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Abstract
The tail assignment problem is the problem to, in accordance with some optimization
criterion, assign a set of flights to a set of aircraft in order to create a feasible flight
schedule for an airline. In this thesis we approach this problem using column gen-
eration combined with heuristic methods to enforce an integer solution. Apart from
the more well established column generation method derived from Dantzig–Wolfe
decomposition, a new column generation is used, the recently developed integer qual-
ity column generation [6] (Bredström, Jörnsten, Rönnqvist, Bouchard: Int. Trans:
Oper. Res. 21, 177-197, 2014). To enforce integer solutions, we employ a connection
fixing heuristic. Enabled by our proposed modeling of the flight network, in which
the initial positions of the aircraft are represented by nodes, we also develop and
propose an aircraft fixing heuristic. We have, further, developed new pre-processing
methods for reducing the number of arcs in the network (and thereby reducing the
solution space for the subproblem). Our results show that the standard column gen-
eration together with either of the integer heuristics are generally preferable, except
for some cases where the integer quality column generation produced better results.
Our new pre-processing methods show promising results, for some test instances
significantly reducing the number of arcs in the network.
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1
Introduction

1.1 Background
This thesis concerns the development and implementation of mathematical optimiza-
tion models to solve aircraft scheduling problems with several different aircraft types.
The project has been done in cooperation with Aviolinx. Aviolinx is a middle-sized
company based in Stockholm that offers a software service tool for administration
of operation of small and middle sized airlines.

The aircraft scheduling problem considered is the so called tail assignment prob-
lem1 [13], which is to, given a set of flights and a set of aircraft, assign one aircraft to
each flight according to some optimization criterion. The aircraft routes should fulfill
some appropriate feasibility requirements. For example, the solution must consist of
continuous routes for each aircraft, and there must be enough ground time between
the flights along each route, such that passengers can be loaded/unloaded and the
plane can be refueled. The feasibility requirements also includes that each aircraft
undergoes maintenance at specific locations and during specific time intervals, to
satisfy international security regulations.

There are several reasons why an airline wants to optimize its schedules, the most
obvious perhaps being to reduce costs, but the proposed algorithm can also be used,
e.g., to make an aircraft schedule better match that of the crew, or to reduce the
time that the aircraft spend on the ground.

Aviolinx have provided us with data, on which the models have been tested, as well
as the overall interface, RAIDO [3], in which our algorithm has been implemented.
The algorithm is implemented in C#.

1.2 Literature study
A thorough look at the tail assignment problem is presented in the PhD thesis [13]
by Grönkvist from 2005, which introduces the problem and provides a mathematical
programming as well as a constraint programming approach to solve it. Among the
things discussed in the mathematical programming part of the thesis is a column
generation algorithm, solution methods for the associated subproblem, and heuristic
methods to obtain integer solutions. The work presented in this report is to a large

1For airlines, the terms aircraft, vehicle, and tail are used interchangeably (tail referring to
the unique tail number associated with each aircraft). Through this report we use the word
aircraft, except when referring to the tail assignment problem, which is the established name for
the considered optimization problem.
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1. Introduction

extent built on [13], and extends on some parts of it. A combined column generation
and constraint programming approach is presented by Gabteni and Grönkvist ([10]);
when applying integer heuristics to the mathematical programming model, in order
to avoid unassigned flights it adds feasibility checks within a constraint programming
model.

The book Column Generation ([7]) by Desaulniers, Desrosiers and Solomon ad-
dresses column generation as a solution method for many different large-scale opti-
mization problems. It includes a chapter on models in the airline industry, where
an outline for solving aircraft routing problems is presented. Among other things,
the label setting algorithm used to solve the subproblem which arises in the tail
assignment problem is described.

Froyland, Maher and Wu have developed a method to solve The Recoverable
Robust Tail Assignment Problem ([9]). It is often the case that delays will spread if
one flight is late. For example, the crew on a delayed flight are likely to arrive late
to the next flight they are to serve on. The aim of solving the recoverable robust
tail assignment problem is to generate aircraft schedules in which these kinds of
events are less likely to happen, and in the case of disruptions, the schedule should
be recoverable, such that re-planning can be done at a low additional cost.

A model for optimizing a schedule to minimize fuel costs has been developed by
Lapp and Wikenhauser ([15]), in which they associate with each aircraft a score
which depends on the fuel efficiency of the engines. This score can be used to
optimize towards an aircraft schedule in which the more efficient aircraft are used
more frequently than their less efficient counterparts. They argue that the fuel costs
constitute a large part of an airline’s expenditure, and that great savings can be
made by optimizing the aircraft schedule in this manner. Lapp and Wikenhauser
use a model which is similar to the one presented in [13], but also a simpler model,
in which complete routes have already been established, and the problem consists
of optimally assigning one aircraft to each of these routes.

Borndörfer, Dovica, Nowak and Schickinger in [5] present a stochastic optimiza-
tion method for solving the tail assignment problem with the objective to minimize
delays. They model primary delays (which are due to, for example, bad weather, for
which there is no avoidance) as random variables, from which random variables for
secondary, propagated delays are derived. The aim is to create routes for aircraft
with a minimum probability for propagated delays. A thesis on the same subject
has been written by Dovica in 2014 ([8]).

In the article ([19]) from February 2017, Ruther, Boland, Engineer and Evans
present an integrated aircraft routing, crew pairing and tail assignment problem, as
well as a method to solve it. They solve this integrated problem by simultaneously
generating routes for aircraft and pairings for crew members, and apply penalties to
solutions in which the crew have a short connection time between two flights being
assigned to two different aircraft. By minimizing the number of such short crew
connections, the aim is to create a robust schedule in which possible disruptions
create less of a hassle.

Some new methods for solving set partitioning problems (as which we will formu-
late the tail assignment problem) have been developed in later years. These include
the works by Rönnberg and Larsson ([20]), and Bredström, Jörnsten, Rönnqvist,
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1. Introduction

and Bouchard ([6]). We will go into more detail about the latter of these methods
in Section 3.3.

1.3 Project scope

We start by formulating the general minimum cost multi-commodity network flow
problem and the tail assignment problem as a resource constrained multi-commodity
network flow problem.

Thereafter we present the methods needed to solve the tail assignment problem
and the necessary theoretical background needed in order to apply the methods to
the problem.

The main solution technique used is that of column generation. To be able
to apply this technique, we decompose the tail assignment problem into a master
problem and a subproblem using Dantzig-Wolfe decomposition. The subproblem is
a resource constrained shortest path problem, which we solve using dynamic pro-
gramming. The master problem is a continuously relaxed set partitioning problem,
which is solved using a commercial solver.

Two different column generation methods are used, the standard column gener-
ation and the IQ column generation.

To get an integer solution to the master problem, we use heuristic methods, which
after specified conditions are fulfilled, restricts the solution space to the subproblem
and the master problem.

We present methods to remove unnecessary arcs in graph representing the sub-
problem. These methods can be applied to the network of nodes before running a
column generation algorithm, and are (under some basic assumptions) guaranteed
not to remove the optimal solution from the solution space.

We also present a simplified model, which can be used to compute a lower bound
to the tail assignment problem, and to roughly monitor the convergence of the
column generation.

Our solution methods and algorithms are evaluated on data from commercial
airlines.

1.4 Limitations

To expect reasonable results from the pre-processing methods presented in Section
4.4, it is required that a solution exists in which all flights during the considered
time period are covered by aircraft. We can rule out the possibility that such a
feasible solution exists, if the solution to the minimum cost network flow problem
described in Section 4.3 contains unassigned flights. We will, however, not study
any additional methods for checking problem feasibility. It should be noted that
the column generation algorithms can be run even if no solution exists with all
flights assigned to aircraft. In these cases the algorithm will inevitably minimize the
number of unassigned flights in the final aircraft schedule (due to the high costs put
on unassigned flights).
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1. Introduction

Figure 1.1: An example of a fleet schedule over the course of a week. Each row
represents an aircraft. Orange and green boxes represent flights assigned to the
aircraft represented by the row on which they appear. A box placement on the
horizontal axis specifies at what time the flight depart and land.

For the work presented in this thesis to be used in the airline industry, a user
interface has to be constructed. What explicitly should be put in such an interface
is not discussed in this thesis.

Parts of the intended methods of solution will consist of heuristics, and as a result
optimal solutions can not be guaranteed. Methods which can be used to obtain the
optimal solution to the tail assignment problem, such as branch-and-price, are only
superficially discussed within this thesis.

Figure 1.1 shows an example of a one week aircraft schedule for a smaller airline
as a gantt-chart. The time span over which the flight scheduling should be done can
vary from a single day to one year. As the tail assignment problem quickly grows
very large when the number of flights is increasing, our project task is limited to
scheduling over a time span of maximum a couple of months, depending on the fleet
size.
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2
Network flow formulation of the

tail assignment problem

In Section 2.2 we formulate the general minimum cost multi-commodity network
flow problem, and in Section 2.3 we formulate the tail assignment problem as a
resource constrained multi-commodity network flow problem.

2.1 Problem formulation

The tail assignment problem is the problem of, given a set of flights and a set of
aircraft, assign an aircraft to each flight, and thus create a flight schedule for an
airline. When creating the schedule one has to take several things into account.
The current status of the aircraft is one such thing. There are several different
maintenance requirements which needs to be fulfilled for each aircraft if the airline
wants to use it commercially. All aircraft need to go through different maintenance
checks after every n-th flying hour and after every m-th landing and take off. The
aircraft can be of such nature that it cannot take off from a specific airport due to,
for example, the length of its runway. Furthermore, a smaller ground check needs
to be done between each flight and the aircraft have to be refueled. These checks
are called turn arounds and the time needed to perform a turn around is generally
less than an hour. In order to create a feasible schedule one has to make sure that
all of these requirements are fulfilled.

Even if a schedule fulfills all of these requirements it is not necessarily true that
it is appealing to the airline. The airline wants to have a schedule that is as money
efficient as possible. The routes for each aircraft should be continuous, in that when
an aircraft lands on a specific airport, its next flight should depart from that same
airport, as it would be too expensive to transport empty aircraft between airports.
Another way for them to save money is to reduce the time spent on ground of a
utilized aircraft. It is also appealing for the flight crew to have a lean schedule
without long stays at each airport.

This motivated an objective function that gets more expensive the more ground
time a flight path has. We have chosen an objective function that is a linearly
increasing function of the number of minutes the aircraft stays on ground, with its
lowest value for the minimum required turn around time between two flights.

Ideally, every flight in the time period should be assigned to an aircraft. To
enforce this, we put high costs on solutions in which flights are left unassigned.
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2. Network flow formulation of the tail assignment problem

2.2 The minimum-cost multicommodity network
flow problem

The minimum-cost multicommodity network flow problem ([21]) is a generalization
of the minimum-cost network flow problem, where we have several ”commodities”
which should flow through the network. In the model (2.1) we denote the set of
nodes by I, the set of directed arcs by A ⊆ I × I, the set of commodities by T , the
source node for commodity t as it0 ∈ I, the sink node for commodity t as itN ∈ I, the
cost of sending one unit of flow of commodity t on arc (i, j) as cijt, the flow capacity
of arc (i, j) as kij, and the amount of commodity t sent on arc (i, j) as xijt:

minimize
xijt

z =
∑
i∈I

∑
j∈I

∑
t∈T

cijtxijt, (2.1a)

s.t.
∑
j∈I

xjit −
∑
j∈I

xijt =


−qt, i = it0,

qt, i = itN ,

0, i ∈ I \ {it0, itN},
i ∈ I, t ∈ T, (2.1b)

∑
t∈T

xijt ≤kij, i ∈ I, j ∈ I (2.1c)

xijt ≥0, i ∈ I, j ∈ I, t ∈ T.
(2.1d)

The constraints (2.1b) state that we should have qt units of flow leaving the source
node and entering the sink node for commodity t. It further states that we should
have flow balance for every other node in the network. Constraints (2.1c) state that
the flow on each arc should not exceed the corresponding arc capacity.

2.3 The tail assignment problem modelled as a re-
source constrained multicommodity network
flow problem

With aircraft seen as commodities, the tail assignment problem can be modelled
as a resource constrained multicommodity network flow problem (see [4]). In such
a model, each node corresponds to either a specific flight or a specific aircraft, the
(directed) arcs represent possible connections between nodes (see Figure 2.1) and
each path in the network corresponds to a set of flights assigned to an aircraft. By
”path”, we mean a set of n connected nodes in the network {ik1 , ik2 , ..., ikn−1 , ikn}.
A complete path must include the start node it0 as the first node and the sink node
itN as the last node.

We let I be the set of nodes, where i0 is the source node, and iN the sink node
in the network. Note that in the general multicommodity network flow formulation
there is one source node and one sink node per commodity, while in our formulation
the commodities share the same source and sink node. Instead, every commodity
(aircraft) has one aircraft node which each requires one unit of flow from the source

6



2. Network flow formulation of the tail assignment problem

Figure 2.1: A small network representing two aircraft (nodes 1 and 2) and five
flights (nodes 3 through 7) departing in the time between tstart and tend with their
horizontal placement suggesting different operation times. Arcs which has a flow
capacity of 1 are displayed in this figure. Arcs related to aircraft A are depicted as
filled lines, while arcs related to aircraft B are depicted as dashed lines. One feasible
solution to the multi-commodity network flow problem (2.5) for this network are the
paths defined by the ordered set of nodes {0, 1, 3, 5, 8} and {0, 2, 4, 6, 7, 8}. The arcs
related to aircraft B originating from flight 3 and 5 can not be used in any solution,
but will be present in the model if they are not found and removed using a pre-
processing method.

node. The source node only has arcs to the aircraft nodes. The aircraft nodes are
elements of the set Ia ⊂ I, and If := I\{Ia, i0, iN} is the set of flight nodes. The
set of available aircraft is denoted as T . Note that |Ia| = |T |. The flow capacity on
arc (i, j) for aircraft t is denoted by eijt, which equals 1 if aircraft t can take flight
j directly after flight i, and zero otherwise.

The decision variable xijt equals one if there is a positive flow on the edge between
node i and node j, and passing through aircraft node t, and zero otherwise1. As an
example, looking at Figure 2.1, x361 would equal 1 if flight 6 directly succeeds flight
3 in a path taken by aircraft 1. The decision variables are formally defined as

xijt =

1, if flight j is taken directly after flight i by aircraft t,
0, otherwise,

(2.2)

for i ∈ I, j ∈ I, t ∈ T .
In the following, we will use m to denote a type of resource which can be con-

sumed. The consumption accumulates when adding flights to a path, and for which,
before a limit has been reached, maintenance of a specific sort has to be performed.
For example, if maintenance has to be performed at least after every 100 flying
hours, the total hours flown since last maintenance check would be considered a re-
source, with a limit of 100. Due to the one-to-one correlation between resources and
their corresponding maintenance activities, we will use m to denote both of these.

Let M denote the set of maintenance activities. βmt is the upper bound on how
much of resource m can be consumed by aircraft t before maintenance of type m
must be done. We let the variables sjmt denote the consumption of resource m for

1Aircraft node t corresponds to the source node for commodity t in the multi-commodity network
flow problem (2.1).
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2. Network flow formulation of the tail assignment problem

aircraft t caused by taking flight j. Given a path in the network leading up to flight
j, rjmt denotes the total amount of resource m consumed by aircraft t on the path
leading up to, and including flight j (where xijt = 1 for some preceding flight i),
and is iteratively defined as

rjmt =



s0mt, if j is an aircraft node,
sjmt, if maintenance of type m can be done on aircraft t between

flight node j and its predecessor i,
rimt + sjmt, if maintenance of type m could not be done

on aircraft t between flight node j and its predecessor i,
(2.3)

for i ∈ I, j ∈ I, t ∈ T . s0mt is the amount of resourcem already consumed by aircraft
t at the start of the time span of which the tail assignment should be made. To
express the resource consumption in terms of the decision variables xijt we introduce
constants vijmt which equals to one if maintenance m can be done between flights i
and j on aircraft t and zero otherwise. The accumulated consumption of resource
m up to flight j by aircraft t can then be expressed as

rjmt = sjmt +
∑
i∈I

(1− vijmt)rimtxijt, i ∈ I, j ∈ I, t ∈ T, (2.4)

meaning that the resource consumption of resource m on node j by aircraft t is the
resource consumed on flight j, sjmt, plus the accumulated resource consumption on
node i, if flight j is directly succeeding flight i and maintenance of type m is not
done between the two flights.

We note that the resource constraints as stated here are non-linear. In section
2.3.1, we will show that there is an equivalent linear formulation of these constraints.

The parameter cijt denotes the cost of assigning flight j directly after flight i to
aircraft t. The mathematical formulation of the tail assignment problem reads as
follows:

minimize
xijt

z =
∑
i∈I

∑
j∈I

∑
t∈T

cijtxijt, (2.5a)

s.t.
∑
j∈I

xjit −
∑
j∈I

xijt =0, t ∈ T, i ∈ I\{i0, iN}, (2.5b)
∑
t∈T

∑
j∈I

xijt =1 i ∈ I\{i0, iN}, (2.5c)

xijt ≤eijt, i ∈ I, j ∈ I, t ∈ T, (2.5d)
rjmt = sjmt +

∑
i∈I

(1− vijmt)rimtxijt, j ∈ I, t ∈ T,m ∈M, (2.5e)

rimt ≤βmt, i ∈ I,m ∈M, t ∈ T, (2.5f)
xijt ∈{0, 1}, i, j ∈ I, t ∈ T, (2.5g)

The objective function (2.5a) of the network flow problem is that of minimizing
the total cost of the aircraft routes. The constraints (2.5b) demands that the aircraft

8



2. Network flow formulation of the tail assignment problem

routes are continuous, in that if a flight arriving to a certain airport is assigned to
exactly one aircraft, the next (if any) flight assigned to that aircraft must depart from
that same airport. The constraints (2.5c) demands that every flight is assigned to an
aircraft. These constraints correspond to the constraints (2.1c), and the constraints
regarding the source and sink nodes in (2.1b), in the ordinary multicommodity
network flow model. The constraints (2.5d) demands that there can only be flow on
the arc (i, j) for aircraft t if aircraft t can take flight j directly after flight i. The
cumulative constraint (2.5f) makes sure that no aircraft violates any maintenance
restrictions. We note that this model leaves open the possibility to leave flight i
unassigned with cost ciit, if one adds an arc (i, i).

Note that, for a given j ∈ I, setting eijt = 0 for all t ∈ T \ {t̃}, captures the
possibility to have flight j preassigned to aircraft t̃.

2.3.1 A linear formulation of the tail assignment problem
To show that there is a linear formulation of the resource constraints (2.5f), we
introduce path variables in the model. We let P be the set of all complete paths in
the network, starting at the source node, and ending at the sink node. Further, we
let P̃ ⊂ P be the set of paths which violate a resource constraint, (rimt > βmt for
some node i in the path). We define constants

δijtp =

1 if arc (i, j) is used in path p for aircraft t
0 otherwise,

(2.6)

and binary decision variables

yp =

1 if path p is used in the solution,
0 otherwise.

(2.7)

A linear formulation of the tail assignment problem can then be formulated as to

minimize
xijt

z =
∑
i∈I

∑
j∈I

∑
t∈T

cijtxijt, (2.8a)

s.t.
∑
j∈I

xjit −
∑
j∈I

xijt =0, t ∈ T, i ∈ I\{i0, iN}, (2.8b)
∑
t∈T

∑
j∈I

xijt =1, i ∈ I\{i0, iN}, (2.8c)

xijt ≤eijt, i ∈ I, j ∈ I, t ∈ T, (2.8d)
yp =0, p ∈ P̃ , (2.8e)

xijt −
∑
p∈P

δijtpyp =0, i ∈ I, j ∈ I, t ∈ T, (2.8f)

yp ∈{0, 1}, p ∈ P, (2.8g)
xijt ∈{0, 1}, i, j ∈ I, t ∈ T. (2.8h)

The new constraint (2.8f) demands that, for every arc variable xijt = 1, exactly
one of the path variables which include arc (i, j) for aircraft t is set to one. If

9



2. Network flow formulation of the tail assignment problem

xijt = 0, all path variables which include arc (i, j) for aircraft t must be zero.
Constraint (2.8e) ensures that a path variable is set to zero if its corresponding path
violates a resource constraint. Since the tail assignment problem stated as (2.5) has
an equivalent linear formulation in (2.8), Dantzig–Wolfe decomposition ([7]) and
column generation can be applied.

10



3
Dantzig–Wolfe decomposition and

column generation

We describe the theory of Dantzig-Wolfe decomposition for linear programs in Sec-
tion 3.1. In Section 3.2, we relax the integer constraints on our resource constrained
multi-commodity network flow problem and apply Dantzig-Wolfe decomposition to
the relaxed problem. Applying this decomposition to our problem yields a set par-
titioning problem as the master problem, and resource constrained shortest path
problems as the subproblems.

The main method we will use to solve the tail assignment problem is called
column generation. We derive the column generation method in the Dantzig-Wolfe
decomposition section and the integer quality column generation is further explained
in Section 3.3. Our contribution is partly that of generalizing the modeling and
solution approach from [6] to the tail assignment problem and compare it with a
more conventional approach to column generation.

3.1 Dantzig-Wolfe decomposition
The Dantzig-Wolfe decomposition is a method of solving large-scale linear optimiza-
tion problems by formulating them in a way that allows for a decomposition into
smaller/simpler problems which can be solved iteratively.

Suppose that we have the optimization problem to

minimize
x

z := cTx, (3.1a)

s.t Ax ≤ b1, (3.1b)
Bx ≤ b2, (3.1c)

x ≥ 0n, (3.1d)

with c ∈ Rn, x ∈ Rn, A ∈ Rm1×n, B ∈ Rm2×n, b1 ∈ Rm1 , and b2 ∈ Rm2 . Let X
be the polyhedron defined by constraints (3.1b) and (3.1d):

X = {x : Ax ≤ b1,x ≥ 0}. (3.2)

We assume that X is nonempty and bounded. Further, suppose that the constraints
(3.1b) are of such a nature that the optimization problem defined by (3.1a), (3.1b),
and (3.1d) could be solved relatively fast, while (3.1c) makes the problem far more
complex to solve.

11



3. Dantzig–Wolfe decomposition and column generation

The set X has a finite number of extreme points, x(i), i = 1, ..., N , where N
is large. Every point x ∈ X can be expressed as a convex combination of the
extreme points as, x =

N∑
i=1

λix(i), where
N∑
i=1

λi = 1 and λi ≥ 0, i = 1, . . . , N . The
optimization problem (3.1) can then be equivalently expressed as

minimize
xi

zMP := cT
N∑
i=1

λix(i), (3.3a)

s.t
N∑
i=1

λiBx(i) ≤ b2, (3.3b)

N∑
i=1

λi = 1, (3.3c)

λi ≥ 0, i = 1, . . . , N, (3.3d)

The problem (3.3), is called the Master Problem (MP). This formulation enables
us to define the Restricted Master Problem (RMP) where we only consider a subset of
the extreme points in X. This is of interest because the set of extreme points in X is
very large and impractical to deal with as a whole, sometimes even impossible. Given
a feasible solution x̂ to (3.3), there exists a set of extreme points, x(i), i = 1, ...,m,
and corresponding λi fulfilling constraints (3.3c) and (3.3d), such that x̂ can be
explicitly expressed as x̂ =

m∑
i=1

λix(i), where m ≤ N . Defining the set X̄ as the
convex hull of these extreme points,

X̄ =
{
x̄ : x̄ =

m∑
i=1

λix(i), λi ≥ 0,
m∑
i=1

λi = 1
}
, (3.4)

one can formulate the Restricted Master Problem, using λi, i = 1, . . . ,m, as variables,
as to

minimize
λi

zRMP := cT
m∑
i=1

λix(i), (3.5a)

s.t
m∑
i=1

λiBx(i) ≤ b2, (3.5b)

m∑
i=1

λi = 1, (3.5c)

λi ≥ 0, i = 1, . . . ,m, (3.5d)
and the corresponding linear programming dual problem as to

maximize
u,v

w := bT
2 u + v, (3.6a)

s.t x(i)TBTu + v ≤ x(i)Tc, i = 1, . . . ,m (3.6b)
u ≥ 0m, (3.6c)
v free (3.6d)

12



3. Dantzig–Wolfe decomposition and column generation

Denoting the optimal solution to (3.5) as z∗RMP and the optimal solution to (3.3) as
z∗MP , it follows that z∗RMP ≥ z∗MP , since X̄ ⊆ X.

The approach of Dantzig-Wolfe decomposition consists of, given an initial feasible
solution to the RMP, expanding the solution space of RMP by finding the extreme
points of X that, when included in X̄, would improve the solution to RMP.

We know that the reduced cost of a new extreme point, x(m+1) can be expressed
in terms of the dual variable values u(m) and v(m) from the solution in the previous
iteration m, respectively, corresponding to the optimal solution of RMP, as

ĉm+1 :=
(
cT − u(m)TB

)
x(m+1) − v(m). (3.7)

The subproblem then consists of finding the extreme point x(m+1) of X that yields
the lowest reduced cost to the given solution, namely the solution to the problem to

minimize
x∈X

ĉm+1 :=
(
cT − u(m)TB

)
x− v(m). (3.8)

If the optimal solution to (3.8) yields a reduced cost ĉm+1 < 0 we will get a better
solution to the RMP if we include the corresponding extreme point x̄(m+1) in X̄ and
a corresponding variable λm+1 and resolve the RMP.

The expansion of the RMP will continue as long as the optimal value of the
subproblem (the reduced cost) is negative. When the reduced cost of the variable
λm+1 which is included in the RMP is greater than or equal to zero we have found
the optimal solution to the master problem as there is no other point in X that
would improve the solution of the RMP if included in X̄.

If matrix A is block-diagonal, and expressing vector b1 as

b1 =


b11
b12
...

b1J

 , (3.9)

where Aj ∈ Rm1j×nj and b1j ∈ Rm1j , we define Xj := {xj ≥ 0nj : Ajxj ≤ b1j}.
Analogously to the reasoning above, one can express xj as a convex combination of
the extreme points, x(i)

j , i = 1, ..., Nj, defining the convex hull of Xj. Also, denote
B = (B1,B2, ...,BJ), where Bj ∈ Rm2×nj .

Using these expressions one can formulate the original problem (3.1) as to

minimize
xi

zRMP = cT
J∑
j=1

Nj∑
i=1

λjix(i)
j

s.t
J∑
j=1

Nj∑
i=1

λjiBjx(i)
j ≤ b2, (3.10a)

Nj∑
i=1

λji = 1, j = 1, . . . J, (3.10b)

λji ≥ 0, i = 1, . . . , Nj, j = 1, . . . , J.

13



3. Dantzig–Wolfe decomposition and column generation

The expression in (3.10) allows for a separation of the subproblem into J smaller
subproblems to

minimize
xj∈Xj

ĉm+1 := (cT − ū(m)TBj)xj − v̄(m). (3.11)

One can then proceed by solving the subproblems individually (e.g. in parallell) in
order to obtain extreme points to the sets Xj, j = 1, . . . , J , expand the RMP, and
finally obtain an optimal solution to the master problem.

3.2 Applying Dantzig-Wolfe decomposition to the
tail assignment problem

To apply Dantzig-Wolfe decomposition to the tail assignment problem as modelled
in (2.5), we relax the integer constraints on xijt which results in the problem to

minimize
xijt

z :=
∑
j∈I

∑
i∈I

∑
t∈T

cijtxijt (3.12a)

s.t.
∑
t∈T

∑
j∈I

xijt = 1, i ∈ I\{i0, iN}, (3.12b)
∑
j∈I

xjit −
∑
j∈I

xijt =0, t ∈ T, i ∈ I\{i0, iN}, (3.12c)

xijt ≤eijt, i ∈ I, j ∈ I, t ∈ T, (3.12d)
rjmt = sjmt +

∑
i∈I

(1− vijmt)rimtxijt, j ∈ I, t ∈ T,m ∈M, (3.12e)

r0mt =s0mt, t ∈ T,m ∈M, (3.12f)
rimt ≤βmt, i ∈ I,m ∈M, t ∈ T, (3.12g)
xijt ≥0, i, j ∈ I, t ∈ T. (3.12h)

We let constraints (3.12b) and (3.12h) be the constraints of the master problem, and
the other constraints define the subproblem, and therefore get the master problem
as to

minimize
xijt

zMP =
∑
j∈I

∑
i∈I

∑
t∈T

cijtxijt (3.13a)

s.t.
∑
t∈T

∑
j∈I

xijt = 1, i ∈ I\{i0, iN}, (3.13b)

xijt ≥0, i ∈ I, j ∈ I, t ∈ T. (3.13c)

Using the path variables defined in Section 2.3.1 and further defining the cost

14



3. Dantzig–Wolfe decomposition and column generation

c̃p = ∑
t∈T

∑
i∈I

∑
j∈I

δijtpcijt, we can write the master problem as to

minimize
yp

zMP =
∑
p∈P

c̃pyp (3.14a)

s.t.
∑
t∈T

∑
j∈I

∑
p∈P

δijtpyp = 1, i ∈ I\{i0, iN}, (3.14b)

yp ≥0, p ∈ P. (3.14c)

Defining constants Ψip = ∑
t∈T

∑
j∈I

δijtp∀i ∈ I, p ∈ P , we can rewrite the master
problem as to

minimize
yp

zMP =
∑
p∈P

c̃pyp (3.15a)

s.t.
∑
p∈P

Ψipyp = 1, i ∈ I\{i0, iN}, (3.15b)

yp ≥0, p ∈ P. (3.15c)

The constants Ψip equal one if node i is present in path p for aircraft t, and the
constraints (3.15b) demands that each node be present in exactly one path in the
solution. yp ≥ 0 follows directly from xijt ≥ 0. We note here that, due to the
presence of aircraft nodes in the flight network, knowing a path p, we also know
which aircraft node this path went through. The indices t on δijtp are thereby
redundant, but kept for the sake of clarity. Further note that since only arc costs
cijt are present in the original model (3.13), the cost c̃p is uniquely determined by
p. The mater problem (3.15) is a set partitioning problem with linearly relaxed
decision variables ([23]).

The restricted master problem is defined as

minimize
yp

zMP =
∑
p∈P̂

c̃pyp (3.16a)

s.t.
∑
p∈P̂

Ψipyp = 1, i ∈ I\{i0, iN}, (3.16b)

yp ≥0, p ∈ P̂ , (3.16c)

where P̂ ⊆ P .
The solution space for subproblem t will be defined as every x ∈ [0, 1]|I|×|I|×|T |
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3. Dantzig–Wolfe decomposition and column generation

satisfying ∑
j∈I

xjit −
∑
j∈I

xijt =0, i ∈ I\{i0, iN} (3.17a)

xijt ≤eijt, i ∈ I, j ∈ I (3.17b)
rimt ≤βmt, i ∈ I,m ∈M (3.17c)

rjmt = sjmt +
∑
i∈I

(1− vijmt)rimtxijt, j ∈ I,m ∈M, (3.17d)

r0mt =s0mt, m ∈M, (3.17e)
xijt ≥0, i, j ∈ I (3.17f)
xijk =0, k 6= t, i ∈ I, j ∈ I. (3.17g)

The solution space for subproblem t will be denoted as Xt. The subproblem for
aircraft t will then be

minimize
x∈Xt

∑
i∈I

∑
j∈I

(cijt − u(m)
i )xijt, (3.18)

where u(m)
i is the value of the dual variable corresponding to constraint i in (3.15b)

the m-th time the master problem has been solved. This subproblem can be charac-
terized as a resource constrained shortest path problem [7, Chapter 2]. The solution
to subproblem t will be a flight path p for aircraft t, a new column of values Ψip, i ∈ I.
To solve this problem we will use a dynamic programming algorithm proposed in
[13, Chapter 5, Section 4]. The algorithm is proven to find the optimal solution to
the subproblem. This algorithm is described in detail in Section 4.1.1.

Due to the structure of the network of nodes and arcs, every solution to subprob-
lem t must contain aircraft node t. For this reason we know that if we rewrite any
solution x ∈ Xt to subproblem t, in terms of Ψip, then Ψtp must be equal to one and
therefore every column Ψip, i ∈ I is unique and we have a one to one relationship
between any path variable yp and the same solution expressed with variables xijt.

3.3 Integer quality column generation
A general property of the set partitioning problems that causes high computational
complexity is the integer requirement on the variables. In an optimal solution to
the MP (3.15), most commonly, very few variables take values close to one (see [13,
Chapter 7]). Thereby, after solving the linear relaxation of the tail assignment prob-
lem, we will have to take additional actions, such as employing a branch-and-price
algorithm [7, Chapter 4, Section 3.1.2] or heuristics, to receive a feasible solution
to the tail assignment problem. The branch-and-price approach is complicated to
implement in our setting and is likely too computationally demanding for our pur-
poses. We therefore chose to employ a number of heuristic methods to get an integer
solution; see Section 4.2.

In recent years, several new methods for finding integer solutions to set parti-
tioning problems using column generation have been proposed. One such method is
the all-integer column generation [20], by Rönnberg and Larsson in 2014. Another
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approach, which we will look into in more detail, is the integer quality column gener-
ation [6], by Bredström et al. in 2014. The general idea proposed in this paper is to
relax the set partitioning constraints and to generate columns, which together with
the current solution, minimize the under- and over-coverage of the set partitioning
constraints, if they were to be added to the problem. In our case undercoverage is if
a flight is not represented in a column in the solution, and overcoverage is if it is rep-
resented more than once. This is accomplished by adding a ’surrogate constraint’ to
the set partitioning problem which is kept as a constraint while the set partitioning
constraints are Lagrangian-relaxed ([17, Chapter 6]). The Lagrange multipliers are
then updated using a subgradient method, which can be used due to the fact that
the Lagrangean dual problem is convex.

In this section, J is the set of columns, I is the set of rows, xj is the binary decision
variable corresponding to column j ∈ J , cj the cost corresponding to variable xj, and
aij the entry at row i and column j in the constraint matrix. The linear relaxation
of the set partitioning problem with this additional surrogate constraint is to

minimize
x

∑
j∈J

cjxj, (3.19a)

s.t.
∑
j∈J

aijxj = 1, i ∈ I, (3.19b)
∑
j∈J

∑
i∈I

aijxj = |I|, (3.19c)

xj ≥ 0, j ∈ J. (3.19d)

Performing a Lagrangian relaxation of the constraints (3.19b), after a slight
rewriting we arrive at the Lagrangian relaxed integer quality optimization problem
(LRIQ) to

ζ(γ):=
∑
i∈I

γi + min
x

∑
j∈J

(
cj −

∑
i∈I

γiaij

)
xj, (3.20a)

s.t.
∑
j∈J

(∑
i∈I

aij

)
xj = |I|, (3.20b)

xj ≥ 0, j ∈ J. (3.20c)

We note that for given values of the multipliers γ ∈ R|I|, there exists a j∗ ∈ J
such that

cj∗ −
∑
i∈I
γiaij∗∑

i∈I
aij∗

≤
cj −

∑
i∈I
γiaij∑

i∈I
aij

, j ∈ J. (3.21)

The minimization problem in (3.20) for fixed values of the multipliers γ is therefore
solved by any x ∈ R|I| satisfying

xj =


|I|∑

i∈I

aij∗
, j = j∗

0, j ∈ J\{j∗}.
(3.22)
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The linear programming dual problem to the minimization problem in (3.20) is
given by the problem (LRIQ-DUAL) to

maximize
δ

∑
i∈I

(γi + δ) (3.23a)

s.t.
∑
i∈I

(γi + δ)aij≤ cj, j ∈ J (3.23b)

which is the dual of the lagrangian relaxation of problem (3.19). For a fixed γ, to
solve this maximization problem for δ is simply to find the largest δ which satisfies
the constraints (3.23b). One can easily rewrite these constraints as

δ ≤
cj −

∑
i∈I
γiaij∑

i∈I
aij

j ∈ J. (3.24)

From the definition (3.21), one realizes that the value of δ which maximizes (3.23)
is found as:

δ∗ =
cj∗ −

∑
i∈I
γiaij∗∑

i∈I
aij∗

. (3.25)

The aim of the integer quality column generation is to (by solving the subproblem
repeatedly) generate columns which define an optimal integer solution by heuristi-
cally controlling the values of the Lagrange multipliers using the subgradient method
(Algorithm 3.2) explained below. Hopefully, by controlling the values of the mul-
tipliers, γ, the generated columns will contain a good integer solution to the tail
assignment problem. If this is not the case, the method may be combined with the
heuristic methods described in Section 4.2, or with a branch-and-bound approach.
Pseudo-code for the complete integer quality column generation algorithm is given
in Algorithm 3.1, where J0 is the initial set of columns, Tinit is the initial number of
steps in the subgradient method, Tmax is the maximum number of steps and Tadd is
the number of steps added if no column with a negative reduced cost can be found.
α is a parameter which controls the step size in the subgradient method. c̄j0 is the
least reduced cost found when solving the subproblem. In Algorithm 3.2, A is the
constraint matrix containing the values aij, i ∈ I, j ∈ J .
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Algorithm 3.1: Integer quality column generation
1 Input parameters : J0 , Tinit , Tmax , Tadd , α
2 γ ← 0
3 p← 0
4 T ← Tinit
5 c̄j0 ← −∞
6 whi l e T < Tmax or c̄j0 < 0

7 j∗ ← arg min
j∈Jp


cj−
∑
i∈I

γiaij∑
i∈I

aij


8 δp =

cj∗−
∑
i∈I

γiaij∗∑
i∈I

aij∗

9 c̄j0 ← min
j∈J
{cj −

∑
i∈I

(γi + δp)aij}
10 i f c̄j0 < 0
11 Jp+1 ← Jp ∪ {j0}
12 end i f
13 (γ , T )← SubgradientMethod(c̄j0 , c , A , γ , T , α , Jp+1)
14 p← p+ 1
15 end whi l e

Algorithm 3.2: Subgradient method
1 Input parameters : c̄j0 , c , A , γ , T , α > 0 , Jp+1
2 i f c̄j0 < 0
3 T ← Tinit
4 e l s e
5 T ← T + Tadd
6 end i f
7 f o r t = 1 , . . . ,T
8 x← Solve LRIQ(γ , c , A)
9 f o r i = 1 , . . . , I
10 Gi ← 1− ∑

j∈Jp+1
aijxj(γ)

11 γi ← γi + α
t
Gi

12 end f o r
13 end f o r
14 re turn (γ , T )

3.3.1 Updating the multipliers: subgradient method

The problem of finding good values of the multipliers, γ is solved using the subgra-
dient method ([17, Chapter 6.4]). Controlling the multipliers is done by repeatedly
solving the minimization problem in (3.20) given the current values of γ to find the
column corresponding to the optimal solution x, which is such that xj∗ > 0 and
xj = 0, j 6= j∗, as given by (3.21) and (3.22). Then, each element γi is updated
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3. Dantzig–Wolfe decomposition and column generation

based on whether its corresponding flight i is included in column j∗.
Looking at Algorithm 3.2 we see that it is only the variable xj∗ that effects how

the multipliers are updated, as xj = 0 for all columns except j∗.
If flight i is not included in column j∗ we will get Gi equal to one (line 10 in

Algorithm 3.2) and thus γi will increase by α/t, where α/t is the steplength, and α
constant greater than zero. As the objective function to the subproblem of finding a
new column is defined as z = cj−

∑
i∈I

(γi+ δp)aij (Algorithm 3.1), the change of γi by
α/t will contribute to a lower reduced cost for all columns generated that includes
flight i, compared to if γi would have been unchanged.

If, in subgradient iteration t, flight i is included in column j, Gi will be set to
1−∑j∈J aij/|I| and γi will be changed by α/t

(
1− |I|/∑j∈J aij

)
. As |I|/∑j∈J aij is

greater than one, γi will decrease. This will affect the column generation in such a
way that columns including flight i will be less probable to occur as they will have
a greater reduced cost compared to if γi remained unchanged.

After γ is updated, t is increased by one and (3.20) is solved again, using the
new value of γ, which yields a new j∗. The new column j∗ is now the column that
affects how γ is updated in iteration t + 1. However, as t is increased by one the
step length α/t is smaller and therefore the impact on γ from this column will be
smaller compared to the previous one.

In conclusion, the change of the element γi whose corresponding flight is not
represented in any column j∗ for any iteration t will be positive. The change of
elements whose corresponding flights was represented in a solution j∗ for a small
value of t will more likely be negative. If the corresponding flight of an element was
represented in a column j∗ for a large value of t then the difference will at least be
small.

Which column is optimal in (3.20) when it is solved in iteration t = 1 is decided
partly by the value of γ from the last time the subgradient update method was
used (the last column generation iteration). One can view this as that the column
chosen is the one with the best combination of low cost in the RMP and how well
it fits with what is over/under-covered (see Section 3.3) according to γ. As this is
the column that fits best integrally (i.e. has the smallest over/under-coverage), it
will be the column that have the biggest impact on how γ changes in the current
subgradient update.

The number of times the multipliers are updated are dependent on the sign of the
reduced cost obtained from the subproblem. If the reduced cost is greater than or
equal to zero, then no column was added in the previous column generation call. As
a result, the number of subgradient iterations T is increased, so that γ is updated
additional times. According to [6] this makes γ converge towards the optimal value
of the dual variables in the dual problem of (3.19). However, one wants to keep
the number of subgradient iterations low before solving a new subproblem. This
is due to the fact that the columns then constructed are more dependent on the
over/under coverage of the recently generated columns and therefore are more likely
to integrally fit with them. That is, if we solve the RMP using the columns the
variables corresponding to the recently generated columns are more likely to assume
values close to one compared to columns generated earlier.
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4
Solution course for the tail

assignment problem

An outline for our solution scheme is sketched in Section 4.1.
A label pulling algorithm for solving the resource constrained shortest path prob-

lem (the subproblem in the column generation phase) is presented in Section 4.1.1,
in which we also discuss pros and cons of said algorithm.

In Section 4.2, we discuss heuristic methods for obtaining integer solutions to the
linearly relaxed problem. The heuristic methods discussed are a connection fixing
heuristic by Grönqvist [13] (presented in Section 4.2.2) and an aircraft legality fixing
heuristic developed withing our thesis project (presented in Section 4.2.3).

A way to calculate a lower bound on the objective value to the master problem
by solving a minimum cost network flow problem is described in Section 4.3. We
present the model used for calculating a lower bound from [13], and describe how to
set up the network so that the lower bound can be solved quickly using commercial
network flow solvers.

Pre-processing methods for reducing the number of arcs in the network defining
the subproblem in the column generation step can be found in Section 4.4. The
methods presented are guaranteed not to remove the optimal solution to the tail
assignment problem from the solution space, if a solution where each flight is covered
by an aircraft is possible. Some of the pre-processing methods presented in Section
4.4 are taken from [14], while others are (to the best of our knowledge) presented
first in this thesis.

As airlines might want to utilize aircraft differently, due to for example different
ages of aircraft, or that a specific aircraft type can be more or less suitable for certain
flights, the development performed within this thesis project is made such that the
algorithm can handle aircraft-specific requirements. This includes the possibility
to have different costs as well as different turn-around times and flight restrictions
associated with different aircraft.

4.1 The general approach
There are three major methods used in Algorithm 4.1: the column generation al-
gorithm, the methods used to solve the linearly relaxed restricted master problem,
and heuristics used to enforce integer solutions. The main idea is that column gen-
eration will generate the columns yielding the lowest reduced cost to incorporate in
the linearly relaxed restricted master problem (4.2).
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This problem (3.15) can either be the usual linearly relaxed set partitioning prob-
lem (see Section 3.2), or it can be the LRIQ-problem detailed in Section 3.3.

As columns are generated we restrict the solution space using two different solu-
tion space restricting heuristics. As it would be inefficient to restrict the solution
space after each column generation, we let the algorithm generate sufficiently many
columns before the solution space is restricted. This is either a given cap of columns
or until the least reduced cost of any column generated is no longer negative.

The algorithm continues in this iterative manner until both the solution to the
linearly relaxed restricted master problem is integer, and the least reduced cost of
any column generated is greater than or equal to zero.

The SolveRRMP method used in Algorithm 4.1 is a method which, given a con-
straint matrix and the cost of each column in this matrix, outputs the solution to
the RRMP (3.15).

The ColumnGeneration method takes the dual variables (or multipliers in case
IQ-column generation is used) and the network of nodes as input, and after running
Algorithm 4.2, outputs new columns, the cost of the new columns and the reduced
cost of the new columns.

The SolutionSpaceRestrictingHeuristic is a method which takes the constraint
matrix, the primal variables and the corresponding costs of these variables, and
restricts the solution space of the subproblem in accordance to one of the methods
described in Section 4.2. This method outputs the restricted network, and the
constraint matrix with the columns (paths) which violates the restrictions removed.

4.1.1 A label pulling algorithm for solving the resource con-
strained shortest path problem

We will use a label pulling algorithm (see [7]) to solve the resource constrained
shortest path problem. A label is in our context an object with information of a path,
the reduced cost of this path, and the consumption of each resource on this path. A
label pulling algorithm is a dynamic programming method, that iteratively finds the
shortest path from a given node (in our case, the source node) to each node in the
network, subject to a number of resource constraints. The resource constraints are
in our case that we have to make sure that (if needed) maintenance can be performed
somewhere on the generated route. Since rules are such that certain maintenance
has to be performed after every a flying hours, every b departures etc., what we mean
by a resource here is for example the number of flying hours since last maintenance
check1. We must therefore keep track of the value of each resource in every node
visited, and make sure that those values do not exceed their corresponding limits
βmt.

The essence of the label pulling algorithm is that we iterate through the nodes,
and save the paths leading to each node which are efficient. To explain the notion
of efficient labels, we also need to introduce the concept of dominance. Denoting

1One could also define other resources to restrict the solution space. For example, if we do not
want aircraft to fly more than four flights each day, we could define a resource as the number of
flights taken by an aircraft a given day, and set its limit to four.
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Algorithm 4.1: Pseudocode of the main algorithm
1 S − c on s t r a i n t matrix o f the master problem ,
2 i n i t i a l l y s e t as an i d e n t i t y matrix
3 c − co s t o f columns in S
4 c − co s t o f column s
5 X − node network
6 s − s e t o f columns obtained from the column gene ra t i on
7 rc − reduced co s t
8 π − va lue s o f dual v a r i a b l e s obta ined when s o l v i n g the RRMP
9 x − va lue s o f pr imal v a r i a b l e s obta ined when s o l v i n g the RRMP
10 Parameters :
11 iinitial , i n i t i a l l y s e t to something smal l
12 ifix , s e t to something rea sonab l e
13
14 f o r i = 1 : iinitial
15 {x, π} ← SolveRRMP (S, c)
16 (rc, s)← ColumnGeneration(π,X)
17
18 i f (rc < 0)
19 S← [S, s]
20 c← [c, c]
21 e l s e
22 break
23 end i f
24 end f o r
25
26 {x, π} ← SolveRRMP (S, c)
27
28 whi l e ( x i s not i n t e g e r & rc < 0 )
29 f o r i = 1 : ifix
30 {x, π} ← SolveRRMP (S, c)
31 (rc, s, c)← ColumnGeneration(π,X)
32
33 i f (rc < 0)
34 S← [S, s]
35 c← [c, c]
36 e l s e
37 break
38 end i f
39 end f o r
40
41 {x, π} ← SolveRRMP (S, c)
42 {S,X} ← SolutionSpaceRestrictingHeuristics(S,x, c)
43 end whi l e
44
45 re turn S
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the reduced cost of label l as c̄l and the amount of resource k consumed on label l
as rkl , we define the notion of dominance as follows:

Definition 1. A label l dominates label p if c̄l ≤ c̄p, and rkl ≤ rkp for each resource
k ∈M . �

Definition 2. A label l on node V is efficient if it is not dominated by any other
label on V . �

Only saving efficient labels on every node is a good strategy since no optimal
path for the resource constrained shortest path problem can be dominated [16]. It
is however the case that the number of efficient labels on a given node can be huge,
as can be seen in Example 4.1.1.

Example 4.1.1. Consider a node V in a network, a resource constrained shortest
path problem with one resource, and a label l on V with c̄l = M and resource
consumed r1

V = N . Then every label p on V with reduced cost c̄p = M + nα and
resource consumed r1

p = N − nβ, where n ∈ R, and α, β ≥ 0, will be efficient. �

Although Example 4.1.1 is constructed so that the number of efficient labels on
a node can be made arbitrarily great, it demonstrates that this can be done with
just a single resource. In reality, if we have more than one resource, the number of
efficient labels on a node can be huge. For computational gain, we thus need a way
to limit the number of labels per node, and for that reason we introduce the concept
of lexicographical sorting.

Definition 3. A label l is lexicographically less than label p if c̄l < c̄p, or if c̄l = c̄p
and ∃q : rql < rqp and rkl = rkp , k ∈ [0, q).

Using lexicographical sorting, we assume that the resources are initially sorted
according to their importance. The importance here can be chosen arbitrarily, or
according to how hard the resource constraints are to satisfy.

We let LV be the number of labels on a node, and χ and χ̄ (where χ ≤ χ̄) be
two pre-defined lower and upper bounds on the number of labels in a node. In each
node, we will now store labels according to the following procedure:

• If LV < χ, we insert a new label if it is efficient with respect to the already
saved labels on V , and remove dominated labels from V after insertion.

• If χ ≤ LV < χ̄, we save a new label if it is efficient and lexicographically less
than the greatest label in V . We remove dominated labels after the insertion.

• If LV = χ̄ after insertion, we remove each dominated label. If no label was
dominated after insertion, we remove the lexicographically greatest label, so
that χ̄ labels are remaining for node V .
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Figure 4.1: A network consisting of one aircraft node and six flight nodes. The
reduced cost of using a specific arc is denoted as c̄. The resource consumption is
denoted as s.

This can be seen on rows 14 to 25 in Algorithm 4.2.
This procedure (Algorithm 4.2) is heuristic, and does not guarantee that the least

reduced cost path through the network is found. It is however generally necessary
to use this approach, since the number of paths which have to be evaluated is
equal to the number of labels in the network. It is also the case that using column
generation, we do not need to find the least reduced cost solution to the subproblem,
but it suffices to find a negative reduced cost solution. If no negative reduced cost
solution is found, one could try raising (or removing) the limits χ and χ̄, to make
sure that the solution to the RRMP can not be improved further. If the bounds χ
and χ̄ are removed, one will inevitably find the shortest path through the network.
This is due to the fact that no optimal path can be dominated, and without the
bounds χ and χ̄ every efficient label will be stored when labeling the sink node.

What also has to be mentioned (and what makes this subproblem different than
a standard resource constrained shortest path problem) is the possibility for mainte-
nance of typem to be performed on aircraft t between flights i and j in the generated
path, and thus resetting the resource rml for label l on node j to sjmt. Example 4.1.2
illustrates the concepts of dominance, resetting of resources, and efficiency.

Example 4.1.2. Performing the label pulling algorithm on the network displayed
in Figure 4.1, when considering a single resource r1 with a resource limit β = 20 for
the consumption of that resource, and χ = 6 and χ̄ = 8, results in the intermediate
steps depicted in Table 4.1.

There are unique paths leading to nodes 1 through 3 in the network, and we
thereby just set one label each for these nodes. To node 4, there are two paths,
which are both efficient since one has a lower reduced cost (−15), and the other
has a lower consumption of the resource (15). In node 5, we get a path which
has a resource consumption that is higher than the limit 20: this path is thereby
infeasible and a label for it will not be set. Note that this infeasibility corresponds
to a violation of one of the constraints in (2.5f). Between nodes 4 and 6, Ω1

46A = 1,
and maintenance can be performed. The resource consumed on paths leading to
node 6 will thereby be reset to s6 = 5. As a result of this, the two paths leading
to node 6 will have different costs but the same amount of resource consumed. The
label with the lower cost thereby dominates the one with the higher cost, and the
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latter one will be removed. On node 7, one label has a lower cost, and the other
has a lower consumed resource, so both are efficient. On the sink node, four of the
labels are efficient after all labels have been pulled. �

Node Path Reduced cost Resource consumed Comment
1 {0,1} 5 0
2 {0,1,2} -5 9
3 {0,1,3} 5 5
4 {0,1,2,4} -15 19
4 {0,1,3,4} -5 15
5 {0,1,2,4,5} -25 21 r > β, infeasible path
5 {0,1,3,4,5} -15 17
6 {0,1,2,4,6} -5 5 Resetting r.
6 {0,1,3,4,6} 5 5 Resetting r. Dominated.
7 {0,1,3,4,5,7} -25 19
7 {0,1,2,4,6,7} -15 7
8 {0,1,8} 10 0
8 {0,1,2,8} 0 9 Dominated.
8 {0,1,3,8} 10 5 Dominated.
8 {0,1,2,4,8} -10 19 Dominated.
8 {0,1,3,4,8} 0 15 Dominated.
8 {0,1,3,4,5,8} -10 17 Dominated.
8 {0,1,2,4,6,8} 0 5
8 {0,1,3,4,5,7,8} -20 19
8 {0,1,2,4,6,7,8} -10 7

Table 4.1: Labels in the intermediate steps when performing the label pulling
algorithm on the network depicted in Figure 4.1 considering a single resource r1.

A downside of using the label pulling algorithm is that no solution is found
before the sink node is labeled, and the sink node is the last node to be labeled.
Lately, there has been new solution techniques based on branch-and-cut developed
for solving the resource constrained shortest path problem [11]. It is, however,
unclear if one can implement the possibility to reset resources to fixed values using
this method, and thereby it is unclear whether this is a reasonable approach to this
specific version of the problem. In this thesis we have not looked further into the
technique presented in [11], and consider its possible implementation for the tail
assignment problem as a subject for future research. An upside to the presented
version of the subproblem, however, is that the network on which it is solved, is
a directed acyclic graph. Because of the time dependence concerning which flights
can be predecessors to other flights, it is, even with negative edge costs, impossible
to get negative cost cycles (which is generally a problem when solving shortest path
problems).

In Algorithm 4.2, LV is the set of labels on node V . Ωm
V ′V t ∈ {0, 1} is equal to

one if maintenance of type m can be performed on aircraft t between activities in V ′
and in V , and zero otherwise. The flight nodes are sorted in the order of departure
times, and the labels on each node are lexicographically sorted. Algorithm 4.2 is to
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Algorithm 4.2: Label pulling algorithm
1 f o r each node V ∈ I
2 f o r each pr edec e s s o r V ′ o f V ∈ I
3 f o r each l a b e l lV ′ ∈ LV ′
4 lV ← new l a b e l
5 f o r each maintenance a c t i v i t y m ∈M
6 i f Ωm

V ′V t = 1
7 rmlV ← smV
8 e l s e
9 rmlV ← rmlV ′ + smV + smV ′V
10 end i f
11 end f o r
12 c̄lV ← c̄lV ′ + cV ′V t − πV ′+πV

2
13 clV ← clV ′ + cV ′V t
14 i f lV e f f i c i e n t w. r . t . LV
15 i f |LV | < χ
16 LV ← LV ∪ {lV }
17 remove dominated l a b e l s from LV
18 e l s e i f lV <lex maxlex(LV )
19 LV ← LV ∪ lV
20 remove dominated l a b e l s from LV
21 i f |LV | > χ̄
22 Remove l e x i c o g r a p h i c a l l y g r e a t e s t l a b e l from LV
23 end i f
24 end i f
25 end i f
26 end f o r
27 end f o r
28 end f o r
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a large extent based on the one developed by Grönkvist in [13].

4.1.2 Fixed activities
Airlines generally want to plan longer maintenance work in advance. These events
are present as preassigned (or fixed) activities in our model. To make sure that we
generate routes which cover these activities when solving the subproblem, we treat
them as nodes which must (and can only) be covered by one specific aircraft. This
is done by making sure that, when pulling a label on a flight node departing after a
fixed activity, any path related to the label pulled must have passed through the fixed
activity if it also passed through the aircraft node corresponding to the aircraft on
which maintenance should be performed. Making flight ̃ a fixed activity for aircraft t̃
is accomplished by adjusting the allowed arc flows in two ways. Firstly, the allowed
arc flow to node ̃, ei̃t, is set to zero for every aircraft t ∈ T\{t̃}. Secondly the
allowed arc flow eijt̃ for every arc connecting an activity i arriving before activity ̃
departs, to activity j departing after ̃ departs, is set to zero. Additionally, setting
arc flows to zero in this manner can (and most probably will) ’cut off’ some flights
for aircraft t̃. If there is no way to make a path containing both flights ı̃ and ̃ for
aircraft t̃, every arc flow ei̃t̃, i ∈ I, and eı̃jt̃, j ∈ J , can be set to zero.

Note that this way of handling fixed activities is not restricted to preassigned
maintenance, but can also be applied to flights which should be assigned to a specific
aircraft. We detail this in Section 4.2.3, which describes aircraft fixing heuristics.

4.2 Heuristics

While column generation can find the optimum of the RRMP there is no guarantee
that an optimal solution to the RRMP possesses binary variable values. In fact, it
seldom does. In order to obtain a feasible integer solution we need to adjust the
solution to the RRMP, or the way the solution to the RRMP is created.

The approach behind the heuristic methods presented below is to restrict the
solution space of the RRMP and the way columns are allowed to be created, so that
they are more likely to have integrality properties while also yielding a low objective
value.

The heuristics presented are motivated by the assumption that some properties
of a good integer solution to the RRMP will also be properties of the optimal (non-
integer) solution to the RRMP. Which properties or parts of the schedule that are
looked at are specified in detail in Sections 4.2.1 through 4.2.3 where the different
heuristics are explained.

Using heuristics results in a faster algorithm for obtaining an integer solution, as
compared to the method of branch-and-price [13]. Furthermore, since the heuristic
methods restrict the solution space and thus the number of columns that can be
created, they result in faster column generation after they are applied. However,
the downside of using heuristic methods is that there is no guarantee that we will
end up with an optimal solution, and if too aggressive heuristics are applied, the
integer solution found is likely to be far from optimal.
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4.2.1 Variable fixing heuristic
The most straightforward heuristic presented in this report is the variable fixing
heuristic. It stems from the logic that if the value of a variable in an optimal
solution to the RRMP is close to one, then the corresponding path will probably
contribute to a good integer solution. This method has been shown to be less
effective at producing good integer solutions as compared to other heuristics (see
[13]), and therefore we will not present any results from using it. We include it in
our presentation merely as a way to motivate the methods presented in Sections
4.2.2 and 4.2.3.

We choose the variables to fix as those satisfying

yp ≥ 1− εt, (4.1)

where the value if εt > 0 is initially close to zero. If no variables yp that fulfill
condition (4.1) can be found, then the value of εt is increased until at least one
variable satisfies the condition (4.1).

If the value of εt becomes greater than 0.5, only one variable is fixed as it is possible
that there are two columns i1, i2, where 1 − εt ≤ yp1 ≤ 0.5 and 1 − εt ≤ yp2 ≤ 0.5,
and where the two columns share at least one flight. Both these columns could not
be fixed to one, since this would violate constraints (3.15b).

To illustrate how the solution space is restricted we show what happens when a
variable is fixed: Given paths Ψ·p in the set of paths (or columns) P , where Ψip = 1
if flight i ∈ I is included in path p ∈ P , the costs cp and the corresponding variables
yp we can formulate the RRMP as to

minimize
yp

∑
p∈P

cpyp, (4.2a)

s.t.
∑
p∈P

Ψipyp = 1, i ∈ I, (4.2b)

yp ≥ 0, p ∈ P . (4.2c)

If the variable yp0 would be fixed to 1, then the resulting problem is expressed as
to

minimize
yp

∑
p∈P

cpyp, (4.3a)

s.t.
∑
p∈P

Ψipyp = 1, i ∈ I, (4.3b)

yp ≥ 0, p ∈ P , (4.3c)
yp0 = 1. (4.3d)

What happens to the flight network when the variable fixing heuristic is applied
is illustrated in Figure 4.2. An integer solution is enforced by iteratively creating
new paths and fixing more and more variables to 1. When a path for every aircraft
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Figure 4.2: Illustration of the variable fixing procedure. The filled and dotted
lines represent arcs for two different aircraft. The upper figure shows a part of the
flight network before any fixing has occurred. In the lower figure, a path has been
made containing the flights A, C and D for the aircraft related to the filled lines.
The corresponding variable yp to this path fulfilled the condition yp ≥ 1 − εt and
has thereby been fixed to 1. As a result, the aircraft related to the filled lines, and
the flights A, C and D, need no longer be considered when solving the subproblem.

has been fixed, the solution to the RRMP will be integer. However we cannot ensure
that we get an integer solution that is feasible in the practical sense, as it may be
the case that we restrict the solution space so that no integer solution with all flights
assigned to aircraft can be found. One example of this is if we have flights A, B and
C, where the only predecessor to C is A. If in this situation a column containing
A and B is fixed, then no integer solution where C is covered by an aircraft can be
found.

4.2.2 Connection fixing heuristic
A less aggressive approach compared to fixing entire paths, as done by the variable
fixing, is to fix parts of paths that are included in a ”good” solution to the RRMP
as well as close to integrality.

Such parts, or sub paths, can for example be connections between flights. A
connection between two flights in a path exists if the latter of the two is directly
succeeding the first.

A connection is said to be close to integrality if the sum over the variables corre-
sponding to paths where the connection is occurent is close to either zero or one.
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Using the same assumption that motivated the variable fixing heuristic, that
parts of a schedule that is close to integrality, when the binary constraint on the
variables in the master problem (2.5) is relaxed, will probably be in a good solution
to the master problem with binary constraints on the variables, we want to find
connections that are close to integrality. As with the variable fixing we want to fix
these connections in order to enforce integrality as well as speed up the algorithm.

To fix a connection we remove all outgoing connections from the first flight in
the connection except the connection to the last flight in the connection as well as
removing all connections to the latter flight’s predecessors except the one in the
connection at hand; see Figure 4.3 for an illustrative example.

In order to fix connections we need to find which connections that can be used.
To do that we define constants σijp, as one if flight j is directly following flight i
in path p and zero otherwise. Thereafter we sum over all paths and all connections
to obtain a so called connection score, defined as cscoreij = ∑

p σijpyp, which is used
to evaluate the connections. Here, yk is a relaxed decision variable in the RRMP
i.e., (4.2). Observe that if the variable corresponding to path p, yp = 1 in the
RRMP, then the connection score cscoreij = 1 as well. Further one realizes that the
largest connection score possible is one as the connection score is bounded by the set
partitioning constraint in (3.19b). This means that we can evaluate the integrality
of the connections by how close to 1 the connection score is.

Analogously to the variable fixing we can then choose to fix connections (i, j)
satisfying

cscoreij > 1− ε, (4.4)

for some small value of ε > 0. Again, if no such connections can be found, the value of
ε is increased until at least one connection can be found that satisfy condition (4.4).
If ε > 0.5 only one connection will be fixed; this in order to avoid the possibility
that two (or more) connections from the same flight are fixed. A pseudo-code of the
algorithm can be found in Algorithm 4.3.

4.2.3 Aircraft legality fixing heuristic
As our model allows each aircraft to have a specific objective function, an individual
minimum required ground time between flights, and an individual initial positioning,
the cost of assigning a flight to one aircraft compared to another can differ. As a
result it matters which aircraft is assigned to which flight when paths are created.

It is therefore reasonable to assume that the assigning of flights to aircraft in the
RRMP indicates how flights should be assigned to aircraft in the integer solution in
order to obtain a good solution.

If we aim to obtain a schedule without any unassigned flights, each flight will have
exactly one aircraft assigned to it. Analogously, as finding flight connections with a
high score in the connection fixing heuristic, we may search for aircraft frequently
assigned to flights in the RRMP, and fix aircraft to flights if they yield a good
solution. To evaluate the assignment of aircraft to flights we define node pairs and
a corresponding pair score. A pair, (i, t), consists of a flight node i and an aircraft
node t and the corresponding pair score is denoted as φscoreit .
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Algorithm 4.3: Connection fixing heuristic
1 C − s e t o f a l l connec t i ons
2 C̃ = {∅} , connect i ons to f i x .
3 returnOneConnection ← f a l s e
4 Parameters :
5 ε ∈ [0.05, 0.15]
6 cincremental ∈ (1, 1.3]
7
8 whi l e C̃ = ∅
9 ∀ connect ions c in C

10 i f (cscore > 1− ε)
11 i f ( returnOneConnection = f a l s e )
12 C̃ ← C̃ ∪ c
13 e l s e
14 C̃ ← c
15 break f o r
16 end i f
17 end i f
18 end f o r
19
20 ε← ε · cincremental
21 i f (ε ≥ 0.5)
22 ε← 0.5
23 returnOneConnection ← t rue
24 end i f
25 end whi l e
26 re turn C̃
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Figure 4.3: The connection fixing procedure. For each connection there are two
legalities, the filled and the dotted line. The connection between flight B and flight
D is fixed. As a result, all outgoing connections from flight B except for the con-
nection (and its included legalities) to flight D are removed as well, as all incoming
connections to flight D except for the connection from flight B are removed. If a
path including flight B is created, then flight D must also be included. The size
of the problem is decreased as the number of possible ways to create paths is de-
creased. Further, as there are fewer ways to create paths including flights B and D
and therefore the solution to the RRMP is more likely to be integer. However, it is
not decided which aircraft should be assigned to the flights.
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φscoreit =
∑
p

yp1{flight i and aircraft t is in path p}, (4.5)

where 1{flight i and aircraft t is in path p} is the indicator function, being one if flight i and
aircraft t is in the path corresponding to the variable yp and zero otherwise.

Pairs with a high pair score in the RRMP are likely to contribute to a good
solution to the RRMP, and we assume that they are also likely to contribute to a
good solution to the RRMP with binary constraints on the variables. Furthermore
one can assume that pairs with a low pair score are less likely to contribute to a
good solution.

To find such pairs we have defined an algorithm that shares a lot of similarities
with the connection fixing-procedure. We search for pairs by iteratively decreasing
an upper bound, 1 − ε, until we find pairs whose pair score satisfy the inequality
φscoreit > 1−ε. The first pairs satisfying this are the ones whose corresponding legality
should be fixed, see pseudo-code in Algorithm 4.4.

As with connection fixing there is a risk that we restrict the solution space too
aggressively in order to obtain an integer solution.

To compare the aggressiveness between aircraft fixing and the connection fixing
heuristics we need to have aircraft specific connections, call them arcs. For each
connection between two flight nodes, the number of arcs equals the number of com-
mon legal aircraft on the two flight nodes. In the results section we compare the
two heuristics with respect to their relative aggressiveness.

A visualization of how the aircraft legality fixing can be seen in Figure 4.4

4.3 Lower bound on the optimal value of the tail
assignment problem

In order to evaluate how well the algorithms perform, we need a lower bound on the
optimal value of the tail assignment problem (2.5). One way to get such a bound is
to relax the problem in such a way that the turn around time (ground time between
flights) before every flight is equal to the minimum turn around time possible for that
flight. Every maintenance constraint is removed (except for preassigned activities).
The cost of using an arc between flight A and flight B in the network is equal to
the lowest cost of using any arc between flight A and flight B. Below we define the
model used to calculate a lower bound.
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Algorithm 4.4: Aircraft legality fixing
1 Φ − s e t o f a l l p a i r s
2 Φ̃ = {∅} , p a i r s which cor re spond ing l e g a l i t y should be f i x ed
3 returnOnePair ← f a l s e
4 Parameters :
5 ε ∈ [0.05, 0.15]
6 cincremental ∈ (1, 1.3]
7
8 whi l e Φ̃ = ∅
9 ∀ pa i r s (i, t) in Φ
10 i f ( φscore ∈ [1− ε, 1] )
11 i f ( returnOnlyOnePair = f a l s e )
12 Φ̃← Φ̃ ∪ (i, t)
13 e l s e i f ( returnOnlyOnePair )
14 Φ̃← (i, t)
15 end i f
16 end
17 end f o r
18
19 ε← ε · cincremental
20 i f (ε ≥ 0.5)
21 ε← 0.5
22 returnOnePair ← t rue
23 end i f
24 end whi l e
25 re turn Φ̃
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Figure 4.4: Aircraft legality fixing procedure, isolated around flight C and its
legality connections. For simplicity the legalities are represented as connections.
There are two legalities, represented by filled and dotted lines. The legality (aircraft)
represented by the filled line is fixed on flight C and thus every path including flight
C must contain the aircraft node represented by the filled connection. The number
of possible legality connections have decreased, the problem is restricted, and it is
more likely that an integer solution will be obtained from the algorithm.
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minimize
xij

∑
i∈I

∑
j∈I

cijxij, (4.6a)

s.t.
∑
i∈I

xij = 1, j ∈ I\{i0, iN}, (4.6b)∑
j∈I

xij = 1, i ∈ I\{i0, iN}, (4.6c)
∑
i∈I

xiis = |Ia|, (4.6d)∑
j∈I

xi0j = |Ia|, (4.6e)

0 ≤ xij ≤ eij, i, j ∈ I. (4.6f)

Observe that only two indices are used for x, e and c in this problem formulation,
since (4.6) concerns anonymous aircraft. That is, eij is the flow capacity on arc
(i, j), xij is the binary variable which equals one if arc (i, j) is used in the solution,
and cij is the cost of a unit of flow on said arc. Other than this, the same definitions
of constants and variables are used in this model as in (2.5). Model (4.6) is a
minimum cost network flow problem and can be solved quickly using a standard
solver. Constraints (4.6b) and (4.6c) demand that we have a flow balance exactly
equal to one through each node. Since flow balance in a standard minimum cost
network flow problem just demands that the flow into a given node is equal to the
flow out of that node, these constraints are somewhat complicating when viewing
(4.6) as a minimum cost network flow problem. Decomposing the network into a
supply network and a demand network, we can however get around this problem.
We will begin to explain this procedure using an example.

Example 4.3.1. Figure 4.5a shows a network consisting of two aircraft nodes, four
flight nodes, a source node, and a sink node. Solving the minimum cost network
flow problem on this network directly would not consider the constraint that the
flow through each node must be equal to one. To enforce this property, we split
each aircraft and flight node into a supply node which generates one unit of flow,
and a demand node which demands one unit of flow (see Figure 4.5b). We thereafter
redirect the arcs from each supply node to its successor’s demand nodes. Further,
expensive directed arcs from the sink node to each flight’s demand node are added,
and using these corresponds to leaving the corresponding flights unassigned.

We note that using this model, we have no control over which particular aircraft
covers a preassigned activity, just that some aircraft covers it. If we use different
objective functions for different aircraft, the lowest arc cost over all objective func-
tions will be used to compute a lower bound on the optimal value of (4.2). If there
are flights for which different aircraft have different turn around times, or if there
are flights that are not allowed to be assigned to some particular aircraft, this can
not be taken into account when calculating the lower bound this way. The lowest
turn around time allowed for any aircraft will instead be used when placing the arcs
in the network, and the lower bound model will be equivalent to one in which each
aircraft is allowed to take any flight. If there are more than one flight which needs
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(a)

(b)

Figure 4.5: (a) A small network consisting of two aircraft and four flights. (b) The
network in (a) decomposed into two layers. The yellow nodes have a demand of one
unit of flow. The green nodes have a supply of one unit of flow. The source has a
supply equal to the number of aircraft nodes. The sink node has a demand equal
to the number of aircraft nodes. Each arc has a capacity of one unit of flow, and a
cost cij. The sink node has backward arcs to each flight ”demand” node, which use
corresponds to leaving the respective flight unassigned. Decomposing the network
in this way, a minimum cost network flow solver can be applied directly, and a lower
bound can be obtained for the tail assignment problem (2.5).
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to be left unassigned in the optimal solution to (2.5), the lower bound obtained from
solving (4.6) might be quite optimistic (see table 5.1). This can happen, since it is
not necessary that one backward arc to each unassigned flight is used in an optimal
solution to (4.6). If, for example, flights A and B are unassigned in the optimal
solution to (2.5), in the optimal solution to (4.6) there might be a positive flow on
the backwards arc to A, and a positive flow on the arc from A to B. Since (4.6) is
a minimum cost network flow problem, its constraint matrix is totally unimodular,
and an integer solution will be obtained even without integer constraints on the
variables [23, Section 3.2]. Due to this, and the reasons stated above, the lower
bound will be closer to the optimal value of (2.5) if the same objective function is
used for each aircraft, and closer for a uniform fleet than for a mixed fleet.

4.4 Reducing the number of arcs in the network
An important issue when solving the tail assignment problem is the time complexity.
The resource constrained shortest path problem is NP-hard [12, Appendix 2], and
limiting the solution space to our subproblem is thereby of great benefit. To speed
up the solving of the tail assignment problem, we can limit the number of labels
allowed on each node. This could have a negative effect on the convergence, since (as
discussed in Section 4.1.1) it is possible that the optimal path through the network
is not found when the number of labels is limited. The time complexity will however
still be exponential as a function of the number of nodes in the network, since adding
the n + 1’th node to a network will result in the addition of αn new arcs, where
α ∈ Z+. There are, however, a few techniques one can use to remove edges which can
not appear in paths describing an optimal solution to the tail assignment problem.

We have used three different methods of reducing the number of arcs, motivated
by Lemmata (4.4.2)–(4.4.4) (the first is proposed by Grönkvist and Kärrström [14]
and the two latter by us), which can all be derived from the following Lemma that
we propose:

Lemma 4.4.1. Let tDep
k be the departure time of flight fk, tArrk be the arrival time

of flight fk, and |IA| be the number of aircraft available. Further suppose we have a
subset of flights Is, where tstart is the time of the earliest departure for any flight in
Is and tend is the latest arrival time for any flight in Is.

If exactly |IA| unique aircraft must be utilized to create paths including all flights in
Is in order to create a solution to the tail assignment problem without any unassigned
flights, then no arcs between the flight nodes fi and fj can exist in that solution,
where tArri < tstart and tDep

j > tend.

Proof. This is true since if such an arc is used in a solution, then at least one flight,
fk, fk ∈ Is, must be left unassigned.

A special case of Lemma (4.4.1) is discussed in the article [14], where Grönkvist
and Kjerrström reason that, if there exists a point in time during the time span
under consideration where every available aircraft has to be used, every route in a
solution to the tail assignment problem without any unassigned flights must contain
exactly one of these flights. This is more precisely stated in Lemma 4.4.2.
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Lemma 4.4.2 (Grönkvist and Kärrström (2005)). . Let F := {fi}ni=1 be the set of
flight nodes under consideration. Let tDep

i be the departure time of flight fi and tArri

be the arrival time of flight fi. Let Ft ⊆ F be the set of flights that are in the air at
time t (i.e., all flights fi such that tDep

i < t and tArri > t) and let |IA| be the number
of available aircraft.

If |Ft′| = |IA| for some given time t′, and if tDep
l < t′ and tArrm > t′, then no

solution without any unassigned flights to the tail assignment problem can contain a
path using an arc between fl and fm.

Proof. Using an arc between flight nodes fl and fm would mean that one of the
flights in Ft would be left unassigned.

From our experience, this happens quite frequently for certain airlines with a lot
of traffic, and using this fact the number of arcs in the network (and thereby the
solution time for the subproblem) can sometimes be significantly reduced. Note that
if |Ft′ | > |IA| for some given time t′, no solution with all flights covered is possible.
If this is the case, removing arcs according to Lemma 4.4.2 might in fact remove
the optimal solution from the solution space. As a result, one should apply Lemma
4.4.2 with caution.

Another way to remove arcs from the network without removing feasible solutions
to the problem is to look for time spans during which each available aircraft must
depart from a specific airport exactly once. If such a time span is found, a direct
implication of Lemma 4.4.3 is that we can remove any edge starting from a flight
arriving before the time span, to flights departing after the time span. This is quite
likely to happen for airlines which have a main ’hub’ from/at which most flights
depart/arrive.

Lemma 4.4.3. Let |IA| be the number of available aircraft, F the set of flights
ordered by departure time and F i the set of flights departing from airport i ordered
by departure time. Let {fi1 , fi2 , ..., fi|IA|

} ⊆ F i denote |IA| subsequent flights in F i,
tDep
j the departure time of flight j and tArr

j the arrival time of flight j. Let fl ∈ F and
fm ∈ F be two flights such that tArrl < tDep

i1 and tDep
m > tArri|IA|

. If no path can be made
in the network containing two or more of the flights in the set {fi1 , fi2 , ..., fi|IA|

},
then no solution to the tail assignment problem without any unassigned flights can
contain a path using an arc between fl and fm.

Proof. Using an arc between flight nodes fl and fm would mean that one of the
flights in the set {fi1 , fi2 , ..., fi|IA|

} would be left unassigned.
An example case of when Lemmata 4.4.2 and 4.4.3 can be used is presented in

Figure 4.6.
Lemma 4.4.4 follows a similar reasoning, where we instead look for time spans

during which each available aircraft must arrive at a specific airport exactly once.
Although one might initially be inclined to believe so, Lemma (4.4.2) and (4.4.3)
are not equivalent. An example of this can be seen when inspecting Figure 4.7.

Lemma 4.4.4. Let |IA| be the number of available aircraft, F the set of flights
ordered by departure time and F j the set of flights arriving at airport j ordered
by departure time. Let {fj1 , fj2 , ..., fj|IA|

⊆ F j} denote |IA| subsequent flights, tArri
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Figure 4.6: An example gantt schedule of flights. The orange marked flights all
depart from CPH and no route can be made which cover any two of these flights.
Thereby, for a fleet of three aircraft, we can use Lemma 4.4.3 and remove every arc
from flights departing before these flights to flights departing after these flights in
the corresponding network. During the time period with the green marked flights,
all three aircraft need to be utilized simultaneously, and by using Lemma 4.4.2 we
may remove each arc from a flight departing before these flights to a flight departing
after these flights.

Figure 4.7: An example gantt schedule of flights. The orange marked flights all
depart from ARN, and no route can be made which cover any two of these flights.
Lemma 4.4.3 can thereby be applied to remove every arc from flights departing before
these flights, to flights departing after these flights (if we have a fleet consisting of
three aircraft). There is however no subset of flights in this gantt where all aircraft
must arrive at the same airport, and Lemma 4.4.4 can not be applied to remove any
arcs.

the arrival time of flight i and tDep
i the departure time of flight i. Let fl ∈ F and

fm ∈ F be two flights such that tArrl < tDep
i1 and tDep

m > tArri|IA|
. If no path can be made

in the network containing two or more of the flights in the set {fj1 , fj2 , ..., fj|IA|
},

then no feasible solution to the tail assignment problem can contain a path using an
arc between fl and fm.

Proof. Using an arc between flight nodes fl and fm would mean that one of the
flights in the set {fj1 , fj2 , ..., fj|IA|

} would be left unassigned.
Lastly, another way to reduce the number of arcs in the network is to simply set an

upper limit on the number of predecessors to every node. That is, for every node in
the network, if the node has more thanm predecessors, remove the ingoing arcs from
the flight with the departure time furthest back in time, until only m predecessors
remain. This strategy can however remove the optimal solution from the solution
space if, in the optimal solution, one (or several) aircraft stay on the ground for an
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extended period of time. for example, if maintenance has to be performed on any of
the available aircraft during the time we are planning for, this strategy should not
be used. This, since it is probable that we can not make room for a maintenance
check if no routes can be generated where the aircraft stands still on the ground for
extensive periods of time. Further, if there is reason to suspect that a good feasible
solution to the problem will have an uneven aircraft utilization, this strategy should
not be used. This, since removing ’far away’ predecessors to nodes will benefit routes
containing a lot of flights.

There are, however, instances for which this strategy is useful and will significantly
reduce the time it takes to solve the tail assignment problem. For example, an airline
might have all maintenance checks on weekends, when every aircraft is on the ground
at the ’base’. If this is the case, removing distant predecessors will not damage the
possibility to make room for maintenance checks in the schedule.
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Tests and results

The tests were performed on Windows computers with Intel(R) Core(TM) i7-5600U
CPU 2.60GHz processors and 16 GB RAM. The mathematical models and algo-
rithms have been implemented in the programming language C# [1], and linear
programming problems have been solved using the solver GLOP [2].

5.1 Tools to interpret the results
As we have two different column generation methods and two different solution space
restricting heuristics we need tools to compare them with each other. The four main
tools we have used are the objective function, computation time, the total number of
arcs in the network and the number of efficient labels in the label pulling algorithm.

The number of arcs in the network are initially counted before the algorithm
starts, thereafter this number is updated each time the heuristics are applied to the
problem. This way we see the relative aggressiveness of the heuristics compared to
each other as well as if there is an impact on how fast the solution space is shrinking,
depending on what column generation algorithm is used. The latter can also be seen
when looking at the number of efficient labels in each column generation iteration.

5.2 Test instances
All test instances are data taken from commercial airlines in the flight industry.
We have used data from three different airlines, ASH, VIVA and WOW. The ASH-
instance spans over five days and the Viva-instance spans over a week. WOW3d
is a schedule spanning over three days, WOW1w spans over one week, WOW2w
spans over two weeks, WOW1m spans over a month and WOW2m spans over two
months. WOWm1w is the WOW1w test instance of one week with preassigned
maintenance. Three of the test instances include flights which make it impossible
to create a schedule without unassigned flights, also referred to as ghosts. These
are ASH, WOW1m and WOW2m. We include these instances in order to test the
robustness of the heuristics and column generation methods.

5.2.1 Objective function
The objective function used for all the results in this thesis is a simple linear function
whose value solely depends on the ground time between flights. Denoting the ground
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time between flights v1 and v2 as t(v1, v2), and the minimum turn around time
between these flights as tmin(v1, v2), the objective function used looks as follows:

f(v1, v2) = t(v1, v2)− tmin(v1, v2). (5.1)

The lowest cost of an arc using this objective function is 0, which happens if the
ground time between the two flights is equal to the minimum turn around time
between the two flights.

5.3 The tests
To evaluate the different column generation methods and fixing heuristics, we have
tested combinations of them for all the different instances mentioned in Section 5.2.
We have for each test instance made runs with all four combinations of standard col-
umn generation (Section 3.2) or integer quality column generation (Section 3.3), and
the connection fixing heuristic (Section 4.2.2) or the aircraft fixing heuristic (Sec-
tion 4.2.3). For every test instance where a solution without unassigned flights was
obtainable, we have applied the techniques described in Lemmata (4.4.1), (4.4.2),
(4.4.3) and (4.4.4) as preprocessing of the flight network.

The point of using several, different sized test instances with data from WOW, is
to see how the algorithms and fixing heuristics performance depends on the size of
the problem. We can get a good view of this if the we have several test instances with
similar underlying flight patterns, as is the case with the WOW test instances. The
WOWm1w is used to evaluate how the algorithms can handle preassigned activities.
The ASH and VIVA datasets contains more flights and aircraft than the WOW
dataset, and are used to evaluate how the algorithms handle larger data and different
structures of the underlying flight networks.

For each test run we have kept track of the total number of iterations the al-
gorithms performed before terminating, the average number of columns in the re-
stricted master problem ((3.16) or (3.20)) over the entire run, the objective value of
the final solution (using objective function (5.1)), the number of unassigned activi-
ties in the solution (also referred to as ’ghosts’), the average number of labels when
solving the subproblem (see Section 4.1.1), the total running time of the algorithm,
the initial number of arcs in the flight network, and the objective values percentage
of the calculated lower bound (Section 4.3). To evaluate the preprocessing methods,
we have recorded (for the appropriate test instances) the number of arcs removed
when applying them one after another. The results are presented further below, in
Tables 5.1 and 5.2.

5.4 Results

5.4.1 Comparing column generation methods
When using IQ-column generation, we can only add one column to the solution space
each time we solve the subproblem. For this reason, when using the IQ-method, it
is pointless to allow for many labels on each node if no complicating maintenance
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constraints are present. This leads to quicker solution times for the subproblem when
using IQ-column generation compared to the standard column generation method.
Using standard column generation we can add multiple columns to the solution
space each time we solve the subproblem. Regardless of the longer solution times in
each iteration, the standard column generation approach generally leads to shorter
overall running times since fewer iterations are required in order to find a good
feasible solution. The number of efficient labels in a typical test run for IQ and
standard column generation can be seen in Figure 5.1.
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Figure 5.1: Number of efficient labels after each column generation method for the
two column generation methods on test instance WOW2w.
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Figure 5.2: Number of arcs in the network after each column generation iteration
for the two different column generation methods on test instance WOW2w.
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Figure 5.3: Number of arcs in the network for each iteration in the test instance
ASH.

In the test instance ASH, IQ-column generation was able to roughly halve the
number of arcs in the network to the subproblem after the first time the connection
fixing heuristic was applied (see Figure 5.3). Additionally, IQ-column generation
was able to halve the number of arcs in the network for test instance VIVA in the
first few fixing iterations. These observations has led us to the idea that it might be
preferable to combine IQ-column generation with the standard column generation
method, using IQ-column generation only in the first few iterations to quickly reduce
the size of the solution space, and then switching to the standard column generation
method for the remainder of the run. The reader can see that this is not always the
behaviour when looking at Figure 5.2, which depicts a test instance in which the
IQ and standard column generation algorithms remove arcs in a similar pace. The
approach of using both IQ and standard column generation is not treated further in
this report.

Regarding the smaller test instances (WOW3d and WOW1w), both IQ and stan-
dard column generation perform well. Both methods (regardless of the fixing heuris-
tic used) provides solutions without unassigned flights, and with similar objective
values.

Looking at the larger test instances (ASH, VIVA, WOW1m, WOW2m) however,
the results vary. On the VIVA test instance, the only method which provided a
solution with no unassigned flights was IQ-column generation combined with the
connection fixing heuristic. The standard column generation method with the con-
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nection fixing heuristic had a shorter running time on this test instance, but resulted
in a solution with two unassigned flights, and is thereby considered inferior to the
IQ-column generation approach in this case.

In the ASH test instance there exists no solution with all flights covered (which
can be seen by solving the minimum cost network flow problem (4.6)), and that
none of our methods is able to find such a solution is thereby the only possible
result. On this instance, the standard column generation approach performed best,
providing a solution with thirteen unassigned flights, compared to sixteen for IQ
column generation.

5.4.2 Comparing integer heuristics
Generally the connection fixing outperforms aircraft legality fixing in terms of ob-
jective value. However, taking the execution times into account there are a few test
cases that suggest that aircraft legality might be a preferred heuristic. For example
on test instance WOW2w, aircraft legality fixing together with IQ column genera-
tion is twice as fast as the method yielding the lowest objective value, while only
being 0.27% more expensive objective value wise (see Table 5.1).

When using IQ column generation, the aircraft legality fixing has shorter running
times for every test instance in the WOW database, except for the test instance
WOWm1w. The runs with the aircraft legality fixing heuristic also resulted in
comparable objective values for these test instances (performing a lot better on
the WOW1m instance, and slightly worse on the other ones). On the ASH and
VIVA test instances, the aircraft legality fixing heuristic performed worse than the
connection fixing heuristic, both in terms of computing time and objective value.
This was the case regardless of which column generation method was used.

5.4.3 Results from pre-processing methods
Table 5.2 shows the initial number of arcs for the different test instances, and the
number of arcs after the pre-processing methods derived from Lemma 4.4.2 through
4.4.4 were applied. As stated in Section 4.4 these methods are not reliable when
the optimal solution to the tail assignment problem contains unassigned flights. For
this reason we have not performed any preprocessing on the test instances ASH,
WOW1m and WOW2m, and no preprocessing results for these instances are pre-
sented in Table 5.2.

The pre-processing methods were applied in the order: Lemma 4.4.2, Lemma
4.4.3, Lemma 4.4.4. This means that some arcs that would have been removed using
the method derived from Lemma 4.4.4 might have already been removed using one
of the prior methods.

Clearly the methods derived from Lemma 4.4.3 and Lemma 4.4.4 work best on
our test instances as they are the only ones that actually reduced the number of
arcs. In test instances WOW3d, WOW1w, WOW2w and WOWm1w the airline has
a hub to which aircraft often return, and we assume that this is why these methods
performed well. We see also that 4.4.2 did not remove any arcs on any test instance,
see Figure 5.4.
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test column fixing #iter average objective #gho average total initial % of
instance generation heuristic #col value #labels run #arcs lower

method time [s] bound

WOW3d stand connection 109 323.0 9.12e+03 0 1.15e+03 1.8 1.27e+04 100.0
WOW3d stand legality 317 483.0 9.34e+03 0 8.89e+02 5.9 1.27e+04 102.4
WOW3d IQ connection 714 203.7 9.13e+03 0 2.23e+02 9.3 1.27e+04 100.1
WOW3d IQ legality 502 175.4 9.20e+03 0 2.70e+02 5.0 1.27e+04 100.9

WOW1w stand connection 426 676.6 3.24e+03 0 4.05e+03 32.8 4.15e+04 100.0
WOW1w stand legality 1329 1174.1 3.33e+03 0 4.19e+03 165.1 4.15e+04 103.0
WOW1w IQ connection 1776 350.1 3.24e+03 0 5.02e+02 67.6 4.15e+04 100.1
WOW1w IQ legality 708 328.0 3.44e+03 0 6.23e+02 23.9 4.15e+04 106.3

WOW2w stand connection 1603 1282.1 7.80e+04 0 1.14e+04 535.6 1.46e+05 100.0
WOW2w stand legality 290 573.6 1.85e+05 1 1.92e+04 61.7 1.46e+05 237.6
WOW2w IQ connection 3100 566.1 7.81e+04 0 1.14e+03 325.3 1.46e+05 100.1
WOW2w IQ legality 2614 558.6 7.82e+04 0 1.26e+03 262.3 1.46e+05 100.3

WOWm1w stand connection 273 1545.8 3.20e+03 0 2.85e+03 26.2 3.96e+04 108.1
WOWm1w stand legality 1120 3257.1 3.70e+03 0 3.68e+03 271.7 3.96e+04 125.0
WOWm1w IQ connection 2166 367.0 2.98e+03 0 1.49e+03 148.5 3.96e+04 100.5
WOWm1w IQ legality 2015 360.0 3.21e+03 0 1.97e+03 153.0 3.96e+04 108.6

WOW1m stand connection 121 1011.4 2.98e+05 1 1.08e+05 137.7 9.38e+05 106.8
WOW1m stand legality 127 1005.4 2.98e+05 1 1.49e+05 258.9 9.38e+05 106.8
WOW1m IQ connection 7608 1078.4 1.90e+06 18 5.46e+03 3324.3 9.38e+05 683.0
WOW1m IQ legality 3290 1065.9 5.04e+05 4 9.19e+03 2490.8 9.38e+05 180.9

WOW2m stand connection 312 1978.2 1.24e+06 8 5.44e+05 2003.0 5.19e+06 159.3
WOW2m stand legality 286 1942.3 1.24e+06 8 6.92e+05 2259.0 5.19e+06 159.3

ASH stand connection 2015 2526.8 1.39e+06 13 2.43e+04 1775.0 1.62e+06 118.3
ASH stand legality 4529 3197.7 2.07e+06 20 3.05e+04 7429.5 1.62e+06 176.2
ASH IQ connection 4466 1264.2 1.60e+06 16 2.00e+03 1924.0 1.62e+06 136.3
ASH IQ legality 5523 1258.1 2.07e+06 20 3.40e+03 3068.9 1.62e+06 176.4

VIVA stand connection 3153 2811.2 2.78e+05 2 3.21e+04 3231.9 9.40e+05 372.6
VIVA stand legality 15175 16020.0 3.40e+06 33 4.17e+04 46025.1 9.40e+05 4560.6
VIVA IQ connection 6445 1309.1 8.01e+04 0 1.87e+04 4631.7 9.40e+05 107.6
VIVA IQ legality 11389 1610.0 2.10e+06 20 7.49e+04 13111.0 9.40e+05 2815.1

Table 5.1: Table of results from test runs. The stand column generation method is the standard
one while IQ is s the integer quality column generation method. #iter is the number of iterations
before the algorithm terminated. average #col is the average number of columns in the restricted
master problem over the entire test run. objective value is the objective value of the final solution
of the optimization problem given by the test instance. #gho is the number of unassigned flights in
the final solution. average #labels is the average number of efficient labels in the subproblem over
the entire test run, i.e. the sum over the total number of efficient labels in each column generation
iteration divided by the total number of iterations. total run time [s] is the total run time for the
entire algorithm in seconds. The % of lower bound indicates how close the final solution is to the
calculated lower bound.
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instance initial #arcs #arcs 4.4.2 #arcs 4.4.3 #arcs 4.4.4
WOW3d 14676 14676 12708 12696
WOW1w 78264 78264 54369 41496
WOW2w 292956 292956 232968 145788
WOWm1w 79576 79576 79576 43913

VIVA 940495 940495 940495 940495

Table 5.2: The number of arcs in the network after the pre-processing methods
derived from Lemmata 4.4.2 through 4.4.4 was applied. The pre-processing methods
were applied in the following order: Lemma 4.4.2, Lemma 4.4.3, Lemma 4.4.4.

Figure 5.4: Bar plot showing the percentage of arcs remaining after each arc
removal method has been applied. It is apparent that Lemma 4.4.2 fails to remove
any arcs on any test instance.
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We find the most striking result on the WOW2w test instance, where more than
half of the arcs in the original network could be removed using the methods derived
from Lemmata 4.4.3 and 4.4.4.

On the test instance VIVA, we were not able to remove any arcs. The airline this
data set comes from does not have a central hub from where a lot of flights depart
and arrive, which is likely the reason we could not remove any arcs by applying
Lemmata 4.4.3 and 4.4.4 on this test instance.
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6
Conclusion

We have adressed the problem of solving the Tail Assignment Optimization problem
formulating the problem as a set partitioning problem and solving this using column
generation. Two different column generation approaches have been used, the com-
mon column generation method and the IQ column generation. To enforce integer
solutions we have used two different integer heuristics, connection fixing heuristic
and aircraft legality fixing heuristic. To evaluate the different methods we compare
their performance compared to each other by combining them in various ways. The
tests have been performed on several test instances taken from real airline data.

Standard column generation together with either connection fixing or aircraft le-
gality fixing has generally performed the best. Even though there are some instances
for which IQ column generation has yielded a lower objective function value (i.e. for
WOWm1w and VIVA) or lower running time (for WOW1w), on average it produces
a schedule in longer time and with a higher final objective value.

The connection fixing heuristic was overall slightly faster and produced lower
objective values compared to aircraft legality fixing. The idea behind aircraft fixing
is that it should restrict the solution space based on how aircraft specifics affect
the columns generated more efficiently than the connection fixing. The data we
obtained had less such information than we hoped and therefore the aircraft fixing
heuristic did not perform as well as we hoped.

The general strength of standard column generation compared with IQ is our
ability to add several columns to the restricted master problem in each iteration.
This leads to overall shorter computing times for the standard column generation
method when compared to IQ.

In our tests, IQ column generation has performed worse on the instances which
lacked a solution with no unassigned flights. An explanation could be that in order
to include yet unassigned flights into a path, the column generator needs to create
paths including parts of already created paths in order to include an unassigned
flight. As a result of this, the multipliers upgraded by the subgradient method
could be skewed, making it harder for the column generator to produce columns
that fit well with the already created paths.

The algorithms and methods presented in this thesis will be used by Aviolinx as
a part of their airline management system RAIDO.
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6.1 Future research
As IQ had problems with time complexity due to it only being able to add one
column each iteration (see section 3.3) one could possibly change how columns are
added by calculating the reduced cost of each generated path as if they were the
optimal, namely calculating (cj −

∑
i∈I
aijγi)/(

∑
i∈I aij) and add the n best columns,

for some well chosen value of n. The reason why Bredström et al. did not do this was
that they want to better control the over coverage. However, it might be possible
to tune the algorithm to limit the over coverage and achieve a faster algorithm.

Aircraft legality fixing will probably perform better with data containing more
aircraft specifics that can be utilized for the legality fixing. Moreover, one can
combine aircraft legality fixing with connection fixing, in order to fix connections
that are aircraft specific. This would require a restructuring of the node network,
and might make the problem more complex, but could improve the performance of
this integer heuristic.

We have implemented pre-processing methods for removing unnecessary arcs from
the network by looking at time intervals where all aircraft must be used simulta-
neously, where all aircraft must arrive at the same airport, and where all aircraft
must depart from the same airport. There is, however, a general approach which
one could use to remove unnecessary arcs in this manner. The problem of finding
a set of nodes where every aircraft must be used can be formulated as a problem
of finding a complete subgraph of size |T |, where |T | is the number of aircraft. An
algorithm which can find a complete subgraph of size k for a graph with n nodes was
developed by Vassilevska [22] in 2008. This algorithm runs in O(nk/(ε log n)(k−1))
time, ε > 0. Both n and k are usually large in our context, so in spite of the fact
that the problem of finding a complete subgraph can be solved in polynomial time,
we have as of now not looked any further into this approach. If many arcs can be
removed in this manner, it might however be worth while. Other solution methods
for the problem of reducing the number of arcs on special cases of graphs have later
been developed (see for example [18]), but these also have a large polynomial time
complexity.

As mentioned in Section 4.1.1, a new method for solving resource constrained
shortest path problems is presented in [11]. Implementing this technique to make it
work for solving the subproblem for the tail assignment problem could be preferable
to the label setting algorithm used within this thesis.

Our last suggestion is the one mentioned in the result section, that of combining
the two column generation methods. To apply IQ column generation between the
first integer fixing applications and thereafter continue with the standard column
generation. This could be beneficial as we have seen that when using IQ column
generation the algorithm sometimes restricts the solution space significantly in the
beginning of the computations while the standard column generation generally helps
to restrict the solution space more effectively in later iterations.
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