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Abstract
Comparing the attitude that different news organizations have towards a certain
claim or topic is an important part of the procedure used by human fact-checkers
today for assessing the veracity of a news story reporting about the issue. In this
thesis we focus on automating the challenging task of stance detection in the news
domain, specifically determining the relative stance of an article towards a claim
stated in an associated headline, making use of the labelled dataset delivered for
supervision in the first stage of the Fake News Challenge. While the most successful
approaches in this domain have used complex ensemble classifiers employing large
sets of hand-engineered features, their performance is just marginally better than
a simple bag-of-words model deriving only lexical similarity. Our approach makes
use of recurrent neural networks that read headlines and articles word-by-word.
The models we implement are comparable to the state-of-the-art systems, however,
observing that severe overfitting occurs.

Keywords: fake news, stance detection, natural language processing, machine learn-
ing, recurrent neural networks.
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1
Introduction

In this thesis we investigate whether machine learning methods can help to detect
fake news. The New York Times narrowly defines fake news as "a made-up story with
an intention to deceive" [41]. As a further matter, fake news is often the result of an
interest to mislead people for some secondary gain [35]. For example, spreading false
information about opponents can strengthen a certain political interest. Experts
claim that made-up stories about Hillary Clinton were one of the reasons why she lost
against Donald Trump in the last US presidential election [3]. Misinformation and
influence campaigns have been reported in other countries as well [8]. Reportedly
Russia attempted to influence the UK referendum about leaving the European Union
by posting more than 45,000 messages on Twitter [1]. The trend of wide-spread
use of mobile devices lead to an increasing proportion of the population receiving
their news online, often in near real-time and often from novel news sources. As
a consequence, there is a high risk of falling victim to fake news today. Many
people are not aware that the news they read is fabricated as it is often a tedious
and complex task to determine the veracity of a news story. Indeed, this can be
a challenging task even for trained fact-checkers [5] [35]. In a research poll made
in the US, about 64% of the adults answered that made-up news stories cause "a
great deal of confusion about the basic facts of current events" [7] [35]. According to
experts, the larger problem caused by fake news is that people start doubting real
news [41].

1.1 Background

Addressing the fake news problem, the fact-checking organization Full Fact aims to
implement machine learning and artificial intelligence to improve detection of fake
news using automatic tools [5]. For this purpose, a competition called the Fake News
Challenge stage 1 (FNC-1) was recently organized by Dean Pomerleau, an adjunct
faculty member at Carnegie Mellon University, and Delip Rao, founder of Joostware
AI Research Corporation [35]. Along with the competition, a large dataset contain-
ing labelled headline and article pairs was released. The dataset allows for studying
two tasks, to decide if headlines and articles are related or not and to determine
the attitude expressed in an article towards a certain claim given in an associated
headline. In natural language processing, the latter task is referred to as stance de-
tection. More specifically, the problem of stance detection is to infer from a source
text whether the author is for, against or neutral to a subject given in a target text.
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1. Introduction

The organizers of the FNC-1 competition argue that the best way to address the
fake news problem at this stage is to look at what parts of the procedure of assessing
the veracity of a news article can be broken down into steps and automated assisting
human fact-checkers [35]. An important first step in the fact-checking pipeline is to
gather relevant background information and understand what different news organi-
zations report about an issue including all sides there are to it. More specifically, the
organizers explain that an automated tool for stance detection can help detect fake
news as follows. First, given a claim one can find all top articles that agree, disagree
or discuss the claim. In addition, such a tool can help identify specific arguments for
and against the claim in these articles. Second, if many news articles from highly
credible sources argue against a given claim, then the claim in question is likely not
true. Conversely, if a claim is supported in a single news article from a low-credibility
source and there is no mention of the claim in any article from a high-credibility
source, one may draw the conclusion that the claim in question is probably not true.

Having an automated tool for detecting if a headline is unrelated to an associated
article or not, can help identify fake news seeing that fabricated stories are often
given headlines aiming to attract readers rather than reflecting the content of the
articles.

1.2 Aims
A) In the first part of this thesis, we investigate the efficiency of representing

news articles using recurrent neural networks for the problem of detecting the
relationship between a headline and its corresponding body text. Studying
this, we train and evaluate a classifier on the dataset provided for the FNC-1
competition [35]. More specifically, we aim for the classifier to accomplish the
following tasks.

• Determine whether a news article headline and the corresponding body
text is related to each other or not. That is, classify a headline and article
pair into one of the two categories unrelated or related.

• Given a headline and an article that is related to each other, classify the
stance of the article relative to the claim stated in the headline into one
of the three categories agree, disagree or discuss.

B) In the second part of this thesis, we attempt to solve the class imbalance
problem present in the dataset, aiming for a classifier built for the tasks listed
in A) to perform well in other domains.

1.3 Problem Formulation
Achieving our goals required addressing two subproblems: (i) A model must learn
to distinguish and capture relevant information in long and content-sparse news

2



1. Introduction

articles for classifying the relationship between the headline and the corresponding
body text, and (ii) the classifier needs to account for shifts in class distribution. In
this section, these subproblems are described in more detail.

1.3.1 Representation

To train a classifier for determining the relationship between a headline and an
associated body text, a meaningful representation of news articles is needed. Typi-
cally, the headline of a news article is a shorter text concisely describing a topic or
claim. On the other hand, the body text is virtually always a longer text document
elaborating on the topic or arguing for the claim in the corresponding headline. A
text document in this context consists of a sequence of paragraphs of several sen-
tences each. There are various ways of representing text documents for classification
tasks. The current state-of-the-art models for the FNC-1 dataset represent the head-
line and the body text using statistical methods, namely n-gram models and topic
models. These models efficiently transform a news article into a fixed-size vector
representation, considering which sequences of n words appear and how frequently
they appear in both the headline and the body text.

In this thesis we model the headline as a sequence of words using a recurrent neu-
ral network and we model the associated body text either as a sequence of words
or as a set of sentences, where a sentence is a sequence of words, using another
recurrent neural network. A recurrent neural network considers all words and the
order in which they appear in a text, taking long-term dependencies into account.
An example of a long-term dependency is the use of "he" or "she" referring to a
subject mentioned earlier. We believe that both the order in which words appear
and long-term dependencies are important aspects to consider for the task of stance
detection. For instance, a recurrent neural network can capture how the word "not"
alters, depending on where it appears in the text, the attitude towards some event
involving a certain subject referenced via long-term dependencies. Such textual re-
lations might be harder to capture using a limited n-gram model.

Bowman et al. demonstrated that recurrent neural networks can learn efficient se-
mantic representations of sentences for the similar task of recognizing textual entail-
ment [10] [37]. Indeed models based on recurrent neural networks are currently the
state-of-the-art for this task [44]. However, the dataset which is used for supervision
consists of sentence pairs of high quality while the FNC-1 dataset used in this thesis
consists of real news articles. Representing large news articles is a key challenge in
this thesis since in general it is problematic for a recurrent neural network to capture
all the important information in larger input sequences. Also, a news article is typi-
cally content-sparse [46]. This means that much of the information in a news article
is considered noise and does not contribute with any useful content for making a
certain classification. Therefore a model for a headline and body text pair needs to
distinguish only the relevant information.

3



1. Introduction

1.3.2 Class Imbalance
In the FNC-1 dataset, the set of headline and body text pairs that are related to
each other is a minority compared to the set of pairs labelled unrelated. Training
a classifier on a dataset with an imbalance in class distribution, the classifier tends
to be biased towards the majority classes and therefore shows poor performance
on instances belonging to the minority classes. The problem is referred to as the
class imbalance problem [21]. Furthermore, we cannot assume the class distribution
of news articles in another domain such as in a real world application is the same
as in the development domain. Consequently, a classifier needs to generalize well
on shifts in the class distribution. This issue becomes even more difficult in an
imbalanced development domain as a classifier needs to perform well on minority
classes, considering that in a shifted class distribution a minority class can become
a majority class.

1.4 Contribution
Our contribution with this thesis is an evaluation of the efficiency of representing
news articles using recurrent neural networks for the task of determining the re-
lationship between a headline and the corresponding body text. For the subtask
of detecting if a headline and body text pair is related or not, we find that the
recurrent neural network models are less efficient on unseen examples than simple
static representations constructed using statistical methods. However, for the stance
detection subtask we find these comparable to the state-of-the-art.

1.5 Delimitation
The rules for the FNC-1 competition prohibits the use of any labelled dataset for
supervision other than the one provided. Thus we decided to limit our study to only
explore supervision using the FNC-1 dataset.

1.6 Outline
The remainder of this thesis is structured as follows. First in Chapter 2 we pro-
vide the theory behind the machine learning methods we make use of in this work.
Thereafter in Chapter 3 we examine the FNC-1 dataset and describe the FNC-1
evaluation metrics. We also present the current state-of-the-art and study previous
research relevant for this thesis. The recurrent neural network based models we
investigate are presented in Chapter 4. Thereafter in Chapter 5 we describe the
experiments conducted and report the results obtained. In Chapter 6 we discuss
and analyze the methods investigated and lastly, in Chapter 7, we summarize our
accomplishments and suggest how to extend this study.

4



2
Theory

In this chapter we cover the theory of the machine learning methods used in this
thesis. The chapter is structured as follows. First we describe ways of representing
text documents using statistical methods and recurrent neural networks. Thereafter
we explain the multi-layer perceptron classifier used in our experiments. Lastly we
cover various techniques for training a model as well as tackling the problem of
training a classifier on an imbalanced dataset.

2.1 Representation
For classification tasks, text documents of variable length need to be transformed
into a representation that a classifier is able to comprehend, typically a fixed-size
vector representation. In this section we focus on a document representation that
is learned for the task at hand using recurrent neural networks. However, we begin
with describing some static document representations constructed using statistical
methods and feature engineering, namely bag-of-words representation, n-gram rep-
resentation and topic models, since these have been reported to be successful in the
Fake News Challenge stage 1 competition.

2.1.1 Text Documents
The bag-of-words model represents a text document by its multiset of words. A
multiset stores all occurrences of an element but ignores order. This means that
the bag-of-words model does not capture any spatial information, such as word-
word co-occurrence in a text document. Instead of considering each word in a text
document as element, an n-gram model captures spatial information by storing the
occurrences of n words appearing in sequence in the document.

For document classification tasks, the bag-of-words or the n-gram model is mainly
used for extracting features from a text document into a fixed-size vector represen-
tation [16]. The size of the document representation is determined by the size of the
vocabulary used for a corpus (a large collection of text documents). A commonly
used feature is the term frequency, TFt,d, counting the occurrences of a term t in a
document d in the corpus. However, term frequency weighs all terms equally and
does not consider how important a certain term is to a certain document in the
corpus. Instead it is common to reduce the term frequency weight by the inverse
document frequency. The document frequency, DFt, is defined by the number of doc-
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2. Theory

uments in the corpus that contains a term t. Now the inverse document frequency,
IDFt, is defined by

IDFt = log
(
N

DFt

)
,

where N is the number of documents in the corpus. Normalizing the term frequency
weight, TFt,d, with the inverse document frequency, IDFt, is called TF-IDF weight-
ing, TF-IDF = TFt,d × IDFt. The TF-IDF weight tends to reduce the impact of
words with little discriminative power.

Another useful feature indicating similarity between two documents is the cosine
similarity between their normalized bag-of-words term frequency (BoW-TF) vector
representations [16]. The cosine similarity between two vectors u and v is described
by the following equation.

cosine(u,v) = u · v
‖u‖‖v‖

A drawback with calculating document distance using BoW-TF vectors and co-
sine similarity, is that the BoW-TF vectors are frequently near-orthogonal which
means that the cosine similarity is often close to zero. Another drawback is that
the distance between individual words is not captured in the BoW-TF vectors. The
problem occurs when two documents convey the same information and have few or
no words in common [31].

Topic modelling using latent semantic analysis (LSA) is a method that attempts to
circumvent the issues mentioned above [31]. This method makes use of the TF-IDF
matrix of a corpus to produce a set of concepts or latent topics for analyzing the
documents in the corpus in a low-dimensional semantic space [18]. Transforming a
corpus into a TF-IDF matrix, each row corresponds to a document in the corpus
and the columns represent the TF-IDF weights for unique words. The TF-IDF ma-
trix is a sparse representation of the corpus. LSA aims to identify patterns in the
relationships between terms and concepts in such collection using a matrix factor-
ization technique called singular-value decomposition [45]. Applying this technique
reduces the number of columns in the sparse TF-IDF matrix, resulting in a more
coherent document representation [31]. In the reduced matrix, columns represent
latent topics and a row corresponds to the mixture of latent topics in a document.
Now the similarity between two documents can be calculated using cosine similarity
between their mixtures of topics.

Transforming a document into a fixed-size vector representation using an n-gram
model or a topic model results in a simplified representation of the document from
which it is easy to extract various features. However, these simplified representa-
tions might lose important information disregarding the underlying dynamics of a
document. Instead there are methods transforming a text document into a fixed-
size vector representation as it is, considering all the information it carries. That
is, encoding text represented as a sequence of tokens where a token is a character,
number, punctuation, space or other symbol. The recurrent neural network is an

6



2. Theory

example of encoders operating on sequential input commonly used for natural lan-
guage processing tasks.

A sequence of tokens representing a text document is typically large, therefore it is
common to group the tokens in a document into a sequence of words. It is further
possible to reason about a text document in terms of sentences and paragraphs,
where a sentence is a sequence of words terminated with a punctuation token. A
paragraph groups one or more sentences related to the same topic. The document
is now constructed out of a sequence of paragraphs delimited with space. Tokens
and words in a document reside in a discrete space, where a token maps to an
index in an alphabet and a word maps to an index in a vocabulary. However,
when encoding a text document for document classification tasks, it is common to
represent words in a continuous space as vectors embedding linguistic information
about them (word vector embeddings), see Section 2.1.2. An important advantage
with word vector embeddings for document classification tasks, is that they can
capture how similar two words are. Recurrent neural networks can be used to encode
the dynamic representation of a text document described here into a fixed-size vector
representation capturing contextual information, see Section 2.2.

2.1.2 Words

A unique word in a corpus maps to an index in a defined vocabulary. This index
can be used to represent the word for natural language processing tasks. However,
for computational reasons, e.g. processing text using recurrent neural networks, it
is preferable to represent words with vectors. One way is to use discrete one-hot
vectors. A one-hot vector is a vector where a single element is one and the rest of
the elements are zero. The index of the element set to one in the one-hot vector
maps to the word in the vocabulary at that index. However, this means that the
dimension of the one-hot representation increases with the size of the vocabulary
used. Thus, in a large corpus the one-hot encoding of words tend to become an
excessively large and sparse representation.

Another way is to represent words using dense vectors in a relatively low-dimensional
space embedding some linguistic information about the words, so called word vector
embeddings. Word embeddings are constructed based on the distributional hypoth-
esis stating that words used in the same contexts tend to have similar meanings [24].
There are two main model families for constructing word embeddings, namely meth-
ods based on global matrix factorization, e.g. LSA, and local context window meth-
ods, e.g. the models in word2vec [34]. Word2vec is a group of models utilizing either
the continuous bag-of-words model architecture or the continuous skip-gram model
architecture, where the former predicts the current word given the context window
of surrounding words while the latter predicts the context window of surrounding
words given the current word [33]. GloVe is another unsupervised learning algorithm
for constructing word embeddings utilizing the word-word co-occurrence statistics
in a corpus. The GloVe algorithm combines the advantages of global matrix factor-
ization methods and local context window methods [34].
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The aforementioned methods produce a continuous word vector space taking a large
corpus as input. Words that are used in the same contexts are close in the resulting
vector space and the semantic similarity between two words can be measured by the
cosine similarity between their word vectors. Also, the authors showed that vector
operations on word2vec or GloVe word vector embeddings often preserve semantic
relationships [33] [34], for example the vector difference v(King) - v(Man) is roughly
equal to v(Royalty).

2.2 Recurrent Neural Networks
The recurrent neural network (RNN) is a family of neural networks characterized by
a graph of computational units forming a feedback loop [22]. This network topology
allows to process sequences of arbitrary length and to hold an internal state between
time steps. The internal state can be seen as a memory aiming to capture temporal
dynamics in the input [12]. When processing a text document, the internal state of
the RNN allows holding information about the whole document. The basic RNN
unit is described by the recursive function

ht = f
(
Whxt + Uhht−1 + bh

)
,

where f is an activation function, xt is the input at time step t, ht−1 is the hidden
state calculated at the previous time step and ht is the new hidden state. The
parameters of the RNN unit, weight matrices Wh and Uh and bias vector bh, are
learned using a supervised training procedure referred to as backpropagation through
time, see Section 2.4. Given an initial state h0, the output from an RNN processing
an input sequence, x1, . . . ,xT , is a sequence of states, h1, . . . ,hT . If the input is a
text document represented as a sequence of word vector embeddings, the output is
a sequence of contextual vector embeddings and the last contextual embedding, hT ,
represents the context of the entire document.

2.2.1 Long Short-Term Memory
A problem with the aforementioned RNN architecture is that it might suffer from
vanishing or exploding gradients during training when backpropagating the errors
through each time step of a sequence. If the gradients tend to vanish it might
be problematic for the RNN to capture long-term dependencies in sequences and,
conversely, if the gradients tend to explode it might be difficult training the network
due to oscillating weights [26]. However, there are several variants of the RNN
architecture aiming to circumvent the problem of vanishing or exploding gradients.
One of these variants uses so called long short-term memory (LSTM) cells in its
internal state initially proposed by Hochreiter and Schmidhuber [27]. The internal
state of an RNN with LSTM architecture is much more complex than in the basic
RNN unit. The idea of an LSTM unit is that it has a memory content and gates that
regulates how much of the input is added to this and if to forget current memory
content. Furthermore, the LSTM unit has gates regulating how much memory
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content is exposed to the output. The LSTM unit used in this thesis is described
by the following recursive functions

it = σ
(
Wixt + Uiht−1 + bi

)
,

ft = σ
(
Wfxt + Ufht−1 + bf

)
,

ot = σ (Woxt + Uoht−1 + bo) ,
ct = ft � ct−1 + it � tanh (Wcxt + Ucht−1 + bc) , and
ht = ot � tanh (ct) ,

where � is the elementwise multiplication, σ is the sigmoid function and tanh is
short for the hyperbolic tangent function. The memory of the LSTM unit at time
step t is represented by ct and the output is ht. The gates in the LSTM unit,
the input gates it, the forget gates ft, and the output gates ot, take values in the
range of 0 to 1 representing how much information they let through at time step t.
The LSTM architecture is parameterized with weight matrices W∗ and U∗ and bias
vectors b∗.

2.2.2 Gated Recurrent Units
The gated recurrent unit (GRU) is another RNN architecture, similar to the LSTM
unit, aiming to circumvent the problem of vanishing or exploding gradients [15].
The GRU architecture is less complex than the LSTM architecture and they are
comparable in performance on many tasks [17] [28] [11]. The main difference is that
GRU has no memory state, instead it exposes the hidden state without regulation.
The GRU architecture is described by the following recursive functions

zt = σ (Wzxt + Uzst−1 + bz) ,
rt = σ (Wrxt + Urst−1 + br) ,
ht = tanh

(
Whxt + Uh (st−1 � rt) + bh

)
, and

st = (1− zt)� ht + zt � st−1,

where � is the elementwise multiplication, σ is the sigmoid function and tanh is
short for the hyperbolic tangent function. The reset gates, rt, regulate how much
information in the previous state, st−1, is added to the hidden state, ht, and the
update gates, zt, regulate what information to keep from the hidden state and the
previous state constituting the new state, st. The GRU architecture is parameterized
with weight matrices W∗ and U∗ and bias vectors b∗.

2.2.3 Bidirectional Units
Recurrent neural networks can also be constructed bidirectionally as first proposed
by Schuster and Paliwal [38]. In a bidirectional RNN, the input is processed both
forwards and backwards simultaneously. To accomplish this, each unit holds two
states, one for positive time direction and one for negative time direction. The two
states in each unit are not interconnected such that the state output from one direc-
tion does not influence the other direction. This means that at any given time step
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t, the information available in the network consists of information from the current
time step, xt, information from all previous time steps of the input, x0, . . . ,xt−1,
and information from all future time steps, xt+1, . . . ,xT . The bidirectional RNN is
known to improve the representation of a sequence [23].

2.3 Multi-Layer Perceptron
A multi-layer perceptron (MLP), also called feedforward neural network, stacks
several layers of nodes: an input layer, an output layer and one or more intermediate
layers referred to as hidden layers [22]. Nodes in the hidden layer(s) and the output
layer are computational units applying a non-linear activation function to a weighted
input. A hidden layer allows the MLP to distinguish data that is not linearly
separable. The MLP is for this reason commonly used as a classifier, mapping a set
of input features propagated through each hidden layer to the nodes in the output
layer representing different classes. The softmax output layer is used for multi-class
classification tasks,

S (x)c = ewT
c x∑C

c′=1 e
wT

c′x
,

where C is the set of classes in the classification problem, wc is a vector of weights to
be learned for class c ∈ C and x is an input feature vector from the preceding layer.
In a softmax output layer, the output values of all nodes represent a probability
distribution over all classes.

An MLP is fully connected, i.e. all nodes in the hidden layer(s) and the output layer
are connected by weights to all nodes in the preceding layer. The size of a hidden
layer in an MLP refers to the number of nodes it consists of. If the size of a hidden
layer is n and the input to the hidden layer is of size m, then the weight matrix W
connecting the nodes of the hidden layer and the preceding layer is of size m × n.
The hidden layer can be described with the following equation

y = f
(
WT x + b

)
,

where y ∈ Rn is the output of the hidden layer, x ∈ Rm is the input to the layer
and f is an activation function. The layer is parameterized with the weight matrix
W ∈ Rm×n and the bias vector b ∈ Rn. The bias is a threshold parameter that
shifts the activation function independent of the output from the preceding layer.
The weights and biases in an MLP are learned using a supervised training procedure
referred to as backpropagation, see Section 2.4.

The sigmoid function, σ(x) = 1
1+e−x , and the hyperbolic tangent function (tanh),

tanh(x) = ex+e−x

ex+e−x , are common activation functions for a hidden layer in an MLP.
Both the sigmoid and the tanh functions have an ’S’-shaped form taking values in the
ranges of 0 to 1 and -1 to 1 respectively. Note that the sigmoid and the tanh functions
can be used in the output layer for binary classification tasks. Another common
activation function for a hidden layer is the rectifier defined as ReLu(x) = max(0,x),
i.e. a linear function for positive input and zero for negative inputs.
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2.4 Training
Training a neural network for classification using supervised learning aims to find
the network parameters minimizing the error rate given a labelled dataset [22]. The
supervised training procedure infers a function that maps a given input to a class
label. The goal is that the learned function can be used for mapping previously
unseen inputs well, called generalization, which requires the function to model the
underlying relationship in the labelled examples from the training dataset.

2.4.1 Loss Function
Training a neural network on a labelled dataset, the loss function is a function of
the difference between the actual labels and the predicted output. The idea is to
map the parameters of the neural network onto the loss of making prediction errors
and the training procedure seeks to find parameters minimizing the total loss on
the labelled dataset. A commonly used loss function for training neural networks
on classification tasks is the cross-entropy loss function, which measures how close
the output probability distribution of a classifier, Ŷi, is to the corresponding target
distribution, Yi, for each training example i,

L(Y, Ŷ) = −
N∑
i

Y T
i log Ŷi.

2.4.2 Gradient Descent
Gradient descent is an iterative optimization algorithm minimizing a function by
taking small steps in the direction of the negative gradient [22]. The gradient de-
scent algorithm is commonly used for adjusting the parameters training a neural
network. Propagating a training example through a neural network, the gradients
of the loss function are the error contributions of the parameters mapping the input
to a label. A gradient descent iteration calculates the gradients of the loss function
and updates the parameters of the network aiming to reduce the errors made on
a set of training examples. The algorithm iterates over a labelled dataset guiding
the parameters with the goal of converging to a state where the network minimizes
the loss function. For stochastic gradient descent, an iteration is a single training
example while for mini-batch gradient descent, an iteration is a batch of training
examples. Iterating over the entire training dataset is commonly referred to as an
epoch. The gradient descent algorithm typically needs several epochs training a
neural network before reaching the convergence criteria.

The gradient descent update step of a weight matrix W in a neural network can be
described by

W = W− η ∂L
∂W

,

where L is the loss function and η is the learning rate, also called the step size,
determining the proportion of the gradients used to update the network parameters.
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For a feedforward neural network stacking multiple layers on top of each other, the
gradients of parameters in the hidden layers are derived applying the chain rule for
each layer. In order to calculate the error contributions of the parameters, the loss
calculated at the output of the network must be propagated back through the lay-
ers. This technique is also called backpropagation or backward propagation of errors.

Similar to the feedforward neural network topology, a recurrent neural network can
be unrolled as a stack of layers where each layer corresponds to a time step of an
input sequence. The layers of an unrolled RNN share parameters and applying the
chain rule, the error contributions of the parameters are calculated as the sum of
the gradients of the loss function over all time steps. This technique is also called
backpropagation through time, since the loss must be backpropagated through each
time step of the input sequence. The gradient descent update step for a weight
matrix W in an RNN is written as

W = W− η
∑

t

∂Lt

∂W
,

where Lt is the loss at time step t.

2.4.3 Generalization
In supervised learning, one speaks of overfitting when the function inferred tends
to describe outliers and noise instead of capturing the underlying relationship in
the training data. A model that overfits on the training data shows poor predictive
performance on unseen examples, implying a generalization error. Overfitting oc-
curs when a model is too complex. For neural networks the problem of overfitting
commonly occurs when there are too many parameters relative to the number of
training examples and/or when the iterative training procedure is performed too
long. Early stopping is commonly used when training a neural network to prevent
the model from overfitting on the training dataset. This technique stops the itera-
tive training procedure when the performance on unseen examples starts to decrease.

A regularization scheme adds additional terms to a loss function penalizing complex-
ity in arguments found in the optimization procedure, i.e. hindering the optimization
procedure to explore certain regions of a model’s parameter space. Early stopping
is a form of regularization. The motivation for using regularization is to induce less
complex and more sparse models aiming to improve generalization. When training
neural networks, L1 and/or L2 regularization terms are commonly added to the loss
function such that large weights are penalized. The L1 penalty term is the sum of
the absolute value of all weights and the L2 penalty term is the sum of the square
of all weights.

Dropout is another commonly used technique for preventing overfitting when train-
ing a neural network [40]. The idea is to prevent units from co-adapting by randomly
excluding them from the network during training. This is achieved by applying an
elementwise multiplication between the activation of a unit and a vector of indepen-
dent random variables taking the values of 1 with a fixed keep probability p and 0
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with dropout probability 1− p. Applying dropout is an efficient way of performing
model averaging.

2.5 Class Imbalance
In a dataset with an imbalance in class distribution, the number of examples belong-
ing to each class differs significantly. When training a classifier on an imbalanced
dataset, care must be taken evaluating its performance on minority classes. This is
due to a shifted class distribution in another domain may severely affect the perfor-
mance of the classifier, depending on what evaluation metric is used, since it tends
to be biased towards majority classes in the development domain. In this section
we cover various methods for training and evaluating a classifier on an imbalanced
dataset to account for shifts in class distribution.

2.5.1 Performance Metrics
A common performance metric used when evaluating the performance of a classifier
on a balanced dataset is accuracy, i.e. the proportion of correctly classified instances.
However, accuracy is not a suitable metric for evaluating a classifier in a domain with
an imbalance in class distribution since it tells little about the classifier’s performance
on minority classes when the classifier achieves high accuracy being biased towards
majority classes. Instead, when evaluating the performance of a classifier in an
imbalanced domain, it is more common to analyze the confusion matrix [2]. Table
2.1 shows a confusion matrix for a binary-class classification problem, reporting four
different results: true positives (TP) denoting the number of positive instances that
a classifier correctly predicted as positives, false negatives (FN) denoting the number
of positive instances that a classifier incorrectly predicted as negatives, true negatives
(TN) denoting the number of negative instances that a classifier correctly predicted
as negatives and false positives (FP) denoting the number of negative instances that
a classifier incorrectly predicted as positives. The positive class in the confusion
matrix corresponds to the minority class while the negative class corresponds to the
majority class.

positive prediction negative prediction

positive class true positives (TP) false negatives (FN)
negative class false positives (FP) true negatives (TN)

Table 2.1: Confusion matrix for a binary-class classification problem.
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Derived from the results reported in a confusion matrix, the F1-score is a perfor-
mance metric widely used in imbalanced domains defined as

F1-score = 2 · precision · recallprecision + recall ,

where
precision = TP

TP + FP ,

and
recall = TP

TP + FN .

Precision is a metric describing a classifier’s exactness, i.e. the proportion of instances
predicted as positives that are correct, while recall, also called sensitivity, is a metric
describing a classifier’s completeness, i.e. the proportion of positive instances that
are correctly predicted as positives. The F1-score punishes a classifier that tends
to be biased towards the majority class, seeing that precision and recall is equally
weighted, in contrast to accuracy which based on the results reported in a confusion
matrix is defined as

accuracy = TP + TN
TP + TN + FP + FN .

2.5.2 Balancing the Class Distribution
One approach to generalize on shifts in class distribution is to pre-process the dataset
balancing the class distribution [21]. Balancing the dataset reduces a classifier’s bias
towards the majority classes. Mainly there are two techniques for balancing the class
distribution of a dataset: (i) over-sampling examples of the minority classes ran-
domly replicating examples and (ii) under-sampling the majority classes randomly
removing examples. However, over-sampling the minority classes increases the risk
of overfitting and a drawback with under-sampling is that we might lose important
information.

2.5.3 Cost-Sensitive Learning
Typically the objective in classification is to minimize the mis-classification rate. In
this setting, the costs caused by all types of mis-classifications are considered equal.
In cost-sensitive classification, it is assumed that different types of mis-classifications
cause different costs [9]. A cost-sensitive learning method incorporates different costs
for different types of mis-classifications in the learning algorithm of a classifier [21].
The cost-sensitive learning method can be useful for training a classifier on an im-
balanced dataset treating a mis-classification of an instance from the minority class
as more costly than mis-classifications of instances from the majority classes.

In cost-sensitive learning, the cost caused by mis-classifying a training example is a
function of the actual label and the predicted label, represented as a cost matrix,
C, defined as: C[i, j] = cost for classifying a training example of label i as label j
and C[i, i] = 0, where the costs are parameters to the learning algorithm [30]. The
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objective of the cost-sensitive learning procedure is not to minimize the error rate
but to minimize the expected mis-classification cost:

Cost(Y, Ŷ) =
N∑
i

C[argmax (Yi) , ·]T Ŷi,

where Yi is the actual label represented by a one-hot vector and Ŷi is the classi-
fier’s output probability distribution for training example i. To address the class
imbalance problem, the cost matrix can be defined, for instance, based on the class
distribution of the training dataset or based on the evaluation metric used.

2.5.4 Ensemble of Classifiers
An ensemble learning method trains a set of classifiers aiming to improve predictive
performance combining them all together [21]. This technique is also referred to as
model averaging. Below we describe two ensemble learning methods that are useful
for improving generalization on shifts in class distribution: bootstrap aggregation
(bagging) and boosting.

Bagging is an ensemble learning method reducing the variance of a classifier’s predic-
tions. The idea is to train an ensemble of classifiers on different subsets of an original
training dataset having different class distributions [21]. The different training sets
are sampled uniformly and with replacement from the original training dataset. This
means that some training examples may be replicated in the sampled sets. Having
an ensemble of classifiers trained on different training sets, the final classification
is the class that gets the majority of their individual votes, i.e. the class that the
majority of the classifiers predicted.

Boosting algorithms aim to train several weak classifiers combining them into a
single strong classifier [21]. The performance of a weak classifier is slightly better
than simply guessing labels at random. Each weak classifier is trained on a subset
of the training dataset focusing on examples mis-classified by previous classifiers.
Having a set of weak classifiers, the boosting algorithm learns a weighted sum of
their individual estimates constituting a single strong classifier. This method aims
to get more accurate predictions with reduced bias and variance.
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3
Fake News Challenge Stage 1

The Fake News Challenge stage 1 (FNC-1) competition was organized by Dean
Pomerleau, an adjunct faculty member at Carnegie Mellon University, and Delip
Rao, founder of Joostware AI Research Corporation, with the goal of exploring
how machine learning and natural language processing can be utilized to combat
fake news [35]. The competition aimed to explore this challenge focusing on the
task of stance detection. In this chapter we describe the dataset published for the
competition, the baseline provided by the FNC-1 organizers and the approaches
taken by the participants scoring the highest in the competition. Lastly, we review
previous work related to the FNC-1 competition.

3.1 Dataset

Some time before the FNC-1 competition was organized, Ferreira and Vlachos pre-
sented a novel dataset called Emergent supervising the tasks of fact-checking and
stance detection [20]. The dataset was built by Craig Silverman and the Tow Cen-
ter for Digital Journalism at Columbia University (2015), collecting 300 rumoured
claims and 2,595 associated news articles that they labelled with an estimate of
their veracity. The set of veracity labels consists of true, false and unverified and
allows for studying the task of fact-checking. Further, they summarized each news
article into a headline and the resulting headline-article pair was labelled with its
stance towards the associated claim. The set of labels for the stance classification
task consists of for, against and observing.

The dataset provided for the FNC-1 competition is derived from the Emergent
dataset [35]. In the FNC-1 dataset, headlines and articles from the Emergent dataset
are paired, randomly and based on their relative stance towards the associated claim,
moreover divided into two sets of headline-article pairs: related and not related to
each other, where the latter set is labelled unrelated. Secondly and more challeng-
ing, the set of headline-article pairs that is related to each other is further divided
into the three classes agree, disagree and discuss and allows for supervising the task
of determining the stance of an article relative to a claim given in the associated
headline. Table 3.1 shows an example headline together with excerpts from four
different articles of different stance towards the claim in the headline.

The FNC-1 dataset consists of a training set and a test set in which there are
49,972 headline-article pairs in the training set and an additional 25,413 pairs in the
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Headline:
"Robert Plant Ripped up $800M Led Zeppelin Reunion Contract"

Articles: Labels:
"... Led Zeppelin’s Robert Plant turned down £500 MILLION to reform supergroup. ..." agree
"... No, Robert Plant did not rip up an $800 million deal to get Led Zeppelin back together. ..." disagree
"... Robert Plant reportedly tore up an $800 million Led Zeppelin reunion deal. ..." discuss
"... Richard Branson’s Virgin Galactic is set to launch SpaceShipTwo today. ..." unrelated

Table 3.1: Headline and article pairs of different labels. The example is taken
verbatim from the FNC-1 official site [35].

test set. The headline-article pairs in the training set are constructed out of 1,689
unique headlines and 1,648 unique articles. There are 894 unique headlines in the
test set and 904 unique articles. The class distribution in the training set is 73.1%
unrelated, 7.4% agree, 1.7% disagree and 17.8% discuss. The class distribution in
the test set is 72.2% unrelated, 7.5% agree, 2.7% disagree and 17.6% discuss. In
addition the organizers of the FNC-1 competition suggest an official hold-out set
constructed by a random split (based on a fixed seed) in the set of articles along
with their corresponding headlines, such that there are 40,350 headline-article pairs
in the training set and 9,622 pairs in the hold-out set.

3.2 Evaluation Metric

In the FNC-1 competition, the score for labelling a class correctly is weighted as
follows [35]. A score of 0.25 is credited for labelling the unrelated class correctly.
If the headline and body text pair is related and it is labelled as any of agree,
disagree or discuss, a score of 0.25 is credited and an additional score of 0.75 is
credited for labelling the correct relationship class as well. We will refer to this
weighted score as the Fake News Challenge score (FNC-score). The rationale for a
weighted scoring system was that the related versus unrelated classification subtask
was expected to be easier and considered less relevant for the superordinate goal of
detecting fake news than the stance classification subtask. The performance of a
classifier on the FNC-1 test set is measured by the relative FNC-score, i.e. the score
achieved normalized by the total score of classifying all headline-article pairs in the
set correctly.

3.3 Baseline

The organizers of the FNC-1 competition provided a simple baseline classifier that
achieves a relative FNC-score of 75.20 on the test set. The baseline consists of a
gradient boosting classifier taking as input a set of hand-crafted features extracted
from a headline and the associated article. The features are constructed based on
counting the number of overlapping n-grams in a headline-article pair and counting
certain words indicating refutation and polarity. See Appendix A.1 for the list of
refuting words considered. Below we list the hand-crafted features extracted from a
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headline-article pair.

• Counting words considered as refuting appearing in the headline

• Calculating the polarity of the headline and the article based on the number
of refuting words appearing in them

• The fraction of overlapping words in the headline-article pair

• Counting the number of times an n-gram of the headline appears in the asso-
ciated article, where n ∈ {1, 2, 3}

• Counting the number of times an n-gram of the headline appears in the intro-
ductory paragraph of the associated article, where n ∈ {1, 2, 3}

3.4 State-of-the-Art
There was a total of 50 participants in the FNC-1 competition. In Table 3.2 the top
10 teams in the competition are listed.

Team % Relative FNC-score
SOLAT in the SWEN 82.02
Athene 81.97
UCL Machine Reading 81.72
Chips Ahoy! 80.21
CLUlings 79.73
unconscious bias 79.69
OSU 79.65
MITBusters 79.58
DFKI LT 79.56
GTRI - ICL 79.33

Table 3.2: Top 10 results in the FNC-1 competition

The winner of the FNC-1 competition, team Solat in the SWEN, used a weighted
average between a deep convolutional model and gradient boosted decision trees
achieving a relative FNC-score of 82.02 on the test set. The deep convolutional
model stacked several 1D convolutional layers taking the headline and the associ-
ated article as input represented by word2vec word vector embeddings pre-trained
on the Google News dataset [22]. The output of the convolutional neural network
was further sent to an MLP with three layers. The input to the gradient boosted
decision trees consisted of five sets of features extracted from headlines and articles,
namely counting features, TF-IDF features, SVD features, word2vec features and
sentiment features. The counting features are constructed based on several statistics
of overlapping n-grams in a headline-article pair. The SVD features are headlines
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and articles represented as a mixture of the latent topics found in the FNC-1 cor-
pus [18]. Also the cosine similarity between the SVD features are calculated which
gives an indication if a headline-article pair is related or not. The word2vec features
are constructed by taking the sum of the Google News word2vec word vector em-
beddings of all words in a headline and an article [33]. Lastly, the sentiment features
are based on separate sentiment scores of a headline and the corresponding article
for comparison of their attitudes.

Team Athene ended up on second place in the FNC-1 competition using an ensemble
of five separate MLPs, all of them stacking seven hidden layers, where predictions
were made based on voting. The MLPs were fed with seven sets of features based
on the FNC-1 baseline features, topic models and features for stance classification
as suggested by Ferreira and Vlachos [20]. For constructing the topic model features
they used non-negative matrix factorization, latent dirichlet allocation and latent
semantic analysis [18].

The UCL Machine Reading group ended up on third place in the FNC-1 competition
using a single MLP with two layers, stacking a ReLu-layer and a Softmax-layer [36].
The MLP was fed with a single set of features consisting of BoW-TF feature vectors
and the cosine similarity between a pair of TF-IDF vectors of a headline and the
associated article. When extracting the BoW-TF features they used a vocabulary
of the 5,000 most frequent terms in the training set excluding a pre-compiled list of
stop words and the TF-IDF matrix was constructed using a vocabulary of the 5,000
most frequent terms in both the training set and the test set excluding the same set
of stop words. See Appendix A.3 for the list of stop words they used.

3.5 Related Work
In this section we first cover some useful features for stance classification proposed
by Ferreira and Vlachos using the Emergent dataset. Second, we review the task of
recognizing textual entailment which is similar to the tasks addressed in the FNC-1
competition.

3.5.1 Features for Stance Classification
Ferreira and Vlachos approached the stance classification task supervised by the
Emergent dataset using a logistic regression classifier [20]. As input to the classi-
fier, they experimented with extracting a number of hand-crafted features from the
headlines and the claims. The features they extracted from a headline consisted of a
BoW-TF vector representation of the headline, whether a headline ends with a ques-
tion mark or not and the minimum distance from the root to common refuting or
hedging words in a headline’s dependency tree. Furthermore, they extracted several
headline-claim features aiming to capture the entailment relationship. One headline-
claim feature was constructed using an alignment score function for matching stems
and paraphrases between the headline and the claim. Another headline-claim fea-
ture they used is based on matching subject-verb-object triplets extracted from a
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headline and the associated claim. They also used a feature constructed by multiply-
ing the cosine similarities between Google News pre-trained word2vec word vector
embeddings of all words in a headline-claim pair.

3.5.2 Recognizing Textual Entailment
In natural language processing, studying textual entailment concerns a three-fold re-
lationship between a premise and an associated hypothesis [19]: whether (i) reading
the premise it is possible to infer that the hypothesis is true (positive textual entail-
ment), (ii) the premise contradicts the hypothesis (negative textual entailment), or
(iii) the premise neither entails nor contradicts the hypothesis. Recently, a dataset
for the task of recognizing textual entailment (RTE) was published by Bowman et.
al [10]. The dataset consists of 570,152 labelled sentence pairs of high quality. Here
we summarize the field of the RTE task supervised by this dataset. We focus on
approaches making use of LSTM networks, which includes the current state-of-the-
art, since these methods are related to our approach for the tasks in the FNC-1
competition.

Bowman et al. approached the RTE task using two LSTM networks encoding the
contextual representation of the premise and the hypothesis separately and tak-
ing the concatenation of these as input to an MLP classifier [10]. Rocktäschel et
al. approached the task applying a neural attention model on top of a conditional
encoder [37]. The conditional encoder they used stacks two LSTM encoders in se-
quence, where the first LSTM encoder takes as input the premise and the second
LSTM encoder is initialized with the final state of the premise and takes as input
the hypothesis. At the time of publication they reported state-of-the-art results.
Wang et al. modified the LSTM unit to incorporate the neural attention mecha-
nism proposed by Rocktäschel et al. which they call matching LSTM or mLSTM
for short [43]. The idea is that the mLSTM unit allows the attention mechanism to
remember certain matching results for the long-term as well as to forget less impor-
tant results. Similar to Bowman et al., they encoded the contextual embeddings of
the premise and the hypothesis separately using two LSTM networks. Wang et al.
achieved a higher accuracy than Rocktäschel et al.

Sha et al. incorporated an attention mechanism in the LSTM unit based on the
contextual embeddings of the premise, the current memory state and the previous
attended contextual embedding [39]. This pipeline of processing the premise and
the hypothesis is similar to the conditional encoder proposed by Rocktäschel et al.
Cheng et al. modified the LSTM unit to have a set of memory states instead of a
single memory state. They further employed an attention mechanism in the LSTM
unit that for each word of the hypothesis focus on a subset of the memory states
important for the word currently being encoded [14]. Another work by Chen et al.
modified the LSTM unit such that two sentences are encoded at the same time [13].

Wang et al. tackled the task of RTE amongst other sentence matching tasks propos-
ing a bilateral multi-perspective matching operation [44]. They used two sepa-
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rate LSTM networks as a contextual representation layer and the bilateral multi-
perspective matching operation was applied on the contextual embeddings of the
premise and the hypothesis. The idea was to weight the contextual embeddings
using a perspective weight matrix and then match the different perspectives of the
premise and the hypothesis using cosine similarity. They improved on the state-of-
the-art results earlier reported by Chen et al.
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4
Models

In this chapter we describe the models we investigate for representing news articles
and the relationship between a headline and the corresponding body text. Here we
present how these models are used for representing the relationship between two
natural language sentences. Throughout this chapter we let (xs

1, . . . ,xs
N) denote a

sequence of word vectors representing a sentence s of length N .

4.1 Parallel Encoder
Bowman et al. demonstrated that RNNs can learn efficient semantic representations
of natural language sentences for the task of recognizing textual entailment [10] [37].
They encoded a representation of two sentences separately using two LSTMs and
the concatenation of these were used as input to an MLP classifier. We will refer
to this model as the parallel encoder. Even more successful approaches using the
parallel encoder architecture additionally employed an intermediate attention layer
before the classifier, e.g. the mLSTM network proposed by Wang et al. [43], or a
matching layer, e.g. the multi-perspective matching layer proposed by Wang et al.
which is the current state-of-the-art [44].

The parallel encoder processes two sentences, s and t, as follows:

hs
1 = RNNs(xs

1,h0) ht
1 = RNNt(xt

1,h0)
... ...

hs
M = RNNs(xs

M ,hs
M−1) ht

N = RNNt(xt
N ,ht

N−1)

where h0 is an initial state of zeros. The final states, hs
M and ht

N , correspond to the
semantic representations of the two sentences. The parallel encoder is illustrated in
Figure 4.1.

4.2 Conditional Encoder
Previous work reports the conditional encoder architecture being successful for the
task of recognizing the entailment relationship between two natural language sen-
tences [37]. A recent work by Augenstein et al. used a bidirectional conditional
encoder for the task of stance classification in tweets [4]. The tweets express a
positive or negative attitude against a certain target. An example is the target
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Figure 4.1: Illustration of the parallel encoder. Nodes with superscript s and t
represent a sentence s and another sentence t respectively. The final states of the two
RNNs, hs

M and ht
N , correspond to the semantic representations of the two sentences.

The concatenation of the final states is denoted [hs
M ,ht

N ].

"Legalization of Abortion" and the corresponding tweet "A foetus has rights too!".
Augenstein et al. achieved second best performance on the SemEval 2016 Task 6
Twitter Stance Detection corpus.

In contrast to determining entailment of two sentences reading them independently
reasoning over their semantic representations, the conditional encoder aims to model
the entailment relationship reading both sentences in one go reasoning over com-
binations of words and phrases [37]. As illustrated in Figure 4.2, the conditional
encoder employs two RNNs in sequence, where the first RNN takes as input a sen-
tence s and the second RNN takes as input another sentence t initialized with the
representation of the first sentence:

hs
1 = RNNs(xs

1,h0)
...

hs
M = RNNs(xs

M ,hs
M−1)

ht
1 = RNNt(xt

1,hs
M)

...
ht

N = RNNt(xt
N ,ht

N−1),

where h0 is an initial state of zeros [4]. The final hidden state of the second RNN,
ht

N , corresponds to a representation of the entailment relationship between the two
sentences.

The conditional encoder proposed in previous work consists of RNNs with LSTM
units [37] [4]. In this setup, the memory state of the second LSTM is initialized with
the final memory state of the first LSTM and the hidden state of the second LSTM

24



4. Models

is initialized with zeros:

[hs
1, cs

1] = LSTMs(xs
1,h0, c0)

...
[hs

M , cs
M ] = LSTMs(xs

M ,hs
M−1, cs

M−1)
[ht

1, ct
1] = LSTMt(xt

1,h0, cs
M)

...
[ht

N , ct
N ] = LSTMt(xt

N ,ht
N−1, ct

N−1),

where h0 and c0 are initial states of zeros.
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Figure 4.2: Illustration of the conditional encoder. Nodes with superscript s and
t represent a sentence s and another sentence t respectively. The final state of the
second RNN, ht

N , represents the entailment relationship between the two sentences.

4.3 Neural Attention
Neural attention models gained traction when they were introduced in the field of
neural machine translation using an encoder-decoder RNN architecture. In this
setup, the encoder aims to capture the important features of a sentence to be trans-
lated into a fixed-size vector representation. The decoder is initialized with the rep-
resentation of the source sentence and its task is to generate the translated sentence.
However, for a large input space the fixed-size vector representation of a source sen-
tence might impose a bottleneck in the model. To circumvent this bottleneck and
improve the performance of the encoder-decoder architecture, the neural attention
mechanism proposed by Bahdanau et al. allows the decoder to search through the
source sentence for features that are relevant for generating the next word [6].

Rocktäschel et al. approached the task of recognizing textual entailment using the
conditional encoder applying a neural attention model on top of the resulting hidden
states processing two sentences. Similar to the neural attention mechanism for ma-
chine translation, the idea is to circumvent the bottleneck in the conditional encoder
architecture initializing the second encoder with a fixed-size vector representation of
the first sentence. The attention model employed on the conditional encoder attends
to past hidden states of the first sentence such that the RNN encoder does not need
to capture the whole semantics of the sentence. Instead, it suffices to inform the
second RNN encoder which parts of the first sentence are important such that the
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attention model can search for these [37].

As Wang et al. highlight, the main idea with the neural attention model proposed by
Rocktäschel et al. is to determine an attention-weighted combination of the hidden
states of the first sentence, relevant to each word in the second sentence [43]. That
is, for a certain word xt

k in the second sentence, an attention vector ak aims to model
the relevant parts in the first sentence. Wang et al. present the neural attention
model as follows. Encoding a sentence t conditioned on another sentence s using
the conditional encoder, let ht

k and hs
j denote the resulting hidden states processing

the words xt
k and xs

j respectively. Now, the aforementioned attention vector ak is
determined by the following weighted sum:

ak =
M∑

j=1
αkjhs

j .

Here is αkj an attention weight, representing the degree of alignment between xs
j

and xt
k, generated as follows:

αkj = exp (ekj)∑
j′ exp (ekj′)

,

where
ekj = we · tanh

(
Wtht

k + Wshs
j + Waha

k−1

)
,

where · is the dot product, we is a learned vector of weights and W∗ are learned
weight matrices. Further, ha

k−1 is a hidden state in an RNN model over all attention
weight vectors, {ak}N

k=1, allowing the attention model to keep track of what was
attended to in previous steps. The hidden states of the recurrent attention model
are defined by:

ha
k = ak + tanh

(
Waha

k−1

)
,

where Wa is a learned weight matrix. The final hidden state of the recurrent
attention model, ha

N , corresponds to the attention-weighted representation of the
first sentence. Rocktäschel et al. used the concatenation of ha

N and the final hidden
state of the second sentence, ht

N , to determine the entailment relationship.
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Experiments and Results

In this chapter we describe the experiments we have conducted along with the results
obtained. The models we present here were trained on the FNC-1 dataset and for
all experiments we report the best performing model on the official hold-out set as
well as on the test set using the relative FNC-score as evaluation metric. Note that
a model evaluated on the hold-out set is not necessarily the same model evaluated
on the test set, an issue which is discussed in Section 6.5.

5.1 Representation and Classifier

A news article in the FNC-1 dataset consists of a headline and an associated ar-
ticle. A headline, H, is typically a short text that we invariably represented as a
sequence of word vectors. Headlines that consist of more than one sentence were
concatenated into a single sentence. An article, A, almost always consists of several
sentences and in a set of experiments we investigated representing an article either
as a sequence of word vectors or as a set of sentences, where each sentence is a
sequence of word vectors. In addition we investigated various attentive representa-
tions of articles based on the content in a headline. The experiments we conducted
evaluate different models based on the parallel encoder and the conditional encoder,
while also comparing LSTM architecture and GRU architecture. The results for the
different models described here are reported in Table 5.1, where the parallel encoder
is denoted PE and the conditional encoder is denoted CE.

A representation extracted from a news article was used as input to an MLP classi-
fier with two layers. The last layer of the MLP was a softmax layer with an output
node for each label in the set of labels {unrelated, agree, disagree, discuss}. For
the hidden layer in the MLP, we compared the efficiency between applying the tanh
activation function and the ReLu activation function. The results applying different
activation functions are reported in Table 5.1. For all experiments, the size of the
hidden layer in the MLP was set to 300 and the size of the encoders were set the
same as the dimension of the word vectors used.

Words were represented using 300-dimensional GloVe word vector embeddings pre-
trained on the Wikipedia 2014 dataset and the Gigaword 5 dataset [34]. We intro-
duced a token for out of vocabulary words, a token for padding sentences to equal
length and a token for representing the end of a sentence. The word vectors for
the additional tokens were initialized with zeros. The pre-processing pipeline of
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headlines and articles removed punctuation tokens, words appearing only once and
words considered stop words. We used the list of stop words proposed by the UCL
Machine Reading group [36], see Appendix A.3. We did not optimize word vectors
during training.

When training the classifier we minimized the cross entropy of the training set us-
ing stochastic gradient descent and the Adam optimization algorithm1. The initial
learning rate was set to be 0.0005 and the first momentum and the second momen-
tum was set to be 0.9 and 0.999 respectively.

In all experiments reported here we used the same random seed to sample the initial
weights of the models while all biases where initialized with zeros. We verified the
stability of the initial state of the models by running the training procedure of the
best setups in the first set of experiments using other random seeds observing no
significant deviation in performance on the hold-out set nor on the test set.

Setup Hold-Out Test
PE, LSTM, sequence of words, tanh 74.98 57.18
CE, LSTM, A→ H, sequence of words, tanh 74.86 60.60
CE, GRU, A→ H, sequence of words, tanh 80.31 62.61
CE, GRU, A→ H, sequence of words, ReLu 82.83 67.49
CE, GRU, H → A, sequence of words, ReLu 84.73 64.28
CE, GRU,

↔
A→ H, sequence of words, ReLu 86.41 67.84

PE, GRU, sequence of words, ReLu 85.18 66.55
CE, LSTM, A→ H, set of sentences, tanh 85.85 62.83
CE, GRU, A→ H, set of sentences, tanh 86.80 67.51
CE, GRU, A→ H, set of sentences, ReLu 87.30 67.93
CE, GRU, H → A, set of sentences, ReLu 84.73 64.28
CE, GRU, ReLu, word-by-word attention, sequence of words 83.61 65.57
CE, GRU, ReLu, word-by-word attention, set of sentences 85.88 64.97
CE, GRU, ReLu, sentence attention 87.49 69.08
CE, GRU, ReLu, combined attention 83.65 64.68

Table 5.1: % FNC-score on the hold-out set and the test set for different model
setups and activation functions.

1 Adam is an efficient gradient descent optimization algorithm which works well in practice and
is commonly used for natural language processing tasks [29]. The Adam optimizer maintains a
per-parameter learning rate improving performance on problems with sparse gradients. Also, the
per-parameter learning rates are adapted based on an exponential moving average of the gradients
and the squared gradients, increasing performance on noisy problems.

28



5. Experiments and Results

5.1.1 Representing Articles
When representing an article as a sequence of words, we studied the relationship
between the headline and the entire article. Using the conditional encoder, we tested
both encoding a headline conditioned on the representation of the associated arti-
cle, A → H, and the other way around of encoding an article conditioned on the
representation of the corresponding headline, H → A. In addition, we modified
the conditional encoder such that the first RNN processes the article bidirectionally
into two separate conditional states encoding the headline using two separate RNNs,
↔
A→ H. The idea behind this relationship representation is that the beginning and
the end of an article is more important for detecting the relationship than the con-
tent in between.

Due to the frequent asymmetry of an article being a large text document and the
associated headline being a short text, we also studied the relationship between
each sentence in an article and the headline, representing the article as a set of
sentences. In this setup, we made use of the conditional encoder in such way that
the headline was encoded conditioned on the representation of each sentence in an
article, A → H, or the other way around such that each sentence was encoded
conditioned on the representation of the headline, H → A. The average of the
relationship representations of all sentence-headline pairs represents the relationship
between the headline and the entire article. All sentences were padded to equal
length allowing them to be processed as a batch of sentences reducing the time for
training the model significantly.

5.1.2 Employing Attention
In a set of experiments we investigated whether employing an attention mechanism
in the model improves the relationship representation between a headline and the
associated article. For these experiments we made use of the conditional encoder,
A→ H, and the recurrent neural attention model proposed by Rocktäschel et al [37].

First we investigated the RNN attention model applied on the conditional encoder
representing articles as sequences of words, extracting an attention-weighted repre-
sentation of an article for each word in a headline. The attentive representation of
an article corresponding to the last word in a headline was concatenated with the
relationship representation extracted using the conditional encoder and then used
as input to the classifier. The idea was to incorporate an attention mechanism in
the model learning to focus on certain words or phrases in an article that are impor-
tant for detecting the relationship based on the content in a headline. In another
experiment we applied the attention model for each sentence-headline pair. In this
setup, the attentive representation of the sentence corresponding to the last word in
a headline was concatenated with the sentence-headline relationship representation
extracted using the conditional encoder. The resulting set of attentive sentence rep-
resentations and sentence-headline relationship representations was averaged into a
representation of the entire article and its relationship to the associated headline.
In Table 5.1 we report the results for these experiments denoted as word-by-word
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attention.

Another experiment investigated an attention mechanism learning to find relevant
sentences in an article based on the content in a headline. In this setup, we extracted
a representation of the associated headline using an additional RNN encoder. The
final state of this RNN was used as input to the attention model generating attention-
weights for the set of sentence representations of an article, i.e. the set of final states
of the first RNN in the conditional encoder. These attention-weights were then used
for calculating a weighted sum of the set of sentence-headline relationship represen-
tations extracted using the conditional encoder. In Table 5.1 we report the results
for this experiment denoted as sentence attention.

Lastly we conducted an experiment combining the two aforementioned attention
mechanisms. More specifically, based on the content in a headline we employed an
attention model generating attention-weights for sentences and another attention
model generating attention-weights for words in sentences. In Table 5.1 we report
the results for this experiment denoted as combined attention.

5.2 Learning With Limited Supervision

A relatively large set of training examples is typically needed for a recurrent neural
network to properly learn the underlying relationship in the data and perform well
on examples it has not previously seen. In the experiments conducted investigating
different models, we noticed that these overfit the training data significantly. In par-
ticular, we observed in a qualitative analysis of the models that they were sensitive
on certain words appearing in headlines or articles. An example of this seen in our
analysis was a headline-article pair having no words in common that a model incor-
rectly believed to be related and simply removing the word "authentic" appearing
in the body text made the model believe the pair being unrelated instead. This is
demonstrated and discussed further in Chapter 6. Addressing the issue of overfitting
the training data, we investigated commonly used methods for reducing generaliza-
tion errors when training RNNs such as implementing dropout and regularization of
parameters. We also investigated a data augmentation method based on resampling
examples replacing certain words during training. Another experiment investigated
the effects of transfer learning by pre-training an RNN encoder without supervision
on another dataset for the task of language modelling.

In the experiments described here, we used the conditional encoder, A→ H, repre-
senting articles as sets of sentences since this model was the most efficient to train.
Moreover, we used GRU architecture in the RNNs and the ReLu activation function
was applied in the hidden layer of the MLP since this setup worked the best in the
previous experiments. Since a model has seen all headlines in the official hold-out
set during training and seeing that the performance of a model is significantly better
on the hold-out set than on the test set, we henceforth put more focus on a model’s
performance on the test set aiming to reduce the generalization error.
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Method Hold-Out Test
DW-H 87.34 67.24
DW-A 86.97 67.55
DS p = 0.5 87.23 68.99
DS p = 0.6 87.59 69.30
DS p = 0.7 87.65 67.50
DS p = 0.5, Sentence Attention 84.28 62.10
SR-H IDF 87.47 67.30
SR-H DF 87.95 68.88
SR-A DF 86.95 69.40
SR-H DF × COS 86.34 67.83
SR-A DF × COS 88.06 69.15
λ1 = 1e−7 85.73 67.58
λ1 = 1e−8 87.21 68.75
λ1 = 1e−9 86.80 68.96
λ1 = 1e−10 87.53 68.09
λ2 = 1e−7 87.51 67.55
λ2 = 1e−8 87.09 68.37
λ2 = 1e−9 87.05 68.37
λ2 = 1e−10 86.73 68.27
TL, A→ H 82.07 65.92
TL, H → A 84.07 64.36

Table 5.2: % FNC-score on the hold-out set and the test set investigating different
methods to improve the learning algorithm.

5.2.1 Dropout Words
We conducted a set of experiments investigating dropout as regularization method
randomly excluding words in headlines or in articles during training. The idea was
to train a model such that it generalizes well on words appearing in headlines or
articles and learns to distinguish what words in a given context are important for
making a certain classification. The dropout strategy we investigated is as follows:
For each word in a headline or in an article, keep the word with probability p = 0.9.
We did not apply this strategy on words we considered being refuting or hedging,
see Appendix A.1 and A.2 for these lists of words. In Table 5.2 we report the results
for applying dropout on words in headlines and in articles separetaly denoted as
DW-H and DW-A respectively.

5.2.2 Dropout Sentences
Similar to the idea behind applying dropout on words, we conducted a set of experi-
ments investigating dropout as regularization method randomly excluding sentences
in an article during training. The dropout strategy we investigated is as follows: For
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each sentence in an article, keep the sentence with probability p ∈ {0.5, 0.6, 0.7}. In
Table 5.2 we report the results for this set of experiments denoted as DS.

5.2.3 Synonym Replacement

In a set of experiments we investigated a data augmentation method based on re-
placing certain words during training. The goal was to increase the number of
training examples artificially improving generalization on words seen in the train-
ing set. In the pre-processing stage, we tagged each word in articles and headlines
with its part-of-speech tag, one from the set {noun, adjective, verb, adverb}. In this
stage, we also extracted synonyms for each word using the WordNet database [42].
Each word was also included in its set of synonyms and the document frequency
was calculated for each word in the resulting set. The strategy we investigated for
replacing words during training randomly resampled each word into either itself or
one of its synonyms using a multinomial distribution. We studied different multino-
mial distributions for a set of synonyms: (i) normalizing their document frequencies
(DF), (ii) normalizing their inverse document frequencies (IDF) and (iii) normal-
izing their document frequencies multiplied with the cosine similarity between the
original word and each synonym (DF × COS). The difference between (i) and (ii)
is that the latter replaces words with synonyms preferring those that are frequently
appearing in articles and headlines, while (i) prefers less frequently appearing words.
In addition, (iii) prefers replacing words to synonyms that appear frequently and are
semantically similar. For replacement we considered only words tagged as adjectives
or adverbs. In Table 5.2 we report the results for synonym replacement in headlines
and in articles separetaly denoted as SR-H and SR-A respectively.

5.2.4 Transfer Learning

Given a model trained for a specific task, transfer learning aims to transfer the
knowledge of the given model to improve learning in a new task. In a set of exper-
iments we investigated transfer learning by pre-training the headline RNN in the
conditional encoder for a language modelling task. More specifically, we considered
the unsupervised task of predicting the next word for each word in a given head-
line. This task requires the RNN to capture a meaningful semantic representation
of the headline. The idea was to get a better initialization of the parameters of
the conditional encoder and then fine-tune them on the actual supervised task of
detecting the relationship between a headline and the associated article. For this
set of experiments, we utilized a combined dataset consisting of the headlines from
the FNC-1 training set and headlines from another dataset containing headlines and
references to news pages collected from a web aggregator in the period from 10th of
March 2014 to 10th of August 2014 [32]. We pre-trained an RNN on the combined
dataset for a single epoch and the parameters obtained were used as starting point
for the headline RNN in the conditional encoder. The results for these experiments
are reported in Table 5.2 denoted as TL.
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5.2.5 Regularization

Adding L1 and L2 regularization terms to the loss function penalizes large weights
and induces sparsity, reducing the complexity of a model. Reducing the complexity
of the conditional encoder replacing the LSTM units with GRUs, we noticed a sig-
nificant improvement in performance on the test set. For this reason we conducted
a set of experiments investigating how different values for the L1 regularization
multiplier, λ1, as well as the L2 regularization multiplier, λ2, impacts the perfor-
mance. In Table 5.2, we report the results for λ1 ∈ {1e−7, 1e−8, 1e−9, 1e−10} and
λ2 ∈ {1e−7, 1e−8, 1e−9, 1e−10}.

5.3 Addressing the Class Imbalance Problem

In a set of experiments we addressed the class imbalance problem present in the
FNC-1 dataset. For this problem we investigated the following methods: balancing
the class distribution, cost-sensitive learning and building an ensemble of classifiers.
The setup used for this set of experiments was the conditional encoder with GRU
architecture, A → H, representing articles as sets of sentences and the ReLu ac-
tivation function was applied in the hidden layer of the MLP. The results for the
experiments described here are reported in Table 5.3.

Method Hold-Out Test
Balancing the Class Distribution 87.46 67.56
CS = 3.0 87.21 69.58
CS = 3.0, Sentence Attention 87.13 70.05

(iii) CS = 3.0, DS p = 0.5 87.17 70.23
(ii) CS = 3.0, DS p = 0.6 86.86 70.29

CS = 3.0, SR-A DF 86.09 68.27
CS = 3.0, DS p = 0.5, SR-A DF 87.65 69.93
CS = 3.0, DS p = 0.5, SR-H DF 86.66 70.06
CS = 3.0, DS p = 0.6, λ1 = 1e−9 88.01 70.38
CS = 0.25 87.10 60.93
CS = 0.25, Sentence Attention 86.35 60.02
CS = 0.25, DS p = 0.5 87.79 60.27

(i) CS = 0.25, DS p = 0.6 87.25 64.30
CS = 0.25, DS p = 0.6, λ1 = 1e−9 87.89 63.15
Ensemble of Classifiers - 72.72

Table 5.3: % FNC-score on the hold-out set and the test set addressing the class
imbalance problem.
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5.3.1 Balancing the Class Distribution

We conducted an experiment balancing the class distribution during training of a
classifier, aiming to reduce the classifier’s bias towards the unrelated majority class.
The strategy we investigated is as follows: For each training example, if the example
is labelled unrelated include it with probability 0.25 otherwise include the example
with probability 1.0. This strategy implies that, (a) the class distribution in the
dataset is balanced such that the number of headline-article pairs labelled unrelated
seen during an epoch is approximately the same as pairs of the stance classification
subtask, and (b) the class distribution shifts slightly between epochs.

5.3.2 Cost-Sensitive Learning

In all previous experiments the cost caused by all types of mis-classifications were
considered equal, i.e. the mis-classification cost-sensitivity matrix was defined as:
C[·, ·] = 1.0. In a set of experiments we investigated increasing the cost for headline-
article pairs of the stance classification subtask as they are minority in the FNC-1
dataset and since the evaluation criteria favors these, defining the cost-sensitivity
matrix as: C[unrelated, ·] = 1.0 and C[i, ·] = 3.0, where i ∈ {agree, disagree, discuss}.
In addition we conducted a set of experiments reducing the mis-classification cost
for headline-article pairs of the stance classification subtask, aiming to increase the
classifier’s performance on the unrelated class. Since the majority of the headline-
article pairs in the FNC-1 dataset are labelled unrelated we did not increase the
cost for this class. For these experiments we defined the cost-sensitivity matrix as:
C[unrelated, ·] = 1.0 and C[i, ·] = 0.25, where i ∈ {agree, disagree, discuss}. In Table
5.3, we report the results for the sets of experiments described here denoting their
cost-sensitivity settings as CS = 3.0 and CS = 0.25 respectively.

5.3.3 Ensemble of Classifiers

Lastly we constructed an ensemble of classifiers based on their individual perfor-
mance on the related versus unrelated classification subtask and the stance classi-
fication subtask. The ensemble consisted of three classifiers: (i) a classifier trained
reducing the mis-classification cost for headline-article pairs of the stance classifi-
cation subtask, (ii) a classifier trained increasing the cost for headline-article pairs
of the stance classification subtask and (iii) another classifier trained increasing the
cost for headline-article pairs of the stance classification subtask but with differ-
ent regularization setting such that there occurs disagreement between (ii) and (iii)
on headline-article pairs labelled unrelated. Predictions of the ensemble were made
based on the following scheme: For a given headline-article pair, let all classifiers
vote for the headline-article pair being unrelated or related and if they agree on a
pair being related, then if possible use classifier (ii) to determine the relationship
class, otherwise use classifier (iii). The different classifiers that performed the best
in the ensemble setup described here are denoted with (i), (ii) and (iii) in Table 5.3.
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5.4 Summary
According to the results reported above the ensemble classifier performs the best
on the FNC-1 test set. In Tables 5.4, 5.5, 5.6, 5.7, 5.9, 5.8 and 5.10, we report the
confusion matrix on the hold-out set and the test set for the ensemble classifier as
well as for each individual classifier in the ensemble. For comparison to classifier (i)
and classifier (ii) in the ensemble classifier, we also report the confusion matrix on
the hold-out set and the test set for the classifier trained with the same setup but
considering the cost equal for all types of mis-classifications in Table 5.11 and 5.12.
The confusion matrices for the baseline provided by the FNC-1 organizers and the
state-of-the-art bag-of-words model used by the UCL Machine Reading group are
reported in Table 5.13 and Table 5.14.

Studying the confusion matrices on the test set reported here, we note that the per-
formance on the related versus unrelated classification subtask for the conditional
encoder based classifiers is significantly lower than for both the baseline and the
state-of-the-art. For the ensemble classifier we report an F1-score of 0.7310 on this
subtask, while the baseline and the bag-of-words model score 0.8364 and 0.9374
respectively. Moreover, classifier (i) in the ensemble achieves an F1-score of 0.6486
and classifier (ii) achieves an F1-score of 0.6890, while the classifier trained with the
same setup but considering the cost equal for all types of mis-classifications achieves
an F1-score of 0.7043. Focusing on the stance classification subtask, we report
that the average accuracy on the related set of classes is 45.05% for the ensemble
classifier, while 43.98% for the bag-of-words model and 26.23% for the FNC-1 base-
line. Moreover, classifier (i) in the ensemble achieves an average accuracy of 27.22%
and classifier (ii) achieves an average accuracy of 45.07%, while the classifier trained
with the same setup but considering the cost equal for all types of mis-classifications
achieves an average accuracy of 36.22%.

unrelated agree disagree discuss

unrelated 6,668 86 10 134
agree 60 424 10 268

disagree 15 31 67 49
discuss 71 86 41 1,602

FNC-score: 3,881.25 out of 4,448.50 (87.25%)

Table 5.4: Confusion matrix on the hold-out set for classifier (i) in the ensemble
classifier.
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unrelated agree disagree discuss

unrelated 6,171 281 65 381
agree 21 514 9 218

disagree 4 10 96 52
discuss 27 134 45 1,594

FNC-score: 3,863.75 out of 4,448.50 (86.86%)

Table 5.5: Confusion matrix on the hold-out set for classifier (ii) in the ensemble
classifier.

unrelated agree disagree discuss

unrelated 6,477 173 52 196
agree 25 542 17 178

disagree 14 41 93 14
discuss 47 207 49 1,497

FNC-score: 3,877.75 out of 4,448.50 (87.17%)

Table 5.6: Confusion matrix on the hold-out set for classifier (iii) in the ensemble
classifier.

unrelated agree disagree discuss

unrelated 16,995 433 9 912
agree 1,033 428 8 434

disagree 476 114 17 90
discuss 1,515 378 38 2,533

FNC-score: 7,492.25 out of 11,651.25 (64.30%)

Table 5.7: Confusion matrix on the test set for classifier (i) in the ensemble clas-
sifier.

unrelated agree disagree discuss

unrelated 13,423 2,132 160 2,634
agree 212 1,088 30 573

disagree 133 305 42 217
discuss 417 772 61 3,214

FNC-score: 8,189.25 out of 11,651.25 (70.29%)

Table 5.8: Confusion matrix on the test set for classifier (ii) in the ensemble
classifier.
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unrelated agree disagree discuss

unrelated 13,193 2,029 280 2,847
agree 164 968 85 686

disagree 77 293 59 268
discuss 340 726 74 3,324

FNC-score: 8,182.25 out of 11,651.25 (70.23%)

Table 5.9: Confusion matrix on the test set for classifier (iii) in the ensemble
classifier.

unrelated agree disagree discuss

unrelated 14,553 1,730 100 1,966
agree 256 1,058 33 556

disagree 148 294 46 209
discuss 404 747 57 3,256

FNC-score: 8,472.25 out of 11,651.25 (72.72%)

Table 5.10: Confusion matrix on the test set for the ensemble classifier.

unrelated agree disagree discuss

unrelated 6,545 130 27 196
agree 27 569 10 156

disagree 14 49 80 19
discuss 41 229 46 1,484

FNC-score: 3,896.50 out of 4,448.50 (87.59%)

Table 5.11: Confusion matrix on the hold-out set for the conditional encoder based
classifier, A → H, representing articles as sets of sentences, trained with dropout
on sentences in an article, setting the probability of keeping a sentence to 0.6, and
considering the cost equal for all types of mis-classifications.
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unrelated agree disagree discuss

unrelated 15,523 1,142 14 1,670
agree 552 737 16 598

disagree 306 207 11 173
discuss 830 566 17 3,051

FNC-score: 8,074 out of 11,651.25 (69.30%)

Table 5.12: Confusion matrix on the test set for the conditional encoder based
classifier, A → H, representing articles as sets of sentences, trained with dropout
on sentences in an article, setting the probability of keeping a sentence to 0.6, and
considering the cost equal for all types of mis-classifications.

unrelated agree disagree discuss

unrelated 17,978 10 3 358
agree 285 173 10 1,435

disagree 238 39 7 413
discuss 1,399 221 7 3,556

FNC-score: 8,761.75 out of 11,651.25 (75.20%)

Table 5.13: Confusion matrix on the test set for the FNC-1 baseline.

unrelated agree disagree discuss

unrelated 17,963 53 3 330
agree 114 838 12 939

disagree 116 179 46 356
discuss 262 523 46 3,633

FNC-score: 9,521.50 out of 11,651.25 (81.72%)

Table 5.14: Confusion matrix on the test set for the state-of-the-art bag-of-words
model.
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The results reported in this thesis indicate that the RNN based classifiers are weak
on the subtask of distinguishing if a headline-article pair is related or not. This was
expected to be an easy task on which the naive baseline provided by the FNC-1 orga-
nizers performs significantly better and the state-of-the-art bag-of-words model used
by the UCL Machine Reading group performs close to perfect. By implementing
cost-sensitive learning we were able to reduce a classifier’s bias towards the unre-
lated class and improve the performance on the stance classification subtask. We
report an average accuracy on the subtask comparable to the state-of-the-art also
outperforming the baseline. However, we note that the average accuracy reported
is quite low and in particular low accuracy is reported on headline-article pairs of
the disagree class.

In the experiments conducted we found that the RNN based models suffer from
overfitting; while modelling the training data well, we report poor performance on
unseen examples in the test set, as can be seen in Figure 6.3. Related to this obser-
vation we noticed that the models tend to be sensitive when certain words appear
in headlines or articles, see Section 6.4. Addressing this, we found that methods
modifying the learning algorithm to improve generalization have limited effects on
a model’s performance on unseen headline-article pairs. Our main conclusion of
these experiments is that the RNN based models are too complicated for the task
at hand, facing a high variance issue, where the limited size of the FNC-1 dataset,
composed out of a relatively few unique headlines and articles, ends up hindering
such a model to learn the underlying relationship between words and phrases in an
article and the corresponding headline for different classes. The RNNs operate on
an unproportionately large feature space compared to the number of training exam-
ples; seeing that a headline-article pair typically contains a large set of words, each
word equating to a large set of features and where the order in which words appear
increases the function space explored in the optimization procedure. In addition,
much of the information in an article is considered noise and does not contribute
with any useful content for making a certain classification.

In the rest of this chapter we discuss the models we have investigated as well as
the methods studied aiming to improve learning in the FNC-1 domain. In addition
we provide a qualitative analysis on various issues observed when testing the RNN
based models. Lastly we discuss an important issue regarding model selection using
the official hold-out set that needs to be addressed in future work.
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6.1 Representation and Classifier

When representing an article as a sequence of words we found that the ReLu-layer
in the MLP outperformed the tanh-layer, but for the case when the article is repre-
sented as a set of sentences none of them works conclusively better. For the former
case we argue that the tanh activation function hurts the optimization procedure.
Another finding in our experiments is that the GRU models are more efficient than
the LSTM variants. We argue this is due to the former type of RNN units reduces
the complexity of the models, seeing that there are relatively few training examples
in the FNC-1 dataset.

We found that the conditional encoder works better for the tasks in the FNC-1 com-
petition than the parallel encoder. We argue this is due to the former model does
not need to extract a rich semantic representation of the headline. Instead, condi-
tioned on the semantic representation of an article the model can focus on certain
words or phrases in a headline when reasoning about their relationship. We argue
that this also is the reason why reversing the condition is less efficient, i.e. encoding
the article conditioned on the semantic representation of the headline. A headline
is typically a short text, often a content-dense summary of the corresponding article
introducing the subject(s), the topic(s) and the claim(s) argumented for or against
in the article. Furthermore, the headlines in the FNC-1 dataset are similar to each
other. Many of them are constructed artificially from a real headline by changing
the order of some words or whole clauses, adding some word that brings no content
or replacing words with their synonyms. Articles on the other hand are often large
but content-sparse text documents.

The beginning and the end of an article is often directly related to the content in
the headline: The introduction often elaborates on the content in the headline and
summarizes what is to come in the article while the end is often a conclusion of
the argumentation in the article. We found that encoding articles bidirectionally as
condition encoding headlines improves the performance slightly. In this setup the
beginning and the end of an article are equally close to the final representation and
therefore more likely prominent in the resulting state used as condition encoding
the headline.

Reducing the input sequence by modelling the degree of alignment comparing head-
lines against sentences, i.e. representing articles as sets of sentences, yields a dimin-
ishing small improvement in performance. Many sentences in an article elaborate
on the topic or give some form of background to the event. Some sentences may
therefore be completely unrelated to the content in a headline. This might be prob-
lematic for the set of sentences model since all sentences in an article are weighted
equally reasoning about the relationship. Addressing this, we found that an atten-
tion model learning to search articles for relevant sentences based on the content
in a headline and weight these accordingly, yields an improvement of 1.15% on the
test set. Similarly we believed that an attention model could learn to align words
in sentences relevant to words in the headline. However, interestingly such a model
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had a negative impact on the performance increasing the tendencies of overfitting
the training data. See Section 6.4 for a qualitative analysis on employing attention
in a model.

6.2 Learning With Limited Supervision
Implementing dropout randomly removing sentences in an article during training
improved the performance comparable to applying an attention model weighting
sentences based on the content in a headline. Both methods seem to improve a set
of sentences model such that it learns to distinguish what sentences in an article are
important for making a certain classification. However, applying dropout on sen-
tences in combination with employing an attention model reduces the performance
significantly, i.e. they seem to be exclusive to each other.

The regularization method of dropping words during training affects the perfor-
mance negatively. Moreover, we found it difficult to artificially augment the set of
training examples for the purpose of improving generalization. Synonym replace-
ment seemed promising but combined with other methods the improvements were
diminishing. We found replacement of words based on document frequency the most
efficient of the replacement strategies, for which including the semantic similarity
aspect when resampling words yields no improvement.

Moreover, we found that for some setups adding L1 and L2 regularization terms to
the loss function yields an improvement in performance on the test set. However,
in combination with other techniques, such as implementing dropout and cost sen-
sitive learning, the improvements were diminishing. Due to this we did not focus
on finding an optimal L1 and L2 regularization of the loss function for all different
setups.

Interestingly we found that pre-training the headline RNN for language modelling
decreases the performance for the setup of encoding the headline conditioned on the
representation of an article but increases the performance slightly when encoding the
headline and the article the other way around. Related to the discussion regarding
representation before, this indicates that the conditional encoder for the setup of
encoding the headline conditioned on the representation of an article is not focusing
on extracting a meaningful semantic representation of headlines when trained on
the FNC-1 dataset.

6.3 Approaching the Class Imbalance Problem
Balancing the class distribution of the dataset decreases the performance on the
joint task reducing the FNC-score on the test set. We argue this is due to removing
important relationship information seeing that the dataset is constructed combining
a relatively small amount of unique headlines and articles.
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Compared to considering the cost equal for all types of mis-classifications training a
classifier, increasing the mis-classification cost for headline-article pairs labelled as
related we found an improvement in performance on the stance classification subtask
while the performance was slightly reduced on the related versus unrelated classifi-
cation subtask; seeing a reduced precision on the union of the related set of classes.
Conversely, reducing the mis-classification cost for headline-article pairs labelled as
related, we found that the performance on both the stance classification subtask
and the related versus unrelated classification subtask was reduced; seeing that a
classifier’s recall on the union of the related set of classes was reduced significantly.
This observation indicates that cost-sensitive learning reduces or increases a classi-
fier’s bias towards the unrelated majority class and allows for selecting the stance
classification subtask to focus on. Focusing on the stance classification subtask im-
proves the performance on the joint task increasing the FNC-score on the test set.

Constructing an ensemble combining different models trained with different cost-
sensitivity settings, we were able to improve the performance on the related versus
unrelated classification subtask and consequently, improve the performance on the
joint task achieving an FNC-score 2.5% lower than the FNC-1 baseline. The ensem-
ble classifier’s performance on distinguishing if a headline-article pair is related or
not is, however, still significantly lower than the baseline and the state-of-the-art.
We believe that investigating ensemble methods further, focusing on the related
versus unrelated classification subtask, has potential to improve the performance
to the extent of outperforming the baseline. However, due to the complexity of an
ensemble model and considering the efficiency of the naive baseline, we did not want
to spend further efforts on such an approach.

6.4 Qualitative Analysis
When testing a conditional encoder based classifier on examples from the test set we
found following issues: (i) There are many cases when the headline and the article
have many words in common and the pair is labelled as related but the classifier
predicts the pair to be unrelated, and (ii) the other way around, there are few or no
words in common but the classifier predicts the headline-article pair as related. In
Figure 6.1 we analyze an example of the latter case.

The sensitivity on certain words appearing in either an article or a headline dis-
cussed along with Figure 6.1 is an indication that the RNN based models fail to
generalize either extracting a semantic representation of the article or identifying
relevant words in the headline. Furthermore, analyzing statistics of mis-classified
examples in the test set, the amount of words in an article or in a headline seems not
being a source of errors. There are cases when few words in larger articles trigger
certain predictions after reading the corresponding headlines. On the other hand,
the typically large number of words in articles is arguably a hardship learning mean-
ingful representations of sentences omitting outliers in such, since the function space
that the optimization explores is excessively large and there are a relatively few ex-
amples in the dataset to learn from. Moreover, as discussed before the headlines in
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Saudi national airline may introduce gender segregation on its flights

The US declared the video of Sotloff to be authentic.

Figure 6.1: The conditional encoder based classifier, encoding the headline condi-
tioned on the representation of the article, predicts the headline-article pair shown
in this figure as disagree while the actual label is unrelated. If the word "authentic"
is removed from the article, the classifier predicts the pair as unrelated. Removing
"gender" in the headline keeping all words in the article, makes the classifier believe
the pair is unrelated. What we see here is that the model generalizes poorly when
removing a certain word in a headline or article. This is an indication that the
model suffers from overfitting.

the FNC-1 dataset are similar to each other, where in some cases only a few words
differ or the order in which the words appear is changed. With limited supervision,
this setup may steer the training of a model to trigger a certain classification when
certain words or phrases appear in a headline or article indifferent to the context
and the conditional state.

Related to issue (i) we found that some errors occur when the headline and the
article talk about the same named entities but the topics discussed differ and some
errors occur the other way around when the headline and the article discuss the same
topics but not the same named entities. An example of this seen in the analysis is
a headline talking about "Apple Watches" while the topic of the article is related to
"Apple Iphones". This headline-article pair is not related since the topics slightly
differ even though the named entity "Apple" is present in both.

Another issue we found, regarding representation of the relationship between a head-
line and an article, is that several headline-article pairs labelled as agree and disagree
contain few sentences in the article that actually express a positive or negative at-
titude towards the claim in the headline. As discussed before, many sentences in
an article elaborate on the topic or give some form of background to the event. We
believe this issue makes it hard for a model to learn separating between examples
labelled agree and discuss as well as between examples labelled disagree and discuss.
We noticed that when the number of sentences in an article increases, the model is
more biased towards making a neutral prediction.

6.4.1 Attention Models
The attention model learning to weight sentences in an article relevant to the content
in a headline seems to improve the relationship representation of a headline-article
pair while the word-by-word attention mechanism seems to fail significantly. To get
a better understanding why this is the case, we analyzed attention-weights along
with their corresponding sentences and words in several headline-article pairs in the
test set.
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Man saved from bear attack - thanks to his Justin Bieber ringtone
Justin   Bieber   may   not   have   been   able   to   take   on   Orlando   Bloom ,   but   he  
sure   as   hell   was   able   to   take   on   a   bear . 

No ,   PETA ,   Bieber   did n’t   beat   down   a   bear ,   he   just   scared   one   away   in  
Russia 's   Yakutia   Republic . 

It   all   went   down   when   42-year-old   fisherman   Igor   Vorozhbitsyn ’s   attack   by  
a   brown   bear   was   interrupted   by   a   Justin   Bieber   ringtone . 

The   fisherman   explains : " I   had   parked   my   car   and   was   walking   towards   the  
spot   I 'd   marked   out   when   there   was   a   tremendous   impact   on   my   back   and  
the   bear   was   on   top   of   me . " 

That ’s   when   Vorozhbitsyn ’s   phone   went   off   and   “ Baby ”   started   blaring ,  
causing   the   bear   to   run   off . 

He   also   justified   his   surprising   ringtone :    " I   know   that   sort   of   ringtone
is n't   to   everyone 's   taste , ”   he   said ,   “ but   my   granddaughter   loaded   it   onto
my   phone   for   a   joke . ” 

Living   with   embarrassment   is   a   small   price   to   pay   for   your   life . 

Figure 6.2: Illustrating weighted sentences and words in a headline-article pair
from the FNC-1 test set, employing an attention model on top of the conditional
encoder. The pair is labelled agree and the predicted label agrees with the actual
label.

Figure 6.2 shows an example headline-article pair where we argue that the sentence
attention model successfully pays additional attention to a subset of the sentences
in the article. In this type of visualization, a darker blue shade represents a larger
attention weight value. Although some sentences are weighted less than others, all
sentences are considered making the classification noticing that the attention weight
distribution is close to using the average weighting of all sentences. We observed
that there is low variance in the weight distribution in almost all headline-article
pairs analyzed, i.e. the attention model seems careful attending to certain sentences.
In the headline-article pair in Figure 6.2, the sentence "It all went down when 42-
year-old fisherman Igor Vorozhbitsyn’s attack by brown bear was interrupted by a
Justin Bieber ringtone." is weighted the most. This sentence is semantically simi-
lar to the headline and also expresses a positive stance towards the headline which
agrees with the label of the example. The last sentence, "Living with embarrass-
ment is a small price to pay for your life.", is weighted the least and seeing to the
content in the headline it is not notably relevant. However, this sentence subtly in-
dicates that the person who was attacked survived. Related to this observation, we
noticed that the sentence attention model can fail when some sentences may seem
completely unrelated to the headline but they indeed express an attitude towards
the claim in the headline. Instead the attitude towards the headline expressed in
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a sentence is dependent on a context given in earlier sentences in the article and
thus the attention model might not consider such a sentence. On a different note,
the attention model also suffers from the issues discussed before regarding learning
meaningful semantic representations of headlines and sentences. This might be a
limitation in learning what sentences are relevant.

We argue the word-level attention model operates on too fine granularity. Typically
we observed that the word-by-word attention model succeeds in weighting over-
lapping words between a headline and an article. This can be seen in Figure 6.2,
showing what words are weighted after reading the last word in the headline. These
attention-weights are used to construct the attentive representations of sentences
which are part of the input to the classifier. The representation of articles based on
weighting words is not efficient seeing a significant lower performance on the test
set. It seems that generalization errors increase when the model tends to focus on
certain words instead of the semantics of a sentence captured in the conditional
state.

6.4.2 Reducing and Increasing Bias
A bias vector, b, in the softmax layer of the MLP consists of a threshold value for
each class in the problem, i.e. b = [bunrelated, bagree, bdisagree, bdiscuss]T . Studying the
resulting bias vectors in the softmax layer when balancing the class distribution dur-
ing training and for learning with different cost-sensitivity settings, we found that
the threshold for the unrelated class is adjustable to some extent. Here we report
the resulting bias vector for a classifier trained

a) balancing the class distribution:

[−0.47344029, 0.18956994, 0.0220722, 0.21321553]T

b) considering the cost equal for all types of mis-classifications:

[−0.28969282, 0.10894272,−0.15185457, 0.12703601]T

c) increasing the mis-classification cost for headline-article pairs of the stance
classification subtask:

[−0.51706803, 0.10909189,−0.01229266, 0.19181129]T

d) reducing the mis-classification cost for headline-article pairs of the stance clas-
sification subtask:

[−0.05494795, 0.03138153,−0.11980191, 0.05739412]T

6.4.3 Difficulties and Limitations
Analyzing articles in the FNC-1 dataset we found usage of metaphores, humour,
sarcasm and common phrases. Due to the limited dataset, we argue that the model
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is not able to learn such usage of the language and this is a potential error factor.
For instance, a sarcastic sentence typically express a certain attitude towards a sub-
ject but the actual meaning is the opposite.

Attending to named entities seems important for the subtask of distinguishing if a
headline-article pair is related or not. If both the article and the headline talk about
the same entity, the pair is likely related if they also discuss the same topic(s). We
found that there are headline-article pairs in the FNC-1 dataset discussing named
entities that are not included in the vocabulary. These words are represented with
zero vectors and this might have an impact on the performance since the model for
such headline-article pair is not able to tell if the headline and the article talk about
the same entities. One way to address this problem is to extract word embeddings
for missing named entities by averaging over similar entities. For instance, a word
embedding for an organization that is not in the vocabulary can be created averaging
over similar organizations. In addition, some of the out-of-vocabulary words can be
directly mapped to words already present in the vocabulary. For instance, "isis" is
in the vocabulary we used but not "isil" and these words are of equal meaning. Thus
we could map occurrences of "isil" to "isis" instead. In a simple experiment we did
this mapping and noticed a small improvement in performance on the hold-out set
as well as the test set. We did not address this issue further as it is not always as
obvious as the examples discussed here.

6.5 Model Selection
The FNC-1 training dataset consists of 49,972 headline-article pairs, composed out
of 1,689 unique headlines and 1,648 unique articles. The official hold-out set is
constructed by a random split in the set of articles along with their corresponding
headlines, such that there are 40,350 headline-article pairs in the training set and
9,622 pairs in the hold-out set. Moreover this means that a model evaluated on
the official hold-out set has seen all headlines during training. As a consequence we
noticed that the RNN based models we trained perform much better on the hold-out
set than on the test set. More importantly, we were not able to use the performance
of a model on the hold-out set as basis for selecting which model to be evaluated on
the test set, since the performance on the hold-out set is not representative for the
performance on the test set. This can be seen in Figure 6.3.

Previous work addressing the issue of headlines bleeding over in the hold-out set
suggests a split of the related labels into several disjoint sets evaluating different
models using k-fold cross validation [25]. This approach is not suitable for the RNN
based models investigated in this thesis since it reduces the amount of training
examples significantly. Instead we tested removing headlines overlapping the hold-
out set and the training set reducing the training set to 32,444 headline-article pairs
and the hold-out set to 2,220 pairs. However, there are still headlines in the non-
overlapping hold-out set that are almost identical to headlines in the training set
since, as discussed before, many headlines are constructed artificially by altering an
original headline slightly. Another issue regarding representing the test data is that
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(a) FNC-score

(b) Accuracy
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(c) Cross Entropy

Figure 6.3: Plotting the training procedure of an RNN based model for 30 epochs,
where (a) and (b) shows the relative fnc-score and the accuracy on the test set,
the official hold-out set and the training set for each epoch and (c) shows the cross
entropy loss on each training epoch.
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the amount of headline-article pairs in the non-overlapping hold-out set is less than
10% of the training set. Figure 6.4 shows the training procedure using the non-
overlapping hold-out and training sets. First we note that the performance on the
hold-out set is significantly reduced while the performance on the test set is almost
unharmed. Second we note that the metric curves still fluctuate between epochs.
However, the fnc-score curve on the test set now tends to follow the fluctuations of
the fnc-score curve on the hold-out set. Therefore the non-overlapping hold-out and
training sets might be helpful for model selection. We did not investigate this further
but the problem needs to be addressed in future work studying RNN based models.

(a) FNC-score
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(b) Accuracy
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(c) Cross Entropy

Figure 6.4: Plotting the training procedure of an RNN based model for 30 epochs,
where (a) and (b) shows the relative fnc-score and the accuracy on the test set, the
non-overlapping hold-out and training sets for each epoch and (c) shows the cross
entropy loss on each training epoch.
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7
Conclusion

In this thesis, we have investigated the effectiveness of representing news articles
using recurrent neural networks for the joint task of (i) detecting if a headline is
related to an associated body text or not, and, if they are related to each other, (ii)
detecting the stance of the body text relative to the headline. For supervision of the
task we made use of the dataset delivered for stage 1 of the Fake News Challenge
(FNC-1). While the most successful approaches have used complex ensemble clas-
sifiers employing a large set of hand-engineered features, their performance is just
marginally better than a straightforward bag-of-words model deriving only lexical
similarity. Mainly we studied two different RNN based models in this thesis: (i)
extracting semantic representations of a headline and body text pair encoding them
in parallel, and (ii) extracting an entailment relationship representation encoding
a headline conditioned on the semantic representation of a body text, or the other
way around. We also studied methods for improving learning with limited supervi-
sion as well as addressing the class imbalance problem present in the FNC-1 dataset.

We found that the RNN based models are weak on the subtask of detecting if a
headline is related to a body text or not. This was expected to be an easy task
on which the FNC-1 baseline performs significantly better and the state-of-the-art
systems perform close to perfect. We found that implementing cost-sensitive learn-
ing efficiently reduces or increases a classifier’s bias towards the unrelated majority
class. Reducing the bias, focusing on the stance detection subtask, we found that
the conditional RNN models are comparable to the state-of-the-art systems and
outperforms the baseline, however, noticing that the average accuracy on the labels
of the subtask is quite low.

Our study was severly limited by the amount of training examples in the FNC-1
dataset. The RNN based models are too complex for the task at hand facing a high
variance issue that leads to overfitting. The methods studied aiming to improve gen-
eralization on unseen headline and body text pairs had a limited effect. However, a
significant improvement in performance was seen when reducing the complexity of
a model’s architecture switching from LSTM units to GRUs.

Clearly stance detection in the news domain is a difficult task, on which both the
RNN based models studied in this thesis and the state-of-the-art systems show
disappointing performance. In order to investigate the full potential of the RNN
based methods, we would suggest extending the amount of training examples in a
dataset for supervising the task.
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Appendix 1

A.1 Refuting Words
fake, fraud, hoax, false, deny, denies, refute, not, non, despite, nope, doubt, doubts,
bogus, debunk, pranks, retract

A.2 Hedging Words
alleged, allegedly, apparently, appear, appears, claim, claims, could, evidently, largely,
likely, mainly, may, might, maybe, mostly, perhaps, presumably, probably, pur-
ported, purportedly, reported, reportedly, rumor, rumour, rumors, rumours, ru-
mored, rumoured, says, seem, somewhat, supposedly, unconfirmed

A.3 Stop Words
a, about, above, across, after, afterwards, again, against, all, almost, alone, along,
already, also, although, always, am, among, amongst, amoungst, amount, an, and,
another, any, anyhow, anyone, anything, anyway, anywhere, are, around, as, at,
back, be, became, because, become, becomes, becoming, been, before, beforehand,
behind, being, below, beside, besides, between, beyond, bill, both, bottom, but,
by, call, can, co, con, could, cry, de, describe, detail, do, done, down, due, during,
each, eg, eight, either, eleven, else, elsewhere, empty, enough, etc, even, ever, every,
everyone, everything, everywhere, except, few, fifteen, fifty, fill, find, fire, first, five,
for, former, formerly, forty, found, four, from, front, full, further, get, give, go, had,
has, have, he, hence, her, here, hereafter, hereby, herein, hereupon, hers, herself,
him, himself, his, how, however, hundred, i, ie, if, in, inc, indeed, interest, into, is,
it, its, itself, keep, last, latter, latterly, least, less, ltd, made, many, may, me, mean-
while, might, mill, mine, more, moreover, most, mostly, move, much, must, my,
myself, name, namely, neither, nevertheless, next, nine, nobody, now, nowhere, of,
off, often, on, once, one, only, onto, or, other, others, otherwise, our, ours, ourselves,
out, over, own, part, per, perhaps, please, put, rather, re, same, see, serious, sev-
eral, she, should, show, side, since, sincere, six, sixty, so, some, somehow, someone,
something, sometime, sometimes, somewhere, still, such, system, take, ten, than,
that, the, their, them, themselves, then, thence, there, thereafter, thereby, there-
fore, therein, thereupon, these, they, thick, thin, third, this, those, though, three,
through, throughout, thru, thus, to, together, too, top, toward, towards, twelve,
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A. Appendix 1

twenty, two, un, under, until, up, upon, us, very, via, was, we, well, were, what,
whatever, when, whence, whenever, where, whereafter, whereas, whereby, wherein,
whereupon, wherever, whether, which, while, whither, who, whoever, whole, whom,
whose, why, will, with, within, without, would, yet, you, your, yours, yourself, your-
selves
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