidence in
Coworkers

i

4.1.2 Self confidence and confidence in co-workers

Interviewees stated that they aim for a high confidence level at the time of commit-
ting their code into the mainline. To achieve this confidence level, they write new
test cases to cover their code and make sure that these test cases pass in addition to
the existing ones. Additionally, they also mentioned that their knowledge about the
current task also affects their confidence. So, they gather this knowledge from their
co-workers, if they do not have it already, to gain higher confidence in their code.
However, their knowledge about the system they are working with and about the
scope and impact of the change they have made also adds to their confidence. They
also related this knowledge to their experience with the system and the project they
are working on. Therefore, the more experienced they are, the more confidence they
have in their work.

16

4. Results

Interviewees added that they also get code reviews from co-workers to gain a higher
confidence level in their code. These reviews help them in increasing their knowl-
edge and identifying potential problems in their code. They can also select reviewers
which helps them to get expert opinion. Some interviewees mentioned that they pre-
fer a face-to-face review in comparison to the reviews through the tool because it
gives them an opportunity to explain their code and approach to problem solving.
On the contrary, some interviewees also mentioned that they rely more on the tests
they write rather than the code reviews.

Developers’ confidence also depends on their perception of how good their co-workers
are at their jobs, as one of the developers stated “Those guys handling the system
are new and I am giving them my code”. Trust in co-workers was further highlighted
while discussing code reviews where they mentioned that getting a review from a
trustworthy person enhances their confidence.

4.1.3 Confidence in CI tool

Interviewees stated that their confidence is also affected by the trust in the CI tool
that they are working with. The ability of a CI tool to catch defects in the code
enhances their trust in it. Interviewees stated that if they have high trust in the CI
tool that it will catch the bugs that were not detected during testing before com-
mit, they have a high confidence. This trust is built over time through continuous
committing and resulting failures, which indicates that the CI tool is doing its job.
According to some developers, they find it suspicious if the mainline never breaks
as it seems that the CI tool is not good at catching bugs and they cannot trust
it. During the workshop, interviewees also stated that unstable environment also
lowers their trust in the tools. For example, in case of a failure, they are unsure if
it is the environment issue or a bug in the code that is causing a failure. Persistent
instability of environment causes them to lose their trust in the tool.

Additionally, the traceability of developers’ commit once it is inside the CI tool
improves their confidence. After initiating the commit, they are able to follow its
status and monitor it at different stages in the CI workflow. The transparency of
the CI tool helps them to see what happens when their commit enters the tool and
it improves their confidence.

Furthermore, interviewees stated that efficiency of CI tool is largely dependent on
the test coverage that it provides. If the CI tool has a good test coverage of the
code base, their confidence is high. However, some interviewees also stated that
their confidence is also affected by the stability of test cases. Despite having a good
test coverage if the test cases are unstable, they have a low confidence in the CI tool.

Interviewees also mentioned that the CI tool helps them in visualizing the status
of the mainline. If they observe that the mainline is unstable at the time of com-
mitting their code, they have low confidence as they fear that their commit may
aggravate the situation. On the other hand, if the mainline is stable at the time of

17

4. Results

commit, their confidence is comparatively higher as they have already tested their
code before commit and the chances are high that it will successfully merge into the
stable mainline.

These themes reflect that confidence of a developer depends on the factors relating
to their own self confidence, the confidence they have in the CI tool and the con-
fidence they have in their co-workers, who are responsible for testing their code or
reviewing it. However, it would be interesting to note that developers can put in
the effort to improve their self confidence by testing their code well and gathering
sufficient knowledge. On the contrary, improving their confidence in co-workers and
tools is not in their power as people can not be controlled and CI tools are complex
to handle.

4.2 Support

In this section, we present our findings regarding identified themes through thematic
analysis for supporting developer’s confidence.

4.2.1 Training in CI tool

Prior to the interviews, when the interview questions were designed, we assumed
that some initial training with the CI tool would help the developers support their
confidence. To investigate this assumption, we included some interview questions
with trainings in focus. Most of the developers mentioned that they had attended
presentation or received guidelines regarding the CI tool and some of them thought
it was sufficient. While, few developers mentioned that they would prefer learning
by doing, according to them they get a hold of the tool when they start working
with the tool. Also, some developers suggested that having some traditional class-
room trainings with hands on exercises with tools would help them support their
confidence.

4.2.2 Commit criteria

It was assumed that all the developers have some criteria or checklist of their own,
which they use to validate and gain confidence on their code before commit. With
this assumption in mind, interview questions were framed to ask developers about
their commit criteria. Some developers stated that they validate their code by
running the legacy tests locally which are later run in the CI machinery. Further,
developers do manual or automated testing on their end and some prefer to have
sufficient test coverage before they commit their code. Code review was one of the
popular criterion through which many developers get their code reviewed before
they commit. It helps them to validate the code and get a second opinion. On the
other hand, some developers mentioned that code reviews are not that important,
as they are unsure on how experienced their reviewers are and how much knowledge
they have regarding the task at hand. In either case, developers emphasized the

18

4. Results

need to have sufficient knowledge of their tasks whether it’s complemented by code
reviews or not.

4.2.3 Features in CI tool

Interview data was thoroughly examined to identify existing and proposed features
of CI tool stated by interviewees in supporting their confidence. These feature
suggestions were complemented by the reflections from workshop where the partici-
pants discussed the potential, limitations and improvements of these features. Table
4.1 and 4.2 list the suggested features that already exist in their CI tool and the
proposed ones, along with the data from the workshop.

Table 4.1: Existing features of the CI tool used by developers that support their

confidence.

Existing Features Agree /
Disagree
Follow my commit: Helps the developers to track their | Agree = 17
commit in the CI machinery. Disagree = 1
Commit Gate: Performs the basic level block tests on the Agree — 15
codecommit and does not allow the faulty code to pass beyond gree =
o . Disagree = 3
it in the CI machinery.
Code reviews: Developers can get reviews on their code Agree =4
. Disagree = 2
before they commit.
No answer = 2
Functional Verification: Test the code at system level and Agree =15
e g . . . Disagree = 1
verify if it meets the system specification or requirements.
No answer = 2
Adding reviewers to your code: Developers can select Agree =16
. . . Disagree = 1
and add a reviewer for their commit.
No answer = 1
Test pass/fail indication: Developers can see the status of Agree =15
. oo Disagree = 1
each test case as the particular test suite is executed.
No answer = 2
Information on who developed a particular test: De- | Agree = 11
velopers can see who is working or has worked on a particular | Disagree = 5
test case. No answer = 2
Bisect Script: At higher levels in CI machinery, multiple
commits are batched together to run different test suites on A _ 15
them. If a test suite fails, it becomes difficult to find the faulty Dgree o {
commit among the batched commits. In this situation, bisect 15agree =
. No answer = 2
script takes one commit at a time to run a test suite on it and
find if it is at fault.
High node level testing: Node level testing enables devel- | Agree = 16
opers to select a dedicated node that tests their commit before | Disagree = 1
pushing it to the commit gate. No answer =1

19

4. Results

Table 4.2: Proposed features for the CI tool used by developers that can support

their confidence.

analyze the problem faster.

Proposed Features Agree /
Disagree
Information on who made modifications to code: A | Agree = 11
feature to see who frequently commits to the particular part | Disagree = 7
of the code. No answer = 0
Bisect script: "Bisect script’(as above) exists only in specific | Agree = 16
CI flows but was proposed to be implemented in other CI flows | Disagree = 1
as well. No answer = 1
Ability to run different tests in different environments | Agree = §
and setups: Test code on different environment setups in | Disagree = 7
commit gate. No answer =3
Agree = 9
Brief logs: Having short useful descriptions in the logs. Disagree = 5
No answer = 4
Code Coverage: Indication of how much of the application Agree =14
code of their codecommit was actually tested by the CI tool. Disagree = 2
No answer = 2
Test Coverage: If tests are sufficient or some additional Agree =13
tests need to be added to validate the code beforehand. Disagree = 4
No answer = 1
History of stability of main branch: The ability to know | Agree = 15
the history of mainline stability describing how has it been | Disagree = 2
for the past few days and its current status. No answer = 1
Appreciation for successful merges: Recognition or ap- | Agree = 7
preciation, for having a history of successfully committing to | Disagree = 7
mainline or not introducing faults. No answer = 4
Finding related Commits: Ability to find the related com- | Agree = 16
mits that might have caused a commit to fail would help to | Disagree = 1

No answer =1

Adding flags to reviewed commits: Indicating if a partic-
ular commit has been reviewed or not, as unreviewed commits
are more vulnerable to cause faults when the CI flow breaks.

Agree = 8
Disagree = 10

Guidelines for adding commit descriptions: Guide-

the details.

lines for adding commit description with relevant information | Agree = 14
might allow for automatic detection of a faulty commit in a | Disagree = 4
batch of commits.
Highlighting problematic code areas: An indication of

. Agree = 13
problematic area of the code base, would help the developer Disagree = 5
to decide if they should commit or wait.
History of developer’s commits: Developers would like to | Agree = 11
know which commits they have made in the past alongwith | Disagree = 6

No answer =1

20

4. Results

Update support information: Keep support documenta- | Agree = 13
tion up-to-date to find the required information and contact | Disagree = 3
the right person. No answer =2

Some of the existing features were found to be particularly popular among develop-
ers in supporting their confidence. "Follow my commit" is one of these as evident
from the data in Table 4.1. It was mentioned as quite useful in providing traceability
of developer’s commit in the CI tool and prevented the tool from behaving like a
black box. Developers also added that it eased the visualization of enormous amount
of information present in the tool which would otherwise be difficult to extract from
it. Features related to code reviews and various testing levels were also found to be
helpful to developers as these features enabled them to achieve a higher confidence
level on their code.

Discussions on proposed features revealed both the positive and negative impacts of
implementing some of these features from Table 4.2, whereas some proposed features
were found to be really helpful in supporting developer’s confidence. Highlighting
problematic areas in the code base was considered useful as it would allow developers
to have a bigger picture of code base. As a result, developers will be able to analyze
the relevancy of their commit to these areas and will take necessary steps to avoid
aggravating the problems. Another feature that was discussed a lot both in terms of
its potential and limitations was the "Bisect script’. Potentially, it was considered a
good feature to complement current practices for finding faulty commits in a batch
of commits. By providing valuable information, it can help dedicated CI monitor
team in quicker troubleshooting. However, this script was also referred as a "dream"
as it had some serious limitations such as resources and unstable environment. The
feature displaying information on who has made modifications to the code received
mixed responses from developers. Some of them thought that the ability to identify
persons who are actively committing in a particular code area will help them to get
a quick help, especially if the person is working in another team. On the contrary,
some developers thought that gathering statistics on developers’ commits will be
a social disaster. It will create an environment of blame and shame and a bonus
point market based on the number of commits. Similarly, feature for appreciation on
successfully merging the commits with mainline was discouraged by developers as it
would create an environment of competition among developers leading to negative
impacts on their work. Another proposed feature was to have brief logs so that the
developers could easily find the reason for errors. On the contrary, some developers
mentioned that they would prefer to have verbose logs with proper log levels.

4.2.4 Environment

The study also investigated the existing work environment practices or possible
changes in work environment practices which have a potential to support devel-
oper’s confidence. Knowledge sharing is one common suggestion from interviewees
which would support their confidence. Some developers suggested that an informal
discussion with the team about their tasks would provide helpful feedback. One

21

4. Results

existing practice of having dedicated team to monitor the CI machinery which mon-
itors codecommit failures and informs the responsible developer to fix the issue,
helps support some developers’ confidence in the CI machinery. But, a few devel-
opers mentioned that their confidence is affected negatively when the team points
out their commit failures. However, when this practice was discussed in workshop,
developers confirmed that they would all prefer to have such a team to monitor the
CI machinery, as it plays a vital part in maintaining the stability of CI system which
supports their confidence in the CI tool.

One practice that was suggested from the interviews was to have one member from
each team who should work closely with the existing dedicated team which moni-
tors the CI machinery. This suggestion was intended to improve the communication
between the monitor team and developers. According to current practice, the team
monitoring the system sends a formal mail to the developer that their commit has
failed and they need to work on it, after which they have no further help or com-
munication with the team. So, it was suggested to have a member from each team
who is part of the CI monitor team, which would help them in understanding their
commit failures. This suggestion was further discussed by developers in the work-
shop and they mentioned that any support the developer needs is provided by their
own team members. Each team works internally on fixing the commit issues which
is a good practice, concluding that the suggested practice is not needed.

Finally, one practice that was mostly discussed during workshop was how to main-
tain a stable CI tool or environment. To elaborate, developers discussed that prior
to the agile mindset, there were separate test development teams who would con-
tinuously improve test quality. However, since the adoption of agile methodology,
test and development have been merged. Developers tend to pay more attention to
features since these are delivered to customers but very little attention is paid to the
improvement of test cases. To exemplify, developers frequently add new test cases
for their code, but existing test cases are not reviewed and maintained properly,
which might also lead to redundancy. As a result, test cases become expensive both
in terms of time and resource leading to poor performance and long feedback time
which affects developers’ work. Summarizing this concern, one developer stated that
“Fast-track is making them slow 7. Some developers mentioned that they have back-
logs which contain improvements for the tool but they are so focused on the features
that they have no time to look at the tool improvement. One developer added that
“Always, feature wins over the tool 7. Finally, some developers suggested on having
an allocated team to maintain tool and environmental stability, while others high-
lighted that a few teams have a “Product care” concept which refers to maintaining
tool improvement backlog and work on it.

Aspects that were perceived to support confidence varied across the groups of in-
terviewees. As developers with low experience emphasized that code reviews and
formal knowledge sharing sessions are important supporting aspects for their confi-
dence. On the other hand, developers with high experience level said that they do
not rely on code reviews and prefer testing the code on their own. Since they have a

22

4. Results

better overall knowledge of the system, they don’t emphasize on formal knowledge
sharing sessions. Therefore, this distribution of developers over different levels of
experience helped us to capture different perspectives.

Some other findings that are indirectly related to developer’s confidence are build
breakage frequency, code commit frequency and developer’s behavior close to dead-
line. These factors are debatable as developer’s confidence is not affected by these
but there are some behavioral changes that could be implied as the result of these
factors. To exemplify, developers mentioned that close to deadline they change their
commit criteria as they have a tight schedule when they are working in the agile way.
When asked “if code commit frequency is proportional to developer’s confidence”,
some developers mentioned that it depends on the individual. Some developers sug-
gested that those who have divided their task into smaller deliverables, they make
small commits frequently and are more confident as they are not affecting major
part of the code. On the other hand, some emphasized that some developers are
confident by nature and their commit frequency has got nothing to do with their
confidence. Lastly, when asked about the effects of frequent build breakages, some
developers mentioned that they are not affected by frequent build breakages as the
main purpose of the CI tool is to restrict the faulty commits and this actually helps
them to be more confident in the tool. On the contrary, some junior developers are
low in confidence when they break the build.

23

O

Discussion

In this study, we investigated how developer’s confidence can be defined in the
context of CI and how it can be supported through environment or features in CI
tools. In this chapter, we discuss the results from our study and connect with
relevant literature. We begin by discussing the overall challenges in adopting CI
practices and focus on how developer’s confidence can be defined and what aspects
can support confidence.

5.1 Confidence

The existing literature in Software Engineering provides rich information on chal-
lenges in adopting continuous practices. Shahin et al. (2017) have mentioned various
challenges in adopting continuous practices such as lack of awareness and trans-
parency, insufficient tools and technologies, coordination and collaboration chal-
lenges, merging conflicts, testing, lack of experience and skills, organizational struc-
ture and processes, and dependencies with hardware and other (legacy) applications.
In the light of these challenges, the role of a software developer as a CI user is a
grey area. As stated by Pinto et al. (2017, p.1), ‘In spite of the increasing adop-
tion, the large set of tools, and the well-known benefits, little is known about how
software developers are dealing with the usage of continuous integration techniques’.
This section discusses how developer’s confidence can be defined in terms of various
factors that can potentially address some of these challenges. The fishbone diagram
below demonstrates these factors .

Confidence in co-workers Self-confidence
Adding tests

System knowledge Task knowledg
Project/product experience
Trust in co-workers

Knowledge

Experience

'4erience with CI tool

Code reviews
Knowledge of scopefimpact
of code change

» Developer

confidence

Trust in Cl tool
Test coverage of tool
Test quality

Stability of Cl tool

Traceability and
transparency of tool

Confidence in Cl tool

Figure 5.1: Factors affecting developer confidence.

24

5. Discussion

Savor et al. (2016, p.7) state that 'developers need to be generalists with the ability to
understand many aspects of the system’ to achieve efficient continuous deployment.
During the study, developers recommended that their knowledge about the whole
system improves their confidence. This system knowledge relates to the generalism
stated by Savor et al. (2016) and helps developers to gain a better understanding of
how their commit will play out when merged with the rest of the system. However,
our study has highlighted that, in addition to system knowledge, developers’ knowl-
edge about their current tasks and about the scope or impact of the code change
adds to their confidence and promotes efficient continuous integration.

The knowledge of developers is related to their experience and skill level, as Rahman
and Devanbu (2011, p.2) state that 'Knowledge gained from experience matters: it
can lead to better ability to answer questions about previous work, and better quality
work’. Eyolfson et al. (2011, p.6) also state that ‘the more experienced the developers
are, the less likely that their commits are buggy’. Likewise, our study has also high-
lighted experience of developers as one of the factors in supporting their confidence
in the context of continuous integration. To elaborate, developers stated that with
more experience, they are more confident that their commit will be defect-free and
merge successfully. Furthermore, our results have shown that developers consider
both their experience with the product or project they are working with and their
experience with the CI tools and practices as contributing factors to their confidence.
The more experienced they are, the more knowledge they possess to efficiently work
on their tasks in a continuously integrated codebase.

According to Fowler (2006), one of the core practices of continuous integration is
to make the build self-testing. He states that one needs to add automated test
suites that check codebase for bugs. Yuksel et al. (2009) emphasize that in order
to achieve efficient continuous integration, developers need to design, code and run
all the necessary unit and integration tests before codecommit. Although intervie-
wees have confirmed that this practice of adding sufficient tests before codecommit
enhances their confidence, but some issues have been raised as well. It was men-
tioned that in today’s agile world, developers focus more on delivering features on
fast-track. Everyone adds tests for their code to meet the test coverage criteria for
their codecommit but only a few invest in cleaning the existing tests in the CI tool.
As a result, the tool is burdened with overlapping tests leading to lower quality of
tests in the tool which consequently lowers developers’ confidence in the tool. De-
velopers added that to address the test quality issue, they invest individual efforts in
adding tests that are sufficient to meet the coverage criteria and are of good quality,
however, there is a need to recognize this as a standard practice to maintain test
quality in tool. It implies that developers favour quality as well as quantity when it
comes to adding tests for their codecommit. Therefore, in addition to the test cov-
erage criteria which indirectly emphasizes on quantity of tests, organizations need
to introduce practices that put focus on test quality as it is equally important in
supporting developer’s confidence.

Existing literature presents mixed views on the efficiency of code reviews in find-

25

5. Discussion

ing bugs. Bavota and Russo (2015, p.1) state that ‘unreviewed commits have a
much higher chance (over two times) of inducing bug fizes with respect to reviewed
commits’. Whereas, Czerwonka et al. (2015) state that code reviews do not find
functionality issues, must be performed by person with specific skill set and have so-
cial aspect that can not be ignored. Our results have also highlighted mixed opinions
on code reviews. Some developers think that code reviews from a knowledgeable
person in a particular area are really helpful in getting a second opinion on their so-
lution and enhance their confidence. It is due to this reason that developers favored
the feature of selecting a reviewer for their commit as it enabled them to request an
experienced person for review. On the contrary, some developers said that they do
not rely much on code reviews as they sometimes have low trust in reviewers. Addi-
tionally, some developers stated that the trust they have in the manual testers who
test their code before delivery also affects their confidence. Developers are unsure
of how their code will be handled by the testers and this affects their confidence
negatively. The aspect of trust within agile teams is discussed by McHugh et al.
(2012, p.1), who state that "Trust requires team members to believe that their col-
leagues possess the knowledge, competence, and integrity to complete their assigned
tasks’. Based on our findings, we suggest that trust similarly influences interactions
among people working in different teams and across the parts of CI pipeline and
affects their confidence in each other.

The third and the final viewpoint on developer confidence is the confidence of devel-
opers in the CI tool they're using. During study, developers mentioned that having
a high level of trust in the CI tool improves their confidence as they believe that
any uncaught bugs in the codecommit will be caught by the tool. Whereas, some
developers said that they do not trust the tool much and rely on adding sufficient
tests for their codecommit with test quality in focus, because the tool is only as
good as the tests they add. This is in agreement with the stance of Pinto et al.
(2017, p.4) who state that blindly trusting the tests in the tool creates a false sense
of confidence as "The continuous integration pass is only as meaningful as the test
coverage’. Therefore, the higher the test coverage a tool has, the higher the trust
developers have in the CI tool.

Developers’ trust in the CI tool also depends on the stability of CI tool and envi-
ronment. The need for stable environment for adopting continuous integration is
emphasized by Shahin et al. (2017, p.4), who state that 'CI is a foundation for CDE,
in which implementing reliable and stable CI practice and environment should be the
first and highest priority for a given organization to successfully adopt CDE prac-
tice’. During the study, developers have repeatedly mentioned stable environment
as a challenge and that there is a need to focus on getting the environment stable
as it is an enabler of different features that can support their confidence. Persistent
instability of environment causes them to lose their trust in the tool because they
are unsure if the failures are due to defects or unstable environment. It is reported
that intermittent faults in the continuous integration pipeline occur frequently and
cause confusion and delays in feedback. Some developers mentioned solutions such
as product care backlogs and dedicated tool team to cope with this challenge but

26

5. Discussion

these would be costly in terms of time and resources. Having product care back-
logs would require developers to spare some time from developing features which
can possibly slow down feature delivery. So, there is a trade-off between achieving
stable environment and delivering features fast. Depending on the nature of project
and product, organizations can prioritize one thing over another and allocate nec-
essary resources to it. However, as mentioned previously, developers quoted that
“Fast-track is making them slow” which warrants a careful consideration of this
issue.

5.2 Support

This section focuses on how confidence of developer, as discussed in previous section,
can be supported to overcome some of the CI adoption challenges mentioned previ-
ously. It also sheds light on the potential and limitations of these supporting aspects
to address these challenges in a better way. The fishbone diagram below demon-
strates the features from CI tools and environmental aspects that can potentially
support developer’s confidence.

Features in tool Training in Cl tool

Follow your commit \
Learning by Doin
\\ Existing Qg 2y “oing

) / Features
Decision EIS.QCI
Coverage —CriPt Commit Gate .
\ \ Hands on training

Proposed Guidelines
Features
Highlighting
problematic area Aspects
supporting
Knowledge Sharing / / Gather knowledge developer
Code Review /f confidence
Dedicated CI
Each team has manfloring team / Adding sufficient test

one member

monitoring Cl Basic legacy test

Manual! Automated testing

Envircnmental Practices Commit Criteria
Figure 5.2: Supporting aspects for developer’s confidence.

Both interviews and workshop discussions highlighted the need of knowledge sharing
sessions which could either be formal or informal. Gervigny and Nagowah (2017,
p.1) describe the goal of knowledge sharing as to allow ‘the right people to gain access
to the correct content at the right time’. They also discuss the importance of this
practice in helping developers to get relevant information and expertise. Moreover,
during our case study, developers emphasized that having information on whom to
ask for help, what each team member is working on or has worked on in the past

27

5. Discussion

would aid them in decision making and problem solving skills. The need for knowl-
edge sharing is also reflected in the proposal of a feature called “information on who
made modifications to code” which helps in knowing who commits frequently to a
particular code area in order to seek help from them.

One of the existing practices within the case company is having a dedicated team
to monitor the CI machinery. This practice was found to be the most important
and an added value to the work environment as it is crucial for maintaining the CI
machinery. This is related to the viewpoint of Shahin et al. (2017) who assert the
implementation of stable CI practices and environment as a top priority to overcome
the challenges concerning CI adoption. Nevertheless, during the case study some
developers stated that communication between the monitoring team and developers
is limited, which is a barrier in understanding the reason for their commit failures.
So, they suggested a two way communication with the monitor team in diagnosing
the problem. On the contrary, some developers did not see the need of a two-way
communication and suggested that the team members collaborate internally to find
the issue. This practice is good for team coordination enabling transparency in the

team and transparency was stated as one of the problem when adopting CI and CD
by Laukkanen et al. (2017).

Savor et al. (2016) describe that education is vital because the software process with
continuous practices is different from what was traditionally preached and practiced.
They also highlight the investment that is required with respect to educating and
training developers to encourage adoption of CI practices. This is in line with one of
the assumptions in our case study that trainings in CI tools or practices can support
developer’s confidence. Although some developers favoured this assumption, others
preferred “learning by doing” over traditional classroom trainings. While describ-
ing why employees prefer “learning by doing”, Schank (1995, p.2) stated ‘If you do
something often enough, you get better at it’. He further adds that when people care
about what they are doing, they will try to learn better ways of doing it; it’s human
nature.

Code coverage helps to analyze what percentage of the source code is tested. It
was also discussed during the case study, where developers highlighted that code
coverage is an important metric for supporting their confidence in the CI tool and
having a threshold of 80% on it enforces developers to write sufficient tests before
the codecommit. On the other hand, some developers suggested that there should
be a 100% code coverage criteria with exclusion marks indicating the code which
cannot be tested. According to them, having 80% is as bad as having 60 or 70%
and the level falls down to whatever level you decide sooner or later. On the con-
trary, Marick (1999, p.7) states that ‘Designing your initial test suite to achieve
100% coverage is an even worse idea’ and further describes it as a way of creating
a test suite which is weak in finding important faults of omission. Hemmati (2015)
discusses the effectiveness of code coverage criteria and mentions that even a test
suite with 100% coverage fails to detect all faults. Therefore, in the light of exist-
ing literature and suggestions from developers, threshold for code coverage metric

28

5. Discussion

is specific to developers and organizations. Finally, one additional suggestion from
workshop discussions was to have a decision coverage criteria. Antinyan et al. (2018,
p.1) describes decision coverage as ’the percentage of decision blocks in a file that
have been exercised during a test run’.

Throughout the case study, traceability of commit was mainly highlighted as an
additional factor that supported developer’s confidence. 7 also mentioned trace-
ability as a key challenge in CI. During our study, developers discussed about an
existing feature called “Follow my commit”, which enables developers to trace their
commit in the CI machinery and helps them to achieve better traceability in the
tool. This feature could be related to, ‘Follow your commit, feature from Ericsson’s
FEiffel framework, which provides developers with real time view and timeline of their
recent commits’ (7, p.4). Additionally, during the case study developers confirmed
that such a feature enables better transparency in the tool, further building their
confidence in the CI tool, which indirectly supports developer’s confidence during
codecommit.

“Highlighting problematic code areas”, was a feature suggested in our study, help-
ing developers to have a clear idea of the codebase. This feature relates to having
transparency in the tool and helps the developers as they are well aware of the
risk they are taking while making commits in few problematic code areas. Identify
hotspots in your code (n.d.) describes a similar approach which uses the commit
information to identify hotspots and risky commits. Hotspot can be a file which
contains sensitive code that is risky to change or code which is not tested properly.
These are identified based on commit information and a file is flagged as hotspot
if it was recently changed while fixing a defect. Additionally, ’a risk indication for
commits that include changes to hotspot files and for features associated with such
commits’ (Identify hotspots in your code, n.d., p.4) is also mentioned. Therefore, a
feature related with this idea would help the developer to be more confident when
they know that the code area they are committing to is not risky.

During the case study, some developers suggested to have a feature to appreciate
developers who have successful commits or don’t make faulty commits, as such a
feature would encourage developers to do good work. ‘Make sure that the teams are
well rewarded and morale is high’, Chopra (2014, p.3) stated with respect to motivat-
ing the team with agile framework. On the other hand, some developers mentioned
that such a feature would increase competition in the team and negatively impact
the team spirit. To elaborate, Individual Recognition and Team Performance; The
Good, the Bad and Our Solution. (2017, p.2) states that ‘If you are recognizing in-
dividual efforts, your team in turn will most likely continue to operate as individuals
rather than collectively as a team’. It also discusses how individual recognition de-
motivates team members to partake in team activities.

Ziftci and Reardon (2017, p.2) state ‘If code development continues in the presence

of failing tests, other developers might introduce more regressions along the way
before the current regression is resolved’. This situation emphasizes the need for

29

5. Discussion

quick feedback to resolve these problems as soon as possible. During the study,
developers repeatedly emphasized on the importance of quick feedback from merge
results in the higher levels of CI pipeline. They added that this feedback helps
them to identify the issues and remove these issues from the pipeline as soon as
possible. Fast removal of bugs from pipeline is important to them because the
longer the bugs stay in the pipeline, the more it aggravates the problem. Quick
feedback helps to deliver fast without causing delays in feature development. It
is in agreement with ‘Identifying changes that introduce regressions to a codebase
is critical to keep the momentum on software development, especially in very large
scale software repositories with rapid development cycles’ (Ziftci and Reardon, 2017,
p.10). In order to solve this problem, developers proposed a feature “bisect script”
that takes one commit at a time and run tests on it to find if it is the culprit
for failure. Developers added that it will be costly in terms of time and hardware
resources. Some other variants of this feature were also proposed by developers such
as using binary search on commits or running selective tests for each commit to
reduce time and resource consumption. Nevertheless, this feature is still seen as a
challenge to implement within the company. Ziftci and Reardon (2017) have done
some work to find the buggy commit in the codebase. They have suggested an n-ary
search instead of binary search to find the buggy commit. Additionally, they have
presented an algorithm that uses heuristics to filter and rank the change logs in order
to help developers at Google to find the culprit. They also discuss running time of the
algorithm and how to deal with unstable tests. As a future work to their study, they
propose to include logs analysis into heuristics to improve its performance. However,
we suggest that this algorithm might have different outcomes when implemented in
different organizations and there is a need to explore it further to make it more
generalizable.

30

O

Conclusion

In this chapter, we present the implications of our study for organizations and
practitioners. We then conclude our study along with a discussion on validity threats
to our study.

6.1 Implications and Conclusion

Our case study has proposed a definition of developer’s confidence in the context
of CI and how it can be supported. These proposals have some implications for
practitioners and researchers in supporting developers’ confidence and addressing
the challenges faced in CI adoption.

Key factors supporting developers’ confidence are knowledge and test quality. Based
on these findings, we imply that knowledgeable developers are more confident and
suggest that organizations should promote a knowledge sharing culture to facilitate
developers in seeking knowledge required to support their confidence. Additionally,
test quality in the tool is as important as test quantity in supporting developers’
confidence, which implies that organizations should promote the practice of cleaning
redundant tests and maintaining test quality in the CI tools. Developers’ confidence
also depends conditionally on their confidence in the tool and co-workers. Stability
of CI tools enhance developers’ confidence in the tool. But, achieving this stability
consumes resources and tools might never be fully stable. Given the need to deliver
fast in the agile era, practitioners and organizations should balance the resources
allocated to tool stability and fast delivery based on the nature and requirements of
the projects. Confidence of developers is also strengthened by the trust they have in
manual testers who will test their codes in later parts of CI pipeline. Building trust
among the developers and testers can enhance developers’ confidence, therefore, or-
ganizations should promote communication among people working in different parts
of the CI pipeline.

Proposed features such as “Highlighting problematic code area” and “Information
on who made changes to code” depict that developers need higher transparency of
information available in the CI tools. Focusing on improving the transparency of
CI tools can provide valuable information to developers for strengthening their con-
fidence. Experienced developers see code reviews as a complementary practice to
support their confidence, whereas, junior developers consider code reviews impor-
tant to get expert opinions on their code. Similarly, junior developers prefer formal

31

6. Conclusion

knowledge sharing sessions as opposed to senior developers who believe that knowl-
edge is shared informally within the team all the time. These findings highlight
the experience based differences among developers regarding their confidence and
its supporting aspects, which can steer the organizations’ mindset in catering the
needs of developers with varying experience levels.

To conclude, we believe that as immediate users and practitioners of CI tools and
principles, developers’ perspective and viewpoint must be studied in more detail in
order to overcome adoption challenges of continuous practices. Organizations need
to adapt the CI tools to developers’ way of working to promote efficient usage of
continuous integration in order to fully reap its benefits. Confidence of developers
is of prime importance while practicing CI as they are now directly responsible for
their commits. It warrants a need to add features to CI tools and improve work
environment of developers to support their confidence. Suggestions for these fea-
tures and work environment have been made through this case study, which can
be validated through implementation and evaluation in different contexts and can
serve as inspiration for future work in successful adoption of CI. Also, as a future
work, our study could be conducted with different context and with different subject
selection criteria such as cultural difference or gender, to further explore developer’s
confidence.

6.2 Validity Threats

This section describes the threats to the validity of our case study.

Internal Validity: The selection of developers for interviews was based on their ex-
perience level. It could be based on other factors such as gender, cultural differences
and different domains in software development. However, our study has highlighted
that developers’ confidence varies with their experience. As a future work, further
research can be made to explore developers’ confidence based on above mentioned
selection criteria.

External Validity: Given the nature of case studies, there are known limitations
regarding generalizability. Our study has provided rich understanding of developers’
confidence in the environment under study. We have generalized our results through
abstractions and connected our results to existing theory in CI and generated sug-
gestions for CI practitioners and organizations. Hence, our results can potentially
be applicable to other contexts and organizations. However, further studies that
cover a diversity of context and other aspects, may yield further understanding of
developers’ confidence in CI.

Construct Validity: Confidence is a diverse concept and has various interpreta-
tions under its umbrella. Therefore, different interpretations of confidence among
developers were a threat to our study, which we have addressed by establishing a
common understanding of confidence with the developers. During the interviews,

32

6. Conclusion

developers were presented with the formulated definition of confidence based on ex-
isting literature. This definition was used to reach a common understanding of our
intended research and guided the interviewees in their reflections.

33

6. Conclusion

34

Bibliography

Adams, B. D. (2005), Trust vs. confidence, Technical report, HumanSystems Inc
Guelph (Ontario).

Alhojailan, M. 1. (2012), ‘Thematic analysis: A critical review of its process and
evaluation’, West east journal of Social Sciences 1(1), 39-47.

Antinyan, V., Derehag, J., Sandberg, A. and Staron, M. (2018), ‘Mythical unit test
coverage’, IEEE Software 35(3), 73-79.

Bavota, G. and Russo, B. (2015), Four eyes are better than two: On the impact of
code reviews on software quality, in ‘Software Maintenance and Evolution (IC-
SME), 2015 IEEE International Conference on’, IEEE, pp. 81-90.

Bugayenko, Y. (2009), Quality of code can be planned and automatically controlled,
in ‘2009 First International Conference on Advances in System Testing and Vali-
dation Lifecycle’, pp. 92-97.

Carter, N., Bryant-Lukosius, D., Dicenso, A., Blythe, J. and J Neville, A. (2014),
‘The use of triangulation in qualitative research’, 41, 545-547.

Chen, L. (2017), ‘Continuous delivery: Overcoming adoption challenges’, Journal of
Systems and Software 128, 72 — 86.

Chopra, S. (2014), Implementing agile in old technology projects, in ‘Proceedings of
3rd International Conference on Reliability, Infocom Technologies and Optimiza-
tion’, pp. 1-4.

Czerwonka, J., Greiler, M. and Tilford, J. (2015), Code reviews do not find bugs:
how the current code review best practice slows us down, in ‘Proceedings of the
37th International Conference on Software Engineering-Volume 2’ IEEE Press,
pp. 27-28.

Dam, R. and Siang, T. (2017), ‘Stage 3 in the design thinking pro-
cess: Ideate’, https://www.interaction-design.org/literature/article/
stage-3-in-the-design-thinking-process-ideate. Accessed:2018-05-26.

Eyolfson, J., Tan, L. and Lam, P. (2011), Do time of day and developer experience
affect commit bugginess?, in ‘Proceedings of the 8th Working Conference on Min-
ing Software Repositories’, MSR ’11, ACM, New York, NY, USA, pp. 153-162.

35

https://www.interaction-design.org/literature/article/stage-3-in-the-design-thinking-process-ideate
https://www.interaction-design.org/literature/article/stage-3-in-the-design-thinking-process-ideate

Bibliography

Faste, H., Rachmel, N., Essary, R. and Sheehan, E. (2013), Brainstorm, chainstorm,
cheatstorm, tweetstorm: New ideation strategies for distributed hci design, in

‘Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems’, CHI "13, ACM, New York, NY, USA, pp. 1343-1352.

Fowler, M. (2006), ‘Continuous integration’, http://www.martinfowler.com/
articles/ContinuousIntegration.html. Accessed:2018-01-13.

Gervigny, M. L. I. and Nagowah, S. D. (2017), Knowledge sharing for agile dis-
tributed teams: A case study of mauritius, in ‘Infocom Technologies and Un-
manned Systems (Trends and Future Directions)(ICTUS), 2017 International
Conference on’, IEEE, pp. 413-419.

Hemmati, H. (2015), How effective are code coverage criteria?, in ‘2015 IEEE Inter-
national Conference on Software Quality, Reliability and Security’, pp. 151-156.

Identify hotspots in your code (n.d.), https://admhelp.microfocus.com/octane/
en/latest/Online/Content/UserGuide/hotspot-files-in-code.htm.
Accessed:2018-05-05.

Individual — Recognition and Team Performance; The Good, the Bad
and Our Solution. (2017), https://www.critical-metrics.com/
individual-recognition-team-performance/. Accessed:2018-05-05.

Kapelonis, K. and Engineer, K. (2016), ‘9 features you need to demand from a hosted
continuous integration service’, https://zeroturnaround.com/rebellabs/
9-features-you-need-to-demand-from-a-hosted-continuous-integration-service/.
Accessed:2018-05-13.

Laukkanen, E., Itkonen, J. and Lassenius, C. (2017), ‘Problems, causes and solutions
when adopting continuous delivery—a systematic literature review’, Information
and Software Technology 82, 55 — 79.

Leppanen, M., Makinen, S., Pagels, M., Eloranta, V., Itkonen, J., Mantyla, M. V.
and Mannisto, T. (2015), ‘The highways and country roads to continuous deploy-
ment’, [EEE Software 32(2), 64-72.

URL: doi.ieeecomputersociety.orq/10.1109/MS.2015.50

Marick, B. (1999), How to misuse code coverage, in ‘Proceedings of the 16th Inter-
ational Conference on Testing Computer Software’, pp. 16-18.

McHugh, O., Conboy, K. and Lang, M. (2012), ‘Agile practices: The impact on
trust in software project teams’, Ieee Software 29(3), 71-76.

Meyer, M. (2014), ‘Continuous integration and its tools’, IEEE Software 31(3), 14—
16.

Martensson, T., Stahl, D. and Bosch, J. (2017), Continuous integration impedi-
ments in large-scale industry projects, in ‘2017 IEEE International Conference on
Software Architecture (ICSA)’, pp. 169-178.

36

http://www.martinfowler.com/articles/ContinuousIntegration.html
http://www.martinfowler.com/articles/ContinuousIntegration.html
https://admhelp.microfocus.com/octane/en/latest/Online/Content/UserGuide/hotspot-files-in-code.htm
https://admhelp.microfocus.com/octane/en/latest/Online/Content/UserGuide/hotspot-files-in-code.htm
https://www.critical-metrics.com/individual-recognition-team-performance/
https://www.critical-metrics.com/individual-recognition-team-performance/
https://zeroturnaround.com/rebellabs/9-features-you-need-to-demand-from-a-hosted-continuous-integration-service/
https://zeroturnaround.com/rebellabs/9-features-you-need-to-demand-from-a-hosted-continuous-integration-service/

Bibliography

Navajas, J., Hindocha, C., Foda, H., Keramati, M., Latham, P. E. and Bahrami, B.
(2017), The idiosyncratic nature of confidence, in ‘Nature Human Behaviour’.

Pinto, G., Reboucas, M. and Castor, F. (2017), Inadequate testing, time pressure,
and (over) confidence: A tale of continuous integration users, in ‘2017 IEEE/ACM
10th International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE)’, pp. 74-77.

Polkhovskiy, D. (2016), Comparison between continuous integration tools, Master
thesis, Dept. of Pervasive Computing. Information Technology, Tampere Univer-
sity of Technology.

Port, D. and Wilf, J. (2013), The value of certifying software release readiness: An
exploratory study of certification for a critical system at jpl, in ‘2013 ACM / IEEE
International Symposium on Empirical Software Engineering and Measurement’,
pp. 373-382.

Rahman, F. and Devanbu, P. (2011), Ownership, experience and defects: a fine-
grained study of authorship, in ‘Proceedings of the 33rd International Conference
on Software Engineering’, ACM, pp. 491-500.

Runeson, P. and Host, M. (2008), ‘Guidelines for conducting and reporting
case study research in software engineering’, FEmpirical Software Engineering
14(2), 131.

Savor, T., Douglas, M., Gentili, M., Williams, L., Beck, K. and Stumm, M. (2016),
Continuous deployment at facebook and oanda, in ‘Software Engineering Com-
panion (ICSE-C), IEEE/ACM International Conference on’, IEEE, pp. 21-30.

Schank, R. C. (1995), What we learn when we learn by doing, Technical report,
Northwestern University.

Schenk, R. (n.d.), ‘Dollar voting’, http://ingrimayne.com/econ/
AllocatingRationing/DollarVoting.html. Accessed:2018-05-26.

Schermann, G., Cito, J., Leitner, P. and Gall, H. C. (2016), Towards quality gates in
continuous delivery and deployment, in ‘2016 IEEE 24th International Conference
on Program Comprehension (ICPC)’, pp. 1-4.

Shahin, M., Babar, M. A. and Zhu, L. (2017), ‘Continuous integration, delivery and
deployment: A systematic review on approaches, tools, challenges and practices’,
IEEE Access 5, 3909-3943.

Stahl, D. and Bosch, J. (2017), ‘Cinders: The continuous integration and delivery
architecture framework’, Information and Software Technology 83, 76 — 93.

Webster (1913), www.websters1913.com. Accessed:2018-03-13.

Wells, D. (1991), ‘Integrate often’, http://www.extremeprogramming.org/rules/
integrateoften.html. Accessed:2018-01-14.

37

http://ingrimayne.com/econ/AllocatingRationing/DollarVoting.html
http://ingrimayne.com/econ/AllocatingRationing/DollarVoting.html
www.websters1913.com
http://www.extremeprogramming.org/rules/integrateoften.html
http://www.extremeprogramming.org/rules/integrateoften.html

Bibliography

Yuksel, H. M., Tuzun, E., Gelirli, E., Biyikli, E. and Baykal, B. (2009), Using
continuous integration and automated test techniques for a robust cdisr system,
in ‘Computer and Information Sciences, 2009. ISCIS 2009. 24th International
Symposium on’, IEEE, pp. 743-748.

Ziftci, C. and Reardon, J. (2017), Who broke the build? automatically identifying
changes that induce test failures in continuous integration at google scale, in ‘2017
IEEE/ACM 39th International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP)’, pp. 113-122.

38

	List of Figures
	List of Tables
	Introduction
	Background
	Research approach
	Method
	The case study company
	Data collection
	Data analysis

	Results
	Confidence
	Evolution of definition
	Self confidence and confidence in co-workers
	Confidence in CI tool

	Support
	Training in CI tool
	Commit criteria
	Features in CI tool
	Environment

	Discussion
	Confidence
	Support

	Conclusion
	Implications and Conclusion
	Validity Threats

	Bibliography

