

A Case Study of Feature Location in an
Open Source Embedded System
Master’s thesis in Software Engineering and Technology

Wanzi Gu

Hui Shen

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Master’s thesis 2018

A Case Study of Feature Location in an Open
Source Embedded System

How to identify and locate features with source of information from
Github, system artifacts and source code.

WANZI GU
HUI SHEN

Department of Computer Science and Engineering
Division of Software Engineering

Chalmers University of Technology
University of Gothenburg

Gothenburg, Sweden 2018

A Case Study of Feature Location in an Open Source Embedded System
WANZI GU
HUI SHEN

© WANZI GU, 2018.
© HUI SHEN, 2018.

Supervisors: Thorsten Berger and Regina Hebig, Computer Science and Engineering
Examiner: Robert Feldt, Computer Science and Engineering

Master’s Thesis 2018
Department of Computer Science and Engineering
Division of Software Engineering
Chalmers University of Technology
University of Gothenburg
Gothenburg, Sweden

Gothenburg, Sweden 2018

iv

Case Study on Feature Location in an Open Sourced Embedded System
WANZI GU
HUI SHEN
Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg

Abstract
In this master thesis, we conducted a case study to look for effective methodologies
of feature location in software maintenance. We started with domain study and
analysis on the target subject to obtain first hand knowledge and background in-
formation about the system. Later we came up with two methodologies that could
be systematically applied to the chosen subject to identify and locate features. The
methodologies were named as Release Log and Source Code methodology since these
were the artifacts where the feature are identified from. The methods were applied to
the system, and we found totally 44 features including both mandatory and optional
features. Our methods could also be applied to other systems with similar devel-
opment process. Finally we also measured the characteristics of the features found
using some metrics, the results also showed positive correlations between several
pairs of measurement metrics.

Keywords: Feature Location Techniques, Manual Feature Location, Marlin, 3D
printing, Software Maintenance, Software Product Lines.

v

Acknowledgements
We want to specially thank our supervisors Thorsten and Regina who had provided
us with support and guidance along the way. And we also thank them for directing
us to the right path of this thesis.

Wanzi Gu and Hui Shen, Gothenburg, 06 2017

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Feature Location in Industrial Practices 1
1.2 Case Study Subject . 2
1.3 Currently Existing FLTs . 2
1.4 Problem Statement . 3
1.5 Research Goal . 3
1.6 Research Questions . 4
1.7 Main Contributions . 4
1.8 Document Structure . 5

2 Background 7

3 Methodology 9
3.1 Domain Analysis . 9

3.1.1 Delta 3D printer construction 10
3.1.2 Cartesian 3D printer construction 10

3.2 Marlin Ecosystem Pre-study . 12
3.3 Feature Location . 13

3.3.1 Feature Identification and Location through Release Log . . . 14
3.3.2 Feature Identification and Location through Source Code . . . 14

3.4 Feature Characteristics . 16
3.5 Marlin Feature Model . 16

4 Results 19
4.1 Domain Analysis . 19
4.2 Pre-study . 20

4.2.1 Development History . 20
4.2.2 Marlin’s Forks . 22
4.2.3 Key Developers . 23
4.2.4 Development Culture and Process 26

4.3 Feature Identification and Location through Release Log 28
4.4 Feature Identification and Location through Source Code 31
4.5 Feature Characteristics and Feature Model 32

ix

Contents

5 Result Analysis and Discussions 35
5.1 Domain Analysis Reflection . 35
5.2 Pre-study . 35

5.2.1 Insights and Reflections . 36
5.3 Feature Identification and Location through Release Log 36

5.3.1 Approach Generalization . 37
5.4 Feature Identification and Location through Source Code 38

5.4.1 Insights and Reflections . 38
5.4.2 Approach Generalization . 40

5.5 Feature Identification and Location Result Analysis 40
5.6 Feature Characteristics Analysis . 45

6 Threats to Validity 53

7 Conclusion and Future Work 55

Glossary 57

Bibliography 59

A Appendix Release log 61

B Appendix Feature Collection Result 65

C Appendix Feature Model 67

D Appendix Statistical Test Result 71

x

List of Figures

3.1 Delta 3D Printer . 11
3.2 Cartesian 3D Printer . 12
3.3 Annotated source code In Marlin_Main.cpp 15

4.1 Release timeline and commits statistic 22
4.2 Percentage of pull requests created by the developers 26
4.3 The lifetimes between the creations and endings of the pull requests. 28
4.4 Annotated code for PRINTCOUNTER in Marlin_main.cpp 30
4.5 Example of feature fact sheet . 31
4.6 Endstop fact sheet . 33
4.7 Annotated code of Endstop in Marlin_main.cpp 33

5.1 Cartesian 3D printer Hardware Components 39
5.2 Combination of Source Information Percentage. 43
5.3 Source of Information Percentage. 44
5.4 Activity Diagram for Feature Identification and Location. 45
5.5 Histogram and Probability Density plot for LoFC, SD and TD. . . . 46
5.6 Linear correlation plot for LoFC vs TD (0.84588717). 48
5.7 Linear correlation plot for FeatureIdentificationTime vs FeatureCom-

prehensionTime (0.626769726). 49
5.8 Linear correlation plot for FeatureComprehensionTime vs LoFC (0.6238965).

. 50
5.9 Linear correlation plot for FeatureComprehensionTime vs TD (0.60503966).

. 51
5.10 Linear correlation plot for FeatureComprehensionTime vs SD (0.4024731). 52

xi

List of Figures

xii

List of Tables

4.1 Release history of Marlin. The latest RC branch recorded at the end
of March 2017 had 6790 commits. The commit difference comparisons
with other releases were made based on this record. RC branch con-
tains the latest RC releases. There could also be some commits after
a release in the branch just to fix minor issues, therefore there are 3
commits even after RC8. Different from RCBugFix branch where it
is used for bug fix and new development, RC branch is only used for
releasing new versions. In this table, all Pre-releases are the prepa-
ration of the major release 1.1.0. Stable releases are earlier releases
prior to 1.1.0. These versions are very small in size, but they are
functional and less prone to errors and bugs. 21

4.2 Displays the top most ranked forks with the search criteria we used. . 23
4.3 Top contributors who have made more than 50 commits to Marlin’s

RC branch . 24
4.4 Top contributors who made more than 30 000 additions 24
4.5 Top contributors whom made more than 15 000 deletions 24
4.6 Example List of Feature Pull Request 30
4.7 Example List of Feature Commits . 31

5.1 Feature Ratios of Sources Result . 42
5.2 Source of Information Summary . 43
5.3 Correlation Test Result . 48

B.1 Feature Collection Result . 66

xiii

List of Tables

xiv

1
Introduction

As modern technology develops, software has evolved from simple applications to
large and complex systems. There are simple mobile alarm Apps and calculators,
and there are also intelligent software such as infotainment system in cars, and self-
driving cars. Gradually, “software feature” became a term that is widely used in the
industry and academic world to describe functionalities. From an user’s perspective,
it is usually used to talk about the functionalities of the software or how it differs
from similar products. From the developer’s perspective, especially for those who
work with maintenance tasks, it is more relevant to know the location of a certain
feature or functionality to be able to perform maintenance tasks. Maintenance
tasks usually consists of adding, removing, or modifying code that is related to a
feature. To effectively locate the target feature, and to reduce effort in maintenance
assignments, it becomes demanding to discover appropriate methods. This process
of locating different functionalities in a system is usually referred as feature location
[13].

1.1 Feature Location in Industrial Practices

Feature location in software, is the process of identifying an implemented user-
observable feature from the source code entities, such as methods or files [4][13]. It
is also a fundamental step in software maintenance tasks such as debugging, under-
standing, and reuse. However, feature location is also necessary in companies that
have adopted the Software Product Line (SPL) approach. There are many software
companies that have grown in their business, and have developed more than one
product. For the companies where products could share a common code base, in or-
der to effectively manage those products, to reduce production cost, increase asset
reuse, and decrease time-to-market, more and more companies adopted the soft-
ware product line approach to extract the common code base and develop adequate
variability mechanism [17].

In today’s industry, not many companies would invest in changing directly into SPL
approach, as the cost of transforming the architecture and the processes requires
to support SPL approach is very high. A transitional approach called “forking”
has been adopted in the industry, and the reusable assets are managed through an
integrated platform [2]. An integrated platform is a project where reusable assets
are kept at one place and untouchable by developers of other projects. For the
forking approach, in order to create a variant of a product, the developers would

1

1. Introduction

fork the project from the base project and make changes directly in the forked
project, leaving the base project untouched. There are many forms of forking such
as completely ad-hoc or using feature models or configurations. Tactics are suggested
[2] for the developers to manage the disadvantages of the different forms of forking.
For companies that require either direct or transitional approaches, the assets have
to be reorganized and features need to be identified and annotated in the source
code according to the system’s feature model. Therefore effective Feature Location
Techniques(FLT) are also important for companies that are adopting SPL approach.

1.2 Case Study Subject
There is a wide adopted software product line approach named clone and own [2]
which is by forking the original product to create a new variability. Marlin is a
embedded system of a 3D printer firmware which has been heavily forked since its
creation in 2011 [16]. There could be variables of Marlin from the large mount of
forks, therefore it is a good example to investigate Marlin and research on feature
location for SPL. Another reason is that, in the software industry, there are many
embedded system within automotive industry or aerospace industry etc. A survey
study conducted by Berger et. al. [3] reported 42 responses that came from dif-
ferent countries and application domains, and among those application domains,
there are many embedded systems that have either started transition into SPL ap-
proach or had already evolved into a mature SPL. Therefore choosing Marlin as the
subject to study would provide a good case study that could indicate the effective
methodologies in feature location in embedded system domain.

1.3 Currently Existing FLTs
There are several popular techniques that are used for feature location today. To
name a couple, scenario-based probabilistic ranking of events and information-
retrieval-based technique that uses latent semantic indexing [12]. More feature lo-
cation techniques can be found in the survey conducted by Julia Rubin and Marsha
Chechik (2013) [15]. These methods had been applied by researchers to evaluate
their advantages and disadvantages on different software systems. It would be inter-
esting to apply those techniques and test out their effectiveness in feature location
in our thesis, however in the background study we describe in chapter 2, although
the techniques are capable of finding features, there are still disadvantages with each
technique. The accuracy of finding large amount of complete features is not high.
In common sense, one could expect certain amount of codes only belong to one fea-
ture. These features we can call them complete features. There are some features
may not be called complete feature since they overlap with others features. And the
results were not generalized for different systems. Therefore we will investigate why
the accuracy is low, and plan to do so through studying Marlin and locate features
manually. We perform manual feature locations after thorough domain analysis
on the system and its development ecosystem since those steps prepare for manual
feature location. The processes and reflections that we gain provide good insights

2

1. Introduction

on how do the developers locate features without the assistance of tools, and how
can they achieve high location accuracy with the absence of tools. This is a major
contribution of this thesis, and the results may provide guidance to developers of
embedded software to follow similar approaches as ours to manually locate features
during maintenance tasks or migration projects from traditional development to
SPL development.

1.4 Problem Statement
In the industry, most people that are involved in developing the software application
will not be the same people who maintain the system. The time it takes to maintain
the software is usually much longer than the time it takes to develop the application.
Thus good techniques for effective feature location are very important today. New
developers would not need to start from scratch to learn about the system and
the FLTs could help them to locate directly the feature that they need to work
with. There are many techniques for feature location; however, these techniques
are rather unique in terms of their input requirements, method used to locate the
feature in the source code, and the presentation of the results. There is also very
little evidence on high accuracy percentage of those techniques. On the other hand,
software systems are very different in many perspectives, thus choosing the right
FLT for a maintenance project can be time consuming, and the results are not
optimized. For companies that have adopted the SPL approach, the assets were
reorganized into features for the creation of feature models and management of
variability mechanism. Therefore during the transition from traditional development
approach to SPL approach, it is also required to locate features and reorganize them
into SPLs.

For most of the studies conducted in FLTs, there is rarely any dataset being created
to record the located features. If we can obtain a dataset with correctly located
features, it could serve as ground truth. A good dataset recorded and annotated for
a system, it is beneficial for evaluating the effectiveness of FLT more thoroughly in
the same system, and it could also be used as basis to improve the FLTs. An example
of feature annotation of three projects was done by Ji et al. [8]. Since the dataset
from the example is not large enough to have better understanding of feature, we
will create more dataset from this case study, and we focus our study on how to
obtain the dataset. The results serve as inspirations for companies or researchers to
create their own dataset or to locate features. We use Marlin as our study subject,
and we will retrieve its features manually to summarize our experiences on how to
conduct manual feature retrieval. We will also analyze the features located to study
the characteristics of features using several metrics.

1.5 Research Goal
One of our main research of this thesis is to understand the processes that are re-
quired to locate features. Feature location is still an issue today, and not many

3

1. Introduction

mature FLTs are available or can be applied effectively. Therefore we want to know
what does is take for developers to retrieve features even without the assistance of
any techniques, and we could summarize the process and elements needed for this
action. The result can also used for further comparisons with the underlying mech-
anisms of other FLTs, or it could be used to improve them. Another main research
of this thesis is the study on feature characteristics, we hope it could inform us the
different characteristics of the features in Marlin, and whether there is any inter-
esting correlations between the measurements of characteristics and the underlying
reasons behind them.

1.6 Research Questions

In order for us to investigate feature location methodology and reach our research
goals, we devised three research questions. Below are the research questions we
intend to answer:

RQ1: Is there an existing notion of features used in Marlin? This is a preparation
question, and we are only interested in finding superficial information on whether
the developers use the concept of features in communicating new functionalities,
or whether the source code is distinguishable in terms of features with mechanisms
such as ifdef or naming conventions.

RQ2: What are the strategies and sources of information for identifying features
and their locations manually? After some domain analysis and pre-studies to gain
some useful background information regarding Marlin, we retrieve features manually.
We summarize the methods that we used and discuss them.

RQ3: What are the characteristics of the found features? Here we statistically
summarize and analysis on the features results we found, and we use metrics such
as Lines of Feature Code (LoFC), Scattering Degree (SD) and Tangling Degree (TD)
[10] to find correlations between those metrics and characteristics of features.

1.7 Main Contributions

After the completion of this thesis, we have several contributions to the research
field:

• Introduced two new methods for identifying new features.
• Created a dataset of 44 retrieved features in Marlin with annotations in the

source code. These can be found in the repository1.
• Recorded Fact Sheets for each found feature with information e.g. feature

name, description, time consumption, ratios of sources, feature characteristics,
etc.

1https://github.com/hui8958/Marlin/tree/MarlinFeatureAnnotations

4

https://github.com/hui8958/Marlin/tree/MarlinFeatureAnnotations
https://github.com/hui8958/Marlin/tree/MarlinFeatureAnnotations

1. Introduction

• Developed scripts to automate the process of metric measurement for features’
characteristics. The scripts can be found in the repository2

• Identified most useful source of information and strategies for identifying and
locating features.

1.8 Document Structure
The rest of the thesis is organized into the following structure. Chapter 2 reviews
several papers to learn about the current standings on the related researches, and
that there is a need for our research. Chapter 3 describes in detail the processes
of the various studies that we conducted in order to answer the research questions.
The results of the conducted studies are presented in the Chapter 4. Chapter 5
further processes the results produced and analyzes them to extract the significant
points. These will be used to answer the research questions. Chapter 6 states the
limitations and delimitation of this study. And Chapter 7 concludes the findings of
our study and suggests future work.

2https://github.com/hui8958/FeatureCharacteristicsMeasurementTool

5

https://github.com/hui8958/https://github.com/hui8958/FeatureCharacteristicsMeasurementTool
https://github.com/hui8958/FeatureCharacteristicsMeasurementTool

1. Introduction

6

2
Background

There are many papers research on automatic FLTs, and on the contrary there
are very few research on manual FLTs. For the automatic FLTs, there are not
only case studies on independent techniques but also combinations of techniques to
achieve higher accuracy. However, none of those literature provide adequate result
on feature location, and there are only cases studies without gallant affirmations
of generalization on other systems. This proves that there is a need for effective
methods on feature location, and because of the important role feature location
plays for maintenance and software product line, it is essential to start investigating
the root problems of low accuracy of the techniques. The research papers on manual
FLTs are very few, therefore we want to fill this gap by studying how to manually
locate features correctly in this thesis.

Poshyvanyk et al. (2007) conducted a research on studying the effectiveness of three
FLTs on three case studies [4]. This paper explained two widely used FLTs in the
industry. One is Latent Semantic Index (LSI), and it is a static analysis method
that indexes the source code data that contains methods names, class names, or
comments etc. Then the user can query the data by typing words in the fashion that
are commonly used by developers. Another method is Scenario-Based Probabilistic
Ranking, and it is a dynamic analysis method that requires execution of scenarios
to find the traces of related methods or functions that are executed. Poshyvanyk et
al. (2007) stated that both methods have their advantages and disadvantages, and
none of them can provide adequate results if performed separately. This paper had
conducted three case studies in Mozilla project’s sources codes that were written
in C++. The result had shown significant result improvement in the suggested
combination of the two methods instead of performing the two methods separately.

Revelle and Poshyvanyk (2009) performed a case study over the effectiveness of
different combinations of three main FLTs [14]. The three main techniques are
textual, dynamic, and static analysis methods. Textual analysis is the same as
static analysis in Poshyvanyk et al.’s (2007) paper. And static analysis makes use of
tools to obtain Program Dependency Graphs. By finding one method related to a
feature, the other methods can also be traced with the dependency graph. Revelle
and Poshyvanyk (y) studied 10 different combinations of the three methods, and
concluded that most of the combinations could find 30% of methods that are the
actual methods belonged to a feature. They also found that using automatically
generated queries for textual analysis works just as well as human formed queries.
Lastly, marked traces works better than full traces for dynamic analysis because it

7

2. Background

limits the methods to be executed.

Emily Hill, Alberto Bacchelli and other researchers (2013) proposed a rank topology
metric to fairly compare FLTs [7]. The comparison has been made based on the
likelihood of a developer finding the bug fix locations from a ranked list of results.
This topology could be used in our case study for comparing the FLTs that we used
to measure their precision, recall and effectiveness. This topology determine the
shortest number of hops required to find it in terms of structural topology and the
ranked list as metrics. The result set will be the minimum cost of navigating to each
fix location. The result has shown that this rank topology has the same relevant
results at the exact same ranks with a state-of-the-art IR technique.

Julia Rubin and Marsha Chechik (2013) performed a survey of feature location tech-
niques [15]. In this survey, the authors provide an overview of existing twenty-four
feature location techniques for software product line engineering such as: Formal
Concept Analysis, Latent Semantic Indexing, Term frequency - inverse document
frequency (tf-idf) and Hyper-link Induced Topic Search, etc. The author also de-
scribed their implementation strategies and exemplify the techniques on a realistic
use-case. In the survey they also discussed the properties, strengths and weaknesses
of each FLTs. This survey provides guidelines that can be used by us when deciding
which feature location technique to choose.

For most of the studies conducted in FLTs, there is no datasets being created to
record the features either by the developers or by maintenance personnel. An ex-
ample of feature annotation added for three projects were done by Ji et al. [2].
With a good dataset created to record and annotate features of a system, it would
be beneficial for evaluating the effectiveness of FLT more thoroughly in an entire
system, and it could also be used as basis to improve the FLTs. We would conduct
studies to manually locate features for Marlin, and use them as ground truth for
evaluating different FLTs for future work. One more study conducted by Krüger et
al. (2017) [9] is about identifying and mapping features from cloned system. Their
a step-wise process to locate and map feature were tested in a case study, and the
results were compared to a reference study based on the same case. As a conclu-
sion, there appear to be variations on the results. This also suggests that different
methodologies produce different results.

Wang et al. (2013) [18] researched on manual FLTs by performing an exploratory
study on feature location process. This study is done by giving six feature location
tasks in unfamiliar systems to developers and study how they solve them. They
found that the process for manual locating a feature can be divided into three levels:
phase, pattern and action, and these levels can help improving manual locating
features for junior developers.

8

3
Methodology

In order to answer the research questions proposed in the Introduction chapter, we
planned on performing several activities that would help us to answer the questions.
In our research proposal, we planned on conducting a pre-study around Marlin’s
ecosystem to gain some insight on the development process, and we also planned on
studying pull requests that are labelled with "New Feature" on GitHub. These two
planned activities evolved into five activities eventually. The first activity that we
conducted was domain analysis, here we studied 3D printers from domain perspec-
tive. Then we studied the ecosystem of Marlin in its development processes and its
key players. These two activities makes of the preparation stage, and it would allow
us to gather useful information such as domain entities i.e. hardware components
and development flow. Those information would improve our understandings on the
system in a higher perspective. It also sets the foundation for us to retrieve features
manually. Thus the third activity is manual feature location. This activity pro-
vided us results on strategies and source of information that are needed for manual
feature location. The fourth activity is the analysis of the previous result from the
third activity, and we would use several metrics to measure the characteristics of
the features found. For the last activity, we were able to construct a Feature Model
with all the information we have after the domain analysis and features that we
have retrieved. We conducted all five activities in sequential order, and the result
provided in each activity would help us in answering the research question, and it
would also provide us useful information for other activities in order to answer other
research questions.

3.1 Domain Analysis
For the first activity of this thesis, we aimed at obtaining domain knowledge about
3D printing through domain analysis. The way we approached this is through printer
construction. We could learn about what parts does a 3D printer have in order to
function, and what mechanisms there are in order to drive a 3D printer. Two 3D
printers were purchased for this purpose. The two printers are of different types, and
there are a number of different types of printers and printer Firmwares in the 3D
printing community. This two printers are of rather common types, one is a Delta
printer while the other one is a Cartesian printer, and Marlin firmware supports
both types of printers. With domain analysis through working with the printers,
it would also allow us to observe a 3D printer in real life and see its entire process
during printing. The two printers were bought in parts, and there are instructions

9

3. Methodology

on assembling, we follow them most of the times, but it is also required us to be
creative at uncleared points. We constructed both printers, and installed Marlin on
the Cartesian printer to test out different optional features. These knowledge would
prepare and help us for the in depth study in Marlin’s source code later on.

3.1.1 Delta 3D printer construction
We started with constructing the simpler and smaller Delta printer. It has fewer
parts and cables to be assembled in comparison to the Cartesian printer. It has
a cylinder shaped frame, and the Hotend is held by three plastic pieces above it,
see figure 3.1. The plastic pieces are attached to three axes that are part of the
frame and movement mechanism, and their movements are controlled by Motors.
There are three motors that drive those plastic pieces, and they control the three
dimensional movements of the Hotend. In order for the material to be extruded and
feed to the Hotend for melting, an Extruder is required, and it sits on top of the
printer frame, and the Filament is feed through a plastic pipe to the hotend below
to be melted. The motors sits together with the extruder and the mother Board on
the top of the printer frame. For Marlin firmware, it supports up to four multiple
extruders so far, and it is allows the users to insert four filaments in different colors
to each extruder so that the designed object can be printed with different colors.
Another crucial mechanism for 3d printing is the Endstops, and they are positional
sensors that are located at the top end of the axes in Delta printers. When the
plastic pieces move upwards pulling the Hotend, and while the pieces reaches the
top of the axes and hits the endstops, it would tell the printer firmware that it has
reached the end of the axes, and it is the home position where it could stop all
movement and enter rest mode.

It was relatively less cumbersome to assemble and install this printer, however we
had issues with the printing bed. This printer has a metal piece as printing bed.
There is no sticky medium to allow the newly squeezed hot materials to stick on the
bed. We made several trials with different options such as putting papers, tapes or
glues etc. And finally it worked quite well with a combination of glue and paper on
the bed, and it proved to have good level of stickiness. Other than that, this printer
did not have Marlin installed as default firmware, and instead it had Repetier which
is also a widely used 3D printing firmware. We downloaded Repetier host to direct
the printing from our laptop. We also downloaded some 3D models made available
by other hobbyist to print them out. The printed object is quite good, although
there are problems with scales, and it usually becomes larger than it was designed
to be.

3.1.2 Cartesian 3D printer construction
After the construction of the first printer, and everything worked out well, we moved
on to the construction of the Cartesian printer. This printer is bigger and more
complex than the Delta printer. It turned out to be a great help for us to have
assembled the Delta printer first, and we had some basic understandings on the
major hardware components and frame parts from there. The major challenge with

10

3. Methodology

Figure 3.1: Delta 3D Printer

this printer is that, adds to the complexity of hardware and cables, the instruction
on electrical connections are very blurry, and some places do not correspond with
the parts that we have. There is no clear instructions anywhere. So we eventually
had several pictures from finished printers we found on Internet and our unclear
instructions, and we tested our way out step by step by connecting all cables to
places where we think it should be and plug in the power supply to run the printer.

Instead of a cylinder shape like the Delta printer, this printer is of rectangular shape,
and the frame that holds everything together sits in the middle of the Y Axis, see
figure 3.2. Y axis lies parallel to the table, and there is a Bed attached to it, so
instead of moving the extruder to find its position in Y axis, the bed is moved along
the Y axis. The bed on this printer is soldered to power input, so it can be heated
up to 60 degrees, and there is a thermistor attached to it to control the temperature
to not be overheated. This is an advantage over the other printer, as the newly
squeezed material sticks directly to the Heated Bed without the necessity of any
sticky mediums. The z axis is driven by two motors on each side of the Frame, and
two spiral metal cords are attached to the motors, so as the motors turn, the spiral
cords turns as well to produce z axis movements, and they brings up or down the x
axis that is attached to the spiral cords.

This setup results in very precise movements along the z axis, and the scale of
printed objects are exactly the size as it is designed in the 3D model. Unlike the
Delta printer where the printed object can have very imprecise scales. Although we
encountered problems such as motors’ and endstops’ positive and negative cables
could wrongly connected or connected to the wrong pins on the board. However

11

3. Methodology

we managed to get everything right in the end, and the printer were able to print
beautiful objects. The Chinese good fortune cat displayed on the cover page is one
of the objects printed, and the printing quality is quite fair. After the construction,
we installed the newest release version of Marlin, and we were able to configure it
test out different optional features of this release.

Figure 3.2: Cartesian 3D Printer

3.2 Marlin Ecosystem Pre-study
The first activity helped us to answer partially to the first research question, for
details of the answer please see chapter 5. It is also beneficial to conduct a study on
Marlin’s ecosystem. A pre-study prior to manual retrieval could give us more insight
on how features are formed and handled during development, and it would also set
the stage for us to learn how to manually retrieve features. Since Marlin’s firmware
development is hosted on the open source development platform GitHub, its entire
development process is publicly visible. The development of the firmware relies on
the collaboration of developers that either belong to MarlinFirmware organization,
or they are willing to make contributions to Marlin’s source code. We would firstly
study on the development and release history of the system, and we would secondly
study how do the developers collaborate with each other to make contributions, and
lastly we would like to know what are the usual development flow of a feature or a
bug fix.

For learning about the development history, we used sources such as the Release
log provided by the developers, and Wiki (both are available on Github) to learn

12

3. Methodology

about the development of Marlin and its evolution. For results on the leading
developers of Marlin, we used GitHub’s contribution list and our own metric to
analyze the developers’ pull request statistics. For studying about Marlin’s forks,
we used previous study result conducted by other researchers on forks [16] and
GitHub’s API to retrieve forks using our self defined search criteria. Lastly, we
went through the issue trackers and pull requests as well as other documentations
to learn about the organization’s development culture and process i.e. how are
issues raised, and how they are handled and contributed into the mainline. The
outcome of the pre-study will be information regarding Marlin’s ecosystem with the
description of the development history, important forks and contributors, as well as
their development cultures and process.

3.3 Feature Location

Manual feature location is a complicated and cumbersome task, it is always a chal-
lenge or software maintenance and transformation towards software product line.
With earlier activity preparations and Marlin’s development tracing possibilities
through GitHub, we would be able to retrieve features through development traces
such as Pull Requests and Commits. The development of a software usually breaks
down into small features and tasks. When developer complete a task or feature, he
or she usually create a pull request which contain all the source code with the fea-
ture information, therefore it is a good way to trace the code and the modifications
belong to a feature. After every iteration of the development process, there will be
a release containing all the pull requests and the code modification. In Marlin, we
found that there are many releases, and the release log has a very good traceability
of the pull requests and code changes, and we choose to study the source code of the
latest release candidate RC8. This release contains much more features comparing
to earlier releases, and there are about 200 files in this release. During the pre-study,
we found that for each release, the new feature developments, enhancements, and
bug fixes are mentioned and categorized by the developers into lists of new features,
bugs fixes, and enhancements etc 4.2.1. This is a very clever attempt by the Marlin
developers to make it easier for users or other developers to learn about the changes
made to the new release. The latest Marlin releases such as RC7 and RC8 also links
the pull requests made to those changes. This made it easier for us to retrieve the
new features developed for the releases. So we started the manual retrieval from
those release documentations. After identifying and locating 31 optional features
with release log, we moved on to retrieve mandatory features directly through source
code which is the most difficult task of this thesis. The reason to retrieve features
from source code is for the projects that are not developed with GitHub or other
version control system, the available source of information are limited to software
artifacts and source code. There are also other possible alternative methods that
we could use, but most automatic FLTs are difficult to implement, and the accuracy
rates are generally low. There are neither any ground truth that we can use to
compare the results found by the automatic FLTs.

13

3. Methodology

3.3.1 Feature Identification and Location through Release
Log

We took the release log recorded by the developers from GitHub, and there are
different types of development such as new feature, bug fix, quality improvement.
For an example of the different types of development, please see our development
history result 4.2.1 in pre-study. We extracted only the developments regarding
new features. For the extracted list, see appendix A. Feature are firstly identified
from this list. We commenced with the new features implemented from the last
Marlin release because it contains a lot of new features, and the codes related to
them are not changed so much for bug fixes. After the identification of a feature,
the extracted list also contains the links to related pull requests, and we were able
to find the commits related to the pull request as well. Usually there are more
than one commits for a feature, or there are two small features committed together.
Therefore we had to look into the source code to finally locate the features from
the commits that contains the actual feature development. Sometimes the commit
does not only have feature development, there are also other small improvements or
bug fixes. Therefore it is very important to not presume that the pull requests or
commits contain solely the development of a feature, and one should always have
a look into the source code and extract the code segments that are related to the
proposed feature implementation.

3.3.2 Feature Identification and Location through Source
Code

We found 31 optional features through the Release Log method, and all of those
feature are optional. However, there are 20 features that are completely wrapped
with ifdef conditionals. Marlin could perform its usual functionalities without those
features. Whereas Marlin’s mandatory features were implemented much earlier in
the project, and those features can only be adjusted but not disabled in the config-
uration file. Marlin’s creation back in 2011 was through merging of two other 3D
printer firmware projects: Sprinter and grbl. It was not a feature-by-feature devel-
opment in the beginning, and it contained sometimes with large amount of source
code and features in the very first commits followed by certain fine tuning and small
fixes. Those mandatory features had also evolved through years of development and
enhancement, and they look quite different as they were in the beginning of the
project. So the identification and location of those features are almost impossible
to be performed through release log and pull requests. The option that we could
see was that the mandatory features have to be retrieved directly through source
code. And there will be limited source of information that also requires to be scru-
tinized since the source code could be difficult for comprehension without domain
knowledge and adequate programming skills. This type of feature retrieval is moti-
vated by systems that are not developed on platforms such as Github, and there are
also rather limited source of information to start with. The experience and results
found could be helpful for people working with those system to locate features for
maintenance or software product line migration.

14

3. Methodology

The only available source of information that are useful for this type of retrieval
in Marlin are g-code documentation, code comments and source code. This task
would have been very difficult if the previous activities were not performed in ad-
vance. As it requires extensive domain knowledge on the hardware components as
well as printer frame parts. And it also requires good understandings on the overall
architecture of the system. Therefore obtaining useful domain knowledge and archi-
tecture overview are important strategies for this type of feature retrieval. Feature
identification becomes possible after understanding both regarding to the domain
knowledge and the source code. A feature was named after its domain purpose
such as "Move_To_Destination" and "Command_Handling", and the source codes
are also programmed in a way that these features could be identified. Therefore
feature identification is performed through a combined understanding from domain
knowledge and source code comprehension. Sometimes variable naming that are
rather close to the names we gave to the features such as "command_queue" and
"Destination[xyz]", and we used them as inspirations to name the features. The
optional features we found with release log and pull request provided us insights on
some of the features, and it gets easier for us to understand the rest of the source
code. We start feature location by studying the most important and central logic of
the system, Marlin_Main.cpp file. This file contains more than 10 671 LoC. After
that, the rest of the system files that contain minor classes and macro files etc.
will also be studied to retrieve more features or parts of the features discovered in
Marlin_Main.cpp.

We read through the file and retrieve features by annotating them (see example
in figure 3.3). The annotation makes it easier for us to mark the feature, and
it also makes it easier for the next activity of analyzing features’ characteristics.
The results produced from this activity are fact sheets that records the features
found and how we found them. All features found are annotated to with syntax
of //&begin[feature_name] and //&end[feature_name] [1]. These annotations are
dataset that could be used for improving machine learning algorithms and other
techniques on feature location. The annotated feature dataset could be found on
our GitHub repository. We also created fact sheets and source code annotations for
the mandatory features found. Together with the optional feature results produced
from release log, the second research question will be answered.

Figure 3.3: Annotated source code In Marlin_Main.cpp

15

https://github.com/hui8958/Marlin/tree/For_FeatureTools

3. Methodology

3.4 Feature Characteristics
For the third research question, we wanted to study what kinds of characteristics do
the retrieved features resemble. We used the source code annotations from the last
step, and we collected statistical information regarding the features. Four metrics
were defined for this purpose. The four metrics and their definitions are listed below:

LoFC Short for Line of Feature Code. This metric defines how many lines of source
code there are for each feature. There are cases where some LoFC belong to
different features, meaning that there are overlaps among features.

SD short for Scattering Degree. This metric defines how many locations does each
feature spread in the source code. This means every source code blocks of
variable declaration and/or method definition located in different places of
the system will be counted.

TD short for Tangling Degree. This metric measures how many other feature con-
stants (ifdef conditional statements) appear in a feature which is simpler to
be automated for measurement. As tangling degree increases, it could impair
comprehension capability [10].

All measurement results are recorded as part of the fact sheets of the features.
During the measurement, we started by manually measuring each metric to help us
to learn the measurement process. Later we wrote scripts to automate the process,
and the results are double checked against the manual measurement results to ensure
that the scripts can produce accurate results. The scripts could produce good results
for most of the except for Tangling Degree. Due to unclear definition of the feature
macros, it escalates the difficulty of obtaining accurate measurement results of the
tangling degrees. This results in a rather large deviation from the true results of the
tangling degree. It requires manual examination to eliminate the ifdef macros that
are not feature expressions. However, in case of large amount of features, the metric
measurement process has to be automated. Therefore, we are aware of the problem
of this measurement result. The measurement results will be centralized for further
analysis and data interpretation in Result 4 and Result Analysis 5 chapters.

3.5 Marlin Feature Model
With the domain knowledge obtained from domain analysis and all the features that
we have retrieved and, we built a feature model of Marlin with all the information we
have. This is an incremental process where we gradually add and refine the model
until the latest feature analysis were completed for the thesis. For companies that are
migrating from traditional development approaches into software product lines, it is
a fundamental step to create feature models for the system so that product variants
can be derived by selecting features from the feature model. After domain analysis,
we had certain basic understandings on the hardware components of Marlin, so the
hardware components identified would be added to the feature model first. After

16

3. Methodology

manual retrieval, features found other than those we found earlier would also be
added to the feature model at appropriate places, and dependencies are handled
if there is any. It should be noted that the feature model that we are building is
not complete since not all features are retrieved due to time constraints and thesis
scope, it should be a continuous process to continuously find more features and add
to the feature model.

17

3. Methodology

18

4
Results

In this chapter, we present our results collected in sequential order by using the
methodologies mentioned in the last chapter. For domain analysis, some findings on
the study of 3D printing are presented. Then the results regarding the development
of Marlin and its ecosystem are listed. The results produced from these two steps
had prepared and equipped us with knowledge and information to carry out the task
of feature identification and location. Some raw data of fact sheets are presented
first, and then statistical summaries were make across all data fact sheets for data
interpretation. Feature characteristics are also extracted from the raw data and
summarized for interpretation. Lastly the final feature model created is presented
and described.

4.1 Domain Analysis

The process of constructing and installing the two printers provided us with domain
information regarding 3D printing. Those information are basic functioning parts
(See Glossary), key hardware components (See Glossary), and the printer input
structure. Those 3D printers takes G codes as input. And in order to obtain G-
codes, 3D models are drawn first in .stl (Standard Triangle Language) format, and
it specifies the surface geometry of 3D objects [21]. Those files are then processed by
slicer programs where it converts the model into G-codes. G-code [19] is a language
designed by MIT for people to instruct and control the movements of the machines.
3D firmwares such as Marlin would read the G-codes either through input file or
through software connected to the printer, and they would perform movements as
they are defined for the RepRap firmware.

After the installation of the newest version of Marlin on the Cartesian printer, we
tested out several features, and there is a configuration file where the user can
enable and disable a feature through removing the comment lines of a #define
macro. For example, there is an optional feature of Marlin named “SWITCH-
ING_EXTRUDER”, and since Marlin supports more than one extruder, and some
extruders are connected together with a switching servo, and the extruders can be
switch from one to another one to print in different colors. There is a macro in
the user configuration file defined as “//#define SWITCHING_EXTRUDER”. If
the user wants to enable this feature, he/she would only need to remove the com-
ment line “//”. And the source code that implement this feature are surrounded
with conditional inclusions such as “#ifdef”. So if the feature is enabled by an user,

19

4. Results

the code that are surrounded with the conditional inclusions will be included af-
ter compilation, and if the feature is not enabled, those codes will be pruned after
compilation.

4.2 Pre-study
For the pre-study, we used available source of information provided by GitHub such
as Wiki, release log, commits, Pull Requests, issues, and contributor etc. We read
through those sources and extracted relevant information as needed. As described
in the Method chapter 3, the results we are interested in having are development
history, important forks, key developers, and development process. The following
subsections will present these results collected for Marlin’s ecosystem.

4.2.1 Development History
For the history of development of releases, we looked at the release log of Marlin
(see Appendix A). We found that Marlin had some early stable release versions with
rather basic functionalities, those stable versions work pretty well in producing 3D
printings, and they are less prone to errors. For the last two years, the developers
have been working towards making a new release of version 1.1.0. Since this is a
rather major release than the stable versions, the developers have made 8 release
candidates so far. Each release candidate contain plenty of new features, quality
improvements, and bug fixes etc. For a complete release history their corresponding
information, see table 4.1. For a graphical view over the release history and commit
sequences related to them see figure 4.1. There were almost 7000 commits for the
latest release candidate (RC8) while there were less than 2000 commits for the last
stable release. RC8 was released at the end of 2016 which is also the latest release
at the time of this thesis study, this version supports much more G-codes, different
types of hardware, and configuration possibilities. However it is more prone to errors,
and the developers would fix the bugs found after release and push the changes to a
branch named RCBugFix. We installed RC8 on our Cartesian printer, and we tested
out several new features by enabling them in the configuration files, and it was a
very fun experience to watch how the features come out alive during printing. And
they worked out in the way they were proposed from the issue trackers, discussions,
or G-code documentations.

As stated earlier that improvements made for the stable releases are much less in
comparison to the pre-releases of version 1.1.0. Here we list an example of how much
development were made for a major release and a minor release. See below:

Recorded improvements for stable release 1.0.1, there were only 9 documented sig-
nificant changes for stable release 1.0.1:

• Progress bar for character-based LCD displays.
• SD Card folder diving up to 10 levels deep.
• Added support for Melzi electronics.
• Fixed issues with Babystepping.

20

4. Results

Table 4.1: Release history of Marlin. The latest RC branch recorded at the end
of March 2017 had 6790 commits. The commit difference comparisons with other
releases were made based on this record. RC branch contains the latest RC releases.
There could also be some commits after a release in the branch just to fix minor
issues, therefore there are 3 commits even after RC8. Different from RCBugFix
branch where it is used for bug fix and new development, RC branch is only used
for releasing new versions. In this table, all Pre-releases are the preparation of the
major release 1.1.0. Stable releases are earlier releases prior to 1.1.0. These versions
are very small in size, but they are functional and less prone to errors and bugs.

Release History List
Date Type Version Name Difference

from the
latest RC
branch
(Number
of commits)

23 Dec 2016 Pre-release 1.1.0-RC 8 Woozy Wookiee 3
01 Dec 2016 Latest stable

release
1.0.2-2 N/A N/A

21 Aug 2016 Pre-release 1.1.0-RC 7 Jittery Jedi 939
29 Apr 2016 Pre-release 1.1.0-RC 6 Trembling

Tusken
2129

13 Apr 2016 Pre-release 1.1.0-RC 5 Sapient Saber 2449
25 Mar 2016 Pre-release 1.1.0-RC 4 Earnest Ewok 2576
01 Dec 2015 Pre-release 1.1.0-RC 3 Gunshy Gungan 2914
03 Oct 2015 Pre-release 1.1.0-RC 2 Ten Ton

Tauntaun
2975

19 Sep 2015 Pre-release 1.1.0-RC 1 Wacky Wampa 4956
30 May 2015 Previous sta-

ble release
1.0.2-1 N/A N/A

08 Jan 2015 Previous sta-
ble release

1.0.2 N/A N/A

28 Dec 2014 Previous sta-
ble release

1.0.1 N/A N/A

20 Nov 2011 Previous sta-
ble release

1.0.0-beta N/A N/A

• Fixed issue with out-of-order command acknowledgement.
• Split up languages.h into separate files.
• Added names for board numbers and boards.h file.
• Support for Toshiba stepper drivers.
• M0 / M1 message string support.

Recorded improvement for pre-release RC8, only summaries on different types of
development are listed here since the change details are too much and irrelevant to

21

4. Results

Figure 4.1: Release timeline and commits statistic

be displayed here:
• 19 new features.
• 5 code clean up and documentation.
• 9 Improvements on planner and stepper.
• 32 Improvements on performance and stability.
• 13 Improvements for configuration.
• 25 Homing and Bed Leveling.
• 3 Mesh (manual) Bed Leveling.
• 17 LCD controllers.
• 15 improvements on languages.
• 12 improvements for developers.

4.2.2 Marlin’s Forks
Then we studied the forks of Marlin, Marlin has 3941 forks (taken at 9th April
2017). The heavy fork creation in an open source development platform can be
seen as integrated platform[16]. It is seen as a transitional approach in adopting
SPL. The study conducted by Stanciulescu et al. [16] in 2014 reported that there
were 1588 forks in the project since its creation. The number of forks had almost
doubled in two and half years of time. At the time of their study, there were 700
active forks. It was reported from their study that 75% of the forks were used
for configuring a new version of the Firmwares. 43% of the forks were used for
developing new features, and 32% were used for bug fixing. Among the 43% of
the forks that served for developing new features, some of them were used by the
mainline coding contributors to develop features and integrate into the mainline
while the others are not integrated into the mainline due to it is not approved or
not intentionally developed for the mainline. There are forks even contain advanced
and interesting features that they developed for their own printers. Our pre-study
confirms Stanciulescu et al.’s finding in terms that 43% of the 700 active forks are
used for developing new features. As stated in Marlin’s contribution guidelines, if
anyone who wishes to make any contribution, he/she must fork the project and
develop in their own fork. There have been 282 developers that have contributed

22

4. Results

to Marlin (taken at 9th April 2017), and their forks are used either for developing
new features or bug fix. We also found an interesting repository that had modified
Marlin quite a lot, and it is called MarlinKimbra, and it is developed upon request
for Italian RepRap community. This gives an indication that there are different
variants of Marlin among the forks.

We used GitHub’s API to list a number of forks according to some search criteria.
This is one approach for us to try to find out what Marlin’s forks look like. Table 4.2
is retrieved based on whether there are key words such as “printer, 3d, marlin” in
the repository name and description, and the repository has to be forked from other
repositories, and they are written in language c. Some of those forks are developer
forks and there are also others whom have made some changes of their own and not
integrated into the mainline. However we did not focus our study on those forks.

Table 4.2: Displays the top most ranked forks with the search criteria we used.

List of important forks
ID Full Name Last Date Pushed Score
77801444 SkyNet3D/Marlin 2017-03-03 13.38
48942734 TinyBoy3D/Marlin 2016-01-04 12.8
4228806 kikailabs/Marlin 2015-10-21 11.73
79190327 dot-bob/Marlin 2016-12-19 8.65
70604234 gcormier/Marlin 2017-03-03 7.04
73470079 Pipshag/Marlin 2017-03-03 7.04
35349235 thingslab/Marlin 2015-05-09 6.52
83622346 Roxy-3D/Marlin 2017-03-02 6.29
54937948 computergeek1507/Marlin 2016-01-29 5.75

4.2.3 Key Developers
For the study of the key developers of Marlin, we used the contribution rankings
provided by GitHub. It shows that there are 283 contributors (recorded at the
end of March 2017) that have contributed to Marlin since the start of the project.
And among those contributors, 100 of them made contributions to the RC (release
candidate) branch. Many contributors that does not appear in the commits in RC
may have contributed in other branches such as RCBugFix. In order to identify the
most important developers, we came up with three metrics for measurement : “who
made the most commits” 4.3, “who made the most additions” 4.4, and “who made
the most deletions” 4.5. These three metrics would give some indications to whom
have the most interactions with the RC branch in mainline. Tables below to lists
the top most contributors to RC branch in each metric. We measured totally 18
developers. And concluding from the tables 4.3, 4.4 and 4.5, there are 7 contributors
that appeared on all three tables, they are thinkyhead, AnHardt, ErikZalm, jbrazio,
daid, Wackerbarth, boelle. Therefore it could be evident that they are the key
developers for Marlin. Here are some information about them.

23

4. Results

Table 4.3: Top contributors who have made more than 50 commits to Marlin’s RC
branch

Rank Contributor Commits
1 thinkyhead 2007
2 AnHardt 333
3 ErikZalm 203
4 jbrazio 154
5 esenapaj 142
6 daid 112
7 Wackerbarth 95
8 boelle 91
9 bkubicek 61

Table 4.4: Top contributors who made more than 30 000 additions

Rank Contributor Commits
1 Wackerbarth 207023
2 boelle 152836
3 thinkyhead 145784
4 STB3 117521
5 MarikStohn 111277
6 ErikZalm 51217
7 daid 36225
8 domonoky 35531
9 AnHardt 32985

Table 4.5: Top contributors whom made more than 15 000 deletions

Rank Contributor Commits
1 jbrazio 526936
2 Wackerbarth 152368
3 boelle 150980
4 thinkyhead 118826
5 daid 37377
6 ErikZalm 29315
7 bkubicek 24205
8 whosawhatsis 18904
9 AnHardt 15540

Thinkyhead had made the most commits into Marlin. He is also placed at 3rd and
4th place for addition and deletion. ThinkyHead’s name is Scott Lahteine, and he
is a programmer who devoted a lot of his time in creating applications for games,
music, and web etc. He got interested in Marlin as he was looking for projects to
learn about how to program for electronics in 2013. Thinkyhead’s contributions
had been the most active since the middle of 2014. And he is undoubtedly the
most important developer for Marlin, he developes new features, makes quality

24

4. Results

improvements, fixes bugs etc. And he also review other’s source code in case of
someone is not so confident about their code. He would give suggestions or make
improvements on the source code, then he runs Travis CI build tests to test out the
code for errors. Lastly, he would also assist in merging the newly developed code into
RCBugFix branch. Furthermore, Thinkyhead is a member of the MarlinFirmware
Organization.

AnHardt is from Germany, and he also makes constant contributions to the RC
branch since late 2014. AnHardt has a repository named MarlinKimbra as stated
earlier which makes a different version of Marlin in support of requests from Italy
RepRap community.

ErikZalm’ real name is Erik van der Zalm, he and boelle (the last key developer
according to our metrics) were the two developers who initialized Marlin back in
2011. Erik was most active in the beginning of the project all the way until 2015
where the project was moved to FirmwareMarlin organization. He has another 3D
printing project ongoing named ultimaker [22]. Ultimaker is also an organization on
GitHub, and this organization builds advanced and high quality 3D printers, and
they are available to be purchased.

Jbrazio real name Joao Brazio is located in Portugal. He has two repositories that
concerns Marlin. One is forked from Marlin, and the other is from MarlinDocu-
mentation where system documentations such as Marlin’s G-code functionality are
kept. He makes contributions to both. He is a member of the MarlinFirmware
organization. He’s contributions to Marlin started since the end of 2015.

Daid belongs to Ultimaker organization. He works on various projects in C++,
java, javascripts, C#, PHP etc. His contributions to Marlin lies mainly from the
beginning of the project until the end of 2013. There is no contributions from him
after that, and his fork is inactive since 2013 dec. However this fork tells about how
marlin was until the end of 2013.

Wackerbarth (Richard) is from Texas, he made a lot of contributions to Marlin in
2015, and he had made the most contributions to Marlin in terms of addition, and he
is placed at the second place in terms of deletion. His contributions were noticeable
from the release of stable version 1.0.2 all the way until the release of RC3, where
his contributions were stopped, and his development branches were inactive since
then.

Boelle does not have any fork for marlin, and he could have deleted as he took
part in initializing and contributing to the project. He opens a lot of issues for
Marlin, and also provides comments and reviews for discussions. His contributions
lies mainly from the end of 2014 until the end of 2016. He was responsible for
releasing the stable versions.

Some recent key players are not mentioned above like (Sebastianv650, esenapaj,
Blue-Marlin) since they have joined recently. Although they are very active recently
in Marlin, their contributions to Marlin as a whole is not weighted as much as the

25

4. Results

above mentioned 7. However, all of those top developers are quite active in terms of
making contributions to the source code and involvement in issue discussions. We
also made pull request analysis over the entire project to see which developers make
the most pull requests. Since pull request are directly related to the changes made
to source code, it is also interesting to find out whether those people are the same
as what we found using GitHub’s contributor list. As can be seen from figure 4.2,
"thinkyhead" has made 33.9% of the total pull requests, followed by "essenapaj" and
"AnHardt", with approximately 6% each. There are 54% of pull requests are from
"jbrazuo", "Kaibob2" and the rest of developers.

Figure 4.2: Percentage of pull requests created by the developers

4.2.4 Development Culture and Process
Marlin’s development culture is open sourced, and anybody who are willing to con-
tribute, give suggestions, raise issues or has opinions are encouraged to do so. Marlin-
Firmware Organization has 5 members, and they are Philip Schell, Jochen Groppe,
Joao Brazio, Panayiotis Savva, and Scott Lahteine. Besides them, anyone outside
of the organization may also contribute, and they are tagged as Contributors on
discussions if they made commits to any branches. In order for any new developers
to join and contribute, he/she has to have his/her own fork. In general, there’s a lot
of active discussions on Issues and Pull Requests in Marlin. There are discussions
about new features, coding standards, solutions, and suggestion on improvement
etc. People or organizations with new ideas for Marlin would propose it on the
issue tracker. Those ideas could be either from themselves or from G-codes defined
by RepRap Wiki [19]. Any suggestions for quality improvement or bug fixes are
posted on the issue tracker as well. Anyone who are interested in resolving the issue

26

4. Results

proposed could assign themselves on the task. However there could be competi-
tions sometimes. For example, some developer assigns him/herself for the task, and
he/she announces it on the issue tracker, nonetheless another developer also sets
forward in developing their own solution. This action leads to conflict, yet they find
a way to resolve the issue. They would compare the solutions and make the best
out of them.

A typical development flow in Marlin would usually start with an issue being raised
by users, developers or organizations. After the issue is proposed, someone would
either go straight up into development or there are unclear points or technical prob-
lems that lead to lengthy debate and discussions. With the issues cleared up, the
task is self assigned by anyone who is interested, and he/she becomes responsible
for the development. Task assignment in Marlin are usually self assigned. In order
to make contributions to source code, the developer needs to fork the project into
his own repositories, and this is demanded on the Wiki page [5] if one wants to
become a developer for Marlin. Thus development usually occur in the developer’s
own fork. After the new code finished, the developer should create a pull request
which contains one or multiple commits from the original repository. Then some
key developers such as thinkyhead would help out to review the code, for bugs or
bad contribution formats. When the key developers thinks the source code is fine,
he would create another branch in mainline with the name of the development i.e.
“Support_G20_Feature” to merge the changes into RCBugFix branch. Sometimes
the new code will be tested with Travis CI builds to avoid certain errors. The code
would also be tested by people who are willing to help out and test the code on their
own machines. They install the changes onto their printers and run the code. In
case of errors, they would be reported for later improvements. When RCBugFix’s
source code has good enough new features and bug fixes, the new code would be
moved to the RC branch and get released.

Pull request is a specific feature provided by GitHub for the developers to discuss
and test out the changes made before integrating the new code into the mainline.
Those pull requests are usually made for different purposes. For the development of
Marlin, each pull request had been labeled and divided into different categories. To
name a few, there are "PR:Bugfix", "PR:Coding Standards", "PR:Configurations",
and "PR:New Feature". The pull requests labeled with "PR:Bugfix" are used for
fixing bugs. The pull requests labeled with "PR:Coding Standards" are used for
unifying coding standards. The pull requests labeled with "PR:Configurations" are
used for adding or changing the configuration files. The pull requests labeled with
"PR:New Feature" are used for new feature development. The bar graph in figure
4.3 shows the lifetimes between the creations and endings of the pull requests.

27

4. Results

Figure 4.3: The lifetimes between the creations and endings of the pull requests.

4.3 Feature Identification and Location through
Release Log

By applying the method of using release log, pull requests, and commits as described
in Method chapter 3.3.1, we found totally 26 features. We identified and retrieved
4 to 5 features each day, and this process lasted for 5 days. It took short amount
of time to identify a feature from release log, usually only one minute. However,
the time it requires to locate the feature by browsing through varies pull requests
and commits takes longer time. And depending on the size and complexity of a
feature, it would take either less than half an hour or more than one hour to locate
the feature. If a feature is small in size, ex. Park Nozzle, and there is only one pull
request with a couple of commits linked to this feature, the time it takes could be 20
minutes. If a feature is large in size, and it had taken many pull requests to refine
the source code, the time takes to locate all feature was more than an hour. The
location process also requires reading and understanding the source code to extract
the feature related code from the rest. Sometimes there are other changes such as
code style improvement and bug fixing in the same commit, then these need to be
separated from the feature codes. Therefore due to those issues, the overall time it
takes to identify and locate a feature varies depending on feature size, complexity
and involvement with other changes.

For each feature found, we used fact sheets to record them. Each fact sheet contains
several key points as followed:

28

4. Results

Feature Name The name of the feature. It is usually identified through the de-
scription in the release log or taken from its feature definition from macros.
The feature names are usually named to be easily understandable from domain
perspective.

Feature Name in Annotation The name of the feature in the source code anno-
tations such as //&begin[PRINTCOUNTER]. Sometimes the names can be
slightly different from the name we gave for the Feature Name. These names
are usually named same as the macro definition of the feature.

Source of Information lists the source of information used to identify and locate
the feature.

Strategy used describes the strategy used for identifying and locating the feature.
Feature Release Version States in which version was this feature released. This

information was useful for us to know if the changes in the commits do not
correspond with our annotation source code of RC8. For those cases, we
would know that the feature was implemented in a much earlier version. And
it requires more time to find the right feature locations.

Time takes to identify and locate the feature Records the time took for find-
ing the feature.

Time takes to understand the implementation Records the time took to com-
prehend the feature. As feature size and complexity goes up, this number also
goes up.

Feature Description Describes the functionality of the feature, and what it is
used for. There could be videos and graphs in case if it is needed to help
understand the feature.

Feature Information and Statistics Pull Request number, name, date merged
are recorded, and some statistical information directly shown from GitHub
such as number of commits, files, lines added, and lines deleted. These sta-
tistical numbers are not accurate as we only had taken them directly from
GitHub, and they do not represent the real number of files and commits after
the features are located.

Feature characteristics Feature’s characteristics can be evaluated using the four
metrics defined in method Chapter 3.4, here we only record the value for each
metric per feature.

Ratios of Sources (%) The percentage of every sources.
Pull Request Links Lists the links to all directly related pull requests to the

feature. These pull requests either are taken from the release log or other
referenced pull requests within other found pull requests.

Historical Relevant Data Records information such as when was the issue raised,
who raised it, links to the issue tracker, and other related pull requests such
as bug fixing if there is any. All these information helped us to understand
the whole development process of each feature, and it also help us to correctly
locate the feature.

All features found through Release Log method are recorded with most of the listed
points. Sometimes, there is no other relevant historical data to record, and thus it
is omitted. After the recording of the fact sheets, we also annotated the source code

29

4. Results

using annotation marks mentioned in Method chapter 3.3.2. Here we only present
one of the optional features we found, and that is PRINTCOUNTER (see figure
4.5) and its annotated source code, see figure 4.4. This feature is not completely
wrapped by ifdef since some codes (e.g. one line of code of menu display) are not
as important, and they will not effect other source codes’ usual functionalities. The
other 25 optional features can be found in our data repository1 due to large amount.
All annotated source code can be found in our GitHub repository. Each feature can
be found by searching for the name stated in "Feature Name in Annotation" with
annotation mark such as //&begin[PRINTCOUNTER].

Figure 4.4: Annotated code for PRINTCOUNTER in Marlin_main.cpp

To sum up the optional features found, and to observe for any significance of the
data , we created the table B.1 to examine the data across. During the process of
retrieving the features through Github, we also collected lists on all pull requests
and commits’ names and identification numbers for each feature, see table 4.6 and
4.7 for example. These data can also be used in the future to find quicker ways to
retrieving pull requests and commits using machine learning algorithms.

Table 4.6: Example List of Feature Pull Request

PR No. Title
#3676 Advance extrusion algorithm – LIN_ADVANCE
#4035 Patch LIN_ADVANCE to use code_value_float
#4040 Follow-up the PR #3676(Advance extrusion algorithm – LIN_ADVANCE)
#4126 Patch LIN_ADVANCE timing issue

1https://github.com/hui8958/Marlin/tree/MarlinFeatureAnnotations/FeatureDocuments/FeatureFactSheets

30

https://github.com/hui8958/Marlin/tree/MarlinFeatureAnnotations/FeatureDocuments/FeatureFactSheets
https://github.com/hui8958/Marlin/tree/For_FeatureTools
https://github.com/hui8958/Marlin/tree/MarlinFeatureAnnotations/FeatureDocuments/FeatureFactSheets

4. Results

Figure 4.5: Example of feature fact sheet

Table 4.7: Example List of Feature Commits

Commit No. Content
6d62a4ffc8010ca56f5f438a9da96e781ee65099 Patch LIN_ADVANCE for style and forward-compatibility
fb8e880734bb099b80b031ee2b876e628a50135e Add LIN_ADVANCE
506d78b2f89bb8e50b9e54fbe51266653299abba Run the advance_isr faster instead of doing multiple e-steps per interrupt
aad9c0ed8d6cb61c701aae4cd94da8d9619c4dd9 Apply updated ISR timing code
45b701d38c02892b5d1f233c22142aa578df7c3d Travis test for LIN_ADVANCE
2b340f5acb605c9c54c880067742f6a34dec7136 patch LIN_ADVANCE to use code_value_float
741cda0e476823f07c88153e30eb536568327083 Follow-up the PR #3676(Advance extrusion algorithm – LIN_ADVANCE)
0c5192b288ea66c66938f36b002538df0f95853a Patch LIN_ADVANCE timing issue Also the extruder stepper ISR has to keep an eye on step_loops count.

4.4 Feature Identification and Location through
Source Code

Through release log, we could only identify and trace optional features. For the
mandatory features and features that are not recorded in release log, it requires
other methods. Mandatory features were developed very early on, and there were
many large amount of source code from two other projects. It made the task of
retrieving mandatory features from release log or pull requests very difficult. We
have to use completely different source of information and strategy to retrieve those
mandatory features. Mandatory features do not usually have ifdefs surrounded
them since they are the most basic functionalities that have to be there in order for

31

4. Results

a system to work. And in Marlin, those features are not named in any way. So in
order to identify those features, it has to be started from understanding the domain
and the source code as base, and one has to be creative in defining and separating
the right feature from the rest of the source code. Starting from the main and most
important source file Marlin_main.cpp, we identified 13 mandatory features, some
of the features are not completely located. The rest of those incomplete features as
well as other features were located in the rest of the files. For those features identified
and located, we also created fact sheets to record information about them.

For each feature found, we also used fact sheets to record them. Each fact sheet
contains several key points as followed:

Feature Name states the name of the feature. The source code annotations for
the feature are the same with the feature name with the only exception of
having underscores instead of spaces.

Source of Information lists the source of information used to identify and locate
the feature.

Strategy used describes the strategy used for identifying and locating the feature.
Time takes to identify and locate the feature Records the time took for find-

ing the feature.
Time takes to understand the implementation Records the time it takes to

comprehend the feature. As feature size and complexity goes up, this number
also goes up.

Feature Description Describes the functionality of the feature, and what it is
used for.

Feature characteristic Statistics Feature’s characteristics can be evaluated us-
ing the four metrics defined in method Chapter 3.4, here we only record the
value for each metric per feature.

Ratios of Sources (%) The percentage of every sources.

All 18 mandatory features are recorded with most of the listed points. After the
recording of the fact sheets, we also annotated the source code using annotation
marks mentioned in Method chapter 3.3.2. Here we only present one of the manda-
tory features we found Endstop (see figure 4.6) and its annotated source code (see
figure 4.7). The other 17 mandatory features can be found in our data repository2
due to large amount. Each feature can be found by searching for the name stated
in "Feature Name" with annotation mark such as //&begin[Endstop].

4.5 Feature Characteristics and Feature Model
The fact sheets collected are raw data collected per feature, and they are useful for
understanding single feature’s location process and its characteristics. Nonetheless,
we are interested in generalizing the feature location methodology and characteristics
of features to be used for feature location in other systems. And to be able to achieve

2https://github.com/hui8958/Marlin/tree/MarlinFeatureAnnotations/FeatureDocuments/FeatureFactSheets

32

https://github.com/hui8958/Marlin/tree/MarlinFeatureAnnotations/FeatureDocuments/FeatureFactSheets
https://github.com/hui8958/Marlin/tree/MarlinFeatureAnnotations/FeatureDocuments/FeatureFactSheets

4. Results

Figure 4.6: Endstop fact sheet

Figure 4.7: Annotated code of Endstop in Marlin_main.cpp

that goal, we centralized the data into one place and performed analysis on them.
See the table B.1 in Appendix B with the reorganized data. Metric measurement
results for feature characteristics can be found in the last three columns. And
there are totally 44 features, among them there are 31 optional features and 13

33

4. Results

mandatory features. The latest version of the feature model that we built can be
seen in Appendix C.

34

5
Result Analysis and Discussions

In this chapter we conclude and discuss the results presented from Result 4 chapter
to answer the research question. We discuss the methods that we have used, and
how they are useful and relevant for other activities. We also listed all source of
information used during feature retrieval using the two approaches, and the data are
analyzed to see how many features were found with each source of information. We
also summarized the entire process of feature identification and location through an
activity diagram. Finally, the results on feature characteristics were analyzed to see
the characteristics of Marlin’s features.

5.1 Domain Analysis Reflection
With the results obtained from constructing the two printers, it lightens the load
for us to understand the various concepts and logic within the source codes. For
example, there is a file named as endstops.cpp, and after installing the printer,
we know directly what it is and their functionality during printing. We had a
rough idea on what that class could possibly contain, and it stands out clearly
for us that this file belongs to part of the Endstop feature we found later. As we
understand after domain analysis about the inputs of the printers and how different
parts and hardware connections collaborates together to print, we were able to
obtain a high level comprehension on the system, and it makes it easier to follow
the program logic. The discovery of configuration file where users can configure
features through enabling and disabling macros gives an indication that there is a
notion of feature in Marlin. And there are a lot of optional features presented within
the user configuration files, and this allows the users to select the features that they
are willing to have for their own printers.

5.2 Pre-study
In pre-study, the development history result showed that there were more develop-
ment effort for version 1.1.0 than version 1.0.2. This is due to the fact that 1.1.0 is
a major release, and the developers invested a lot of effort in developing new func-
tionalities, improving existing functionality, and improving source code qualities.
Earlier stable releases were mainly focused on releasing a working software. This
is also lead us in choosing the latest RC as our source of study for feature location
later on. The study of forks gives an indication that there are marlin variants such
as Marlin developed for Italian RepRap Community. Our study was not extensive

35

5. Result Analysis and Discussions

due to the fact that we wanted to focus our study on feature location, therefore we
did not have any conclusive result over the forks of Marlin. It would be interesting
to have an overview of the forks of Marlin similar to Stanciulescu et al.’s [16] study.

The two key developer study provided slightly different results on whom makes the
most contribution. However the pull request analysis 4.2 confirms the study by
contribution Table 4.3, 4.4 and 4.5 with overlapping results such as Thinkyhead
and AnHardt as the top most developer and contributor to Marlin. The result on
pull request life span 4.3 shows very clear that most of the pull requests are closed
between 1 day and 1 week, and these numbers are followed by those pull request
which closed in 10 minutes. There are only a few of pull requests’ lifetimes are more
than 1 month. we can conclude that the hosts of Marlin response quickly and they
have high efficiency on processing each pull request.

5.2.1 Insights and Reflections
The pre-study gave us insights on the ecosystem around Marlin, we had much better
understanding on how do the developers collaborate and how do they make contri-
butions to the system. During our investigation on the development process, we also
looked at the Pull Requests and the committed codes that are linked to them. So
we had a closer to into some of the commits on feature development. We read the
comments for the commit as well as the codes to see how much code there is for a
feature, and how they are implemented. This prepared for our next step on manual
feature retrieval. We were able to plan our approach to manually retrieve features.
As we already found that there is a notion of “feature” in marlin concerning fea-
ture selection in configuration file and their implementation within the source code,
“feature” is also named during issue proposal and pull requests. As the result found
on different categories of pull request, that there is a category named "new feature".
Whenever an issue is raised concerning a new feature, the developers would assign
a tag “New Feature” to it to for better organization. The same tag is also assigned
to the pull request when the feature development is completed. This way, one can
use the tag to filter out only the issues and pull requests related to new features.
It is good for organization of the system, and this also makes it easy for us to find
features and the commits that are linked to the new feature development. We also
found that Marlin uses conditional statements to define optional features in the
source code.

5.3 Feature Identification and Location through
Release Log

For the features found through this method, some implemented new features such
as added G-codes for new printer movements, and some implemented alternative
methods for existing features. The reason that we only found optional features with
this method was that, we used the latest release at the time, and the available
release log recorded with traceable new feature implementations only for the latest

36

5. Result Analysis and Discussions

releases. The developers focus on system improvements and enhancements for those
releases i.e. adding newly requested features for a more customized and applicable
firmware for various types of machines and hardware. The mandatory features and
some early on developed optional features were either untraceable from the release
log or had too many new changes added on top so that they became difficult to be
located through pull requests and commits. Therefore we used another approach to
retrieve those features.

Among the located optional features, some were complex and difficult to implement,
it took more than one pull request and by different developers to ensure the codes
were functional. Sometimes, the developers would push small code fragments into
the RCBugFix branch. And other developers would start on discussions to resolve
controversial issues. The rest of the development could be taken over by anyone that
can provide adequate feature implementation. In those type of developments, more
than one pull requests were required to complete the same feature development,
and the pull requests were all referenced to the first pull request of the feature to
be traceable. The time required for locating this type of feature among all the pull
request would increase as one need to view all pull requests to allocate the feature
from unrelated source code. As a conclusion of feature identification and location
through release log approach, we had a systematic process to identify and locate
features because of the traceable references from release log to pull requests and
commits. Although this was a relative simple process to find features in comparison
to manual allocation through source code approach, it still demanded much effort
to prune source codes that were unrelated to the feature such as small fixes.

5.3.1 Approach Generalization
For systems that are open sourced and hosted on development platforms such as
GitHub, a similar approach as our release log method could be applied to retrieve
features. If there is a release log like Marlin where all related pull requests to
features are documented and referenced, then one can follow the exact approach
as we did, and as mentioned earlier, some more effort should be spent on finding
the codes that are implemented only for the feature. If there is no release log to
document the development of features, one can turn to the pull request list to find
features. Marlin’s pull request have “New Feature” tagged to the pull request if it is
a feature development, and if the system also have a similar management approach
to their development, one can use those tags to sort out the pull requests that
are only related to the development of new features, and one can continue feature
retrieval from there. Assuming that even such managerial approach of managing
the pull requests is not available in the system, one has to conduct feature retrieval
with more effort. Each pull request needs to be scanned, and the discussions and
comments need to be read to understand whether the development is regarding a
feature. This is the approach to manually retrieve features with minimum amount of
help provided by the developers as there is no pull request management and release
documentation. Granted that the developers of the system are very helpful and
provide good pull request management and release documentation, it will reduce
the amount of effort required for finding features, and it lightens the load for a new

37

5. Result Analysis and Discussions

developer to find the feature that they want to work on.

For manual identification with development tracking on GitHub, keyword could also
be used in identifying whether a commit messages or a pull request is related to fea-
ture implementation. Some examples of those keywords could be “Add”, “Support”,
”implement”, “Feature” and “Extend”. If a commit message or pull request contains
those words, it could be considered as feature related. Most of the developers would
create a new branch in their own fork to continue feature development. It is a
common behavior that the developers name the branch with the feature name. For
example, if a developer develops a new feature called Case Light, he/she would
name the branch to be case_light_feature. To summarize, if a commit message or
a pull request contains keyword such as “Add”, “Support”, ”implement”, “Feature”
and “Extend”, and it does not contains any keywords such as ”corrected”, “fix”,
“bugfix”, “bug”, “fixed” and “replace”, it has a high probability that it is feature
related.

5.4 Feature Identification and Location through
Source Code

Without development traceability, finding of features becomes a cumbersome and
difficult task as it takes time and effort to understand a system from point zero.
Therefore with all the studies we have performed early on have reduced the level
of difficulty gradually for the application of this approach. With the first step of
domain analysis, we summarized the main hardware components that we learned
during construction. The figure 5.1 shows the hardware components of the Sintron
3D printer. This gave us a high level understanding of the system. Looking into
the source code of the system, one is required to understand the architecture of the
system to be able to know where one can find certain features. And it is even more
helpful if you can relate those features back to the hardware components. The main
strategy for this approach is to obtain domain knowledge and architectural overview
of the system as background knowledge. Then one can start with the core of the
system, and gradually move on to smaller and less important classes and files to
identify and locate features.

5.4.1 Insights and Reflections
For feature identification and location without development tracking on develop-
ment platforms such as GitHub, correct and useful keywords identification is crucial.
Keywords within comments, variable names (either outside or inside a method), and
method names are very essential in determining whether the source code is related to
a feature in manual identification. During reverse engineering, the developers would
need to read comments, variable names, method names, and source code logic to
be able to understand the function of a piece of code. This would help them on
determining whether a piece of code belongs to a feature. There are easy and simple
cases of identifying a feature such as the Endstop feature. Almost all comments,

38

5. Result Analysis and Discussions

Figure 5.1: Cartesian 3D printer Hardware Components

variable names, and method names contain “endstop” keyword. Therefore it was
quite straightforward for one to retrieve this feature manually. There are also diffi-
cult cases such as the Extruder feature. Extruder feature contains mechanism such
as the speed on feeding the filament to the hotend, and the volume of the material.
This requires the developers to create different variable names such as feedrate and
volume_calculation to assign and store values. Therefore feedrate and volume also
need to be included as the keyword for manual identification of Extruder feature.

There are many cases which the keywords are the same as the feature name, such
as “command” for Command_Handling feature. Sometimes the developers choose
to use shorthand namings like “cmd” instead of “command”. They would also use
synonyms or a domain related word such as “heater” instead of “hotend”. Therefore
we emphasis the importance of identifying correct keywords for manual identifica-
tion since the developers make their own decisions during development, and they
would choose names that they think are the most appropriate for a variable or a
method. Only using feature names as keyword would be able to identify certain
simple features such as Endstop, but it would neglect a lot of features that have
high complexity in their functionalities and naming conventions.

A variable or method could be used in more than one feature. Take the example
of the macros declared in header files, those declarations can be found in different
features, and they might not be declared to be intentionally used only by one feature.
Therefore a mechanism of handling those situations are required so that if one feature
is optional and one feature is mandatory, the method or variable need to be included

39

5. Result Analysis and Discussions

for the mandatory feature. Beside that, it is also very important to check that the
methods being called within a feature are also identified to be part of the feature. For
example, a method has some codes within, and it also have method calls. However
those method calls could to be part of the feature if one can make sure that the
method called does not also belong to other features. For some of the methods,
only partial of the codes belong to one feature. For instance, the setup() method
where it sets up the whole printer, and it initializes different hardware settings. The
initialization of a hardware setting is only be one line of code, and that line belongs
to the hardware feature.

Marlin is an open source project, thus the code comments are quite descriptive, and
a lot of the comments are good enough for one to figure out which feature certain
method or variables belong to. If it is not enough, one could read through the code
understanding the meaning of the code. Anyways, reading code comment and logic
takes time, interest and patience.

Another important source of information is the g code documentation on RepRap
wiki, and it is basically the requirement specification of 3D printers. It describes the
functionalities of different G-codes, and it also provides examples of the scenarios
of the G-codes during running. For example, ” G28 Move to Origin” means when
G28 is given in the file, the printer should move all axis to home position. The G
code documentation helps us to better understand the meaning of the G-codes, and
which G code belongs to a mandatory feature and which G-code belongs to optional
feature.

5.4.2 Approach Generalization
For systems or partial system without development traceability, one can apply sim-
ilar approach as ours. The key is to have good background knowledge such as
system documentation, domain information, and architectural overview. And this
is an incremental procedure where one’s understanding of the system accumulates
and reforms the more one has studied the system. The identification of right key-
words are also crucial. Knowing the right keywords would assist the developers to
find the right place to start and allocate features.

5.5 Feature Identification and Location Result Anal-
ysis

We have used totally 8 source of information for release log method and source code
study method. They were release log, pull request, commit, ifdef expression, domain
knowledge, code comment, source code, and g-code documentation. The summary
on the data can be found in Appendix B, the source of information percentage are
calculated based on the data. By applying the first three source of information i.e.
release log, pull request, and commits, 26 feature locations were found out of 44
feature locations, and it makes up 59% of all the located features. Out of the 26
feature locations, all are optional features except one, and that is Fan. This feature

40

5. Result Analysis and Discussions

is mandatory, and it was developed originally to support a single fan for a single
extruder. However due to the requests upon multiple extruders, more fans are added
to match up with the multiple extruder request. The development of the multiple
fan support was made in RC4, and this development adds the support of more fans
on top of the original development. Therefore this feature was found through the
release log method. We can conclude that by using this three source of information,
a majority of optional features can be located if they are available through release
log. There are 18 features that are not found with these three source of information,
and most of those are mandatory feature. Only 6 are optional features. These 6
features are Auto Bed Leveling Bilinear, Heated Bed, Buzzer, Servo Motor, Print
Job Timer, and WatchDog, and they are are all found through source code method
instead of release log method. There is a countable amount of optional features are
not found through release log method. Those features are either not recorded in
the release log or changes were made too early in the project thus the actual source
code differs vastly from the original development. Leaving the solely option to be
found through source code method.

Ifdef expression is another source of information. As long as the feature’s name is
identified alongside of the ifdef statement, similar conditional groups can be identi-
fied for the feature. By using this source of information, 30 feature locations were
identified, which makes up 68% of all features. Among those features, only one is
mandatory, and that is Arc Movement. we categorized this feature as mandatory
since printers produce round shapes by performing arc movements. Nonetheless,
Marlin developers used ifdef macros for this feature for advanced settings to allow
the users to configure different types of arc movements Marlin supports. This is the
reason that there are ifdef macros around this feature even though it is a mandatory
feature. This is another example of flexible usage of the ifdef expressions, and they
are not only used for distinguishing features in Marlin. 14 features were not found
through ifdef expressions, and only two are optional features. These two features
are small in size, and they were not wrapped with ifdef, and those type of optional
features are minorities in Marlin.

19 feature locations were found with domain knowledge as the source of information,
and out of those there are 6 optional features, which makes up 43% of all features.
They match up with the findings earlier that these 6 features are not found through
release log, they are either developed much earlier on or they are not found to be
recorded in the release log. All mandatory features are found with this method, and
the rest 25 feature locations that are not found with this method are all optional
features.

18 feature locations were found with code comment and source code study, which
makes up 40% of all features. And out of those there are the same 6 optional features
as mentioned earlier. All mandatory features are found with this method, and the
rest 26 features that are not found with this method are all optional features with
the exception of PMW. The reason is as explained earlier.

G-code documentation as source of information is project specific, there could also

41

5. Result Analysis and Discussions

Table 5.1: Feature Ratios of Sources Result
Feature Name RL (%) PR (%) CM (%) Ifdef (%) DK (%) CC (%) SC (%) GD (%)
Allow distinct factors for multiple extruders 50 20 15 15 0 0 0 0
Arc Movement 0 0 0 5 45 25 25 0
Auto Bed Leveling Bilinear 0 0 0 5 15 25 55 0
Auto filament change 50 20 10 20 0 0 0 0
BLTouch Sensor for Homing 50 20 15 15 0 0 0 0
Board 0 0 0 0 40 10 50 0
Buzzer 0 0 0 15 35 5 45 0
Case Light Menu 50 20 15 15 0 0 0 0
Command Input Process 0 0 0 0 20 30 50 0
Emergency Command Parser 50 30 5 15 0 0 0 0
Endstop 0 0 0 0 45 5 30 20
Extended Capabilities Report 50 20 15 15 0 0 0 0
Extruder 0 0 0 0 40 10 50 0
G20 Set units to inches 50 30 10 10 0 0 0 0
Heated Bed 0 0 0 10 50 20 20 0
Hotend 0 0 0 5 50 5 35 5
Input and Output Process 0 0 0 0 50 35 15 0
Linear Advance Extrusion Algorithm 50 20 15 15 0 0 0 0
M108 Cancel Heat Up 50 25 25 0 0 0 0 0
M149 set temperature units 50 15 5 30 0 0 0 0
M155 Auto temp report 50 20 15 15 0 0 0 0
M211 Enable/Disable Software Endstops 50 10 10 30 0 0 0 0
M43 Pin report and debug 50 20 10 20 0 0 0 0
Minimum Stepper Pulse Option 50 25 25 0 0 0 0 0
Mixing Extruders 50 35 10 5 0 0 0 0
Move to Destination 0 0 0 0 0 20 80 0
Move to Home Position 0 0 0 0 15 15 70 0
Nozzle Clean 50 20 10 10 0 0 0 10
Park Nozzle 50 20 10 10 0 0 0 10
Power Supply 0 0 0 0 45 5 50 0
Print Counter 50 10 15 25 0 0 0 0
Print Job Timer 0 0 0 30 20 10 40 0
Servo Motor 0 0 0 5 35 5 45 10
Single Nozzle Multiple Extruders 50 35 10 5 0 0 0 0
Stepper Motor 0 0 0 5 35 5 45 10
Support for an RGB LED light using 3 pins 50 40 5 5 0 0 0 0
Support for COREXY, COREXZ, and COREYZ 50 25 15 10 0 0 0 0
Support for multiple PWM fans 50 30 20 0 0 0 0 0
Support G2/G3 with R parameter 50 20 5 5 0 0 0 20
Switching Extruders 0 0 0 40 10 5 45 0
Temperature Control 0 0 0 0 30 10 30 30
Temperature watch protection for heated bed 0 50 15 5 30 0 0 0
TMC2130 Silent StepStick support 50 20 15 15 0 0 0 0
WatchDog 0 0 0 40 0 40 20 0

RL: Release Log; PR:Pull Request; CM: Commit; Ifdef : ifdef with feature ex-
pression; DK: Domain Knowledge; CC: Code Comment; SC: Source Code; GD:
G-code Documentation;

be project specific methods depending on the characteristic of the project. There
are only 5 features found with this method, which makes up 11% of all features. 4
are mandatory, 1 is optional but was also found with source code study method.
This project specific method is not as useful as the rest and they are also applicable
to most projects if they use Github and release log.

To sum up the analysis results above, we made a table, see Table 5.2. The second
column records the total number of feature found using each source of information,
and the third column records the percentage of each source of information in total
number of found features. And the bar chart in Figure 5.3 visualizes the source of
information percentage over all found features. And We could see that the leaders
on the source of information used for finding features are Ifdef, Release Log, Pull
Requests and Commits.

The Ratio of Sources of each feature are also summarized into a table, see 5.1. Each
column estimates the effort percentage that was used for each source of informa-
tion. The source of information that helped the most for identifying and locating

42

5. Result Analysis and Discussions

mandatory features were Domain Knowledge, Code Comment, and Source Code.
The source of information that helped the most for identifying and locating op-
tional features were Release Log, Pull Requests, and Commits. The combinations
of multiple sources of information were also recorded based on this table, and we
created a Pie Chart to show the combination of sources that were most often used
together to retrieve features. And they were the combination of Release Log, Pull
Reuqests, Commits, and ifdef. See Figure 5.2.

RL: Release Log; PR:Pull Request; CM: Commit; Ifdef : ifdef with feature expression; DK:
Domain Knowledge; CC: Code Comment; SC: Source Code; GD: G-code Documentation;

Figure 5.2: Combination of Source Information Percentage.

Table 5.2: Source of Information Summary

Number of found features Found feature ratio
Release Log 26 16%
Pull Requests 26 15%
Commits 26 15%
Ifdef 30 18%
Domain Knowledge 19 11%
Code Comment 18 11%
Source Code 18 11%
G-Code 5 3%

The result also shows that 20 features are completely wrapped with ifdefs. They
are all optional features, and there are 11 optional features that are not completely
wrapped with ifdefs. 70% are completely wrapped with ifdef. This suggests that
as long as you know the feature’s expression name, around 70% of the optional
features can be found thoroughly, and there are also a large number of optional

43

5. Result Analysis and Discussions

Figure 5.3: Source of Information Percentage.

features found, however need to have more time to find the rest of the features that
are not wrapped with ifdef. One example is the PrintCounter feature, all related
code implementations are surrounded by Ifdef in MarlinMain with the exceptions in
printcounter.cpp, printcounter.h, and language.h. It seems like the whole files are
not marked with preprocessor statements, and the implementation in language.h
has only one line of code that’s just unnecessary to be surround with "ifdef". The
output of that line of code could be left blank, thus there is no harm done even if
that line of code is not prune after compilation. We drew an activity diagram to
conclude the process that we used for identifying features in Marlin. See figure 5.4.

As we recorded in our fact sheets, we summed up the total time used for locating
features found using the release log method. And the result was that two persons
together used around 9 hours to locate 26 features, and optional features were a
majority among the found features. We also used roughly 25 hours by one person to
locate 18 features using source code study method, and mandatory features were a
majority among the found features. This resulted in an average of feature location
of 0.34 hours for the release log method and 1.39 hours for the source code study
method. This means that the development tracings technology provided by GitHub
had greatly reduced the time and effort needed to identify and locate features.

44

5. Result Analysis and Discussions

Figure 5.4: Activity Diagram for Feature Identification and Location.

5.6 Feature Characteristics Analysis

For the metrics measured for the feature characteristics, we used R to perform
analysis on the data. Firstly, we used the summary() function to get some general
statistical results. We found that the averages of LoFC, SD, and TD are 196, 10,
and 7. The smallest feature has a size of 4 LoFC whereas the largest feature has a
size of 823 LoFC. The feature with the lowest SD value is 1 where as the feature with
the highest SD value is 72. The feature with the lowest TD value is 0 where as the
highest has a TD value of 46. For more general statistical results and all R functions
we that used for data analysis see Appendix D. After the general statistical test,
we used the function density() to calculate the probability density of the data, and
plotted it with histogram as shown in Figure 5.5. The density() function calculates
the probability density of the dataset. The explanation of probability density is, if

45

5. Result Analysis and Discussions

there is a random feature from our dataset, then its probability of falling under the
0-5 TD interval instead of other TD intervals is 0.06 (6%). The Probability Density
axis of the graph indicates the probability of any random variable falls under the
different intervals of the histogram. We used the line() function to plot the model
of data distribution based on density for LoFC, SD, and TD. This model helps us
to see the data distribution of the dataset. The data distribution are all left skewed,
and it indicates that the data is not normally distributed. The data that we have
currently collected are very limited, and we need to collect more data in the future
to achieve better results that are closer to population mean. The histogram figure
also shows that the majorities of the features have 0-400 LoFC, 0-20 SD, and 0-40
TD.

Figure 5.5: Histogram and Probability Density plot for LoFC, SD and TD.

46

5. Result Analysis and Discussions

For further analysis, we wanted to see if there is any correlation between any columns
of the data. So we used the correlation function cor() to calculate the Pearson’s
coefficients of the data. Because we used different feature locating methods to
identify and locate features, the feature identification and comprehension time data
for reviewing source code method were not recorded per feature, therefore we used
"pairwise.complete.obs" parameter in cor() function to pairwise remove the missing
data of Feature Identification Time and Feature Comprehension Time in order to
obtain correlation of feature identification time and feature comprehension time with
the rest of the data [11]. For the rest of the correlation test we used complete dataset
to obtain results. Table 5.3 displays the coefficient matrix of Feature Identification
Time, Feature Comprehension Time, LoFC, SD, and TD. Pearson’s Coefficient lies
between -1 and 1 [20]. The values between -1 and 0 indicates negative correlation
whereas values between 0 and 1 indicates a positive correlation. According to Evans’
guide [6], the strength of the correlation can be categorized into 5 ranges: very week
(.00-.19), weak (.20-.39), moderate (.40-.59), strong (.60-.79) and very strong (.80-
1.0). Based on this categorization, most of the coefficient values are very weak
and weak as the absolute values are closer to 0 rather than 1. According to the
correlation test result in table 5.3, the very strong correlation with value that is
larger than 0.8 is LoFC and TD, the strong correlations with values between 0.6
and 0.8 are Feature Identification Time and Feature Comprehension Time, Feature
Comprehension Time and LoFC, Feature Comprehension Time and TD. There is
also a moderate correlation that is worth noticing, and it is the correlation between
Feature Comprehension Time and SD. We continued the analysis by creating linear
models for the all these correlations using the lm() function. After obtaining linear
models for the correlations, we used abline() function to visualize the models, see
Figure 5.6, 5.7, 5.8, 5.9 and 5.10. In these figures we only used available data
from the Release Log method since there are missing data from the Source Code
method for Feature Identification Time and Feature Comprehension Time. However,
the Feature Identification Time and Feature Comprehension Time are all estimated
based on personal performance, thus some estimations might appear to be the same.
Those models could be used to predict future values. However the linear models are
simple models, and the model that can provide the good prediction is the one with
the strongest correlation 0.85 for LoFC and TD. And the values provides by this
model deviates the least from the actual values.

We could see some interesting phenomenon from the correlation results and linear
models. The very strong correlation between LoFC and TD suggests that the larger
the feature size, the larger TD value would be, meaning there are more features that
are tangled within larger features. The three strong correlations also tell us some
interesting relations among Feature Identification Time, Feature Comprehension
Time, LoFC, TD, and SD. The correlation between Feature Identification Time and
Feature Comprehension time indicates the longer time it takes to identify and locate
a feature, the longer time it takes to comprehend it. This correlation could mean that
features that are harder to locate, the more effort it is required to understand it. The
correlation between Feature Comprehension Time and LoFC simply tells us that the
larger the feature, the longer time it takes to understand the feature. The correlation

47

5. Result Analysis and Discussions

between Feature Comprehension Time and TD tells us that the more tangling there
is with other features, the longer time it takes to understand it. This means that
the higher complexity a feature has with high TD, the more effort it is required to
understand it. The moderate correlation between Feature Comprehension Time and
SD indicates that the more locations a feature is scattered, the longer time it takes
to comprehend the feature. A feature that is widely scattered would effect feature
identification time as one need to look for more places to locate the feature, but it
should not have direct effect on comprehension time unless there is an indication on
the increased complexity of the code such as high TD value. As this is a moderate
correlation, this relationship could be merely a coincident.

Table 5.3: Correlation Test Result
FeatureIdentificationTime FeatureComprehensionTime LoFC SD TD

FeatureIdentificationTime 1.000000000 0.6267697 0.09751381 -0.001107099 -0.06730504
FeatureComprehensionTime 0.626769726 1.0000000 0.62389647 0.402473097 0.60503966
LoFC 0.097513811 0.6238965 1.00000000 0.345745100 0.84588717
SD -0.001107099 0.4024731 0.34574510 1.000000000 0.08384359
TD -0.067305040 0.6050397 0.84588717 0.083843588 1.00000000

Figure 5.6: Linear correlation plot for LoFC vs TD (0.84588717).

48

5. Result Analysis and Discussions

Figure 5.7: Linear correlation plot for FeatureIdentificationTime vs FeatureCom-
prehensionTime (0.626769726).

49

5. Result Analysis and Discussions

Figure 5.8: Linear correlation plot for FeatureComprehensionTime vs LoFC
(0.6238965).

50

5. Result Analysis and Discussions

Figure 5.9: Linear correlation plot for FeatureComprehensionTime vs TD
(0.60503966).

51

5. Result Analysis and Discussions

Figure 5.10: Linear correlation plot for FeatureComprehensionTime vs SD
(0.4024731).

52

6
Threats to Validity

For this thesis work, there are several threats to internal and external validity. The
first is that, the features found through source code reading needs validation for
confirmation to avoid human errors. Our study was based entirely on the available
information we had access to and our own program comprehension skills, and unless
the results are confirmed with testings or by other means, there are chances that
the parts of the features were not correctly located. For example, in Release Log
method, the developers could have missed linking some related pull requests and
used improper commit message description. Another possibility is during feature
location with the Source Code method, due to the lack of knowledge about the
entire system, we could miss out or over identified some parts of the feature. This
could lead to reduced measurement accuracy, and we could both over and under
estimate the measurement of SD, LoFC and even TD result. However, we think
the possibilities for this type of human error to occur is minuscule because we have
studied the source code and our knowledge base is adequate enough for locating
features.

Another internal threat to validity is the features’ location and comprehension
time. Due to the developers’ performance on source code comprehension could differ
largely from one and another, we could only measure the result based on our limited
resources. Therefore the result of time measurement for feature identification and
feature comprehension were subjective for this case study. It is possible to obtain
rather different measurement result if the experiment is repeated by other people
with different programming capability backgrounds. And to be able to achieve a
more objective result, we need to perform more experiment by different people on
similar cases studies in the future. Another threat to the time measurement is that
there is a learning effect between the methods. The accuracy of the manual locating
feature time is reduced due to the reason that we already had a good overview of the
system during the process of the first method. The time for pre-study and domain
analysis are not included into the time for feature locating. The time measurement
for feature locating will be much higher if these set up times are included.

One more internal threat is the result of TD measurements. TDs are expressed by
different types conditional statements in Marlin, however not all types of conditional
statements are used for wrapping optional features. Therefore if we include all types
of conditional statements, the TD measurement will be too high, and if we do not
include all conditional statement, we would still be having more TDs while missing
some TDs from the excluded types of conditional statement. Therefore we only

53

6. Threats to Validity

tried to include the ones that could give us results that are closest to the actual TDs
found manually. And the results are better for some features while worse for others.

For external validity, we consider our case study method and result would withhold
to a certain degree with other similar studies on different software systems especially
embedded systems. Software systems differ from one and other in many contexts
such as the means of development culture or rules of feature implementation. Some
systems that were developed in other languages might not use ifdefs at all for de-
veloping new features. There are even the chances that some systems do not use
development tracing technologies for development and maintenance. These are all
possible threats that would deviate our results and findings from studies on those
systems. Nevertheless the Release Log methods could still be applied to systems
that have similar development tracings as Marlin. And the Source Code method
could be applied to other types of systems, and its main source of information re-
quired are not as specific as the Release Log method, as domain knowledge, system
documentations, source code, and code comments are available in many systems.

54

7
Conclusion and Future Work

In this case study, we studied and explored an open sourced embedded system
Marlin. And we wanted to find out what are the most useful source of information
and strategies that can be used to retrieve features from software systems. With the
consecutive accumulation of domain and system knowledge throughout the study, we
successfully retrieved 44 features, both mandatory and optional using two different
approaches. And we named them as Release Log method and Source Code method.
The two approaches that we have followed could be used and applied by other
systems to handle maintenance tasks and software product line migrations since both
types of work requires feature allocation as a primary step. Besides the discovery
of the two approaches, we also recorded all the features retrieved during the feature
location process including the metrics measurements on the features’ characteristics
in Marlin. We will summarize the major findings of this case study and answer our
research questions.

Besides the domain knowledge we learned during domain analysis, the pre-study
process also helped us to answer the first research question. We found out that
the developers use tags such as "New Feature" to indicate whether a pull request is
related to new feature development. And Marlin’s configuration files also uses con-
ditional statements to define optional features in the source code. Therefore Marlin
has a notion of feature in the system. After we identified and located 44 features
that includes both mandatory and optional features, we summarized that there were
8 sources of information were used for finding features. Among those, Ifdef, Release
Log, Pull Requests and Commits are the source of information that could be used
to find most features. We also found that optional features that are wrapped with
ifdef conditional statements, 70% of the features are completely wrapped by ifdef.
This means that by searching the feature’s name defined in macros in the source
code, the majorities of the optional features could be completely located. Thus con-
ditional statement are quite powerful for locating optional features in Marlin. The
average time used for retrieving features by the two methods differs much, and it
requires 4 times more effort to identify and locate a feature for Source Code method
than Release Log methods. Therefore development tracing technologies provides
greate assistance to the developers to locate features in less time. For the feature
characteristics, the majorities have 0-400 LoFC, 0-20 SD, and 0-40 TD, however
this result is far from the actual result of the population as our data is not normally
distributed. And we need much more data both from Marlin and other systems to
achieve better results. The last finding is that there is a positive correlation between
two sets of the data, and they are LoFC and TD. Pearson’s coefficient indicates a

55

7. Conclusion and Future Work

quite strong correlation, and it could mean that complexity of the features raise as
their size increase. Therefore in order to maintain simplicity for system comprehen-
sion, we think it is better to take in the consideration of having a reasonable LoFC
per feature during development.

56

Glossary

Axis There are usually three axes to control the movements of the extruder or bed
so that the printed object could be printed in three dimensions. In Delta typed
printers, the axis are named as abc where as Cartesian typed printers named
as xyz in Marin. 11

Bed All printers have a bed where the printing object locates.. 11
Board The board where all hardware components are connected. It has a micro-

processor to store data and process them. It also has many pins where the
hardware components can be connected as designed. 10

commits Adding changes to the local repository. 13

Endstops Used for the firmware to locate the lowest and/or highest points of an
axis. This is used for the firmware to calculate relative distance to travel. 10

Extruder Hardware component that controls the feeding rate of the materials,
there are usually two metal gears that pressurize the material and pushes the
material downwards. 10

Filament Printing material for 3D printers. 10
Firmwares In electronic systems and computing, firmware is a type of software that

provides control, monitoring and data manipulation of engineered products
and systems. 9, 22

FLT Feature Location technique. 2
Frame The frame to hold together all the components and stabilizes the axis. 11

Heated Bed The bed can be heated up through electrical wires. 11
Hotend It has temperature sensors to tell what temperature it is. It also has a

nozzle with a small opening where the heated materials come out. 10

Motors It is controlled by the stepper . Connects with the axes with rubber belt
to control the movement of the extruder or bed. 10

Pull Requests Pull requests are a feature that makes it easier for developers to col-
laboration. They provide a user-friendly web interface for discussing proposed
changes before integrating them into the official project. 13, 20, 36

SPL Software product line. 1

57

Glossary

58

Bibliography

[1] Berima Andam et al. “FLOrIDA: Feature LOcatIon DAshboard for ex-
tracting and visualizing feature traces”. In: Proceedings of the Eleventh
International Workshop on Variability Modelling of Software-intensive
Systems. ACM. 2017, pp. 100–107.

[2] Michal Antkiewicz et al. “Flexible product line engineering with a virtual
platform”. In: Companion Proceedings of the 36th International Confer-
ence on Software Engineering. ACM. 2014, pp. 532–535.

[3] Thorsten Berger et al. “A survey of variability modeling in industrial
practice”. In: Proceedings of the Seventh International Workshop on Vari-
ability Modelling of Software-intensive Systems. ACM. 2013, p. 7.

[4] Ted J Biggerstaff, Bharat G Mitbander, and Dallas Webster. “The con-
cept assignment problem in program understanding”. In: Software En-
gineering, 1993. Proceedings., 15th International Conference on. IEEE.
1993, pp. 482–498.

[5] thinkyhead Bob-the-Kuhn. Contributing Code with Pull Requests. July
2017. url: http : / / marlinfw . org / docs / development / getting _
started_pull_requests.html.

[6] Jonathon St BT Evans and David E Over. Rationality and reasoning.
Psychology Press, 2013.

[7] Emily Hill et al. “Which Feature Location Technique is Better?” In: Soft-
ware Maintenance (ICSM), 2013 29th IEEE International Conference on.
IEEE. 2013, pp. 408–411.

[8] Wenbin Ji et al. “Maintaining feature traceability with embedded annota-
tions”. In: Proceedings of the 19th International Conference on Software
Product Line. ACM. 2015, pp. 61–70.

[9] Jacob Krüger et al. “Finding Lost Features in Cloned Systems”. In: Pro-
ceedings of the 21st International Systems and Software Product Line
Conference-Volume B. ACM. 2017, pp. 65–72.

[10] Jorg Liebig et al. “An analysis of the variability in forty preprocessor-
based software product lines”. In: Software Engineering, 2010 ACM/IEEE
32nd International Conference on. Vol. 1. IEEE. 2010, pp. 105–114.

[11] Dipak V Patil and RS Bichkar. “Multiple imputation of missing data with
genetic algorithm based techniques”. In: IJCA Special Issue on" Evolu-
tionary Computation for Optimization Techniques (2010), pp. 529–543.

[12] Denys Poshyvanyk et al. “Feature location using probabilistic ranking
of methods based on execution scenarios and information retrieval”. In:
IEEE Transactions on Software Engineering 33.6 (2007).

59

http://marlinfw.org/docs/development/getting_started_pull_requests.html
http://marlinfw.org/docs/development/getting_started_pull_requests.html

Bibliography

[13] Václav Rajlich and Norman Wilde. “The role of concepts in program com-
prehension”. In: Program Comprehension, 2002. Proceedings. 10th Inter-
national Workshop on. IEEE. 2002, pp. 271–278.

[14] Meghan Revelle and Denys Poshyvanyk. “An exploratory study on as-
sessing feature location techniques”. In: Program Comprehension, 2009.
ICPC’09. IEEE 17th International Conference on. IEEE. 2009, pp. 218–
222.

[15] Julia Rubin and Marsha Chechik. “A survey of feature location tech-
niques”. In: Domain Engineering. Springer, 2013, pp. 29–58.

[16] Ştefan Stănciulescu, Sandro Schulze, and Andrzej Wąsowski. “Forked
and integrated variants in an open-source firmware project”. In: Software
Maintenance and Evolution (ICSME), 2015 IEEE International Confer-
ence on. IEEE. 2015, pp. 151–160.

[17] Frank J Van der Linden, Klaus Schmid, and Eelco Rommes. Software
product lines in action: the best industrial practice in product line engi-
neering. Springer Science & Business Media, 2007.

[18] Jinshui Wang et al. “How developers perform feature location tasks: a
human-centric and process-oriented exploratory study”. In: Journal of
Software: Evolution and Process 25.11 (2013), pp. 1193–1224.

[19] Wikipedia.G-code — Wikipedia, The Free Encyclopedia. [Online; accessed
8-May-2017]. 2017. url: https://en.wikipedia.org/w/index.php?
title=G-code&oldid=777161528.

[20] Wikipedia. Pearson correlation coefficient — Wikipedia, The Free En-
cyclopedia. [Online; accessed 26-September-2017]. 2017. url: https://
en . wikipedia . org / w / index . php ? title = Pearson _ correlation _
coefficient&oldid=802449654.

[21] Wikipedia. STL (file format) — Wikipedia, The Free Encyclopedia. [On-
line; accessed 8-May-2017]. 2017. url: https://en.wikipedia.org/w/
index.php?title=STL_(file_format)&oldid=778911217.

[22] Wikipedia. Ultimaker — Wikipedia, The Free Encyclopedia. [Online; ac-
cessed 8-May-2017]. 2017. url: https://en.wikipedia.org/w/index.
php?title=Ultimaker&oldid=777269244.

60

https://en.wikipedia.org/w/index.php?title=G-code&oldid=777161528
https://en.wikipedia.org/w/index.php?title=G-code&oldid=777161528
https://en.wikipedia.org/w/index.php?title=Pearson_correlation_coefficient&oldid=802449654
https://en.wikipedia.org/w/index.php?title=Pearson_correlation_coefficient&oldid=802449654
https://en.wikipedia.org/w/index.php?title=Pearson_correlation_coefficient&oldid=802449654
https://en.wikipedia.org/w/index.php?title=STL_(file_format)&oldid=778911217
https://en.wikipedia.org/w/index.php?title=STL_(file_format)&oldid=778911217
https://en.wikipedia.org/w/index.php?title=Ultimaker&oldid=777269244
https://en.wikipedia.org/w/index.php?title=Ultimaker&oldid=777269244

A
Appendix Release log

61

A. Appendix Release log

62

A. Appendix Release log

63

A. Appendix Release log

64

B
Appendix Feature Collection

Result

This is the summary of the feature location result. The first column records the
name of each feature. and second indicate whether the feature is mandatory or
not. From column RL to CWi records the data on which source of information are
used to locate the feature. Column FIT and FCT indicate the different time for
identifying and comprehending the feature. From Column CM to LD records facts
such as how many files and commit messages each feature is retrieved from Github.
The rest of the columns records the feature characteristics.

65

B. Appendix Feature Collection Result
T
able

B
.1:

Feature
C
ollection

R
esult

Feature
N
am

e
M
F

R
L

P
R

C
M

Ifdef
D
K

C
C

SC
G
D

C
W

i
F
IT

FC
T

C
M

F
iles

LA
LD

LO
F

SD
T
D

A
llow

distinct
factors

for
m
ultiple

extruders
n

y
y

y
y

n
n

n
n

y
10

40
3

29
495

131
164

22
0

A
rc

M
ovem

ent
y

n
n

n
y

y
y

y
n

n
N
A

N
A

N
A

N
A

N
A

N
A

262
5

5
A
uto

B
ed

Leveling
B
ilinear

n
n

n
n

y
y

y
y

n
y

N
A

N
A

N
A

N
A

N
A

N
A

226
1

6
A
uto

filam
ent

change
n

y
y

y
y

n
n

n
n

y
35

60
3

26
791

253
397

15
2

B
LTouch

Sensor
for

H
om

ing
n

y
y

y
y

n
n

n
n

y
35

60
2

24
86

5
65

5
3

B
oard

y
n

n
n

n
y

y
y

n
n

N
A

N
A

N
A

N
A

N
A

N
A

214
72

0
B
uzzer

n
n

n
n

y
y

y
y

n
n

N
A

N
A

N
A

N
A

N
A

N
A

25
3

0
C
ase

Light
M
enu

n
y

y
y

y
n

n
n

n
y

25
30

2
20

129
0

51
6

0
C
om

m
and

Input
P
rocess

y
n

n
n

n
y

y
y

n
n

N
A

N
A

N
A

N
A

N
A

N
A

823
2

42
E
m
ergency

C
om

m
and

P
arser

n
y

y
y

y
n

n
n

n
y

35
90

6
29

249
56

236
11

3
E
ndstop

y
n

n
n

n
y

y
y

y
n

N
A

N
A

N
A

N
A

N
A

N
A

198
14

17
E
xtended

C
apabilities

R
eport

n
y

y
y

y
n

n
n

n
y

30
60

1
21

157
9

322
7

20
E
xtruder

y
n

n
n

n
y

y
y

n
n

N
A

N
A

N
A

N
A

N
A

N
A

149
15

1
G
20

Set
units

to
inches

n
y

y
y

y
n

n
n

n
y

20
30

1
23

531
181

43
4

0
H
eated

B
ed

n
n

n
n

y
y

y
y

n
n

N
A

N
A

N
A

N
A

N
A

N
A

211
4

5
H
otend

y
n

n
n

n
y

y
y

y
n

N
A

N
A

N
A

N
A

N
A

N
A

355
7

16
Input

and
O
utput

P
rocess

y
n

n
n

n
y

y
y

n
n

N
A

N
A

N
A

N
A

N
A

N
A

87
12

0
Linear

A
dvance

E
xtrusion

A
lgorithm

n
y

y
y

y
n

n
n

n
y

20
60

8
26

360
57

279
18

7
M
108

C
ancelH

eat
U
p

n
y

y
y

n
n

n
n

n
n

2
2

1
21

13
0

4
2

0
M
149

set
tem

perature
units

n
y

y
y

y
n

n
n

n
y

20
60

1
23

531
181

39
3

0
M
155

A
uto

tem
p
report

n
y

y
y

y
n

n
n

n
y

5
10

1
19

128
0

39
4

0
M
211

E
nable/D

isable
Softw

are
E
ndstops

n
y

y
y

y
n

n
n

n
n

20
25

5
9

154
107

90
6

1
M
43

P
in

report
and

debug
n

y
y

y
y

n
n

n
n

n
35

60
14

59
2758

752
217

8
2

M
inim

um
Stepper

P
ulse

O
ption

n
y

y
y

n
n

n
n

n
n

5
15

1
1

97
15

6
1

0
M
ixing

E
xtruders

n
y

y
y

y
n

n
n

n
y

10
60

4
38

1402
399

775
42

23
M
ove

to
D
estination

y
n

n
n

n
y

y
y

n
n

N
A

N
A

N
A

N
A

N
A

N
A

357
14

16
M
ove

to
H
om

e
P
osition

y
n

n
n

n
y

y
y

n
n

N
A

N
A

N
A

N
A

N
A

N
A

686
9

46
N
ozzle

C
lean

n
y

y
y

y
n

n
n

n
y

35
60

8
54

1450
200

31
3

0
P
ark

N
ozzle

n
y

y
y

y
n

n
n

n
n

30
40

2
25

683
85

43
4

0
P
ow

er
Supply

y
n

n
n

n
y

y
y

n
n

N
A

N
A

N
A

N
A

N
A

N
A

80
4

5
P
rint

C
ounter

n
y

y
y

y
n

n
n

n
n

45
90

13
34

772
93

84
11

0
P
rint

Job
T
im

er
n

n
n

n
y

y
y

y
n

y
N
A

N
A

N
A

N
A

N
A

N
A

11
2

2
Servo

M
otor

n
n

n
n

y
y

y
y

y
n

N
A

N
A

N
A

N
A

N
A

N
A

64
3

0
Single

N
ozzle

M
ultiple

E
xtruders

n
y

y
y

y
n

n
n

n
n

15
20

5
75

644
465

18
5

0
Stepper

M
otor

y
n

n
n

n
y

y
y

y
n

N
A

N
A

N
A

N
A

N
A

N
A

262
12

2
Support

for
an

R
G
B

LE
D

light
using

3
pins

n
y

y
y

y
n

n
n

n
y

15
15

1
24

238
10

72
5

1
Support

for
C
O
R
E
X
Y
,C

O
R
E
X
Z,and

C
O
R
E
Y
Z

n
y

y
y

y
n

n
n

n
y

30
60

4
26

133
108

182
3

6
Support

for
m
ultiple

P
W

M
fans

y
y

y
y

n
y

n
n

n
n

30
60

3
11

326
89

356
30

1
Support

G
2/G

3
w
ith

R
param

eter
n

y
y

y
y

n
n

n
n

y
10

15
1

2
51

9
32

1
0

Sw
itching

E
xtruders

n
y

y
y

y
n

n
n

n
y

10
60

4
38

1402
399

137
12

18
Tem

perature
C
ontrol

y
n

n
n

n
y

y
y

y
n

N
A

N
A

N
A

N
A

N
A

N
A

142
8

1
Tem

perature
w
atch

protection
for

heated
bed

n
y

y
y

y
n

n
n

n
y

15
30

3
21

277
59

73
8

1
T
M
C
2130

Silent
StepStick

support
n

y
y

y
y

n
n

n
n

y
20

120
7

25
6137

1832
709

16
53

W
atchD

og
n

n
n

n
y

y
y

y
n

n
N
A

N
A

N
A

N
A

N
A

N
A

20
6

0
M

F
:M

andatory
Feature;Source

used
for

Feature
location

(R
L
:R

elease
Log;P

R
:P
ullR

equest;C
M

:C
om

m
its;Ifdef:

ifdefw
ith

feature
expression;D

K
:D

om
ain

K
now

ledge;C
C
:

C
ode

C
om

m
ent;SC

:Source
C
ode;G

D
:G

-code
D
ocum

entation;)
C

W
i:

C
om

pletely
W
rapped

by
ifdefs;Feature

m
easurem

ent
result

(F
IT

:Feature
Identification

T
im

e
(m

in);F
C

T
:

Feature
C
om

prehension
T
im

e
(m

in)
;C

M
:C

om
m
it;L

A
:Lines

A
dded;L

D
:Lines

D
eleted;L

O
F
:Lines

ofFeature
C
ode;SD

:Scattering
D
egree;T

D
:Tangling

D
egree;)

66

C
Appendix Feature Model

This is the feature model that we have build iteratively, it includes all the mandatory
features and optional features that we found, and also other features we learned from
domain analysis.

67

PW
M

_Fans

ATX

EndStopZ_M
echanichal

Board

EndStopZ_InductiveSensor

EndStopZ

EndStop_Type

Tem
p_Sensor_H

otE
nd_Single

Tem
p_Sensor_B

ed

M
otor

Buzzer

Bed_R
egular

H
otEnd_M

ultiple

C
ASE

_LIG
H

T

EndStop

Tem
p_Sensor_H

otE
nd_M

ultiple

N
o_S

w
itch

TH
ER

M
AL_PR

O
TEC

TIO
N

_BED

H
otEnd

EndStopXY

Tem
p_Sensor_H

otE
nd

Bed_H
eat

Softw
are_functionalities

Tem
pSensor

Bed

M
arlin

EndStopZ_BLTouchS
ensor

X-Box360

EndStopXY
_M

echanichal

Pow
er_Supply

Endstop_Axis

C
ontrol_S

oftw
are_E

ndStop

H
otEnd_Single

Fan

SD
card_R

eader
D

isplayEndstop_Axis ∧ (EndS
topXY

_M
echanichal ∨ EndStopZ_BLTouchS

ensor ∨ EndStopZ_M
echanichal)

Extruder_Sw
itching ∧ H

otEnd_M
ultiple

Extruder_M
ixing ∧ H

otEnd_Single

H
otEnd_M

ultiple ∧ Tem
p_Sensor_H

otE
nd_M

ultiple

Tem
p_Sensor_B

ed ∧ Bed_H
eat

Legend:

M
andatory

O
ptional

O
r

Alternative
Abstract
C

oncrete
C

ollapsed

14

27

C. Appendix Feature Model

68

Extruder

M
IN

IM
U

M
_STEP

PE
R

_PU
LSE

Extruder_Sw
itching

LIN
_AD

VAN
C

E

M
otor_Type

Board

SIN
G

LEN
O

ZZLE_M
U

LTIP
LE_EX

TR
U

D
ER

M
oter_Type_Servo

M
otor

EndStop

H
otEnd

D
ISTIN

C
T_E_FAC

TO
R

S

Extruder_Single

Softw
are_functionalities

Tem
pSensor

Inch_M
ode_Support

H
AVE

_TM
C

2130D
R

IVER

Bed

M
arlin

Pow
er_Supply

M
otor_Axis

M
oter_Type_Stepper

Fan

Extruder_M
ixing

D
isplay

Extruder_Sw
itching ∧ H

otEnd_M
ultiple

Extruder_M
ixing ∧ H

otEnd_Single

Legend:

M
andatory

O
ptional

O
r

Alternative
Abstract
C

oncrete
C

ollapsed

92

4

3

3

1

3

27

C. Appendix Feature Model

69

Board

Print_Job_Tim
er

Tem
perature_U

nits_Support

FILAM
E
N
T_C

H
AN

G
E_FEA

TU
R
E

M
ove_To_D

estination

M
otor

Park_N
ozzle

AU
TO

_R
EP

O
R
T_TEM

PE
R
ATU

R
ES

Em
ergency_C

ancel_H
eatup

C
om

m
and_Input_Process

EndStop

IO
_H

andling

M
anual_Bed_Leveling

H
otEnd

D
ebugger

Tem
perature

Softw
are_functionalities

Auto_Bed_Leceling_Bilinear

PIN
S
_D

EBU
G
G
IN
G

H
om

ing

W
atchD

og

Tem
pSensor

Arc_M
ovem

ent

G
2_G

3_R
_Param

eter

Bed

Bed_Leveing

M
arlin

Extended_C
apabilities_R

eport

Auto_Bed_Leveling

Pow
er_Supply

R
G
B_LE

D

Em
ergency_C

om
m
and_Parser

Fan

C
lean_N

ozzle

M
ovem

ent_Planner

PR
IN
TC

O
U
N
TER

Support_C
O
R
EXY

_C
O
R
EXZ_C

O
R
EYZ

D
isplay

Legend:

M
andatory

O
ptional

O
r

Alternative
Abstract
C
oncrete

C
ollapsed

14 92

4

3

3

1

3

C. Appendix Feature Model

70

D
Appendix Statistical Test Result

This statistical test result records the process and result obtained from R. We use
this to analyze the metrics to obtain correlations among the feature characteristics.

71

summary(features)
 Annotation_Name Mandatory_Feature
 196,2727273 : 1 10,11363636: 1

 8636 : 1 445 : 1

 ARC_SUPPORT : 1 n :31

 Auto_Bed_Leveling_Bilinear: 1 y :13

 AUTO_REPORT_TEMPERATURES : 1

 Bed_Heated : 1

 (Other) :40

 FeatureIdentificationTime FeatureComprehensionTime LOF

 NA :18 NA :18 Min. : 4.0

 20 : 5 60 :11 1st Qu.: 43.0

 35 : 5 15 : 3 Median :139.5

 10 : 4 30 : 3 Mean :196.3

 30 : 4 : 2 3rd Qu.:262.0

 15 : 3 40 : 2 Max. :823.0

 (Other): 7 (Other): 7 NA's :2

 SD TD

 Min. : 1.00 Min. : 0.000

 1st Qu.: 3.75 1st Qu.: 0.000

 Median : 6.00 Median : 1.000

 Mean :10.11 Mean : 6.932

 3rd Qu.:12.00 3rd Qu.: 6.000

 Max. :72.00 Max. :53.000

 NA's :2 NA's :2

> FeaturesData = data.frame(features[3:7])
> cor(FeaturesData,use = "pairwise.complete.obs")

 FeatureIdenti

ficationTime

FeatureCompre

hensionTime

LoFC SD TD

FeatureIdenti

ficationTime

1.000000000 0.6267697 0.09751381 -0.001107099 -0.06730504

FeatureCompre

hensionTime

0.626769726 1.000000000 0.62389647 0.402473097 0.60503966

LoFC 0.097513811 0.6238965 1.000000000 0.345745100 0.84588717

SD -0.001107099 0.4024731 0.34574510 1.000000000 0.08384359

TD -0.067305040 0.6050397 0.84588717 0.083843588 1.000000000

#It has a value between +1 and −1, where 1 is total positive linear correlation, 0 is no
#linear correlation, and −1 is total negative linear correlation.

> fit <- lm(LoFC~TD)
> summary(fit)

Call:

lm(formula = LoFC ~ TD)

D. Appendix Statistical Test Result

72

Residuals:

 Min 1Q Median 3Q Max
-214.13 -69.79 -37.78 48.25 353.91

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 99.285 19.447 5.106 7.55e-06 ***
TD 13.992 1.361 10.278 4.91e-13 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 112.8 on 42 degrees of freedom
Multiple R-squared: 0.7155, Adjusted R-squared: 0.7088
F-statistic: 105.6 on 1 and 42 DF, p-value: 4.915e-13

> plot(TD,LoFC)
> abline(99.285,13.992,col="red")

> fit <- lm(Feature_Identification_Time~FeatureComprehensionTime)
> summary(fit)

Call:

lm(formula = FeatureIdentificationTime ~ FeatureComprehensionTime)

Residuals:

 Min 1Q Median 3Q Max
-20.484 -6.399 2.055 7.203 12.311

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.30255 3.60954 2.577 0.016533 *

FeatureComprehensionTime 0.25985 0.06594 3.941 0.000612 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9.214 on 24 degrees of freedom
 (18 observations deleted due to missingness)
Multiple R-squared: 0.3928, Adjusted R-squared: 0.3675
F-statistic: 15.53 on 1 and 24 DF, p-value: 0.0006122

> plot(FeatureComprehensionTime,Feature_Identification_Time)
> abline(9.30225,0.25985,col="red")

> fit <- lm(FeatureComprehensionTime~LoFC)
> summary(fit)

Call:

lm(formula = FeatureComprehensionTime ~ LoFC)

Residuals:

 Min 1Q Median 3Q Max
-39.313 -15.054 -4.778 14.633 50.163

Coefficients:

D. Appendix Statistical Test Result

73

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 32.60658 5.77836 5.643 8.25e-06 ***
LoFC 0.08607 0.02201 3.911 0.00066 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 22.29 on 24 degrees of freedom
 (18 observations deleted due to missingness)
Multiple R-squared: 0.3892, Adjusted R-squared: 0.3638
F-statistic: 15.3 on 1 and 24 DF, p-value: 0.0006596

> plot(LoFC,FeatureComprehensionTime)
> abline(32.60658,0.08607,col="red")

> fit <- lm(FeatureComprehensionTime~TD)
> summary(fit)

Call:

lm(formula = FeatureComprehensionTime ~ TD)

Residuals:

 Min 1Q Median 3Q Max
-37.536 -15.193 -2.562 17.208 50.464

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 39.5357 4.9277 8.023 3e-08 ***
TD 1.4473 0.3888 3.723 0.00106 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 22.71 on 24 degrees of freedom
 (18 observations deleted due to missingness)
Multiple R-squared: 0.3661, Adjusted R-squared: 0.3397
F-statistic: 13.86 on 1 and 24 DF, p-value: 0.001058

> plot(TD,FeatureComprehensionTime)
> abline(39.5357,1.4473,col="red")

hist(LOF)
hist(SD)
hist(TD)

D. Appendix Statistical Test Result

74

	List of Figures
	List of Tables
	Introduction
	Feature Location in Industrial Practices
	Case Study Subject
	Currently Existing FLTs
	Problem Statement
	Research Goal
	Research Questions
	Main Contributions
	Document Structure

	Background
	Methodology
	Domain Analysis
	Delta 3D printer construction
	Cartesian 3D printer construction

	Marlin Ecosystem Pre-study
	Feature Location
	Feature Identification and Location through Release Log
	Feature Identification and Location through Source Code

	Feature Characteristics
	Marlin Feature Model

	Results
	Domain Analysis
	Pre-study
	Development History
	Marlin's Forks
	Key Developers
	Development Culture and Process

	Feature Identification and Location through Release Log
	Feature Identification and Location through Source Code
	Feature Characteristics and Feature Model

	Result Analysis and Discussions
	Domain Analysis Reflection
	Pre-study
	Insights and Reflections

	Feature Identification and Location through Release Log
	Approach Generalization

	Feature Identification and Location through Source Code
	Insights and Reflections
	Approach Generalization

	Feature Identification and Location Result Analysis
	Feature Characteristics Analysis

	Threats to Validity
	Conclusion and Future Work
	Glossary
	Bibliography
	Appendix Release log
	Appendix Feature Collection Result
	Appendix Feature Model
	Appendix Statistical Test Result

