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Retrofitting of Building Blocks
Minimizing space heating and cost using combinatorial optimization
ANTON DANIELSSON
KRISTIAN ONSJÖ
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Abstract
This report details an approach toward finding Pareto optimal solutions to the
problem of retrofitting buildings by modelling it as an integer linear optimization
problem. The report discusses some background to its importance, e.g., that many
buildings do not currently meet the standards set by the European Union for energy
efficiency. A current prognosis shows that these standards will not be met in due
time, and as such the DREEAM project aims to improve the work being done on
retrofitting buildings. The optimization tool DreeamTool, currently being developed
within DREEAM, uses a stochastic algorithm, NSGA-II. In the report it is shown
how a method based on integer linear programming with multiple objective functions
performs, as opposed to the current method. It is shown that the mathematical
model and solution approach finds Pareto optimal solutions in a computation time
that is considerably shorter than that used by NSGA-II for finding an approximation
of the Pareto front.

Keywords: integer linear programming, mathematical modelling, linearization, com-
binatorial optimization, retrofitting, buildings, neighborhoods, retrofitting of build-
ing blocks, energy efficiency
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1
Introduction

1.1 Background

Today, many buildings do not meet the energy requirements set by the European
Union, and as such they are in need of retrofitting1 in order to eventually meet
the requirements. Due to the insufficiency of the present retrofitting rates, new
methods are being developed to improve the way buildings are retrofitted. Cur-
rent approaches focus on single buildings and single components, which hinders
the deployment of interconnected renewable systems and may even cause financial
losses. A new approach to meet these problems is to retrofit many buildings si-
multaneously, often with interconnected systems (such as ventilation or hot water
supply). This has been shown to decrease energy demand by 10–40% as compared
to standard retrofitting approaches. Furthermore, the use of computationally effi-
cient optimization models is being employed. The DREEAM (Demonstrating an
integrated Renovation approach for Energy Efficiency At the Multi-building scale)
project aims to utilize these tools to further reduce the total energy demand by up
to 75% (see [1]). The approach to this is to quantify the retrofitting problem into
a set of objective functions and investigate how the choice of components relate to
these functions. This results in a multiobjective optimization problem, which can
be approached either by stochastic optimization or by deterministic modelling and
solution methods. Currently, stochastic optimization methods are utilized in the
DREEAM project, but this report shows a proof of concept where a mathematical
model has been developed and shown to be a more suitable alternative in regards
to speed and accuracy.

When dealing with multiple objective functions, the number of optimization prob-
lems that have to be solved grow larger with the number of objective functions,
which rapidly leads to a large (and often too large) computational burden. One tool
that deals with such problems is the DreeamTool [1] optimization engine used by
the project. Today the DreeamTool optimization engine utilizes the Non-dominant
Sorting Genetic Algorithm II (NSGA-II), a stochastic optimization algorithm [2]. It
is currently limited to optimizing two objective functions with a near future goal to
be able to optimize up to three objectives. As with many stochastic algorithms this
is computationally heavy and requires a very powerful computer, and/or extensive
runtime, along with poor capabilities to expand the number of objective functions.

1Retrofitting is a term used for adding a component which was not in the original construction.
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1. Introduction

The computational models used in the DREEAM project have been developed by
a group of researchers at the Department of Civil and Environmental Engineering
(CEE) at Chalmers University of Technology [3]. Together with Consid [4] they aim
to develop an application which uses these models to find the optimal solutions to
retrofitting problems [5].

One example of an optimization problem in the DREEAM project is to optimize
retrofitting on an entire building block containing 50 buildings. Consider the case
where the buildings have 200 different types of walls, 50 different types of floors,
50 types of windows, and so on. Every wall, floor, and window has 20 different
retrofitting options. Furthermore, the water and heat supply can be installed in
several ways to provide for several buildings, or individually. These are just some
of the possible choices within the algorithm. Currently, the NSGA-II algorithm
produces the data required to create a Pareto front, which contains a number of
possible construction solutions based on two objective functions. The calculations
to provide this data are computationally heavy, and even though the algorithm itself
has been parallelized and runs on a cluster of powerful computers it still takes days
to get any results on a large–scale problem.

In order to reduce the runtime, an alternative is to instead use combinatorial opti-
mization methods. However, these methods require the formulation of a mathemati-
cal model of the retrofitting problem. To our knowledge, there does not yet exist any
such model for the problem at hand. Therefore, it is required to analyze the existing
equations utilized in retrofitting, (see Appendix A), and reformulate them such that
they can be incorporated in a mathematical model for combinatorial optimization.

1.2 Project aim
The aim of this project is, in essence, to improve solutions to the retrofitting opti-
mization problem. This will be done by developing a model of the problem, which is
solved using combinatorial algorithms. These improvements may then be candidates
for coming versions of DreeamTool, currently being developed at Consid.

The initial approach will be to formulate a mathematical model of the problem.
This model will in turn be studied to give an idea of what type of algorithms could
be applied, at which point an investigation of existing suitable combinatorial opti-
mization algorithms will ensue. Following this, attempts will be made at applying
an algorithm to the mathematical model of the retrofitting problem.

Furthermore, the applied algorithm will then be evaluated in three main aspects,
as compared to NSGA-II; runtime, measures of optimality, and number of objective
functions to be simultaneously optimized. If either runtime, measures of optimal-
ity, or the number of objective functions that can be handled is improved, without
significant losses in accuracy of the result as compared to NSGA-II, the model is
deemed a success and can be recommended for further research and development.
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1. Introduction

1.3 The Retrofitting Optimization Problem
As described in Section 1.1 the problem that DREEAM tries to solve is to reduce the
energy consumption of the retrofitted building without significantly increasing the
associated cost. This problem can be formulated as an optimization problem where
the associated equations are as provided by DREEAM, and objective functions are
then, in turn, constructed from the variables used in these equations.

The key to this problem is identifying suitable variables and modelling objective
functions, with a preference toward linear objective functions if possible without
great loss in accuracy. It is also of importance to realize what simplifications need
to be done to the objective functions as well as their significance in the final output.
Due to this, methods such as linearizing equations are used in the creation of the
model as they provide simplification of calculations where careful consideration has
been made in order to produce an accurate solution.

1.4 Delimitations
When modeling an integer optimization problem with many variables and several
objective functions it is necessary to narrow it down to achieve a simpler setting.
In the case of this project the focus was on the model itself, and as such a few
delimitations had to be made.

Once the mathematical model was completed and reached a stage where an opti-
mization algorithm was applied, further computational optimization methods such
as GPU computations was not in the scope of the project.

There was no in-depth investigation into the performance of different optimization
algorithms, but rather the CPLEX algorithm was used as a proof of concept.

Furthermore, as having more objective functions gets increasingly computationally
heavy, there was an upper delimitation of three objective functions at a time. No
delimitations were be placed on the input parameters, however, meaning that data
regarding buildings, location, retrofitting options, and heating systems were all con-
sidered.

Lastly, the project would not include any further improvements or research on
NSGA-II, the genetic algorithm currently used in the DREEAM project. When
the project required comparisons with the genetic algorithm, already conducted re-
search on NSGA-II was studied together with empirical testing.

1.5 Related work
Methods used earlier to solve refurbishment problems have mainly been focused on
stochastic optimization algorithms, in particular the NSGA-II algorithm [2], which
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1. Introduction

is a genetic algorithm with several special features. The algorithm sorts the solutions
into several so-called fronts. The first front is non-dominated (which means that no
values have been found that yield a better result), the second front is dominated by
the first, and so on. It also includes an algorithm-specific parameter, referred to as
crowding distance. This is a measure of how close a solution is to its neighbours
and allows a quantification of the solution diversity, where larger average crowding
distance is a measure of better diversity in the population. Individuals in the pop-
ulation with the lowest rank (which is a methodology where the results are queued
such that the lowest queue number corresponds to the best result) and greatest
crowding distance (solutions furthest apart) are then selected. These individuals
are then used as per the simple genetic algorithm, shown in Section 2.4.

For an initial basic understanding of what combinatorial optimization is, how it can
be used, and what initial steps to take, the textbook [6] provides a good theoretical
foundation. It not only includes optimization, but also how to work with mathemati-
cal modelling in order to formulate an optimization problem in a neat, standardized
manner. The book also provides examples written in the programming language
AMPL that serve to quickly prototype initial attempts to the mathematical model
of the optimization problem.

In a sense more specific to this particular type of optimization, similar work has
been done in the thesis [7]. There the problem of specifying components in trucks
was solved via viewing the problem as a combinatorial mathematical optimization
problem where desirable parameters were found to be dependent on the components
chosen. This allowed for a mathematical model of how a certain set of components
would relate to these parameters. The author also discusses how real-world applica-
tions usually need to be reduced as they are too complicated for an exact evaluation.
Similar to our work Pareto optimal sets and robust optimization is also discussed in
detail.

Due to the complexity of the problem it will likely be important to reduce the set
of objective functions such as shown in [8]. By reducing each set of objective func-
tions with similar characteristics to a single objective function the computational
burden can be significantly reduced. This is due to the fact that in real-world ap-
plications, an approximation will often yield a sufficiently accurate result. Given a
brief overview of DreeamTool’s available objective functions (seen in Appendix D),
it seems likely that these methods may be applicable to the problem studied in this
project.

A very similar idea to what is presented in this report can be found in [9] where the
authors talk about the life cycle assessment when conducting site-specific retrofitting.
They want to evaluate and visualize the difference between different retrofitting op-
tions. They also believe it is necessary to further understand the social aspect of
retrofitting, such as requests by tenants.
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2
Theoretical background

2.1 Multiple Linear Regression

Multiple linear regression refers to linear regression of a vector y of a single de-
pendent variable’s values and a matrix X of multiple independent variables’ values
(see [10]). The aim is to find a vector β of coefficients and a residual vector of the
function observations ε, such that y = Xβ + ε, where ε needs to be satisfactorily
small.

There are several assumptions made to allow for standard linear regression:
• The independent variables X are assumed to be deterministic. This means

that the values are assumed to be fixed, error-free, values. For our case, this
property is dependent on the retrofitting model developed by CEE and also
holds true for our developed optimization model, as there is no stochasticity
in the equations (see Appendix A).

• The resulting approximation y is assumed to be linear when the finding the
linearization coefficient vector β. Often a nonlinear function can be modelled
via piecewise linear functions, which is the case in the optimization model
developed in this thesis.

• A constant variance is assumed in the error vector ε. In practice this is not
possible, since larger independent variable values will have a larger variance
as compared to smaller values. However, the variance may be scaled for each
variable to be placed on a comparable scale.

• Independence of errors is assumed in that, whenever i 6= j, the error εi does
not affect εj, i.e. errors do not propagate.

• The data set of independent variables X and corresponding dependent vari-
ables y are assumed to be one to one, meaning that every row of independent
variables is complete and has a corresponding dependent variable. One method
to handle this assumption is to ignore all rows with incomplete independent
variables and their associated dependent variable. It is important that this
does not reduce the number of observations below that of the number of in-
dependent variables. If the number of observations were to be lower than the
number of independent variables it would yield an underdetermined system of
equations, in which case this method is unusable. However, if there are thou-
sands of observations and only a few variables, as is the case in this thesis, it
is deemed an unlikely scenario.

Ordinary least squares (see Chapter 1 in [11]) was chosen as the method to solve
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2. Theoretical background

the multiple linear regression model developed in this thesis, shown in (2.1), due to
being the most commonly used method:

minimize
β∈R5,ε∈R5

(εTε),

subject to ε = y −Xβ.

2.2 Multi-objective optimization

Multi-objective optimization is a type of optimization where there are several, pos-
sibly conflicting objective function to optimize [12]. As the objective functions are
conflicting they can not be optimized in a separate instance for each objective but
instead share most of their variables and therefore have to be considered simulta-
neously. Genetic algorithms attempt to solve these problems using all the different
objective functions as is, as described in Section 2.4. When using a method such
as linear programming, the optimization model is modified such that all but one
objective is modelled as a constraint in the model. This leads to a model which may
be considerably more complicated than the original optimization model, and which
needs to be solved for several settings of each of the added constraints. One way to
simplify a multi-objective problem into a single objective is with a method called
the ε-constraint method [13].

The ε-constraint method is a method where one of the objective functions is chosen
to be optimized. The other objective functions are then described as constraints.
These constraints are then updated to achieve optimal solutions to the new problem
instance. Combining the results of these problem instances can give a good idea
of how the optimal solutions change depending on the constraints. A good repre-
sentation of these results is a Pareto front where each axis represents one objective
function and the resulting points on the front represent the values of the differ-
ent solutions, where each solution is optimal in a trade-off between the objective
functions.

2.3 Integer Linear Programming

Linear Programming (LP) is a method used both for modelling, and for finding the
optimal value in a mathematical model, where the constraints and objective function
are linear. They can be expressed in canonical form as Equation 2.1.

minimize
x

cTx,

subject to (2.1)
Ax ≤ b,
x ≥ 0.

6



2. Theoretical background

There exist several different algorithms for solving LPs, the most common being the
simplex method and interior point methods [6].

Integer Linear Programming (ILP) can be used for optimization problems where the
domains of the variables are restricted to integers only. An ILP can be expressed as
in Equation 2.2.

minimize
x∈Zn

cTx,

subject to (2.2)
Ax ≤ b,
x ≥ 0.

Solution methods for ILP usually consist of a top level search, such as branch-and-
bound or branch-and-cut, and a subroutine for solving LPs (see [14], Session 1).
The simplex method was developed by Dantzig in 1947 [15]. It is often explained by
visualizing the problem as a polytope formed by the constraint where the algorithm
"walks" along the edges of the polytope, visiting a sequence of corner points; see
Figure 2.1. The corner points represent different solutions of the LP and it can
be proven that optimal solutions always can be found at corner points (see [16]).
The algorithm makes sure to always move to a corner point that is not worse than
the current corner point and it will thus, in a finite number of steps, end up in an
optimal solution. The algorithm runs in exponential time in the worst case, but
behaves polynomially in practice (see [17] Chapter 13, [18] and [19]). In fact, for
many applications the simplex method outperforms interior point methods even if
the latter has a running time that is polynomial in the worst case (see [20] Chaper 1).

Figure 2.1: An illustration of how simplex searches for the optimal value in a
polytope during each iteration until an optimal solution is found. (Illustration from
https://commons.wikimedia.org/wiki/File:Simplex_description.png)

There exist a number of software packages for solving ILPs. One of them is CPLEX
[21], which is an ILP optimizer by IBM. For our computations we chose the simplex
method in the CPLEX ILP-solver settings.

7
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2. Theoretical background

2.4 Genetic Algorithms
Genetic algorithms are based on the theory of evolution and include features such as
mutations, populations, and survival of the fittest. They are generally used to search
for near-optimal values and are often employed in complex scenarios where algebraic
simplifications of the problem are difficult to make. Below follows a description of
a basic genetic algorithm [22] as well as the pseudocode representation in Listing 2.1.

Step 1: Initialize a population of N chromosomes as binary number representations
of the natural number variables in a function f of N inputs. Each chromosome
is of lengthM , whereM is the number of digits required for the binary number
representation of the largest possible variable.

Step 2: Evaluation
Step 2.1: The N chromosomes are decoded to the variables’ decimal values as vari-

ables xn, n = 1, . . . , N .
Step 2.2: The objective function f is evaluated and a fitness value Fn is assigned

to individual n as Fn := f(xn), n = 1, . . . , N .
Step 3: Next generation of the population
Step 3.1: Two chromosomes are selected at random; a higher fitness value increases

the likelihood of being selected. Once selected, they are removed from
the population.

Step 3.2: Crossover: Two new chromosomes are created by combining parts of
the two chromosomes selected in Step 3.1. This is done by splitting the
chromosomes at either a random or previously defined index m, where
1 ≤ m ≤M , and combining the resulting pieces.

Step 3.3: Mutation: Every bit in the two chromosomes created in Step 3.2 has a
small probability to mutate and flip value.

Step 3.4: The steps 3.1–3.3 are repeated until all chromosomes in the population
have been evaluated and a new generation has been created.

Step 4: Repeat from Step 2 with the newly created generation until a termination
criterion has been met.

8



2. Theoretical background

Inputs : i n s t ance Π ,
s i z e n o f populat ion ,
r a t e β o f e l i t i sm ,
ra t e γ o f mutation ,
number δ o f i t e r a t i o n s

Output : s o l u t i o n x
// I n i t i a l i z a t i o n

Generate n f e a s i b l e s o l u t i o n randomly ;
Save them in the populat ion pop ;
Loop un t i l the te rmina l cond i t i on
for i=1 to δ do

// E l i t i sm based s e l e c t i o n
number o f e l i t i sm ne = n · β ;
s e l e c t the best ne s o l u t i o n s in pop and save them in pop1 ;

// Crossover
number o f c r o s s ov e r nc = (n− ne)/2 ;
for j=1 to nc do

randomly s e l e c t two s o l u t i o n s xA and xB from pop1 ;
g enerate xC and xD by one−po int c r o s s ov e r to xA and xB ;
save xC and xD to pop2 ;

endfor
// Mutation

for j=1 to nc do
s e l e c t a s o l u t i o n xj from pop2 ;
mutate each b i t o f xj under the ra t e γ and generate a new

s o l u t i o n x′
j ;

i f x′
j i s u n f e a s i b l e
update xj with a f e a s i b l e s o l u t i o n by r ep a i r i n g x′

j ;
endif
update xj with x′

j in pop2 ;
endfor

// Updating
update pop = pop1 + pop2 ;

endfor
// Returning the best s o l u t i o n

return the bes t s o l u t i o n x in pop ;

Listing 2.1: Algorithm example of a simple genetic algorithm[23].
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3
Methods

3.1 A mathematical model of the
retrofitting optimization problem

In this section the ILP model of the building retrofitting optimization problem is
presented. This model consist of variables, a linear objective function, and linear
constraints. In our model we will use binary variables which will be called decision
variables in the remainder of this chapter. The following subsections will motivate
the design choices, such as which parameters to use as independent variables, in
order to formulate an ILP model of the retrofitting optimization problem.

Decision variables for the different combinations of spaces and component types
(types of windows, walls, ceilings, floors, and ventilation systems) will be intro-
duced along with constraints and the objective functions for costs and space heating
in order to describe the model [24, 25]. Since the space heating objective function
is nonlinear, linearization is used to be able to construct an ILP model.

It should also be noted here that the different model parts are described twice. First
a general explanation of the reasoning behind the modelling follows in Sections 3.1.1–
3.1.2, and in Section 3.4 the complete model is presented. The term space used in
this chapter refers to the physical space where a specific component is to be placed,
for example the hole in a wall where a window is to be placed.

3.1.1 Decision variables
For the space heating equations described in Appendix A it seemed to suit well to let
the decision variables be a combination of spaces and component types. For example,
for windows the decision variable xij equals 1 if the type of window j ∈ {1, . . . , n}
is used on window space i ∈ {1, . . . , N}, and 0 otherwise. This concept applies to
all decision variables. The component types are in turn associated with a set of
parameters which relate to the space heating equations, such as insulation, and ven-
tilation effectiveness. An example follows based on the window decision variables as
the other components are handled analogously, with the exception of the ventilation
system.

The Matrix (3.1) represents the decision variables for windows; each row corre-
sponds to a specific space to be retrofitted, and each column corresponds to the

11



3. Methods

type of component chosen. This general approach facilitates future developments,
allowing different types of components on different levels of the buildings. Currently,
for all spaces on any wall in a certain cardinal direction, the same component type
is used; hence all such spaces are in the mathematical model considered as a single
space in the mathematical model. The ventilation system is assumed to be chosen
for the entire building, which means that it can be represented by a vector, where
each element corresponds to one type of ventilation system. Further details regard-
ing decision variable notations are covered in the matrices in (3.5).

x :=


x11 . . . x1n
... ... ...

xN1 . . . xNn

 (3.1)

By also including the current component in the decision variable matrix, one can
choose not to retrofit the component, but instead leave the original in place. Should
it be absolutely necessary to retrofit the component the original component type can
simply be excluded from the decision variable matrix, and thus not be considered
as an option.

3.1.2 Constraints

The first constraint is general and enforced on each space. This constraint expresses
that only one component type may be chosen for each space; it is described for
windows as,

n∑
j=1

xij = 1, ∀i = 1, . . . , N. (3.2)

An analogous reasoning is made for all components, including ventilation which
possesses only one space. The user specified constraint allows limitations on which
component types are allowed in which spaces and is represented by a 0-1 matrix λ
of the same dimensions as the corresponding decision variable matrix. An example
of a zero in this matrix, based on the conditions of the northern hemisphere, could
be that a certain window type may not be allowed to face north, which is a generally
colder direction, because that window type may have a too low insulation value, and
as such would diffuse too much cold air. This is formulated for window type i, j as

xij ≤ λij, ∀i = 1, . . . , N, ∀j = 1, . . . , n, (3.3)

where λij = 1 means that component type j is a feasible option for space i and
λij = 0 means that it is not. Analogous restriction matrices follow for all compo-
nents.

More detailed explanations, including the notation used for the other components,
will follow in Section 3.4.

12



3. Methods

3.2 Simulations of the space heating equations
Efforts were made in the project towards analyzing the space heating function alge-
braically, but as the complexity of the function proved this to be too hard, efforts
were instead shifted toward a numerical simulation of the function. The simulation
was based on Excel spreadsheet data provided by CEE and Consid, in order to ex-
plore what further steps could be taken towards creating the mathematical model.
The data was created through measurements made every hour for an entire year at
an undisclosed location. The cost functions proved far more manageable and could
be used without any significant alteration. A note should be made here that the
component type parameters in the optimization are variables in the simulation and
linearization models to be described in this section.

The numerical simulations were made in MATLAB via the equations given in formu-
las (A.1)–(A.38) as provided by the DREEAM project. Values for all the constants
were extracted from the provided data samples. Via a thorough analysis of what
parameters the different components affect we concluded that heat transfer coef-
ficients for windows Uw and opaque surfaces Uop, ventilation effectiveness q, and
glazed surface ratio multiplied by solar transmittance Fgg were the core parameters
being altered by the choice of components. Aided by discussions with experts at
the DREEAM project these variables were set to intervals of feasible values [26]. A
graphical representation of how the space heating changes, as illustrated in Figure
3.1, depending on Uw and Uop was created. This served as a foundation to determine
which parameter would be best suited for a piecewise linearization. All permuta-
tions of variable pairs were tested and the heat transfer pair was found to result
in the best fit. The fit was determined by reviewing the maximum error of the
linearization as compared to the measurement data. This was complemented with
a graphical analysis to give a rough confirmation that the linearization produced
a model similar to the measurement data. The figures in Appendix C.1 show the
dependency of the space heating function on Fgg where a linear relationship can be
imagined. In the linearization Fgg is considered as a single variable, as every window
includes both an Fg and g value, and these are precomputed to a single parameter
Fgg for every window component.
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Figure 3.1: Graphical illustration of the space heating function as depending on
Uw and Uop.
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3.3 Linearization of the space heating function
Given the nonlinearity of the space heating function it is necessary to linearize the
results given by the simulations to achieve functions usable for linear programming.
The space heating function was piecewise linearized utilizing multiple linear regres-
sion in several partitions of the domain of Uop, which was deemed a suitable choice
for partitioning via the graphical analysis described in Section 3.2. There were no
further research into this via methods such as analyzing integrals of the errors, as the
graphical analysis provided enough ground to work on for a proof-of-concept. Fig-
ure 3.2 shows a plot of the space heating function along with the resulting piecewise
linearization. A generalized equation for the piecewise linearization can be seen in
Equation (3.4), where each linear function ap is defined by the variables Uw, Uop, q,
and Fgg, and the piecewise linear and convex function f is defined as the maximum
value of the functions ap, where p = 1, . . . , P . The coefficients β1, . . . , βP are chosen
as described in Section 2.1 using multiple linear regression and solving an ordinary
least squares problem. The linearization is then used in the complete model (see
Section 3.4) by choosing decision variables (retrofitting components) such that the
value of the decision variable parameters Uw, Uop, q, and Fgg minimize f .

f = max{a1, ..., aP},
where

a1 = β0
1Uw + β1

1Uop + β2
1q + β3

1Fgg + β4
1 ,

...
aP = β0

PUw + β1
PUop + β2

P q + β3
PFgg + β4

P .

(3.4)
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Figure 3.2: Graphical representation of the space heating function along with the
resulting piecewise linearized model where P = 3. The colored areas show where the
linearization is greater than or equal to the original space heating function value.
Both Fgg and q are fixed in order to visualize the two factors with most impact, Uw
and Uop.
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3.4 Developing a complete mathematical optimiza-
tion model

This section describes the entire mathematical optimization model with regards to
the complete notation utilized, how the decision variables relate to the objective
functions, as well as the constraints placed upon the decision variables.

3.4.1 Decision Variables
The decision variables are as described in Section 3.1.1, where each variable matrix
corresponds to types of components, their location, and whether or not they are
chosen. The naming convention was chosen to reduce clutter with large variable
names. Explanations can be seen in Tables 3.1, 3.2, 3.3, and 3.4. The complete
notation for all decision variables in consideration is shown in (3.5). Each matrix
has its own index with regard to size, as each component has independent numbers of
spaces as well as of types. The relationship between variable names and components
can be seen in Table 3.1.

x =


x11 . . . x1n
... ... ...

xN1 . . . xNn

 (3.5a)

y =


y11 . . . y1m
... ... ...

yM1 . . . yMm

 (3.5b)

z =


z11 . . . z1w
... ... ...

zW 1 . . . zW w

 (3.5c)

r =


r11 . . . r1k
... ... ...
rK1 . . . rKk

 (3.5d)

v =
[
v1 . . . vc

]
(3.5e)

Mathematical notation Components
x Windows
y Walls
z Floors
r Ceilings
v Ventilation system

Table 3.1: Variables used and their corresponding components.
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3.4.2 Constraints

The reasoning behind the constraints follow from Section 3.1.2, whereas this section
will focus on going into greater detail of the notation used for the components’
constraints. A complete notation for restrictions regarding component placement
can be seen in (3.6). Constraints corresponding to the notation can be seen in Table
3.2. The placement constraints follow the same indexing as the decision variable
matrices, since every element is individually subject to if it is allowed on space i if
it is of type j.

λ =


λ11 . . . λ1n
... ... ...

λN1 . . . λNn

 ∈ BN×n (3.6a)

µ =


µ11 . . . µ1m
... ... ...

µM1 . . . µMm

 ∈ BM×m (3.6b)

ξ =


ξ11 . . . ξ1k
... ... ...
ξK1 . . . ξKk

 ∈ BK×k (3.6c)

γ =


γ11 . . . γ1w
... ... ...

γW 1 . . . γW w

 ∈ BW×w (3.6d)

Parameter name Component
λ Windows.
µ Walls.
ξ Floors.
γ Ceilings.

Table 3.2: Parameters used for restrictions regarding component placement.

The 0-1 nature of the decision variables are restricted to binary values, according to

xNn ∈ {0, 1} ∀N∀n (3.7a)
yMm ∈ {0, 1} ∀M∀m (3.7b)
rKk ∈ {0, 1} ∀K∀k (3.7c)
zW w ∈ {0, 1} ∀W∀w (3.7d)
vc ∈ {0, 1} ∀c (3.7e)
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The admissibility constraints are then formulated as

xNn ≤ λNn ∀N∀n (3.8a)
yMm ≤ µMm ∀M∀m (3.8b)
rKk ≤ ξKk ∀K∀k (3.8c)
zW w ≤ γW w ∀W∀w (3.8d)

It is assumed that all ventilation systems are allowed for the building in question.
It is possible that not all ventilation systems will be admissible for placement in
the case where several buildings are considered, but as it is also possible that each
building can be optimized individually in this regard, simplifying the problem for-
mulation to allow for all ventilation systems. Even if this would not be the case, it
is a minor alteration to include a similar constraint to ventilation systems as well,
and as such it will not be regarded in this model.

In order to impose that only a single component type is placed in each available
space, the following constraints are formulated:

n∑
j=1

xNj = 1, ∀N, (3.9a)

m∑
j=1

yMj = 1, ∀M, (3.9b)

k∑
j=1

rKj = 1, ∀K, (3.9c)

w∑
j=1

zW j = 1, ∀W, (3.9d)

c∑
j=1

vj = 1. (3.9e)
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3.4.3 Objective functions
The model contains several cost functions, and while they are all included in this
subsection, only the investment cost function is used as a proof of concept for the
ILP model in Section 4.4.

The investment cost equation is arguably one of the more straightforward of the ob-
jective functions. Each reduction in cost results in a linear reduction of total costs.

The component costs are divided into material, labour, and replacement costs, with
the added costs of operation and maintenance for the ventilation system. In the
model, several vectors are constructed for the different costs of each component
type, with indices as per their associated component, as

CMat,Win =
[
CMat,Win

1 . . . CMat,Win
n

]
, (3.10a)

CMat,Wal =
[
CMat,Wal

1 . . . CMat,Wal
m

]
, (3.10b)

CMat,Flo =
[
CMat,Flo

1 . . . CMat,Flo
w

]
, (3.10c)

CMat,Cei =
[
CMat,Cei

1 . . . CMat,Cei
k

]
, (3.10d)

CMat,Ven =
[
CMat,Ven

1 . . . CMat,Ven
c

]
, (3.10e)

CLab,Win =
[
CLab,Win

1 . . . CLab,Win
n

]
, (3.11a)

CLab,Wal =
[
CLab,Wal

1 . . . CLab,Wal
m

]
, (3.11b)

CLab,Flo =
[
CLab,Flo

1 . . . CLab,Flo
w

]
, (3.11c)

CLab,Cei =
[
CLab,Cei

1 . . . CLab,Cei
k

]
, (3.11d)

CLab,Ven =
[
CLab,Ven

1 . . . CLab,Ven
c

]
, (3.11e)

CRep,Win =
[
CRep,Win

1 . . . CRep,Win
n

]
, (3.12a)

CRep,Wal =
[
CRep,Wal

1 . . . CRep,Wal
m

]
, (3.12b)

CRep,Flo =
[
CRep,Flo

1 . . . CRep,Flo
w

]
, (3.12c)

CRep,Cei =
[
CRep,Cei

1 . . . CRep,Cei
k

]
, (3.12d)

CRep,Ven =
[
CRep,Ven

1 . . . CRep,Ven
c

]
, (3.12e)
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COpe,Ven =
[
COpe,Ven

1 . . . COpe,Ven
c

]
, (3.13)

CMai,Ven =
[
CMai,Ven

1 . . . CMai,Ven
c

]
. (3.14)

Next the total cost for the selection of components is calculated for each component,
using the introduced decision variables:

TMat,Win =
∑
N

∑
n

xNnCMat,Win
n (3.15a)

TMat,Wal =
∑
M

∑
m

yMmCMat,Wal
m (3.15b)

TMat,Flo =
∑
K

∑
k

zKkCMat,Flo
k (3.15c)

TMat,Cei =
∑
W

∑
w

rW wCMat,Cei
w (3.15d)

TMat,Ven =
∑

c

vcCMat,Ven
c (3.15e)

T Lab,Win =
∑
N

∑
n

xNnCLab,Win
n (3.16a)

T Lab,Wal =
∑
M

∑
m

yMmCLab,Wal
m (3.16b)

T Lab,Flo =
∑
K

∑
k

zKkCLab,Flo
k (3.16c)

T Lab,Cei =
∑
W

∑
w

rW wCLab,Cei
w (3.16d)

T Lab,Ven =
∑

c

vcCLab,Ven
c (3.16e)

TRep,Win =
∑
N

∑
n

xNnCRep,Win
n (3.17a)

TRep,Wal =
∑
M

∑
m

yMmCRep,Wal
m (3.17b)

TRep,Flo =
∑
K

∑
k

zKkCRep,Flo
k (3.17c)

TRep,Cei =
∑
W

∑
w

rW wCRep,Cei
w (3.17d)

TRep,Ven =
∑

c

vcCRep,Ven
c (3.17e)

TOpe,Ven =
∑

c

vcCOpe,Ven
c (3.18)

TMai =
∑

c

vcCMai
c (3.19)
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The resulting costs are then summed up into totals for materials, labour, replace-
ment, maintenance, and operation according to

TMat = TMat,Win + TMat,Wal + TMat,Flo + TMat,Cei + TMat,Ven (3.20)

T Lab = T Lab,Win + T Lab,Wal + T Lab,Flo + T Lab,Cei + T Lab,Ven (3.21)

TRep = TRep,Win + TRep,Wal + TRep,Flo + TRep,Cei + TRep,Ven (3.22)

T Inv = TMat + T Lab + TAdd + TFee + TTax + TMar (3.23)

The expression in Equation (3.23) is then admissible for use as an objective function
with added constants for additional costs, fees, taxes, and margins. With minor ad-
ditional information, such as changes in taxes and fees over time, further objective
functions could also be defined; see Appendix B. TOpe,Ven and TMai are not used in
this objective function, but the mathematical models for these are included due to
their use in other cost related objective functions; see Appendix B.

The space heating objective function is calculated by using the parameters given
by a selection of decision variables in the linearization performed in Section 3.3. For
every component, except the ventilation system, two parameters are determined by
their placement: The placement area, A, as well as the adjustment factor, b. Vectors
(3.24)–(3.25) show these parameters in vector form. Note that the indexing used in
the vectors correspond to the same indexing as used in the decision variable matri-
ces for each component as indicated by the parameters’ superindex. The window
components have a unique set of parameters as shown in (3.26)–(3.28). The physical
counterpart of the parameters are listed in Tables 3.3 and 3.4.

Ax =
[
Ax

1 . . . Ax
N

]
, (3.24a)

Ay =
[
Ay

1 . . . Ay
M

]
, (3.24b)

Az =
[
Az

1 . . . Az
W

]
, (3.24c)

Ar =
[
Ar

1 . . . Ar
K

]
, (3.24d)

bx =
[
bx

1 . . . bx
N

]
, (3.25a)

by =
[
by

1 . . . by
M

]
, (3.25b)

bz =
[
bz

1 . . . bz
W

]
, (3.25c)

br =
[
br

1 . . . br
K

]
, (3.25d)
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Iglobal =
[
Iglobal

1 . . . Iglobal
N

]
, (3.26)

Fsh =
[
F sh

1 . . . F sh
N

]
, (3.27)

Fsh,ob =
[
F sh,ob

1 . . . F sh,ob
N

]
. (3.28)

Parameter Description
A∗ Area of component placement location for component type ∗
b∗ Adjustment factor if temperature outside placement location differs

from outside temperature for component type ∗

Table 3.3: Parameters associated with the placement of components chosen by the
decision variables and their descriptions.

Parameter Description
U∗ Insulation value for component for component type ∗

∆U∗ Reductions in insulation, e.g. due to holes for fastenings, for com-
ponent type ∗

q Strength of ventilation system
Iglobal Global solar irradiation on window
Fg Ratio of glazed surface area of total window area
g Solar transmittance of window component

Fsh Shading factor imposed by movable shading devices
Fsh,ob Shading factor imposed by obstacles

Table 3.4: Parameters associated with the components chosen by the decision
variables and their descriptions.

Furthermore every component, except the ventilation system, also have the com-
ponent specific parameters insulation value, U , and adjustment factor, ∆U . The
ventilation system has no placement parameters, but does have the component spe-
cific parameter ventilation effectiveness, q. Windows have a special set of component
specific parameters in their ratio between glazed and total window area, Fg, as well
as their solar transmittance, g. The parameters in vector form are given by

Ux =
[
Ux

1 . . . Ux
n

]
, (3.29a)

Uy =
[
Uy

1 . . . Uy
m

]
, (3.29b)

Uz =
[
U z

1 . . . U z
w

]
, (3.29c)

Ur =
[
U r

1 . . . U r
k

]
, (3.29d)
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∆Ux =
[
∆Ux

1 . . . ∆Ux
n

]
, (3.30a)

∆Uy =
[
∆Uy

1 . . . ∆Uy
m

]
, (3.30b)

∆Uz =
[
∆U z

1 . . . ∆U z
w

]
, (3.30c)

∆Ur =
[
∆U r

1 . . . ∆U r
k

]
, (3.30d)

q =
[
q1 . . . qV

]
, (3.31)

Fg =
[
F g

1 . . . F g
n

]
, (3.32)

g =
[
g1 . . . gn

]
. (3.33)

In order to facilitate the presentation of the resulting constants from the component
parameters two new constants are introduced, one for the component type (see
(3.35)) and one for the component placement location (see (3.34)). Note that both
(3.35a) and (3.35e) are determined by the chosen window components, but utilized
differently in the linearization, and as such must be separated into two constants.

Cxp =
[
Ax

1b
x
1 . . . Ax

Nb
x
N

]T
(3.34a)

Cyp =
[
Ay

1b
y
1 . . . Ay

Mb
y
M

]T
(3.34b)

Czp =
[
Az

1b
z
1 . . . Az

W b
z
W

]T
(3.34c)

Crp =
[
Ar

1b
r
1 . . . Ar

Kb
r
K

]T
(3.34d)

Cgxp =
[
Iglobal

1 Ax
1F

sh
1 F sh,ob

1 . . . Iglobal
N Ax

NF
sh
N F sh,ob

N

]T
(3.34e)

Cx =
[
Ux

1 + ∆Ux
1 , . . . , Ux

n + ∆Ux
n

]
(3.35a)

Cy =
[
Uy

1 + ∆Uy
1 , . . . , Uy

m + ∆Uy
m

]
(3.35b)

Cz =
[
U z

1 + ∆U z
1 , . . . , U z

w + ∆U z
w

]
(3.35c)

Cr =
[
U r

1 + ∆U r
1, . . . , U r

k + ∆U r
k

]
(3.35d)

Cgx =
[
F g

1 g1 . . . F g
ngn

]
(3.35e)

The constant vectors associated with every component’s location and type are mul-
tiplied to form matrices that correspond to the thermal transmittance for every
component in every position. This is to include as general a model as possible since,
for example, a large window space may not only be replaced by a large window, but
also by several smaller windows. Whether this is an admissible solution or not is
left to the user constructing the admissibility matrices for each component.
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The resulting objective function to be minimized will be called ω, and is subject to
a constraint imposed by the piecewise linearization of the space heating equation
(see Section 3.3). Due to the space heating function being convex over the area of
interest, it is possible to always choose the greatest value of the piecewise equations
as this will shape a curve tracing under the actual space heating equation. By in turn
searching for the minimum of ω, utilizing the piecewise space heating linearization
as a constraint, the optimization will be pressed between the linearization and an
approximation of the original space heating equation. By increasing the number of
linear piecewise linearizations, the edges between the partitions will be sufficiently
small to not cause any significant error.

min ωω∈R,x∈BN×n,y∈BM×m,z∈BW ×w,r∈BK×k,v∈Bc (3.36a)
subject to

ω ≥
{
β0

l

[
N∑

i=1

n∑
j=1

xijC
x
jC

xp
i

]
+ β1

l

[
M∑

i=1

m∑
j=1

yijC
y
jC

yp
i +

K∑
i=1

k∑
j=1

rijC
r
jC

rp
i +

A∑
i=1

a∑
j=1

zijC
z
jC

zp
i

]
+β2

l

[
V∑

j=1
vjCj

]
+ β3

l

[
N∑

i=1

n∑
j=1

xijC
gx
j C

gxp
i

]
+ β4

l

}
, l = 1, . . . , L,

(3.36b)
xNn ≤ λNn, ∀N∀n, (3.36c)
yMm ≤ µMm, ∀M∀m, (3.36d)
rKk ≤ ξKk, ∀K∀k, (3.36e)
zW w ≤ γW w, ∀W∀w, (3.36f)

n∑
j=1

xNj = 1, ∀N, (3.36g)

m∑
j=1

yMj = 1, ∀M, (3.36h)

k∑
j=1

rKj = 1, ∀K, (3.36i)

w∑
j=1

zW j = 1, ∀W, (3.36j)

c∑
j=1

vj = 1, (3.36k)

T Inv ≤ ε. (3.36l)
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The constraint modelled by the inequality (3.36b) is shown as depending on the
decision variables who in turn choose the Uw, Uop, q, and F gg values. The number
L of partitions, where l = {1, ..., L}, are typically in the range of 3 to 5 for this
application, each partition corresponding to some subinterval of Uop, Uop

l . Where
β0

l , β1
l , β2

l and β3
l are vectors of coefficients from the linearization, and β4

l is a vector
of constant offsets that are set during linearization. Further constraints are added in
(3.36c)-(3.36k) limiting the choice of components as shown in Section 3.4.2. Finally
the ε-constraint (3.36l) (see Section 2.2) is added to the complete model, limiting
the investment cost.
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4
Tests and results

In this chapter, several different results will be presented without much regard to
analysis or discussion, but rather to display the results along with explanations
where needed. Further thoughts regarding what the results mean will follow in the
discussion and conclusions section. First the data set will be explained in greater
detail, next the results given by the linearization and optimization will be presented.
It should be noted that the results from the simulation are not presented as it is just
an intermediate step toward the linearization. The main result in this chapter is
found in Section 4.4, where the results from testing the ILP model against NSGA-II
are presented.

4.1 Data set
The data set used was from an example building previously tested by the NSGA-II
algorithm. A summary of the components available in the data set can be seen in
Appendix E. This example building has four walls, one unheated bottom floor, one
unheated top ceiling and 126 windows. Further, the building is oblong and rectan-
gular, as sketched in Figure 4.1, which is important to know when calculating the
impact of the sun. In the data set there also exist sample data for the amount of
heating and cooling, respectively, for every hour throughout one year.

Figure 4.1: A rough sketch of the oblong building showing the compass direction
for each side of the building.

The admissibility data for each component is written, individually for each renova-
tion, in the form of a table where each component which is unavailable at a certain
space is marked by a ’0’.
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Data regarding the weather such as temperature, azimuth, diffuse horizontal ra-
diation, global horizontal radiation, and height of the sun has also been sampled
throughout a year and are used when simulating the total space heating demand.

4.2 Linearization
The most important result regarding the linearization, apart from the coefficients, is
the magnitude of the maximum error over each partition of the piecewise lineariza-
tion. It was found that the largest resulting error was around 6%. The magnitude
of the error depends on the number of piecewise partitions used in the linearization,
and can be further reduced by increasing the number of partitions P , shown in Sec-
tion 3.3. For the proof of concept this margin of error was accepted and kept in mind
when comparing the solutions computed by CPLEX and NSGA-II, respectively.

Partition(P) Average error(%) Maximum error(%)
1 1.52 4.28
2 1.97 6.16
3 0.99 5.71

Table 4.1: This table shows the average and maximum errors found for each
partition in the piecewise linearization during the testing of the model.

An important note about the linearization process is that the simulation step adds a
significant amount of time to precompute the problem data, but also that the entire
process does not scale with the amount of variables (more windows, walls, buildings,
etc). The simulation which it is based upon does however scale with the level of
resolution chosen, and has a linear time complexity of O(n5), where n is equal to
the largest number of simulated results for a variable, imposed by looping over a
number of points in a feasible interval of the four variables being simulated as well
as looping over every hour for the measured year.

4.3 Optimization solutions
The optimization model was implemented in AMPL (see [27]), which is a modeling
language for optimization. It also includes the optimization solver CPLEX, which
was briefly described in Section 2.3. Once the model was linearized it was imple-
mented in AMPL. As a first step, the binary requirements on the variables in the
model in Chapter 3 was relaxed and the resulting LP-relaxation was solved using
the Simplex method (within the solver CPLEX). As expected, the solutions were
highly fractional and thus focus was shifted to using CPLEX’ ILP solver. For the
data set provided, CPLEX produced optimal integer solutions, which are compared
with the solution provided by NSGA-II in Section 4.4.

When comparing solutions to different problem instances given by AMPL, there
are a lot of differences even when the costs of the solutions are relatively close to
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each other. One example of this can be seen when comparing the solutions given
by a maximum investment cost of 5.1 Mkr with the solution given by a maximum
of 6.1 Mkr as shown in Tables 4.2 and 4.3. The two solutions have different types
of components in all component spaces, except two original windows and a heat
recovery system. Differences in the choice of components seem to be consistent be-
tween most different solutions at different investment costs, except from the heat
recovery system which is immediately included as soon as there is enough money
to afford it. One other thing that is consistent is that the solutions for lower in-
vestment cost usually includes insulation to the floor and to the ceiling. This is
due to the original floor and ceiling being of poor quality with respect to insulation,
and that they are covering such a large area relative to the total area of the building.

If the constraint on investment cost is removed, the optimal solution is found at
around 8.5 MKr. This solution is presented in Table 4.4. It should be noted that
the reason that different walls are chosen are due to the fact that sandwich walls
are not admissible on Wall 2 and 4. Comparing the optimal solution to the solution
which applies no retrofitting, a nearly ten times lower space heating energy demand
is achieved. It was also found that when no limits were placed on the investment
cost, both NSGA-II and CPLEX found the same component setup to be the optimal
solution.

Component space Option
Ceiling 150 mm external insulation above the roof slab
Floor 100 mm insulation on the outside (unheated heated side)

of the floor slab
Wall 1 Sandwich insulation 80 mm
Wall 2 Original
Wall 3 Sandwich insulation 120 mm
Wall 4 Original (no replacement)

Window 1 Original (no replacement)
Window 2 Original (no replacement)
Window 3 Original (no replacement)
Window 4 Original (no replacement)
Ventilation Heat recovery

Table 4.2: Components chosen by CPLEX for a maximum investment cost of 5.1
Mkr.
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Component space Option
Ceiling 200 mm external insulation above the roof slab
Floor Insulation on the outside (unheated heated side) of the

floor slab - 300 mm on ground
Wall 1 200 mm sandwich add insulation
Wall 2 170 mm brickwall add insulation
Wall 3 200 mm sandwich add insulation
Wall 4 170 mm brickwall add insulation

Window 1 Original
Window 2 Window U-value 0.8 - Wood/aluminium
Window 3 Original
Window 4 Window U-value 0.8 - Wood/aluminium
Ventilation Heat recovery

Table 4.3: Components chosen by CPLEX for a maximum investment cost of 6.1
Mkr.

Component space Option
Ceiling 2*130 mm TRP external insulation above the roof slab
Floor 300 mm on ground insulation on the outside(unheated

heated side) of the floor slab
Wall 1 200 mm sandwich add insulation
Wall 2 170 mm brickwall add insulation
Wall 3 200 mm sandwich add insulation
Wall 4 170 mm brickwall add insulation

Window 1 Window U-Value 0.8 - Wood/aluminium
Window 2 Window U-Value 0.8 - Wood/aluminium
Window 3 Window U-Value 0.8 - Wood/aluminium
Window 4 Window U-Value 0.8 - Wood/aluminium
Ventilation Heat recovery

Table 4.4: Components chosen by both CPLEX and NSGA-II without any restric-
tion on the investment cost.
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4. Tests and results

4.4 Computing Pareto-optimal solutions
Figure 4.2 shows the the plots of the different solutions found by CPLEX and NSGA-
II. In the figure it can be seen that the algorithm found that the most dramatic re-
ductions in energy demand come from the initial increase in investment cost, whilst
the difference for higher investment cost has far less impact on energy consump-
tion. Examples of how the component sets for these solutions may look can be
seen in Tables 4.2–4.4. By checking the factor between the highest energy con-
sumption (when no component is replaced) and the lowest, it can be found that the
greatest possible relative reduction in energy demand for this test case building is
326.11−32.04

326.11
[MW]
[MW] ≈ 90%.

Figure 4.3 shows the difference in the number of generations in NSGA-II. As the
algorithm progresses more solutions are discovered with each iteration, slowly con-
verging toward the Pareto optimal front. It can be seen that there are still better
solutions found after 100 000 generations as compared to 10 000 generations, but
that the improvement is minor.

It is important to realize that the runtime difference between increasing generations
is vast, taking around 20 seconds for 1 000 generations, 3 minutes for 10 000, and
36 minutes for 100 000 generations on an average user laptop. This compares to
the ILP solver CPLEX, which runs in about 4 seconds on the same hardware. The
reason for this fast runtime is the simple mathematical structure in the ILP-model
(3.36). It should also be noted that NSGA-II does not manage to produce satis-
factory solutions in 1 000 generations, as shown in Figure 4.2. The points where
NSGA-II seems to have found solutions which dominate the CPLEX solutions are
just artifacts from the errors in the linearization process, as no difference in the
choice of components occurs.
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4. Tests and results

Figure 4.2: Plots of the different solutions produced by the CPLEX algorithm and
NSGA-II for different numbers of generations.
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4. Tests and results

Figure 4.3: Plot showing the solutions found by NSGA-II. The figure shows the
difference between solutions found by allowing the algorithm to run for 10 000 and
100 000 generations respectively.
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5
Discussion and Conclusion

It has been found that the equations utilized in planning retrofitting projects are, in
many cases, mathematically complex and hard to analyze algebraically. In the case
of the space heating demand function, however, it was also found that, despite the
apparent complexity, the equations yield a convex function. The linearization pro-
vided acceptable maximum errors, and could be further improved by increasing the
number of linear pieces. It should also be noted that despite the linearization errors
the same components were chosen in the optimization with no limit on investment
cost, which indicate that at least for this example the errors could not be found to
cause any severe consequences. Since any further retrofitting problem instance can
be reduced to a simple scaling of the tested building this shows promise that even
when applied to other buildings the linearization errors could possibly be handled
in the same way.

When tested it was found that the ILP solver indeed found Pareto optimal solu-
tions that dominated many of the solutions found by the previous algorithm, the
stochastic NSGA-II. This would be reasonable given that the nature of NSGA-II is
to choose the best solution over the set of solutions that it has found, iterating over
those, and searching their neighborhood for even better solutions. This means that
if NSGA-II has not found Pareto optimal solutions, it will simply choose “the best
it knows”. This contrasts to the ILP model which, in this proof of concept, utilizes
CPLEX to search for optimal solutions (to the corresponding problem where the
space heating function is linearized) in a controlled and consistent manner. Most
notably, this means that not only is the runtime far lower than when using NSGA-
II, it is also unnecessary to run this solver more than once for the same problem
instance, unlike NSGA-II which may produce different solutions for different runs
depending on initial guesses, selection, and mutation as described in Section 2.4.
While the solutions may be a bit skewed due to the errors, the comparison against
1 000 generations of NSGA-II, seen in Figure 4.2 is the most telling for how this
may scale in a larger neighborhood of buildings where NSGA-II will require a far
greater amount of generations in order to find a near-Pareto optimal front.

As mentioned in Section 4.4 the runtime of the ILP model is vastly lower than
that of NSGA-II. The value of this does not lie solely in the reduced runtime,
but in the increased capabilities for the solver in solving a larger multiobjective
problem with more decision variables and more component types within a reasonable
time frame, for example by adding objective functions. It also means that the
solution scales better to larger building blocks, resulting in possibilities that the
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5. Discussion and Conclusion

ILP model and solution can be used on an office laptop without need for greater
computational power, even for large neighborhoods of multistory buildings. As
previously mentioned, NSGA-II needs to iterate over a number of generations in
order to find satisfactory results, increasing as the problem instances grows larger.
This means that the 36 minute runtime for 100 000 generations is an underestimation
when applied to large neighborhoods, whereas the ILP model shows promise in
not having as drastic increase in runtime when dealing with larger scales of the
retrofitting problem.

5.1 Future work
This report focuses mainly on space heating demand and investment cost (with fur-
ther cost objective functions also supported) as these are the objectives with most
use as of now. There are, however, a lot more objective functions to work on, as
shown in Appendix D. However, the same type of decision variables are used in all
objectives with the addition of some new components. This means that the work to
include more objective functions should not be as time consuming as implementing
the space heating demand and the cost. To then use a similar method on a third si-
multaneous objective will likely not increase the running time considerably as it can
be viewed as another constraint in the current model (see Section 2.2). However, the
amount of iterations will need to be increased in order to find many enough points
on the Pareto front.

The immediate next step after implementation of the missing objective functions
would be to attempt implementation of the complete method (simulation, lineariza-
tion, and optimization) in C#/.NET in order to merge the results from this research
into DreeamTool, mentioned in Section 1.1.

Another development which could further decrease the energy use would be to al-
low retrofitting different components at different times over the consideration period
(which is of the magnitude 20 to 40 years). For this to work one would need to in-
clude the average lifetime of a component and the various costs which are included
in maintaining an older component as opposed to the labour of retrofitting a new
component. This means that a lot more options, with regard to both choice of
replacements and timing of these actions, for retrofitting the components must be
included in the mathematical model, which then will grow larger.

Further work also includes a method to dynamically determine how many linear
pieces the model of the space heating demand function should use for the evaluated
building as determined by the maximum allowed error in the linearization. This
could be done by iterating over the maximum errors of all linear pieces, and while
a partition yields a maximum error above the accepted threshold, that partition
is further partitioned until the maximum error is satisfactorily small. This type of
solution would yield high amounts of partitions in sensitive areas, whilst maintaining
a low amount in areas where it is not needed.
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A
Space heating demand equations

These functions are listed as referenced from the DREEAM Project documentation
[24]. The variable descriptions and relationships can be seen in the ISO 13790:2008
standard [28].

Htr,is = hisAfAat (A.1)

Htr,w =
∑

c

Acbc(Uc + ∆Uc) (A.2)

Htr,op =
∑

c

Acbc(Uc + ∆Uc) (A.3)

Htr,ms = hmsAm (A.4)

Htr,em = 1
1

Htr,op

− 1
Htr,ms

(A.5)

Hve,inf = ρacaVaACHinf (A.6)

Hve,act = ρacaqve,actAffvebve (A.7)

Hve = Hve,inf +Hve,act (A.8)

Idirect,c = Idirect,h
1

sin(α)(cos(α) sin(β) cos(Ψ + Θ + Fcor) + sin(α) cos(β)) (A.9)

Idiffuse,c = Idiffuse,h
1
2(1 + cos(β)) (A.10)

Iglobal,c = Idirect,c + Idiffuse,c (A.11)

φsol,w =
∑

c

Iglobal,cAcgcFg,cFsh,cFsh,ob,c (A.12)

φint,Oc = nOcφOcfOc (A.13)
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A. Space heating demand equations

φint,App = AfφAppfApp (A.14)

φint = φint,App + φint,Oc (A.15)

φia = 1
2φint (A.16)

φm = Am

AatAf

(1
2φint + φsol,w) (A.17)

φst = (1− Am

AatAf

− Htr,w

9.1AatAf

)(1
2φint + φsol,w) (A.18)

Htr,1 = 1
1
Hve

+ 1
Htr,is

(A.19)

Htr,2 = Htr,1 +Htr,w (A.20)

Htr,3 = 1
1

Htr,2
+ 1
Htr,ms

(A.21)

φmtot,HC = φm +Htr,msΘe + Htr,3

Htr,2

(
φst +Htr,wΘe +Htr,1

[
φia + φHC,nd

Hve

+ Θsup

])
(A.22)

φmtot,H = φm +Htr,msΘe + Htr,3

Htr,2

(
φst +Htr,wΘe +Htr,1

[
φia + φH,nd

Hve

+ Θsup

])
(A.23)

φmtot,C = φm +Htr,msΘe + Htr,3

Htr,2

(
φst +Htr,wΘe +Htr,1

[
φia + φC,nd

Hve

+ Θsup

])
(A.24)

Θm,t,HC =
Θm,t−1,HC

(
Cm

3600 −
1
2[Htr,3 +Htr,em]

)
+ φmtot,HC

Cm

3600 + 1
2(Htr,3 +Htr,em)

(A.25)

Θm,t,H =
Θm,t−1,H

(
Cm

3600 −
1
2[Htr,3 +Htr,em]

)
+ φmtot,H

Cm

3600 + 1
2(Htr,3 +Htr,em)

(A.26)
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A. Space heating demand equations

Θm,t,C =
Θm,t−1,C

(
Cm

3600 −
1
2[Htr,3 +Htr,em]

)
+ φmtot,C

Cm

3600 + 1
2(Htr,3 +Htr,em)

(A.27)

Θm,HC = Θm,t,HC + Θm,t−1,HC

2 (A.28)

Θm,H = Θm,t,H + Θm,t−1,H

2 (A.29)

Θm,C = Θm,t,C + Θm,t−1,C

2 (A.30)

Θs,HC =
Htr,msΘm,HC + φst +Htr,wΘe +Htr,1

(
Θsup + φia + φHC,nd

Hve

)
Htr,ms +Htr,w +Htr,1

(A.31)

Θs,H =
Htr,msΘm,H + φst +Htr,wΘe +Htr,1

(
Θsup + φia + φH,nd

Hve

)
Htr,ms +Htr,w +Htr,1

(A.32)

Θs,C =
Htr,msΘm,C + φst +Htr,wΘe +Htr,1

(
Θsup + φia + φC,nd

Hve

)
Htr,ms +Htr,w +Htr,1

(A.33)

Θair,HC = Htr,isΘs,HC +HveΘsup + φia + φHC,nd

Htr,is +Hve

(A.34)

Θair,H = Htr,isΘs,H +HveΘsup + φia + φH,nd

Htr,is +Hve

(A.35)

Θair,C = Htr,isΘs,C +HveΘsup + φia + φC,nd

Htr,is +Hve

(A.36)

φH =

φH,nd
Θair,H,set −Θair,HC

Θair,H −Θair,HC

, for Θair,HC ≤ Θair,H,set

0 , for Θair,HC > Θair,H,set

(A.37)

φC =

φC,nd
Θair,C,set −Θair,HC

Θair,C −Θair,HC

, for Θair,HC ≥ Θair,C,set

0 , for Θair,HC < Θair,C,set

(A.38)
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B
Additional cost functions

These functions are listed as referenced from the DREEAM Project documentation
[25].

CRunning = CMaintenance + COperational + CEnergy (B.1)

LCC = CInvestment +
T∑

t=1

(
CRunning − CReplacement

(1 + r)t

)
(B.2)

NPV =
T∑

t=1

(
CEarnings − CRunning − CReplacement

(1 + r)t

)
− CInvestment (B.3)

NPV = 0 =
T∑

t=1

(
CEarnings − CRunning − CReplacement

(1 + IRR)t

)
− CInvestment (B.4)

ROI = (CEarnings,SQ − CRunning,SQ)− (CEarnings,RC − CRunning,RC)
CInvestment

(B.5)

CSavings = CRunning,SQ − CRunning,RC

CRunning,SQ

(B.6)

V



B. Additional cost functions

VI



C
Supplementary figures

C.1 Piecewise linearizations of the space heating
demand function

These figures show how the equation changes depending on Fgg. A linear relation-
ship can be hinted by the figures.

(a) Fgg = 0.072, q = 0.2 (b) Fgg = 0.072, q = 0.4

(c) Fgg = 0.072, q = 0.6 (d) Fgg = 0.072, q = 0.8
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C. Supplementary figures

(a) Fgg = 0.072, q = 1.0 (b) Fgg = 0.396, q = 0.2

(c) Fgg = 0.396, q = 0.4 (d) Fgg = 0.396, q = 0.6

(e) Fgg = 0.396, q = 0.8 (f) Fgg = 0.396, q = 1.0
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C. Supplementary figures

(a) Fgg = 0.72, q = 0.2 (b) Fgg = 0.72, q = 0.4

(c) Fgg = 0.72, q = 0.6 (d) Fgg = 0.72, q = 0.8

(e) Fgg = 0.72, q = 1.0
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D
Objective functions

Useful Energy Demand
Useful Energy Demand of Heating
Useful Energy Demand of DHW
Final Energy Demand
Final Energy Demand of Heating
Final Energy Demand of DHW
Final Energy Demand of Building Electricty
Final Energy Demand of Household Electricity
Efficiency
Efficiency Heating
Efficiency DHW
Useful Energy Savings
Useful Energy Savings of Heating
Useful Energy Savings of DHW
Final Energy Savings
Final Energy Savings of Heating
Final Energy Savings of DHW
Final Energy Savings of Building Electricty
Final Energy Savings of Household Electricity
Electricity Production
Self Consumption of Produced Electricity
Self Production of Consumed Electricity
GHG Emission
Primary Energy Total
Primary Energy Non Renewable
Primary Energy Renewable
GHG Emission Savings
Primary Energy Total Savings
Primary Energy Non Renewable Savings
Primary Energy Renewable Savings
Investment Costs
Maintenance Costs
Operational Costs
Energy Costs
Earnings Electricity Production Feed In
Total Life Cycle Cost
Internal Rate Of Return

XI



D. Objective functions

Modified Internal Rate Of Return
Net Present Value
Profitability Index
Cost Savings
Final Energy Savings Investment
Return On Investment
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E

Component descriptions and data

Refurbishment option name
(roof)

Cost/m2 (SEK)

* 50 mm insulation TY 1523 409
* 100 mm insulation 446
* 150 mm insulation 484
* 200 mm insulation 533
* 50 mm insulation TOR 519
* 100 mm insulation TOR 565
* 160 mm insulation TOR 630
* 100 mm insulation TRP 945
* 130 mm insulation TRP 951
* 2*100 mm insulation TRP 1090
* 2*130 mm insulation TRP 1102

*External Insulation above the roof slab
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E. Component descriptions and data

Refurbishment option name (floor) Cost/m2 (SEK)
Insulation on the inside (heated side)
of the floor slab - 45 mm insulation

1071

Insulation on the inside (heated side)
of the floor slab - 70 mm insulation

1124

Insulation on the inside (heated side)
of the floor slab - 95 mm insulation

1187

Insulation on the outside (unheated
heated side) of the floor slab - 50 mm
insulation

196

Insulation on the outside (unheated
heated side) of the floor slab - 70 mm
insulation

208

Insulation on the outside (unheated
heated side) of the floor slab - 100 mm
insulation

232

Insulation on the outside (unheated
heated side) of the floor slab -100 mm
on ground

361

Insulation on the outside (unheated
heated side) of the floor slab - 200 mm
on ground

617

Insulation on the outside (unheated
heated side) of the floor slab - 300 mm
on ground

874

Refurbishment option name (window) Cost/m2 (SEK)
9x12 Window U-Value 1.5 -Wood 4947
9x12 Window U-Value 1.2 -Wood 6779
9x12 Window U-Value 1.2 -
Wood/aluminium

8402

9x12 Window U-Value 1.1 -
Wood/aluminium

7705

9x12 Window U-Value 1.1 -Aluminium 7319
9x12 Window U-Value 0.8 -
Wood/aluminium

9074
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Refurbishment option name (wall) Cost/m2 (SEK)
Brickwall add insulation - 50 mm insu-
lation

1558

Brickwall add insulation - 80 mm insu-
lation

1572

Brickwall add insulation - 100 mm in-
sulation

1599

Brickwall add insulation - 120 mm in-
sulation

1651

Brickwall add insulation - 150 mm in-
sulation

1696

Brickwall add insulation - 170 mm in-
sulation

1758

Sandwich add insulation - 50 mm insu-
lation

1249

Sandwich add insulation - 80 mm insu-
lation

1269

Sandwich add insulation - 120 mm in-
sulation

1353

Sandwich add insulation - 150 mm in-
sulation

1398

Sandwich add insulation - 200 mm in-
sulation

1497

Refurbishment option name
(ventilation)

Cost

Exhaust air Q-value 1 541580
Heat recover Q-value 0.2 543725
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