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Modelling and Simulation of Tropospheric Water VapourWith Gaussian Random Fields
Time dependence beyond the frozen flow hypothesis
HENRIK GINGSJÖ
Department of Space, Earth and Environment
Chalmers University of Technology

Abstract
One of the major sources of error in Very Long Baseline Interferometry (VLBI)
is signal delay due to tropospheric water vapour. Turbulent convection makes it
inherently unpredictable and it must therefore be measured directly or modelled
stochastically. In particular, realizations of delay signals are necessary to simulate
the performance of existing and future VLBI networks which, in turn, is needed to
optimize them and reduce errors.
In previous work, modelling of tropospheric delay has been performed only on the
spatial structure of refractivity through phenomenological second order statistics
derived from Kolmogorov theory. Time dependence has been introduced exclusively
through the frozen-flow hyporthesis.
In this thesis, refractivity fields are modelled as Gaussian random fields. Efficient
software is implemented to generate realizations of such fields sampled on a 3D grid.
To achieve realistic time evolution of such gridded fields, it turns out to be both
necessary and natural to introduce intrinsic time dependence beyond the frozen-flow
hypothesis. Such time dependence can easily be made compatible with the temporal
structure of Kolmogorov turbulence.
The novel contributions of this thesis are methods of obtaining two kinds of time
dependence for refractivity fields beyond the frozen-flow hypothesis. Firstly: Intrin-
sic time dependence compatible with Kolmogorov theory. Secondly: Translation by
horizontal wind with arbitrary height and time dependence. The latter may provide
a more realistic description of the planetary boundary layer which has strong wind
shear and contains about 15% of the total water vapour; corresponding to delays of
several centimetres.

Keywords: tropospheric turbulence, wet tropospheric delay, frozen-flow hypothesis,
Gaussian random fields, FFT
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Chapter 1

Introduction

All Earth-based astronomy is influenced by the atmosphere. It is transparent es-
sentially only to visible light and microwaves and therefore prevents observations at
other wavelengths. But even at wavelengths where air is transparent, fluctuations
in the refractive index is problematic. In optical telescopes this is the resolution-
limiting factor [1] and it is one of the most significant error sources in Very Long
Baseline Interferometry (VLBI) [2] and Global Navigation Satellite Systems (GNSS).
VLBI is one of the most precise astronomical techniques. For in-depth information

and a large number of references, see the comprehensive review by Sovers et al. from
1998 [2]. A greatly simplified description follows. VLBI consists of using multiple
radio telescopes, thousands of kilometres apart, to simultaneously record microwave
signals from the same astronomical radio-source1. Next, the recorded signals are
cross-correlated in order to obtain differences in arrival time between telescopes to
~10 ps uncertainty. The arrival time differences are then used for tasks such as
maintaining the celestial and terrestrial reference frames [3, 4] (see also www.iers.
org), measuring continental drift, imaging astronomical radio-sources and testing
the validity of general relativity [2]. An interesting combination of the last two is
an ongoing project [5] that aims to resolve the event horizon of the black hole at the
centre of our galaxy (see also https://eventhorizontelescope.org).
However, since radio signals are delayed by varying amounts by the atmosphere,

the differences in arrival time do not correspond exactly to the distances between
telescopes. The atmospheric delay has three main components:

1. Dispersion in the ionosphere. Has a strong frequency dependence (∝ f−2)
and can therefore be accurately compensated for using simultaneous observa-
tions at two frequencies. Total zenith ionospheric delay2: a few metres3 at
single digit GHz frequencies, but it is highly dependent on frequency and solar
radiation.

2. Delay due non-polar gases (which forms the majority of the atmosphere). Can
be accurately estimated using the air pressure at the observation site. Total
zenith hydrostatic delay (ZHD): ≈ 2 m.

1Often radio bright, extragalactic objects called quasars that are so far away that they appear
stationary and pointlike.

2The equivalent time delay is obtained by dividing by the speed of light.
3See [6] for details. For example, 10 TECU = 1017 m−2, results in a 4m delay at 1GHz.

1

www.iers.org
www.iers.org
https://eventhorizontelescope.org


1. Introduction

3. Delay due to tropospheric water vapour. Cannot be well estimated by surface
meteorological observables and fluctuates on all timescales between seconds
and days due to turbulence. Total zenith wet delay (ZWD): about 0–0.5m
depending on local weather and climate conditions.

Clearly, to reach centimetre and millimetre accuracy, all three effects must be com-
pensated for in some manner. As noted, there are simple methods to accurately
account for the first two, but not for the third. Furthermore, in a 2010 simulation
study [7] of a state of the art VLBI network, the fluctuations in tropospheric water
vapour were found to be the largest error source for geodetic applications.
The aim of this thesis is to develop software that can stochastically simulate

wet tropospheric delays in a manner consistent with Kolmogorov turbulence theory.
This is achieved by modelling refractivity fields as quasi-homogeneous Gaussian
random fields which can be accurately and efficiently realized on regular grids using
a standard FFT-based algorithm. The delay along a given signal path is found by
numerical integration over the grid.
This is an alternate approach to that described in [8] which is used in the pre-

viously cited VLBI simulation [7], where a covariance matrix for a sampled delay
signal is first computed by numerical integration. After a matrix inversion (Cholesky
decomposition), realizations of the stochastic process can be generated from a ma-
trix multiplication of a vector of independent normal distributed numbers. A very
similar method seems to have been developed independently [9], with GPS as the
indended application.
Simulating the refractivity distribution directly on a grid enables the structure

models to be tested in greater detail. In particular, time evolution can be done in a
more general manner than with the frozen-flow assumption. Other features include:

• Computation time scales linearly with number of timesteps and concurrent
signals.

• Could conceivably be combined with ray tracing tools such as [10].
• Can be used for efficient stochastic simulation of water vapour radiometer

signals.
• Enables the atmospheric effects to be directly visualized.

However, the computation of covariances for use in data filtering is expensive and
inaccurate compared to more direct methods.

2



Chapter 2

Atmospheric structure

To realistically model the atmosphere, some understanding of is needed. How high
is it? How fast does it move? Where is the water vapour located? How much and
how fast does it fluctuate? What measurement methods are available? The purpose
of this chapter is to answer those questions.
For a more thorough and authoritative description of the atmosphere see a text-

book such as [11]. Here only the local structure of the lower atmosphere will be
considered. Up to heights of about 10 km and horizontal distances at most an order
of magnitude larger.

2.1 Equilibrium descriptions
In the absence of unusual weather, the atmosphere is slowly varying and it can
be assumed to be in equilibrium as first approximation. This enables the vertical
structure to be reasonably well understood. Hydrostatic balance dictates

dp
dz = −ρg, (2.1)

where z is the height coordinate, p is pressure, ρ is air density and g is the gravi-
tational acceleration (approximately constant with height). Additionally, a consti-
tutive relation between pressure and density is needed. The ideal gas law is a good
approximation

p = R

meff
Tρ, (2.2)

where T is the absolute temperature, R is the molar gas constant andmeff = ∑
i fimi

is the effective molar mass. Here fi is the molar fraction of component i and mi is
the corresponding molar mass.
The temperature remains a free parameter that can be modelled in various ways.

The simplest assumption is a constant temperature, in which case the solution of
(2.1) is an exponentially decreasing pressure

p(z) = p0e−z/H , (2.3)

where H = RT
gmeff

. Using g = 9.8 N/kg, meff = 29 g/mol (80% N2, 20% O2) and
T = 270 K ≈ 0 ◦C, the scale height becomes H = 7.9 km.

3



2. Atmospheric structure
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Figure 2.1: Pressure and temperature height profiles measured by a radiosonde
launched from Landvetter Airport on 2016-09-23. The tropopause is indicated by
the horizontal line at 11.3 km.

However, since the atmosphere is transparent to much of solar radiation, it is not
heated directly by the sun, but indirectly by the ground. This makes the lowest
lying air buoyant and mixes the atmosphere. Since the air is locally in equilibrium,
we can expect the atmosphere to be adiabatic. This implies that the temperature
and pressure profiles are such that if an air parcel is moved through the atmosphere
while allowed to expand adiabatically to the surrounding pressure, its temperature
will match the new surroundings.
In an adiabatic atmosphere the quantity p1−γT γ is constant, where γ ≈ 7/5 for

air (since it consists mainly of diatomic molecules). So T = T0 (p0/p)1/γ−1. Plugging
this into (2.2) and (2.1) results in a power law for the pressure

p(z) = p0

(
1− γ − 1

γ
z/H

)γ/(γ−1)

(2.4)

and a linear temperature relation

T (z) = T0(1− γ − 1
γ

z/H), (2.5)

where H is the same as above with T replaced by the surface temperature T0. The
predicted temperature lapse rate is −11 K/km. Interestingly this predicts a sharp
end of the atmosphere at height γ

γ−1H = 3.5 · H ≈ 27 km (since the pressure and
temperature are both zero there). That does not happen in reality.
The real lower atmosphere shows both behaviours. This can be seen in Figure 2.1,

where the height profiles of temperature and pressure measured by a radiosonde
(carried by weather balloon) are shown. In the lowest part (called the troposphere),
the temperature drops approximately linearly with height. However, in this case
with a lapse rate of −7 K/km; significantly lower than predicted. This means that
the atmosphere is not quite adiabatic. The higher up air is positively buoyant
which stabilizes the atmosphere. A more transparent way of showing this is to use

4



2. Atmospheric structure

the potential temperature, which is the temperature an air parcel would get if it were
adiabatically compressed to a reference pressure.
At the tropopause (by definition), the temperature suddenly stops decreasing and

becomes constant. This is the boundary to the stratosphere, which is heated from
above by ultraviolet radiation (to which air is opaque). The potential temperature
therefore increases very rapidly with height, preventing significant vertical stirring.

2.2 Water vapour

The picture is complicated by the existence of water vapour in varying amounts.
Figure 2.2 shows typical water vapour density profiles in the troposphere over west-
ern Sweden. The amount of water is mainly determined by the temperature due
to the strong temperature dependence of its vapour pressure (∼ e−T0/T ). For this
reason, most of the water exists in the lower troposphere where the temperature is
highest. Furthermore, the amount of water varies throughout the year due to the
variation of temperature. In the northern hemisphere, the lowest amount typically
occurs around January–February and the maximal amount around July–August.
Regardless of the season, most of the water vapour (about 95%) is contained in

the lowest 5 km of the troposphere. Therefore, a reasonable height for the simulation
volume is about 5 km. This also sets the necessary width of the volume. If obser-
vations are needed down to elevations of 30◦, then a the volume must be at least
5 km/ tan(30◦) ≈ 10 km wide. Furthermore, this might be needed both “forwards”
and “backwards” increasing the necessary width to 20 km. Finally, the simulation
method used in this thesis generates spatially periodic fields. Hence, 40 km is ad-
visable to avoid artificial correlations.
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Figure 2.2: Mean water vapour density profiles and its standard deviation com-
puted from radiosonde measurements over Landvetter Airport during six years 2010–
2016. Also shown are profiles from individual soundings on three consecutive days.
On the right axis an approximate refractivity scale using effective temperature 270K
(see Section 2.4) is provided.
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Figure 2.3: The average vertical wind profile and its standard deviation obtained
from radiosondes released from Landvetter Airport during 2010–2016. Also shown
are three randomly chosen individual soundings from that period. Furthermore, the
July mean water vapour profile from the same years is overlaid. This is the same
curve as in Figure 2.2.

2.3 The frozen-flow hypothesis
In previous work on statistical modelling of refractive index fluctuations, time de-
pendence has been derived from the frozen-flow hypothesis. In this context, it states
that the refractive index field evolves so slowly that it can be considered to just be
translated by a constant horizontal wind. More precisely, the time evolution of the
refractive index field n is assumed to be

n(~r, t) = n(~r − ~vt, 0), (2.6)

where ~v is horizontal, independent of height and constant in time. It is worthwhile
to investigate the validity of this approximation.
As a first approximation it is very reasonable. It suffices to look at clouds to

see this. Much of the time they seem to move steadily across the sky without
perceptively changing shape. See Figure 2.4 for an example of a cloud moving past.
Although not visible at this temporal resolution, most of the apparent changes come
from the changed viewing angle.
But it is possible to be more quantitative. Figure 2.3 shows the mean wind

speed and its standard deviation during 6 years as a function of height over western
Sweden. In a large part of the troposphere, the mean wind speed is roughly constant
at 10m/s. This is a small justification for the frozen-flow hypothesis. Furthermore,
it immediately provides a typical timescale for the simulation since it means all the
air in a 40 km wide simulation volume will be replaced in about 1 h.
Contrary to the frozen-flow hypothesis, the mean wind speed is not constant the

first few hundred metres. In this boundary layer, the mean wind speed rapidly
increases. Using data from Figure 2.2 reveals that the first 500m contains about
15% of the total water vapour. This corresponds to a delay of several centimetres of

6



2. Atmospheric structure

delay. In addition, the boundary layer is more turbulent than the free atmosphere,
so noticeable deviations from the frozen-flow hypothesis can be expected.
Although the long term mean wind speed is roughly constant in the free atmo-

sphere, wind shear occurs there as well. This can be guessed already from the large
standard deviation in Figure 2.3 and is confirmed by the variations within individual
soundings. Using the same data that was used to generate Figure 2.3, it is found
that the mean wind shear (here defined as

〈∣∣∣d~vdz

∣∣∣〉) in the height range 1–8 km is
about 6 m/s

km with an equally large standard deviation. In comparison, just above the
ground the mean wind shear is 70 m/s

km and at 500m it is 15 m/s
km .

Furthermore, there are some intrinsic variations in the atmosphere. A simulation
that translates a field with height dependent wind, needs instrinsic time dependence
to have stationary statistics. Another more practical reason for needing intrinsic
time dependence will be given in Chapter 3.
Again, clouds are the most easily accessible way to see the phenomenon. See

Figure 2.5 for a view of the edge of a cloud during 50 s. Though the cloud moved
noticeably in that time, the edge was kept in the centre of the frame. The large scale
features clearly remain the same, but the smallest scales on the edge visibly change.
To some extent, the changes involve evaporation and condensation of water vapour
which does not necessarily affect the density of water vapour very much. But, it is
still evidence that small scale change can be observed even during 10 s.

2.4 Refractive index and delay
This description is mainly based on [12] and [13]. The extra time taken for a
signal to propagate through the atmosphere due to a refractive index n (>1) is
∆t = (n − 1)L/c with c being the speed of light. This quantity is conveniently
expressed as the equivalent, excess optical path length ∆L = c∆t = (n − 1)L. At
radio frequencies, the excess refractivity ∆n := (n− 1) can be decomposed into the
effect from the dry components of air and water vapour separately

∆n ≈ k1ρd + k2
ρw
T

+ k3ρw, (2.7)

where ρd/w is the density of the “dry air”/water vapour, T is the temperature and
ki are constants.
Since dry air consist of non-polar molecules, their electromagnetic interaction is

limited to induced polarization and therefore the refractive index depends only den-
sity (the first term of (2.7)). Induced polarization happens in water molecules as
well (third term), but the dominant interaction is with the static dipole moment
(second term). Due to the competition between field alignment and thermally in-
duced rotations, this effect has a temperature dependence. However, the absolute
temperature only varies on the order of 30% in the troposphere, so using an effective
constant temperature in lieu of T in (2.7) is a relatively small error. This is the basis
behind the refractivity scale on the right axis in Figure 2.2.
As mentioned in Chapter 1, the hydrostatic delay can be accurately inferred from

the ground pressure since ∫ ∞
0

gρ(z)dz = p(0) (2.8)

7



2. Atmospheric structure

Figure 2.4: Wide-angle photographs of the sky taken at 10min intervals in Kungs-
backa, Sweden on 2018-05-25. Read left to right and top to bottom. The clouds
move from the lower right to the upper left

Figure 2.5: Comoving photographs of the edge of a cloud taken at 10 s intervals
in Kungsbacka, Sweden on 2018-06-04.
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2. Atmospheric structure

according to (2.1), where ρ = ρd+ρw is the total density. Hence a zenith hydrostatic
delay can be defined as

ZHD :=
∫
k1ρdz = k1p(0)/g. (2.9)

Notice that (2.9) includes some of the contributions of water vapour. It is defined
this way so that it can be accurately inferred from ground measurements of air
pressure. The zenith wet delay can then be defined as the remaining contributions
of water vapour

ZWD =
∫
k2ρw/T + (k3 − k1)ρwdz. (2.10)

These are delays in the zenith direction. The standard way of obtaining delays in
other directions is through mapping functions [14]. The simplest mapping function
is that of a non-curved, horizontally homogeneous atmosphere. Then ∆n is only a
function of altitude z. In the absence of bending, the slant delay ∆L(θ) observed at
elevation θ is

∆L(θ) =
∫

∆n(s sin(θ))ds = 1
sin(θ)

∫
∆n(z)dz = 1

sin(θ)∆L(90◦). (2.11)

Therefore, the mapping function between zenith and slant delay is 1/ sin(θ). This
mapping function used universally in this thesis to obtain equivalent zenith delays
from simulated slant delays.

2.4.1 Measurement methods
There are many methods that can estimate the wet delay. Some are used here to
get some bearings on time and length scales involved. See [15] for further references
and long-term comparison of the methods.
By measuring pressure, temperature and humidity as a function of height, the

refractivity ∆n can be computed from (2.7). Integrating ∆n with respect to height
then provides an indirect estimate of the zenith delay. For meteorological purposes,
such measurements are performed daily by radiosondes carried by weather balloons.
This is one of few methods that can be used to obtain the vertical refractivity profile.
On the other hand, the horizontal and temporal resolution is limited.
Figure 2.6 shows the wet and hydrostatic zenith delays at Landvetter Airport

during three years obtained by this method. The maximum variations in both types
of delay are of the same magnitude. There is no clear trend in the hydrostatic delay,
but there is a clear seasonal trend in wet delay due to varying temperatures. Large
variations from one day to the next are also seen.
The presence of water vapour can be directly measured using water vapour ra-

diometry. The principle is to measure the intensity of thermal radiation at two
frequencies close to 22.2GHz; where water vapour has a weak emission/absorption
peak. The measured quantity is a temperature weighted integral of the water vapour
density within the antenna beam. Unfortunately, this is a different weighting than
that determining the delay (2.10), so the vertical profiles must be modelled. These
models are typically obtained from nearby radiosonde launches. Water vapour ra-
diometers can typically be sampled once per 1–10 s and measure in narrow (~5◦)
beams allowing local structure to be mapped.

9
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Figure 2.6: The hydrostatic (ZHD) and wet (ZWD) zenith delays during three
years at Landvetter Airport 57◦N computed from radiosonde data obtained from
the IGRA[16] (station SWM00002527) using equations (5.14) and (5.18) from [12].

The total tropospheric delay can be directly estimated using GNSS receivers. By
subtracting the hydrostatic delay (obtained from measurements of ground pressure
(2.9)) from the total delay, an estimate for the wet delay is obtained. This also
allows mapping of local structure, but the directions are fixed by satellite orbits.
A much less direct, but also simpler, approach is to measure ρw at surface (via

temperature and humidity). It can be expected to be proportional to the total
amount of water vapour in the local atmosphere on sufficiently long timescales.
The relation between delay and ρw can be expected to have an additional seasonal
dependence due to varying vertical temperature profiles.
Lastly, meteorological data from many sources are combined with fluid dynamics

in numerical weather models for forecasts and interpolation. Ray tracing through
the output of such a model can be used to compute delays. For instance that was
done in [10].

2.4.2 Measured characteristics

In Figure 2.7, the zenith wet delay over Onsala Space Observatory as estimated from
the aforementioned methods during July 2016 are shown. Additionally, a smoothed
ground based model is included. The estimated delay from that method is just
ρw×1.39 cm/(g/m3), where ρw is measured at a ground based weather station. The
numerical coefficient was obtained from linear regression between daily means of
ZWD from GPS measurements and ρw. It predicts the wet delay to near centimetre
accuracy on some days, but deviates wildly on others. For instance on day 6 and 23
in Figure 2.7a. Interestingly, GPS and radiometer estimates often disagree on the
centimetre level.
A more quantitative way to show the fluctuations in zenith delay is through prob-
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Figure 2.7: Zenith wet delay during July 2016 estimated from radiometry, GPS
and a ground based model over Onsala Space Observatory. Additionally, delays
obtained from radiosonde launches at the nearby Landvetter Airport are included.
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ability density and structure function of delay increments

∆ZWD(∆t) := ZWD(t+ ∆t)− ZWD(t). (2.12)

For data with a wide range of time scales, it is preferable to work with ∆ZWD instead
of ZWD directly, since this naturally filters out longer time-scales. An alternative is
spectral methods, but for that to be well defined, several of the longest periods must
be contained in the data. By observing many t-values, an empirical distribution of
∆ZWD(∆t) is obtained. We can also define an empirical structure function

S(∆t) :=
〈
∆ZWD(∆t)2

〉
, (2.13)

where the expectation is the mean over all available t-values.
Both empirical probability distributions and structure functions measured by GPS

are presented in Figure 2.8 at Onsala Space Observatory (57◦ N) as well as the
Brazilian city Recife at latitude 8◦ S during June–September 2016. Since the RECF
site is located near the equator, there is a much less pronounced seasonal dependence.
The delays are significant and of similar magnitude throughout the year.
The probability density is Gaussian only for the smallest ∆t. It should be noted

that in this regime, ∆ZWD might be dominated by noise, since the uncertainty
estimate is 0.25 cm (for both datasets). For larger time differences, the tails of the
distribution grow increasingly fat; appearing to fall off linearly instead of quadrat-
ically (in logarithmic scale). This is characteristic of PDFs of turbulent quantities.
Interestingly, the deviation from normality is smaller for measurements from the
tropical RECF station than the continental1 ONSA station.
The structure functions display the same behaviour for ∆t < 1 h, but with about

1.5 times larger fluctuations at RECF. For longer periods the fluctuations are larger
1According to the Köppen climate classification.
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Figure 2.8: Statistics of increments of ZWD estimated from GPS during June–
September 2016 at Onsala, Sweden and Recife, Brazil. In (a) & (b) the unnormalized
probability density function of ∆ZWD(∆t) are plotted for various ∆t indicated by
text next to the curves on a logarithmic scale. The dotted lines are Gaussians with
the same variance as the observations. In (c) the second order structure function is
plotted as a function of ∆t on a log-log scale. The dotted line has log-log slope 1.
Here ZWD(t) is sampled once per 5min.
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2. Atmospheric structure

at ONSA. This can be interpreted as RECF having more consistent turbulence while
ONSA has larger day to day variations. When ∆t approaches one week, the ONSA
structure function has saturated, but the RECF-curve still has an upward trend.
At and below the 1 h timescale the structure function follows an approximate power
law; nothing spectacular happens. So 1 h is not a special physical timescale, it is only
an important timescale in simulations. Just like 40 km is not a physically significant
length scale.
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Chapter 3

Tropospheric turbulence

Turbulence is ubiquitous in macroscopic fluid dynamics, and the most macroscopic
fluid on the Earth is the atmosphere. The Reynolds number Re = uL/ν (where u,
L and ν are respectively a characteristic velocity, length and kinematic viscosity)
is a dimensionless quantity that can be used to predict if a flow is turbulent. The
threshold Reynolds number above which turbulence occurs is usually around 103–105

depending on geometry. In the lower troposphere u ≈ 10 m/s (see Figure 2.3) and
ν ≈ 10−5 m2/s at standard conditions [17, T-1.5]. There are many length scales
involved, but even with L as small as 1m, the Reynolds number is

Re = uL

ν
∼ 106. (3.1)

This is well into the turbulent regime, so turbulence must have a central role in
any microscale description of the atmosphere. Particularly when dealing with rapid
fluctuations.
There is no precise definition of what a turbulent flow is; only a collection of

symptoms that together makes a flow fall under that label [18]. The central idea
behind turbulence is a cascade process wherein energy is extracted at large scales
forming coherent, but unstable, flow patterns which are continuously broken up into
smaller flow features. This process is sketched in Figure 3.1. The breakup process
continues until the features are small enough for viscous forces to dominate over
inertia. However, a fractal-like cascade process is not enough for a flow to be called
turbulent. It must also be irregular in both space and time. This irregularity is the
basis of statistical descriptions of turbulence.

3.1 Kolmogorov turbulence

The most widely used theory of turbulence is a scaling analysis originally brought
to light by Kolmogorov in 19411. The version presented here is different and less
rigorous than the original, but also more accessible.

1The original articles are in Russian. References to the original papers as well as some expansion
of the old ideas are provided in [19, 20].
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3. Tropospheric turbulence

Time
Figure 3.1: Sketch of how large scale coherent structures recursively break up
into smaller structures due to instability; eventually forming intricate fractal-like
patterns; one of the characteristics of turbulence.

3.1.1 Microscales
The assumptions are that an incompressible fluid is put into statistically homoge-
neous and isotropic turbulent motion through some unspecified method. This en-
ables dimensional analysis to be employed2. Of course, for the atmosphere neither
of these assumptions is valid due to the strong vertical dependence. For instance,
the pressure at 5 km is only half that at sea level. Therefore, at best, the theory can
only be applied locally. The behaviour at large scales has to be obtained by some
phenomenological extension.
The first question to ask is at what length scale the fluid becomes smooth (dissi-

pation dominated). These small scales are far removed from the forces driving the
turbulence, so the only available quantities is the fluids kinematic viscosity ν [m2/s]
and the amount of power dissipated per unit mass ε [W/kg = m2/s3] (since the
density is constant, this it is directly proportional energy dissipation per volume).
The only length and time scales that can be formed from these quantities are

` = ν3/4ε−1/4 and τ = ν1/2ε−1/2. (3.2)

To estimate the scales (3.2), the dissipation ε is needed. It can be estimated from a
characteristic velocity U and length L as ε ∼ U3/L. As shown in Figure 2.3, velocity
gradients as large as 5 m/s

km can sometimes be sustained over vertical distances as large
as 1 km. Hence a reasonable range of velocity scales U is 1–5m/s on a length scale
of L = 1 km. This range inserted into (3.2) yields ` = 0.3–1 mm and τ = 0.01–0.1 s.
Clearly the `-scale cannot be resolved in a simulation stretching 5 km into the air;
which is the height needed to contain most of the water vapour (see Figure 2.2).
The significance of the characteristic time τ is that only for periods shorter than

that is the frozen flow hypothesis is valid on all length scales. However, on periods
of order τ , the field can only change significantly on length scales of order `. Longer
length scales should change more slowly. At this point it is unclear how to quantify
that relation. This will be considered in some detail in Section 3.1.3. Still, notice
that τ is somewhat closer to observational timescales than `.

2I will here denote dimensions with the symbols of SI units that have such a dimension. Firstly
to avoid confusion with actual lengths and times. Secondly because there are many short forms
for relevant combinations of base dimensions such as W, Pa, N etc.
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3. Tropospheric turbulence

3.1.2 Spatial structure of the inertial subrange
At larger scales (but still small enough to be in the isotropic regime) we can ask
how much energy resides at each scale. Suppose there is such an energy distribution
E(k)dk (where k [m−1] denotes wavenumber) with the property that the total energy
contained in turbulence per unit mass is

∫∞
0 E(k)dk [m2/s2]. Since the dimension

of k is m−1, the dimension of E is m3/s2. At scales larger than (3.2), viscous forces
have a negligible impact on the dynamics of the breakup process. Therefore ν should
not influence E(k) for k � `−1. Thus the only available quantities to form E are ε
and k, which implies

E(k) ∼ ε2/3k−5/3. (3.3)

This is the famous Kolmogorov 5/3-law.
One way to to relate E(k) to flow quantities is through the spatial power spectral

density Φ(~k) of the instantaneous velocity field ~u(~r). It can be defined as

Φ(~k) := (2π)−3 1
V

∣∣∣∣∫
V
~u(~r)e−i~k·~rd3~r

∣∣∣∣2 , (3.4)

in the limit of large volume V . A version of Plancherel’s theorem then states

1
V

∫
V

1
2 |~u(~r)|2 d3~r = 1

2

∫
Φ(~k)d3~k, (3.5)

where the left hand side can be recognized as the average kinetic energy per mass
(to see this, divide and multiply with the density). Due to isotropy, Φ is a function
only of k =

∣∣∣~k∣∣∣ and hence we can identify

E(k)dk ∼ Φ(k)k2dk. (3.6)

This results in the scaling
Φ(k) ∼ ε2/3k−11/3. (3.7)

There is an equivalent description in real space in terms of the structure function

D(~r) :=
〈
|~u(~x+ ~r)− ~u(~x)|2

〉
∼ ε2/3 |~r|2/3 , (3.8)

the average 〈·〉 being taken over ensembles, space (~x) and/or time. This can be seen
directly from a dimensional analysis. An alternative viewpoint is that |~r|2/3 is, apart
from some constants, the distributional Fourier transform of

∣∣∣~k∣∣∣−11/3
.

3.1.3 Temporal structure of the inertial subrange
As described in Section 2.3, previous statistical treatments have used the frozen
flow hypothesis to describe time-evolution according to (2.6). But as demonstrated
by Figure 2.5, visible changes in cloud shape occur in 10 s on short length scales.
Thankfully, for Kolmogorov turbulence, it is straightforward to derive a temporal
structure function/spectrum using the same method as in the last section to account
for such intrinsic change.
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3. Tropospheric turbulence

As before, the most elementary quantity to work with is the structure function

D(t) :=
〈
|~u(T + t)− ~u(T )|2

〉
. (3.9)

With the same reasoning as above, D(t) can only depend on ε and t. The only
possibility is

D(t) ∼ εt. (3.10)

Interestingly this scaling is exactly the same as for Brownian motion.
The same result can be expressed in terms of the temporal power spectral density

Φ(ω) := (2π)−1 1
T

∣∣∣∣∣
∫ T

0
~u(t)e−iωtdt

∣∣∣∣∣
2

(3.11)

which satisfies
∫∞
−∞Φ(ω)dω = 1

T

∫ T
0 |~u(t)|2 dt. The only combination of ε and ω

producing the correct dimension is

Φ(ω) ∼ εω−2. (3.12)

A combined spatio-temporal structure function D(~r, t) =
〈
|~u(~r, t)− u(0, 0)|2

〉
and

corresponding spectrum Φ(~k, ω) (which has units (m/s)2 · m3 · s = m5s−1) can be
defined, but cannot be determined from dimensional analysis alone. This is because
a dimensionless quantity

α(k, ω) = εk2ω−3 (3.13)

can be formed. Therefore Φ can have an arbitrary dependence on α. There are many
ways to parametrise the spectrum. One which will prove natural in Section 3.4.2 is

Φ(~k, ω) = ε2/3k−11/3ω−1ϕ(α), (3.14)

where ϕ is an arbitrary function. It is straightforward to verify that the marginal
spectra

∫
Φ(~k, ω)dω and

∫
Φ(~k, ω)d3~k reduce to the scalings (3.7) and (3.10) respec-

tively. Simply use (3.14) and change integration variable to α.
Equivalently, (3.13) can be thought of as defining a dispersion relation relating

spatial scales to temporal scales. In frequency space k ∝ ε1/2ω3/2 or in real space
L ∝ ε−1/2T 3/2. L can be interpreted at the characteristic length scale of intrinssic
changes during periods of order T .

3.1.4 Convection by turbulence

The results of the previous sections were strictly for the flow velocity of incompress-
ible, homogeneous, isotropic turbulence. But in this thesis it is the scalar field of
water vapour density that is of interest. In the literature, the same spatial structure
∝ r2/3 is universally used, but I have not been able to access a reference for that.
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3. Tropospheric turbulence

3.2 Existing applications to signal delay
In most existing work, it is assumed that the refractivity field can be described using
Kolmogorov theory for the convection of a passive scalar by isotropic turbulence.
Sometimes this is used as a starting point for phenomenological structure functions
and spectra that don’t diverge on long scales (as do (3.8) and (3.7)). See for instance
Ishimaru (1972) [21] for a spectral description and Treuhaft & Lanyi (1987) [22] for a
“structural” description. The temporal structure is without exception obtained from
the frozen flow hypothesis. This is used to obtain a temporal spectrum, covariance
or structure function of the signal of interest by integrating over the 4D statistics.
Using covariance matrices computed in this way to generate random signals has

been done by at least two authors [8, 9]. However in most existing literature, the
predicted signal statistics are compared directly to measured statistics. Without
generating any stochastic signals in between.
On short time and length scales (orthogonal to the signal path) excellent agree-

ment between model and specific experiments has been found for some observables.
At microwave frequencies, see [21] which analyzes data from an experiment [23]
where microwave signals travelled along a 65 km slanted path between two Hawai-
ian islands. In the optical regime, an experiment in similar spirit [24] was carried out
with a laser beam propagating over flat land or a lake for 0.25–16 km. Agreement
was found here as well, at least for second order structure functions.
Comparing [23] with typical GNSS and radiometer data, their lowest frequency

data point has a period of 100 s which is not much slower than the sampling rate
achievable with GNSS and radiometers. Furthermore, in these experiments the
length scales probed orthogonal to the path were very limited. Therefore the success
of these experiments say little about the applicability of the turbulence models to
refractivity fields of size 10 km.
At longer time and length scales the most relevant articles might be [25, 26] that

apply the theory to GPS signals and [27] that applies it to water vapour radiometer
observations. In both cases, qualitative agreement between model and experiment is
found. Quantitatively it is much less certain. In part due to limited statistics, which
is a consequence of measuring on long timescales. Furthermore, for measurements
lasting days, the model parameters cannot be expected to remain constant.

3.3 Gaussian random fields
In Section 3.1, scaling relations for structure functions and spectra were derived in
the simplest existing turbulence model. The next task is to find some way to com-
pute random fields having a given structure. One natural way is through Gaussian
random fields. The main reason is practical; Gaussian fields have several properties
that make them analytically and computationally tractable. Furthermore, errors
and disturbances are very often modelled that way. However, as will be discussed in
Chapter 5, there are many reasons to distrust this assumption. Especially in light
of Figure 2.8 which shows directly that observed wet delays are non-Gaussian.
A d-dimensional Gaussian random field f is a random function f : D → R
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3. Tropospheric turbulence

with D ⊂ Rd such that for any ~r1, · · · , ~rn ∈ D, the quantities f(~r1), · · · , f(~rn)
are random variables with a multivariate normal distribution. This imposes strong
restrictions on the statistics of the field. The most important in this context is that
it is completely characterised by its mean µ(~r) and covariance C(~r1, ~r2) functions

µ(~r) := 〈f(~r)〉 , C(~r1, ~r2) := 〈(f(~r1)− µ(~r1)) (f(~r2)− µ(~r2))〉 (3.15)

since this determines the probability distribution of any finite sample. In the sequel,
all fields will be assumed to have µ ≡ 0 since this simplifies the equations. If
some field of interest has non-zero mean, it can be transformed away with f(~r) →
f(~r)− µ(~r), so there is no loss of generality.
The properties of interest follow directly from two properties of multivariate nor-

mal distributions: they are closed under linear combinations and limits. To be
precise, let ~ξ = (ξ1, · · · ξn) be a Gaussian random vector meaning that it follows
a multivariate normal distribution; for instance it could be a sampled Gaussian
random field. Then any vector (η1, · · · ηm) formed from linear combinations of the
ξ:s

ηi =
n∑
j=1

Aijξj, (3.16)

also follows a multivariate normal distribution. Secondly, any sequence ~ξ1, ~ξ2, · · · of
Gaussian random vectors whose mean vectors ~µi :=

〈
~ξi
〉
and covariance matrices

Ci :=
〈
~ξi~ξ

T
i

〉
converge (in Rn and Rn2 respectively), converges in distribution to

a multivariate normal distribution with mean µ = limi→∞ µi and covariance C =
limi→∞Ci. These properties ensure that any sums and integrals (for instance of the
Fourier type) of Gaussian fields remain Gaussian fields/vectors.
Not all functions can be covariance functions. From the definition (3.15), it fol-

lows directly that a covariance function must be symmetric C(~r1, ~r2) = C(~r2, ~r1).
Furthermore, for any finite set of points ~r1, · · · , ~rn, the covariance matrix Cij =
〈f(~ri)f(~rj)〉 = C(~ri, ~rj) must be positive semi-definite. In general it is not easy to
characterize these functions, but it is possible in the special case of homogeneous
fields.
A homogeneous Gaussian field is invariant under translations. More precisely its

covariance function has the property

C(~r1, ~r2) = C(~r1 − ~r2). (3.17)

Define the Fourier transform of the d-dimensional Gaussian field f as

f̂(~k) :=
∫
f(~r)e−i~k·~rdd~r. (3.18)

Using the properties mentioned above, it can be proved that f̂ is a complex-valued
Gaussian field3 . Since f̂ is complex, both the covariance

〈
f̂(~k1)f̂ ∗(~k2)

〉
and pseudo-

covariance
〈
f̂(~k1)f̂(~k2)

〉
are needed to completely specify it. But due to f(~r) being

3Note however that (3.18) doesn’t converge in the normal sense4 for homogeneous fields. Still,
it is meaningful in a distributional sense.

4With probability 1, f(~r) will be such that the integral is not be absolutely convergent.
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3. Tropospheric turbulence

real, its Fourier transform satisfies f̂(−~k) = f̂ ∗(~k) so both functions can be computed
at the same time: 〈

f̂(~k1)f̂(~k2)
〉

=
∫ ∫

〈f(~r1)f(~r2)〉 e−i~r1·~k1−i~r2·~k2dd~r1dd~r2

{(3.15) and (3.17)} =
∫ ∫

C(~r1 − ~r2)e−i~r1·~k1−i~r2·~k2dd~r1dd~r2{
~r = ~r1 − ~r2, ~R = (~r1 + ~r2)/2

}
=
∫ ∫

C(~r)e−i~R·(~k1+~k2)e−i~r· 12(~k1−~k2)dd~rdd ~R{∫
e−i~x·~kdd~x = (2π)dδ(~k)

}
= (2π)d δ(~k1 + ~k2)

∫
C(~r)e−i~r·~k1dd~r. (3.19)

Hence, to the extent allowed by the identity f̂(−~k) = f̂ ∗(~k), the Fourier-transformed
field consists of circular5 Gaussians independent for each ~k. This is the motivation
for spectral simulation methods.
Due to the δ-function in (3.19), the frequency domain variance is infinite in some

sense. That makes it more convenient to work with the spectrum Φ(~k) defined as

Φ(~k) = 1
(2π)d

∫
C(~r)e−i~r·~kdd~r ⇐⇒ C(~r) =

∫
Φ(~k)ei~r·~kdd~k. (3.20)

The symmetry C(−~r) = C(~r) implies that Φ is real. Furthermore, C is positive
semi-definite so for any real function f

0 ≤
∫
C(~r1 − ~r2)f(~r1)f(~r2)dd~r1dd~r2 =

∫
C(~r)f(~R + ~r)f(~R)dd ~Rd~r

=
∫
C(~r)F (~r)dd~r, (3.21)

where F (~r) :=
∫
f(~R)f(~R + ~r)dd ~R is the autocorrelation of f . Writing F in terms

of the Fourier transform f̂ = F [f ] we get

F (~r) =
∫
f̂(~k1)f̂(~k2)ei~R·~k1+i(~R+~r)·~k2dd ~Rdd~k1dd~k2

= (2π)d
∫
δ(~k1 + ~k2)f̂(~k1)f̂(~k2)ei~r·~k2dd~k1dd~k2

= (2π)d
∫
f̂(~k)f̂(−~k)e−i~r·~kdd~k.

Since f is real we have that f̂(~k)f̂(−~k) =
∣∣∣f̂(~k)

∣∣∣2 ≥ 0. Plugging this into (3.21) we
immediately obtain

0 ≤ (2π)d
∫
C(~r)e−i~r·~k

∣∣∣f̂(~k)
∣∣∣2 dd~rdd~k = (2π)2d

∫
Φ(~k)

∣∣∣f̂(~k)
∣∣∣2 dd~k. (3.22)

Since f can be chosen arbitrarily,
∣∣∣f̂ ∣∣∣2 can be arbitrarily well localized6. Therefore

the statement that C is positive semi-definite is equivalent to the spectrum being
non-negative Φ(~k) ≥ 0. All under some unspecified regularity conditions.

5A circular Gaussian random variable has independent and identically distributed Gaussian real
and imaginary parts.

6Apart from the ±~k symmetry, but that is possessed by Φ as well.
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3. Tropospheric turbulence

3.4 Simulation methods for Gaussian fields
A very general and direct method to generate a sample f(~r1), . . . f(~rn) of a zero
mean Gaussian field is the following:

1. Assemble the discrete covariance matrix Cij = C(~ri, ~rj). O(n2)
2. Compute a Cholesky decomposition C = RRT . O(n3)
3. Generate a vector ξ = (ξ1, . . . ξn) of independent unit variance normal vari-

ables. O(n)
4. Compute X = Rξ. O(n2)

The vector X now has the same distribution as (f(~r1), . . . f(~rn)) since it’s a zero
mean multivariate normal distribution with covariance matrix〈

XXT
〉

= R
〈
ξξT

〉
RT = C. (3.23)

The last equality uses that
〈
ξξT

〉
is the identity matrix.

Due to the O(n3) cost, this is infeasible for generating samples on regular grids
in 2D and 3D. If the number of gridpoints in one direction of a d-dimensional grid
is N , then the cost of step 2 is O(N3d).

3.4.1 Direct FFT method
This is the method used to generate refractivity fields in this thesis. As shown above,
the Fourier transform of a homogeneous Gaussian field is independent noise with a
particular variance. The same turns out to be true for homogeneous periodic fields
in a discrete setting, allowing the efficiency of the Fast Fourier Transform (FFT) to
be leveraged.
To show this, let f̂~k be a regular d-dimensional array of shape N1 × · · · × Nd

containing independent circular Gaussians with variance 2Φ~k (the imaginary and
real parts are independent and each has variance Φ~k). Then set7

f~r = Re
∑

~k

f̂~ke
2πik̃·~r

 = 1
2
∑
~k

f̂~ke
2πik̃·~r + c.c. (3.24)

Here ~k = (k1, . . . kd) is an integer vector, k̃ = (k1/N1, . . . kd/Nd) and c.c. is shorthand
for “complex conjugate of the preceding expression”. The sum goes over all unique
values of ~k with 0 ≤ ki < Ni and to make the sum interpretable as a DFT (Discrete
Fourier Transform), ~r is any integer vector from the same set as ~k. The covariance
of f~r is

〈f~r1f~r2〉 = 1
4

〈∑
~k

f̂~ke
2πik̃·~r1 + c.c.

∑
~k

f̂~ke
2πik̃·~r2 + c.c.

〉

= 1
4
∑
~k1,~k2

(〈
f̂~k1
f̂~k2

〉
e2πi(k̃1·~r1+k̃2·~r2) +

〈
f̂~k1
f̂ ∗~k2

〉
e2πi(k̃1·~r1−k̃2·~r2)

)
+ c.c., (3.25)

7It turns out that the imaginary part of (3.24) (before the “Re”) has the same distribution and
is independent of the real part, but that is not shown here.
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where the identity

(z1 + z∗1) (z2 + z∗2) = z1z2 + z1z
∗
2 + z∗1z2 + z∗1z

∗
2 = (z1z2 + z1z

∗
2) + c.c. (3.26)

was used. The first term of (3.25) is zero since the f̂~k were taken to be circular,
while the second is

〈
f~k1
f ∗~k2

〉
= 2δ~k1~k2

Φ~k1
. Thus

〈f~r1f~r2〉 = 1
4
∑
~k

2Φ~ke
−2πi~k·(~r1−~r2) + c.c. =

∑
~k

Φ~ke
−2πi~k·(~r1−~r2), (3.27)

where the last step makes use of the symmetry Φ~k = Φ−~k (this also ensures that
the expression is real). This shows that the array f~r forms a multivariate normal
distribution which is homogeneous (in a periodic sense) since 〈f~r1f~r2〉 = C~r1−~r2 only
depends on the difference of the indices (interpreted periodically).
For ~r on an integer grid, (3.27) shows that C~r is the DFT of Φ~k. To produce a

field with given covariance C~r, the spectrum should be chosen as

Φ~k = 1
N1 · · ·Nd

∑
~r

e2πi~k·~r, (3.28)

which can be computed efficiently with FFT. In practice, Φ~k computed in this way
is sometimes not exactly positive and real. Taking the absolute value is advisable
and is a negligible error.
It is also possible to simulate a field with a given spectrum Φ(~κ). In principle it

can be put it in the place of Φ~k, but to get the absolute scale right for all choices of
grid resolution N1 × . . .×Nd and size L1 × . . .×Ld it is necessary to be a bit more
precise. An approximation of the Fourier integral is

C(~ρ) =
∫

Φ(~κ)ei~κ·~ρdd~κ

≈∆κ1 · · ·∆κd
∑
~k

Φ(k1∆κ1, · · · , kd∆κd)ei(∆κ1k1ρ1,··· ,∆κdkdρd), (3.29)

where ∆κi = 2π
Li
. So for (3.27) to have the right size we must set

Φ~k = 1
∆κ1 · · ·∆κd

Φ(k1∆κ1, · · · , kd∆κd). (3.30)

Note that this diverges as Ld so that the δ-function in (3.19) is reproduced as L→∞.
Convergence of the discretization (3.29) is a bit tricky. Increasing the number

of grid points N only helps resolve large ~k. Increasing the size of the volume L
increases resolution for small ~k while cutting it off earlier for large ~k. Satisfying any
of these requirements is impossible when C and Φ are given by power laws since
their transforms don’t converge in the normal sense.
The computational complexity of this method is the same as for a d-dimensional

FFT: O(Nd logN). But, the FFT comes with a prize: the generated fields are
automatically periodic. The covariance is only exact for relative distances smaller
than L/2 in any direction.
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3.4.2 Time evolution
In all previous work referenced in this thesis, the frozen flow hypothesis was used to
introduce time dependence. The interpretation being that a fixed spatial structure
is moved over a “measurement site” by a constant wind ~v. The refractivity field will
then satisfy

n(~r, t) = n(~r − t~v, 0). (3.31)
But, that is not compatible with a finite volume. A natural solution is to use periodic
fields, but then a highly artificial periodicity is introduced. The approach taken here
is to use a periodic field with intrinsic time dependence.
In principle, the time variable is no different from the space variables. The re-

fractivity can be considered to be a 4-dimensional random field instead of a 3-
dimensional one. However, keeping O(N4) numbers in memory at the same time is
not an option. Instead it would be better if the next time step could be computed
by updating the current field. With such a time evolution, the field is a Markov
process; its future evolution depends only on its last known value. The approach
taken in this thesis is a combination of (3.31) (with periodic boundary conditions)
with a gradual randomization to gradually decorrelate the field enough to avoid
periodicity.
Since each wavenumber mode f̂~k is independent, it is reasonable to assume that

they evolve independently as well. The evolution will have to be some bounded
random walk so that the variance of f̂~k remains Φ~k. The simplest Gaussian process
with this property is the Ornstein-Uhlenbeck process (in discrete time it can be
thought of as an AR(1)-process). It has covariance

C(∆t) = Φ~ke
−γ|∆t|. (3.32)

and its time evolution is given exactly by

f̂~k(t+ ∆t) = βf̂~k(t) +
√

Φ~k(1− β∗β)ξ (3.33)

where β = e−γ∆t and ξ is a circular normal random variable with zero mean and vari-
ance 2. If γ is given a non-zero imaginary part (3.33) still works (but the covariance
function must be modified). Then f̂~k will resemble a noisy driven harmonic oscillator.
A purely imaginary γ results in deterministic time evolution f̂~k(t) = e−i Im(γ)tf̂~k(t).
This kind of time evolution was used in 1970 by Kraichnan [28] for computational
study of turbulent diffusion. But the timescale was chosen arbitrarily.
The simplest choice of γ is to make the field decorrelate in the time it takes the

volume to move one period. A constant windspeed vx in the x-direction requires
γ ∝ vx/Lx

vx

Lx
. Is this consistent with Kolmogorov theory? If γ is a real function of

~k, then the spatiotemporal spectrum can be written as

Φ(k, ω) ∝
∫ ∞
−∞

e−γ(~k)|t|+iωtdt = −1
iω − γ(~k)

+ 1
iω + γ(~k)

= 2γ(~k)
γ(~k)2 + ω2

. (3.34)

Supposing that the variance of f̂~k scales as in Kolmogorov theory

Φ(k, ω) ∝ ε2/3k−11/3 2γ(k)
γ(k)2 + ω2 = ε2/3k−11/3ω−1 2 (γ(k)/ω)

(γ(k)/ω)2 + 1
. (3.35)
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3. Tropospheric turbulence

This is of the allowed form (3.14) only when γ(k)/ω is some function of α from
(3.13). The only possibility is γ(k) = ε1/3k2/3. This choice causes small scales (large
k) to decorrelate more rapidly than large scales (small k) as would be intuitively
expected.
Moving the field can easily be done at the same time with a phase shift

f̂~k(t+ ∆t) = f̂~k(t)e
i~k·~v(t)∆t (3.36)

which can be done to to no additional cost when applying (3.33). Note that the
velocity ~v is allowed to be time dependent.
However, more general wind phenomena can emulated. In the spatial domain,

it is possible to translate each horizontal layer independently allowing for a height
dependent wind, but it can be done more easily by mixed frequency and real space
descriptions. Let f̃~k‖,z

be the 1D FFT along the z-direction of f̂~k (roughly equivalent
to a 2D FFT along the x- and y-axes of f~r). Now,each layer can be moved separately
using the update rule8

f̃~k‖,z
(t+ ∆t) = f̃~k‖,z

(t)ei~k‖·~v(z,t)∆t. (3.37)

Then f̃~k‖,z
can be transformed back to frequency space or to real space with an

additional FFT.
There are two advantages of doing this in mixed space rather than real space:

Firstly, it provides automatic, non-degrading interpolation when the field is trans-
lated a non-integer number of grid points. Secondly, it simplifies the programming.
All the heavy lifting involving movement of data is performed by an efficient and re-
liable FFT implementation. When programming, it is sufficient to do element-wise
multiplications and call the FFT routine.
This removes another assumption of the frozen flow hypothesis and enables mea-

sured wind profiles to be used, even into the planetary boundary layer.
Note that although (3.37) and (3.33) are both linear, they not commutative for

arbitrary ∆t. They do however commute assymptotically in the limit of small ∆t.

3.4.3 Other methods
There are two other methods than the FFT-scheme presented above that would be
feasible to generate 3D fields: circulant embedding and the turning bands method.

3.4.3.1 Circulant embedding

Computationally this is somewhat similar to the FFT method since it involves using
FFTs to diagonalize covariance matrices. But the theoretical justification is very
different. While the FFT method works directly with pairwise covariances, the
circulant embedding approach works with covariance matrices. See [29] and [30] for
mathematical and algorithmic details. Below follows a brief descripton.
When the grid coordinates are oriented in a natural way, covariance matrices

have the Toeplitz symmetry property (in higher dimension, block Toeplitz). The
8Strictly, in the time-dependent case ~v(z, t)∆t should be replaced by

∫ t+∆t

t
~v(z, t′)dt′.
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3. Tropospheric turbulence

construction is then based on two theorems. The first being that any (block) Toeplitz
matrix can be embedded in a (block) circulant matrix. A circulant matrix can be
represented by a 1d sequence ci of the same length as the matrix size. In the block
circulant case, representation is a d-dimensional array ci,j,...k. The second theorem is
that the d-dimensional DFT, written in unitary matrix form Q, diagonalizes the cir-
culant matrices; i.e. Λ = QHCQ is diagonal. Here QH is the hermitian transpose of
Q or, equivalently, a matrix representation of the inverse DFT. Independent normal
random variables can be generated in the diagonalized space and then transformed
back to real space using an FFT.
It appears this method has only small advantages over the simplistic FFT method.

It generates aperiodic fields, but so does the FFT method if the volume is truncated.
Furthermore, there is an added complexity in the fact that the circulant embedding
is sometimes not exactly positive definite. However, the biggest problem with this
method for the intended application is that time evolution is difficult to achieve. For
that periodicity is a desired property since translations have no artificial boundaries.

3.4.3.2 Turning bands method

The turning bands method seems to be common in geological applications. See [31]
for an example implementation and further references. It can be seen as a special
case of more general methods where a random field f(~r) is approximated as a sum
of a large number of independent random basis functions

f(~r) =
n∑
i=1

ξi(~r). (3.38)

The basis functions are chosen such that their structure functions have the sought
after form in an ensemble sense〈(

ξi(~R + ~r)− ξi(~R)
)2
〉

= D(~r). (3.39)

But each individual ξi is usually highly regular, for example sinusoidal plane waves
ξi(~r) = Ai cos(~ki · ~r + ϕi) where Ai, ~ki and ϕi are random variables. In the limit of
large n, f converges towards a Gaussian random field with structure function D(~r).
The FFT-method detailed in Section 3.4.1 can be seen as a variant of this method

where only the amplitudes and phases are randomized and the wavenumber takes all
values on a grid. There are two significant differences: Firstly that the FFT-method
is exact. Secondly that the sum in (3.38) can be evaluated very efficiently using
FFT.
Generating regular d-dimensional grids with a turning bands method is relatively

expensive since the cost is O(nNd) and n needs to be much larger than log(N). The
potential advantage of this method is that no grid is needed, only the parameters
of the basis functions. If basis functions are chosen such that line integrals can be
evaluated analytically, this would be a strong competitor to grid based methods for
the application considered in this thesis.

25



3. Tropospheric turbulence

3.5 Log-normal random fields
The use of zero mean fields above rests on the interpretation that the fields are a
fluctuation from some mean µ(~r) that varies on a much longer timescale. Keeping
in mind that refractivity is a positive quantity, another aesthetically pleasing way
to add a mean level is by exponentiation

n(~r) = µ(z)eδ(~r) (3.40)

where µ(z) is an expected mean refractivity profile and δ(~r) is some random relative
deviation. To emulate Figure 2.2, the variance of δ(~r) can be chosen as σ(z)

µ(z) , where
σ is the standard deviation as a function of height. For nearby points the structure
function of n is approximately〈(

n(~R + ~r)− n(~r)
)2
〉
≈ µ(Z)

〈(
eδ(~R+~r) − eδ(~r)

)2〉
. (3.41)

If the variance of δ is much smaller than 1 this can be Taylor expanded to obtain〈(
n(~R + ~r)− n(~r)

)2
〉
≈ µ(Z)

〈(
δ(~R + ~r)− δ(~r)

)2
〉
. (3.42)

Therefore n will have a structure function very similar to that of δ.
If δ(~r) is simulated as a Gaussian random field, then n(~r) will be a log-normal

random field. This is attractive for two reasons: Firstly because n(~r) is strictly pos-
itive. Secondly because the simulated signals will no longer be normal distributed,
but might be able to replicate the non-Gaussian tails seen in Figure 2.8.
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Chapter 4

Implementation

The python software developed in this thesis to generate atmospheric signal delay is
provided at https://github.com/hengin/StochasticTurbulenceGeneration. It
splits naturally into two modules: generation of refractivity fields and integration
over such fields to produce signal delays. They are described in their own sections
below. Furthermore a simple plotting utility for visualizing 3D fields was created
using the open source python module PyQtGraph (www.pyqtgraph.org). The last
section in this chapter features some “applications” of the software to situations
characteristic of delay due to atmospheric water vapour.

4.1 Generation of refractivity fields
Two kinds of generators of 3D stochastic fields were implemented. The first handles
quasi-homogeneous covariances of the form1

〈n(~r1)n(~r2)〉 =
√
Cv(z1)Cv(z2)Ch (~r1 − ~r2) . (4.1)

For instance, this can be used to realize the function

〈n(~r1)n(~r2)〉 = exp(−(z1 + z2)/H) C2
nL

4/3

L2/3 + |~r1 − ~r2|2/3
(4.2)

used by Nilsson & Haas in [7] by setting Cv(z) = exp(−2z/H). Since the homo-
geneous part Ch can depend separately on all three components of the difference
~r1 − ~r2, some non-isotropic covariance functions can also be realized. One example
is

〈n(~r1)n(~r2)〉 = C2
nL

4/3

L2/3 +
(
|~r1 − ~r2|2 + (C0 − 1)(z1 − z2)2

)1/3 (4.3)

which was mentioned in [13, eq. (4.10)] as a way of introducing height dependence.
Note however, that (4.3) can be simulated even with only an isotropic generator by
rescaling the z-coordinate. The implementation has a cost ofO(N3 logN) operations
per realization and uses O(N3) memory.

1Actually, Cv can be an arbitrary function of the 3D position with little additional cost, but
that has no motivation in this context.
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4. Implementation

The second implementation handles horizontally homogeneous covariances with
arbitrary vertical dependence

〈n(~r1)n(~r2)〉 = C
(
z1, z2,

∣∣∣~r1‖ − ~r2‖

∣∣∣) . (4.4)

Very few such functions occur in the literature that cannot be written on the form
(4.1). Therefore it is only described in Appendix A. Note that using the horizontal
distance

∣∣∣~r1‖ − ~r2‖

∣∣∣ is equivalent to using the full distance since

C (z1, z2, |~r1 − ~r2|) = C

(
z1, z2,

√∣∣∣~r1‖ − ~r2‖

∣∣∣2 + (z1 − z2)2

)
(4.5)

which is of the form (4.4). This method has a setup cost of O(N4 logN) with an
additional cost of O(N4) operations per realization. The memory usage is O(N3).

4.1.1 Realization of 3D refractivity fields
The procedure to generate fields of type (4.1) is based on Section 3.4.1. A complete
description follows. In order to be consistent with Section 3.4.1, ~r = (x, y, z) and
~k = (kx, ky, kz) here denote integer coordinates.

1. Choose resolutionNx×Ny×Nz and domain size Lx×Ly×Lz. Let ∆x = Lx/Nx,
∆y = Ly/Ny and ∆z = Lz/Nz.

2. If a spectrum Φ(~κ) was given as input instead of Ch, go to 4. Else sample Ch
on a 3D grid with coordinates in the order

0, ∆x, 2∆x, . . . ± (Nx/2)∆x, −(Nx/2− 1)∆x, . . . −∆x (4.6)

(assuming Nx is even) and similarly in the y and z directions.
3. Compute Φ~k using an FFT from the array above with normalization factor

1/(NxNyNz). Then proceed to step 5.
4. Sample Φ(~k) on a 3D grid with coordinates ordered as

0, ∆kx, 2∆kx, . . . ± (Nx/2)∆kx, −(Nx/2− 1)∆kx, . . . −∆kx, (4.7)

where ∆kx/y/z = 2π/Lx/y/z. Again this is for even Nx and the y and z axis
have the same ordering. The array Φ~k is obtained by dividing the sampled
array by ∆kx∆ky∆kz.

5. Generate an array ñ~k of NxNyNz independent normal, zero mean, pseudoran-
dom variables where the real and imaginary parts both have variance Φ~k.

6. By FFT compute the sum

ñ~r = Re
∑

~k

n̂~k exp(2πi~k · ~r)
 . (4.8)

7. Multiply the ñ array by the inhomogeneity to obtain the output array

n~r =
√
Cv(z∆z)ñ~r. (4.9)
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4.1.2 Time evolution
When evolving a field in time, the field is stored in the frequency domain in the
form of the n̂~k-array. Whenever the field is needed in real space it can be generated
using steps 6 and 7 above.
Three forms of time evolution have been implemented: frozen field update (3.31),

intrinsic Markovian evolution (3.33) and convection by an arbitrary horizontal wind

n(~r, t+ ∆t) = n(~r −∆t~v‖(z, t), t). (4.10)

The last one must be combined with an intrinsic update for n to reach a stationary
distribution. Note that this will make the distribution non-isotropic when there are
vertical gradients in ~v‖.
Frozen field updates are done with a simple phase shift in the frequency domain

n̂~k(t+ ∆t) = n̂~k(t)e
−i~k·~v∆t. (4.11)

To see that this recreates (3.31) simply insert it into (4.8). Intrinsic updates are
performed using

n̂~k(t+ ∆t) = e−γ(~k)∆tn̂~k(t) + (1− e−2∆tRe γ(~k))1/2ξk(t), (4.12)

where ξk(t) has independent normal distributed real and imaginary parts; each havin
mean zero and variance Φ~k. The “dispersion relation” γ(~k) is arbitrary as long as it
has non-negative real part. The exact form is the subject of turbulence modelling,
see Section 3.4.2.
For height dependent wind, the frequency field n̂~k is first transformed with an

FFT along the z-axis into ñ~k‖,z
. Then a phase shift

ñ~k‖,z
(t+ ∆t) = ñ~k‖,z

(t)e−i~k‖·~v(z,t)∆t (4.13)

is applied. Finally ñ~k‖,z
(t+ ∆t) is transformed back into n̂~k(t+ ∆t) using an inverse

FFT along the z-axis.

4.1.3 Validation
There are many factors of 2 and 2π in the derivations of Chapter 3 where the
implementation can go wrong. Hence it is vital to verify that it produces fields with
the right structure.
A good test case is a Gaussian covariance function

C(~r) = exp(− |~r|2 /a2) (4.14)

since its spectrum has a simple analytical expression

Φ(~k) = 1
(2π)3

∫
exp

(
− |~r|2 /a2 − i~k · ~r

)
d3~r = a3

8π3/2 exp
(
−a2

∣∣∣~k∣∣∣2 /4) . (4.15)

Furthermore, both the covariance and spectrum are highly smooth and decay quickly
to zero. For later purposes, note that in the limit a = 0, C remains finite but Φ = 0.
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This corresponds to white noise of power 0; for each ~r ∈ R3, n(~r) ∼ N(0, 1) and is
independent from other part of the field.
The implementation is considered correct if it generates fields with the correct

structure function 〈(n(~r1)− n(~r2))2〉 =: S(|~r1 − ~r2|). Using (4.14) the expected
structure is.

S(r) = 2(C(0)− C(r))2
(
1− exp(−r2/a2

)
. (4.16)

This is enough since n~r by constryction follows a zero mean multivariate normal dis-
tribution and is therefore entirely determined by its covariance/structure function.
To make the test as unbiased as possible, it was performed by first choosing 1000

index differences (∆i,∆j,∆k) at random (with a bias towards small differences).
Then 1000 realizations of the random field were computed. For each realization, 100
origin indices (i, j, k) were selected at random (uniformly). For each combination
of origin and index difference the quantity (ni+∆i,j+∆j,k+∆k − ni,j,k)2 was added to
a position corresponding to (∆i,∆j,∆k) in an accumulator array. Afterwards each
element of the accumulator was divided by 100 · 1000 to obtain an estimate of
S∆i,∆j,∆k. Or equivalently S(r), where

r =
√

(Lx∆i/Nx)2 + (Ly∆j/Ny)2 + (Lz∆k/Nz)2. (4.17)
The resolution and size parameters were chosen as Nx = 100, Ny = 128, Nz = 64

and Lx = 20, Ly = 30, Lz = 25 and a = 2 respecively. This produces an isotropic
covariance in real space, but an asymmetric one in index space which is good for
testing correctness. Note that the maximum value of r in this geometry is

rmax = 1
2
√
L2
x + L2

y + L2
z ≈ 22. (4.18)

The test was performed both with a covariance (4.14) and with a spectrum (4.15)
as input to the simulation. The results are plotted in Figure 4.1 together with the
theoretically expected structure function (4.16). The agreement is perfect within
statistical uncertainty.
To ensure that realizations are reasonable it is a good idea to visualize them. This

is done in Figure 4.2 for two choices of the length scale a with resolution 1283 in a
volume of size 103. Note that these fields are not fractal; there is a single relevant
length scale a. For shorter distances than a the field is highly smooth; for longer
distances it looks like uncorrelated noise.
An example of the utility of visualization is demonstrated in Figure 4.3. In the left

panel, clear cubical artefacts are visible; despite the fact that the input covariance
is isotropic. This is immediately clear from the visualization, but would be less
obvious for one dimensional statistical measures. The reason for the artefacts is
that the covariance function does not reach zero quickly enough within the cube
which introduces discontinuities when it is approximated as a periodic function.
The effect is absent when using the exact spectrum (4.15) as input (see right panel).
This corresponds to using the periodized covariance function

Cperiodic(~r) :=
∑
~R

C(~R + ~r) (4.19)

where ~R is a Bravais lattice vector (i.e. ~R = (kLx, lLy,mLz) for any and all k, l,m ∈
Z).
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Figure 4.1: Numerically computed structure functions compared with the theoret-
ically expected one. “From Covariance” is computed when the covariance (4.14) is
used as input while “From Spectrum” is computed with the spectrum (4.15) as in-
put. The points “From Spectrum” have been shifted downwards 0.5 units to improve
readability. The inset shows the same data for the full range of distances.

(a) a = 0.1 (b) a = 1

Figure 4.2: Gaussian random fields in 3D with input covariances given by (4.14)
with resolution 1283 and box size Lx = Ly = Lz = 10. The field is positive in red
regions and negative in blue regions while values close to zero are transparent. In
between the colour is interpolated smoothly.
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(a) From covariance (b) From spectrum

Figure 4.3: Illustration of aliasing when the covariance function is discontinuous
because the box is too small. In both panels a = 5, but (a) was generated by first
computing an FFT of (4.14) while (b) was generated directly from (4.15).

4.2 Integration
In the following, the excess refractivity field will be denoted n(~r). There are two
kinds of signal delays to be generated from the field. The first is delays along
straight lines, as appropriate to simulate GNSS and VLBI signals. The other is
integrals over cones, as appropriate to simulate radiometer signals. In the first case
the excess delay along a straight path starting at ~r0 in the direction n̂ is

∆L =
∫ ∞

0
n(~r0 + sn̂)ds. (4.20)

In the second case the average delay over radiometer beam is

∆L =
∫ ∞

0

∫
S2
n(~r0 + n̂′r)g(θ)dΩ(n̂′)dr, (4.21)

where the inner integral with respect to the variable n̂′ is taken over the unit sphere
and r is a radial coordinate. Furthermore, θ is the angle between n̂ and n̂′ and g is
the antenna gain with normalization∫

g(θ)dΩ = 1. (4.22)

These integrals must be approximated when n is sampled at a regular grid.
One way to do so is to interpret the full field as being constant in (parallelepipedal)

cells centred about grid-points. Line integrals can then be approximated with

∆L =
∑
i

`in(~ri), (4.23)

where the sum goes over cells intersected by the path and `i is the length that
the path traverses through cell i. See Figure 4.4 for a 2D illustration. However,
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Figure 4.4: Illustration of line/cell intersection in 2D. The red arrow shows the
integration path and the shaded squares show where the integration is performed.

it was observed that artefacts appeared for paths aligned with the grid, unless the
resolution was very high. The artefacts were substantially reduced by interpolation
of the field.
Suppose n is sampled at regularly spaced points n(i∆x, j∆y, k∆z) with 1 ≤ i ≤

Nx (and so forth). A continuous extension of n can be obtained by setting

n(~r) =
∑
i

wi(~r)n(~ri), (4.24)

where wi(~r) ≥ 0, ∑iwi(~r) = 1 and the the sum goes over some set the corners
closest to the point ~r. Typically these are the 8 closest gridpoints that form the
cornest of a “cube” containing ~r. For a 2D illustration, see Figure 4.4.
There are many ways to choose the weight functions. Perhaps the simplest is

to use trilinear weights. These are cubic polynomials that are 1 at some corner
and decrease linearly along each axis to zero. It is convenient to represent these in
normalized coordinates where (0,0,0) and (1,1,1) are diagonally opposed cell corners.
The weight functions of trilinear interpolation are of the general form

wijk(x, y, z) = (i+ (1− 2i)x) (j + (1− 2j)y) (k + (1− 2k)z) , (4.25)

where i, j and k are all 0 or 1. Two examples are

w000(x, y, z) = xyz and w011 = x(1− y)(1− z). (4.26)

Finding all cells intersected by a line is done with a standard ray tracing algorithm.
The integral over the interpolated field can be written

∆L =
∑
i∈cells

∑
j∈corners(i)

n(~ri,j)
∫
wi,j(~r0 + n̂s)ds (4.27)

where the weight integrals can be evaluated analytically. They are polynomials
of coordinates of line-cell intersections. This enables the method to be used for
line parameters that change each simulation step. This could be useful to generate
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signals in VLBI/GNSS geometry where the sources move continuously across the
sky.
The procedure is a little different for integration over radiometer cones. There

the interpolated delay takes the form

∆L =
∑
i∈cells

∑
j∈corners(i)

n(~ri,j)
∫
i
wi,j(~r)

g(θ)
r2 dV (4.28)

so a large number of volume integrals∫
i
wi,j(~r)

g(θ)
r2 dV =

∫ xi,j+∆x

xi,j

∫ yi,j+∆y

yi,j

∫ zi,j+∆z

zi,j

wi,j(x, y, z)g(θ(x, y, z))
x2 + y2 + z2 dxdydz (4.29)

have to be evaluated. Note that Cartesian coordinates ~r = (x, y, z) are used since
that is easier to work with for parallelepipedal cells. In order to suppress alignment
artefacts and other systematic errors, the integration must be done accurately. Typ-
ically this takes significantly more time than generating a refractivity field, so it is
best to precompute the integrals. Then the delay for a specific field can be efficiently
computed using the stored weights as ∆L = ∑

iwin(~ri). This means that only a
fixed number of directions/positions can be used. Howerver, that is not unrealistic.
Radiometers usually have an observation schedule that cycles through a relatively
small number of orientations.
Usually the antenna gain g(θ) is approximated as a Gaussian with a given half

power beam width

g(θ) = g(0) exp
(
− ln(2)(2θ̃/hpbw)2

)
, (4.30)

where θ̃ is the angular deviation from the central direction. Since the integral over
all angles should be one and hpbw is usually small, we have

g(0)−1 ≈
∫ ∞

0
exp

(
− ln(2)(2θ̃/hpbw)2

)
2πθ̃dθ̃ = πhpbw2

4 ln 2 . (4.31)

The antenna gain is usually sharply peaked with a beamwidth of a few degrees.
This means that most of the weights will be very small and do not need to be
considered. It is possible to find the most important cells from geometry, but getting
the indices right when programming is painstaking. A more automatic approach is
the following:

1. Choose a cutoff c, all weights below this value will be discarded. The order
of magnitude for weights in the farthest cells is ∆V

L2 g(0) so a good choice is
c = ε∆V

L2 g(0) where ε is some small number, say 10−3.
2. Keep two sets visited_cells and cells_to_visit. Add the radiometer

origin to cells_to_visit.
3. If cells_to_visit is empty we are done. Otherwise pop the next cell in

cells_to_visit and add it to visited_cells. Evaluate the weight integrals
for the current cell and store them. If any weight was larger than c, add all
neighbours not already in visited_cells to cells_to_visit.

4. Repeat step 3 until cells_to_visit is empty.
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Figure 4.5: (Left) Elevation dependence of the equivalent zenith delay for a spa-
tiallly constant refractivity (sum weights) together with expected values. (Right)
Relative error of sums of cone weights as a function of azimuth.

4.2.1 Optimal interpolation – Kriging
For well resolved fields, higher accuracy might be achieved by using a technique
called Kriging [32, pp. 2–3]. This is a statistical treatment of interpolation. As-
suming the covariance function is known, the unknown value n(~r) can be estimated
optimally in the least squares sense from a given set of values, such as at cell corners
or some larger computational molecule. This was tested, but it was found to un-
derestimate variances. This is natural since the method finds an unbiased minimal
variance estimator.

4.2.2 Validation
The first check is if the sum of weights has the correct value. This corresponds to
the delay through a constant refractivity field. For lines the sum of weights should
equal the exact value Lz/ sin θ to within numerical precision (θ is elevation). For
cone weights it is the average of Lz/ sin θ taken over varying θ in the radiometer
cone. For easier comparison it is a good idea to multiply with the inverse mapping
function sin(θ) (see Section 2.4) to remove the dominant source of variation. This
has been done with the sum of radiometer and line weights in Figure 4.5.
The test protocol was to randomly choose an elevation, an azimuth and an origin

in the bottom plane. If the method works correctly, then neighbouring points in
a sum of weights vs elevation plot should be very close in value. If there is an
azimuth or origin dependence, some spread is to be expected. The line weights are
exact to within numerical precision. On the other hand, the sums of cone weights
show errors as large as 2 %. It is likely that the errors for individual cells are even
larger. Notably the errors show no azimuth dependence. This can be considered an
unresolved bug in the implementation.
It is also important to test whether or not the integrals have the right statis-

tics. In Figure 4.7 the observed variance for line integrals over fields with Gaussian
covariance (see (4.14) and Figure 4.2) is plotted. When the length scale is small
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compared to the grid spacing (10/128 ≈ 0.08) the field is essentially white noise and
all points are essentially independent. Hence the variance is expected to be

Var
[∑

i

wini

]
=
∑
i

Var [wini] =
∑
i

w2
i (4.32)

since the variance of each sample 1. Here the geometry should be the only factor
influencing the result. This can be seen in the a = 0.01 case where downward
spikes appear at multiples of 90◦ when the lines are aligned with the grid. This
corresponds precisely to the sum of squares plotted in Figure 4.6b. Note that the
absolute values are very close and not just the shape. When the field is smooth
enough for interpolation on the grid to make sense (even a = 0.1 seems to be
enough), the effect is reduced to a large degree.
Another problem appears when the correlation length a is comparable to the

dimensions of the volume (a cube of side length 10). This is illustrated in the a = 2
case in Figure 4.7 where low enough elevations have maxima at grid alignments
(n · 90◦ and 45◦ + n · 90◦). The reason is periodicity of the field. The volume is not
flat enough to support elevations lower than 45◦ without wrap-around. For some
azimuths the line comes closer to its tail than others in which case there is a large
correlation and hence a high signal. The cure for this problem is to use a volume
wide enough accommodate all elevations of interest.

4.3 Example applications
The fractal structure of fields generated from Kolmogorov inspired structure func-
tions such as

S(r) ∝ r2/3

L2/3 + r2/3 (4.33)
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(a) L = 1 (b) L = 5

Figure 4.8: Visualization of a refractivity field with covariance given by (4.2) with
H = 0. The grid resolution is 256× 256× 128 and the physical size is 40× 40× 10
for two different regularization lengths L.

can be glanced in Figure 4.8. Visually, very little difference is seen when the nor-
malizing length scale is increased from L = 1 to L = 5. In both cases there are
coherent structures of all available length scales. Note that L has no effect on the
shortest length scales since S(r) ∝ r2/3 for small enough r, no matter what L is. Its
only effect is to set a soft limit for the longest scales before decorrelation. However,
since the correlation only decreases as r−2/3 it takes a lot for the fields to look fully
noisy; even for L comparable with the grid spacing, some correlations can be visually
perceived.
The intended use of the software is to simulate delay time series. In Figure 4.9 such

a timeseries is analyzed in the same way as two GPS timesseries were in Figure 2.8.
The simulation used covariance of the form (4.2) with L = 1 km, H = 2 km and
C2
n = 10−14 m−2/3. Furthermore, a log-normal field was generated at the same time

using similar parameters and according to the method described in Section 3.5. The
grid had resolution 512 × 256 × 64 and the physical volume was 40 km × 20 km ×
5 km. Time updates were done by periodically translating the field one grid point
in the x-direction per timestep in addition an intrinsic update with ~k-independent
decorrelation parameter γ = 1

512 . An equivalent ZWD timeseries was generated
by averaging the equivalent zenith delays from lines of azimuth angles 15◦ apart
at elevations 30◦, 45◦ and 60◦ at each timestep. The simulation was run for 5120
timesteps, corresponding to 10 periods.
As expected, the Gaussian field produces normal distributed ZWD increments.

Anything else would have required a fundamental error in the implementation. The
log-normal field produces highly non-Gaussian fields even for the smallest ∆t. A
smaller relative oscillation could have been used to more closely match Figure 2.8.
The structure functions scale as ∆t4/3 for both the log-normal and normal fields.

This provides some validity to the reasoning in Section 3.5. Also note that other
scalings can be achieved by changing the ratio L : H and by using a ~k-dependent
γ. Finally, as can be seen by a minimum of the structure function at ∆t = 512, the
chosen value of γ was not enough to fully decorrelate the field in one period.
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Figure 4.9: Replication of Figure 2.8 using two kinds of simulated data. See text
for simulation parameters. (a) & (b) show estimated probability distributions of
ZWD increments for various temporal separations. The numbers indicate ∆t in
units of simulation steps. (c) Shows the structure functions from both simulations
compared to ∆t4/3-scaling. The vertical line at ∆t = 512 indicates where artificial
periodicity is expected.
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Chapter 5

Discussion

As was mentioned in Section 3.3, the reason for using Gaussian fields is that it is the
most tractable way to compute a random field with a given second order structure
function. But there are problems with doing so. The usual motivation for using
normal distributions to model measurements is the central limit theorem. In very
simplified terms, it states that the sum of many independent disturbances is asymp-
totically normal distributed. However, this asymptotic limit really only applies to
the bulk of the distribution. The more standard deviations away from the mean
you look, the slower the convergence is. Furthermore, the Navier-Stokes equation
(which describes fluid motion) contains non-linear terms. Therefore an effective
stochastic description should contain both additive and multiplicative noise. With
just additive noise, normal distributions are expected while with just multiplicative
noise, log-normal distributions are expected. In reality we should get something in
between.
Two modes of time evolution beyond the frozen-flow hypothesis were introduced

in Section 3.4.2. The most questionable of the two is height dependent wind. The
whole idea behind using a stochastic model for a deterministic phenomenon is based
on excluding enough details that the remaining observables seem random. Some
effects of convection by varying wind can be considered to already be included in the
Markov update step. Adding additional shearing motion might not be meaningful.
Simulating on a grid is not the only way to obtain time-dependence outside the

frozen flow hypothesis. The spectrum (3.35) with Kolmogorov scaling inserted can
be written as

Φ(k, ω) ∝ εk−3ω−2
(
C + ε2/3k4/3ω−2

)−1
, (5.1)

where C is some constant. This spectrum could be used directly to compute signal
covariances. These can then be used in methods such as those in [8, 9] to generate
realisations of random delay signals.
In some special cases, it is possible to simulate with higher resolution (or faster) by

setting the resolution to 1 in some direction. If all observations take place in a single
vertical plane then that can be done in one of the horizontal directions. Another
possibility is to make the simulation horizontal, and use a mapping function to
obtain elevation dependence.
Finally, what are the prospects of validating the simulations against reality? There

are many parameters and the phenomenon is inherently stochastic, which makes
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comparison difficult. Especially since measurements themselves have noise and the
parameters can change in less time than it takes to gather enough statistics to test
the model. Validating turbulence models is a research field all on its own. Still, one
possibility is to compare stochastic refractivity fields against Large Eddy Simulations
(LES), which solves the Navier-Stokes equations approximately for turbulent flows.
Then all parameters can in principle be controlled and full information about fields
are available.

5.1 Conclusions
There are many reasons to doubt the validity of models of atmospheric refractivity
fields based on Kolmogorov theory; at least when applied to the full depth of the
troposphere.
Realizations using Gaussian random fields cannot capture all observable effects as

the non-Gaussian tails of probability distributions of measured data shows. That
particular flaw may be possible to overcome by using log-normal random fields com-
puted from Gaussian random fields.
In this thesis, efficient methods and software for the generation of 4D Gaussian

and log-normal random fields were implemented. They are largely agnostic to the
turbulence model and are powerful enough to handle all structure functions proposed
in existing literature known to the author. The method works, but is somewhat
inconvenient due to spurious periodicity and integration through noisy fields.
Finally, two novel models of time evolution of refractivity fields complementing

the frozen field hypothesis were proposed and implemented. The initial motivation
was as a way to deal with the finite geometry, but with a specific modelling choice
it was found to be more compatible with Kolmogorov scaling.
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Appendix A

General height dependent algorithm

In the following the grid size is taken to be Nx × Ny × Nz. The simulation can be
divided into a setup part and a realization part. The setup consists of the following:

1. For each pair (zm, zn), 1 ≤ m ≤ n ≤ Nz :
(a) Compute the Nx×Ny array C(z1, z2, ~r

(i,j)
‖ ) and its 2D DFT with respect

to ~r‖ denoted φ(z1, z2, ~k
(i,j)
‖ ).

(b) To reduce the amount of data from O(N2) to O(N), approximate the
array φ(z1, z2, ~k‖) with

φ̄(z1, z2, k
i
‖) = mean∣∣∣~k(j,k)

‖

∣∣∣∈Bi

φ(z1, z2, ~k
(i,j)
‖ ). (A.1)

where each bin Bi is an interval containing ki‖. Typically ki‖ = i∆k‖ and
Bi = [ki‖− ∆k

2 , k
i
‖+ ∆k

2 ), but many other partitions are possible. The total
number of bins Nk is chosen ∝

√
NxNy.

2. For each ki‖, 1 ≤ i ≤ Nk: Compute the Cholesky decomposition D
(i)
kl of

φ̄(zm, zn, ki‖) interpreted as a matrix in the indicesm and n. I.e. ∑kD
(i)
mkD

(i)
nk =

φ̄(zm, zn, ki‖). The cost of this step is O(NkN
3
z ) = O(N4).

The realization consists of the steps:
1. For each ~k(i,j)

‖ , 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny: Find which bin Bl that
∣∣∣~k(i,j)
‖

∣∣∣ is
in. Then generate a realization n~k(i,j)

‖
(z) of a gaussian stochastic process with

zero mean and covariance
〈
n~k(i,j)

‖
(z1)n~k(i,j)

‖
(z2)

〉
= φ(z1, z2, k

l
‖) using the stored

Cholesky decomposition D(l). The cost is O(NxNyN
2
z ) = O(N4) in addition

to NxNyNz calls to the PRNG.
2. For each zi, 1 ≤ i ≤ Nz: Compute the 2D DFT of n~k(j,k)

‖
(z) to obtain a horizon-

tal slice of the refractivity field n(xj, yk, zi). The cost isO(NzNxNy log(NxNy)) ∼
O(N3 logN).

The total amount of memory required for both steps is roughly NkN
2
z +4×NxNyNz

numbers (single or double precision).
Preprocessing is in practice much faster for covariance functions of the form

〈n(~r1)n(~r2)〉 = Cv(z1, z2)Ci(~r1 − ~r2) (A.2)
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A. General height dependent algorithm

Table A.1: The times below are from execution on my desktop. Windows 7 64-bit
running on a 3 GHz Intel Core i3 CPU with 4 GB of RAM available.

Time of computation in seconds Size (N)
Step Description 64 128 200 256
Gen.1 Compute covariance matrices 0.14 2.40 18.7 68.4
Gen.2 Cholesky factorization 0.01 0.17 0.86 2.25
Real.1 Generate random numbers 0.12 1.69 7.73 26.6
Real.2 FFT to real space 0.00 0.04 0.21 0.64

- Write 3D field to disk 0.07 0.33 2.00 4.50

or sums thereof. The complexity is the same, but this form allows Cv and Ci to
be precomputed with O(N2) and O(N3) operations respectively instead of O(N4)
operations when placed within the big loop. Since the C:s often contain multi-
ple expensive operations like exp, pow and sqrt this can increase the speed by a
large factor. The N2 2D FFTs must still be evaluated which means O(N4 logN)
operations are still needed overall, but they are relatively cheap.
Some example runtimes of the different steps of the C++ implementation is given

in Table A.1. In all cases Nx = Ny = Nz = N .
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Appendix B

Data sources

The Onsala Space Observatory regularly participates in VLBI experiments. It also
has a variety of other astronomical, geodetic and meteorological experiments. For
instance a ground based weather station, GNSS receivers and two water vapour
radiometers Astrid and Konrad.
The radiometer based estimates of zenith wet delay used in this thesis come from

Konrad and were computed by Peter Forkman. GPS-based estimates come from the
ONSA and RECF recievers and were computed by Grzegorz Klopotek.
The weather and radiometer data is publicly accessible from wx.oso.chalmers.

se/data/ in subfolders weather/ and radiometer/ respectively. The format of the
weather data is documented in a public text file, but the radiometer data format is
not. Some other datasets are also available, such as processed GPS-data.
For weather forecasting and climate studies, radiosondes (weather balloons) are

released simultaneously two times per day (00UTC and 12UTC) on various locations
around the globe. The closest one to OSO is at Landvetter. The radiosondes are
carried by weather balloons up to the lower stratosphere where the balloons break
and the radiosondes deploy a parachute and fall gracefully back to the ground.
The data is transmitted by radio to the launching station. Data from radiosonde
launches back to 1905 are publicly available through the Integrated Global Ra-
diosonde Archive [16]. The data format is coherent over the entire timespan.
There are a large number of fixed GNSS receiver stations around the globe used

for various purposes. For some of them, arrival time data is publicly available.
There are several archives of such data. See for instance http://sopac.ucsd.edu
and http://www.sonel.org. It is possible, but far from trivial, to compute wet
delays from this data.
There are open databases with DNS simulations of turbulence on the internet.

One example is the Johns Hopkins Turbulence Database http://turbulence.pha.
jhu.edu. This kind of data can be compared with statistical models of turbulence.
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