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Multi-Asset Options
A Numerical Study
VILHELM NIKLASSON
FRIDA TIVEDAL
Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg

Abstract

This thesis compares three methods for numerically pricing multi-asset options, as-
suming the underlying assets follow a multi-dimensional geometric Brownian motion
with constant coefficients. The considered methods are the binomial pricing model,
the Monte Carlo method, and the finite element method (FEM) applied to the pric-
ing PDE (the PDE method). It is shown that the binomial model can be used to
price both European and American multi-asset options. It is also concluded that
the binomial model has a rather fast convergence rate and the results can be fur-
ther improved by using adaptive mesh refinements. However, the binomial model
performs worse for large volatilities. Furthermore, it is found that the Monte Carlo
method converges very fast and that the results can be improved by using variance
reduction techniques. This method also works well for pricing Asian options due to
its simple formula. Even though the Monte Carlo method is shown to be the fastest
and most reliable out of the three methods, it does not perform well for larger
volatilities. While the binomial pricing model and the Monte Carlo method seem to
underestimate the price for large volatilities, the PDE method is shown to be the
only method out of the three that gives reliable estimates. However, the method
also has the slowest convergence rate out of the three methods when the volatilities
are low. This method also needs the most adaptation for each new option.

Keywords: Multi-asset options, Binomial model, Adaptive mesh refinement, Monte
Carlo, Variance reduction, Finite element method, Python, FEniCS.
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1
Introduction

An option is a type of financial derivative, meaning that its value depends on the
performance of one or several underlying assets. More precisely, an option is a
contract between two parties that gives the holder the right (but not the obligation)
to buy or sell some amount of the underlying assets at a future time. Options
can generally be categorised into being either European or American depending on
when they can be exercised. European options can only be exercised at the time of
maturity T whereas American options can be exercised at any time prior to maturity.

Both European and American options are heavily traded on the financial markets,
both on exchanges and over-the-counter. The buyer (holder) of an option contract
pays a premium to the seller (writer) when the contract is stipulated. The size of the
premium depends on the prices of the underlying assets S(t) = (S1(t), . . . , Sd(t)) at
the current time t < T and what kind of rights the option entitles the owner. The
rights can often be expressed in terms of a payoff function Y . This means that price
of an option can be denoted as VY (S(t), t), V (S(t), t), VY (t) or just V depending on
if the payoff, stock prices and current time are emphasised or not.

This thesis presents and compares different pricing methods for multi-asset op-
tions in order to determine how well they perform for different types of options
and market parameters. Especially the variances and correlations of the underlying
assets are varied in order to study the impact on the price computations. To the
authors knowledge, there is a lack of research in how different pricing methods com-
pare in terms of speed and precision for multi-asset options. In this thesis, the focus
is on European two-asset options but it is possible to generalize many of the ideas
to options with even more underlying assets. American multi-asset options are also
studied to some extent.

The fundamental idea behind all the option pricing methods is the arbitrage-free
principle. This principle implies that neither the holder nor the writer of an op-
tion should be able to make a risk-free profit. Compared to single-asset options,
multi-asset options are more complicated to price since there are more sources of
randomness to take into consideration. In this thesis it is generally assumed that the
underlying assets follow correlated geometric Brownian motions with constant pa-
rameters. This makes it possible to use the multi-dimensional Black-Scholes formula
which is a well-known generalization of the usual single-asset Black-Scholes formula.
However, the consistency of the Black-Scholes framework with the real world has
been questioned by many researchers. The usage of more sophisticated models have
been suggested mainly for single-asset options and they have not been widely used
for multi-asset options.

Mainly three different pricing methods are considered in this thesis: the binomial
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1. Introduction

pricing model, the Monte Carlo method, and the finite element method (FEM)
applied to the pricing PDE. The trinomial model is also discussed shortly in the
chapter about the binomial model. Python, and especially the NumPy package, is
used for numerical computations. Moreover, the FEniCS project in Python is used
to implement the finite element method. The European two-asset correlation call
option is studied throughout the thesis as a reference option. The advantage of
using this option as a reference is that there exists a closed pricing formula for it
which is easy to evaluate, so the numerical models can be checked before they are
implemented for other options. The American two-asset correlation put option, the
Asian two-asset call option, and the European two-asset maximum call option are
other options that are thoroughly studied for at least one of the pricing methods.

The rest of this thesis is structured as follows: Chapter 2 gives an introduction to
financial theory and multi-asset options. Chapter 3 describes the binomial pricing
method and different refinement techniques are presented and used to price options.
The trinomial model is also introduced in the same chapter. Chapter 4 focuses on the
Monte Carlo method and variance reduction techniques are implemented. Chapter
5 is about the pricing PDE and it contains a derivation of the multi-dimensional
Black-Scholes formula. Moreover, the finite element method is presented and used
to price options. Chapter 6 contains a comparison of all of the pricing methods and
we discuss their advantages and disadvantages.

2



2
Financial Theory and Multi-Asset

Options

The first part of this chapter gives a brief introduction to financial theory, especially
risk-neutral pricing. The second part of the chapter focuses on multi-dimensional
geometric Brownian motions with constant parameters. This is the model that will
be used to describe the stock dynamics in this thesis. The final part of this chapter
gives a brief introduction to all of the multi-asset options that are studied in the
rest of the thesis.

2.1 Risk-neutral pricing

The theory of risk-neutral pricing constitutes the foundation of option pricing. The
key idea behind this theory is that neither the buyer nor the seller of an option shall
be able to make a risk-free profit. This is also known as the arbitrage-free principle.
In general, an investment strategy represented by the portfolio process {Π(t)}t≥0 is
an arbitrage if it satisfies the conditions in the following definition.

Definition 1 (Arbitrage portfolio)
A portfolio is an arbitrage if its value {Π(t)}t≥0 satisfies the following properties for
some T > 0 [1]:

1. Π(0) = 0 almost surely,
2. Π(T ) ≥ 0 almost surely,
3. P(Π(T ) > 0) > 0.

In order to understand the logic behind risk-neutral pricing, assume that an
option is sold for VY (t) at time t and that the seller invests this amount in a d + 1
dimensional market consisting of the d underlying assets and a risk-free asset (for
example a bond). Moreover, assume that this portfolio is self-financing, i.e., no
money is added or withdrawn, and that the investments can be made in such a way
that the portfolio value is equal to the payoff Y of the option at the time of maturity.
This means that the portfolio is hedging the option and the price VY (t) can therefore
be considered ”fair” (or risk-neutral) since no party is guaranteed to make a profit.

Based on this logic it becomes reasonable to look for the price of a self-financing
hedging portfolio when pricing options. In order to find the price of such a portfolio
it is necessary to introduce the multi-dimensional Girsanov’s theorem. For this
purpose, let

{W1(t)}t≥0, . . . ,{Wd(t)}t≥0

3



2. Financial Theory and Multi-Asset Options

be independent Brownian motions on a probability space (Ω,F ,P) and let {FW (t)}t≥0
be a filtration generated by {W1(t)}t≥0, . . . , {Wd(t)}t≥0.

Theorem 2.1.1 (Multi-dimensional Girsanov’s theorem)
Let {θ1(t)}t≥0, . . . , {θd(t)}t≥0 be adapted to {FW (t)}t≥0 and define

Z(t) = exp
− d∑

j=1

∫ t

0
θj(s)dWj(s)−

1
2

∫ t

0
||θ(s)||2ds

 , (2.1)

W̃k(t) = Wk(t) +
∫ t

0
θk(s)ds k = 1, . . . , d, (2.2)

where ||θ(t)||2 = θ1(t)2 + · · · + θd(t)2. Moreover, let T be a fixed positive time and
assume that

E

∫ T

0
||θ(s)||2Z2(s)ds <∞. (2.3)

Under the equivalent probability measure P̃ given by

P̃(A) = E[Z(T )IA], A ∈ F (2.4)

the processes {W̃1(t)}t≥0, . . . , {W̃d(t)}t≥0 are independent Brownian motions and the

filtration {FW (t)}t≥0 is a non-anticipating filtration for {W̃1(t)}t≥0, . . . , {W̃d(t)}t≥0.

A proof of the multi-dimensional Girsanov’s theorem is presented in [2]. Before
this theorem can be applied to price options it is necessary to make assumptions
about how the underlying assets behave and what the risk-free interest rate is. The
latter is used to discount values, i.e., to take into consideration the time-devaluation
of money. Assume a general model for the stock prices with possibly non-constant
parameters and independent Brownian motions described by

dSi(t) = µi(t)Si(t)dt+
d∑
j=1

σij(t)Si(t)dWj(t), t ≥ 0, i = 1, . . . ,m, (2.5)

where the drift processes {µi(t)}t≥0 and the volatility matrix [{σij(t)}t≥0] are adapted
to {FW (t)}t≥0. Also define the discount process {D(t)}t≥0 as

D(t) = exp
(
−
∫ t

0
R(s)ds

)
, (2.6)

where it is assumed that the interest rate process {R(t)}t≥0 is adapted to {FW (t)}t≥0.
The differential for the discounted stock price becomes

d (D(t)Si(t)) = D(t) [dSi(t)−R(t)Si(t)dt] (2.7)

= D(t)Si(t)
(µi(t)−R(t))dt+

d∑
j=1

σij(t)dWj(t)
 , i = 1, . . . ,m.

(2.8)

Now the definition of a risk-neutral probability measure can be presented which is
very much related to the multi-dimensional Girsanov’s theorem and the discounted
stock process introduced above. The risk-neutral measure has great significance
when pricing options and other financial derivatives.

4



2. Financial Theory and Multi-Asset Options

Definition 2 (Risk-neutral measure)
P̃ is called a risk-neutral probability measure if

1. P̃ and P are equivalent (i.e., they agree on which events that have zero proba-
bility)

2. The discounted stock price D(t)Si(t) is a martingale under P̃ for every i =
1, . . . ,m.

It follows from Theorem 2.1.1 and (2.8) that the conditions in Definition 2 hold
if it is possible to find so called market price of risk processes {θ1}t≥0, . . . , {θd}t≥0
such that

d (D(t)Si(t)) = D(t)Si(t)
d∑
j=1

σij(t) [θj(t)dt+ dWj(t)] . (2.9)

This is motivated by the possibility to construct an equivalent risk-neutral proba-
bility measure P̃ as in (2.4) under which {W̃1(t)}t≥0, . . . , {W̃d(t)}t≥0 given by (2.2)
are Brownian motions. Thus (2.9) can in that case be reduced to

d (D(t)Si(t)) = D(t)Si(t)
d∑
j=1

σij(t)dW̃j(t), (2.10)

which implies that D(t)Si(t) is a martingale under P̃. Equations for finding the
market price of risk processes are obtained from equating (2.8) and (2.9), and they
are called the market-price of risk equations.

Definition 3 (Market price of risk equations)
The market price of risk equations are given by:

µi(t)−R(t) =
d∑
j=1

σij(t)θj(t), i = 1, . . . ,m. (2.11)

If the market price of risk equations have no solution, then there will be arbitrage
opportunities in the market and the model should not be used [2]. Conversely, the
market is free of arbitrage if there exists a solution to these equations.

Next consider a self-financing portfolio where investments are made in the stocks
Si(t), i = 1, . . . ,m, and a bond with interest rate process R(t). Let {∆i(t)}t≥0 be
adapted processes representing the number of shares invested in each stock. The
portfolio process {Π(t)}t≥0 then satisfies

dΠ(t) =
m∑
i=1

∆i(t)dSi(t) +R(t)
(

Π(t)−
m∑
i=1

∆i(t)dSi(t)
)
dt (2.12)

= R(t)Π(t)dt+
m∑
i=1

∆i(t) (dSi(t)−R(t)Si(t)dt) (2.13)

= R(t)Π(t)dt+
m∑
i=1

∆i(t)
D(t) d (D(t)Si(t)) . (2.14)

Thus the differential of the discounted portfolio value becomes

d (D(t)Π(t)) = D(t) (dΠ(t)−R(t)Π(t)dt) =
m∑
i=1

∆i(t)d (D(t)Si(t)) , (2.15)

5



2. Financial Theory and Multi-Asset Options

and since {D(t)Si(t)}t≥0, i = 1, . . . ,m, are martingales under P̃, the following theo-
rem holds.

Theorem 2.1.2
If P̃ is a risk-neutral probability measure, then the discounted self-financing portfolio
process {D(t)Π(t)}t≥0 is a martingale under P̃.

It is now straightforward to give a definition of the fair price of an option. Recall
the discussion in the beginning of this section where it was argued that the option
price should be equal to the value of a self-financing hedging portfolio. Since the
discounted value of any self-financing portfolio is a martingale under a risk-neutral
probability measure P̃, it holds that

D(t)Π(t) = Ẽ[D(T )Π(t)|FW (t)], (2.16)

where Ẽ denotes the expectation under P̃. Since the value of the portfolio should
be equal to the payoff Y of the option at maturity T it follows that

Π(t) = 1
D(t)Ẽ [D(T )Y |FW (t)] = Ẽ

[
D(T )
D(t) Y |FW (t)

]
(2.17)

= Ẽ

[
Y exp

(
−
∫ T

t
R(s)ds

)
|FW (t)

]
, (2.18)

Thus the fair price of a European option (or some other European derivative) can
be defined in the following way.

Definition 4 (Risk-neutral pricing formula)
The risk-neutral price at time t ∈ [0,T ] of a European option with payoff Y and time
of maturity T satisfies

VY (t) = Ẽ
[
Y exp

(
−
∫ T

t
R(s)ds

)
|FW (t)

]
. (2.19)

Generally it is difficult to find an explicit expression of the risk-neutral price.
However, in numerical computations it is often useful to take advantage of the fact
that each of the stocks has drift rate equal to the rate of return R(t) of the money
market under a risk-neutral probability measure P̃ [2].

2.2 Multi-dimensional geometric Brownian mo-

tions

In order to price multi-asset options it is necessary to decide upon a model for the un-
derlying assets. In this thesis it is assumed that the underlying assets are described
by multi-dimensional geometric Brownian motions with constant parameters. Two
different ways to represent these motions and the corresponding correlations are
commonly used in the literature. For some pricing methods, one of the two repre-
sentations turn out to be easier to use for numerical implementations.

6



2. Financial Theory and Multi-Asset Options

Definition 5 (Representation 1)
Consider a d-dimensional stock market. Assume that the stock prices {S1(t)}t≥0,
. . . , {Sd(t)}t≥0 satisfy the following stochastic differential equations (SDEs):

dSi(t) = µiSi(t)dt+
d∑
j=1

σijSi(t)dWj(t), t > 0, i = 1, . . . , d, (2.20)

where µi are the drift parameters, [σij] is the constant volatility matrix, and {Wi(t)}t≥0
are independent Brownian motions in the probability space (Ω,F ,P). That is, it must
hold that

Cov[dWi(t)dWj(t)] = 0, i, j = 1, . . . , d, i 6= j. (2.21)

Equation (2.20) is a common way to describe the multi-dimensional geometric
Brownian motion with constant parameters. Another way to describe the motions,
which is equivalent in distribution, is as follows.

Definition 6 (Representation 2)
Consider a d-dimensional stock market. Assume that the stock prices {S1(t)}t≥0,
. . . , {Sd(t)}t≥0 satisfy the following stochastic differential equations:

dSi(t) = µiSi(t)dt+ σiSi(t)dW (ρ)
i (t), t > 0, i = 1, . . . , d, (2.22)

where µi are the drift parameters, σi > 0 are the constant volatilities, and {W (ρ)
i (t)}t≥0

are Brownian motions in the probability space (Ω,F ,P). Further, the Brownian mo-
tions are assumed to be correlated with covariances given by

Cov[dW (ρ)
i (t)dW (ρ)

j (t)] = ρijdt, i, j = 1, . . . , d, i 6= j. (2.23)

For now, we restrict the discussion to the two-asset case, i.e., d = 2. It is possible
to integrate the systems in Representation 1 and Representation 2 in order to get
explicit expressions for the stock prices. It can be shown that the system (2.20) can
be integrated to give

S1(t) = S1(0) exp
[(
µ1 −

σ2
11 + σ2

12
2

)
t+ σ11W1(t) + σ12W2(t)

]
, (2.24)

S2(t) = S2(0) exp
[(
µ2 −

σ2
21 + σ2

22
2

)
t+ σ21W1(t) + σ22W2(t)

]
. (2.25)

Similarly, the system (2.22) corresponding to Representation 2 can be integrated to
give

S1(t) = S1(0) exp
[(
µ1 −

σ2
1

2

)
t+ σ1W

(ρ)
1 (t)

]
, (2.26)

S2(t) = S2(0) exp
[(
µ2 −

σ2
2

2

)
t+ σ2W

(ρ)
2 (t)

]
. (2.27)

It is also straightforward to convert between the two representations in this case.
First note that the variances for any fixed t ≥ 0 of the linear combinations of the
Brownian motions in Representation 1 are given by

Var[σ11W1(t) + σ12W2(t)] = (σ2
11 + σ2

12)t, (2.28)

Var[σ21W1(t) + σ22W2(t)] = (σ2
21 + σ2

22)t. (2.29)

7



2. Financial Theory and Multi-Asset Options

It is also well known that the sum of independent normal random variables follows
a normal distribution. Therefore, for any fixed t in Representation 1, it holds that

σ11W1(t) + σ12W2(t) ∼ N (0,(σ2
11 + σ2

12)t), ∀t ≥ 0, (2.30)

σ21W1(t) + σ22W2(t) ∼ N (0,(σ2
21 + σ2

22)t), ∀t ≥ 0, (2.31)

where N (µ,σ2) denotes a normally distributed random variable with mean µ and
variance σ2. It follows from the independent increments of {W1(t)}t≥0 and {W2(t)}t≥0
that

σ11W1(t) + σ12W2(t) =
√
σ2

11 + σ2
12W

(ρ)
1 (t), (2.32)

σ21W1(t) + σ22W2(t) =
√
σ2

21 + σ2
22W

(ρ)
2 (t), (2.33)

where {W ρ
1 (t)}t≥0 and {W ρ

2 (t)}t≥0 are correlated Brownian motions. Moreover, since
{W1(t)}t≥0 and {W2(t)}t≥0 are independent in Representation 1, it follows that

Cov[σ11W1(t) + σ12W2(t), σ21W1(t) + σ22W2(t)] = (σ11σ21 + σ12σ22)t (2.34)

and thus

Cor[σ11W1(t) + σ12W2(t), σ21W1(t) + σ22W2(t)] = σ11σ21 + σ12σ22√
(σ2

11 + σ2
12)(σ2

21 + σ2
22)
. (2.35)

Hence in the case of two assets, given the covariance matrix [σij] in Representation
1, the corresponding parameters in Representation 2 are given by

σ1 =
√
σ2

11 + σ2
12, (2.36a)

σ2 =
√
σ2

21 + σ2
22, (2.36b)

ρ = σ11σ21 + σ12σ22√
(σ2

11 + σ2
12)(σ2

21 + σ2
22)
. (2.36c)

Conversely, given the parameters σ1, σ2 and ρ in Representation 2, the corresponding
parameters in Representation 1 are obtained by solving a system of equations. This
system will be underdetermined since it has four unknowns and three equations.

2.3 Examples of multi-asset options

There are many types of multi-asset options. Some of these options are path-
dependent whereas other only depend on the final prices of the underlying assets.
Generally, an option can also take the form of either a call or a put depending on
if the holder makes a profit when the prices of the underlying assets increase or
decrease. Options can also be classified into being either European or American
depending on when they can be exercised.

The European two-asset correlation call option is studied throughout the thesis
in order to compare the different pricing methods. There are a couple of advantages
of using this option as a reference: (i) there exists a closed formula which is fast

8
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to evaluate so the numerical computations can easily be checked; (ii) most of the
pricing methods discussed in this thesis can be implemented without any difficulties
for this option.

Other options are studied along with the European two-asset correlation call
option in this thesis. This includes American two-asset correlation put options,
Asian two-asset call options, and European two-asset maximum call options. These
options are not implemented for all of the pricing methods but rather used to see how
the pricing methods work for different options. This section gives a brief introduction
to each of these options.

2.3.1 Two-asset correlation option

The European and American two-asset correlation options are well-known examples
of multi-asset options that depend on two underlying assets. Let S(t) = (S1(t), S2(t))
be the prices at time t of the two underlying assets and denote the strike prices by
K1 respectively K2. The payoff Ycall at the time of maturity T of the call option is
given by

Ycall(S(T )) =

max{S2(T )−K2, 0} if S1(T ) > K1,

0 otherwise,
(2.37)

and the corresponding payoff Yput of the put option is given by

Yput(S(T )) =

max{K2 − S2(T ), 0} if S1(T ) < K1,

0 otherwise.
(2.38)

The difference between a European and an American two-asset correlation option
is that the former can only be exercised at the time of maturity whereas the latter
can also be exercised at any time prior to maturity.

There exist closed formulas for computing the prices of European call and put
versions of this option. Assume that the underlying assets are described by Repre-
sentation 2. Then it can be shown that the fair price VYcall of the call option is given
by the formula [3]

VYcall = S2(t)M
(
y2 + σ2

√
T − t, y1 + ρσ2

√
T − t; ρ

)
−K2e

−r(T−t)M(y2, y1; ρ) (2.39)

where M is the cumulative bivariate normal distribution function given by

M(a, b; ρ) = 1
2π
√

1− ρ2

∫ a

−∞

∫ b

−∞
exp

[
−x

2 − 2ρxy + y2

2(1− ρ2)

]
dxdy, (2.40)

r is the constant risk-free interest rate, ρ is the correlation coefficient between the
two underlying assets, and

y1 = log(S1(t)/K1) + (r − σ2
1/2)(T − t)

σ1
√
T − t

, y2 = log(S2(t)/K2) + (r − σ2
2/2)(T − t)

σ2
√
T − t

.

(2.41)
Similarly, the price VYput of the European put option is given by

VYput = K2e
−r(T−t)M(−y2,−y1; ρ)−S2(t)M

(
−y2 − σ2

√
T − t,−y1 − ρσ2

√
T − t; ρ

)
.

(2.42)

9
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The pricing formulas (2.39) and (2.42) need to be modified if it is assumed that
the underlying assets are described by Representation 1 instead of Representation
2. In the case of a call option, the price will then be given by

VYcall = S2(t)M
(
y2 +

√
σ2

21 + σ2
22
√
T − t, y1 + ρ

√
σ2

21 + σ2
22
√
T − t; ρ

)
−K2e

−r(T−t)M(y2, y1; ρ),
(2.43)

where

ρ = σ11σ21 + σ12σ22√
(σ2

11 + σ2
12)(σ2

21 + σ2
22)
, (2.44)

and σ1 and σ2 in y1 and y2 are replaced by
√
σ2

21 + σ2
22 respectively

√
σ2

21 + σ2
22 in

(2.41). A similar transformation also holds for the pricing formula of the put option.

2.3.2 Asian call option

For an Asian option, the payoff depends on an average of the stock prices up to time
of maturity. Assuming an Asian call option with only one underlying asset and fixed
strike price K, the payoff Yd in the discrete arithmetic case is given by

Yd =
 1
N + 1

N∑
j=0

S(tj)−K
+

(2.45)

where S(tj) is the price of the asset at time tj and 0 = t0 < · · · < tN = T are a
discrete set of monitoring dates. In the continuous arithmetic case, the payoff Yc
becomes

Yc =
(

1
T

∫ T

0
S(τ)dτ −K

)+

(2.46)

where the average is computed over an interval [0, T ] [4].
It is possible to generalise the single asset Asian call option to the case when there

are several underlying assets. Following the approach in [5], assume d underlying
assets and monitoring dates 0 = t0 < · · · < tN = T . Let Si(tj) be the price at time
tj of asset Si. The arithmetic payoff Yd in the discrete case is then given by

Yd =
 1
N + 1

N∑
j=0

[
d∑
i=1

αiSi(tj)
]
−K

+

(2.47)

where αk are weights satisfying
∑d
i=1 αi = 1. The corresponding continuous arith-

metic case for the interval [0,T ] has payoff

Yc =
(

1
T

∫ T

0

[
d∑
i=1

αiSi(τ)
]
dτ −K

)+

. (2.48)

It is not possible to reduce the Asian option pricing problem to a one-dimensional
problem, thus there exists no simple pricing formula for this option.

10
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2.3.3 Maximum and minimum call option

Maximum call options and minimum call options are European or American multi-
asset options that offer its holder the right to get the maximum respectively min-
imum payoff of a set of standard call options on the underlying assets. Thus
the payoff Ymax of the maximum call option with d underlying assets with prices
S(t) = (S1(t), . . . , Sd(t)) is given by

Ymax(S(T )) = max
{

(S1(T )−K1)+, . . . , (Sd(T )−Kd)+
}
, (2.49)

where Ki can be thought of as the strike price of the corresponding underlying asset
Si. Analogously, the payoff of a minimum call option is given by

Ymin(S(T )) = min
{

(S1(T )−K1)+, . . . , (Sd(T )−Kd)+
}
. (2.50)

To the best of the authors knowledge, there exists no way to reduce the pric-
ing problem of a maximum or minimum call option to a one-dimensional problem.
However, in the case of two underlying assets S(t) = (S1(t), S2(t)), we can derive a
”max-min parity” of the option prices. Consider a European maximum call option
and a European minimum call option with the same two underlying assets. At the
time of maturity T it holds that

Ymax(S(T )) + Ymin(S(T )) = (S1(T )−K1)+ + (S2(T )−K2)+. (2.51)

This means that the value at the time of maturity of a maximum and a minimum
call option is equal to the value of two standard European call options (one on each
underlying asset). It follows from the arbitrage-free principle that the same relation-
ship must hold at any time prior to maturity. Let VYmax(S(t), t) and VYmin(S(t), t)
denote the values of the maximum respectively minimum call option at time t. De-
note also the values at time t of European call options on S1 and S2 with strike
prices K1 respectively K2 and time of maturity T by C(S1(t), t,K1, T ) respectively
C(S2(t), t,K2, T ). It holds that

VYmax(S(t), t) + VYmin(S(t), t) = C(S1(t), t,K1, T ) + C(S2(t), t,K2, T ) (2.52)

for all t ∈ [0,T ].
The values of the call options on the right hand side of (2.52) can easily be

calculated by the Black-Scholes formula assuming that the underlying assets are
described by geometric Brownian motions with constant parameters [2].
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3
The Binomial Pricing Model

The binomial pricing model has been widely used to find the price of single-asset
options due to its simplicity. It is also possible to use a generalisation of this model
to price both European and American multi-asset options. The generalised model
has not been studied as extensively, but is has been examined in for example [6].

Consider a European option with underlying asset prices S(t) = (S1(t), . . . , Sd(t))
and assume that these assets are described by Representation 2. In order to simplify
future numerical implementations, it is useful to introduce the processes

Xk(t) = log(Sk(t))−
(
µk −

1
2σk

2
)
t, (3.1)

which can be rewritten by using Itô’s formula as

Xk(t) = Xk(0) + σkW
ρ
k (t), t > 0, k = 1, . . . , d. (3.2)

It follows from the arbitrage-free principle that the value VY (S(t), t) of the option
is given by the discounted conditional expectation of the payoff under the risk-
neutral probability measure. Using the notation X(t) = (X1(t), . . . , Xd(t)) and
setting VY (S(t), t) = VY (X(t), t) gives

VY (X(t), t) = e−r(T−t)E[Y (X(T ))|X(t) = x], (3.3)

where Y (X(T )) denotes the payoff function at time of maturity T . The constant
drift rate is set to be equal to r for the process {X(t)}t≥0 in order to satisfy the
risk-neutral condition.

3.1 Uniform method for two underlying assets

Consider the case of a European option with two underlying assets and time to
maturity T . Let the interval [0, T ] be partitioned into N ∈ N equally sized sub-
intervals of length ∆t = T/N and set tn = n∆t, n = 0, 1, . . . , N . In the binomial
pricing model adapted to this framework it is assumed that the combined price
movement of the underlying assets will move in one out of four directions at each tn,
n = 1, . . . , N . The prices of both assets can either go up (uu), down (dd), or go in
opposite directions (ud and du). The corresponding probabilities for each of these
four directions are denoted by Puu,Pdd,Pud, and Pdu. By denoting the increments
for the two assets by h1 respectively h2, the four possible branches from tn to tn+1

13
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can be expressed as

Xn+1 =
{

(Xn
1,(i,j) + h1, X

n
2,(i,j) + h2), (Xn

1,(i,j) − h1, X
n
2,(i,j) − h2),

(Xn
1,(i,j) + h1, X

n
2,(i,j) − h2), (Xn

1,(i,j) − h1, X
n
2,(i,j) + h2)

}
,

where Xn
k,(i,j), k = 1, 2, denotes the transformed asset price corresponding to (3.1) at

time tn. Observe that this X represents a discrete version of the process introduced
in the previous section. By introducing a (n+ 1)× (n+ 1) rectangular mesh with all
possible stock price combinations at time tn, the index (i, j) is used to distinguish
the current stock prices at different nodes. In such a matrix, it is assumed that
the price of the first underlying asset only increases when increasing the column
index (j) whereas the price of the second asset only increases when decreasing the
row index (i). The possible movements, their corresponding probabilities, and the
rectangular mesh are illustrated for the first two steps in Figures 3.1 and 3.2.

Figure 3.1: Possible paths in the two-asset binomial model and corresponding
probabilities at t1, i.e., the first step. The filled circle is the present state (t0) and
the empty circles are the possible new states at t1.

Figure 3.2: Possible paths in the two-asset binomial model at t2, i.e., the second
step. The filled circles are states at t1 and the empty circles are the possible new
states at t2 depending on the state at t1.

The unknown parameters Puu,Pdd,Pud, Pdu and the increments h1 and h2 can be
determined by examining the moments and the covariance of Xn+1 −Xn. In order
for the binomial model to converge to the stochastic process described by (3.2) it
must hold that

E[Xn+1 −Xn] = (0, 0) (3.4)

14
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and
Var[Xn+1 −Xn] = (σ2

1∆t, σ2
2∆t). (3.5)

This gives the equations

Puuh1 + Pudh1 − Pduh1 − Pddh1 = 0, (3.6a)

Puuh2 − Pudh2 + Pduh2 − Pddh2 = 0, (3.6b)

and

Puuh2
1 + Pudh2

1 + Pduh2
1 + Pddh2

1 = σ2
1∆t, (3.7a)

Puuh2
2 + Pudh2

2 + Pduh2
2 + Pddh2

2 = σ2
2∆t. (3.7b)

Moreover, it follows from (2.23) that

Puuh1h2 − Pudh1h2 − Pduh1h2 + Pddh1h2 = ρσ1σ2∆t. (3.8)

The probabilities for all of the four branches must obviously also sum to 1, i.e.,

Puu + Pud + Pdu + Pdd = 1 (3.9)

must hold. Having six equations and six unknowns, it is easy to solve (3.6)-(3.9)
with respect to the unknown parameters and obtain

Puu = Pdd = 1
4(1 + ρ), Pud = Pdu = 1

4(1− ρ), (3.10a)

h1 = σ1
√

∆t, h2 = σ2
√

∆t. (3.10b)

This choice of the parameters makes the binomial model converge to the contin-
uous model of the stock prices given by Representation 2. A formal proof of the
convergence is presented in [7].

Now it is possible to compute the value of an option recursively by using the
fact that the value of an option is equal to its payoff at the time of maturity. Let
VY (X(tn), tn) be the value at time tn and let V uu

Y (X(tn+1), tn+1), V ud
Y (X(tn+1),tn+1),

V du
Y (X(tn+1), tn+1), and V dd

Y (X(tn+1), tn+1) denote the values of the derivative at
time tn+1 given that the prices of the underlying assets both go up (uu), the first
one goes up and the second one goes down (ud), the first one goes down and the
second goes up (du), and both go down (dd), respectively, at time tn+1. It holds
that

VY (X(T ), T ) = Y (X(T )) (3.11)

and

VY (X(tn), tn) = e−r∆t
(
V uu
Y (X(tn+1), tn+1)Puu + V ud

Y (X(tn+1), tn+1)Pud
+V du

Y (X(tn+1), tn+1)Pdu + V dd
Y (X(tn+1), tn+1)Pdd

)
.

(3.12)

This is the standard (uniform) method to compute the binomial price of a European
two-asset option. It is possible to extend this model to more than two assets in a
straightforward manner. In the case of d underlying assets there will be 2d possible
directions at each new step and the probabilities and the increments can be computed
in a similar way as above by imposing symmetry on the probabilities [6].
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3.2 Refinement method for two underlying assets

There are ways to improve the uniform binomial method by using certain refinement
techniques. In [8], an adaptive mesh model for the single asset binomial mode
was introduced which was later on adapted to the multi-asset binomial model in
[6]. These refinement methods have shown to give a significant improvement in
computational speed for some options.

The algorithm introduced in [6] imposes a finer mesh in the interval between
T−∆t and T for nodes in the binomial model which can expire both in the money and
out of the money in the finer mesh. In the case of level one refinement, asset prices
corresponding to nodes in the refinement region will take four steps instead of one
step in the interval between T −∆t and T . Moreover, considering the transformed
asset prices given by (3.1), it is assumed that the increments in each step are h1/2
and h2/2 for the first respectively second asset. This means that the prices of the
underlying assets in the refinement region can change by maximum 2h1 respectively
2h2 in the interval between T −∆t and T .

In order to illustrate this method, consider a European two-asset correlation call
option with underlying asset prices S(t) = (S1(t), S2(t)) and payoff (2.37). That is,

Y (S(T )) =

max {S2(T )−K2, 0} if S1(T ) > K1,

0 otherwise.
(3.13)

Following the notation in the previous section, define imin, imax, jmin, and jmax for
level one refinement as

imin = min
i

{
(i, j) ∈ {(1, . . . , N)2} : XN−1

2,(i,j) − 2h2 ≤ log(K2)−
(
r − σ2

2
2

)
T

}
,

(3.14a)

imax = max
i

{
(i, j) ∈ {(1, . . . , N)2} : XN−1

2,(i,j) + 2h2 > log(K2)−
(
r − σ2

2
2

)
T

}
,

(3.14b)

jmin = min
j

{
(i, j) ∈ {(1, . . . , N)2} : XN−1

1,(i,j) + 2h1 > log(K1)−
(
r − σ2

1
2

)
T

}
,

(3.14c)

jmax = max
j

{
(i, j) ∈ {(1, . . . , N)2} : XN−1

1,(i,j) − 2h1 ≤ log(K1)−
(
r − σ2

1
2

)
T

}
,

(3.14d)

where (3.1) has been used to find the right hand side of the inequalities in (3.14).
The refinement region for the two-asset correlation option consists of all coarse nodes
at time tN−1 with indices (i, j) that satisfy

(imin ≤ i ≤ imax ∧ j ≥ jmin) ∨ (i ≤ imax ∧ jmin ≤ j ≤ jmax). (3.15)

This refinement region will be called A and it usually has the shape of an L. An
example of such a region is shown i Figure 3.3.
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Figure 3.3: An example of refinement region A. Nodes in the shaded area should
be assigned a finer mesh.

After the refinement region has been specified, the finer mesh is imposed at each
one of the nodes in the refinement region. This is illustrated in Figure 3.4 for one
node in the refinement region in the case of level one refinement.

Figure 3.4: Finer mesh used for level one refinement marked by empty triangles
corresponding to a node marked by a filled star. Filled circles correspond to other
coarse nodes in the binomial model at time tN−1 and empty circles correspond to
possible new states at time tN without refinement. Note that some of the coarse
nodes overlap with the finer mesh and thus have been omitted.

The option price can now be computed similar to the way it was done in the
uniform binomial method, i.e., by equations (3.11) and (3.12). The option prices
at time tN−1 in the refinement region are computed by discounting the expected
payoff in the finer mesh whereas option prices outside the refinement region are
computed by discounting the expected payoff just like in the uniform method. After
the option prices in each node at time tN−1 have been computed, the computations
become exactly the same as in the uniform case.

It is possible to use other level of refinements than level one which has been
illustrated above. Let α be any positive integer, then level α refinement is obtained
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analogous to level one refinement but by imposing a finer mesh with time steps
∆t/4α and price steps of size h1/2α and h1/2α. Thus imin, imax, jmin, and jmax in
(3.14) are determined by changing 2h1 and 2h2 to 2αh1 respectively 2αh2 in each of
the inequalities. The conditions in refinement region A given by (3.15) remains the
same and the option price is computed in the same way as for the level one case.

The usage of refinement region A can be argued to give better estimates of the
option price than the uniform method when an average estimate is considered for
some large enough interval of N . By imposing a finer mesh at some nodes, the
estimated option price should become more accurate in those positions of the matrix
at time tN−1. Thus even the initial option price will become more precise since it
is calculated in a recursive way. However, the convergence of the binomial model
tends to oscillate [9]. Hence it is not certain that the usage of refinement region A
will give a better estimate for any fixed N .

It seems possible that other refinement regions than the one give by (3.15) could
be used to obtain improvements in accuracy. Of course it is never interesting to
impose a finer mesh on a node that can never expire in the money, but it might still
be beneficial to use a smaller or a larger refinement area than in (3.15). Let imin,
imax, jmin, and jmax be defined as in (3.14) and consider the set of indices (i, j) that
satisfy

imin ≤ i ≤ imax ∧ jmin ≤ j ≤ jmax, (3.16)

and
i ≤ imax ∧ j ≥ jmin. (3.17)

The refinement regions given by (3.16) and (3.17) will possibly be smaller respec-
tively larger than the one given by (3.15), and they will be referred to as refinement
region B respectively C. Two examples of the two new regions are shown in Figure
3.5.

(a) Refinement region B. (b) Refinement region C.

Figure 3.5: Examples of refinement regions B and C. Nodes in the shaded area
should be assigned a finer mesh.

The motivation behind introducing refinement region B is that it might be the
case that some of the nodes in the top and right edges of refinement region A turn
out to have a small contribution to the initial option price. Thus it could be more
efficient to impose a finer mesh for a smaller number of nodes in the matrix. In

18



3. The Binomial Pricing Model

opposite to this reasoning, one could argue that all nodes at tN−1 that can expire
in the money in the finer mesh should be included in the refinement region. This is
the logic behind refinement region C.

3.3 Adaption to American options

It is easy to adapt the binomial pricing model to price American options. The
recurrence formula (3.12) only has to be slightly changed in order to take into con-
sideration that an American option can be exercised at any time prior to maturity.
Let V̂Y (X(tn), tn) denote the fair price of an American option whose European coun-
terpart is VY (X(tn), tn). It holds that

V̂Y (X(T ), T ) = VY (X(T ), T ) = Y (X(T )), (3.18)

and the recurrence formula for an American option becomes

V̂Y (X(tn), tn) = e−r∆tmax

(
V̂ uu
Y (X(tn+1), tn+1)Puu + V̂ ud

Y (X(tn+1), tn+1)Pud

+V̂ du
Y (X(tn+1), tn+1)Pdu + V̂ dd

Y (X(tn+1), tn+1)Pdd, Y (X(tn))
)
,

(3.19)

where Y (X(tn)) denotes the so called intrinsic value of the American option at time
tn. By this recurrence formula it should be clear that V̂Y (X(tn), tn) ≥ VY (X(tn), tn)
and V̂Y (X(tn), tn) ≥ Y (X(tn)). This makes intuitively sense since otherwise the
market would not be free of arbitrage.

It is possible to apply the same refinement methods as discussed in the previous
section but with the American recurrence formula in the refinement region. The
finer mesh is found by using the same conditions as in the previous section.

An important concept concerning American options is the so called optimal ex-
ercise boundary. This boundary is the interface between the continuation region
and the stopping region [4]. The continuation region is where it is not optimal to
exercise the American option and it consists of stock prices that satisfy

V̂Y (X(tn), tn) > Y (X(tn)), tn < T. (3.20)

The stopping region is where it is optimal to exercises the American option and it
consists of stock prices that satisfy

V̂Y (X(tn), tn) = Y (X(tn)), tn < T. (3.21)

3.4 The trinomial model

The trinomial model is an extension of the binomial model. In the trinomial model,
each stock price can move in three different directions at each time step. Just like
the binomial model, the trinomial model can be used to approximate the continuous
model of the stock prices [10]. However, some authors have written that the trinomial
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model can also be considered a complete and arbitrage-free market model when
there are two risky assets [11]. We take a closer look whether or not this holds by
considering two stocks described by Representation 1, i.e.,

S1(t) = S1(0)eα1t+σ11W1(t)+σ12W2(t), (3.22)

S2(t) = S2(0)eα2t+σ21W1(t)+σ22W2(t), (3.23)

where

α1 = µ1 −
σ2

11 + σ2
12

2 , (3.24)

α2 = µ2 −
σ2

21 + σ2
22

2 . (3.25)

In order to implement the trinomial model it is necessary to introduce discrete
versions of (3.22) and (3.23). For this purpose, let {X(1)

i }i∈N and {X(2)
i }i∈N be two

independent and identically distributed (i.i.d.) stochastic processes satisfying

X
(j)
i =


1 with probability pu

0 with probability pm

−1 with probability pd

(3.26)

for j = 1, 2. The physical probabilities pu, pm, pd are defined such that

E

[
X

(j)
i

]
= 0 =⇒ pu = pd = p, (3.27)

which means that

Var
[
X

(j)
i

]
= E

[(
X

(j)
i

)2
]

= pu + pd = 2p (3.28)

for 1 = 1, . . . , N and j = 1, 2. Let t0 = 0 < t1 < · · · < tN = t and take ti+1 − ti = h
with N = t/h. Define

S̃1(ti) = S̃1(ti−1)eα̃1+σ̃11X
(1)
i +σ̃12X

(2)
i , (3.29)

S̃2(ti) = S̃2(ti−1)eα̃2+σ̃21X
(1)
1 +σ̃22X

(2)
i , (3.30)

which implies that

S̃1(t) = S̃1(0)eα̃1N+σ̃11M
(1)
N +σ̃12M

(2)
N , (3.31)

S̃2(t) = S̃2(0)eα̃2N+σ̃21M
(1)
N +σ̃22M

(2)
N , (3.32)

where

M
(j)
N =

N∑
i=0

X
(j)
i . (3.33)

It is shown in Appendix A that the parameters α̃1, α̃2, σ̃11, σ̃12, σ̃21, σ̃22 must
satisfy the following equations in order for (3.31) and (3.32) to converge to (3.22)
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respectively (3.23) when N goes to infinity:

α̃1 = hα1, α̃2 = hα2, (3.34)

σ2
11 + σ2

12 = 2p
h

(σ̃2
11 + σ̃2

12), (3.35)

σ2
21 + σ2

22 = 2p
h

(σ̃2
21 + σ̃2

22), (3.36)

σ11σ21 + σ12σ22 = 2p
h

(σ̃11σ̃21 + σ̃12σ̃22). (3.37)

By imposing the martingale property, it is shown in Appendix A that there might
not exist a risk-neutral probability measure for the trinomial model. This means
that the trinomial model is not arbitrage-free and it is not a complete market model.
This result is different from what some authors have written [11]. Even though the
trinomial model is not a valid market model, it could still be used to approximate
the continuous model if the parameters are specified correctly [10]. However, we use
the binomial model for this purpose since it is easier to implement.

3.5 Results of the binomial pricing model

In this section, the uniform binomial pricing model is compared to the binomial
pricing models with refinement regions A, B and C. Both options of European and
American types are considered. In addition to computations of the option price,
the dependence of parameters such as the number of time steps, correlation, and
volatilities is studied.

The Python code for the numerical computations in this section is presented in
Appendices C and D. Below, and throughout the rest of the thesis, the relative
error is calculated as the absolute difference between the estimated price and the
exact price divided by the exact price. Also, all computations are carried out on a
computer with 3.40 GHz Intel Core i5 processor and 8 GB of RAM.

3.5.1 European two-asset correlation call option

Consider a European two-asset correlation call option with payoff as in (2.37), i.e.,

Y (S(T )) =

max {S2(T )−K2, 0} if S1(T ) > K1,

0 otherwise.
(3.38)

Assume the initial stock prices are S1(0) = 52 and S2(0) = 65, and let the strike
prices be K1 = 50 respectively K2 = 70 at time of maturity T = 0.50. Moreover,
let the correlation be ρ = 0.75 and let the risk-free interest rate be r = 0.10. If the
volatilities of the stocks are σ1 = 0.20 respectively σ2 = 0.30 and the underlying
assets pay no dividends, then it can be shown that the theoretical option price is
approximately 4.7073 [3].

Figure 3.6 shows how the option prices converge to the theoretical price in the bi-
nomial pricing model when using the uniform method and three different refinement
regions (A, B, and C) with two different levels of refinement.
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(b) Uniform method.
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(d) Refinement region A.
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(e) Refinement region B.
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(f) Refinement region B.
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(g) Refinement region C.
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Figure 3.6: Option prices (left) and relative errors (right) for the European
two-asset correlation call option computed with the binomial model. Parameters:
S1(0) = 52, S2(0) = 65, K1 = 50, K2 = 70, T = 0.50, r = 0.10, ρ = 0.75, σ1 = 0.20
and σ2 = 0.30.
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In a similar way, the computational time for the uniform method and the different
refinement regions are shown in Figure 3.7.
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(b) Refinement region A.

0 50 100 150 200 250
Steps (N)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Co
m

pu
ta

tio
na

l t
im

e 
(s

)

Refinement region B, level 1
Refinement region B, level 2

(c) Refinement region B.
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Figure 3.7: Computational times when using the binomial model for pricing the
European two-asset correlation call option. Parameters: S1(0) = 52, S2(0) = 65,
K1 = 50, K2 = 70, T = 0.50, r = 0.10, ρ = 0.75, σ1 = 0.20 and σ2 = 0.30.

Observing the converge rate with respect to the number of steps N is not enough
to conclude which refinement region and method that is the best one. Thus, from
the previous figures the number of steps N in the binomial model is extracted from
when the computational time is about 15 seconds. A comparison between the option
prices for these times and an average for the 50 last N up to this computational
time is shown in Table 3.1.
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Table 3.1: Relative errors for the price of a European two-asset correlation call
option computed with the binomial model when the computational time is shorter
than 15 seconds. Results are presented for the final N satisfying the time limit as
well as for the 50 steps prior to the final step. Parameters: S1(0) = 52, S2(0) = 65,
K1 = 50, K2 = 70, T = 0.50, r = 0.10, ρ = 0.75, σ1 = 0.20, and σ2 = 0.30.

Method
Final
N

Estimated
price for
final N

Mean
price of

50 last N

Standard
deviation of
50 last N

Error of
final N

Mean
error of

50 last N
Uniform 250 4.7122 4.7095 0.01313 0.001034 0.002523

Region A, Level 1 237 4.7064 4.7082 0.006650 0.0002020 0.001250
Region A, Level 2 201 4.7040 4.7080 0.003343 0.0007128 0.0006093
Region B, Level 1 237 4.6956 4.7084 0.01206 0.002481 0.002181
Region B, Level 2 236 4.7166 4.7081 0.01016 0.001972 0.001818
Region C, Level 1 214 4.7144 4.7073 0.006721 0.001498 0.001261
Region C, Level 2 83 4.7128 4.7099 0.006098 0.001163 0.001177

Higher levels of refinement than two could be used to give possibly even better
approximations. However, the computational time increases drastically when in-
creasing the level of refinement, e.g., level 3 refinement in region A takes more than
25 seconds already at N = 10.

Table 3.1 suggests that refinement region A with level 2 refinement is the best
choice for this kind of option since it has the lowest average error and standard
deviation. From here on, only the uniform method and refinement region A with
refinement level 2 is used.

To further study the two-asset correlation option, it may be of interest to deter-
mine how the relative error depends on the correlation ρ between the two underlying
assets. Using the same parameters as above but with six different values of the corre-
lation, Figure 3.8 shows that the relative error seems to decrease when the correlation
increases.
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0 25 50 75 100 125 150 175 200
Steps (N)

0.00

0.02

0.04

0.06

0.08

0.10

Re
la

tiv
e 

Er
ro

r

Rho = -0.75
Rho = -0.50
Rho = -0.25
Rho = 0.25
Rho = 0.50
Rho = 0.75

(b) Refinement region A, level 2.

Figure 3.8: Dependence on the correlation ρ for the price of a European two-asset
correlation call option computed with the binomial model. Parameters: S1(0) = 52,
S2(0) = 65, K1 = 50, K2 = 70, T = 0.50, r = 0.10, σ1 = 0.20, and σ2 = 0.30.

Fixing the number of steps N which yields a computational time of 15 seconds,
the estimated price and relative errors for each value of the correlation are collected
in Table 3.2 below.
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Table 3.2: Option prices when using the binomial model for a European two-
asset correlation call option with different correlations ρ, and for N such that the
computational time is about 15 seconds. Parameters: S1(0) = 52, S2(0) = 65,
K1 = 50, K2 = 70, T = 0.50, r = 0.10, σ1 = 0.20, and σ2 = 0.30.

Correlation
ρ

Method N
Estimated

price
Exact price Relative error

-0.75 Uniform 250 1.3159 1.2981 0.01370
Region A, Level 2 201 1.2703 0.02142

-0.50 Uniform 250 2.1106 2.0914 0.009162
Region A, Level 2 201 2.0633 0.01343

-0.25 Uniform 250 2.8134 2.7948 0.006629
Region A, Level 2 201 2.7689 0.009281

0.25 Uniform 250 3.9734 3.9599 0.0003394
Region A, Level 2 201 3.9431 0.004244

0.50 Uniform 250 4.4105 4.4010 0.002149
Region A, Level 2 201 4.3906 0.002370

0.75 Uniform 250 4.7122 4.7073 0.001034
Region A, Level 2 201 4.7040 0.0007128

It is also of interest to study the dependence on the volatilities. Observations
are made for seven different volatilities σ1 and σ2 in Figure 3.9 and the results are
summarised in Table 3.3.
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Figure 3.9: Dependence on the volatilities σ1 and σ2 for the price of a European
two-asset correlation call option computed with the binomial model. Parameters:
S1(0) = 52, S2(0) = 65, K1 = 50, K2 = 70, T = 0.50, r = 0.10, ρ = 0.75.
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Table 3.3: Option prices when using the binomial model for a European two-asset
correlation call option with different volatilities σ1, σ2, and for N such that the
computational time is about 15 seconds. Parameters: S1(0) = 52, S2(0) = 65,
K1 = 50, K2 = 70, T = 0.50, r = 0.10 and ρ = 0.75.

Volatilities
σ1, σ2

Method N
Estimated

price
Exact price Relative error

0.10, 0.15 Uniform 250 2.0588 2.0584 0.0002045
Region A, Level 2 201 2.0589 0.0002427

0.20, 0.30 Uniform 250 4.7122 4.7073 0.001034
Region A, Level 2 201 4.7040 0.0007128

0.40, 0.60 Uniform 250 9.7627 9.7424 0.002086
Region A, Level 2 201 9.7204 0.002258

0.80, 1.20 Uniform 250 19.4955 19.2751 0.01143
Region A, Level 2 201 19.2642 0.0005649

1.60, 2.40 Uniform 250 36.1381 36.0371 0.002800
Region A, Level 2 201 36.8665 0.004735

3.20, 4.80 Uniform 250 54.0660 56.7448 0.04721
Region A, Level 2 201 53.3977 0.05899

6.40, 9.60 Uniform 250 32.9481 64.8269 0.4918
Region A, Level 2 201 28.1844 0.5652

3.5.2 American two-asset correlation put option

Consider an American two-asset correlation put option that can be exercised at any
time prior to maturity T with intrinsic value

Y (S(tn)) =

max {K2 − S2(tn), 0} if S1(tn) < K1,

0 otherwise,
(3.39)

where 0 < tn ≤ T are discrete time instances in the binomial model. There exists no
closed-form solution to the price of this option. This means that it is not possible
to use any exact reference price when pricing the option. However, its European
counterpart can be priced exactly, as described in the section about examples of
multi-asset options. Recall that an American version of an option should always be
at least as expensive as the European version of it. This means that it is possible
to get an idea of how well the pricing method of the American option works by
checking this condition.

Figure 3.10 shows how the price of the American two-asset correlation put option
varies depending on the number of steps N in the binomial model. Both the uniform
binomial method and the binomial method with refinement region A is included in
the figure. Refinement region A was chosen since results from the previous section
indicated that it was a good choice for refinement. The same standard parameters
as for the European two-asset correlation call option in the previous section are
used. Thus the initial stock prices are S1(0) = 52 and S2(0) = 65, the strike prices
are K1 = 50 and K2 = 70, the time of maturity is T = 0.50, the risk-free interest
rate is r = 0.10, the correlation is ρ = 0.75, and the volatilities are σ1 = 0.20 and
σ2 = 0.30.
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Figure 3.10: Option prices and computational times of the American two-asset
correlation put option computed with the binomial model. Parameters: S1(0) = 52,
S2(0) = 65, K1 = 50, K2 = 70, T = 0.50, r = 0.10, ρ = 0.75, σ1 = 0.20 and
σ2 = 0.30.

The price in the binomial model for the American two-asset correlation put option
seems to stabilise somewhere around 6.05 according to Figure 3.10. The exact price
of the corresponding European option is approximately 3.9092. Hence the estimated
price of the American option is higher than its European counterpart, as expected.
How the American option price depends on the number of steps N is also summarised
in Table 3.4.

Table 3.4: Estimated prices of an American two-asset correlation put option com-
puted with the binomial model when the computational time is shorter than 15
seconds. Results are presented for the final N satisfying the time limit as well as for
the 50 steps prior to the final step. Parameters: S1(0) = 52, S2(0) = 65, K1 = 50,
K2 = 70, T = 0.50, r = 0.10, ρ = 0.75, σ1 = 0.20, and σ2 = 0.30.

Method
Final
N

Estimated
price for
final N

Mean
price of

50 last N

Standard
deviation of
50 last N

Uniform 142 6.0160 6.0066 0.01119

Region A, Level 1 141 6.0187 6.0098 0.008987
Region A, Level 2 129 6.0189 6.0092 0.008992

It is not clear how well the refinement methods work in the American case since
there is no exact price to compare the results to. The refinement methods have
slightly smaller standard deviations than the uniform method according to Table
3.4. However, it seems like the binomial price is not oscillating around a horizontal
line as in the previous European case but rather around a curve that is slightly
increasing. This means that a smaller standard deviation does not necessarily imply
a better estimate.

It is also interesting to observe how the American option price depends on the
correlation ρ and the volatilities σ1 and σ2. Such results are shown in Tables 3.5
and 3.6 where the uniform method has been used for the estimates.
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Table 3.5: Uniform option prices using the binomial model for an American two-
asset correlation put option with different correlations ρ, and for N such that the
computational time is about 15 seconds (i.e., N = 142). Parameters: S1(0) = 52,
S2(0) = 65, K1 = 50, K2 = 70, T = 0.50, r = 0.10, σ1 = 0.20, and σ2 = 0.30

Correlation
ρ

Estimated
American price

Exact
European price

-0.75 1.5857 0.2857

-0.50 2.5844 0.7474

-0.25 3.3908 1.2691

0.25 4.7801 2.4543

0.50 5.4136 3.1338

0.75 6.0160 3.9093

Table 3.6: Uniform option prices using the binomial model for an American two-
asset correlation put option with different volatilities σ1, σ2, and for N such that the
computational time is about 15 seconds (i.e., N = 142). Parameters: S1(0) = 52,
S2(0) = 65, K1 = 50, K2 = 70, T = 0.50, r = 0.10 and ρ = 0.75.

Volatilities
σ1, σ2

Estimated
American price

Exact
European price

0.10, 0.15 2.7426 1.1028

0.20, 0.30 6.0160 3.9093

0.40, 0.60 11.1486 8.9953

0.80, 1.20 21.1980 18.3718

1.60, 2.40 38.6029 34.5981

3.20, 4.80 59.6698 55.0437

6.40, 9.60 68.6964 65.7421

Observe in Tables 3.5 and 3.6 that the American option is always more expensive
than the European version with the same parameters. As expected, there is also a
clear correlation between the American and European prices.

Another interesting property of the American option is its optimal exercise sur-
face. Figure 3.11 shows what the projection onto the S1S2-plane of this surface looks
like for a few different time instances. It is optimal to exercise the American two-
asset correlation put option at time t if both S1(t) and S2(t) are inside the region
bounded by the optimal exercise curves.
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Figure 3.11: Projection of the optimal exercise surface for the American two-asset
correlation put option computed with the binomial model. Parameters: S1(0) = 52,
S2(0) = 65, K1 = 50, K2 = 70, T = 0.50, r = 0.10, ρ = 0.75, σ1 = 0.20 and
σ2 = 0.30.

Figure 3.11 suggests that the right boundary corresponding to S1(t) remains
almost unchanged for different values of t. However, the top boundary corresponding
to S2(t) falls when t decreases. Moreover, the average vertical displacement is greater
closer to the time of expiration. This observation is similar to what has be observed
for the standard single asset American put option [12].
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4
Monte Carlo Methods

The binomial tree used in the binomial pricing model gives a computational time that
grows exponentially with the number of underlying assets. Thus when considering
options with a larger number of underlying assets, another model is needed. The
Monte Carlo method is a well-known approach in option pricing which is based on
the idea to compute the average payoff for a large number of sample paths of the
underlying assets.

4.1 Introduction to Monte Carlo simulations

Using the Monte Carlo method for estimating the fair price of the options, the
same fundamental theory used in the previous method holds. Assume that the
underlying assets are described by Representation 1. For a general non-American
option with two underlying assets S(t) = (S1(t), S2(t)), the following algorithm is
used for simulations in the Monte Carlo method:

1. Create a partition 0 = t0 < t1 < · · · < tN = T of the interval [0,T ].
2. For a large number n, perform the following steps for each k = 1, . . . , n:

(a) Generate W̃i(tj) for i = 1, 2 and j = 1, . . . , N where {W̃1(t)}t≥0 and

{W̃2(t)}t≥0 are independent Brownian motions.
(b) Compute Si(tj) as

Si(tj) = Si(0) exp
[(
r − σ2

i1 + σ2
i2

2

)
tj + σi1W̃1(tj) + σi2W̃2(tj)

]
. (4.1)

(c) Compute the payoff Yk at time T .
(d) Compute the discounted payoff Vk as

Vk = e−rTYk. (4.2)

3. Compute the initial option price V̂n as

V̂n = (V1 + · · ·+ Vn)/n. (4.3)

It is possible to simplify the algorithm for non-path-dependent options by not
doing a partition of the interval [0, T ] and only generating the final value W̃i(T ) for
i = 1, 2.

Furthermore, a confidence interval of the estimation is of great interest. Defining
V̂n as in the algorithm above, then V̂n is an unbiased estimator for n ≥ 1. Thus, a
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confidence interval is given by

V̂n ± zδ/2
sC√
n

(4.4)

where zδ denotes the 1 − δ quantile of the standard normal distribution and sC is
the sample standard deviation defined by

sC =
√√√√ 1
n− 1

n∑
i=1

(Vi − V̂n)2. (4.5)

4.2 Variance reduction

One possible approach to increasing the precision of the estimator is to increase
the number of samples, but this will heavily affect the computational time. Another
approach is thus needed. Variance reduction techniques are used in order to increase
the accuracy of an estimate without increasing the cost of simulation significantly.

4.2.1 Antithetic variates

Antithetic variates (AV) is a variance reduction technique where the variance is
reduced by introducing negative dependence between pairs of replications. There are
different ways to implement this method; one way is to use the simulated Brownian
motions {W̃1(t)}t≥0 and {W̃2(t)}t≥0 above to define

W̃ ′
1(tj) = −W̃1(tj), j = 1, . . . , N, (4.6)

W̃ ′
2(tj) = −W̃2(tj), j = 1, . . . , N. (4.7)

Consider the i.i.d. pairs (V1, V
′

1), (V2, V
′

2), . . . , (Vn, V ′n) where Vk corresponds to the
initial option price calculated from W̃1(tj) and W̃2(tj) for j = 1, . . . , N , whereas

V ′k is the price obtained from W̃ ′
1(tj) and W̃ ′

2(tj) for j = 1, . . . , N . The antithetic
variates estimator can be defined by [13]

V̂AV = 1
n

n∑
k=1

(
Vk + V ′k

2

)
. (4.8)

The random variables Vk and V ′k will generally not be independent but they have
the same distribution, so let V be a random variable with the common distribution.
The central limit theorem can be applied to the independent observations(

V1 + V ′1
2

)
,

(
V2 + V ′2

2

)
, . . . ,

(
Vn + V ′n

2

)
(4.9)

and thus
V̂AV −E[V ]
σAV /

√
n
→ Z as n→∞, (4.10)
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where Z is a standard normally distributed random variable and

σ2
AV = Var

[
Vk + V ′k

2

]
. (4.11)

The central limit theorem continues to hold even if the standard deviation σAV is
replaced by the sample standard deviation sAV , and thus an approximate confidence
interval of V̂AV is given by

V̂AV ± zδ/2
sAV√
n
, (4.12)

where zδ/2 is the number such that the area to the right of it under the standard
normal distribution function is equal to δ/2 .

The computational effort to compute V̂AV is approximately twice as high as for
the regular Monte Carlo method without antithetic variates [13]. Therefore it is
meaningful to use this method if

Var
[
V̂AV

]
< Var

[
1

2n

2n∑
k=1

Vk

]
. (4.13)

The inequality (4.13) holds if

Var[Vk + V ′k ] < 2Var[Vk] ⇐⇒ 2Var[Vk] + 2Cov[Vk, V ′k ] < 2Var[Vk], (4.14)

i.e., if Cov[Vk, V ′k ] < 0. This condition will hold if negative dependence of the inputs
implies a negative dependence of the initial option prices, which is typically the case.

4.2.2 Control variates

Another variance reduction technique known as the control variates (CV) method is
based on the idea to use errors in estimates of a known quantity to reduce the error
of an estimate of an unknown quantity. To illustrate this, suppose that V1, . . . , Vn
are i.i.d. outputs from n replications of a Monte Carlo simulation and that the
goal is to estimate E[Vk] ≡ E[V ], e.g., the discounted expected payoff of an option.
For each replication, calculate another output Uk which has a known expectation
E[Uk] ≡ E[U ]. Suppose that the pairs (Uk, Vk), k = 1, . . . , n, are i.i.d. and define
Vk(b) for any fixed b as

Vk(b) = Vk − b(Uk −E[U ]). (4.15)

The control variate estimator is given by the sample mean of all Vk(b), i.e.,

V̂CV (b) = V − b(U −E[U ]) = 1
n

n∑
k=1

(Vk − b(Uk −E[U ])), (4.16)

where it has been used that U = (U1 + · · ·+Un)/n and V = (V1 + · · ·+Vn)/n. Since
V is an unbiased estimator of E[V ], it holds that

E[V̂CV (b)] = E[V − b(U −E[U ])] = E[V ] = E[V ], (4.17)

33



4. Monte Carlo Methods

and thus (4.16) is an unbiased estimator of E[V ]. It is also easy to verify that (4.16)
is a consistent estimator [13].

Assume that Var[Uk] ≡ Var[U ] = σ2
U and Var[Vk] ≡ Var[V ] = σ2

V , and let ρUV be
the correlation between Uk and Vk, then Vk(b) has variance

Var[Vk(b)] = Var[Vk − b(Uk − E[U ])] = σ2
V − 2bσUσV ρUV + b2σ2

U . (4.18)

This means that V̂CV (b) has variance

Var[V̂CV (b)] = σ2
V − 2bσUσV ρUV + b2σ2

U

n
. (4.19)

Since Var[V ] = σ2
V /n, it follows from (4.19) that Var[V̂CV (b)] is smaller than Var[V̄ ]

if 2bσUσV ρUV > b2σ2
U . The choice of b that minimises (4.19) is given by

b∗ = σV
σU
ρUV , (4.20)

which yields that the ratio between the variance of Var[V̂CV (b∗)] and Var[V ] is

Var[V − b∗(U −E[U ])]
Var[V ]

= 1− ρ2
UV . (4.21)

Note that the relative advantage of using the optimal b in the control variate esti-
mator is only dependent on the correlation coefficient ρUV . Moreover, it is of course
desirable if ρUV is as high as possible.

In practise it is often difficult to find the optimal choice b∗ since σY and ρUV are
often unknown. However, it is possible to use the population parameters to estimate
b∗ and thereby still obtain a control variate that can be very useful [13]. In that
case, it follows from (4.20) that b∗ can be estimated as

b̂n =
∑n
k=1(Uk − U)(Vk − V )∑n

k=1(Uk − U)2 . (4.22)

The estimate V̂CV (b̂n) could be biased since it holds that

E[V̂CV (b̂n)]−E[V ] = −E[b̂n(U −E[U ])], (4.23)

and the right hand side in (4.23) need not to be zero because b̂n and U are not
independent. It is possible to eliminate this bias by dividing the replications into
two parts and use the first part to estimate b∗ and then use this estimate for the
remaining replications. However, the biased given by (4.23) is of order O(1/n)
whereas the the order of the standard error is O(1/

√
n). This means that the bias

is usually relatively small and it is not necessary to apply the elimination technique
described above [13].

4.3 Control variate for the Asian option

Consider an Asian two-asset call option with payoff Yc given by the continuous
arithmetic average with equal weights, i.e.,

Yc =
(

1
T

∫ T

0

(1
2S1(t) + 1

2S2(t)
)
dt−K

)+

. (4.24)
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By using a large N , this option can be approximated by the corresponding discrete
arithmetic average, with payoff

Yd =
 1
N + 1

N∑
j=0

(1
2S1(tj) + 1

2S2(tj)
)
−K

+

. (4.25)

Assume that the stock prices follow geometric Brownian motions described by Rep-
resentation 1 which in the risk-neutral world can be written as

S1(t) = S1(0) exp
((

r − σ2
11 + σ2

12
2

)
t+ σ11W̃1(t) + σ12W̃2(t)

)
, (4.26)

S2(t) = S2(0) exp
((

r − σ2
21 + σ2

22
2

)
t+ σ21W̃1(t) + σ22W̃2(t)

)
. (4.27)

It is easy to apply the standard Monte Carlo method to this setup and obtain
an estimate of the initial price of an Asian option. Is is also straightforward to
use the variance reduction technique based on antithetic variates. The usage of
control variates requires more consideration. For the single-asset Asian option (2.46),
Kemna and Vorst [14] suggested the usage of a geometric average Asian option as
a control variate since this option can be priced by a closed formula. Inspired
by their approach, we consider the continuous Asian two-asset geometric option
corresponding to (4.24) with payoff Y ′c given by

Y ′c =
(

exp
(

1
T

∫ T

0
log

(
S1(t) 1

2S2(t) 1
2
)
dt

)
−K

)+

. (4.28)

By using (4.26) and (4.27), we can rewrite this payoff as

Y ′c =
 exp

[
1
T

∫ T

0

1
2 log

{
S1(0) exp

((
r − σ2

11 + σ2
12

2

)
t+ σ11W̃1(t) + σ12W̃2(t)

)

S2(0) exp
((

r − σ2
21 + σ2

22
2

)
t+ σ21W̃1(t) + σ22W̃2(t)

)}]
dt−K

+

(4.29)

=
√S1(0)S2(0) exp

((
r

2 −
σ2

11 + σ2
12 + σ2

21 + σ2
22

8

)
T

)

exp
(
σ11 + σ21

2T

∫ T

0
W̃1(t)dt

)
exp

(
σ12 + σ22

2T

∫ T

0
W̃2(t)dt

)
−K

+

. (4.30)

For any Brownian motion {W (t)}t>0 it holds that

∫ T

0
W (t)dt ∼ N

(
0,T

3

3

)
, (4.31)
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and thus (4.30) is equal to√S1(0)S2(0) exp
((

r

2 −
σ2

11 + σ2
12 + σ2

21 + σ2
22

8

)
T

)

exp
σ11 + σ21

2T

√
T 3

3 Z1

 exp
σ12 + σ22

2T

√
T 3

3 Z2

−K
+

, (4.32)

where Z1 and Z2 are standard normal random variables. Since Z1 and Z2 are inde-
pendent, it also follows that (4.32) is equal to√S1(0)S2(0) exp

{(
r

2 −
σ2

11 + σ2
12 + σ2

21 + σ2
22

8

)
T

√
(σ11 + σ12)2 + (σ21 + σ22)2

2
√

3
√
TZ3

}
−K

+

, (4.33)

where Z3 is another standard normal random variable. Define σ, and δ as

σ =

√
(σ11 + σ12)2 + (σ21 + σ22)2

2
√

3
, (4.34)

δ = r

2 −
σ̄2

2 + σ2
11 + σ2

12 + σ2
21 + σ2

22
8 . (4.35)

Now (4.33) can be expressed as(√
S1(0)S2(0) exp

{(
r − δ − σ2

2

)
T + σW̃ (T )

}
−K

)+

, (4.36)

where W̃ (T ) is the value at time T of {W̃ (t)}t>0 which is a Brownian motion under
a risk-neutral probability measure. This means that it is possible to value the two-
asset continuous geometric average Asian option by using the regular Black-Scholes
formula for a single-asset European call with strike price K, maturity T , volatility

σ, initial value
√
S1(0)S2(0), interest rate r, and continuous dividend yield δ. Hence

it suitable to use the two-asset geometric average Asian option as a control variate
for the two-asset arithmetic average Asian option.

The continuous two-asset geometric average Asian option (4.28) can be approxi-
mated by its discrete counterpart which is given by

Y ′d =


 N∏
j=0

S1(tj)
1
2S2(tj)

1
2

 1
N+1

−K


+

(4.37)

=
exp

 1
N + 1

N∑
j=0

log
(
S1(tj)

1
2S2(tj)

1
2
)−K

+

, (4.38)

where it is assumed that N is a large number.
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4.4 Results of the Monte Carlo method

This section shows results from Monte Carlo simulations of option prices. The
European two-asset correlation call option is considered once more and also the
Asian two-asset call option is priced. A comparison is made between the regular
Monte Carlo method and different variance reduction techniques. Moreover, the
number of replications, the correlations, and the volatilities are varied in order to
study the impact on the price estimations. The Python code corresponding to this
section is presented in Appendix E.

4.4.1 European two-asset correlation call option

To begin with, the regular Monte Carlo method and the Monte Carlo method with
a variance reduction technique based on the antithetic variates (AV) is used to
price the same European two-asset correlation call option as in the previous section.
Thus let the initial stock prices be S1(0) = 52 and S2(0) = 65. Assume that the
underlying assets pay no divided. Moreover, let the strike prices be K1 = 50 and
K2 = 70, and set the risk-free rate to be r = 0.10. Assume also that the volatilities
of the stocks, as described by Representation 2, are σ1 = 0.20 and σ2 = 0.30, and let
the correlation be ρ = 0.75. These volatilities and this correlation can be expressed
in Representation 1 by, for example, the following volatility matrix:

σ =
(

0.20 0.00
0.225 0.1984313

)
(4.39)

This matrix is easily found by solving (2.36) and by letting σ12 = 0 in the solution.
By varying the number of replications n for the regular Monte Carlo Method as

well as the Monte Carlo method with antithetic variates, the option price and the
relative error can be observed as a function of the number of replications, see Figure
4.1.

0.0 0.2 0.4 0.6 0.8 1.0
Replications (n) 1e8

4.6950

4.6975

4.7000

4.7025

4.7050

4.7075

4.7100

4.7125

Op
tio

n 
pr

ice

Regular MC method
MC method with AV
Theoretical price

(a) Option price.

0.0 0.2 0.4 0.6 0.8 1.0
Replications (n) 1e8

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Re
la
tiv
e 
er
ro
r

Regular MC method
MC method with AV
0.1% relative error

(b) Relative error.

Figure 4.1: Option prices and relative errors using the Monte Carlo method for
the European two-asset correlation call option using different number of replications
n. Parameters: S1(0) = 52, S2(0) = 65, K1 = 50, K2 = 70, r = 0.10, ρ = 0.75,
σ1 = 0.20 and σ2 = 0.30.
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For the same option, the computational time for the different number of replica-
tions in the Monte Carlo method can be observed in Figure 4.2 below.
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Figure 4.2: Computational times using the Monte Carlo method for the European
two-asset correlation call option using different number of replications n. Parame-
ters: S1(0) = 52, S2(0) = 65, K1 = 50, K2 = 70, r = 0.10, ρ = 0.75, σ1 = 0.20 and
σ2 = 0.30.

Choosing a fixed number of replications n it is easy to find confidence intervals
for the estimates. Table 4.1 shows the estimates for three such fixed values of the
number of replications n.

Table 4.1: Dependence on the number of replications n for Monte Carlo simulations
of the European two-asset correlation call option. Parameters: S1(0) = 52, S2(0) =
65, K1 = 50, K2 = 70, r = 0.10, ρ = 0.75, σ1 = 0.20 and σ2 = 0.30.

Replications
n

Method
Estimated

price
Confidence

interval
Computational

time
Relative

error

1,000,000 Regular 4.7044 (4.6875, 4.7213) 0.1406 s 0.0006154
AV 4.7120 (4.7020, 4.7220) 0.2500 s 0.0009995

10,000,000 Regular 4.7093 (4.7039, 4.7146) 1.4844 s 0.0004104
AV 4.7085 (4.7053, 4.7117) 2.4844 s 0.0002469

100,000,000 Regular 4.7077 (4.7060, 4.7094) 15.1721 s 0.00007536
AV 4.7075 (4.7065, 4.7085) 41.5943 s 0.00002645

As before, it is also interesting to see how the estimates depend on the correla-
tion and the volatilities of the option. Tables 4.2 and 4.2 show how the price and
confidence interval change for the two previously used Monte Carlo methods when
the number of replications are n = 1,000,000.
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Table 4.2: Dependence on the correlation ρ for Monte Carlo simulations of the
European two-asset correlation call option. Parameters: S1(0) = 52, S2(0) = 65,
K1 = 50, K2 = 70, r = 0.10, σ1 = 0.20, σ2 = 0.30. The number of replications is
equal to 1,000,000.

Correlation
ρ

Method
Estimated

price
Confidence

interval
Exact
price

Relative
error

-0.75 Regular 1.3047 (1.2972, 1.3122) 1.2981 0.005090
AV 1.3029 (1.2979, 1.3079) 0.003731

-0.50 Regular 2.0880 (2.0772, 2.0987) 2.0913 0.001636
AV 2.0897 (2.0827, 2.0967) 0.0008054

-0.25 Regular 2.8008 (2.7877, 2.8140) 2.7948 0.002157
AV 2.7979 (2.7895, 2.8064) 0.001110

0.25 Regular 3.9619 (3.9459, 3.9779) 3.9599 0.0005048
AV 3.9625 (3.9526, 3.9725) 0.0006597

0.50 Regular 4.4024 (4.3858, 4.4191) 4.4010 0.0003285
AV 4.3981 (4.3880, 4.4082) 0.0006500

0.75 Regular 4.6849 (4.6681, 4.7017) 4.7073 0.004765
AV 4.7042 (4.6942, 4.7143) 0.0006535

Table 4.3: Dependence on the volatilities σ1 and σ2 for Monte Carlo simulations of
the European two-asset correlation call option. Parameters: S1(0) = 52, S2(0) = 65,
K1 = 50, K2 = 70, r = 0.10 and ρ = 0.75. The number of replications is equal to
1,000,000.

Volatilities
σ1, σ2

Method
Estimated

price
Confidence

interval
Exact
price

Relative
error

0.10, 0.15 Regular 2.0630 (2.0556, 2.0704) 2.0584 0.002234
AV 2.0591 (2.0547, 2.0634) 0.0003261

0.20, 0.30 Regular 4.7052 (4.6883, 4.7221) 4.7073 0.0004586
AV 4.7114 (4.7014, 4.7215) 0.0008730

0.40, 0.60 Regular 9.8033 (9.7633, 9.8433) 9.7424 0.006250
AV 9.7574 (9.7326, 9.7822) 0.001540

0.80, 1.20 Regular 19.3039 (19.1951, 19.4127) 19.2751 0.001494
AV 19.3148 (19.2426, 19.3871) 0.002059

1.60, 2.40 Regular 36.1671 (35.6585, 36.6756) 36.0371 0.003606
AV 36.1320 (35.7812, 36.4829) 0.002634

3.20, 4.80 Regular 66.3985 (40.2512, 92.5459) 56.7448 0.1701
AV 59.5473 (46.1413, 72.9532) 0.04939

6.40, 9.60 Regular 12.9838 (-4.2031, 30.1709) 64.8269 0.7997
AV 52.4633 (-35.7854, 140.7121) 0.1907

4.4.2 Asian two-asset call option

For pricing an Asian two-asset call option, three methods are used: The regular
Monte Carlo method, the Monte Carlo method using antithetic variates (AV) and
the Monte Carlo method using control variates (CV).

Let N = 1000 in (4.24) and (4.38), and suppose that 0 = t0 < t1 < · · · < tN = T
are equally distanced in the interval [0,T ]. Assume that the initial stock prices are
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S1(0) = 52 and S2(0) = 65. Let the strike price be K = 50 and suppose the risk-free
interest rate is r = 0.10. In Representation 2, assume that the volatilities of assets
S1 and S2 are σ1 = 0.20 respectively σ2 = 0.40, and let the correlation be equal to
ρ = 0.50. An approximate volatility matrix in Representation 1 for these parameters
is given by

σ =
(

0.20 0.00
0.20 0.3464102

)
. (4.40)

Figure 4.3 shows how the price of this option and the computational time vary
depending on the number of replications n in the Monte Carlo method.
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Figure 4.3: Option prices and computational times using the Monte Carlo method
for an Asian two-asset call option using different number of replications n. Param-
eters: S1(0) = 51, S2(0) = 48, K = 50, α1 = 0.50, α2 = 0.50, r = 0.10, ρ = 0.50,
σ1 = 0.20 and σ2 = 0.40.

Table 4.4 summarises the statistics of Figure 4.3 for three different number of
replications n, namely when n = 10,000, n = 100,000, and n = 1,000,000.

Table 4.4: Results of Monte Carlo simulations of the Asian two-asset call option.
Parameters: S1(0) = 51, S2(0) = 48, K = 50, α1 = 0.50, α2 = 0.50, r = 0.10,
ρ = 0.50, σ1 = 0.20 and σ2 = 0.40.

Replications
n

Method
Estimated

price
Confidence

interval
Computational

time

10,000 Regular 2.4112 (2.3420, 2.4804) 1.7813 s
AV 2.4342 (2.3980, 2.4704) 2.4844 s
CV 2.4226 (2.4189, 2.4265) 3.4219 s

100,000 Regular 2.4009 (2.3790, 2.4227) 17.5784 s
AV 2.4231 (2.4117, 2.4345) 24.8441 s
CV 2.4236 (2.4224, 2.4247) 34.2973 s

1,000,000 Regular 2.4198 (2.4129, 2.4268) 175.2368 s
AV 2.4221 (2.4186, 2.4258) 251.5273 s
CV 2.4238 (2.4234, 2.4241) 343.6141 s

The results in Table 4.4 suggest that the control variates method outperforms the
antithetic variates method as a variance reduction technique for the Asian two-asset
call option since it gives rise to a smaller confidence interval. Table 4.5 and 4.6 show
how the results change when the correlation and volatilities vary for n = 100,000.
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Table 4.5: Dependence on the correlation ρ for Monte Carlo simulations of the
Asian two-asset call option. Parameters: S1(0) = 51, S2(0) = 48, K = 50, α1 = 0.50,
α2 = 0.50, r = 0.10, σ1 = 0.20 and σ2 = 0.40. The number of replications is equal
to 100,000.

Correlation
ρ

Method
Estimated

price
Confidence

interval

-0.75 Regular 1.4512 (1.4385, 1.4638)
AV 1.4410 (1.4347, 1.4474)
CV 1.4458 (1.4436, 1.4480)

-0.50 Regular 1.6973 (1.6825, 1.7122)
AV 1.6995 (1.6921, 1.7070)
CV 1.7039 (1.7018, 1.7060)

-0.25 Regular 1.9170 (1.9001, 1.9339)
AV 1.9122 (1.9037, 1.9208)
CV 1.9157 (1.9138, 1.9176)

0.25 Regular 2.2838 (2.2634, 2.3043)
AV 2.2662 (2.2559, 2.2766)
CV 2.2697 (2.2683, 2.2710)

0.50 Regular 2.3969 (2.3750, 2.4187)
AV 2.4091 (2.3979, 2.4204)
CV 2.4238 (2.4227, 2.4250)

0.75 Regular 2.5749 (2.5513, 2.5984)
AV 2.5695 (2.5573, 2.5818)
CV 2.5676 (2.5667, 2.5686)
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Table 4.6: Dependence on the volatilities σ1, σ2 for Monte Carlo simulations of
the Asian two-asset call option. Parameters: S1(0) = 51, S2(0) = 48, K = 50,
α1 = 0.50, α2 = 0.50, r = 0.10, and ρ = 0.50. The number of replications is equal
to 100,000.

Volatilities
σ1, σ2

Method
Estimated

price
Confidence

interval

0.10, 0.20 Regular 1.4233 (1.4120, 1.4345)
AV 1.4251 (1.4201, 1.4302)
CV 1.4229 (1.4226, 1.4232)

0.20, 0.40 Regular 2.4231 (2.4011, 2.4451)
AV 2.4259 (2.4145, 2.4373)
CV 2.4250 (2.4238, 2.4261)

0.40, 0.80 Regular 4.3753 (4.3294, 4.4212)
AV 4.4090 (4.3826, 4.4354)
CV 4.4428 (4.4378, 4.4479)

0.80, 1.60 Regular 8.4186 (8.3034, 8.5339)
AV 8.4176 (8.3439, 8.4914)
CV 8.4091 (8.3814, 8.4366)

1.60, 3.20 Regular 15.4854 (15.0528, 15.9180)
AV 15.5121 (15.2052, 15.8189)
CV 15.5198 (15.2767, 15.7628)

3.20, 6.40 Regular 25.0872 (21.1509, 29.0234)
AV 24.0142 (21.7430, 26.2855)
CV 25.4563 (22.5480, 28.3645)

6.40, 12.80 Regular 18.5260 (13.4732, 23.5788)
AV 19.4838 (15.6469, 23.3208)
CV 18.0951 (13.9332, 22.2569)
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5
Partial Differential Equations and

the Finite Element Method

Both the binomial model and the Monte Carlo method have shown to be rather
inaccurate for large volatilities, thus a third pricing method based on solving partial
differential equations (PDEs) is presented in this chapter. This method has been
studied thoroughly for single-asset options since the introduction of the famous
Black-Scholes formula in 1973 [15]. Multi-asset options are a bit more difficult
to price by PDEs since they give rise to multi-dimensional equations with boundary
conditions that can be hard to find. The finite element method (FEM) is a way
to numerically solve PDEs. Hereinafter the finite element method applied to the
pricing PDE will often be referred to as the PDE method.

5.1 The multi-dimensional Black-Scholes equation

As before, let S(t) = (S1(t), . . . , Sd(t)) be the prices at time t of d underlying risky
assets for a European multi-asset option. Moreover, assume that the risky assets
satisfy the stochastic differential equations in Representation 1, which by dropping
the t variable can be expressed in the shorter form

dSi = Siµidt+
d∑
j=1

SiσijdWj, i = 1, . . . , d, (5.1)

where dWj are independent one-dimensional Brownian motions, σij corresponds to
element i, j in the volatility matrix, and µi is the drift rate of asset Si. Moreover,
letting V = V (S(t), t) be the price of a European multi-asset option the following
theorem holds.

Theorem 5.1.1 (The multi-dimensional Black-Scholes equation)
The price function V (S, t) of a European multi-asset option with time of maturity
T satisfies

∂V

∂t
+ 1

2

d∑
i,j=1

aijSiSj
∂2V

∂Si∂Sj
+

d∑
i=1

(r − qi)Si
∂V

∂Si
− rV = 0, (5.2)

where r is the risk-free interest rate, qi is the continuous dividend rate of asset Si
and A = [aij] has entries given by

aij =
d∑

k=1
σikσjk i, j = 1, . . . , d. (5.3)
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Moreover, the terminal value is given by the payoff function Y , i.e.,

V (S, T ) = Y (S). (5.4)

Proof. Recall the discussion in Chapter 2 where it was argued that the value of an
option should be equal to the value of a self-financing hedging portfolio. Assume
that the shares ∆i of asset Si for i = 1, . . . , d are chosen in such a way that the
self-financing portfolio Π given by

Π(t) = V (S1(t), . . . , Sd(t), t)−
d∑
i=1

∆iSi(t) (5.5)

is risk-free in the interval (t, t+dt). By Itô’s formula for functions of several random
variables, it holds that

dΠ = dV −
d∑
i=1

∆idSi −
d∑
i=1

∆iSiqidSi (5.6)

=
∂V
∂t

+ 1
2

d∑
i,j=1

aijSiSj
∂2V

∂Si∂Sj

 dt+
d∑
i=1

∂V

∂Si
dSi

−
d∑
i=1

∆idSi −
d∑
i=1

∆iSiqidt. (5.7)

In order for the portfolio to be risk-free, the terms involving dSi in (5.7) should be
zero. Thus the number of shares ∆i must satisfy

∆i = ∂V

∂Si
. (5.8)

Moreover, the portfolio should also earn the risk-free interest rate, meaning that

dΠ = rΠdt = r

(
V −

d∑
i=1

∆iSi

)
dt. (5.9)

Combining (5.7), (5.8), and (5.9), and eliminating dt, yields

∂V

∂t
+ 1

2

d∑
i,j=1

aijSiSj
∂2V

∂Si∂Sj
+

d∑
i=1

(r − qi)Si
∂V

∂Si
− rV = 0, (5.10)

which is the Black-Scholes equation for multi-asset options [4]. Moreover, V is equal
to the payoff at the time of maturity, and thus

V (S1, . . . , Sd, T ) = Y (S1, . . . , Sd). (5.11)

Equation (5.2) is a multidimensional parabolic equation since A is a symmetrical
non-negative matrix [4]. In order to determine the price of a European derivative,
(5.2) should be solved in the domain Ω = {0 ≤ Si ≤ ∞, i = 1, . . . , d; 0 ≤ t ≤ T}.
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By suitable transformations, (5.2) becomes a Cauchy problem with solution for-
mula

V (S, t) =
[

1
2π(T − t)

] d
2 e−r(T−t)

|detA| 12∫ ∞
0
· · ·

∫ ∞
0

Y (η1, . . . , ηd)
η1 . . . ηd

exp
[
−αTA−1α

2(T − t)

]
dη1 . . . dηd, (5.12)

where Y is the payoff function, T−t is the time left until maturity, α = (α1, . . . , αd)T ,
and

αi = log Si
ηi

+
(
r − qi −

αii
2

)
(T − t), i = 1, . . . , d. (5.13)

A detailed proof of the solution formula (5.12) can be found in [4]. It should be
remarked that this integral has singularities in the integrand and that the integral is
very difficult to evaluate. Thus it is often more convenient to use the finite element
method to find an approximate solution to (5.2) and (5.4).

5.2 The finite element method

The finite element method (FEM) is a widely applied method to find numerical
approximations of partial differential equations on any domain. Solving a PDE
with FEM requires specification of the weak formulation, then formulating the finite
element problem and solving it using discrete methods. The results presented in this
chapter are based on implementations using FEniCS and thus the general notations
used in this section are similar to those used in FEniCS [16] [17].

A typical problem could be to find the solution to the PDE

∇2u = f in Ω, (5.14)

u = u0 on ∂Ω, (5.15)

on the domain Ω ⊂ R2. Starting with this kind of problem on a strong form gives a
clear example on how to use FEM.

5.2.1 Weak formulation

As previously stated, the first step is to find the weak formulation. To do so, we
multiply equation (5.14) with a test function, integrate over the given domain Ω,
and then integrate by parts to reduce all second order derivatives to first order. For
this, a space containing the test functions need to be defined. It is possible to choose
the test space as a subspace of a Sobolev space. In order to define the Sobolev space,
the following two definitions are needed.

Definition 7 (L2(Ω) space)
Let Ω be an open subset of RN with piecewise smooth boundary. Then the space
L2(Ω) is defined by

L2(Ω) =
{
v : Ω→ R

∣∣∣ ∫
Ω
v2dx <∞

}
. (5.16)
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Definition 8 (Weak derivative)
Let v ∈ L2(Ω). If the weak derivative of v exists, it is defined as a function ∂αv ∈
L2(Ω) satisfying ∫

Ω
∂αvφdx = (−1)|α|

∫
Ω
v∂αφdx (5.17)

for all φ ∈ C∞0 (Ω) where

∂αφ = ∂|α|

∂α1x1∂α2x2 · · · ∂αnxn
. (5.18)

Combining the above definitions it is possible to define the Sobolev space in a
simple way as follows.

Definition 9 (Sobolev space Hm(Ω))
Let Ω be an open subset of RN with piecewise smooth boundary. Let m ≥ 0 be
an integer. Then the Sobolev space Hm(Ω) is defined to be the set of all functions
v ∈ L2(Ω) such that ∂αv ∈ L2(Ω) for all |α| ≤ m.

A corresponding norm to Hm can in turn be defined as

||v||Hm =
 ∑
|α|≤m

∫
Ω
|∂αv|2dx

1/2

. (5.19)

As a test space, consider the following subspace of H1, consisting of functions in
H1 that are zero at the boundary of the given domain.

Definition 10 (Test space)
Let Ω be an open subset of RN with piecewise smooth boundary. Then the subspace
of H1 with functions that are zero on the boundary is defined by

H1
0,∂Ω(Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω in the trace sense}. (5.20)

This test space is from here on denoted H1
0 .

Similarly, a so called trial space can be defined for which the functions belonging
to the space satisfy the given boundary conditions in the observed PDE.

Definition 11 (Trial space)
Let Ω be an open subset of RN with piecewise smooth boundary. Then the subspace
of H1 functions that are u0 on the boundary is defined by

H1
u0,∂Ω(Ω) = {v ∈ H1(Ω) : v = u0 on ∂Ω in the trace sense}. (5.21)

This trial space is from here on denoted H1
u0.

In order to formulate the weak form of the problem given by (5.15), the PDE is
multiplied with a test function v ∈ H1

0 and then integrated over the domain. This
yields ∫

Ω
∇2u · vdx =

∫
Ω
fvdx (5.22)

where the left hand term can be simplified using integration by parts and Green’s
formula. That is, ∫

Ω
∇2u · vdx =

∫
Ω
∇u · ∇vdx−

∫
∂Ω

∂u

∂n
vds (5.23)
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where the second term of the right hand side is zero due to the definition of the test
functions. Thus, the weak formulation is as follows: Find u ∈ H1

u0 such that∫
Ω
∇u · ∇vdx =

∫
Ω
fvdx (5.24)

holds for all v ∈ H1
0 .

5.2.2 Finite element problem

The second step is to define the finite element problem. That is, discretize the weak
formulation and look for a solution in a discrete trial space. In mathematical terms,
define H1

0|h and H1
u0|h as finite dimensional subspaces of H1

0 and H1
u0 respectively.

Here h denotes the size of the partition in the discrete spaces. For the proposed
example, the finite element problem is: Find uh ∈ H1

u0|h such that∫
Ω
∇uh · ∇vdx =

∫
Ω
fvdx (5.25)

holds for all v ∈ H1
0|h.

5.2.3 Solving the finite element problem

In order to solve a PDE with FEM, one must construct the finite element function
spaces such that combinations of the functions form a finite subset on the given
domain Ω. Thus, the domain is split into smaller domains where local functions
act and are added together in order to create a global function space satisfying the
desired continuity and solution. This is done by using so called finite elements.

Definition 12 (Finite element)
The triple (T,V ,L) is a finite element if

1. T is a bounded closed subset of RN with nonempty interior and piecewise
smooth boundary.

2. V is a finite dimensional function space on the domain T , of dimension n.
3. The set of degrees of freedom L = {l1, l2, . . . , ln} is a basis for the dual space
V ′, the space of bounded linear functionals on the space V.

Further, the following can be observed about the set L.

Lemma 5.2.1 (Unisolvence)
L is a basis for the dual space V ′ if and only if Lv = 0 implies v = 0.

Definition 13 (Nodal basis)
The nodal basis {φ}ni=1 for a finite element (T,V ,L) is the unique basis satisfying
li(φj) = δij for j = 1, . . . , n.

The nodal basis has the important property that if

uh =
n∑
j=1

ujφj (5.26)

then li(uh) = ui.
There are a few finite elements commonly used in FEM. For the purpose of this

thesis, the so called Lagrange element (CG2) is chosen.
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Definition 14 (Lagrange element)
For q = 1,2, . . ., the Lagrange element (CGq) is defined by

T ∈ {interval, triangle, tetrahedron},
V = Pq(T ) = {polynomials on T of degree ≤ q},
li(v) = v(xi), i = 1, . . . , n(q),

(5.27)

where {xi}n(q)
i=1 is an enumeration of points in the domain T defined by

x =


i/q 0 ≤ i ≤ q T interval,

(i/q, j/q), 0 ≤ i+ j ≤ q T triangle,

(i/q, j/q, k/q) 0 ≤ i+ j + k ≤ q T tetrahedron,

(5.28)

and the dimension n(q) of the Lagrange finite element corresponds to the dimension
of the degree q on T and

n(q) =


q + 1 T interval,
1
2(q + 1)(q + 2) T triangle,
1
6(q + 1)(q + 2)(q + 3) T tetrahedron.

(5.29)

For the example in this section, it is now possible to make the anzats

uh(x) =
N∑
j=1

Ujφj(x) (5.30)

where φj : Ω → R for j = 1, . . . ,N is a basis for H1
u0|h. Insert (5.30) into the finite

element problem (5.25) and take v = φ̂i for i = 1, . . . , N . It yields that

N∑
j=1

Uj∇φj · ∇φ̂idx =
∫

Ω
fφ̂idx (5.31)

for i = 1, . . . , N , where U ∈ RN is the vector to be computed.
For the implementations in this thesis, T is assumed to be a small triangular

domain. That is, the domain Ω is split into a large number of triangles for which
functions belonging to the space V(T ) are defined for each triangle.

5.3 PDE and FEM for the European two-asset

correlation call option

The PDE method can be used to price the European two-asset correlation call
option. The PDE formulation is given in the following theorem.

Theorem 5.3.1
The price function V (S, t) of a European two-asset correlation call option with ma-
turity T and payoff Y (S(T )) = (S2(T ) − K2)+ if S1(T ) > K1 and zero otherwise
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satisfies the following initial value problem when the underlying assets pay no divi-
dend:

−∂V
∂t

+ 1
2

(
a11S

2
1
∂2V

∂S2
1

+ a12S1S2
∂2V

∂S1∂S2
+ a21S1S2

∂2V

∂S2∂S1

+a22S
2
2
∂2V

∂S2
2

)
+ r

(
S1
∂V

∂S1
+ S2

∂V

∂S2

)
− rV = 0,

(5.32a)

V (S, 0) = Y (S), (5.32b)

and it has the following asymptotic behaviour

V (S, t) ∼ C(S2, K2, r, T − t,
√
a22) as S1 →∞, (5.33a)

V (S, t) ∼ S2Φ(y1 + ρ
√
a22
√
T − t)−K2e

−r(T−t)Φ(y1) as S2 →∞, (5.33b)

lim
S1→0

V (S, t) = lim
S2→0

V (S, t) = 0, (5.33c)

where C(Si, Ki, r, T − t,
√
aii) is the Black-Scholes price function of a standard Eu-

ropean call option with underlying asset price Si, strike price Ki, interest rate r,
time until maturity T − t, and volatility

√
aii; Φ is the cumulative standard normal

distribution; y1 is given by (2.41) with σ1 and σ2 replaced by
√
a11 respectively

√
a22;

and ρ is given by (2.44). That is, for volatilities σ11, σ12, σ21, σ22 it holds

a11 = σ2
11 + σ2

12, (5.34)

a22 = σ2
21 + σ2

22, (5.35)

a12 = a21 = σ11σ21 + σ12σ22. (5.36)

Proof. Equation (5.32a) and (5.32b) follow immediately from Theorem 5.1.1 and by
a change of variable t→ T − t.

When S1 → ∞ and K1 is bounded the condition S1(T ) > K1 will hold almost
surely. Hence the European two-asset correlation call option essentially becomes
identical to a European call option in that case and (5.33a) follows. The boundary
condition (5.33b) can be justified by using the fact that there exists a closed for-
mula for the European two-asset correlation call option which is easy to evaluate.
Recalling (2.41)-(2.44), the price is given by

V = S2M
(
y2 +√a22

√
T − t, y1 + ρ

√
a22
√
T − t; ρ

)
−K2e

−r(T−t)M(y2,y1; ρ) (5.37)

where

y1 = log(S1/K1) + (r − a11/2)(T − t)
√
a11
√
T − t

,

y2 = log(S2/K2) + (r − a22/2)(T − t)
√
a22
√
T − t

,

(5.38)

ρ =
1
2 (a12 + a21)
√
a11a22

), (5.39)
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and

M(a, b; ρ) = 1
2π
√

1− ρ2

∫ a

−∞

∫ b

−∞
exp

[
−x

2 − 2ρxy + y2

2(1− ρ2)

]
dxdy. (5.40)

It is easily checked that

V = S2M
(
y2 +√a22

√
T − t, y1 + ρ

√
a22
√
T − t; ρ

)
−K2e

−r(T−t)M(y2,y1; ρ)

∼ S2√
2π

∫ y1+ρ√a22
√
T−t

−∞
e−

x2
2 dx−K2e

−r(T−t) 1√
2π

∫ y1

−∞
e−

x2
2 dx as S2 →∞.

(5.41)

The right hand side of (5.41) can also be expressed as

S2Φ
(
y1 + ρ

√
a22
√
T − t

)
−K2e

−r(T−t)Φ(y1) (5.42)

where Φ is the cumulative standard normal distribution function given by

Φ(x) = 1√
2π

∫ x

−∞
e−

y2
2 dy. (5.43)

This justifies the boundary condition (5.33b).
The boundary conditions (5.33c) follow directly from the fact that the option will

become worthless if either of the underlying assets approaches zero.

In order to solve (5.33) by using FEM it is necessary to discretize the problem.
To begin with, the computational domain (0, T ) × (0,∞) × (0,∞) is limited to
(0, T ) × (0, Z1) × (0, Z2) = (0, T ) × Ω where Z1 >> K1 and Z2 >> K2. Moreover,
the time derivative is approximated by the Euler backward method, i.e.,

∂V

∂t
(S, t) = V (S, t)− V (S, t−∆t)

∆t +O(∆t), (5.44)

V (S, t) = V (S, t−∆t) + ∂V

∂t
(S, t)∆t+O(∆t2), (5.45)

where ∆t is the size of each time step. Substituting (5.32a) into (5.45) and using
the notations V j = V (S, t) and V j−1 = V (S, t−∆t) gives the iterative equation

V j−1 = V j −
[

1
2

(
a11S

2
1
∂2V j

∂S2
1

+ a12S1S2
∂2V j

∂S1∂S2
+ a21S1S2

∂2V j

∂S2∂S1

+a22S
2
2
∂2V j

∂S2
2

)
+ r

(
S1
∂V j

∂S1
+ S2

∂V j

∂S2

)
− rV j

]
∆t.

(5.46)

The weak formulation is obtained by multiplying (5.46) by a test function φ ∈ H1
0 (Ω)

and integrating over Ω. By integration by parts and by using the notation (f, g) =
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∫
Ω fgdS, the weak formulation reads: find V ∈ H1

u0 such that

(V j, φ) +
{

1
2a11[2(S1∂S1V

j, φ) + (S2
1∂S1V

j, ∂S1φ)] + 1
2a12[(S2∂S2V

j, φ)

+(S1S2∂S2V
j, ∂S1φ)] + 1

2a21[(S1∂S1V
j, φ) + (S1S2∂S1V

j, ∂S2φ)]

+1
2a22[2(S2∂S2V

j, φ) + (S2
2∂S2V

j, ∂S2φ)]− r[(S1∂S1V
j, φ) + (S2∂S2V

j, φ)]

+r(V j, φ)
}

∆t = (V j−1, φ),

(5.47)

holds ∀φ ∈ H1
0 and such that V satisfies V 0(S) = Y (T ) ∀S ∈ Ω.

5.4 PDE and FEM for the European two-asset

maximum call option

The maximum call option is a type of rainbow option that can also be priced by
using the multi-dimensional Black-Scholes equation given by (5.2) and (5.4) together
with suitable boundary conditions. Moreover, the price can be approximated by the
finite element method.

Theorem 5.4.1
The price function V (S, t) of a European two-asset maximum call option with ma-
turity T and payoff Y (S(T )) = max {(S1(T )−K1)+, (S2(T )−K2)+} satisfies the
following initial value problem when the underlying assets pay no dividend:

−∂V
∂t

+ 1
2

(
a11S

2
1
∂2V

∂S2
1

+ a12S1S2
∂2V

∂S1∂S2
+ a21S2S1

∂2V

∂S2∂S1

+a22S
2
2
∂2V

∂S2
2

)
+ r

(
S1
∂V

∂S1
+ S2

∂V

∂S2

)
− rV = 0,

(5.48a)

V (S, 0) = Y (S), (5.48b)

and it has the following asymptotic behaviour

V (S, t) ∼ max
{
S1 −K1e

−r(T−t), S2 −K2e
−r(T−t)

}
as S1 →∞ and/or S2 →∞,

(5.48c)

lim
S1→0

V (S, t) = C(S2, K2, r, T − t,
√
a22), (5.48d)

lim
S2→0

V (S, t) = C(S1, K1, r, T − t,
√
a11), (5.48e)

where C(Si, Ki, r, T−t,
√
aii) is the Black-Scholes price function of a standard Euro-

pean call option with underlying asset price Si, strike price Ki, interest rate r, time
until maturity T − t, and volatility

√
aii. For volatilities σ11, σ12, σ21, σ22 it holds

a11 = σ2
11 + σ2

12, (5.49)

a22 = σ2
21 + σ2

22, (5.50)

a12 = a21 = σ11σ21 + σ12σ22. (5.51)
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Proof. Equation (5.48a) and (5.48b) follow immediately from Theorem 5.1.1 and by
a change of variable t→ T − t.

The boundary conditions when S1 → ∞ and/or S2 → ∞ given by (5.48c) are
straightforward. When S1 →∞ and S2 stays bounded the option can be valued as a
call option on S1 with strike K1. It follows from the Black-Scholes formula for single
assets that the price of such an option approaches S1 −K1e

−r(T−t) when S1 → ∞.
The same reasoning holds for the boundary condition when S2 → ∞ and S1 stays
bounded, meaning that the option price approaches S2 − K2e

−r(T−t). When both
S1 →∞ and S2 →∞, then the option price should be the maximum of the values
derived above, i.e., max

{
S1 −K1e

−r(T−t), S2 −K2e
−r(T−t)

}
. Thus this becomes the

general way to express the boundary condition when either of the underlying assets
approaches infinity.

When S1 → 0 the European two-asset maximum call option essentially becomes a
regular European call option on S2 with strike K2 and volatility

√
a22. The volatility√

a22 of this option can easily be derived from the definition of the stochastic differ-
ential equations given by (5.1). Analogously, when S2 → 0 the European two-asset
maximum call option can be regarded as a regular European call option on S1 with
strike K1 and volatility

√
a11. This completes the justification of the final boundary

condition.

The weak formulation of (5.48) which is used to implement the finite element
method reads as (5.47) but with the payoff corresponding to the European two-
asset maximum call option.

5.5 Results of the PDE and FEM approach

In this section, PDEs and FEM are used to price the European two-asset correlation
call option and the European two-asset maximum call option. As in the previous
result sections, the dependence on the correlation and the volatilities is considered.
Moreover, the impact of the size of the domain and the number of cells is also
studied.

FEM has been implemented through the FEniCS project in Python. The corre-
sponding code is presented in Appendix F.

5.5.1 European two-asset correlation call option

To price the same European two-asset correlation call option used in the previous
methods, the strike prices are set to K1 = 50 and K2 = 70, and the risk-free rate
is r = 0.10. Using the correlation ρ = 0.75 and volatilities σ1 = 0.20, σ2 = 0.30,
the initial option price can be estimated to 4.7077 assuming initial stock prices
S1(0) = 52 and S2(0) = 65. As before, it is assumed the underlying assets pay no
dividends, and it can be shown that the theoretical option price is approximately
4.7073.

For the above estimate, a rectangle mesh with nx = ny number of cells in each
direction is used. This results in a total of 2 ·nx ·ny number of triangles and a total
number of (nx + 1)(ny + 1) vertices. For all possible initial values S1(0) and S2(0)
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the option price is shown in Figure 5.1 below.

Figure 5.1: Option prices for the European two-asset correlation call option using
the PDE method. Parameters: K1 = 50, K2 = 70, T = 0.50, r = 0.10, ρ = 0.75,
σ1 = 0.20 and σ2 = 0.30. The domain is (0.1, 200) × (0.1, 200) with a mesh of size
100× 100. The time step is 0.01.

For the previously mentioned parameters, it is of interest to see how the solution
depends on the number of cells and the size of the domain to which S1(t) and S2(t)
belong. The option price and the relative error is thus examined for different number
of cells in the domain in Figure 5.2.
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Figure 5.2: Option prices and relative errors for the European two-asset correlation
call option using different number of cells nx = ny in the mesh in the PDE method.
Parameters: S1(0) = 52, S2(0) = 65, K1 = 50, K2 = 70, T = 0.5, r = 0.10, ρ = 0.75,
σ1 = 0.20 and σ2 = 0.30. The domain is (0.1, 200) × (0.1, 200) with a mesh of size
100× 100. The time step is 0.01.

Similarly, it is also of interest to examine the computational time. Figure 5.3
below shows how the computational time grows by the number of cells in each
direction of the mesh as well as by the number of triangles in the mesh.
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Figure 5.3: Computational times for the European two-asset correlation call option
using different number of cells nx = ny in the mesh in the PDE method. Parameters:
S1(0) = 52, S2(0) = 65, K1 = 50, K2 = 70, T = 0.50, r = 0.10, σ1 = 0.20 and
σ2 = 0.30.The domain is (0.1, 200) × (0.1, 200) with a mesh of size 100 × 100. The
time step is 0.01.

In addition to this, Table 5.1 shows how the solution depends on the underlying
domain and its partition. A comparison of three domains with different number cells
in each direction of the mesh is shown in the same table.
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Table 5.1: Dependence on the number of cells in the mesh and the size of the
domain for PDE computations of the European two-asset correlation call option.
Parameters: K1 = 50, K2 = 70, T = 0.50, r = 0.10, ρ = 0.75, σ1 = 0.20 and
σ2 = 0.30. The tolerance is 10−10 and the time step is of size 0.01.

nx = ny Domain
Estimated

price
Relative error

Computational
time

50 (0.1, 200)× (0.1, 200) 4.7340 0.005670 6.7275 s
(0.1, 400)× (0.1, 400) 4.8254 0.02509 6.4884 s
(0.1, 800)× (0.1, 800) 4.8800 0.03668 6.5360 s

100 (0.1, 200)× (0.1, 200) 4.7077 0.00007215 21.0625 s
(0.1, 400)× (0.1, 400) 4.7344 0.005756 21.5561 s
(0.1, 800)× (0.1, 800) 4.8251 0.02502 20.9703 s

150 (0.1, 200)× (0.1, 200) 4.7107 0.0007091 45.4331 s
(0.1, 400)× (0.1, 400) 4.6853 0.004670 45.4727 s
(0.1, 800)× (0.1, 800) 4.7523 0.009555 45.3286 s

200 (0.1, 200)× (0.1, 200) 4.7007 0.001410 82.6149 s
(0.1, 400)× (0.1, 400) 4.7073 0.000006656 80.7336 s
(0.1, 800)× (0.1, 800) 4.7346 0.005799 80.6539 s

250 (0.1, 200)× (0.1, 200) 4.7042 0.0006586 133.1556 s
(0.1, 400)× (0.1, 400) 4.6993 0.001702 131.5817 s
(0.1, 800)× (0.1, 800) 4.6640 0.009214 131.9189s

300 (0.1, 200)× (0.1, 200) 4.6983 0.001927 199.5349 s
(0.1, 400)× (0.1, 400) 4.7104 0.0006445 198.4216 s
(0.1, 800)× (0.1, 800) 4.6851 0.004729 198.2054 s

As for previous pricing methods, the dependence on the correlation and volatilities
is observed for the finite element method as well. In Table 5.2 the correlation is
examined, while in Table 5.3 the volatilities are examined.

Table 5.2: Dependence on the correlation ρ of the European two-asset correlation
call option using the PDE method. Parameters: S1(0) = 52, S2(0) = 65, K1 = 50,
K2 = 70, r = 0.1, σ1 = 0.2 and σ2 = 0.3. The domain is set to (0.1, 200)× (0.1, 200)
with mesh size 100× 100. A tolerance of 10−10 is used and the step length is 0.01.

Correlation
ρ

Estimated price Exact price
Relative

error

-0.75 1.3712 1.2981 0.05670

-0.50 2.1647 2.0914 0.03506

-0.25 2.8611 2.7948 0.02373

0.25 3.9989 3.9599 0.009828

0.50 4.4214 4.4010 0.004627

0.75 4.7077 4.7073 0.00007215
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Table 5.3: Dependence on the volatilities σ1, σ2 for the PDE method of the Eu-
ropean two-asset correlation call option. Parameters: S1(0) = 52, S2(0) = 65,
K1 = 50, K2 = 70, r = 0.1 and ρ = 0.75. The domain is set to (0.1, 200)× (0.1, 200)
with mesh size 100× 100. A tolerance of 10−10 is used and the step length is 0.01.

Volatilities
σ1, σ2

Estimated price Exact price
Relative

error

0.10, 0.15 2.0607 2.0584 0.001104

0.20, 0.30 4.7077 4.7073 0.00007215

0.40, 0.60 9.7419 9.7424 0.00004966

0.80, 1.20 19.1997 19.2751 0.003913

1.60, 2.40 35.0139 36.0371 0.02839

3.20, 4.80 54.7507 56.7448 0.03514

6.40, 9.60 64.4333 64.8269 0.006072

5.5.2 European two-asset maximum call option

Using Theorem 5.4.1, the option price of a European two-asset maximum call option
can be estimated by the finite element method. Figure 5.4 shows how the option price
depends on the initial stock prices. Assuming the initial stock prices are S1(0) = 52
and S2(0) = 65, the initial price of the option can be estimated to 16.0553 in about
21 seconds.

Figure 5.4: Option prices for the European two-asset maximum call option using
the PDE method. Parameters: K1 = 50, K2 = 70, T = 0.5, r = 0.1, ρ = 0.25,
σ1 = 0.60, σ2 = 0.50 and time step 0.01. The domain is set to (0.1, 200)× (0.1, 220)
and a tolerance of 10−10 is used. Mesh size is 100× 100.
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Since the finite element method is dependent on the domain and its mesh, observ-
ing the dependence on the number of cells in each direction of the mesh is of great
interest. Taking the previously used settings for the European two-asset maximum
call option, the option price for different number of cells is observed in Figure 5.5.
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Figure 5.5: Option prices for the European two-asset maximum call option found
by the PDE method using different number of cells nx = ny in the mesh. Param-
eters: S1(0) = 52, S2(0) = 65, K1 = 50, K2 = 70, T = 0.5, r = 0.1, ρ = 0.25,
σ1 = 0.60, σ2 = 0.50 and time step 0.01. The domain is set to (0.1, 200)× (0.1, 220)
and a tolerance of 10−10 is used.

It is not possible to use an exact reference price for the European maximum
call option since this option cannot be priced by a closed formula. However, the
estimates obtained by the PDE method can be compared to estimates from a long
Monte Carlo simulation. This makes it possible to get an idea of how well the PDE
method works. Moreover, the ”max-min parity” for the European maximum and
minimum call option given by (2.52) can be used to check whether the result is
accurate. The European minimum call option can be priced just like the European
maximum call option but with a slight change of the boundary conditions. Both of
these benchmark techniques are used in Tables 5.4 and 5.5 where the correlation ρ
and the volatilities σ1 and σ2 vary.
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Table 5.4: Dependence on the correlation ρ of the PDE method for the European
two-asset maximum call option. Parameters: S1(0) = 52, S2(0) = 65, K1 = 50,
K2 = 70, T = 0.50, r = 0.10, σ1 = 0.60 and σ2 = 0.50. The domain is set to
(0.1, 200)× (0.1, 220) with mesh size 100× 100. A tolerance of 10−10 is used and the
step length is 0.01. Long Monte Carlo simulations uses n = 100,000,000 and AV.

Correlation
ρ

Method Estimated price
Error

”max-min” parity

-0.75 PDE 18.8468 0.002385
MC with AV 18.8919 0.00001197

-0.50 PDE 18.3250 0.002385
MC with AV 18.3674 0.00004377

-0.25 PDE 17.6935 00.002385
MC with AV 17.7351 0.0000003274

0.25 PDE 16.0553 0.002385
MC with AV 16.0913 0.00004187

0.50 PDE 14.9556 0.002386
MC with AV 14.9901 0.00003023

0.75 PDE 13.4813 0.002386
MC with AV 13.5112 0.00002032

Table 5.5: Dependence on the volatilities σ1 and σ2 of the PDE method of the
European two-asset maximum call option. Parameters: S1(0) = 52, S2(0) = 65,
K1 = 50, K2 = 70, T = 0.50, r = 0.10 and ρ = 0.25. The domain is set to
(0.1, 200)× (0.1, 220) with mesh size 100× 100. A tolerance of 10−10 is used and the
step length is 0.01. Long Monte Carlo simulations uses n = 100,000,000 and AV.

Volatilities
σ1, σ2

Method Estimated price
Error

”max-min” parity

0.15, 0.125 PDE 5.5446 0.0005520
MC with AV 5.5467 0.000007845

0.30, 0.25 PDE 8.7477 0.001543
MC with AV 8.7611 0.00001963

0.60, 0.50 PDE 16.0553 0.002385
MC with AV 16.0919 0.00001038

1.20, 1.00 PDE 31.0655 0.002795
MC with AV 31.4802 0.00003600

2.40, 2.00 PDE 55.5251 0.002869
MC with AV 61.1464 0.0001712

4.80, 4.00 PDE 83.8711 0.001226
MC with AV 100.2889 0.005022

9.60, 8.00 PDE 95.1856 0.00004707
MC with AV 57.9031 0.5036
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6
Conclusion

In this thesis, we have studied three different pricing methods for multi-asset options,
namely the binomial pricing model, the Monte Carlo method, and the finite element
method applied to the pricing PDE (the PDE method). Option prices, relative errors
and computational times have been carefully studied as well as the dependence on
the correlation and volatilities.

Below follows a comparison of the three previously presented methods based on
the results presented earlier in the thesis. We also discuss the results and give
suggestions for future research.

6.1 Comparison of the methods

In order to compare the three pricing methods, it is beneficial to observe how the
estimated option price depends on the computational time. Consider the standard
European two-asset correlation call option used in the previous chapters with pa-
rameters S1(0) = 52, S2(0) = 65, K1 = 50, K2 = 70, T = 0.50, r = 0.10, ρ = 0.75,
σ1 = 0.20 and σ2 = 0.30. The option price and the relative error for all three meth-
ods are shown in Figure 6.1 where the dependence on the computational times can
be observed.
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Figure 6.1: Option prices and relative errors using the different methods for the
European two-asset correlation call option. Parameters: S1(0) = 52, S2(0) = 65,
K1 = 50, K2 = 70, T = 0.50, r = 0.10, ρ = 0.75, σ1 = 0.20 and σ2 = 0.30. Specifics
for FEM: Time step 0.01, domain is set to (0.1, 200)× (0.1, 200) and a tolerance of
10−10 is used.

As in the previous chapters, it is also of interest to see how the results change
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with respect to the correlation. Such a comparison is shown in Figure 6.2. The
same parameters as before is used but now the correlation is ρ = −0.75 instead of
ρ = 0.75.
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Figure 6.2: Option prices and relative errors using the different methods for the
European two-asset correlation call option. Parameters: S1(0) = 52, S2(0) = 65,
K1 = 50, K2 = 70, T = 0.50, r = 0.10, ρ = −0.75, σ1 = 0.20 and σ2 = 0.30.
Specifics for FEM: Time step 0.01, domain is set to (0.1, 200) × (0.1, 200) and a
tolerance of 10−10 is used.

Further, previous results have indicated that the finite element method is favourable
when observing higher values of the volatilities. This notion is verified in Figure 6.3
below where the volatilities are increased to σ1 = 6.40, σ2 = 9.60.
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Figure 6.3: Option prices and relative errors using the different methods for the
European two-asset correlation call option. Parameters: S1(0) = 52, S2(0) = 65,
K1 = 50, K2 = 70, T = 0.50, r = 0.10, ρ = 0.75, σ1 = 6.40 and σ2 = 9.60. Specifics
for FEM: Time step 0.01, domain is set to (0.1, 200)× (0.1, 200) and a tolerance of
10−10 is used.
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6.2 Discussion

All of the pricing methods studied in this thesis have their respective advantages
and disadvantages. We will now go through each of the methods and discuss what
we have observed.

6.2.1 The binomial model

The binomial model has shown to be easy to implement for multi-asset options and
its convergence rate is quite fast, which is illustrated in Figure 3.6. However, the
major advantage of the binomial model is that it can easily be adapted to American
options. None of the other pricing methods can handle American options that
effortlessly.

It can also be concluded from Table 3.1 that the usage of refinement regions in
the binomial model can improve the results significantly for the European two-asset
correlation call option. It is unclear how well the refinement methods work for
American options, but a slight decrease in the standard deviations of the estimates
in Table 3.4 suggest that they could improve the result to some extent.

A disadvantage of the binomial model is that it performs badly for large volatili-
ties and possibly also for some correlations. For example, the binomial model seems
to underestimate the price of the European two-asset correlation call option when
σ1 = 6.40 and σ2 = 9.60, as can be seen in Table 3.3. Another drawback of the
binomial model is that the computational time seems to increase exponentially with
the number of steps N , as illustrated in Figure 3.7.

6.2.2 The Monte Carlo method

The Monte Carlo method appears to be the fastest and most reliable out of the three
methods when the volatilities are relatively small, as seen in Figure 6.1. It is also
shown in Figures 4.2 and 4.3 that the computational time generally grows linearly
with respect to the number of replications n, which makes the Monte Carlo method
rather beneficial since the confidence intervals decrease as 1/

√
n. The possibility

to use the Monte Carlo method to price Asian options also basically makes it the
only choice for such options. The binomial model cannot handle Asian options very
well due to memory limitations and speed problems. Also it is very difficult to price
multi-asset Asian options with the PDE method.

It has been shown that the usage of variance reduction techniques in the Monte
Carlo method can significantly reduce the confidence intervals of the estimates. Es-
pecially the control variate method has shown to be very efficient for the Asian two-
asset call option, as can be seen in Table 4.4. The second control variate method
based on the antithetic variates had a much smaller impact on the confidence inter-
vals and thus it was not as useful, especially considering the extra computational
time that this method required.

A significant drawback of the Monte Carlo method is that it does not work well
for large volatilities. The confidence intervals become very wide in that case and
they can even include negative values (even though none of the price estimates
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are negative), as can be seen in Table 4.3. Another disadvantage is that the control
variate method can eventually be difficult to implement since it is not always possible
to find a suitable control variate.

6.2.3 The PDE method

The PDE method has resulted in the slowest convergence rate out of the three
methods when the volatilities are low, as illustrated in Figure 6.1. However, when
large volatilities are considered, this is the only method that appears to give a correct
result. The other methods seem to underestimate the price in this case according
to Figure 6.3.

Finding the optimal choice for the domain and the number of cells is not trivial
for the PDE method since there is no guarantee that using a larger domain and more
cells will give better results, as shown in Table 5.1. This suggests that it might be a
good idea to compute estimated prices for a few different settings and see how the
estimates vary. However, in general it seems like it is not beneficial to use a domain
that is very large since the computational time increases linearly with the number
of triangles in the domain, see Figure 5.3.

Compared to the other methods, the PDE method requires more adaption for each
option because it is necessary to derive the boundary conditions by hand. Finding
the correct boundary conditions and proving convergence can be troublesome, espe-
cially for more complicated options such as Asian options. It is also challenging to
price American options with this method since it requires an analysis of the optimal
exercise surface.

6.3 Future research

Throughout this thesis it has been assumed that the underlying assets follow a multi-
dimensional geometric Brownian motion with constant coefficients. Future research
could focus on implementing some stochastic volatility model where the drift rates
and volatilities are random processes. This would make the computations more
complicated but also more adapted to the real world.

More research is also needed about the convergence rate for the PDE method. It
would be interesting to see if the finite element method could be improved in some
way, perhaps by using an adaptive mesh. How to specify the boundary conditions
for multi-asset options would also be an interesting area of research.
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A
The Trinomial Model

Consider two stocks described by Representation 1 (2.20), i.e.,

S1(t) = S1(0)eα1t+σ11W1(t)+σ12W2(t), (A.1)

S2(t) = S2(0)eα2t+σ21W1(t)+σ22W2(t), (A.2)

where

α1 = µ1 −
σ2

11 + σ2
12

2 , (A.3)

α2 = µ2 −
σ2

21 + σ2
22

2 . (A.4)

Let {X(1)
i }i∈N and {X(2)

i }i∈N be two independent and identically distributed (iid)
stochastic processes satisfying

X
(j)
i =


1 with probability pu

0 with probability pm

−1 with probability pd

(A.5)

for j = 1,2. The physical probabilities pu, pm, pd are defined such that

E

[
X

(j)
i

]
= 0 =⇒ pu = pd = p, (A.6)

which means that

Var
[
X

(j)
i

]
= E

[(
X

(j)
i

)2
]

= pu + pd = 2p (A.7)

for 1 = 1, . . . ,N and j = 1,2. Let t0 = 0 < t1 < · · · < tN = t and take ti+1 − ti = h
with N = t/h. Define

S̃1(ti) = S̃1(ti−1)eα̃1+σ̃11X
(1)
i +σ̃12X

(2)
i , (A.8)

S̃2(ti) = S̃2(ti−1)eα̃2+σ̃21X
(1)
1 +σ̃22X

(2)
i , (A.9)

which implies that

S̃1(t) = S̃1(0)eα̃1N+σ̃11M
(1)
N +σ̃12M

(2)
N , (A.10)

S̃2(t) = S̃2(0)eα̃2N+σ̃21M
(1)
N +σ̃22M

(2)
N , (A.11)
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where

M
(j)
N =

N∑
i=0

X
(j)
i . (A.12)

The goal is to specify the parameters α̃1, α̃2, σ̃11, σ̃12, σ̃21, and σ̃22 so that (A.10)
and (A.11) converge to (A.1) respectively (A.2) when N goes to infinity. Observe
that

1
t
E

[
log S1(t)

S1(0)

]
= α1, (A.13)

1
t
E

[
log S2(t)

S2(0)

]
= α2, (A.14)

and similarly

1
t
E

[
log S̃1(t)

S̃1(0)

]
= α̃1

h
, (A.15)

1
t
E

[
log S̃2(t)

S̃2(0)

]
= α̃2

h
. (A.16)

This means that

α̃1 = hα1, (A.17)

α̃2 = hα2. (A.18)

Furthermore, note that

1
t
Var

[(
log S1(t)

S1(0)

)]
= σ2

11 + σ2
12, (A.19)

1
t
Var

[(
log S2(t)

S2(0)

)]
= σ2

21 + σ2
22, (A.20)

and
1
t
Cov

(
log S1(t)

S1(0) , log S2(t)
S2(0)

)
= σ11σ21 + σ12σ22. (A.21)

Similarly

1
t
Var

[(
log S̃1(t)

S̃1(0)

)]
= 1
t

(
σ̃2

11Var(M (1)
N ) + σ̃2

12Var(M (2)
N )

)
(A.22)

= 2p
t

(
σ̃2

11N + σ̃2
12N

)
(A.23)

= 2p
h

(
σ̃2

11 + σ̃2
12

)
, (A.24)

1
t
Var

[(
log S̃2(t)

S̃2(0)

)]
= 1
t

(
σ̃2

21Var(M (1)
N ) + σ̃2

22Var(M (2)
N )

)
(A.25)

= 2p
t

(
σ̃2

21N + σ̃2
22N

)
(A.26)

= 2p
h

(
σ̃2

21 + σ̃2
22

)
. (A.27)
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and

1
t
Cov

(
log S̃1(t)

S̃1(0)
, log S̃2(t)

S̃2(0)

)
= 2p

t
N(σ̃11σ̃21 + σ̃12σ̃22) (A.28)

= 2p
h

(σ̃11σ̃21 + σ̃12σ̃22). (A.29)

Setting the corresponding variances and covariances to be equal yields the following
set of equations:

σ2
11 + σ2

12 = 2p
h

(σ̃2
11 + σ̃2

12), (A.30)

σ2
21 + σ2

22 = 2p
h

(σ̃2
21 + σ̃2

22), (A.31)

σ11σ21 + σ12σ22 = 2p
h

(σ̃11σ̃21 + σ̃12σ̃22), (A.32)

which has a solution

σ̃11 =
√
h

2pσ11, σ̃12 =
√
h

2pσ12, (A.33)

σ̃21 =
√
h

2pσ21, σ̃22 =
√
h

2pσ22. (A.34)

Denote the risk-neutral probabilities in the trinomial model by qu, qm, and qd.
The following must hold:

qu + qm + qd = 1. (A.35)

Since the discounted stock prices are martingales under a risk-neutral measure, it
holds that

E

[
S̃1(tk)
S̃1(tk−1)

∣∣∣∣X(1)
k−1, X

(2)
k−1

]
= er. (A.36)

This yields

eσ̃11+σ̃12q2
u + eσ̃11quqm + eσ̃11−σ̃12quqd

+ eσ̃12qmqu + q2
m + e−σ̃12qmqd

+ e−σ̃11+σ̃12qdqu + e−σ̃11qdqm + e−σ̃11−σ̃12q2
d = er−α̃1 . (A.37)

Similarly, for the second asset it holds that

E

[
S̃1(tk)
S̃2(tk−1)

∣∣∣∣X(1)
k−1, X

(2)
k−1

]
= er, (A.38)

which yields

eσ̃21+σ̃22q2
u + eσ̃21quqm + eσ̃21−σ̃22quqd

+ eσ̃22qmqu + q2
m + e−σ̃22qmqd

+ e−σ̃21+σ̃22qdqu + e−σ̃21qdqm + e−σ̃21−σ̃22q2
d = er−α̃2 . (A.39)
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A. The Trinomial Model

Inputting (A.37) and (A.39) together with the condition (A.33) into some mathe-
matical software, such as Mathematica, yields that it is not always possible to find
valid values of the parameters qu, qm and qd. This means that a risk-neutral measure
only exists for certain market parameters. Thus it follows from the two fundamental
theorems of asset pricing that this trinomial market model is neither arbitrage-free
nor complete [2].
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B
Python Code: Black-Scholes Price

of European Vanilla Options

1 ”””
2 Black Scho l e s computes the Black−Scho l e s p r i c e o f a v a n i l l a European
3 c a l l or put opt ion .
4

5 Input parameters are cp = 1 f o r c a l l and cp = −1 f o r put , i n i t i a l s tock
6 p r i c e S 0 , s t r i k e p r i c e K, time u n t i l maturity t , v o l a t i l i t y sigma ,
7 r i s k−f r e e i n t e r e s t r a t e r , and cont inuous div idend y i e l d div .
8

9 The func t i on r e tu rn s the i n i t i a l opt ion p r i c e .
10 ”””
11

12 import math
13 import s c ipy . s t a t s as s t
14

15 de f B lack Scho l e s ( cp , S 0 , K, t , sigma , r , d iv ) :
16 d1 = (math . l og ( S 0/K)+(r−div +0.5∗math . pow( sigma , 2 ) ) ∗ t ) /( sigma∗

math . s q r t ( t ) )
17 d2 = d1 − sigma∗math . s q r t ( t )
18

19 o p t i o n p r i c e = ( cp∗S 0∗math . exp(−div ∗ t ) ∗ s t . norm . cd f ( cp∗d1 ) ) − (
cp∗K∗math . exp(−r ∗ t ) ∗ s t . norm . cd f ( cp∗d2 ) )

20 re turn o p t i o n p r i c e
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C
Python Code: Exact Price of a

European Two-asset Correlation
Call Option

1 ”””
2 e x a c t p r i c e E u r o p e a n t w o a s s e t c o r r c a l l computes the exact p r i c e
3 o f an European two−a s s e t c o r r e l a t i o n c a l l opt ion .
4

5 Input parameters are the i n i t i a l a s s e t p r i c e s S 0 , v o l a t i l i t i e s sigma ,
6 r i s k−f r e e i n t e r e s t r a t e r , c o r r e l a t i o n rho , time u n t i l maturity T, and
7 s t r i k e p r i c e s K.
8

9 Returns the exact p r i c e as o p t i o n p r i c e .
10

11 Note : Uses a help−f unc t i on b iva r i a t e no rma l pd f which r e tu rn s the
12 p r o b a b i l i t y d e n i s i t y func t i on ( pdf ) o f the b i v a r i a t e normal
13 d i s t r i b u t i o n with parameters x , y and rho .
14 ”””
15

16 import numpy as np
17 from sc ipy import i n t e g r a t e
18

19 de f b i va r i a t e no rma l pd f (x , y , rho ) :
20 re turn (1/(2∗np . p i ∗np . s q r t (1−np . power ( rho , 2 ) ) ) ∗np . exp(−1/(2∗(1−np .

power ( rho , 2 ) ) ) ∗(np . power (x , 2 )−2∗rho∗x∗y+np . power (y , 2 ) ) ) )
21

22 de f e x a c t p r i c e E u r o p e a n t w o a s s e t c o r r c a l l ( S 0 , sigma , r , rho , T, K) :
23 y 1 = (np . l og ( S 0 [ 0 ] /K[ 0 ] ) + T∗( r−np . power ( sigma [ 0 ] , 2) /2) ) /( sigma

[ 0 ] ∗ np . s q r t (T) )
24 y 2 = (np . l og ( S 0 [ 1 ] /K[ 1 ] ) + T∗( r−np . power ( sigma [ 1 ] , 2) /2) ) /( sigma

[ 1 ] ∗ np . s q r t (T) )
25 M 1 = i n t e g r a t e . nquad ( b iva r i a t e norma l pd f , [ [−np . in f , y 1+rho∗

sigma [ 1 ] ∗ np . s q r t (T) ] , [−np . in f , y 2+sigma [ 1 ] ∗ np . s q r t (T) ] ] , a rgs =[ rho
] )

26 M 2 = i n t e g r a t e . nquad ( b iva r i a t e norma l pd f , [ [−np . in f , y 1 ] , [−np .
in f , y 2 ] ] , a rgs =([ rho ] ) )

27 o p t i o n p r i c e = S 0 [ 1 ] ∗ M 1[0]−K[ 1 ] ∗ np . exp(−r ∗T) ∗M 2 [ 0 ]
28 re turn o p t i o n p r i c e
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D
Python Code: The Binomial

Pricing Model

D.1 Log asset price

1 ”””
2 l o g a s s e t p r i c e computes the log a s s e t p r i c e s in the binomial
3 model at the time o f maturity .
4

5 Input parameters are i n i t i a l l og a s s e t p r i c e X 0 , v o l a t i l i t i e s sigma ,
6 number o f i n t e r v a l s N and time u n t i l maturity T.
7

8 Returns a 3 dimens iona l matrix X T of s i z e (N+1)x (N+1)x2 with log
9 a s s e t p r i c e s at time T.

10 ”””
11

12 import numpy as np
13

14 de f l o g a s s e t p r i c e (X 0 , sigma , N, T) :
15 dt = T/N
16 h = np . s q r t ( dt ) ∗ sigma
17 X T = np . z e ro s ( (N+1, N+1, 2) )
18 f o r column in range (0 , N+1) :
19 f o r row in range (0 , N+1) :
20 f o r element in range (0 , 2) :
21 i f e lement == 0 :
22 X T [ row ] [ column ] [ e lement ] = X 0 [ element ] + h [

element ]∗(−N+2∗column )
23 i f e lement == 1 :
24 X T [ row ] [ column ] [ e lement ] = X 0 [ element ] + h [

element ] ∗ (N−2∗row )
25 re turn X T
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D.2 European two-asset correlation call option

D.2.1 Payoff

1 ”””
2 p a y o f f E u r o p e a n t w o a s s e t c o r r c a l l computes a l l p o s s i b l e p a y o f f s o f
3 a European two a s s e t c o r r e l a t i o n opt ion at a g iven time .
4

5 Input parameters are l og a s s e t p r i c e s l o g p r i c e s , r i s k−f r e e i n t e r e s t
6 r a t e r , v o l a t i l i t i e s sigma , s t r i k e p r i c e s K and time o f which the
7 p a yo f f s i s seeked T.
8

9 Returns a matrix payof f T o f same s i z e as the matrix l o g p r i c e s with
10 a l l p o s s i b l e p a y o f f s at time T.
11 ”””
12

13 import numpy as np
14

15 de f p a y o f f E u r o p e a n t w o a s s e t c o r r c a l l ( l o g p r i c e s , r , sigma , K, T) :
16 [ dim row , dim column , dim element ] = l o g p r i c e s . shape
17 payof f T = np . z e ro s ( ( dim row , dim column ) )
18 f o r column in range (0 , dim column ) :
19 f o r row in range (0 , dim row ) :
20 X 1 = l o g p r i c e s [ row ] [ column ] [ 0 ]
21 S 1 = np . exp ( X 1 +(r−np . power ( sigma [ 0 ] , 2) /2) ∗T)
22 i f S1 > K[ 0 ] :
23 X 2 = l o g p r i c e s [ row ] [ column ] [ 1 ]
24 S 2 = np . exp ( X 2+(r−np . power ( sigma [ 1 ] , 2) /2) ∗T)
25 payof f T [ row ] [ column ] = max( S 2−K[ 1 ] , 0)
26 re turn payof f T
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D.2.2 Initial option price

1 ”””
2 i n i t i a l p r i c e E u r o p e a n t w o a s s e t c o r r c a l l computes the i n i t i a l
3 opt ion p r i c e o f a European two−a s s e t c o r r e l a t i o n c a l l opt ion .
4

5 Input parameters are the payo f f at maturity opt ion va lue ,
6 c o r r e l a t i o n rho , r i s k−f r e e i n t e r e s t r a t e r , number o f time
7 s t ep s N, and time u n t i l maturity T.
8

9 Returns the i n i t i a l opt ion p r i c e in opt i on va lue [ 0 ] [ 0 ] .
10 ”””
11

12 import numpy as np
13

14 de f i n i t i a l p r i c e E u r o p e a n t w o a s s e t c o r r c a l l ( opt ion va lue , rho , r , N,
T) :

15 dt = T/N
16 [ dim row , dim column ] = opt ion va lue . shape
17 P uu = P dd = 1/4∗(1+ rho )
18 P ud = P du = 1/4∗(1− rho )
19 whi le dim row > 1 :
20 d i s counted opt i on va lue = np . z e ro s ( ( dim row−1, dim column−1) )
21 f o r row in range (0 , dim row−1) :
22 f o r column in range (0 , dim column−1) :
23 v uu = opt ion va lue [ row ] [ column+1]
24 v dd = opt ion va lue [ row +1] [ column ]
25 v du = opt ion va lue [ row ] [ column ]
26 v ud = opt ion va lue [ row +1] [ column+1]
27 d i s counted opt i on va lue [ row ] [ column ] = np . exp(−r ∗dt ) ∗(

v uu∗P uu + v ud∗P ud + v du∗P du + v dd∗P dd )
28 re turn i n i t i a l p r i c e E u r o p e a n t w o a s s e t c o r r c a l l (

d i s counted opt ion va lue , rho , r , N, T)
29 e l s e :
30 re turn opt i on va lue [ 0 ] [ 0 ]
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D.2.3 The binomial pricing model using a uniform mesh

1 ”””
2 b inomia l un i f o rm European two as s e t co r r ca l l computes the i n t i t a l
3 opt ion p r i c e o f a European two−a s s e t c o r r e l a t i o n c a l l opt ion .
4 I t uses the binomial model and a uniform mesh .
5

6 Input parameters are the i n i t i a l s tock p r i c e s S 0 , v o l a t i l i t i e s sigma ,
7 r i s k−f r e e i n t e r e s t r a t e r , c o r r e l a t i o n rho , time o f maturity T,
8 number o f time s t ep s N, and s t r i k e p r i c e s K.
9

10 The func t i on r e tu rn s the i n i t i a l opt ion p r i c e o p t i o n p r i c e 0 .
11 ”””
12

13 import numpy as np
14

15 de f b inomia l un i f o rm European two as s e t co r r ca l l ( S 0 , sigma , r , rho , T
, N, K) :

16 l o g p r i c e T = l o g a s s e t p r i c e (np . l og ( S 0 ) , sigma , N, T)
17 payof f T = p a y o f f E u r o p e a n t w o a s s e t c o r r c a l l ( l og pr i c e T , r ,

sigma , K, T)
18 o p t i o n p r i c e 0 = i n i t i a l p r i c e E u r o p e a n t w o a s s e t c o r r c a l l (

payoff T , rho , r , N, T)
19 re turn o p t i o n p r i c e 0
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D.2.4 The binomial pricing model using refinement region

1 ”””
2 b i n o m i a l r e f i n e m e n t E u r o p e a n t w o a s s e t c o r r c a l l c a l c u l a t e s the
3 i n i t i a l opt ion p r i c e o f a European two−a s s e t c o r r e l a t i o n option ,
4 adding a f i n e r mesh over the f i n a l time step T−dt .
5

6 Input parameters are i n i t i a l s tock p r i c e s S 0 , v o l a t i l i t i e s sigma ,
7 r i s k−f r e e i n t e r e s t r a t e r , c o r r e l a t i o n rho , time u n t i l maturity T,
8 number o f time s t ep s N, s t r i k e p r i c e s K and re f inement l e v e l RL.
9

10 Returns the i n i t i a l opt ion value opt i on va lue 0 .
11 ”””
12

13 import numpy as np
14

15 de f b i n o m i a l r e f i n e m e n t E u r o p e a n t w o a s s e t c o r r c a l l ( S 0 , sigma , r , rho
, T, N, K, RL) :

16 dt = T/N
17 h = np . s q r t ( dt ) ∗ sigma
18

19 # Compute log a s s e t p r i c e at time T−dt
20 X T minus dt = l o g a s s e t p r i c e (np . l og ( S 0 ) , sigma , N−1, T−dt )
21

22 # Find re f inement r eg i on
23 j min = 0
24 whi le X T minus dt [ 0 ] [ j min ] [ 0 ] + np . power (2 ,RL) ∗h [ 0 ] < np . l og (K[ 0 ] )

−(r−np . power ( sigma [ 0 ] , 2 ) /2) ∗T:
25 j min = j min+1
26 i f j min > N−1:
27 break
28

29 j max = N−1
30 whi le X T minus dt [ 0 ] [ j max ] [ 0 ] −np . power (2 ,RL) ∗h [ 0 ] >= np . l og (K[ 0 ] )

−(r−np . power ( sigma [ 0 ] , 2 ) /2) ∗T:
31 j max = j max−1
32 i f j max < 0 :
33 j max = 0
34 break
35

36 i max = N−1
37 whi le X T minus dt [ i max ] [ 0 ] [ 1 ] + np . power (2 ,RL) ∗h [ 1 ] < np . l og (K[ 1 ] )

−(r−np . power ( sigma [ 1 ] , 2 ) /2) ∗T:
38 i max = i max−1
39 i f i max < 0 :
40 break
41

42 i min = 0
43 whi le X T minus dt [ i min ] [ 0 ] [ 1 ] − np . power (2 ,RL) ∗h [ 1 ] >= np . l og (K[ 1 ] )

−(r−np . power ( sigma [ 1 ] , 2 ) /2) ∗T:
44 i min = i min+1
45 i f i min >= N:
46 i min = N
47 break
48
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49 # Compute opt ion value in coa r s e mesh nodes and i t s complement
50 opt ion va lue T minus dt = np . z e ro s ( (N, N) )
51 f o r row in range (0 , N) :
52 f o r column in range (0 , N) :
53 # For re f inement r eg i on A use cond i t i on :
54 # ( i min <= row <= i max and j min <= column ) or ( row <=

i max and j min <= column <= j max ) :
55 # For re f inement r eg i on B use cond i t i on :
56 # ( i min <= row <= i max and j min <= column <= j max ) :
57 # For re f inement r eg i on C use cond i t i on :
58 # ( row <= i max and j min <= column ) :
59

60 # Compute d i scounted opt ion value us ing re f inement r eg i on A
:

61 i f ( i min <= row <= i max and j min <= column ) or ( row <=
i max and j min <= column <= j max ) :

62 X RF = l o g a s s e t p r i c e ( X T minus dt [ row ] [ column ] , sigma
, np . power (4 ,RL) , dt )

63 payoff RF = p a y o f f E u r o p e a n t w o a s s e t c o r r c a l l (X RF, r
, sigma , K, T)

64 opt ion va lue T minus dt [ row ] [ column ] =
i n i t i a l p r i c e E u r o p e a n t w o a s s e t c o r r c a l l ( payoff RF , rho , r , np .
power (4 ,RL) , dt )

65 e l s e :
66 X RF comp = l o g a s s e t p r i c e ( X T minus dt [ row ] [ column ] ,

sigma , 1 , dt )
67 payoff RF comp = p a y o f f E u r o p e a n t w o a s s e t c o r r c a l l (

X RF comp , r , sigma , K, T)
68 opt ion va lue T minus dt [ row ] [ column ] =

i n i t i a l p r i c e E u r o p e a n t w o a s s e t c o r r c a l l ( payoff RF comp , rho , r ,
1 , dt )

69

70 # Compute i n i t i a l opt ion p r i c e
71 opt i on va lue 0 = i n i t i a l p r i c e E u r o p e a n t w o a s s e t c o r r c a l l (

opt ion value T minus dt , rho , r , N−1, T−dt )
72 re turn opt i on va lue 0
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D.3 American two-asset correlation put option

D.3.1 Payoff

1 ”””
2 payo f f Amer i can two as se t co r r put computes a l l p o s s i b l e p a yo f f s o f
3 an American two−a s s e t c o r r e l a t i o n put opt ion at a g iven time .
4

5 Input parameters are l og a s s e t p r i c e s l o g p r i c e s , r i s k−f r e e i n t e r e s t
6 r a t e r , v o l a t i l i t i e s sigma , time T, and s t r i k e p r i c e s K.
7

8 Returns a matrix payof f T o f the same s i z e as the matrix l o g p r i c e s
9 with a l l p o s s i b l e pa yo f f s at time T.

10 ”””
11

12 import numpy as np
13

14 de f payo f f Amer i can two as se t co r r put ( l o g p r i c e s , r , sigma , K, T) :
15 [ dim row , dim column , dim element ] = l o g p r i c e s . shape
16 payof f T = np . z e ro s ( ( dim row , dim column ) )
17 f o r column in range (0 , dim column ) :
18 f o r row in range (0 , dim row ) :
19 X 1 = l o g p r i c e s [ row ] [ column ] [ 0 ]
20 S 1 = np . exp ( X 1+(r−np . power ( sigma [ 0 ] , 2) /2) ∗T)
21 i f S 1 < K[ 0 ] :
22 X 2 = l o g p r i c e s [ row ] [ column ] [ 1 ]
23 S 2 = np . exp ( X 2+(r−np . power ( sigma [ 1 ] , 2) /2) ∗T)
24 payof f T [ row ] [ column ] = max(K[1]−S 2 , 0 )
25 re turn payof f T
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D.3.2 Initial option price

1 ”””
2 i n i t i a l p r i c e A m e r i c a n t w o a s s e t c o r r p u t computes the i n i t i a l
3 opt ion p r i c e o f an American two−a s s e t c o r r e l a t i o n put opt ion .
4

5 Input parameters are the payo f f at maturity opt ion va lue , l og a s s e t
6 p r i c e s at the i n i t i a l time X 0 , c o r r e a l t i o n rho , r i s k−f r e e i n t e r e s t
7 r a t e r , number o f time s t ep s N, i n i t i a l time t 0 , time o f maturity T,
8 s t r i k e p r i c e K, and v o l a t i l i t y sigma .
9

10 Returns the opt ion p r i c e at t 0 in opt i on va lue [ 0 ] [ 0 ] .
11 ”””
12

13 import numpy as np
14

15 de f i n i t i a l p r i c e A m e r i c a n t w o a s s e t c o r r p u t ( opt ion va lue , X 0 , rho , r
, N, t 0 , T, K, sigma ) :

16 dt = (T−t 0 ) /N
17 [ dim row , dim column ] = opt ion va lue . shape
18 P uu = 1/4∗(1+ rho )
19 P dd = P uu
20 P ud = 1/4∗(1− rho )
21 P du = P ud
22

23 i f dim row > 1 :
24 l o g a s s e t p r i c e s = l o g a s s e t p r i c e (X 0 , sigma , dim row−2 ,(dim row

−2)∗dt )
25 d i s counted opt i on va lue = np . z e ro s ( ( dim row−1, dim column−1) )
26 f o r row in range (0 , dim row−1) :
27 f o r column in range (0 , dim column−1) :
28 v uu = opt ion va lue [ row ] [ column+1]
29 v dd = opt ion va lue [ row +1] [ column ]
30 v du = opt ion va lue [ row ] [ column ]
31 v ud = opt ion va lue [ row +1] [ column+1]
32

33 X 1 = l o g a s s e t p r i c e s [ row ] [ column ] [ 0 ]
34 S 1 = np . exp ( X 1+(r−np . power ( sigma [ 0 ] , 2) /2) ∗( t 0+dt ∗(

dim row−2) ) )
35 X 2 = l o g a s s e t p r i c e s [ row ] [ column ] [ 1 ]
36 S 2 = np . exp ( X 2+(r−np . power ( sigma [ 1 ] , 2) /2) ∗( t 0+dt ∗(

dim row−2) ) )
37

38 d i s counted opt i on va lue [ row ] [ column ] = max(np . exp(−r ∗dt
) ∗( v uu∗P uu + v ud∗P ud + v du∗P du + v dd∗P dd ) , max(K[1]−S 2 , 0 )
∗( S 1<K[ 0 ] ) )

39 re turn i n i t i a l p r i c e A m e r i c a n t w o a s s e t c o r r p u t (
d i s counted opt ion va lue , X 0 , rho , r , N, t 0 , T, K, sigma )

40 e l s e :
41 re turn opt i on va lue [ 0 ] [ 0 ]
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D.3.3 The binomial pricing model using a uniform mesh

1 ”””
2 binomia l un i fo rm Amer i can two asse t cor r put computes the i n i t i a l
3 opt ion p r i c e o f an American two−a s s e t c o r r e l a t i o n put opt ion . I t uses
4 the binomial model and a uniform mesh .
5

6 Input parameters are the i n i t i a l s tock p r i c e s S 0 , v o l a t i l i t i e s sigma ,
7 r i s k−f r e e i n t e r e s t r a t e r , c o r r e l a t i o n rho , time o f maturity T, number
8 o f time s t ep s N, and s t r i k e p r i c e s K.
9

10 The func t i on r e tu rn s the i n i t i a l opt ion p r i c e o p t i o n p r i c e 0 .
11 ”””
12

13 import numpy as np
14

15 de f b inomia l un i fo rm Amer i can two asse t cor r put ( S 0 , sigma , r , rho , T,
N, K) :

16 l o g p r i c e T = l o g a s s e t p r i c e (np . l og ( S 0 ) , sigma , N, T)
17 payof f T = payo f f Amer i can two as se t co r r put ( l og pr i c e T , r ,

sigma , K, T)
18 o p t i o n p r i c e 0 = i n i t i a l p r i c e A m e r i c a n t w o a s s e t c o r r p u t ( payoff T

, np . l og ( S 0 ) , rho , r , N, 0 , T, K, sigma )
19 re turn o p t i o n p r i c e 0
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D.3.4 The binomial pricing model using refinement region

1 ”””
2 b inomia l r e f inement Amer i can two as se t co r r put c a l c u l a t e s the
3 i n i t i a l opt ion p r i c e o f an American two−a s s e t c o r r e l a t i o n put
4 option , adding a f i n e r mesh over the f i n a l time step T−dt .
5

6 Input parameters are i n i t i a l s tock p r i c e s S 0 , v o l a t i l i t i e s sigma ,
7 r i s k−f r e e i n t e r e s t r a t e r , c o r r e l a t i o n rho , time u n t i l maturity T,
8 number o f time s t ep s N, s t r i k e prce s K, and re f inement l e v e l RL.
9

10 Returns the i n i t i a l opt ion value opt i on va lue 0
11 ”””
12

13 import numpy as np
14

15 de f b inomia l r e f inement Amer i can two as se t co r r put ( S 0 , sigma , r , rho ,
T, N, K, RL) :

16 dt = T/N
17 h = np . s q r t ( dt ) ∗ sigma
18

19 # Compute log a s s e t p r i c e s at time T−dt
20 X T minus dt = l o g a s s e t p r i c e (np . l og ( S 0 ) , sigma , N−1, T−dt )
21

22 # Find re f inement r eg i on
23 j min = 0
24 whi le X T minus dt [ 0 ] [ j min ] [ 0 ] + np . power (2 ,RL) ∗h [ 0 ] < np . l og (K[ 0 ] )

−(r−np . power ( sigma [ 0 ] , 2 ) /2) ∗T:
25 j min = j min+1
26 i f j min > N−1:
27 break
28

29 j max = N−1
30 whi le X T minus dt [ 0 ] [ j max ] [ 0 ] −np . power (2 ,RL) ∗h [ 0 ] >= np . l og (K[ 0 ] )

−(r−np . power ( sigma [ 0 ] , 2 ) /2) ∗T:
31 j max = j max−1
32 i f j max < 0 :
33 j max = 0
34 break
35

36 i max = N−1
37 whi le X T minus dt [ i max ] [ 0 ] [ 1 ] + np . power (2 ,RL) ∗h [ 1 ] < np . l og (K[ 1 ] )

−(r−np . power ( sigma [ 1 ] , 2 ) /2) ∗T:
38 i max = i max−1
39 i f i max < 0 :
40 break
41

42 i min = 0
43 whi le X T minus dt [ i min ] [ 0 ] [ 1 ] − np . power (2 ,RL) ∗h [ 1 ] >= np . l og (K[ 1 ] )

−(r−np . power ( sigma [ 1 ] , 2 ) /2) ∗T:
44 i min = i min+1
45 i f i min >= N:
46 i min = N
47 break
48
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49 # Compute opt ion value in coa r s e mesh nodes and i t s complement
50 opt ion va lue T minus dt = np . z e ro s ( (N, N) )
51 f o r row in range (0 , N) :
52 f o r column in range (0 , N) :
53 i f ( i min <= row <= i max and column <= j max ) or ( row >=

i min and j min <= column <= j max ) :
54 X RF = l o g a s s e t p r i c e ( X T minus dt [ row ] [ column ] , sigma

, np . power (4 ,RL) , dt )
55 payo f f Rf = payo f f Amer i can two as se t co r r put (X RF, r ,

sigma , K, T)
56 opt ion va lue T minus dt [ row ] [ column ] =

i n i t i a l p r i c e A m e r i c a n t w o a s s e t c o r r p u t ( payof f Rf , X T minus dt [
row ] [ column ] , rho , r , np . power (4 ,RL) , T−dt , T, K, sigma )

57 e l s e :
58 X RF comp = l o g a s s e t p r i c e ( X T minus dt [ row ] [ column ] ,

sigma , 1 , dt )
59 payoff Rf comp = payo f f Amer i can two as se t co r r put (

X RF comp , r , sigma , K, T)
60 opt ion va lue T minus dt [ row ] [ column ] =

i n i t i a l p r i c e A m e r i c a n t w o a s s e t c o r r p u t ( payoff Rf comp ,
X T minus dt [ row ] [ column ] , rho , r , 1 , T−dt , T, K, sigma )

61 # Compute i n i t i a l opt ion p r i c e
62 opt i on va lue 0 = i n i t i a l p r i c e A m e r i c a n t w o a s s e t c o r r p u t (

opt ion value T minus dt , np . l og ( S 0 ) , rho , r , N−1, 0 , T−dt , K,
sigma )

63 re turn opt i on va lue 0
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E
Python Code: The Monte Carlo

Method

E.1 European two-asset correlation call option

1 ”””
2 MC European two asset corr ca l l computes the i n i t i a l p r i c e o f a
3 European two−a s s e t c o r r e l a t i o n c a l l opt ion by us ing Monte Carlo
4 (MC) s imu la t i on s .
5

6 The input parameters are the s t r i k e p r i c e K, the r i sk−f r e e i n t e r e s t
7 r a t e r , the i n i t i a l s tock p r i c e s S 0 , the v o l a t i l i t y matrix sigma ,
8 the time u n t i l maturity T, and the number o f r e p l i c a t i o n s n .
9

10 The output i s the est imated p r i c e s from the standard MC method and
11 the MC method with a n i t h e t i c v a r i a t e s (AV) . The func t i on a l s o r e tu rn s
12 95% con f idence i n t e r v a l s ( CIs ) cor re spond ing to both o f the p r i c e
13 e s t i amte s .
14 ”””
15

16 import numpy as np
17 import s c ipy . s t a t s as s t
18 import math
19

20 de f MC European two asset corr ca l l (K, r , S 0 , sigma , T, n) :
21

22 # Generate va lue o f Brownian motions at time o f maturity T
23 W 1 T = np . random . normal (0 , np . s q r t (T) , n)
24 W 2 T = np . random . normal (0 , np . s q r t (T) , n)
25 W 1 AV T = −W 1 T
26 W 2 AV T = −W 2 T
27

28 # Compute f i n a l s tock p r i c e s
29 S 1 T = S 0 [ 0 ] ∗ np . exp ( ( r−(sigma [0 ,0 ]∗∗2+ sigma [ 0 , 1 ] ∗ ∗ 2 ) /2) ∗T+sigma

[ 0 , 0 ] ∗W 1 T+sigma [ 0 , 1 ] ∗W 2 T)
30 S 2 T = S 0 [ 1 ] ∗ np . exp ( ( r−(sigma [1 ,0 ]∗∗2+ sigma [ 1 , 1 ] ∗ ∗ 2 ) /2) ∗T+sigma

[ 1 , 0 ] ∗W 1 T+sigma [ 1 , 1 ] ∗W 2 T)
31

32 S 1 AV T = S 0 [ 0 ] ∗ np . exp ( ( r−(sigma [0 ,0 ]∗∗2+ sigma [ 0 , 1 ] ∗ ∗ 2 ) /2) ∗T+
sigma [ 0 , 0 ] ∗W 1 AV T+sigma [ 0 , 1 ] ∗W 2 AV T)

33 S 2 AV T = S 0 [ 1 ] ∗ np . exp ( ( r−(sigma [1 ,0 ]∗∗2+ sigma [ 1 , 1 ] ∗ ∗ 2 ) /2) ∗T+
sigma [ 1 , 0 ] ∗W 1 AV T+sigma [ 1 , 1 ] ∗W 2 AV T)

34
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35 # Compute d i scounted standard payo f f
36 Dpayof f standard = np . exp(−r ∗T) ∗np . maximum( S 2 T−K[ 1 ] , 0 ) ∗( S 1 T>K

[ 0 ] )
37

38 # Compute d i scounted payo f f with a n t i t h e t i c v a r i a t e s
39 Dpayoff AV = np . exp(−r ∗T) ∗np . maximum(S 2 AV T−K[ 1 ] , 0 ) ∗(S 1 AV T>K

[ 0 ] )
40

41 # Compute standard p r i c e and CI
42 pr i c e s t anda rd = np . mean( Dpayof f standard )
43 CI standard = s t . t . i n t e r v a l ( 0 . 9 5 , l en ( Dpayof f standard )−1, l o c=

pr i c e s t anda rd , s c a l e=s t . sem( Dpayof f standard ) )
44

45 # Compute AV p r i c e and CI
46 price AV = np . mean ( ( Dpayof f standard+Dpayoff AV ) /2)
47 CI AV = s t . t . i n t e r v a l ( 0 . 9 5 , l en ( Dpayoff AV )−1, l o c=price AV , s c a l e=

s t . sem ( ( Dpayof f standard+Dpayoff AV ) /2) )
48

49 re turn [ pr i c e s tandard , price AV , CI standard , CI AV ]
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E.2 Asian two-asset call option

1 ”””
2 MC Asian two asset ca l l computes the i n i t i a l p r i c e o f an Asian
3 two−a s s e t c a l l opt ion by us ing Monte Carlo (MC) s imu la t i on s .
4

5 The input parameters are the s t r i k e p r i c e K, the r i sk−f r e e i n t e r e s t
6 r a t e r , the i n i t i a l s tock p r i c e s S 0 , the v o l a t i l i t y matrix sigma ,
7 the time u n t i l maturity T, the weights a lpha 1 and alpha 2 o f the
8 s tocks , the number o f p a r t i t i o n s N, and the number o f r e p l i c a t i o n s n .
9

10 The output i s the est imated p r i c e s from the standard MC method , the
11 MC method with a n i t h e t i c v a r i a t e s (AV) , and the MC method with c o n t r o l
12 v a r i a t e s (CV) . The func t i on a l s o r e tu rn s 95% con f idence i n t e r v a l s ( CIs )
13 cor re spond ing to a l l o f the p r i c e e s t i amte s .
14 ”””
15

16 import numpy as np
17 import s c ipy . s t a t s as s t
18 import math
19 import Black Scho l e s as BS
20

21 de f MC Asian two asset ca l l (K, r , S 0 , sigma , T, weights , N, n) :
22

23 payo f f s tandard = np . z e ro s (n)
24 payoff AV = np . z e ro s (n)
25 payo f f g eomet r i c = np . z e ro s (n)
26

27 dt = T/N
28

29 f o r i in range (0 , n ) :
30 # Create numpy arrays f o r ho ld ing a s s e t p r i c e s at d i f f e r e n t

time
31 # i n s t a n c e s
32 S 1 t = np . z e ro s (N+1)
33 S 2 t = np . z e ro s (N+1)
34 S 1 t AV = np . z e ro s (N+1)
35 S 2 t AV = np . z e ro s (N+1)
36

37 # Spec i f y the i n i t i a l a s s e t p r i c e s
38 S 1 t [ 0 ] = S 0 [ 0 ]
39 S 2 t [ 0 ] = S 0 [ 1 ]
40 S 1 t AV [ 0 ] = S 0 [ 0 ]
41 S 2 t AV [ 0 ] = S 0 [ 1 ]
42

43 # Generate s t ep s in the Brownian motions
44 dW 1 = np . z e ro s (N+1)
45 dW 2 = np . z e ro s (N+1)
46

47 dW 1 [ 1 : ] = np . random . normal (0 , np . s q r t ( dt ) , N)
48 dW 2 [ 1 : ] = np . random . normal (0 , np . s q r t ( dt ) , N)
49

50 # Generate s t ep s in the Brownian motions used f o r the
a n t i t h e t i c

51 # v a r i a t e s method
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52 dW 1 AV = −dW 1
53 dW 2 AV = −dW 2
54

55 # Create ar rays with the cumulat ive va lue s o f the Brownian
motions

56 W 1 = np . cumsum(dW 1)
57 W 2 = np . cumsum(dW 2)
58 W 1 AV = np . cumsum(dW 1 AV)
59 W 2 AV = np . cumsum(dW 2 AV)
60

61 t = np . l i n s p a c e (0 , T, num = N+1)
62

63 # Compute a s s e t p r i c e s at d i f f e r e n t time i n s t a n c e s
64 S 1 t = S 0 [ 0 ] ∗ np . exp ( ( r−(sigma [0 ,0 ]∗∗2+ sigma [ 0 , 1 ] ∗ ∗ 2 ) /2) ∗ t+

sigma [ 0 , 0 ] ∗W 1+sigma [ 0 , 1 ] ∗W 2)
65 S 2 t = S 0 [ 1 ] ∗ np . exp ( ( r−(sigma [1 ,0 ]∗∗2+ sigma [ 1 , 1 ] ∗ ∗ 2 ) /2) ∗ t+

sigma [ 1 , 0 ] ∗W 1+sigma [ 1 , 1 ] ∗W 2)
66

67 # Compute a s s e t p r i c e s at d i f f e r e n t time i n s t a n c e s f o r the
68 # a n t i t h e t i c v a r i a t e s method
69 S 1 t AV = S 0 [ 0 ] ∗ np . exp ( ( r−(sigma [0 ,0 ]∗∗2+ sigma [ 0 , 1 ] ∗ ∗ 2 ) /2) ∗ t+

sigma [ 0 , 0 ] ∗W 1 AV+sigma [ 0 , 1 ] ∗W 2 AV)
70 S 2 t AV = S 0 [ 1 ] ∗ np . exp ( ( r−(sigma [1 ,0 ]∗∗2+ sigma [ 1 , 1 ] ∗ ∗ 2 ) /2) ∗ t+

sigma [ 1 , 0 ] ∗W 1 AV+sigma [ 1 , 1 ] ∗W 2 AV)
71

72 # Assemble a s s e t p r i c e s
73 S = np . matrix ( ( S 1 t , S 2 t ) )
74 S AV = np . matrix ( ( S 1 t AV , S 2 t AV ) )
75

76 # Mult ip ly a s s e t p r i c e s by weights
77 S weighted standard = np . t ranspose (np . mult ip ly (np . t ranspose (S) ,

weights ) )
78 S weighted AV = np . t ranspose (np . mult ip ly (np . t ranspose (S AV) ,

weights ) )
79 S weighted geometr i c = np . t ranspose (np . power (np . t ranspose (S) ,

weights ) )
80

81 payo f f s tandard [ i ] = max(1/(N+1)∗np . sum( S weighted standard )−K
, 0 )

82 payoff AV [ i ] = max(1/(N+1)∗np . sum( S weighted AV )−K, 0 )
83 payo f f g eomet r i c [ i ] = max(np . product (np . power (

S weighted geometr ic , 1 / (N+1) ) )−K, 0 )
84

85 # Compute standard p r i c e and CI
86 Dpayof f standard = np . exp(−r ∗T) ∗ payo f f s tandard
87 CI standard = s t . t . i n t e r v a l ( 0 . 9 5 , l en ( Dpayof f standard )−1, l o c=np .

mean( Dpayof f standard ) , s c a l e=s t . sem( Dpayof f standard ) )
88 pr i c e s t anda rd = np . mean( Dpayof f standard )
89

90 # Compute AV p r i c e and CI
91 Dpayoff AV = np . exp(−r ∗T) ∗payoff AV
92 CI AV = s t . t . i n t e r v a l ( 0 . 9 5 , l en ( Dpayoff AV )−1, l o c=np . mean ( (

Dpayof f standard+Dpayoff AV ) /2) , s c a l e=s t . sem ( ( Dpayof f standard+
Dpayoff AV ) /2) )

93 price AV = np . mean ( ( Dpayof f standard+Dpayoff AV ) /2)
94
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95 # With CV p r i c e and CI
96 Dpayof f geometr ic = np . exp(−r ∗T) ∗ payo f f g eomet r i c
97 b est imate = np . sum ( ( Dpayof f geometr ic−np . mean( Dpayof f geometr ic ) )

∗( Dpayoff standard−np . mean( Dpayof f standard ) ) ) /np . sum ( (
Dpayof f geometr ic−np . mean( Dpayof f geometr ic ) ) ∗∗2)

98

99 S 0 geometr i c = np . s q r t ( S 0 [ 0 ] ∗ S 0 [ 1 ] )
100 s igma squared bar = ( ( sigma [0 ,0 ]+ sigma [ 1 , 0 ] ) ∗∗2+( sigma [0 ,1 ]+ sigma

[ 1 , 1 ] ) ∗∗2) /12
101 d e l t a = r /2+(sigma [0 ,0 ]∗∗2+ sigma [0 ,1 ]∗∗2+ sigma [1 ,0 ]∗∗2+ sigma

[ 1 , 1 ] ∗ ∗ 2 ) /8− s igma squared bar /2
102

103 exac t geometr i c = BS . Black Scho l e s (1 , S 0 geometr ic , K, T, np . s q r t (
s igma squared bar ) , r , d e l t a )

104 Dpayoff CV = Dpayoff standard−b est imate ∗( Dpayof f geometr ic−
exac t geometr i c )

105 price CV = np . mean( Dpayoff CV )
106 CI CV = s t . t . i n t e r v a l ( 0 . 9 5 , l en ( Dpayoff CV )−1, l o c=np . mean(

Dpayoff CV ) , s c a l e=s t . sem( Dpayoff CV ) )
107

108 re turn [ pr i c e s tandard , price AV , price CV , CI standard , CI AV ,
CI CV ]
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FEniCS Code: The PDE Method

F.1 European two-asset correlation call option

1 ”””
2 PDE European two asset corr ca l l computes the i n i t i a l p r i c e o f a
3 European two−a s s e t c o r r e l a t i o n c a l l opt ion us ing the f i n i t e element
4 method (FEM) .
5

6 The input parameters are the boundar ies in domain , the s t r i k e p r i c e K,
7 the r i sk−f r e e i n t e r e s t r a t e r , the s i z e o f the mesh mesh s ize =[nx , ny ]
8 where nx and ny i s the number o f c e l l s in d i r e c t i o n x and y
9 r e s p e c t i v e l y , the i n i t i a l s tock p r i c e s S 0 , v o l a t i l i t y sigma , the time

10 u n t i l maturity T and step in time o f s i z e tau .
11

12 The output i s the est imated p r i c e o f the opt ion .
13 ”””
14

15 from f e n i c s import ∗
16 import numpy as np
17 import Black Scho l e s as BS
18 import s c ipy . s t a t s as s t
19

20 de f PDE European two asset corr ca l l ( domain , K, r , mesh s ize , S 0 ,
sigma , T, tau ) :

21 # Def ine c o e f f i c i e n t s f o r v o l a t i l i t y and c o r r e l a t i o n
22 a 11 = sigma [ 0 , 0 ] ∗ sigma [ 0 , 0 ] + sigma [ 0 , 1 ] ∗ sigma [ 0 , 1 ]
23 a 22 = sigma [ 1 , 0 ] ∗ sigma [ 1 , 0 ] + sigma [ 1 , 1 ] ∗ sigma [ 1 , 1 ]
24 a 12 = sigma [ 0 , 0 ] ∗ sigma [ 1 , 0 ] + sigma [ 0 , 1 ] ∗ sigma [ 1 , 1 ]
25 a 21 = sigma [ 1 , 0 ] ∗ sigma [ 0 , 0 ] + sigma [ 1 , 1 ] ∗ sigma [ 0 , 1 ]
26 rho = 0 .5∗ ( a 12+a 21 ) /np . s q r t ( a 11 ∗ a 22 )
27

28 # Set domain
29 S 1 low = S 2 low = domain [ 0 ]
30 S 1 high = S 2 high = domain [ 1 ]
31

32 # Create mesh and d e f i n e func t i on space
33 mesh = RectangleMesh ( Point ( S 1 low , S 2 low ) , Point ( S 1 high ,

S 2 high ) , mesh s ize [ 0 ] , mesh s ize [ 1 ] , ” r i g h t / l e f t ”)
34 V = FunctionSpace (mesh , ' Lagrange ' , 2)
35

36 # Def ine boundary cond i t i on f o r when S 1 −> 0
37 u S 1 0 = Constant (0 )
38

39 de f boundary S 1 0 (x , on boundary ) :
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40 t o l = 1E−10
41 re turn on boundary and near ( x [ 0 ] , S 1 low , t o l )
42

43 bc S 1 0 = Dir ichletBC (V, u S 1 0 , boundary S 1 0 )
44

45 # Def ine boundary cond i t i on f o r when S 2 −> 0
46 u S 2 0 = Constant (0 )
47

48 de f boundary S 2 0 (x , on boundary ) :
49 t o l = 1E−10
50 re turn on boundary and near ( x [ 1 ] , S 2 low , t o l )
51

52 bc S 2 0 = Dir ichletBC (V, u S 2 0 , boundary S 2 0 )
53

54 # Def ine boundary cond i t i on f o r when S 1 −> i n f t y
55 de f boundary S 1 in f ty (x , on boundary ) :
56 t o l = 1E−10
57 re turn on boundary and near ( x [ 0 ] , S 1 high , t o l )
58

59 c l a s s BoundaryValues S 1 infty ( Express ion ) :
60 de f i n i t ( s e l f , ∗∗kwargs ) :
61 s e l f . t = 0
62 de f eva l ( s e l f , va lues , x ) :
63 va lues [ 0 ] = BS . Black Scho l e s (1 , x [ 1 ] , K[ 1 ] , s e l f . t , np . s q r t

( a 22 ) , r , 0)
64

65 u S 1 i n f t y = BoundaryValues S 1 infty ( degree = 2)
66 b c S 1 i n f t y = Dir ichletBC (V, u S 1 in f ty , boundary S 1 in f ty )
67

68 # Def ine boundary cond i t i on f o r when S 2 −> i n f t y
69 de f boundary S 2 in f ty (x , on boundary ) :
70 t o l = 1E−10
71 re turn on boundary and near ( x [ 1 ] , S 2 high , t o l )
72

73 c l a s s BoundaryValues S 2 infty ( Express ion ) :
74 de f i n i t ( s e l f , ∗∗kwargs ) :
75 s e l f . t = 0
76 de f eva l ( s e l f , va lues , x ) :
77 y 1 = ( np . l og ( x [ 0 ] /K[ 0 ] ) +(r−a 11 /2) ∗ s e l f . t ) / np . s q r t (

a 11 ∗ s e l f . t )
78 va lues [ 0 ] = x [ 1 ] ∗ s t . norm . cd f ( y 1+rho∗np . s q r t ( a 22 ∗ s e l f . t ) )

− K[ 1 ] ∗ np . exp(−r ∗ s e l f . t ) ∗ s t . norm . cd f ( y 1 )
79

80 u S 2 i n f t y = BoundaryValues S 2 infty ( degree = 2)
81 b c S 2 i n f t y = Dir ichletBC (V, u S 2 in f ty , boundary S 2 in f ty )
82

83 # Def ine whole boundary
84 bcs = [ bc S 1 0 , bc S 2 0 , bc S 1 in f ty , b c S 2 i n f t y ]
85

86 # Def ine i n i t i a l va lue
87 u 0 = Express ion ( 'x [ 0 ] > K 1 ? fmax ( x [1]−K 2 , 0 ) : 0 ' , degree = 2 ,

K 1 = K[ 0 ] , K 2 = K[ 1 ] , r = r , t = 0)
88 u 1 = i n t e r p o l a t e ( u 0 , V)
89

90 # Def ine v a r i a t i o n a l problem
91 u = Tria lFunct ion (V)
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92 v = TestFunction (V)
93

94 e l = V. u f l e l e m e n t ( )
95

96 exp1 = Express ion ( ' a 11 ∗x [ 0 ] ∗ tau ' , a 11 = a 11 , tau = tau , element
= e l )

97 exp2 = Express ion ( ' 0 .5∗ a 11 ∗pow( x [ 0 ] , 2 ) ∗ tau ' , a 11 = a 11 , tau =
tau , element = e l )

98

99 exp3 = Express ion ( ' 0 .5∗ a 12 ∗x [ 1 ] ∗ tau ' , a 12 = a 12 , tau = tau ,
element = e l )

100 exp4 = Express ion ( ' 0 .5∗ a 12 ∗x [ 0 ] ∗ x [ 1 ] ∗ tau ' , a 12 = a 12 , tau = tau ,
element = e l )

101

102 exp5 = Express ion ( ' 0 .5∗ a 21 ∗x [ 0 ] ∗ tau ' , a 21 = a 21 , tau = tau ,
element = e l )

103 exp6 = Express ion ( ' 0 .5∗ a 21 ∗x [ 0 ] ∗ x [ 1 ] ∗ tau ' , a 21 = a 21 , tau = tau ,
element = e l )

104

105 exp7 = Express ion ( ' a 22 ∗x [ 1 ] ∗ tau ' , a 22 = a 22 , tau = tau , element
= e l )

106 exp8 = Express ion ( ' 0 .5∗ a 22 ∗pow( x [ 1 ] , 2 ) ∗ tau ' , a 22 = a 22 , tau =
tau , element = e l )

107

108 exp9 = Express ion ( '−r ∗x [ 0 ] ∗ tau ' , r = r , tau = tau , element = e l )
109 exp10 = Express ion ( '−r ∗x [ 1 ] ∗ tau ' , r = r , tau = tau , element = e l )
110

111 exp11 = Express ion ( ' r ∗ tau ' , r = r , tau = tau , element = e l )
112

113 a = u∗v∗dx + exp1∗u . dx (0 ) ∗v∗dx + exp2∗u . dx (0 ) ∗v . dx (0 ) ∗dx + exp3∗u .
dx (1 ) ∗v∗dx + exp4∗u . dx (1 ) ∗v . dx (0 ) ∗dx +exp5∗u . dx (0 ) ∗v∗dx + exp6∗u . dx
(0 ) ∗v . dx (1 ) ∗dx + exp7∗u . dx (1 ) ∗v∗dx +exp8∗u . dx (1 ) ∗v . dx (1 ) ∗dx +exp9∗u
. dx (0 ) ∗v∗dx +exp10∗u . dx (1 ) ∗v∗dx + exp11∗u∗v∗dx

114 L = ( u 1 ) ∗v∗dx
115

116 A = None
117 b = None
118

119 # Compute s o l u t i o n
120 u = Function (V)
121 N = i n t (T/ tau )
122 f o r i in range (1 , N+1) :
123 t = i ∗ tau
124

125 # Update boundary cond i t i on
126 u S 1 i n f t y . t = t
127 u S 2 i n f t y . t = t
128

129 # Compute s o l u t i o n
130 A, b = assemble system (a , L , bcs )
131 s o l v e (A, u . vec to r ( ) , b )
132

133 # Update prev ious s o l u t i o n
134 u 1 . a s s i g n (u)
135

136 re turn u( S 0 [ 0 ] , S 0 [ 1 ] )
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F.2 European two-asset maximum call option

1 ”””
2 PDE European two asset max cal l computes the i n i t i a l p r i c e o f a
3 European two−a s s e t maximum c a l l opt ion us ing the f i n i t e element
4 method (FEM) .
5

6 The input parameters are the boundar ies in domain , the s t r i k e p r i c e K,
7 the r i sk−f r e e i n t e r e s t r a t e r , the s i z e o f the mesh mesh s ize =[nx , ny ]
8 where nx and ny i s the number o f c e l l s in d i r e c t i o n x and y
9 r e s p e c t i v e l y , the i n i t i a l s tock p r i c e s S 0 , v o l a t i l i t y sigma , the time

10 u n t i l maturity T and step in time o f s i z e tau .
11

12 The output i s the est imated p r i c e o f the opt ion .
13 ”””
14

15 from f e n i c s import ∗
16 import numpy as np
17 import Black Scho l e s as BS
18

19 de f PDE European two asset max cal l ( domain , K, r , mesh s ize , S 0 , sigma
, T, tau ) :

20 # Def ine c o e f f i c i e n t s f o r v o l a t i l i t y
21 a 11 = sigma [ 0 , 0 ] ∗ sigma [ 0 , 0 ] + sigma [ 0 , 1 ] ∗ sigma [ 0 , 1 ]
22 a 22 = sigma [ 1 , 0 ] ∗ sigma [ 1 , 0 ] + sigma [ 1 , 1 ] ∗ sigma [ 1 , 1 ]
23 a 12 = sigma [ 0 , 0 ] ∗ sigma [ 1 , 0 ] + sigma [ 0 , 1 ] ∗ sigma [ 1 , 1 ]
24 a 21 = sigma [ 1 , 0 ] ∗ sigma [ 0 , 0 ] + sigma [ 1 , 1 ] ∗ sigma [ 0 , 1 ]
25

26 # Set domain
27 S 1 low = S 2 low = domain [ 0 ]
28 S 1 high = domain [ 1 ]
29 S 2 high = K[ 1 ] − K[ 0 ] + domain [ 1 ]
30

31 # Create mesh over domain and d e f i n e func t i on space
32 mesh = RectangleMesh ( Point ( S 1 low , S 2 low ) , Point ( S 1 high ,

S 2 high ) , mesh s ize [ 0 ] , mesh s ize [ 1 ] , ” r i g h t / l e f t ”)
33 V = FunctionSpace (mesh , ' Lagrange ' , 2)
34

35 # Def ine boundary cond i t i on f o r when S 1 −> 0
36 de f boundary S 1 0 (x , on boundary ) :
37 t o l = 1E−10
38 re turn on boundary and near ( x [ 0 ] , S 1 low , t o l )
39

40 c l a s s BoundaryValues S 1 0 ( Express ion ) :
41 de f i n i t ( s e l f , ∗∗kwargs ) :
42 s e l f . t = 0
43 de f eva l ( s e l f , va lues , x ) :
44 va lues [ 0 ] = max(BS . Black Scho l e s (1 , x [ 0 ] , K[ 0 ] , s e l f . t , np .

s q r t ( a 11 ) , r , 0) , BS . B lack Scho l e s (1 , x [ 1 ] , K[ 1 ] , s e l f . t , np . s q r t (
a 22 ) , r , 0) )

45

46 u S 1 0 = BoundaryValues S 1 0 ( degree = 2)
47 bc S 1 0 = Dir ichletBC (V, u S 1 0 , boundary S 1 0 )
48

49 # Def ine boundary cond i t i on f o r when S 2 −> 0
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50 de f boundary S 2 0 (x , on boundary ) :
51 t o l = 1E−10
52 re turn on boundary and near ( x [ 1 ] , S 2 low , t o l )
53

54 c l a s s BoundaryValues S 2 0 ( Express ion ) :
55 de f i n i t ( s e l f , ∗∗kwargs ) :
56 s e l f . t = 0
57 de f eva l ( s e l f , va lues , x ) :
58 va lues [ 0 ] = max(BS . Black Scho l e s (1 , x [ 0 ] , K[ 0 ] , s e l f . t , np .

s q r t ( a 11 ) , r , 0) , BS . B lack Scho l e s (1 , x [ 1 ] , K[ 1 ] , s e l f . t , np . s q r t (
a 22 ) , r , 0) )

59

60 u S 2 0 = BoundaryValues S 2 0 ( degree = 2)
61 bc S 2 0 = Dir ichletBC (V, u S 2 0 , boundary S 2 0 )
62

63 # Def ine boundary cond i t i on f o r when S 1 −> i n f t y
64 de f boundary S 1 in f ty (x , on boundary ) :
65 t o l = 1E−10
66 re turn on boundary and near ( x [ 0 ] , S 1 high , t o l )
67

68 c l a s s BoundaryValues S 1 infty ( Express ion ) :
69 de f i n i t ( s e l f , ∗∗kwargs ) :
70 s e l f . t = 0
71 de f eva l ( s e l f , va lues , x ) :
72 va lues [ 0 ] = max(BS . Black Scho l e s (1 , x [ 0 ] , K[ 0 ] , s e l f . t , np .

s q r t ( a 11 ) , r , 0) , BS . B lack Scho l e s (1 , x [ 1 ] , K[ 1 ] , s e l f . t , np . s q r t (
a 22 ) , r , 0) )

73

74 u S 1 i n f t y = BoundaryValues S 1 infty ( degree = 2)
75 b c S 1 i n f t y = Dir ichletBC (V, u S 1 in f ty , boundary S 1 in f ty )
76

77 # Def ine boundary cond i t i on f o r when S 2 −> i n f t y
78 de f boundary S 2 in f ty (x , on boundary ) :
79 t o l = 1E−10
80 re turn on boundary and near ( x [ 1 ] , S 2 high , t o l )
81

82 c l a s s BoundaryValues S 2 infty ( Express ion ) :
83 de f i n i t ( s e l f , ∗∗kwargs ) :
84 s e l f . t = 0
85 de f eva l ( s e l f , va lues , x ) :
86 va lues [ 0 ] = max(BS . Black Scho l e s (1 , x [ 0 ] , K[ 0 ] , s e l f . t , np .

s q r t ( a 11 ) , r , 0) , BS . B lack Scho l e s (1 , x [ 1 ] , K[ 1 ] , s e l f . t , np . s q r t (
a 22 ) , r , 0) )

87

88 u S 2 i n f t y = BoundaryValues S 2 infty ( degree = 2)
89 b c S 2 i n f t y = Dir ichletBC (V, u S 2 in f ty , boundary S 2 in f ty )
90

91 # Def ine whole boundary
92 bcs = [ bc S 1 0 , bc S 2 0 , bc S 1 in f ty , b c S 2 i n f t y ]
93

94 # Def ine i n i t i a l va lue
95 u 0 = Express ion ( ' fmax ( fmax ( x [0]−K 1 , 0 ) , fmax ( x [1]−K 2 , 0 ) ) ' , degree

= 2 , K 1 = K[ 0 ] , K 2 = K[ 1 ] )
96 u 1 = i n t e r p o l a t e ( u 0 , V)
97

98 # Def ine v a r i a t i o n a l problem

93



F. FEniCS Code: The PDE Method

99 u = Tria lFunct ion (V)
100 v = TestFunction (V)
101

102 e l = V. u f l e l e m e n t ( )
103

104 exp1 = Express ion ( ' a 11 ∗x [ 0 ] ∗ tau ' , a 11 = a 11 , tau = tau , element
= e l )

105 exp2 = Express ion ( ' 0 .5∗ a 11 ∗pow( x [ 0 ] , 2 ) ∗ tau ' , a 11 = a 11 , tau =
tau , element = e l )

106

107 exp3 = Express ion ( ' 0 .5∗ a 12 ∗x [ 1 ] ∗ tau ' , a 12 = a 12 , tau = tau ,
element = e l )

108 exp4 = Express ion ( ' 0 .5∗ a 12 ∗x [ 0 ] ∗ x [ 1 ] ∗ tau ' , a 12 = a 12 , tau = tau ,
element = e l )

109

110 exp5 = Express ion ( ' 0 .5∗ a 21 ∗x [ 0 ] ∗ tau ' , a 21 = a 21 , tau = tau ,
element = e l )

111 exp6 = Express ion ( ' 0 .5∗ a 21 ∗x [ 0 ] ∗ x [ 1 ] ∗ tau ' , a 21 = a 21 , tau = tau ,
element = e l )

112

113 exp7 = Express ion ( ' a 22 ∗x [ 1 ] ∗ tau ' , a 22 = a 22 , tau = tau , element
= e l )

114 exp8 = Express ion ( ' 0 .5∗ a 22 ∗pow( x [ 1 ] , 2 ) ∗ tau ' , a 22 = a 22 , tau =
tau , element = e l )

115

116 exp9 = Express ion ( '−r ∗x [ 0 ] ∗ tau ' , r = r , tau = tau , element = e l )
117 exp10 = Express ion ( '−r ∗x [ 1 ] ∗ tau ' , r = r , tau = tau , element = e l )
118

119 exp11 = Express ion ( ' r ∗ tau ' , r = r , tau = tau , element = e l )
120

121 a = u∗v∗dx + exp1∗u . dx (0 ) ∗v∗dx + exp2∗u . dx (0 ) ∗v . dx (0 ) ∗dx + exp3∗u .
dx (1 ) ∗v∗dx + exp4∗u . dx (1 ) ∗v . dx (0 ) ∗dx +exp5∗u . dx (0 ) ∗v∗dx + exp6∗u . dx
(0 ) ∗v . dx (1 ) ∗dx + exp7∗u . dx (1 ) ∗v∗dx +exp8∗u . dx (1 ) ∗v . dx (1 ) ∗dx +exp9∗u
. dx (0 ) ∗v∗dx +exp10∗u . dx (1 ) ∗v∗dx + exp11∗u∗v∗dx

122 L = ( u 1 ) ∗v∗dx
123

124 A = None
125 b = None
126

127 # Compute s o l u t i o n
128 u = Function (V)
129 N = i n t (T/ tau )
130 f o r i in range (1 , N+1) :
131 t = tau∗ i
132

133 # Update boundary cond i t i on
134 u S 1 0 . t = t
135 u S 2 0 . t = t
136 u S 1 i n f t y . t = t
137 u S 2 i n f t y . t = t
138

139 # Compute s o l u t i o n
140 A, b = assemble system (a , L , bcs )
141 s o l v e (A, u . vec to r ( ) , b )
142

143 # Update prev ious s o l u t i o n
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144 u 1 . a s s i g n (u)
145

146 re turn u( S 0 [ 0 ] , S 0 [ 1 ] )
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