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Algorithms for coverage mapping and optimizing beacon placement in a hybrid
indoor positioning system
JOHANNES SJÖBERG
ANTON JOHANSSON
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract

This thesis considers a new analytical approach based on modeling indoor position-
ing as an coverage optimization problem. Over the recent years there has been
extensive research in the subject of indoor positioning. Recent research commonly
considers promising solutions by deploying new infrastructure, how ever, it does not
often make use of already deployed infrastructure. The analytical approach proposed
in this thesis considers the indoor environment and make use of meta heuristics to
suggest how to extend existing infrastructure to create an reliable indoor positioning
system.

A prototype system has been implemented and several experiments have been per-
formed at the expansion of existing Wi-Fi infrastructure with a Bluetooth low energy
extension. The results showed that the system produces a reliable and a�ordable
deployment design which uses very few reference nodes. How ever, this approach
considers static environmental models and adaptors should be aware that this is
best suited for indoor environments which are not subject to major refurbishments
or renovations.

Keywords: indoor, positioning, bluetooth, wifi, simulated annealing, deployment,
optimization
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1
Introduction

Today a large part of the population in the world is equipped with devices (such as
smart phones, tablets, laptops etc.) that o�er various wireless connection standards.
This opens up many new opportunities to provide services that are based on the
location of individuals, so-called location based services (LBS).

The Global Positioning System (GPS) [15] have been a widely used service for
positioning and tracking by civilians in outdoor environments. However, GPS does
not provide good accuracy in indoor environments due to multipath fading.

Over the recent years there has been extensive research in the subject of indoor
positioning. The development and deployment of indoor positioning systems (IPS)
has increased rapidly, with major companies like Apple Inc. and Google Inc. invest-
ing in IPS technologies. An IPS can o�er a wide range of services such as indoor
navigation, targeted marketing and location related information. These services are
useful for existing markets, e.g., emergency services, conferences and shopping malls
to name a few.

In order to be able to reach a broad commercial market, one must utilize the oppor-
tunities existing in commercial-o�-the-shelf devices. It’s therefore crucial to use the
technologies present in these devices, such as Bluetooth, Wi-Fi and RFID to enable
the creation of valuable location based services.

1.1 Problem description

Positioning in an indoor environment is often achieved by using radio frequency
reference nodes. By using the signal strength of the reference nodes it’s possible to
establish the position of a device with positioning methods such as trilateration [27],
fingerprinting [22] and extended Kalman filtering [9]. There exist several technolo-
gies that can be used for this. Including; Wi-Fi [38], Bluetooth [5], Radio Frequency
Identification [30] and Ultra Wideband [17] to name a few.

1



1. Introduction

Indoor environments are usually confined spaces consisting of obstructing obstacles,
such as walls, doors, people etc., which distorts and scatters the signal propagation
of the reference nodes [33]. As these e�ects may di�er over time, doors open and
closes, unexpected noise and other environment changes, the propagation of the sig-
nals is subject to unreliability.

Within the indoor environment, we refer to relevant points as confined spaces where
positioning must be achievable. We refer to an IPS as reliable when at all relevant
points, su�cient information from the reference nodes is receivable in a given time
frame, subject to integration criteria. Example of such an integration criterion: The
range calculations of radio frequency signals have a logarithmic relationship to path
loss. Thus, small fluctuations in weak signals will result in significant positioning
errors. Introducing a signal strength threshold criteria at all relevant points will
therefore reduce the positioning errors of an IPS.

To encapsulate the requirements of a reliable IPS, we have constructed the –-unique
reference node constraint;

Constraint 1 (–-unique reference node constraint). Given an in-
teger –, an indoor environment E, a closed set S of relevant points
within E, at every point in S the integration criteria must be fulfilled
for at least – reference nodes.

Wi-Fi is a communication standard which is widely used and deployed in many
indoor facilities such as o�ce buildings, conference halls, airports and train sta-
tions [7]. Networks administrators that have deployed Wi-Fi base stations did not
have the reliability issues related to indoor positioning in mind. Due to this, an
IPS using only existing Wi-Fi infrastructure often performs poorly [8]. Installing
additional or moving Wi-Fi infrastructure for the single purpose of IPS is expensive,
as deployment includes time-consuming installation, high-cost equipment and an
active power supply for each reference node.

An alternative to Wi-Fi is Bluetooth Low Energy (BLE). BLE is a widely available
technology that o�ers low-cost battery-powered equipment. BLE outputs a weaker
signal strength than Wi-Fi, thus greater consideration has to be taken to where the
BLE reference nodes are to be placed. A poorly positioned reference node can be
rendered useless because it does not provide any significant signal propagation.

Wi-Fi technology has been in use the last 15 years, and the investments in infras-
tructure and deployment has already been made. Therefore, we o�er an alternative
solution by extending existing Wi-Fi infrastructure with BLE reference nodes. To
reduce cost of the BLE extension, we propose that the amount of new reference

2



1. Introduction

nodes should be kept minimal.

Our approach. To fulfill a given –-unique reference node constraint we extend a ex-
isting Wi-Fi infrastructure with a number — of BLE reference nodes. We are looking
for the minimum — that satisfy the constraint of the —-BLE infrastructure extension;

Constraint 2 (—-BLE infrastructure extension). Given an integer
—, an indoor environment E, and a non-modifiable Wi-Fi infras-
tructure, a placement of — BLE reference nodes must exist such
that the Wi-Fi infrastructure together with the BLE reference nodes
fulfill the constraint 1.

1.2 Related Work

Baniukevic et al. [8] propose a hybrid IPS motivated by their observations that us-
ing only existing Wi-Fi infrastructure often result in poor positioning performance.
Their approach uses Bluetooth classic reference nodes as guard keepers, by placing
them at e.g., doors and staircases to detect cross-border movements. Compared
to their approach, we combine Bluetooth and Wi-Fi propagation concurrently to
utilize as much of the signal propagation as possible. Baniukevic et al. [8] states
that it’s relevant to further study the setup of Bluetooth reference nodes in addi-
tion to existing Wi-Fi infrastructure. Specifically, the optimal number of Bluetooth
reference nodes and where they should be deployed to maximize the positioning
performance. Aparicio et al. [5] use a fusion of Wi-Fi fingerprinting and Bluetooth
cell identification. Their use of Bluetooth classic reference nodes are limited to de-
termine an approximate area to narrow the search space of the Wi-Fi fingerprinting
to that area. They present no approach to deploy the reference nodes to ensure
su�cient signal propagation throughout the indoor environment. Further, we use
BLE reference nodes compared to [8] [5] which use Bluetooth Classic reference nodes.

Ficco et al. [16] approaches deployment of reference nodes as a computational prob-
lem. They propose a way to compute the best deployment schema for Wi-Fi ref-
erence nodes with stochastic algorithms. Their approach uses a analytical signal
propagation model to build a radio map and a multi-objective genetic algorithm to
find the best placement of Wi-Fi references nodes. However, their approach does
not take any existing Wi-Fi coverage into account. Further, they are approach-
ing this problem using only Wi-Fi, compared to our approach which make use of
BLE technology. Aomumpai et al. [4] have a similar approach to the deployment
of Wi-Fi reference nodes. They propose two concerting algorithms using Binary
Integer Linear Programming to solve this problem. The first algorithm determines
the minimum number of reference nodes needed to fulfill their reference nodes in
range constraint. The second algorithms maximizes the RSS value at selected test

3



1. Introduction

points to achieve the highest possible positioning performance. Their approach,
with solving the problem with two independent algorithms contrasts our approach,
where the amount of reference nodes and maximum signal coverage is defined as as
a single problem, which is solved by one algorithm.

Current literature lacks methods to expand existing Wi-Fi infrastructure to sup-
port indoor positioning. To the best of our knowledge, no scientific publications
have analyzed a hybrid system that focus on the salvage and utilization of already
existing infrastructure using our approach.

1.3 Our contribution

We design and develop a prototype system as well as a new analytical approach for
indoor positioning using Wi-Fi and Bluetooth. Our solution allow already deployed
Wi-Fi infrastructure to better support indoor positioning by using an a�ordable
BLE extension.

Our prototype system o�ers a sophisticated way to conduct a survey of the cur-
rent Wi-Fi infrastructure and create a radio map of the Wi-Fi signal coverage. By
using this radio map, the system can suggest how to extend the Wi-Fi infrastructure
with a BLE extension to achieve reliable indoor positioning.

Our analytical approach is based on modeling indoor positioning as a coverage op-
timization problem. We simulate the signal propagation of BLE reference nodes
with the Wi-Fi radio map by using the multi-wall-classic signal propagation model.
We apply meta heuristics to find a suitably low amount of BLE reference nodes
and their respective placement. The meta heuristics we apply has been proven to
converge [37], providing approximate minimized solutions fulfilling our integration
criteria. The reference node placement is constrained by three specifiable integra-
tion criteria; signal strength threshold, least amount of reference nodes in range and
non-allowed reference node placements.

We evaluate the deployment design by conducting a second survey of the signal
propagation from both Wi-Fi and BLE reference nodes. Our approach has shown
to reduce costs and minimize the hardware resulting in an a�ordable indoor posi-
tioning system with viable environmental sustainability. The system is also capable
of designing a deployment schema of BLE reference nodes alone.

4



1. Introduction

1.4 Ethics

This thesis involves theory and use of positioning systems, which tracks the move-
ments and positions of electronic devices which may be in constant possession of
a single individual. Such systems could thus potentially be used for tracking the
whereabouts and movements of individuals, which could be viewed as an invasion
of privacy, even without knowing any personal information about the them.

As this thesis is focused on developing deployment techniques of the systems, rather
than the systems themselves, it violates no privacy of individuals. During the testing
phase of the thesis, we deploy a positioning system with the following limitations;

I Requires an active consent of the user to be enable tracking

II Saves no personal data except for a MAC address

III Only testing equipment are to be tracked

Thus, we see no ethical issues being violated during and/or after this thesis has been
conducted.

5
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2
Reference node technology

This chapter provides background and technical details of the technologies present
in the reference nodes used in this thesis. The reference node technology is one of the
cornerstones in indoor positioning systems, as it acts as the link from the actuality
to the digital representation of the position. While radio-wave based technologies
are often used in indoor positioning systems, other solutions has been developed,
such as ultrasonic [29] and infrared [3]. Two radio-wave based technologies, Wi-Fi
and Bluetooth, are presented in this chapter, and subsequently used in the system
we developed.

2.1 Wi-Fi

The IEEE 802.11 standard, commonly denoted Wi-Fi, is a widely adopted wireless
communication standard maintained by the Wi-Fi alliance. Wi-Fi originated as a
wireless radio wave based alternative to wired ethernet, and operates often in the
unlicensed industrial, scientific and medical (ISM) 2.4 GHz frequency band, but
also the 3.65 and 5 and 60 GHz frequency band [21]. Generally, connection is made
by creating wireless local area networks (WLAN) via 1 or more access points (AP)
placed in the indoor environment.

2.1.1 Wi-Fi standards

The first 802.11 standard(802.11-1997), released in 1997, received feedback that
products did not meet compatibility needs expected by customers. However, the
formidable market success and the perceived drawbacks of 802.11-1997 has provided
a basis for many extensions and improvements. There are now a collection of various
Wi-Fi versions, designed for di�erent purposes, such as increased throughput and
complying with region specific laws and regulations.
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2. Reference node technology

802.11 Protocol Frequency (GHz) Stream Rate (Mbit/s) Indoor range(m)
a 5 54 35
b 2.4 11 35
g 2.4 54 38
n 2.4 or 5 600 70
ac 5 > 1000 35

Table 2.1: Common Wi-Fi standards [21]

2.1.2 Distance calculations using RSSI

In 802.11, the RSSI value is broadcast from an AP in an easy to obtain form [28].
In [6], IEEE specifies the RSSI values as an unsigned 8-bit integer value that ranges
from 0 to RSSI_Max, a specified maximum, where RSSI_Max is the strongest signal,
and 0 the weakest. As the interpretation of RSSI is vendor specific, the interpretation
of received RSSI-values has to be adjusted to the hardware that is being used.

2.2 Bluetooth

2.2.1 Bluetooth classic

Bluetooth classic is a communication technology that operates in the ISM 2400MHz
- 2483MHz frequency band, divided into 79 channels, each 1 MHz wide [2] designed
for short ranges. It has three standard power classes [1] defining the ranges;

Class 3 which has a range of ≥ 1m and a power of 1mW

Class 2 which has a range of ≥ 10m and a power of 2.5mW

Class 1 which has a range of ≥ 100m and a power of 100mW

where class 2 being the common implementation in many smart devices. Applica-
tion areas for Bluetooth include streaming media content such as a wireless head-set
or sending data from peripherals, such as a stethoscope.

As Bluetooth overlaps the frequency band that other wireless technologies use, such
as Wi-Fi, Bluetooth utilizes frequency hopping in order to minimize interference.
Such an hopping technique Adaptive Frequency Hopping (AFH), in which the Blue-
tooth hopping scheme is designed to avoid the channels used by the Wi-Fi connec-
tions, the trade-o� being that the throughput of Bluetooth is reduced.

10



2. Reference node technology

When two devices communicates by using Bluetooth classic, a master-slave con-
nection is established in a process called pairing. During pairing the slave device
listens for a so called inquiry from a master device. When a inquiry has been re-
ceived, pairing –and subsequently data transfer– can be established. It is first during
the pairing phase that communication settings, including RSSI values, are traded.

2.2.2 Bluetooth low energy

The Bluetooth Low Energy (BLE) is a new communication technology based of the
Bluetooth classic protocol. BLE is designed with low energy consumption and small
data transactions in mind, making it suitable for areas such as control- and moni-
toring applications. As BLE and Bluetooth classic has been designed with di�erent
applications in mind, BLE has a new protocol stack and is thus not backwards com-
patible with Bluetooth classic.

BLE operates – like Bluetooth classic – in the ISM 2400 - 2483Mhz frequency band,
but has 40 channels, each 2MHz wide. BLE is not designed for streaming informa-
tion as Bluetooth classic is, but rather providing short bursts of information and
several other features which are making it more suitable for an IPS than classic
Bluetooth. It has a reduced set-up time at ≥ 3 ms and a throughput of 200kbit/s,
both lower than the standard bluetooth [1]. In contrast to Bluetooth classic BLE
will deliver RSSI values without having established a connection beforehand. The
RSSI of BLE set from -127 up to 20dBm.

2.2.2.1 BLE broadcast

A new feature introduced in BLE is the advertising mode, which is well suited for
IPSs. The advertising mode is a one-way broadcasting, where the beacon broadcasts
data periodically in a set interval from 100ms up to 10.65s in three of the channels
specified as advertisement channels (channels 37, 38 and 39). The devices that listens
to the advertisement channels is called scanners. During this mode, no connection
has to be established between the broadcaster and the scanners, and this type of
one-way communication it is possible for a single BLE-device to broadcast a message
to a very large amount of scanners at the same time.

2.2.2.2 Estimote beacon

The BLE reference nodes used in this thesis are called Estimote Beacons. They are
manufactuered by Estimote Inc and uses a 32-bit ARM® Cortex M0 CPU which
is accompanied by a accelerometer and a temperature sensor. At maximum power

11



2. Reference node technology

setting, the Estimote Beacon broadcasts a signal of -60 dBm at the range of 1m,
and has a maximum range of 70 m during optimal conditions.

12



3
Positioning techniques

When designing an IPS, the use of positioning techniques is crucial. A positioning
technique is the translation from reference node input to agent real world position,
and this could be accomplished with several di�erent approaches. This section
presents three positioning techniques that are often used in IPS. The requirements
of these positioning techniques relates to the deployment of the reference nodes in
a IPS, and therefor to the requirements of our system.

3.1 Proximity based positioning

Proximity based positioning (PBP) is a simple and coarse positioning method which
only require 1 reference node in range of an agent to determine a position. The
position of an agent is determined by assuming the agent is located at the reference
node from which the strongest signal is recieved [19]. This method is commonly used
for proximity services, due to the unreliable positioning accuracy [19]. An example
of areas where PBP is used is wireless car keys. They allow drivers carrying the
keys to unlock and start the car by simply being in the close vicinity of it.

3.2 Trilateration

Trilateration is a technique that use the signal loss with geometric calculations to
determine a position of an agent. To achive this, it requires 3 reference nodes
in range of the agent their known position in order to determine a position. By
first measuring the signal strength of the signals from the reference node to the
agent, one proceeds to modelling a corresponding circle for each reference node, and
setting the radii of the circles equal to the measured value. By calculating the point
of intersection of the circles, and subsequently the position of the agent, a position
can be determined. A visualization of trilateration can be seen in figure 3.1. In
the figure, the black points represents the reference nodes and the dotted lines the
distance to the agent, which is marked with a blue dot. As can be seen, the distances

13



3. Positioning techniques

is the radii of circles created from the coverage, and they intersect at the position
of the agent.

Figure 3.1: A visual example of trilateration.

3.3 Fingerprinting

Fingerprinting is a positioning technique that uses previously gathered data to ap-
proximate a position. To achive this, it is split up into two phases; the o�ine phase
and the online phase. The area in which positioning will take place has to be divided
into a rectangular grid of cells.

In the o�ine phase, the RSSI values is gathered and stored in a vector for each
cell, creating so called fingerprints. Each fingerprint represents the RSSI’s that are
to be expected from each reference node in this particular cell, and is used during
the positioning.

During the next phase –the online phase–, an agent sample the RSSI readings at the
current position. The readings are constructed to a vector, and then compared to
the fingerprints stored in the database from the o�ine phase by e.g cosine similarity.
The fingerprint that is most similar to the one given by the agent has the highest
probability to be the agents position. [22]

The grid size, or granularity, will have a large impact on the results of the posi-
tioning, as it determines the accuracy of the positioning. A large grid size will result
less accuracy. A fine grid will increase the accuracy, with the trade o� that it will
create a large overhead during the o�ine phase. Also; a very high granularity is
not guaranteed to provide better precision, as the signal variances will be low, thus
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making close cells hard to distinguish from one another resulting in missclassifi-
cations [22]. Thus, too high granularity increases the overhead, while yielding no
improvement in precision.

3.4 Further enhancements

In addition to reading reference node data, additional methods can be utilized to
increase the performance of IPS. Examples include adding other technologies such
as magnetometers and gyroscopes.

One problem that reduces positioning accuracy is the human blocking e�ect. A
person holding the positioning device will most often have negative impact on posi-
tioning accuracy. This due to a majority of the human body is composed of water,
and thus absorb signals traveling through the person holding the device. One method
used to counter this e�ect is by combining fingerprinting with a magnetometer to
predict which signal angles have greater positioning reliability [24].

Other approaches to improve indoor positioning is adding inertial sensors to keep
track of the users footsteps [39]. Using this method gives an additional layer of
information regarding how far the agent has moved. Combined with map-matching,
this can provide a good prior to position estimation, for example to avoid guessing
that a person has walked through a wall.
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4
Indoor signal propagation

In order to be able to simulate the signal coverage, the path-loss of the signal prop-
agation must be accounted for. The underlying characteristics of an indoor environ-
ment, such as the existence of obstacles (e.g., walls, doors, windows and furniture),
as well as existing noise sources (e.g., human bodies and other transmitters) makes
the signal propagation su�er from multipath fading due to to reflection, absorption,
scattering, refraction and di�raction [33]. This makes the propagation behavior in
indoor environments a harder challenge and a more tedious process than compared
to open or outdoor environments.

4.1 Propagation models

Tam et al. [35] states there are two main groups of indoor propagation models to be
adopted:

1. Statistical models such as One-slope [14] and Multi-Wall-Models [26] are
semi-empirical models based on a exponential relationship between the dis-
tance and the path loss. The exponential relationship and the attention of
obstacles, such as walls and floors, have to be empirically measured on the
specific site.

2. Site specific models such as Ray-Tracing [35] are based on electromagnetic-
wave propagation theory and require great detail of the indoor environment to
obtain an accurate prediction of the propagation. Ray tracing is based on the
concept that rays and high frequency microwaves behaves in a similar manner.

The statistical models only consider the direct rays of the signal, which provides a
lower propagation accuracy compared to the site specific models, which will take
reflection and di�raction into hand. Site specific models requires a greater detailed
image of the indoor environment and is more vulnerable to changes as the prediction
is corrupted at the rearrangement of large objects in the environment. Also, site
specific models, such as ray tracing, will have a significantly larger computational
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4. Indoor signal propagation

complexity. Due to the very large amount of reference node placements and cover-
age calculations in our simulation, the computational overhead for calculating the
propagation has to be kept small, despite resulting in less accuracy. However, our
simulation software is not dependent of the propagation model, which can be easily
swapped.

4.2 Free-space path loss

Signal path loss analysis is fundamentally determined by the free-space path loss (FSPL).
Assuming the antennas are isotropic, the FSPL can be modeled as in Eq. 4.1.

FSPL =
A

4fid

⁄

B2

(4.1)

FSPLdB = 10 · log
A

4fid

⁄

B2

(4.2)

= 10 · log
34fi

⁄

42
+ 10 · 2 log(d) (4.3)

where d = Distance between the receiver and transmitter
⁄ = Wavelength of the signal

Eq. 4.3 gives the FSPL in dBm, a common unit when dealing with signal loss.

A drawback with FSPL is that it does not account for any multi fading, and is
therefore performing poorly when predicting propagation in a indoor environment.

4.3 One-slope model

The one-slope model [14] assume a linear dependence between the path loss and the
logarithmic distance, where the free space loss term (Eq. 4.3) is modified and set to
L0.

Lone≠slope = L0 + 10n log(d) (4.4)
Lone≠slope≠fspl = L0 + 20 log(d) (4.5)

where L0 = path loss at the distance of 1m
n = power decay index
d = distance between transmitter and receiver

L0 is determined by measuring the path loss at the distance of 1m. Further, this
model is easy to use as the only input parameter is the distance d. The slope factor

18



4. Indoor signal propagation

0 10 20 30 40 50 60 70 80

20

30

40

50

60

70

80

90

100

110

120

Distance (m)

S
ig

n
a

l l
o

ss
 (

d
B

)

Figure 4.1: A plot of the path loss using standard FSPL calculation

(power decay index) n is set to 2 for free space propagation and otherwise obtained
by empirical tests in the set indoor context as in Eq. 4.6.

The variable n is solved empirically by using Eq. 4.6, where the RSSI is measured
line-of-sight (LOS) between the transmitter and the receiver at di�erent distances
di. In the case where the obtained values of n di�er, n is set to the average value of
all obtained n as in Eq. 4.7.

n =
A

RSSI ≠ L0
10 log10 d

B

(4.6)

n̄ = 1
N

Nÿ

i=1
ni, N = the number of obtained n (4.7)

The aforementioned way of determining the power decay index n provides an ac-
curate propagation predicition when the context is limited to one room. In order
to account for a larger context which contains obstacles such as walls and floors,
di�erent models have tried to vary the power decay index with the distance [20].
This is a time consuming process as it require a lot of tests in the set environment
and has shown to produce less accurate results as the Multi-Wall models [20].

4.4 Multi-Wall models

Multi-wall (MW) models are more refined versions of the one-slope model (Eq. 4.4)
and FSPL (Eq. 4.3) for indoor environments [11, 34, 26]. These models introduce
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4. Indoor signal propagation

the addition of an attenuation term to represent the signal loss caused by walls and
floors in a direct path between the transmitter and the receiver.

LMWC(d) = Lone≠slope≠fspl + Lc +
Iÿ

i=1
kwiLi + kfLf (dB) (4.8)

LMWE(d) = Lone≠slope + Lc +
Iÿ

i=1
kwiLi + kfLf (dB) (4.9)

where Lone≠slope≠fspl = L0 + 20 log(d)
Lone≠slope = L0 + 10n log(d)
L0 = path loss at the distance of 1m
n = power decay index
d = distance between transmitter and receiver
Lc = constant loss
kwi = number of penetrated walls of type i
Li = loss of wall type i
kf = number of penetrated floors
Lf = loss between adjacent floors
I = number of wall types

The Lc term in Eq. (4.8) and Eq. (4.9) is the result of wall losses determined from
measurement using multiple linear regression, and is normally close to 0 [14]. The
sole di�erence between Multi-wall-classic (MWC) and Multi-wall-enhanced (MWE)
are the terms Lfspl and Lone≠slope, which in the later case lets one to adjust the power
decay index n to the set environment.
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5
Coverage optimization

This chapter will cover the algorithmic approach to find a reference node placement
given a floor layout of an indoor area to achieve the highest possible positioning
accuracy. It will start with describing the problem at hand, and then continue to
relate it to a known optimization problem. The final part of the chapter will present
several solutions to the reference node placement problem using various methods
which are derived directly or related to the known problems.

5.1 Finding a deployment of the reference nodes

In order to develop a system to find the least amount of reference nodes such that
constraint 1 and constraint 2 are satisfied, a mathematical model of the problem
has to be defined.

5.1.1 Preliminaries

The confining walls of the indoor environment is modeled as a 2 dimensional com-
plex polygon. The complex properties that an indoor environment polygon may
posses is "holes" inside the polygon e.g., an elevator shaft. Further, walls inside the
confining polygon is modeled as lines.

As stated in constraint 1, it should be satisfied in a closed set of points, in this
case, a discrete set of sampling points. This set of points is modeled as a grid super-
imposed over the indoor environment. The grid G consist of m◊n rectangular cells,
each cell ci,j œ G representing a point. Reference points are generated on available
walls with a fixed granularity.
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5. Coverage optimization

5.1.2 Set cover problem

The set cover problem is a classic NP-complete problem within the field of
combinatorics [23]. Given a universe of elements U , a set S of subsets of U where
the union of all subsets in S produces U , find a minimized subset C of S such thatt

C = U , i.e. all elements in U are covered by C.

The Set cover problem formulated as an Integer Linear Program (ILP):
Given an input of universe U of e elements, S1, . . . , Sn of subsets of U .

min
nÿ

i=1
xi

subject to
ÿ

i:eœSi

xi Ø 1, ’e œ U (5.1)

xi œ {0, 1}, ’i œ {1, . . . , n}

The variable xi is assigned to 1 if set Si is selected, otherwise assigned to 0.

A

B

C

D

E

Figure 5.1: A visual example of the set cover problem. An optimal
solution is {A, C, E}.

5.1.3 The set cover problem in relation to our problem

We use the definition of 5.1 to translate our problem into the set cover prob-
lem; model the indoor environment as universe U , each sample point within the
environment as an element e and each reference node placement as a set Si. Let the
set of each reference node consist of the sample points in the indoor environment
that the reference node cover. Then minimize the amount of sets needed, given that
each element in the universe is covered by at least 3 sets (instead of 1, as in 5.1).
This di�ers from the definition of the set cover problem as the union of the selected
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5. Coverage optimization

subsets of t
C = U might not satisfy our problem. We must in our implementation

keep track of each covered element e to ensure it is covered by at least three sets in C.

The set cover problem ILP transformed to our problem definition:
Given an input of universe U of e elements, S1, . . . , Sn of subsets of U .

min
nÿ

i=1
xi

subject to
ÿ

i:eœSi

xi Ø 3, ’e œ U (5.2)

xi œ {0, 1}, ’i œ {1, . . . , n}

The variable xi is assigned to 1 if set Si is selected, otherwise assigned to 0.

5.1.4 Solving the set cover problem

As the set cover problem lies in NP-Complete it is unfeasable to find a solution for
larger search spaces [23]. The search space for our problem – with magnitude in
the hundreds – makes it impractical to do exhaustive searches. Thus approximation
approaches such as heuristics has to be implemented to reach feasable solutions.

5.2 Heuristics

Heuristics are stochastic search algorithms that converge to the global optima. They
are commonly used to find solutions for problems in NP in a reasonable time frame,
with the trade-o� that it is not guaranteed to be optimal but rather reasonably good,
depending how early the search is terminated. With reasonably good meaning that
the result is su�ciently close to global optima for it to be useful in the application
of the result [37]. Two known heuristics will be described, and explained how they
are implemented to solve for the in both expected results and performance.

5.2.1 Simulated Annealing

Simulated annealing (SA) is a probabilistic local search algorithm for discrete op-
timization problems, which is able to escape local optima [18] [25]. It is a popular
heuristic due to the e�ectiveness and the relative ease of implementation. The name
derives from the real-world annealing process; a slow, controlled cooling of a heated
solid lowers the lattice energy state and thus increases the structural integrity [18].

Description The implementation of simulated annealing is a iterative meta heuris-
tic, which runs until a predefined stopping condition is met (e.g. a fixed set of
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5. Coverage optimization

iterations).

First, an initial solution s and temperature T is set during initialization, where
the temperature is a predefined value and the solution is most commonly a random
solution. At the start of each iteration, the temperature is lowered according to a
set cooling schedule. Next, a random change is performed on the current solution s
to produce a new solution ŝ, and if ŝ < s, ŝ is accepted with a probability equal to
1 i.e., a better solution is always accepted. If ŝ Ø s, i.e. ŝ is a worse solution, the
Boltzmann factor

F = exp s ≠ ŝ

T
(5.3)

is calculated, where T is the current temperature. Then the possible hill climbing
(selecting a worse solution) is decided by

s =

Y
]

[
ŝ, if F < r

s, otherwise
(5.4)

r = random variable œ (0, 1)

The Eq. 5.4 of allowing a worse solution to be accepted enables simulated annealing
to escape from a local optima. In early iterations the risk of reaching a local optima
is greater, which is countered by the high temperatures which enables the algorithm
to "climb" out of the local optima. As the iterations continue and the solutions begin
to converge towards the optima, the risk of getting stuck in a poor local optima is
lower. Likewise, the temperature lowers with the iterations, and so does the chance
of accepting a worse solution.

Initial temperature The cooling schedule and initial temperature are both prob-
lem specific, and there exist some research in regard how to set them. Methods
include; i) make an educated guess, ii) by trial and error [13] or iii) calculating an
optimal initial temperature [10].

Cooling schedule Regarding cooling schedule, several approaches exist. A com-
mon schedule (which is used in this thesis) is the proportional cooling schedule [31];

Tnew = – · T, 0 < – < 1 (5.5)

and – is chosen according to

– =
3

TM

Tinit

4 1
M≠1

(5.6)

(5.7)

where TM is the final temperature,
Tinit is the initial temperature,
M is the total number of temperature changes

Stopping criteria There exist several ways to define the stopping critera. One
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criteria met?
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False
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True

True

False

False

Figure 5.2: Flow chart of simulated annealing

often used principle is stopping the execution after a fixed set of iterations, which
could also be defined as reaching a defined temperature or setting a maximum of
neighbouring solutions to be generated, such as in [12]. Another common approach
to the stopping criteria is to terminate the execution when no better result has been
observed after a set number of iterations [32, 25].

5.2.2 Genetic algorithms

The aim of genetic algorithms (GA) is to mimic the natural selection process in
nature. In natural selection, individuals compete with each other for the chance of
reproduction, where the fittest individual has the highest probability to reproduce.
When reproducing, the genetic code of the individuals are merged and produces an
o�spring that possesses traits of both parents. During evolution, individuals may
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5. Coverage optimization

have a mutation in their genetic code, which alters their fitness in regard to the
other individuals. This altercation can either increase or decrease the fitness of the
indivdual. GAs work in a similar fashion, with a population of individuals that
mutates, breed and spawns new generations as the iterations carries on [36];

The population The population is a set of individuals; each constructed of a
genetic code, called chromosome. The chromosomes are most often implemented as
an array of binary values, or genes. Via encoding and decoding schemes, a solution
to a function can be written as a chromosome and vice versa.

Initialization When creating the population, the population size has to be set.
A larger population increases the chances for good results, as there will be more
genetic material. The trade-o� is running time. A common initialization of the
individuals is a random assignment of the genes in each chromosome [36].

Mutation of the individuals The first step of each generation is to mutate the
individuals. This is done by iterating through the chromosomes of all individuals,
and given a certain probability the chromosome may mutate, i.e. a 0 becomes a 1
and vice versa. This probability, commonly refered to as mutation rate, should be
set to a value that the expected outcome is 1 mutation per chromosome for each
iteration [36].

Selection Each individual is evaluated based on their fitness and “pitted” against
each other via a selection scheme. A common selection scheme is tournament selec-
tion [36], in which first a random subset of the population are selected and decoded,
then sorted in non-increasing order of fitness. A random value is generated, and if
it is less than a set selection rate, the best individual is selected and copied into the
new generation. If not, a new random value is generated, and the same procedure
is carried out on the second to best individual and so on. These steps are repeated
until a new generation as large as the selection size is created.

Crossover In the crossover phase, the individuals in the new generation have their
genetic code crossed with each other, i.e. they mate and produce an o�spring. This
is usually done by randomly selecting two individuals, cutting their chromosomes in
a random place, and switching the parts with each other. This is done until a new
generation, consisting entirely of o�springs, has been created.

These steps –Mutation, selection, crossover– are constantly repeated until a stopping
condition is met, usually a fixed amount of generations.
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6
Implementation Design

We propose a model of a prototype system for designing the deployment of a BLE
infrastructure extension. To reduce the amount of hardware deployed, we designed
the prototype system to make use of existing signal coverage from Wi-Fi nodes
in the indoor environment. Existing signal coverage is gathered using the signal
strength survey application (section 6.2). The gathered signal data is then sent to
the deployment planning application (section 6.1), which use it together with signal
simulations and heuristics to produce a deployment plan.

6.1 The Deployment Planning Application

The deployment planning application (DPA) is a part of the prototype system we
developed for the deployment planning of reference nodes. The application proposes
how many reference nodes are needed and where they shall be placed, along with a
graphical representation of the deployment. The DPA consists of four main parts:
(1) The optimizing component, (2) Map logic component, (3) Signal propagation
logic component and (4) User interface. An architectural overview of the DPA can
be seen in figure 6.1.

The DPA is written in the JavaSE programming language, and developed following
an object oriented paradigm with a Model-View-Controller (MVC) design pattern.

6.1.1 The optimizing component

This component handles the placing and minimization of reference nodes. The ob-
jective of the component is to produce a deployment design with as few reference
node as possible, while satisfying the requirements of a reliable indoor positioning
system (constraint 1).

In our application, we implemented the simulated annealing heuristic (SA) (sec-
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Figure 6.1: The system architecture of the DPA together with the
SSSA

tion 5.2.1) for solving the minimization of reference nodes in the deployment design.
Our implementation of the simulated annealing heuristic in pseudo code can be seen
in algorithm 1.

The algorithm begins with initializing the temperature (line 2) and generates a
random deployment design (line 3) with the initial number of reference nodes and
assumes that this design it the best found so far (line 4). While the temperature is
hot (line 5), the algorithm produce a neighbouring solution (line 7). If the neigh-
bouring solution is better than the global best (line 8), it sets this neighbouring
solution as the new global best (line 9) and continues searching with the neigh-
bouring solution (line 10). Otherwise, it compare an acceptance probability with a
randomly generated number between zero and one (line 12), which will decide if the
search shall continue with the current solution or the neighbouring solution (line 13).
This acceptance probability decreases as the temperature drops, thus lowering the
probability to continue with a neighbouring solution that is worse than the current
solution. We added internal iterations (line 6) to reduce the risk of getting stuck in
local optima. Basically, the internal iterations restart the annealing phase m times
at each temperature. If a better solution than the current best is found in the new
iteration, this solution is assigned as the current best, then the complete simulated
annealing process is repeated with a decremented number of reference nodes (line
20). If no better solution is found, or no valid reference node configuration can be
produced, the SA returns the best valid solution found so far (line 22).
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Algorithm 1: Our implementation of Simulated Annealing to minimize the
number of reference nodes to be deployed.

input : Map M , initial number of reference nodes n, initial temperature Ti,
number of iterations m

output: Proposed reference node placement
1 while There exists a valid solution of n reference nodes do
2 T Ω Ti ; // initialize temperature
3 S Ω Random solution of M ; // generate a starting solution
4 Sbest Ω S ; // assume starting solution is the global best
5 while T is hot do
6 for i Ω 1 . . . m do
7 Ŝ Ω Neighbouring solution to S ; // generate candidate
8 if Ŝ is better than Sbest then
9 Sbest Ω Ŝ ; // assign candidate as best so far

10 S Ω Ŝ ; // assign candidate as current best
11 else
12 r Ω uniformRand(0,1) ; // assign random value [0 - 1]
13 if exp

1
Ŝ ≠ S

2
/T > r then

14 S Ω Ŝ ; // accept worse solution
15 end
16 end
17 end
18 Lower temperature T ;
19 end
20 Decrement n ;
21 end
22 return Sbest ;

6.1.2 Map logic component

This component handles the digital representation of the indoor environment (in-
door geometry). We designed it to handle a variety of indoor environments, from
simple rooms with parallel walls, to complex facilities with angled walls, non-closed
rooms etc.

The indoor geometry in this component is represented from a 2 dimensional top
down perspective with walls and structures being modeled by lines. This compo-
nent also stores the positions where reference nodes can be placed, so called mount
points. The mount points are automatically generated by using algorithm 2 with a
given indoor geometry as input. This algorithm moves along each wall and gener-
ates mount points on both sides, with a pre-set granularity. The exception is if one
side of a wall is facing the outside of the area being tracked, where in this case, the
mount points are only generated on the inside facing side.
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Algorithm 2: Generate reference node mount points.
input : Map geometry M , Mount point granularity gmp
output: A set of mount points

1 for ’Wall wi œ M do
2 pi Ω start point of wi ; // Initialize placement iterator
3 pe Ω end point of wi ; // Set placement stopping point
4 while pi has not reached pe do
5 if wi is an outside wall then
6 place one mount point at point pi at the side of wi facing inside ;
7 else
8 place two mount points at point pi, one on each side of wi ;
9 end

10 pi Ω move along wi with step size gmp ; /* move to next mount
point candidate */

11 end
12 end
13 return placed mount points ;

6.1.3 Signal propagation logic component

The purpose of this component is to simulate how signals from reference nodes prop-
agate through a indoor environment. When signals propagate through a medium,
the strength the signals will decrease as the travel distance increases, as well as
scatter and di�ract. Di�erent mediums have di�erent impact on signals. Walls may
often be of brick, concrete and/or plaster have very di�erent impact on the signals
than air. In an indoor environment, it is likely that the signals travels through sev-
eral walls, which may have a large impact on the signal strength. For this reason, it
is critical to have a good signal simulation which consider wall properties (chapter 4
provides detailed background on propagation models).

This component uses the multi-wall-classic (MWC) propagation model (described in
section 4.4) to simulate realistic behavior of signals propagation through open areas
and solid objects. It uses the one-slope model (described in section 4.3) when prop-
agating in line of sight, and a wall-specific loss factor when propagating through
a wall. The wall specific losses is dependent on properties such as materials and
thickness of the walls.

In our prototype, the simulated signal strengths are calculated as a grid over the
indoor environment, where each zone represent the signal strength of the area it
covers. The signal strength for each zone is calculated by measuring the euclidean
distance from the center of the zone to each reference node. This distance, together
with the wall collisions in the path, is used in the MWC propagation model to cal-
culate the signal strength in the zone.
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Further, to get a sound result from the DPA, it is important that the resolution
settings is tuned to match the sampled resolution from the signal strength survey
application (section 6.2). If the grid resolution is significantly higher than the sam-
pled resolution, the execution time will see a sharp increase without any rise in
accuracy. On the other hand, if the resolution is significantly lower than the sam-
pled values, it will result in a drop of accuracy and possibly misleading results in
the later reference node placement.

6.1.4 User interface

The user interface (UI) graphically presents information to ease the interpretation
of the proposed deployment design. A screen shot of the user interface can be seen
in figure 6.2. The interface is written in Java with the Swing library providing the
interactivity and look-and-feel, and consist of a single window with three views.

The first view presents a graphical representation of the coverage, with colored
threshold levels for each step in the coverage. The colors representing the cover-
age levels are stored as an array of hexadecimal ARGB-values and can easily be
exchanged for any color palette. White to blue 10-step palette is set as default.

The second view presents the layout of the floor plan and where the reference nodes
should be located for optimal coverage, and is also able to display the positions of
all generated mount points. In addition to this, the view is also able to display
the colored coverage representation below the floor plan, presenting the user with
an intuitive display of how the signal coverage propagates in the indoor environment.

The third and last view is a text display that is context sensitive. When click-
ing on a grid tile in the first view, this view displays the coverage values of the
current selected zone. When the clicking on the second view, the real world coor-
dinates in meters are displayed, with origin {x, y} = (0.0, 0.0) located in the top
left corner of the floor layout and the coordinates increments top æ bottom, left æ
right. This creates a useful tool for placing the new proposed reference nodes.

6.2 The Signal Strength Survey Application

The purpose of the signal strength survey application (SSSA) is to collect and store
the signal strength of Wi-Fi and Bluetooth reference nodes. The SSSA collects the
received signal strength indicator (RSSI) by conducting a survey which continuously
scans for Wi-Fi and Bluetooth reference nodes for a set time period. The SSSA has
a sampling point ID as input for each survey, in order to match the sampling points
created in the indoor geometry in the DPA.
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Figure 6.2: An example view of the user interface.

By scanning continuously during a survey, the SSSA obtains multiple RSSI val-
ues in order to produce a accurate result. Every time a scan is complete, the RSSI
value and accompanied meta data of detected reference nodes is stored. The SSSA
then immediately starts a new scan. The survey implementation can be seen in
algorithm 3. When a survey has reach its time limit, the stored data is parsed
to JavaScript Object Notation (JSON), packaged, and forwarded to a web server.
The SSSA is runnable on devices with: Android 4.3+, with support for Wi-Fi and
Bluetooth 4.0+.

Algorithm 3: Signal Strength Survey
input : Survey time length t
output: A set of reference nodes with RSSI values and meta data

1 L Ω Empty List
2 on new thread do
3 S Ω New reference node scanner ;
4 while t time has not passed do
5 if S.scan is not running then
6 start S.scan ;
7 end
8 when S.scan is finished do
9 | Append scan results from S to L ;

10 end
11 end
12 end
13 return L ;
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6.3 Development methodology

The software modules in this project has been developed in a agile fashion. By
adapting the development methodology of SCRUM the applications have been de-
veloped iterative and incremental. We have distributed the time over three equally
long iterations, which in SCRUM are defined as Sprints.

Each Sprint began with defining what works shall be accomplished during its set
time period, which for us meant breaking down the requirements in manageable sub
tasks and estimating the implementation time. At the end of each Sprint a retro-
spective analysis was held to review the completed work to determine what went
well and what could be improved in the next sprint.

From the start of this project the overall vision of the final solution was quite clear,
but not how to implement the functionality. Adapting SCRUM has contributed
with an organized way of planning, prioritizing and estimating the development.
Implementation issues that could not have been foreseen has been easily dealt with
since the implementation have been iterative and divided into small tasks.
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7
Experiments

This chapter will present the experiment settings, the environment and the experi-
ments with their subsequent results. The evaluation begins with an survey of simu-
lation accuracy, then three experiments are presented. Each experiment is designed
to validate the key design features of the system developed in our thesis.

7.1 Experiments settings

All of the experiments is executed in a o�ce environment provided by Squeed. The
o�ce environment o�ers common indoor properties, such as windows, brick walls,
doors and furniture. Some special cases is also included, such as a vault with re-
inforced walls and a 2500kg heavy iron door, as well as a glass wall. The o�ce
measures 11m x 18m in size, and is slightly L-shaped in layout.

An area covering roughly half of the o�ce is used to perform the experiments, with
sampling points generated with equal spacing in x- and y-axis, axes being perpen-
dicular to the floor. At each sample point data is gathered during a preset amount
of time, with the testing equipment mounted on a tripod always facing the same
direction. The changes in environment is kept at a minimum during the gathering,
as to get consistent sampling results.
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7. Experiments

7.1.1 Sampling-, simulation- and heuristics settings

Sampling settings
Paramenter Value
Sampled points 22
Sample spacing 2.6m
Sample time 20s
Sample frequency 2400Hz
Sampling direction N. East

Simulation settings
Paramenter Value
Propagation model MWE
BLE base strength -59dBm
Wall attenuation 3.1dBm
LOS decay Rate 2.05dBm
Min.RNs in range 3
Cuto� threshold -80dBm

Heuristic settings
Paramenter Value
SA initial T 100
SA – 0.01
SA iterations 10

7.1.2 Indoor environment

The indoor environment used in the experiments can be seen in fig 7.1.

Figure 7.1: Indoor environment with sample points

7.2 Simulation accuracy

This evaluation measures how well our prototype system simulates the signal prop-
agation. It is critical that the system has low error in the simulations, otherwise it
could result in irrational and poor performing reference node placements.

This simulation accuracy evaluation is carried out in three steps; First, we let the
application generate a RN placement scheme, and simulate the signal values at given
sampling points. Next, we place RNs according to the placement scheme, and gather
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signal data at each sampling point. Last, we calculate the mean error of the simu-
lated data for each sampling point. This procedure will give us an estimate of the
reliability of the placement scheme.

7.2.1 Results

We calculated the average simulation error for each zone with our experimental
setup. The result can be seen in fig. 7.2; for each zone, the average, together with
maximum and minimum error is shown. The data used for the error calculations is
the one used in experiment A. The calculations shows that the simulation has an
mean average error of 4.3dBm of the RNs, and a maximum of 8.6dBm average error.

We believe that both external and internal factors contribute to the errors in the
model. The external factors (or noise) include variations in the environment, as
well as environmental factors that is not accounted for in the simulation. This has
been expected from the start, as an indoor environment is seldom completely static.
Examples of variations is unknown properties of walls (piping, electrical wiring, ma-
terial variations etc.), changes in humidity and signal interference to name a few.
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Figure 7.2: Simulation error for each respective sample point.

The errors from internal factors occurs due to simplifications in the signal propaga-
tion calculations. We believe the single greatest contributing factor to the internal
errors is that the signal fallo� is only calculated using the euclidean path from the
sampling point to the RN. This creates poor signal strengths when many walls in-
tersect this path, as can be seen in fig 7.3. In reality, many more paths are viable
for the signals, thus our model has a tendency to set too large of an signal loss in
certain cases. One may argue that this is not too bad, as it at the very least provide
some robustness to the signal strength, but it may at the same time add redundant
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Figure 7.3: Example of unforunate wall penetration. In simulations,
the solid line is used to calculate signal fall-o�, and due to the high
amount of wall passes, the signal fall-o� becomes large. In reality,
a reflected signal –like the dashed line– has lower fall-o� as it passes
through fewer walls.

reference nodes. The sample points in the lower right corner of the map can be
seen a�ected by this error. This error can be largely eradicated by using a more de-
tailed signal propagation simulation model, such as ray-tracing (presented in ch. 4).

Overall the simulation software performs well with good accuracy and reliability,
with relatively low errors. Furthermore, it has high performance in regard to com-
putation speed; with our benchmark settings, a result is produced with average of
≥ 69s execution time.

7.3 BLE extension experiment

The goal of this experiment is to validate that our prototype program produces a
practical result. The experiment is designed in 3 parts. Firstly, we collect the Wi-Fi
coverage to check if the existing Wi-Fi alone satisfy constraint 1. If it does, the
system should return that no more action is needed. Secondly, we extend the Wi-Fi
infrastructre with the BLE extension that our program suggests subject to con-
straint 2. Lastly, we validate our solution by collecting the total coverage to check
if the BLE extension together with the Wi-Fi infrastructure satisfies constraint 1.

Evaluation criteria:
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• Constraint 1.

• Constraint 2.

• Propagation comparison.

7.3.1 Results

The collected data of the Wi-Fi coverage shows that the signal strength of the Wi-Fi
RN is above the threshold of -80dBm at all sample points in the environment. As a
result of this, the Wi-Fi RN is included as a reliable RN at all sample points.

The suggested deployment design for the BLE extension from our program can
be viewed in Figure 7.4, where the RN placement is marked with a solid black
square accompanied with a label RN-x. Further, as seen in Fig. 7.5 the gathered

Figure 7.4: Deployment design suggestion for BLE extension.

data reveals that the required signal threshold is held by three RNs at 20 of the
22 sample points. This results remained the same during both executions of the
experiment. At sample point 2.0 RN-0 measure -82.82dBm and at sample point
3.0 RN-1 measures -81.06dBm, compared to the simulated values of -79.3dBm and
-78.65dBm respectivly.

As all sample points fulfills constraint 1 in the program simulation, it becomes
apparent that our simulation model is not completely accurate as it cannot predict
the noise which exist within a real environment. Thus, they become prone to failure
with both miscalculations in the simulation, as well as changes in the environment.
Because of this, our program cannot guarantee the set dBm threshold. But the
results show, it can produce a deployment which satisfies the set threshold with a
few dBm as margin of error.
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Concerning constraint 2, and minimizing the number of RNs used, we are using
the popular simulated annealing search method for finding minima. Observing the
number of redundant overlaps, i.e. sample points which has more than 3 RNs above
the set threshold, gives a good indication if our program has placed an excessive
amount of RNs. Fig. 7.5 shows that only 3 out of the 22 sample points have redun-
dant overlaps. A valid solution without redundant overlaps has not been found by
our simulation in any run, and we believe it is unlikely to exist. Only 3 redundant
overlaps is a good indication that our program aggressively minimizes the number
of RNs used in the BLE extension.
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Figure 7.5: The recieved signal strength from each RN relative to the
threshold (Wi-Fi not included), grouped by respective sampling points.
Red bars indicate the value in dBm above the threshold and blue the
value in dBm below the threshold. Note the two zones (2.0, 3.0) failing
constraint 1.

7.4 Deployment by individual experiment

The purpose of this experiment is to determine how our program performs com-
pared to an individual in the deployment of indoor position systems. To evaluate
the usefulness of our solution, we compare how a placement done by an individual
performs in regard to the placement of our program. The individual in question
does not have any particular knowledge about our work, but is introduced to the
basic concepts of trilateration. The individual is given the same amount of reference
nodes as our system suggests and is asked to place these reference nodes to achieve
the best possible conditions for trilateration.

Evaluation criteria:
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• Constraint 1.

• Deployment comparison.

7.4.1 Results

In this experiment we asked an employee at Squeed to deploy 4 RNs (the same
amount our program suggested) to cover the same indoor environment as seen in
fig. 7.1. The employee was briefed on the basics of indoor positioning, and what
criteria constitute a good positioning system. The employee was further informed
that there exist a Wi-Fi access point that provided su�cient signal strength at all
sample points. The deployment design can be seen in fig. 7.6.

This deployment did not fulfill constraint 1, and did not perform better than the
deployment suggestion from our program. Out of the 22 sample points, 11 failed to
fulfill constraint 1. A comparison between the deployment results can be viewed in
table 7.1.

A major weakness of the individual deployment design are the RNs which are placed
in corners or at the edge of the map. The visual representation of the corner place-
ment is reminiscent of motion detectors and surveillance cameras, which might feel
natural and like a good choice. However, when placing a RN near a corner of the
map, up to 75% of the possible coverage of this RN becomes located outside of the
indoor environment and subsequently unusable. Likewise, when placing an RN at
a edge wall of the map, 50% of the coverage becomes unusable. Such preconceived
thought patterns could of people could impair deployment designs. Thus, letting
software design the deployment by computational means frees it from such patterns,
and could potentially find new, unexpectedly e�cient designs.

Figure 7.6: Individual deployment design.
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Individual Our program
Number of RNs 4 4
Sample points fulfilling Req 1 11 (50%) 20 (91%)
Number of redundant overlaps 5 3

Table 7.1: Deployment design comparison

7.5 Deployment repeatability experiment

The goal of this experiment is to evaluate the fault tolerance of our system. In a
real world scenario it’s likely to see loss of reference nodes. The loss of reference
nodes may occur by di�erent reasons, for example; batteries may run out, reference
nodes can be stolen or destroyed. We will simulate these causes by removing refer-
ence nodes from the suggested deployment of our program. We will then collect the
coverage and run our program again, to see how it adapts to these changes. This
experiment will test the output consistency and show if the program suggests new
designs, new amounts of reference nodes or suggests the same original design.

Evaluation criteria:

• Constraint 1.

• Number of new reference nodes suggested.

• New reference node placement.

7.5.1 Results

In each scenario, reference nodes are removed from the original deployment (fig. 7.4),
to simulate node failures. Our program is then executed again, with the collected
coverage from the faulty deployment, and suggests a new deployment design. Sev-
eral scenarios is presented, varying both which nodes, as well as the amount of nodes
to fail.

Each result is presented as an image of the new suggested deployment. The non-
failed nodes remain, and the areas where new nodes is suggested is marked within
black circles. None of the new suggested deployments changed the amount of nodes
to use, and each area corresponds to one reference node, i.e, two circles represents
two nodes, with one node deployed in each circle.
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7.5.1.1 One reference node failure scenario

In this scenario, each RN su�ers failure, while the other remain active. Each time,
the program suggests one new RN placement, which can be seen in 7.7.

Figure 7.7: One reference node failure scenario. Each circle indicate
the area where the program suggest one RN placement.

7.5.1.2 Two reference nodes failure scenario A

In this scenario, RN-1 and RN-3 su�ers from failure, which causes failure to hold
constraint 1 in 15 of the 22 sample points. Our program suggests di�erent deploy-
ment designs when executed several times. However, always with the same amount
of RNs and minor variations in the placement. The results can be seen in fig. 7.8.

7.5.1.3 Two reference nodes failure scenario B

In this scenario, RN-0 and RN-2 su�ers from failure, which causes the constraint 1
to fail in 18 of the 22 sample points. Our program suggests di�erent deployment
designs when executed several times. However, always with the same amount of
RNs and minor variations in the placement. The results can be seen in fig. 7.9.

In every scenario, the new deployment suggestion deviates little to none from the
original deployment. The largest deviation occurs in scenario 2b, where the one
of the RNs was proposed on two di�erent walls between simulations, and the total
deviating distance was roughly 3m for a single RN. As the random search algorithm
finds the same or a close optima at each search, the software is clearly capable to
repeatability.
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Figure 7.8: Two reference nodes failure scenario A: RN-3 and RN-1
failure. Each circle indicate the area where the program suggests one
RN placement.

Figure 7.9: Two reference nodes failure scenario B: RN-0 and RN-2
failure. Each circle indicate the area where the program suggests one
RN placement.
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8
Discussion

We present a prototype system and a new analytical approach for deployment design
of reference nodes for indoor positioning. Our solution allow already deployed Wi-
Fi infrastructure to better support indoor positioning by using an a�ordable BLE
extension. The results shows that our prototype system reduces costs and minimizes
the amount of reference nodes while still satisfying the constraints of a reliable indoor
positioning system.

8.1 Approach

Our analytical approach is based on modeling indoor positioning as a coverage op-
timization problem. We simulate the signal propagation of BLE reference nodes
with the Wi-Fi radio map by using the multi-wall-classic signal propagation model.
Multi-wall-classic was selected for its low computational cost and good accuracy.
Higher accuracy is possible to achieve with di�erent models, but will impact the
running time performance of the signal propagation logic component. We do not
see a need for a signal propagation model with higher accuracy when analyzing the
results and considering the performance trade-o� it would bring.

To create a deployment design of BLE reference nodes, we apply meta heuristics
to find a suitably low amount of reference nodes and their respective placement.
The use of meta heuristics allows the prototype system to e�ciently discard in-
e�cient subsets in the solution space, and quickly find high performing solutions.
However, the drawback of the meta heuristics is that no guarantee of optimiality
can be given, due to the stochastic nature of such methods. In our case we do
not believe that this can cause any major impacts, as a deployed system is prone
to external disruptive elements, such as signal interference, changes in the environ-
ment etc. To compute an optimal solution is infeasible, and would provide minimal
advantage over an lesser solution, given that the lesser still lies close to optimality
in the solution space.
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8.2 Experiments

We conducted several experiments to test if our prototype system satisfies the con-
straints of a reliable indoor positioning system. The experiments were conducted
with a Nexus 4 smart phone which has access to both the Wi-Fi and Bluetooth stack,
but has some limitations in the ability control how often it retrieves sensor readings.
Due to this limitation we decided to collect as many sensor readings as possible
during a set time period instead of fixed number of readings. To assure a sound re-
sult we collected all readings facing the same direction and same height over ground.

To ensure soundness of the results, all experiments were conducted in the same
static indoor environment during two di�erent occasions. The di�erence between
these two occasions were negligible and it seems correct to assume there would be
no di�erence in another similar setting. However, to solidify this assumption, the
experiments needs to be conducted in another static indoor environment.

8.3 Literature

One of the related works presented in the introduction of this thesis is Aomumpai
et al. [4], where they present a RN placement optimization with binary linear pro-
gramming. When comparing their results to the ones that we present, one can see
clear similarities in the placement patterns of RNs. Both approaches tend to place
the RNs in a saw-tooth patter in the indoor environment.

But in Aomumpai et al. [4] several parameters are set with a di�erent approach
than what we present in this thesis. The minimum RSSI value that they suggest
lies att -100 dBm, which is a very low value in a practical application, and severly
lowers the amount of RNs that needs to be placed in an indoor environment. Fur-
ther, they have suggested a low granularity in their proposed RN placements (3 m
in their approach, whereas we suggest 0.75 m). A low granularity limits both the
search and the solution space in this kind of optimization problem, especially when
taking disturbance factors such as walls in consideration.

48



9
Conclusion

By viewing indoor positioning reference nodes placement as a coverage optimization
problem, we have been able to create a prototype system which e�ectively produces
a reliable and a�ordable deployment design. By considering the indoor environment
and the signal propagation of reference nodes our system can create a deployment de-
sign which is reliable and uses very few nodes. However, our approach is best suited
for small to medium indoor environment as the manual survey of Wi-Fi infrastruc-
ture might be a time consuming process that scales badly for large environments.
Limitations also occur if the environment is exposed to major refurbishments as this
present changes to signal propagation of reference nodes.

9.1 Future work

Our prototype system’s main purpose is to create a deployment design for Wi-Fi and
Bluetooth reference nodes, but our model is adaptable for solving problems in other
areas. We propose two areas where our model can be adapted to provide solutions
to known problems.

9.1.1 Network planning

In network planning and design, the topological design of a network involves how
to place links and nodes. Designing the network requires good models of the traf-
fic that is going to be transmitted through the network, as to dimension the network.

Our prototype can be used to find a network provisioning that is fulfills require-
ments for redundancy and load balancing in routing. By remodeling the signal wave
propagation as network tra�c and the placed reference nodes as network nodes the
prototype is able to find a topological placement for network infrastructure. New
requirements and considerations may have to be added, such as varying network
tra�c at peak hours in order to get a more accurate result.
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9.1.2 Placing smoke detectors

When placing smoke detectors it’s of high importance to place them in a way that
prevents a large area from being covered by a single detector. In the case where a
smoke detector fails, another detector must be able to register a fire in a su�ciently
short time frame to prevent the fire from spreading. Thus, the placement of the
detectors must be chosen with great care.

Taking our prototype, and remodeling the signal wave propagation from each bea-
con to a smoke detection probability model, the prototype can produce placement
suggestions that are redundant and secure. In this example, our prototype may have
to be expanded with new considerations, such as not placing smoke detectors near
windows or ventilation system.

9.2 Extensions

For future reference, based on this project, we suggest the following improvements
and extensions:

• In our model, we only take in mind single floors i.e., a two dimensional ap-
proach. If our approch were to be used in multiple floors in the same building,
each floor has to be treated individually. By further expand our system to a
multi-level approach, where signals from multiple floors could be combined, a
more refined solution could be obtained. This could lower the accumulated
amount of RNs needed for a multi floor deployment, as deployed RNs is then
capable of handling multiple floors at the same time, reducing installation,
hardware and maintenance costs.

• The base of this project considers an extension using BLE technology, as it is
low cost equipment supported by a majority of modern smart devices. Using
up-and-coming technologies which are more suitable for indoor positioning,
such as UWB, would provide interesting, possibly better results. This could
give an indication of which technology is better suited for IPS, and provide
information regarding cost di�erences.

• The single largest error contributions in our prototype system is the naïve sig-
nal propagation model. That is, the system assumes that the lowest expected
signal loss occurs at the shortest path from the RN. As can be seen in the pre-
vious chapter, that is not always the case. Implementing a more detailed and
refined signal propagation model, such as ray tracing, would possible achieve
better simulation accuracy, and thus potentially yield even better solutions.

• The positioning equipment in this thesis is only microwave based. The envi-
ronment could further be extended with supporting technologies such as light,
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sound and magnetism to name a few. This type of extensions could provide the
system with better resistance against signal interference, more fault tolerance
and better precision.
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