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ABSTRACT 

A promising alternative to the conventional orthotropic steel deck is the corrugated core 

sandwich panel. Due to the complicated core geometry, this type of sandwich panel is 

hard to evaluate with analytical methods and therefore often analyzed numerically, 

using the finite element method. It is desirable, from a design point of view, to simplify 

the structural analysis which at present relies mainly on 3D-modelling. These models 

require a lot of computer resources and the corresponding analysis usually take a 

considerable amount of time to run, i.e. they are not suitable for design or optimization 

purposes. 

 

A study was conducted on how to approximate a full 3D finite element model, by 

combining contributions from a local 2D model and a homogenized ESL (Equivalent 

Single Layer)-model. This was performed for four different geometries of corrugated 

core sandwich panels. The models were investigated under the influence of a vertical 

local patch load.  

 

First, the presented literature study focuses on corrugated-core sandwich panels, their 

structural behavior, how to effectively approximate the orthotropic structure as a 

homogenized single layer shell and a brief study on suggestions regarding FE-

modelling. Thereafter, the conducted study is introduced, presented and discussed. 

 

It was shown that the global moment in the direction orthogonal to the core gives rise 

to a local moment in the top face plate of the sandwich panel. It was shown that 

neglecting this local moment can lead to considerable errors. It was also found that the 

suggested approach gave accurate results when considering global load effects alone. 

However, when investigating global load effects together with the effect of the directly 

applied load, a considerable discrepancy compared to the 3D-model was shown. The 

study went on to investigate possible ways to capture this disagreement. Although none 

of the extended studies were deemed to be general enough to be used for design 

purposes, they give insight to the discrepancy between the full 3D-analysis and the 

simplified approach. 

 

Keywords: Sandwich panel, FE-modeling, ESL, patch load, plate theory, 

homogenization 
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SAMMANFATTNING 

Den moderna korrugerade sandwichpanelen är ett mycket lovande alternativ till det 

konventionella ortotropa brodäcket av stål. På grund av den komplicerade geometrin är 

denna typ av sandwichpanel svår att utvärdera med analytiska modeller och utvärderas 

därför ofta numeriskt, med till exempel finita element metoden. Ur ett designperspektiv 

vore det önskvärt att förenkla modelleringsprocessen, som vid skrivande stund 

huvudsakligen förlitar sig på 3D-modellering. Dessa modeller kräver mycket 

datorkapacitet och är därav ej lämpliga för konstruktions- och optimerings-rutiner. 

 

En studie genomfördes angående hur det strukturella beteendet hos en tredimensionell 

FE-modell kan förenklas med en lokal 2D-modell och en homogeniserad skalmodell. 

Studien utfördes för fyra olika geometrier av korrugerade sandwichpaneler. Modellerna 

analyserades under inverkan av ett vertikalt hjultryck. 

 

Inledningsvis presenteras en litteraturstudie om stålsandwichpaneler med korrugerad 

kärna, deras strukturella beteende, hur en ortotrop struktur kan förenklas som ett 

homogeniserat skal och även kortfattat angående rekommendationer för FE-

modellering av olika element. Därefter introduceras, presenteras samt diskuteras den 

genomförda studien. 

 

Det visade sig att det föreslagna tillvägagångssättet gav exakta resultat då enbart globala 

lasteffekternas inverkan på spänningstillståndet i tvärsnittets olika delar utvärderades. 

När området direkt under lasten undersöktes så påvisades en skillnad mellan den fulla 

3D-analysen och den förenklade 2D-analysen. Studien gick vidare till att undersöka 

möjliga förklaringar till den påvisade avvikelsen. Även om ingen av de justerade 

studierna ansågs vara generella nog för att användas till exempel vid dimensionering, 

så ger de insikt till avvikelsen mellan den fulla 3D-analysen och den förenklade 2D-

analysen. 

 

Nyckelord: sandwichpaneler, ESL, FE-modellering, homogenisering  
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Notations 

Roman upper case letters 

𝐴𝑐  Area of the corrugation cross section perpendicular to the corrugations  

  axis. 

𝐴𝑥, 𝐴𝑦  Cross sectional area of the sandwich panel. 

𝐷𝑥,𝐷𝑦  Bending stiffness around the x- and y-axis of the sandwich panel. 

𝐷𝑥𝑦  Twisting stiffness of the sandwich panel. 

𝐷𝑄𝑥, 𝐷𝑄𝑦 Out of plane transverse shear stiffness of the sandwich panel. 

𝐸  Elastic modulus of steel. 

𝐸𝑝.𝑠   Elastic modulus for plain strain conditions. 

𝐸𝑥  Orthotropic material constant for bending the x-direction 

𝐸𝑦  Orthotropic material constant for bending in the y-direction 

𝐺  Shear modulus of steel. 

𝐺𝑐  Shear modulus of the corrugated core material. 

𝐺𝑥𝑦  Orthotropic material constant for torsional moment in the xy-plane. 

𝐺𝑥𝑧  Orthotropic material constant for transverse shear in the xz-plane. 

𝐺𝑦𝑧  Orthotropic material constant for transverse shear in the yz-plane. 

𝐼𝑐
𝑚  Second moment of area of the corrugated core. 

𝑀𝑒𝑥𝑡𝑟𝑎  Additional global moment introduced in the last study. 

𝑀𝑚  Moment induced local moment factor. 

𝑀𝑠  Shear induced local moment factor. 

𝑀𝑥, 𝑀𝑦  Bending moment around the x and y-axis, respectively. 

𝑀𝑥𝑦  Twisting moment in the xy-plane.  

𝑁𝑥 , 𝑁𝑦  Normal force in the xy-plane in the x and y-direction respectively.  

𝑃  Applied point load in the 4-point bening model. 

𝑄𝑥, 𝑄𝑦  Transverse shear force in the yz- and xz-plane respectively. 

R  Radius of the corrugation. 

Roman lower case letters 

𝑑𝑤  Distance between welds. 

𝑓1, 𝑓2  Distance between the radials of each corrugated crest, bottom and top. 

ℎ  Distance between the center of mass of the face plates. 

ℎ𝑐   Total height of the corrugated core. 
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k  Shear correction factor 5/6.  

𝑝  Length of one half unit cell. 

𝑡𝑐  Thickness of the core material.  

𝑡1  Thickness of the bottom face plate. 

𝑡2  Thickness of the top face plate. 

𝑡𝑤  Weld thickness. 

𝑣𝑥, 𝑣𝑦  Poisson’s ratio of the faceplate material. 

𝑤𝑙  Total local deflection. 

𝑤𝑄  Local deflection caused by global shear 

𝑤𝑡𝑓  Local deflection caused by the thick face plate effect. 

𝑤𝑞  Local deflection caused by the applied patch load. 

 

Greek lower case letters 

𝜃  Angel of the corrugation.  

𝛾𝑥  Shear angle in the x-direction. 

𝛾𝑧  Shear angle in the y-direction.  

𝛾𝑥𝑧  Shear strain in the xz-plane caused by 𝑄𝑦. 

𝛾𝑦𝑧  Shear strain in the yz-plane caused by 𝑄𝑥. 

 

Abbreviations 

DOF  Degree of freedom 

BC  Boundary condition 

ESL  Equivalent single layer 

FEM  Finite element method 

FE  Finite element 

FEA  Finite element analysis 

GMAW  Gas metal arc welding 

HAZ  Heat Affected Zone 

MIG  Metal Inert Gas 

SSP  Steel sandwich panel 

TIG  Tungsten Inert Gas 

HLAW  Hybrid laser arc welding 
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1 Introduction  

Orthotropic steel bridge-decks for bridge applications were first used after the 2nd 

World War, when the shortage of steel required the engineers to come up with new 

efficient structural solutions. However, as material prices dropped and salaries for 

engineers and welders increased, the usage of the orthotropic steel decks declined and 

research development came to a halt [1]. Today, steel decks are used almost exclusively 

in either moveable bridges or bridges with very long spans, where minimal self-weight 

is a requirement [2].  

 

The conventional orthotropic plate deck consists of a top steel plate with welded 

longitudinal stiffeners, which can be either open or closed [2]. This deck has a very 

complex structural behavior which was not anticipated by the engineers in early design. 

Some effects were therefore overlooked, like the highly orthotropic behavior which 

creates high stress concentrations in certain areas and makes the deck very prone to 

fatigue damage [3]. 

 

To tackle the problems with conventional steel plate decks, a new design have been 

proposed by for example [2] and [4]. The proposed structure is the corrugated-core steel 

sandwich panel (SSP), where the largest difference compared to the conventional plate 

bridge deck is the use of two face plates, as opposed to one, see Figure 1. Compared to 

the conventional bridge deck, the SSP is less orthotropic and has a higher stiffness-to-

mass ratio. Furthermore, the production process of the SSP is more industrialized 

compared to the conventional bridge deck [5]. 

 

 

Figure 1  Cross sectional sketch of a conventional orthotropic steel deck (top), 

steel sandwich panel (bottom). 

The corrugated core SSP is promising for several applications areas of bridge 

construction, both for repairs and construction of new bridges. An example of a 

replacement can be a shift of a degraded concrete deck to a steel deck. By doing this 

replacement a decrease in self-weight can be achieved, which can be beneficial due to 

increasing traffic loads. An application for corrugated core SSP’s for new bridge 

structures could be as a hollow box section made completely out of SSP or as a deck 

above steel girders [6].  

 

Despite being a promising alternative, research is still ongoing in many areas regarding 

the corrugated sandwich panel - in regions related to civil engineering applications as 

well as in other engineering disciplines. A historically problematic aspect of the 

conventional steel deck, has been the issue regarding fatigue cracking from stresses due 

to local patch loads. This area has seen a great amount of research for the conventional 

deck specifically. However, this is not the case for corrugated-core SSP’s and therefore 
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little is known of the local structural response for this panel when subjected to a local 

patch load. 

 

 Purpose and aim 

Previous studies on the application of SSP’s have shown promising results – such as 

reductions for both weight and cost compared to a conventional orthotropic steel deck. 

But before the corrugated core SSP can be used for bridge construction, the structural 

behavior and fatigue performance must be further evaluated. This has previously been 

done for certain load cases, such as transverse shear force [7], but no studies have been 

performed for a case with a vertical locally applied patch load. Thus, this thesis aims to 

investigate the structural behavior of a corrugated core SSP, under the influence of a 

vertical local patch load applied on the upper face plate. 

 

Specifically, the following results were sought to be achieved during the work: 

▪ Establish a set of 2D Finite Element models to simplify a full 3D corrugated 

core steel sandwich panel in a commercial FE-software. 

▪ Describe the local force distribution in the sandwich panel exposed to a patch 

load, considering global forces and moments. 

▪ Describe the local force distribution in the sandwich panel exposed to a patch 

load, considering global moments and forces together with the effect of the 

directly applied load. 

 Method  

To introduce the subject at hand, a literature study was conducted at the beginning of 

the project. The literature study focused on production and structural response of steel 

sandwich panels, elastic behavior of a homogenized corrugated core sandwich panel, 

finite element modelling of SSPs and the response under local patch loads for other 

core configurations. 

 

In the performed study, three different FE-models of different scale were created in the 

commercial software BRIGADE/Plus 6.1-11. Four different geometric cases were used 

to make sure that the results will be valid for a wide variety of corrugated core SSP’s. 

Because of the need to be able to create models with varying geometries and the large 

amount of computed analyses, the studied cases were modelled using scripts.  

 

Calculations used for input data were handled in Mathcad 15.0 and output data was 

post-processed in Microsoft Excel. 
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 Limitations 

This thesis focuses exclusively on corrugated core steel sandwich panels. Other types 

of core geometry will be mentioned but not investigated to any extent. The sandwich 

panels were only investigated for four different geometry configurations. Dual weld 

lines at each core crest was the only joint configuration considered in the project. 

 

Linear elastic material response was assumed throughout the entire project. Further, the 

material model was assumed to be isotropic. Additionally, non linarites such as the 

contact between face plates and core due to relative displacements and also buckling, 

will not be considered. 

 

This project will focus mainly on local patch loading as the investigated load case. 

Other load cases were used at certain points, but only for comparison and verification 

purposes. Self-weight of the analyzed members is not included in the analyses.  
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2 Sandwich panels 

Sandwich structures used in engineering generally consist of two face plates which are 

separated by a core. The face plates are designed to carry bending moments and in-

plane loads, while the core is designed to carry shear loads. Usually, the face plates 

have a high density and stiffness, compared to the core. By splitting the face plates with 

a low density core, a high flexural resistance is achieved while still maintaining a low 

weight and thus obtain a high stiffness-to-mass ratio [8]. 

 

Sandwich structures are currently used in a number of engineering fields including 

naval, cardboards, aircraft and spacecraft [9]. This implies that sandwich structures can 

be made in many different configurations and shapes, see Figure 2. A number of 

different profiles and materials (both isotropic and orthotropic) are commonly utilized 

when constructing sandwich panels [10]. However, the most promising core structure 

for bridge application is the corrugated core [10] .  

 

 

Figure 2 Examples of different web configurations [11]. 

The history of SSP dates back to the 1950s, when the properties of the SSP was already 

sought by the aircraft industry [12]. However, no cost-efficient way of joining the panel 

parts had yet been discovered and the development was stopped until new means of 

welding were invented. More recent research in the SSP-field has to some extent been 

conducted by the marine industry, though also for civil use and mainly in Europe [13].  

 Production 

In production of SSP’s, one difficulty is the joining of the face plates to the core. There 

are several ways of joining a steel sandwich panel, these include [8]: 

 

▪ Welded joints 

▪ Mechanically fastened joints 

▪ Adhesively bonded joints 

▪ Combined joints 

The most commonly used joining technique being welding, the other with limited use 

or still under research [8]. A traditional welding technique such as gas metal arc welding 

is for example used in the production of conventional orthotropic steel bridge decks. 

However, it does not have a high enough energy density to perform a through thickness 

stake weld for the rather large thicknesses needed for bridge SSP’s [6].  Instead, laser 

welding or hybrid laser-arc welding is proposed for joining of SSP’s [6].  

 

For the case when the sandwich panel is used as a bridge superstructure, or other similar 

applications where large areas have to be covered, joining between individual panels is 

needed. This joint will probably be done on site by manual work and might therefore 

be prone to fatigue damage [4]. However, this joint is out of scope for this thesis.  
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 Laser welding 

Laser welding utilizes the high energy density of the laser beam, which can be up to 50 

kW [14]. The energy is very focused and amongst the highest of the welding techniques 

known today. As a result, the produced weld has a low width to depth ratio and low 

residual stresses as the surrounding material close to the weld path is not affected [14]. 

Moreover, it is possible to reach a high speed due to the fully automated process [8]. A 

simple draft on the effect of the laser beam on the surrounding area, can be seen in 

Figure 3.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although laser welding is very promising in certain regards, some of the drawbacks of 

the technique should be mentioned as well. These include, but are not limited to, a high 

initial and maintenance cost, poor efficiency (down to 2% for the highest performing) 

and a reduced ability to handle gap bridging [14].  

 

 Hybrid laser-arc welding 

Hybrid Laser Arc Welding (HLAW) combines the use of laser welding with traditional 

Gas Metal Arc Welding (GMAW) to gain several advantages over conventional 

welding techniques [5]. 

 

While there are many positive aspects about GMAW, such as affordability and a high 

weld quality, the energy density capability is not sufficient to create a through thickness 

stake weld. Usually a semi-automatic production method is used when assembling 

conventional bridge decks, which may give rise to local irregularities and thus stress 

concentrations, which creates areas more prone to fatigue damage. To increase the 

energy density, which is the main drawback of GMAW, an additional laser beam can 

be used thus creating a hybrid solution.  

 

HLAW is a highly automated welding process, while the operator still has precise 

control over the properties of the weld. This is beneficial with regards to distortion [5]. 

As stated earlier HLAW combines the main advantages of traditional welding and laser 

welding, which creates the following benefits: 

 

▪ Highly automated which leads to low distortion and precise welding 

Figure 3 Basic draft of laser welding [[SOURCE]]. 



CHALMERS, Architecture and Civil Engineering, Master’s Thesis BOMX02-17-99 6 

▪ Small heat affected zone. The very high density of the laser heats the weld 

part and welds it before the neighboring material is affected by the heat 

leading to very low residual stresses which is good from a fatigue strength 

point of view.  

▪ Speed is a major advantage of HLAW, since it is five to ten times faster 

compared to conventional methods. 

▪ Due to the gas arc, the HLAW produces oxide free welds with guarantees 

good weld quality and safety conditions.  

Nevertheless, there are obstacles related to HLAW in general and for usage in bridge 

construction in particular. Essentially, there are small amounts of published technical 

guidance for designers and welding engineers, with no standard being available in 

Europe yet [5]. According to [5], additional development is needed for codes, 

procedures and specifications, with extra focus on steel bridge components being 

crucial in this case. In 2014, the availability of HLAW was limited to 100 modules 

worldwide, with not a single one in Sweden [6]. 
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3 Plate theory for SSP 

Due to the geometry of SSP’s, the structural stiffness will vary greatly in different 

directions of the sandwich member [6]. The core plates provide continuous support to 

the face plates in the longitudinal direction, but transversally the face plates are only 

periodically supported by the core. The connection method will also affect the structural 

behavior, where for example welds will rarely have the same thickness as the plates 

that are welded together [11]. It can thus be concluded that the SSP is a highly 

orthotropic structure.  

 

To simplify the analysis of an SSP it can be homogenized, meaning that the periodic 

material behavior in every direction is simplified with an average stiffness constant. 

Homogenization of the member leads to a large reduction of the number of unknown 

variables. In the following sub-chapters where the stiffness constants and the governing 

equations will be presented, the sign convention and geometric definitions seen in 

Figure 4 will be used. The same kind of coordinate system will also be used for the 

finite element models introduced later. Additionally, the term “longitudinal” refers to 

the direction along the x-axis while “transversal” refers to the direction along the y-

axis.  

 

 

Figure 4 Definitions used in the homogenization of a corrugated steel panel [15]. 

 Physical constants 

The physical properties of the sandwich plate can be described by seven constants. The 

bending stiffnesses, 𝐷𝑥 and 𝐷𝑦, the shear stiffness in the yz-plane (perpendicular to the 

corrugation axis) 𝐷𝑄𝑥
 and the shear stiffness in the xz-plane (parallel to the corrugation 

axis) 𝐷𝑄𝑦
. The remaining three are the twisting stiffness 𝐷𝑥𝑦 and poisson ratio’s 𝜈𝑥 and 

𝜈y. The presented physical constants in this chapter were first derived by Libove and 

Hubka in 1951 [16]. 

 

If the only force acting on the small element in Figure 4 is a bending moment 𝑀𝑥, then 

𝐷𝑥  can be defined as the ratio between the moment and the primary curvature as: 

𝐷𝑥 = −
𝑀𝑥

𝜕2𝑤

𝜕2𝑥2

 (1) 
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νx can then be defined as the ratio between the Poisson curvature and the primary 

curvature as: 

νx = −

𝜕2𝑤

𝜕2𝑦2

𝜕2𝑤

𝜕2𝑥2

 (2) 

In a similar way, if only  𝑀𝑦 is acting, 𝐷𝑦 and 𝑣𝑦 is defined as: 

 

𝐷𝑦 = −
𝑀𝑦

𝜕2𝑤

𝜕2𝑦2

 (3) 

νy = −
𝜕2𝑤

𝜕2𝑥2

𝜕2𝑤

𝜕2𝑦2

 (4) 

For νf, being the Poisson’s ratio in the flange, the ratios associated with bending can 

be expressed as follows: 

𝜈𝑥 = 𝜈𝑓  (5) 

𝜈𝑦 = 𝜈𝑥
𝐷𝑦 

𝐷𝑥
   (6) 

 

If only a twisting moment 𝑀𝑥𝑦 is acting on the small element dxdy, then a twisting 

distortion 
𝜕2𝑤

𝜕𝑥𝜕𝑦
 is created. Consequently, 𝐷𝑥𝑦 is the ratio between the twisting moment 

and distortion as: 

𝐷𝑥𝑦 = −
𝑀𝑥𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦

 (7) 

If only a vertical shear force, 𝑄𝑥, is acting on the two opposite faces on a small element 

dxdy perpendicular to the corrugation, then the two faces will translate equally in 

opposite directions, see Figure 5, and create a shear angle 𝛾𝑥.  
 

 

Figure 5 Shear force acting on a small element dx 

The corresponding shear stiffness, 𝐷𝑄𝑥 can then be defined as the ratio between the 

shear force and angle as: 

𝐷𝑄𝑥 =
𝑄𝑥

𝛾𝑥
 (8) 

By applying the same methodology, the shear stiffness in a plane orthogonal to the 

corrugation axis can be defined by: 

  

𝐷𝑄𝑦 =
𝑄𝑦

𝛾𝑦
 (9)  

𝛾𝑥 
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 Elastic stiffness constants 

Elastic constants for homogenized corrugated core SSP’s were derived by Libove & 

Hubka [16]. The constants derived by [16] were used in the project, except for Dy, 

which was taken from [17]. The elastic modulus in z-direction (direction of plate 

thickness) was assumed to be infinite, i.e. assuming the thickness to stay constant. 

Additionally, in the derivation they assumed only one connection between the core and 

face plates (i.e. one weld).  

 Elastic bending stiffness 

The bending stiffness around the axis perpendicular to the corrugation 𝐷𝑥 and the axis 

parallel to the corrugation 𝐷𝑦 can be calculated as follows: 

 

𝐷𝑥 = 𝐸𝐼𝑥 (10) 

𝐷𝑦 =
𝐸𝐼𝑦

1−𝜈1
2(1−

𝐸𝐼𝑦

𝐸𝐼𝑥
)  

  (11) 

where: 

 

𝐸𝐼𝑥 = 𝐸𝑐𝐼𝑐
𝑚 +

𝐸1𝑡1ℎ2

2
 (12) 

𝐸𝐼𝑦 =
𝐸1𝑡1ℎ2

2
 (13) 

and: 

𝜈1  Poisson’s ratio of face-sheet material 

𝐸1 Modulus of elasticity of face-sheet material 

𝐸𝑐 Modulus of elasticity of core material 

𝐼𝑐
𝑚 2nd moment of area, per unit width, of corrugation cross-sectional area        

 about middle plane 

𝑡1 Thickness of each face-sheet 

ℎ Distance between middle surfaces of face plates 

 

If the faceplates are of different thickness (or any other reason that the center of gravity 

is not in the middle of the cross section), the parallel axis theorem should be applied to 

calculate the second moment of area of the cross section.  

 

 

 Torsional stiffness 

The torsional stiffness of the sandwich panel can be calculated according to: 

𝐷𝑥𝑦 = 2𝐺𝐽 (14)  
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𝐺𝐽 =
𝐺1𝑡1ℎ2

2
  (15) 

where: 

 

𝐺1 Shear modulus of elasticity of face sheet material 

 Transverse shear stiffness in the x-direction  

The shear stiffness in the plane parallel to the corrugation axis can be calculated 

according to Equation 16. 

𝐷𝑄𝑥
=

𝐺𝑐𝐼𝑡𝑐ℎ

𝑃 ∫ 𝑄 𝑑𝑠
𝑙
0

  (16) 

where: 

 

𝐼 Moment of inertia of width 2p of cross-section parallel to yz-plane, taken 

about the centroidal axis parallel to y-axis 

2𝑝 Corrugation pitch 

𝑙 Length of one corrugation leg measured along the center line 

𝑠 Coordinate measured along center line of corrugation leg 

However, if the moment is assumed to be taken solely by the face plates which gives a 

constant shear flow in the corrugation, then the expression in Equation 16 can be 

simplified to the expression presented in Equation 17. 

𝐷𝑄𝑥
~

𝐺𝑐𝑡𝑐ℎ
2

𝑝𝑙
=

𝐺𝑐𝑡𝑐
2

(𝐴𝑐)
𝑝 (

ℎ

𝑝
)
2
  (17) 

 

The horizontal shear stiffness is defined by: 

𝐺𝑥𝑦 = 𝐺𝐴 =
𝐺𝑐𝑡𝑐

2

𝐴𝑐
+ 𝐺𝑡1 + 𝐺𝑡2 (18) 

Since several of the stiffness constants depend heavily on the assumptions that the 

corrugated core sandwich has a constant height, h, and the cross-section remain 

undistorted, tests were conducted to test the viability of these assumptions. As can be 

seen in last pages of [16], practical tests match the calculated values closely.  

 

 Transverse shear stiffness in the y-direction 

The transverse shear stiffness for a dual-welded corrugated core plate, as opposed to 

the single welded plate considered in [16], was determined by Nilsson et al. in [17]. 

The derivation by Nilsson et al. included effects from rotational flexibility of welds as 

well as effects of shear deformations in the constituent elements of the sandwich plate.  

 

An analytical solution was derived by solving Equation 19 for a stiffness matrix K, 

force vector F and translation vector a: 
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𝑭 = 𝑲𝒂 ↔ 𝐚 = 𝐊−1𝐅  (19) 
 

Where 
 

𝑭 =

[
 
 
 
 
 
 
𝐹1

𝐹2

𝐹3

𝐹4

𝐹5

𝐹6

𝐹7]
 
 
 
 
 
 

 

𝒂 = [

𝑎1

⋮
𝑎7

] 

 

𝑲 = (
𝑘11 ⋯ 𝑘17

⋮ ⋱ ⋮
𝑘71 ⋯ 𝑘77

) 

 

 

The system of equations in Equation 19 were defined for a half corrugation unit, as can 

be seen in Figure 6 (left). Figure 6 (right) shows the idealized response of the half 

corrugation unit when subjected to a unit shear load. 

 

 

Figure 6 Deformation after the suggested load, from Nilsson et. al [17]. 

Defining an externally applied unit shear force as 𝑄𝑦 and the shear strain as 𝛾𝑦𝑧, the 

transverse shear stiffness could be expressed as Equation 20: 

 

𝐷𝑄𝑦 =
𝑄𝑦

𝛾𝑦𝑧
 (20) 

 

where the shear strain was defined as 

 

𝛾𝑦𝑧 =
𝑎2

ℎ
+

𝑤

𝑝
 (21) 

 
Here, a2 is the translation in the second degree of freedom, h is the center distance 

between top and bottom face plates, p is the total width of a half corrugation unit and 
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w is the vertical deformation at the coordinate (y,z) = (p,h). The derivation presented in 

[17] assumed the vertical deformation to be equal to zero, because the cross-sectional 

height was also assumed to remain constant, which leads to the following expression 

for the shear stiffness: 

 

𝐷𝑄𝑦 =
ℎ

a2
  (22) 

 

The calculation of the transverse shear stiffness is based on the direct stiffness method. 

By implementing a unit translation separately for each DOF, with all other DOF set to 

zero, the entries of the stiffness matrix K was determined. Since the translations are 

either one or zero, each set of reaction forces will constitute one column of the stiffness 

matrix K, corresponding to the DOF with a unit translation. After determining K, the 

DOF’s of a can be solved by inserting a known force vector F into Equation 19. Once 

a is solved, the transversal shear stiffness is easily calculated with Equation 22. 
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4 FE-modelling of steel sandwich panels 

Due to the complex geometry of the sandwich panel, using analytical methods to solve 

for displacement or stress in the individual members of the panel can be very difficult. 

Since the beginning of the 1960s, numerical methods such as the finite element method 

(FEM), have been used to analyze complicated structures. Although the digital 

computer had to be developed before FEM matured enough to be used commercially 

[18]. 

 

Currently, there are several commercial software available to carry out FEAs. These 

software, of varying complexity and resolution, contain several element types and 

interaction techniques that can be used in modelling and analysis of sandwich panels. 

However, although a wide range of element types exist in these software, it is important 

to use the right type of element and an adequate mesh size to gain sufficiently accurate 

results. It is also possible that a different type of element can model the same type of 

problem, but a certain element might have a higher computational cost or give less 

accuracy [19]. Consequently, time and reliability can be assessed by exploring the 

different available elements.  

 

As a result of the complex nature of FEM and the wide range of modelling choices, this 

chapter aims to create knowledge of how FE modelling of sandwich panels has been 

carried out in previous research projects. A large focus is placed on different available 

element types and which aspects should be considered when choosing a certain FE-

element. Additionally, the interaction technique used for weld modelling is reviewed. 

The oldest sources are from the beginning of the 90s and the latest are newly published. 

This is good to keep in mind as the computational resources have seen a tremendous 

increase over this time frame.  

 Structural element types for FE-modelling 

The three most commonly used element types in FE-modelling are the beam-, shell- 

and solid-elements [20]. These also have different sub-categories depending on 

application and properties sought.  

 Solid elements 

Solid, or “continuum”, elements are referred to as the standard element in the 

commercial FE-software Abaqus/CAE [21]. This element category does not include 

elements such as beams or shells, or any type of special-purpose- or connector-element. 

Examples of a standard 6-node and 8-node solid element can be seen in Figure 7. Solid 

elements can be used for both linear and non-linear analysis, including plasticity and 

contact modelling, and are suitable for a large variety of applications, such as stress, 

heat transfer and acoustics. Because of the versatility and many fields of application of 

solid elements, it is important that the particular application is matched by the choice 

of element type. 
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Figure 7 Examples of available solid elements in Abaqus [21]. 

Abaqus/CAE offers solid elements in one, two or three dimensions. The geometries can 

be specified as triangular or quadrilateral shapes, triangular or brick prisms, and can 

have parabolic or cylindrically curved edges. All of the geometric options can be 

modelled with linear or quadratic interpolation elements, as well as specifying whether 

full or reduced integration should be utilized when running an analysis. 

 

The choice between first- or second-order elements depends on the nature of the studied 

problem [22]. Second-order elements are better at evaluating cases with severe element 

distortion and they are generally more versatile than first-order elements. The increased 

versatility comes mainly from being able to capture accurate results while using fewer 

elements compared to first-order elements [21]. Thus, second-order elements capture 

stress concentrations more effectively and are superior for certain geometric features, 

such as curved surfaces, since they can be modelled with fewer elements along the 

curvature. The trade-off between first- and second-order elements can often be 

described as a higher number of first-order elements with a lower computational 

requirement versus a lower amount of second-order elements with more heavy 

computation [22].  

 Beam elements 

A beam element is a one dimensional element either in three-dimensional space or in a 

two-dimensional plane [21]. Beam elements are related to the assumptions related to 

beam theory, which formulate the one-dimensional approximation of a higher order 

dimension continuum. Beam elements have a stiffness related to deformation of the 

beam’s main axis – the possible deformations being axial stretch and bending, as well 

as torsion for the case of three dimensional space. The main advantage of beam 

elements is that they can be modelled with very simple geometries and that they are 

easy to evaluate, due to having relatively few degrees of freedom compared to other 

structural elements [21]. The critical issue for beam elements is often to evaluate 

whether the approximations related to these elements are appropriate for the problem 

at hand. 
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Figure 8 Simple examples of a structural beam element in Abaqus [21]. 

FE-software offer a variety of available beam elements. The choice of beam element 

type is defined on several different levels which can be combined interchangeably 

according to what properties are desired, including; beam or pipe element type, defined 

in either plane or space, with linear, quadratic, cubic or initially straight cubic 

interpolation formulations, having an open or closed section and with the additional 

choice of a hybrid formulation [21]. 

 

One important distinction for beam elements is made between the Euler-Bernoulli and 

Timoshenko beam-theories. The Euler-Bernoulli beam is preferably used when the 

beam can be classified as “slender” – cross-sectional dimensions being less than 

approximately 1/15 of the axial length [21]. Since Euler-Bernoulli-beams are assumed 

to have a small cross-section, transverse shear deformations are neglected.  

 

The Timoshenko beam, on the other hand, is defined for more prominent cross-section 

dimensions – up to approximately 1/8 of the axial length [21] - which allows for 

transverse shear deformations to be included in the analysis. This type of beam element 

is more suitable for “thick” beams, although it can also be used for slender beams. 

Timoshenko beam modelling can give useful results for cross-sectional dimensions up 

to 1/8 of the axial length of the element [21]. For even more stout geometries, it is 

recommended to not use beam elements. 

 Shell elements 

Generally, it is recommended to use shell elements when the out of plane thickness is 

considerably smaller than the other dimensions. Additionally, according to the 

formulation of shell elements, the out of plane thickness is only considered as a 

structural property in the analysis. A state of plane stress is present in all shell elements, 

whereby the out of plane stress should not be important to the user [23]. If this is sought, 

solid elements should be used instead. In general, shells are more computationally 

efficient than solid elements but less than the beam element.  

 

The shell element relates to what is known in mechanics [24] as the Kirchhoff and 

Mindlin-Reissner plate theories, where the latter considers shear deformations. Shell 

elements can therefore be divided into two different sub-classes, called thin (Kirchhoff) 

and thick (Mindlin-Reissner). Thick shells should be used when the transverse shear 

deformation have a considerable impact on the structure, analog to the Mindlin-

Reissner plate theory.  

 

In general, most FE-software such as ANSYS [25] and Abaqus/CAE [23] contain shell 

elements with formulation of both theories, in Abaqus/CAE this is for example the S4R 
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element and in ANSYS the SHELL181-element. However, special-purpose elements 

that are more efficient in either the thick or thin formulation also exist and can be used 

for enhanced performance.  

 

Shell elements can be either rectangular or triangular and have at least one integration 

point in-plane. Higher order shell elements have an additional node in-between every 

corner node, see Figure 9 (right side), this also means that the shape function is of higher 

order i.e. quadratic or even cubic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9  Quadrilateral shell element with 4/8 nodes and 1/4 integration 

point(s) (top), triangular 3/6 node element with 1/3 integration point(s) 

(bottom) [21]. 

 

Displacements are calculated in the nodes and stresses in the integration point(s). For 

linear analysis, three integration points over the thickness (also known as Gauss points) 

are enough while non-linear analysis with plastic deformations might require more [23]. 

 Previous FE-modelling of SSP’s 

This chapter will look at some previously conducted studies of SSP’s and specifically 

how FE-modelling was approached, in terms of assumptions, element choice and 

modelling of welds.  

 Previous 3D-modelling of SSP’s / corrugated core SSP 

One of the early attempts to model a 3D steel sandwich panel, utilizing FE-analysis, 

was conducted by Tan et al. [26] in 1989. This paper compared the results for a 3D 

corrugated core SSE FE-model (Figure 10) with a closed form solution as well as 

experimental results. Tan et al. built the entire 3D-model using S8R (standard shell, 8-

node, reduced integration) shell elements, which they further claim to be an element 

meant mainly for modelling of thin plates [26]. This statement contradicts more recent 

sources, such as the Abaqus User’s Manual [21], which refers to the S8R-element as a 

typical thick shell element. Whether there was a misunderstanding from the side of Tan 
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et al. or if the naming or structural formulation of elements in Abaqus have changed 

since 1989, remains unclear to the authors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

More recent studies show a variety of different element choices for 3D FE-modelling 

of corrugated core SSP’s. A 4-node shear deformable shell element with reduced 

integration (S4R) is used for example by Kazemahvazi & Zenkert [27] and Valdevit et 

al. [28].  

 

 

Figure 11  Studied geometry case by Valdevit et al, loading case with distribution 

transversally [28]. 

Leekitwattana et al. [29], who evaluate steel bi-directional corrugated-strip-core 

sandwich beams in the FE-software ANSYS (11.0), create their entire geometry with a 

linear elastic 8-node solid element (SOLID45), see Figure 12. 

Figure 10 3D mesh model of the SSP considered by Tan et al. [26] 
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Figure 12  FE-model of a bi-directional corrugated-strip-core sandwich panel, 

created with solid elements [29]. 

Yet another approach was carried out by Romanoff et al. [30], when studying the 

response of laser-welded web-core sandwich panels subjected to patch loading. Here, a 

3D web-core steel sandwich panel was modelled both with solid and shell elements, 

and then these were both compared to results from an approach based on only 2D-

models. The geometry modelled with solid elements can be seen in Figure 13. The 

element types used for the FE-model were C3D20 (continuum stress/displacement 

element, 3-dimensional, 20 nodes) solid elements and parabolic, reduced integration 

S8R shell elements. Additionally, the computing times required to run the models were 

noted in [30] as 20 minutes for the shell model and 9 hours for the solid model. 

 

Figure 13  Web-core steel sandwich panel 3D FE-model, as created and studied 

by Romanoff et al. [30]. 

 

 Previous FE-modelling of welds in a 3D environment 

Since the welds are one of the most critical parts of the corrugated core SSP, they will 

naturally have a big importance in the FE-model as well. They are also quite 

complicated, in terms of modelling technique, as they must act as a connection between 

the face plates and corrugated core. Some previously used approaches to FE-modelling 

of welds will here be presented. 

 

Starting again with [26], Tan et al. chose to model their web-core-connections as spot-

welds. The welds were created as Timoshenko deep-beam elements (B31), where one 
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of the main concerns was to achieve compatibility between the beam element and the 

S8R shell elements used for the rest of the model.  

 

Neither [27] nor [28] mention any considerations concerning modelling of welds. 

Leekitwattana et al. [29] model their welds as complete rigid connections between the 

face plates and core. 

 

Romanoff et al. [30] used two different approaches to weld modelling, depending on 

the type of elements used for the rest of the model.  

 
- When S8R shell elements were used for the model, all welds were assumed to provide a 

completely stiff response and they were simulated as rigid constraints between face plate 

and core, inserted at the position of the weld.  

- When the sandwich panel was modelled with solid elements, the welds were instead 

simulated with spring elements. The stiffness’s inserted into the spring elements were 

calculated based on theory that was also developed separately in [30]. 

 Equivalent Single Layer approach 

The ESL-approach and the so-called “layer-wise theory”, are the most prominent 

methods used for analyzing layered materials [24]. These layered materials can, in a 

similar manner to the SSP, have a low stiffness core surrounded by higher stiffness face 

sheets. In the layer-wise theory the stresses in the different layers are considered 

depending on the stiffness of each corresponding layer, while in the ESL-approach the 

stiffnesses of the layers are smeared out over the thickness, essentially preventing the 

stress in the individual layers to be evaluated. In the sandwich theory described in 

Chapter 3 a similar assumption is made, where the periodicity of the corrugated SSP is 

transformed into a homogeneous stiffness. This leads to a decreasing number of 

unknowns which makes the structural response easier to solve (and thus faster FEAs). 

 

The homogenization process results in an inability to capture local response, meaning 

that the equivalent single layer approach (ESL) cannot be used for analysis of individual 

members. Nevertheless, by using the ESL modelling technique, the elastic constants 

from Chapter 3 can be used in FE-modelling and the global behavior can be analyzed. 

As the initial problem is simplified, utilization of the ESL-approach can be beneficial 

in the early design phase and should preferably be combined with analytical solutions 

or hand calculations [8]. 

 

In research related to the sandwich panel, the ESL-approach has previously been 

successfully applied to check the global verification of 3D-models as well as sectional 

constants, for different core configurations [11, 31]. The approach has also been applied 

in a more practical way, by Dackman & Ek [15], where an ESL model was used to 

represent the deck of a steel girder bridge with a sandwich deck. This study showed 

promising results, however, the effect of a locally applied load was neglected. The same 

was carried out by [32] whom also modelled a bridge deck to investigate panel to panel 

joints. All FE-analyses were carried out with eight-node second-order elements using 

the Abaqus/CAE or the MSC Marc software.  
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 Modelling of local behavior 

The homogenization theory proposed by Libove and Batdorf [12] does not capture the 

local behavior of the sandwich panel under a patch load [30]. This is a direct 

consequence of the assumption that local bending of the face plates under direct load is 

omitted. However, from research conducted by Romanoff et al. [30] and Bright and 

Smith [33], it was concluded that the impact of local loads is important for the overall 

stress prediction of the sandwich panel. Since it is very plausible that local patch loads 

create local effects, such as a local bending moment in the top face plate, the global 

response calculated according to Libove and Batdorf should be complemented by a 

local analysis. 

 Multi-scale approach  

In a study on the web-core sandwich, Romanoff et al. [30] argues that the local 

deflection caused by a directly applied load can be added to the global behavior through 

super positioning. An assumption is made for the global model, similarly to 

assumptions by Libove and Batdorf [12], where a unit cell is homogenized and only the 

average response in every direction is considered. This approximation leads to zero 

local deflection 𝑤𝑞  directly under the load, which does not reflect reality. It was 

therefore concluded that the local patch load deflection must be solved separately from 

the global deflection if the homogenization approach is to be used.  

 

Therefore, an additional FE-model was introduced to capture the local response. This 

model focuses on the geometry immediately surrounding the area of load application, 

see Figure 14. 

 

 

 

Further, the local deflection of the face plate was divided into one part caused by global 

shear, and one part related to “thick plate behavior”. The thick face plate effect is further 

explained in [34]. The last factor contributing to the local deflection, is the local 

deformation caused directly by the patch load [30]. The described approach is 

illustrated in Figure 15. 

Figure 14  2D local model used to capture the local response from patch 

loading [30]. 
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Figure 15  Rotations in web core sandwich element under local patch loads, 

deflection due to global shear (C), deflection due to thick face plate 

(D) and deflection due to patch load (E) [30]. 

The resulting total local deflection can thus be described by: 

 

𝑤𝑙 = 𝑤𝑄 + 𝑤𝑡𝑓 + 𝑤𝑞 (23) 

 

where 𝑤𝑄 is the deflection related to shear; assuming equal slopes at the cell edges, 𝑤𝑡𝑓 

is the deflection caused by the thick face plate effect, assuming unequal slopes at the 

cell edges and 𝑤𝑞 is the deflection from the local model caused by directly applied load. 

 

To validate the suggested approach, it was proposed that an alternative 3D model of the 

sandwich plate, consisting of either plate or solid elements, should be created for the 

purpose of comparing the resulting deflections. If boundary conditions for the local 

model could be chosen so that the total deflection aligned with the result from the global 

model, then the simplified approach should in theory be valid for any chosen geometry 

for the sandwich element. In the end, results in [30] between the suggested approach 

from Equation 23 and 3D FE-analyses matched very closely. 

 

Because the detailed 3D analysis must capture both the local and global behavior in the 

same model, it requires both accurate modelling of a large geometry as well as sufficient 

resolution of the small details around welds. This type of model will thus inherently 

have a large number of elements. The main advantage that the simplified approach 

offers is a drastic reduction for the time required to run the computational analysis of 

the models. It was reported in [30] that the models for the suggested approach took 15 

seconds to run, while the 3D shell element rendering of the same geometry took 20 min 

and the solid element option took 9 hours.  
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5 Case studies 

This chapter will preface the performed case study. First, the four investigated 

geometric configurations of SSP’s are introduced and then the three different loading 

cases, as well as their intended purposes for the study, are presented. 

 

 Properties of the investigated sandwich panels 

As the structural behavior of a corrugated core sandwich can vary greatly depending on 

the geometric properties, four different geometric cases were evaluated. The properties 

of the studied cases were given a lot of variance, in order to increase the width of the 

study, while still being somewhat reasonable design alternatives. A summary of the 

properties of the four studied geometry cases can be seen in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The notations used in Table 1 and throughout the rest of the report, represent the 

following properties; t1,2 is the thickness of the bottom and top face plate respectively, 

tc is the thickness of the core plate, f1,2 is the respective length of the bottom and top 

Table 1  Geometric properties of the considered cases. 

Notation Unit Case 1 Case 2 Case 3 Case 4 

t2 [mm] 8 9 6 15 

tc [mm] 6 7 6 9 

t1 [mm] 5 9 10 10 

f1=f2 [mm] 50 75 100 150 

h [mm] 132 300 100 450 

tw [mm] 2 2 2 2 

R1=R2 [mm] 12 14 14 20 

dw [mm] 30 30 50 60 

θ [°] 65 80 40 55 

Figure 16 Geometric notations used in case study [6]. 
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horizontal parts of the core, h is the center distance between the face plates, tw is the 

thickness of the welds, R1,2 is the radius of the lower and upper rounded parts of the 

corrugated core, dw is the distance between the welds at each crest and θ is the angle 

from the face plates to the tilted parts of the core. This is visually described in Figure 

16. 

 

 Load cases 

A variation of load cases were considered and 

used to validate and investigate different aspects. 

Having several load cases allowed for a more 

flexible approach when addressing unexpected 

results and also providing more depth to the 

analysis. 

 Load case 1 

Load case 1 was the main load case used 

throughout the study and was meant to simulate 

the behavior of a sandwich panel exposed to patch 

loading, see Figure 17a. The patch load was 

applied on the top face plate as a pressure load 

over 0.5x0.5 m2 with a magnitude of 240 kPa, 

equivalent to a total load of 60 kN. In accordance 

with the theory presented, this patch load should 

be able to be placed anywhere on the model, 

however, to avoid influence from support 

boundaries the load was generally placed close to 

the center. 

 

To allow for plate action in x- and y-directions, 

movement in z-direction (vertically) was restricted 

with simply supported boundary conditions along 

all four edges. Additionally, rigid-body-motion was 

prevented by restricting the plate in two corners each for both in-plane directions. 

 

Transversal shear force and moment distribution created by load case 1 can be seen in 

Figure 17b. The shear force will vary over the model due to how the load is distributed 

to supports in the longitudinal direction.  

Figure 17 a) Drawing of load case 

1. b) Principal plot of the global 

transversal shear and moment at 

Lx/2. 
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 Load case 2 

The second load case was introduced mainly to 

provide a case that was more simple to analyze, 

compared to load case 1. Case 2 has a 120 kPa 

pressure load applied on an area of the top face plate 

corresponding to the entire model length and a width 

of 0.5 meters, see Figure 18a. Vertical boundary 

conditions were applied on the two outer edges in 

transversal direction and rigid body motion is 

prevented similarly as for load case 1. 

 

The combination of the extended pressure load and 

decreased vertical boundary conditions, transforms 

the plate action from load case 1 to transversal beam 

action for this case. With the plate acting as a beam, 

the transversal shear force will be constant and the 

moment distribution will be linear between the 

applied forces and boundary conditions, see Figure 

18b.  

 

Results from load case 2 were easy to analyze 

mainly due to the state of constant shear forces, since 

this narrows down plausible erroneous contributing 

factors. Also, shear forces were assumed to be 

constant for some approaches used throughout the 

study, so then this load case could be used to validate 

those approaches. 

 

 Load case 3 

Load case 3, see Figure 19, utilizes the same 

boundary conditions as case 1; all four edges 

restricted vertically while rigid body motion is 

prevented with additional in-plane restrictions. A 

global pressure load was applied over the whole top 

faceplate with a magnitude of one unit pressure, 1 

Pa. 

 

This load case was used to verify the global response 

of the 2D homogenized shell model against the 3D 

model. 

 

 

 

 

Figure 18 a) Drawing of load case 2. 

b) Principal plot of the global 

transversal shear and moment at 

Lx/2. 

Figure 19 Drawing of load case 3. 
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6 FE-models used for the study 

All FE-models were created and analyzed using the software BRIGADE/Plus 6.1-11 

(which is based on Abaqus/CAE 6.14) developed specifically for FE-analysis of 

bridges. These software have a Python interpreter which allows the user to create scripts 

to aid modelling and analysis. This was utilized in the creation of all models built in 

this project.  

 

To act as a reference point for the study, a 3D finite element model was established and 

analyzed. A 2D homogenized shell model was used to simulate the global behavior of 

the 3D model and later a 2D beam model was introduced to simulate the local behavior 

directly below the patch load. Where the results diverged, causes to the differences were 

identified and attempted to capture with alternative models and approaches.  

 3D shell FE-model 

To act as a point of reference in the verification study, a fully detailed model of an 

approximately 5x5 m2 sandwich deck was created. For geometry case 1 this 

corresponded to a width of 21 corrugation units. 21 unit cells were also used for the 

width of the other geometry cases, but the longitudinal lengths were adjusted to 

maintain an aspect ratio of about 1.  

 

As can be seen in Figure 20, the 3D FE-model used shell elements for the face plates 

and the web. Eight-node quadrilateral elements with quadratic shape functions and 

reduced integration, S8R, were used for the mesh. The Young’s modulus was chosen 

to 210 GPa and Poisson’s ratio to 0.3. 

 

Figure 20 The final 3D model in BRIGADE/Plus, geometry case 1. 

Rigid connections between the core and face plates was used to simulate the welds. As 

such, the welds were not physically modelled, but rather just implemented as rigid 

constraints. This is similar to the assumption made by Libove and Hubka [16] in their 

derivation of the sectional constants presented in Chapter 3, although they assume only 

a single welded connection per corrugation cell. 
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Since the final model turned out to be very large and computationally heavy, attempts 

were made to reduce the size of the model. The symmetric shape was utilized by 

introducing a symmetric boundary condition around the x-axis, at half the length in the 

direction parallel to the corrugation axis. This was done by preventing movement in x-

direction and rotation around y- and z- axes for all nodes on the boundary. 

 Convergence study for mesh size 

A convergence study was carried out to determine an appropriate size for the mesh of 

the 3D FE-model. The study included local moment in the top face plate and maximum 

vertical translation, both investigated by their dependence on the total number of 

elements used in the model. Results can be seen in Figure 21a (translation) and Figure 

21a (local moment). The translation for each mesh size was extracted as the maximum 

deflection in the mid span, while the transversal local moment in the top faceplate was 

extracted from a certain chosen node with the exact same coordinates for all 

investigated cases.  

 

As can be expected, the vertical translation converges faster than the local moment. 

This is realized by noting that very different scales were used for the graphs in Figure 

21, where the changes for translation were small compared to changes in local moment.  

 

Although convergence was reached for around 150 000-200 000 elements, another 

aspect had to be considered for the choice of a global mesh size. In order to correctly 

capture the behavior in between welds, it was noticed that at least three elements were 

required in transversal direction. Combining the restrictions set for the mesh between 

welds, with a global mesh corresponding to 150 000 elements, this led to a very bad 

element aspect ratio that the modelling software struggled to produce. To assure 

consistency a global mesh size of 0.0125 m, corresponding to about 300 000 elements, 

was chosen for the FE-model. Similar results could be seen for the other geometric 

cases, see Appendix A, and the same or slightly larger mesh was used in these cases. 
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Figure 21  a) Convergence with regards to translation. b) Convergence with 

regards to local moment in the top plate. 
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 2D homogenized equivalent single layer FE-model 

The 2D Equivalent Single Layer (ESL) plate was modelled using a single shell plane, 

see Figure 22. The in-plane sizes longitudinally and transversally were set as the size 

of the 3D-model and the section shell thickness was defined as the height between the 

face plates, h. Eight-node quadrilateral elements (S8R) with quadratic shape functions 

were used and a set global mesh size of 0.01 m was used for the whole model. 

 

 

Figure 22 The ESL-shell modelled in BRIGADE/Plus, with shell thickness enabled. 

The material property was defined as “lamina”, which allows the user to define the 

bending stiffnesses Ex and Ey, possion’s ratio ν12, twisting stiffness Gxy and the shear 

stiffnesses Gxz and Gyz. The elastic constants presented in Chapter 3 were converted 

into engineering constants according to Equations 24a and 24b given by [31].  

 

𝐸𝑥 =
12𝐷𝑥

ℎ3        𝐸𝑦 =
12𝐷𝑦

ℎ3         𝜈𝑥𝑦 = 𝜈𝑥      (24a) 

𝐺𝑥𝑦 =
6𝐷𝑥𝑦

ℎ3       𝐺𝑥𝑧 =
𝐷𝑄𝑥

𝑘ℎ
     𝐺𝑦𝑧 =

𝐷𝑄𝑦

𝑘ℎ
     (24b) 

 

Where h corresponds to the vertical height between the face sheets and the shear 

correction factor k taken as 5/6.  

 

The equivalent elastic constants Dx, Dy, Dxy and DQx were determined according to 

Chapter 3. Table 2 shows the engineering constants for each investigated geometry 

case. 

  



CHALMERS, Architecture and Civil Engineering, Master’s Thesis BOMX02-17-99 28 

Table 2 Stiffnesses of the different geometric cases. 

Notation Unit Case 1 Case 2 Case 3 Case 4 

Ex (*1010) [N/m] 7.991 5.39 11.50 4.235 

Ey (*1010) [N/m] 6.083 3.886 9.697 3.441 

νxy - 0.3 0.3 0.3 0.3 

Gxy (*1010) [N/m] 2.288 1.454 3.694 1.303 

Gxz (*109) [N/m] 3.273 3.615 1.126 1.207 

Gyz (*107) [N/m] 13.39 2.394 11.92 2.624 

 

 Global verification of ESL shell model. 

The global response of the ESL shell model was verified against the 3D-model by 

comparing the maximum global deflection. One 3D-model and one ESL model was 

constructed with each case geometry and then studied under a uniform load distributed 

on the whole top face plate, load case 3, see section 5.2.3. The deflection in the 3D-

model was extracted from the bottom plate, to avoid any interference from local 

deflections in the top plate and web, while the ESL deflection corresponds to an 

averaged value due to the homogenization of the cross-section. The deflections were 

extracted at the same in-plane coordinate. The results of the study can be seen in Table 

3. 

 

Table 3 Comparison in deflection under one unit pressure.   

Case 3D ESL-shell Difference      

1 2.72E-07 2.72E-07 0.00%     

2 7.18E-07 7.10E-07 1.18%     

3 7.12E-07 7.10E-07 0.30%     

4 3.74E-06 3.61E-06 3.50%     

 

Deflections were compared for the fully converged case of both models. A difference 

between 0.0% and maximum of 3.5% can be seen. The deflections for case 2 and 3 

modelled with the ESL-approach have the same deflection, this is purely a coincidence 

– case 2 is much stiffer but has a greater span. Generally, the cases with a large distance 

between the face plates compared to the unit cell width 2p have a greater deviation from 

the deflection of the 3D-model. This is probably related to the boundary condition and 

how they are implemented in the different models, on the mid-section in the ESL-plate 

while on the edges of the bottom plate in the 3D-model. Consequently, the ESL-model 

was deemed verified.  
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 2D beam model 

A 2D cross section model made of beam elements was introduced to capture the local 

response directly under the patch load. The model was created using 21 unit cells, to 

make sure to represent an “infinitely” wide deck and thus avoid influence from edges, 

see Figure 23 (top). Second order 3-node beam elements, B22, were used to model the 

web and face plates. The depth in the out-of-plane direction was set to one meter to 

make the resulting load effects have the unit of [xx/m] similar to the the shell models.  

 

A separate load area was introduced in this model, onto which the patch load was 

applied. The load area was modelled using a beam element with a very low stiffness 

that was rigidly connected to the top faceplate. The load was applied as a pressure load, 

120 kN/m2 over 0.5 meters in the y-direction making the total load equal to 60 kN.  

 

As the local model is a cross sectional cut of a larger structure, assumed infinite also in 

the depth direction (x-direction), it is reasonable to assume plain strain condition for 

this case. Consequently, the material properties were calculated to match this 

assumption according to Equation 25: 

𝐸𝑝.𝑠 =
𝐸

1−𝑣2   (25) 

 

Where E is the elastic modulus of steel, 210 GPa and v the Poisson’s ratio, 0.3, for the 

same material. Inserting E and v into Equation 24 yields 𝐸𝑝.𝑠 = 230 GPa.  

 

Modelling of welds was done in a similar manner as for the 3D-model - i.e. not 

modelling them with physical elements, but instead using kinematic couplings. The 

connection was set as fixed, essentially making the coupled nodes share all DOF:s. As 

an extension of this methodology, the weld connection simulated the behavior assumed 

by Libove and Hubka. Because of the computationally efficient beam elements, a fine 

mesh of 1 cm was used in this model.   

 

A crucial part of the 2D beam-model was the choice of boundary conditions, 

specifically for the local supports. A set up whereby the cross section was prevented to 

translate in the z-direction under every bottom weld point was introduced. However, 

due to having dual weld lines in this case, a reference point was introduced in the middle 

of the welds. Then a set coupling connections were established between the reference 

point and the weld point nodes, which connected the vertical translation DOF. 

Consequently, the support boundary condition was actually modelled on the reference 

point instead of under the weld lines. The complete set up is shown in Figure 23 

(bottom). By using this approach it was possible to avoid the rotational constraints in 

the plate between the welds, caused by modelling the boundary conditions directly on 

the weld nodes.     
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“infinite” 

Figure 23  Cut of three unit cells from the 2D beam model for geometry case 2 

(top). Detailed description of the modelling choices done in the weld 

region (bottom). 

“infinite” 
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7 Local sectional forces due to global deflection 

One of the most prominent drawbacks of the ESL approximation is that the single layer 

is not able to simulate local load effects, as explained earlier. The approach utilized in 

this thesis relies on the simulation the global response with an ESL shell model. In a 

second step, the local load effects in the constituent plates of the cross section are 

calculated. The implications of these effects will be further discussed and evaluated in 

this chapter, with respect to global shear forces and global moment.  

 Contribution from global shear 

Shear forces in the corrugated sandwich panel are taken mainly by the corrugated core. 

The shear forces will be transferred through the welds and distributed to the core. 

Vertical deformation of the face plates, due to the global vertical shear force, induces a 

secondary moment in the face plate on both sides of the weld.  

 

The secondary moment due to shear is included in the results from the 3D model, since 

this model accurately transfer forces through the welds to the flanges, making it able to 

capture local effects. The ESL model, on the other hand, is not able to include these 

local effects in the results. Thus, the additional local moment contribution must be 

calculated with a separate approach.  

 

The method used in this section is based on combining the global shear forces extracted 

from the ESL model with a secondary shear factor, Ms, which expresses the resulting 

secondary local moment in the top face plate due to subjection to a unit global shear 

force.  

 Determining the local moments 

Determination of the secondary shear factor Ms is based on the theory that was 

developed by Nilsson et al. in [17], previously used to determine the transverse shear 

stiffness for the corrugated core SSP. The theory is also able to describe all sectional 

forces in the constituent members of the sandwich panel under transverse shear force 

analytically. 

 

By continuing from the final steps established in Chapter 3.4, the translation vector a 

was solved for in Equation 19. At this point, the secondary shear factor Ms can be 

determined by inserting a unit shear force in the direction of the first DOF (see Figure 

6) and calculating the change in bending moment in the top flange on both sides of the 

weld. Note that two unique values for Ms are acquired at the weld - one on the left side 

and one on the right side – since the moment is partly transferred to the core. A summary 

of the calculated secondary shear factors can be seen in Table 4. 

 

Table 4 Value of the secondary shear factor. 

MS: Case 1  Case 2 Case 3  Case 4 

In span   0.0107 0.0304 0.0156 0.0466 

Between 

welds 
0.0113 0.0136 0.0139 0.0291 

 

The distribution of the shear induced local moment over one unit cell can be seen in 

Figure 24. Note that direction of the moment can vary depending on geometric 
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properties and that the moment in-between welds can also be lower than the moment 

directly outside depending on the stiffness distribution in the area.   

 

Figure 24  Distribution of the local moment in the top face plate caused by one 

unit of transversal shear. 

In the derivation of the local moment, Nilsson et al. assumed a constant shear force 𝑄𝑦 

acting on the unit cell. In cases where there is beam action involved this is a reasonable 

assumption. However, if plate action is present there are two directions for the load to 

distribute to the supports whereby the global shear distribution will be varying over the 

unit cell.  How the local moment distribution looks if the shear is 𝑄𝑦 on one side and 

𝑄𝑦 + ∆𝑄𝑦 on the other side of the unit cell is unknown and probably dependent on the 

magnitude of ∆𝑄𝑦 and the geometric properties of the unit cell. Nevertheless, for all 

load cases considered in this project the global shear is assumed to be constant over the 

unit cell in accordance with the theory presented in [17].  

 Local moment in top plate due to global acting 

moment 

In the first iteration of the study, it was noticed that it was difficult to describe the 

behavior in between welds and between unit cells. There was a clear constant offset 

between the moment curve from the 3D model and the local moment from global shear 

force. After studying the problem more in depth, it could be seen that the local moment 

in the 3D model increases when the global moment increases. This can be seen both for 

load case 1 and 2 but is more prominent in load case 2 due to a larger transversal 

moment.   
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Figure 25  Plot of local moment in the top plate of the 3D model taken from a path 

transversally over the whole width. 

It can therefore be concluded that the bending moment around the corrugation axis in 

the 3D model gives rise to a secondary local bending moment in the face plates of the 

sandwich structure as described in Figure 26. 

 

 

Figure 26 The global moment creates local moment in the top plate. 

The ESL-model will not capture this behavior directly (as it only represents the global 

behavior) and must therefore be added to the local moment from shear to calculate the 

total local moment.  

 

A numerical approach was devised for the purpose of determining the additional local 

moment in the top face plate due to a global moment. By creating a beam model and 

exposing it to a pure global bending moment, the resulting local bending moment in the 

top face plate will correspond to the desired “secondary moment factor”, Mm. The 
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additional local moment can then be calculated by multiplying Mm with the global 

bending moment from the ESL shell model. 

 Determining the local moment 

To achieve a pure bending state a 4-point bending model was adopted. A reduced case 

of the specific set-up that was used can be seen in Figure 27.  

 

 

Figure 27  Set up used for the 4-point bending model, note that the FE-model had 

30 corrugation units. 

The evaluated beam is simply supported at the outer edges of the bottom face plate, 

with an additional horizontal boundary condition on the left edge to prevent rigid-body-

motion. Two point loads were applied in the middle of two corrugation spans at equal 

horizontal distances from the edges of the model. The specific set up was chosen 

because it will always give a constant global moment between the loads, consequently, 

the shear force must be zero in the same region. 

 

By evaluating results at a location far from either loads or supports, there will be no 

local influence from supports or the two point loads. While Figure 27 shows a model 

with six corrugation units, the model used in the actual analysis had a width of 30 

corrugation units, in order to create sufficient distance between the applied point loads 

P and supports to the point in the middle of the model. For this larger model the point 

loads were placed a horizontal distance of ten corrugation units from each end support, 

also leaving a center space of ten corrugation units between the loads. 

  

The magnitude of the applied forces is determined by simple hand calculations as the 

force that is required to create a global bending moment of 1 Nm in the area between 

the point loads. From the elemental case for a simply supported beam subjected to two 

point loads, the following equation is established: 

 

𝑃 (𝑝) =
𝑀

10∗2∗𝑝
=

1∗[𝑁𝑚]

10∗2∗𝑝
 (25) 

 

Where 2*p is the width of one corrugation unit, meaning P will have a unique value for 

each studied case geometry. Additionally, the number 10 corresponds to the number of 

corrugation between the support and point load.   
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The model was created with second order beam shear deformable elements. A set of 

kinematic connections were established between face plates and the corrugated core, in 

order to simulate the influence of the welds (analogue to how the connection was done 

in the 3D model).  

 

To verify the assumption that there was zero contribution from shear force in the middle 

of the investigated model, the bending moment was extracted from a path along the top 

face plate. Results from this path are shown in Figure 28, where the x-axis corresponds 

to the position along the top plate [m from the left support] and the y-axis shows the 

resulting bending moment Nm in the top plate due to the described loading case. 

 

Figure 28 Moment in the top plate from the 4-point bending model 

The shear forces clearly influence the moment in the area between the supports and the 

applied loads and the local moment peaks at the point of load application due to local 

influences. However, the involvement of shear forces decrease towards the middle of 

the model and the contribution reaches zero between the point loads, hence the step-

wise constant distribution. The static moment curve in the center is deemed sufficient 

to show that there is no contribution from shear forces or local influences at this 

location. 

 

As the results for the “moment transformation factor” can be seen directly in Figure 28 

it is evident that the local moment changes in the constant global moment area. It can 

therefore be concluded that the transformation factor Mm will have two separate values 

for each geometric case – one in the upper “span” of the corrugation and one between 

the upper welds. Values for Mm were extracted at the static points in span and between 

welds and the results are summarized in Table 5 below. 
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  Table 5 Value of the secondary moment factor 

Mm: Case 1 Case 2 Case 3 Case 4 

In span -0.00279 -0.000658 -0.000526 -0.000758 

Between 

welds 
-0.04342 -0.02055 -0.02469 -0.02469 
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8 3D-analysis of complete structural behavior of 

corrugated-core sandwich panel 

In order to increase the initial understanding of the structural behavior of the sandwich 

panel, a complete 3D FE-model was created and analyzed in BRIDGE/Plus. This model 

was created according to geometry case 1 and subjected to load case 1, see Figure 29. 

 

Figure 29 The 3D-model used in the initial study. 

An important conclusion could be drawn from this initial study: the structure expresses 

two distinct separate behaviors. A certain distance away from the applied patch load 

the panel expresses a continuous global behavior, while in the center of the model there 

is a clear additional local influence from the patch load. Figure 30 shows the deformed 

middle section of the studied FE-model, where the indicated global behavior is 

highlighted in red and the presumed local influence is highlighted in yellow. 

 

Figure 30  Deformed 3D FE-model of a corrugated core SSP subjected to out of 

plane patch load. 

Following the results of the initial study, the project was divided into two parts: one 

part focusing on the global behavior of the panel and one part focusing on the combined 

global and local behavior.  

 

The method chosen for the study relied on first determining a way to accurately describe 

the global behavior of the panel and to then move on to analyze the combined behavior. 

If the global behavior could be assumed to extend naturally into the middle part of the 
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model, then the local behavior could be singled out and evaluated during the study of 

the combined behavior. 

 

Since it is not clear exactly where the local influence starts to affect the results, the 

global study will focus on a part of the model a “sufficient” distance away from both 

the patch load and edge supports. Thus, local effects originating from either the load or 

supports are in theory avoided, giving a response related only to global behavior. 

The combined behavior will be studied directly under the applied patch load. The global 

and local contributions will be added by super positioning, according to the approach 

suggested in [30], and then compared to the results from the complete 3D shell model. 
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9 Study of local load effects away from load 

This first part of the study focused on an area between the outer boundary conditions 

and the patch load at the center of the FE-models. The studied area was chosen because 

it should have a response that was unaffected by local influences such as boundary 

conditions and applied loads. Thus, the local load-effects seen in the top face plate 

origin from the global load effects alone. 

 

The resulting local moment in the top face plate was studied and compared between the 

3D model and the sum of the contributions from global moment shear from the ESL 

model combined with the local moment factors Ms and Mm. Results from the 3D model 

were extracted for one unit cell a distance of four unit cells both from the edge of the 

model and from the applied load. 

 

To be able to compare the local moment, the global influences from the ESL-model had 

to be multiplied with the corresponding coefficients, Ms and Mm and then summarized.  

The full procedure can be seen in Figure 31. 

Figure 31 Flowchart of the multi scale modelling procedure. 

 Note on combination of contributions from 2D-models 

There is a divergence between the assumption of having a constant acting shear force 

on the unit cell, used when determining the shear factor Ms, and the actual results 

showing that the shear force varies over the unit cell for which the results are plotted. 

For the simplified approach in this thesis the global load effect in the ESL-model at the 

center of the core was used to represent the entire cell. This is a simplification origin 

from the nature of homogenization. The case is analogous with respect to global 

moment.   
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 Results of the study 

Figure 32 and Figure 33 shows the results from the comparison study for the total local 

moment in the top face plate, for case geometry 1 exposed to Load case 1 & 2 

respectively. Results for Load case 1 & 2 for all investigated case geometries can be 

seen in Appendix B. In every result plot the x-axis was normalized by the total width 

of one corrugation unit and the moment were normalized by the maximum absolute 

value for that specific geometry and load case. The results from geometry 2-4 matched 

the results from geometry 1 closely.  

 

Figure 32  Comparison of the local moment between the 3D FE-model and the 

contribution from ESL-model combined with Ms and Mm constants. 
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Figure 33 Comparison of the local moment between the 3D FE-model and the 

contribution from ESL-model combined with Ms and Mm constants. 

Understanding of the distribution of the global forces is essential to evaluate the result 

plots in Figure 30 and 31. For load case 1 the global forces will vary over the length of 

2p, however for load case 2 only the global bending moment will have a linear variation 

over the unit cell, due to the constant global shear force. In this case, when the local 

moment is checked a certain distance from the load, the major influence of the local 

moment is from the global shear force. The global bending moment in the transversal 

direction only has noticeably contribution at the weld points (as indicated by the sudden 

jump in moment). 

  

Because of this, and that the global forces were assumed to be constant over one 

corrugation unit, some deviations from the 3D-model results are expected and these 

should be greater where the global forces have a larger gradient, i.e. load case 1. This 

is also in the agreement with the results the results, from Figure 32 it can be seen that 

the gradient of the 3D result and combined approach have a slight difference, probably 

because of the change in global shear force over the unit cell. For load case 2 however, 

the curves are almost identical, only showing slight deviations at the weld points. This 

proves that the shear coefficient Ms is more accurate when the global shear force is 

constant. Differences at the weld points might be explained by the change in moment 

over the unit cell. Consequently, this proves that it is possible to estimate the local 

moment in the top face plate from a patch load of a corrugated core SSP using only an 

ESL model and post processing using Ms and Mm. If the global forces are not constant 

over the unit cell then the accuracy decreases. However, the maximum discrepancy was 

calculated to 8%.  The next step is to model the local response directly under the area 

of load application.  
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10 Study of local load effects directly under patch 

loading 

As was briefly discussed in Chapter 8, contributions from both global and local effects 

must be considered when the response directly under the load is to be analyzed. 

Compared to the study in Chapter 9, this study will expand to include an additional 

component, due to the deformations from the direct application of the patch load. An 

additional 2D beam-model is here introduced to capture the local effects from the patch 

load, as was suggested in [30].  

 

This chapter will; present the assumptions made in terms of applied loads and global 

load effects, discuss how the 2D beam-model was handled in order to capture the local 

effects and finally showcase and discuss the results from the study.   

 Choice of investigated area and extraction of results  

As previously touched upon, it is not clear exactly how big of an area will be directly 

affected by the patch load. The patch load was applied over a 0.5 m wide area for all 

investigated cases, but as the geometry properties vary between different geometry 

cases it should be assumed that the local effects of the patch load will distribute 

differently as well. 

 

In order to increase the predictability of the load distribution, the load was applied so 

that the center of a corrugation crest either coincided with (cases 3 and 4), or was very 

close to (cases 1 and 2), the center of the applied load. Figure 34 presents how the patch 

load was applied for geometry 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There was also the issue of choosing a consistent method for result extraction, while 

still gathering data that is relevant for the study. Preferably, results would be taken from 

the exact same nodes for all FE-models. However with element meshing and possible 

areas of interest varying between different FE-models and geometries, there are some 

innate issues with acquiring homogenous results. This problem is mostly related to the 

Figure 34  Sketch of the 2D FE beam-model set-up for geometry case 

1, including the applied patch load. 
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2D-models where the resulting load effects have to be summarized. But by utilizing 

some precis meshing techniques this problem was resolved.  

 

For the sake of simplicity and consistency, all presented results are for the upper face 

plate and in terms of a total acting bending moment. Results for all geometry cases are 

presented over the width of one corrugation unit, even though one corrugation unit is 

slimmer than the width of load application (0.5 m) for some cases and wider for others. 

This relative size towards the applied load has the consequence that the load case will 

be more similar to a distributed load for slim geometries and more similar to a point 

load for wider geometries (mainly case 4). 

 Assumptions regarding global forces for the study 

under patch load 

Since this study focuses on the area directly under the applied load, the shear force- and 

moment- distribution will look quite different compared to the study away from load. 

Most notably, the shear force will transition from a positive to negative sign under the 

area of load application, and will further be equal to zero at the center of the load.  

 

This force distribution is not at all compatible with the previous assumption of having 

a constant acting shear force over the entire area of interest. Instead, the shear force is 

here assumed to be consistently equal to zero over the investigated unit cell. Thus, 

second-order moment contributions from the global shear force can be disregarded 

entirely for this study. This assumption would have been questionable if a larger area 

was to be investigated, but is deemed acceptable for results only half the width of one 

unit cell in each direction from the zero-shear point. 

 Contributions from global and local load effects for 

study under load 

The addition of local and global load effects can for this study be summarized according 

to Figure 35. 

 

 

Figure 35 Summary of the different contributions for the study under load 
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The second-order local moment from global effects will in this study be accounted for 

in the same manner as they were in the previous study – global load effects are extracted 

from the ESL shell FE-model and converted to local moment by the transformation 

factors Ms and Mm. The difference here is that the global shear force is assumed to be 

equal to zero, meaning that global moment is the only global factor affecting the final 

local moment. 

 

The additional local moment, due to the directly applied patch load, was extracted 

directly from a 2D FE beam-model. Since the global response is provided by the ESL 

homogenized plate, the local 2D beam-model must be engineered carefully in order to 

capture only the precise local behavior, without any global influences. The initial 

hypothesis was to achieve this by implementing the boundary conditions for the beam-

model as suggested e.g. by Romanoff et al. [30].  

 

 Results for load case 1 

Figure 36-39 shows the results of the study for all four investigated geometry cases, 

when subjected to Load Case 1 (plate action). The local moment was extracted from 

the 3D shell model in the top face plate and plotted against the combined total local 

moment with contributions from both ESL and 2D beam-model. The results were 

normalized by the maximum absolute value for the moment, for each studied case, and 

then plotted over a unit cell, where the horizontal distance along the extraction path was 

also normalized by the width of a unit cell.  

 

The welds are critical nodes in the evaluation, as the behavior of the structure can be 

very different on each side of each weld. No averaging was used for the results gathered 

from the FE-analysis, so that two distinctive separate results are yielded in the weld 

node – one coming from the element on each side. The node corresponding to the weld 

can be clearly distinguished in the result plots as there are dramatic vertical drops in 

bending moment at these points. 
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Figure 36 Local moment in the top plate for geometry case 1, load case 1. 

 

 

Figure 37 Local moment in the top plate for geometry case 2, load case 1. 
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Figure 38 Local moment in the top plate for geometry case 3, load case 1. 

 

 

Figure 39 Local moment in the top plate for geometry case 4, load case 1. 
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In general, very good agreement can be seen in the center area of the plots in and around 

the welds, although geometry 4 displays less accurate prediction. The results at the 

edges of the showcased result plots (x = 0 and x = 1), do however not show the same 

level of accuracy. For example, geometry 2 show a result divergence here of around 

17% for the compared local moment.  

 

Similar trends can be seen in the results for all studied cases - in span as well as for the 

area around welds - where the moment extracted from the 3D FE-model is consistently 

higher than the total moment coming from the suggested combined approach.  
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 Results for load case 2 

Below, result plots are presented for all geometry cases when subjected to load case 2, 

see Figure 40-43. 

 

Figure 40 Local moment in the top plate for geometry case 1, load case 2. 

 

Figure 41 Local moment in the top plate for geometry case 2, load case 2. 
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Figure 42 Local moment in the top plate for geometry case 2, load case 2. 

 

Figure 43 Local moment in the top plate for geometry case 2, load case 2. 
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Similar trends can be seen for both load cases. Although these results are not as clear 

as for Load case 1, some similarities and differences can still be observed compared to 

the first load case. One noticeable tendency for geometry cases 1, 2 and 3 is that the 

moment difference is larger in the outer regions (x = 0 and x = 1), where the moment 

from the 3D model has increased by larger margin than the combined 2D models. While 

the results for geometry case 3 matched quite well for load case 1, a clear deviation can 

be seen for load case 2. The results for geometry 4 are hard to interpret, but probably 

caused by the acting global forces or by thickness deformations due to the large height 

of the cross-section.  

 Discussion  

It can be concluded that the suggested approach does not work to a satisfactory degree 

when analysing an area under the patch load. Some deviations are expected, due to the 

slight shift of the global shear force (Qy), whose contribution cannot be evaluated with 

the available theory. The impact of the global moment in the transversal direction (My) 

should be accurate however, as it is basically constant over the unit cell. Although the 

discrepancy between the 3D results and the suggested approach is very small for some 

cases, the non-uniformity of the results leads to the conclusion that there is a structural 

behavior that neither of the 2D-models are able to capture.  

 

It is obvious from the plots that the result agreement is better for the area in and around 

welds than for the areas in the outer edges of the unit cell. It is also evident for load 

case 2, that the increase in global forces in the transversal direction does not match the 

increase in local moment that is present. One possible explanation is that the local 

moment could be influenced by the longitudinal load distribution (along the direction 

of the corrugation).  If this is the case, then it can be concluded that the proposed set of 

boundary conditions for the 2D beam model are not able to accurately simulate the 

longitudinal load distribution present in the 3D FE-model. 

 

The other theory as to why the results differ might be explained by a punching-like 

behaviour that can be observed in the 3D model, see Figure 44. This is present for all 

geometries except geometry 3 where the local bending due to the directly applied load 

of the face plate is dominating by far, geometry 3 is also where the results had the best 

correlation. This kind of structural response is usually seen in flat concrete slabs in areas 

close to columns (as a result of the peak stress in those areas), but then related more to 

failure. The punching behaviour cannot be seen in the ESL due to the homogenization 

or the 2D local model because of the boundary conditions. 



 

 

 

CHALMERS Architecture and Civil Engineering, Master’s Thesis BOMX02-17-99 51 

  

 

Figure 44  The punching behavior observed in the 3D FE-model indicated by the 

blue line. It has a much bigger presence in Geometry 1 (top) than 

geometry 3 (middle). ESL model with no punching behavior (bottom). 
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11 Study on how to improve the initially suggested 

approach 

In the initial study directly under the patch load, it was concluded that the suggested 

combined method does not completely capture the behavior that can be seen in the 3D 

shell model. Two possible explanations for the result divergence are highlighted: 

 

 Inability of the 2D beam-model to capture the longitudinal bending response of 

the sandwich panel. This will be a problem if the longitudinal response is a 

factor that affects the local moment in the top face plate, since it is not included 

in the results from the 2D beam-model. 
 

 A presence of punching-like deformations in the sandwich panel, which cannot 

be captured in ESL shell-model.  

The ESL model is not able to capture this punching-like influence, due to the nature of 

homogenization. Thus, inclusion of the punching effect into the suggested combined 

approach must be achieved either through alteration of already existing models or by 

extending the approach by adding the contribution from the punching effect separately.  

 

This chapter will investigate how the 2D local FE-model, or the suggested approach 

itself, could be modified in order to achieve results closer to that of the 3D FE-model. 

 Boundary conditions removed from the local model 

Previously, the vertical translation at every bottom through in the 2D beam model was 

prevented. The only difference compared to the previous model, is that all boundary 

conditions for supports situated directly under the load were removed. The idea was 

that this set-up would create the desired “semi-global” behavior. Assuming that the 

punching behavior would, in reality, be limited to an area in and around the applied 

patch load, this modified constellation would hopefully allow the punching 

deformations under the load, while still retaining the pure local behavior for the rest of 

the model. 

 

By removing the BC’s under the load, see Figure 45, the face plates are forced to 

elongate in a way that was not possible with the previous set-up. This has the important 

consequence that normal forces are induced in the system. The presence of normal 

forces has the additional implication that looking at results in terms of bending moment 

is no longer the best option. Therefore, results will be investigated in terms of stresses. 
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Figure 45 Sketch of the new boundary condition model.  

 

Stresses S11 were extracted from the top fiber of the top face plate in the 2D beam 

model. Global bending moment from the ESL-model were converted to stress using 

Navier’s formula; 𝜎 =  𝑀/𝑊.  

 

Where M is the global moment and W the section modulus of the homogenized cross-

section per unit width.  

 

Stress due to shear force was assumed to be zero, similarly to the shear force itself. The 

sum of stress from bending moment and S11-stress in the top fiber of the beam model 

were summed up and compared to the stress extracted from the 3D model. 

 

 Results 

Results are here presented for the suggested combined approach versus the same results 

that were presented in the previous study for the 3D shell model. The only change is 

that the 2D beam-model was here modelled with the modified constellation of boundary 

conditions. Results are only presented for geometry case 1, although results for the other 

three geometries can be found in Appendix C.  
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Figure 46 Results for the study with removed supports under the load. 

 

Figure 47 Results for the study with removed supports under the load. 
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The results for geometry case 1 show very good correlation for load case 2 and, 

similarly to the study in Chapter 10, good correlation around welds and not so good 

correlation at the unit edges for load case 1. One important difference to notice though 

is that the moment in the study with boundary conditions everywhere was higher in the 

3D-model, while in this study the moment is larger from the investigated approach. 

Results in terms of stresses are presented below, for geometry case 1 subjected to load 

case 2. 

 

Figure 48  Results for the study with removed supports under the load with plot 

of stress in the top fiber. 

 Discussion  

For this study it could be seen that the moment from the combined 2D models is actually 

larger than the 3D model for load case 1. This is the opposite of the other study where 

it was smaller. A high correlation between the 3D and the 2D models for load case 2 

was noted. This is consistent for all geometry cases, except for a slight noted offset for 

geometry 4. However when removing the boundary conditions under the load, an 

eccentricity between the load and the supports is created, thus creating a global moment 

in the local beam model. This was taken into account by instead making a study of 

stress rather than moment. The stress study showed similar results as the moment, 

however with a slightly larger difference. Still, the problem with the plate action load 

case remain, and might be explained by the longitudinal load distribution. 
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 Local 2D model with springs 

It could be concluded from the study with removed supports under the load that the 

result were satisfactory for load case 2. Furthermore, the combined load effects from 

the 2D models were generally smaller for load case 1 with supports and larger without, 

compare Figure 36 with Figure 46. Therefore, just by looking at the results, it can be 

concluded that the behavior of the 2D beam model should be somewhere in between 

the first two studies to fit load case 1. Accordingly, an attempt were the supports directly 

under the load were modelled using spring elements was carried out. A setup of the 

modification can be seen in Figure 49.  

 

 

Figure 49  Sketch of the local model and the implementation of the spring element 

in the FE-model. 

The magnitude of the spring-stiffness is a way to simulate the active bending stiffness 

of the plate in longitudinal direction (parallel to the core direction). Since the load does 

not simply distribute in one direction, it is hard to know exactly how big area will 

contribute with stiffness against deflections in the longitudinal direction. Hence, it is 

also hard to analytically determine the stiffness that should be inserted into the spring 
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elements in order to model the transversal stiffness. Therefore, the implemented 

stiffness had to be determined through interpolation, where results for different guessed 

spring stiffness’s were simply compared to the results of the 3D shell model until they 

matched. This method was undertaken mainly to get an approximate value of a spring 

stiffness that could be implemented in the beam model to achieve the same results for 

the combined approach as for the 3D model.  

 Results  

 

Figure 50  Result for the study with springs as support under the load for geometry 

1, the other geometries had almost identical results. 

It can be seen from all the geometry cases that the results match very closely between 

the 3D model and the combined approach, with only a maximum difference of about 

10% at the left weld peak point. Similar results were seen for the other geometry cases 

and they can be found in Appendix D.   

 Discussion  

Even though it seems possible to approximate the behavior of the 3D model with the 

described spring-method, it has a number of clear disadvantages. The most apparent 

issue is that the spring stiffness approach does not have an analytical way to calculate 

the implemented stiffness, but must instead rely on comparison to a 3D FEA. This is a 

fundamental flaw, since one of the main goals of the approach was to not have to rely 

on a 3D FE-model to analyze the corrugated core SSP. For this approach to be viable it 

is necessary to derive a way closed form solution. 

 

Another issue is the uncertainties surrounding what exact number of springs to put into 

the 2D beam model. This might depend on the width and placement of the load and 

would have to be investigated for a large number of different load cases and sizes of 

-1.10

-0.55

0.00

0.55

1.10

0.00 0.20 0.40 0.60 0.80 1.00

N
o

rm
al

is
ed

 s
tr

es
s 

[P
a/

P
a]

Normalised distance of 2p [m/m]

Geometry case 1 Load case 1

3D FE-

Model

Combined

2D-models



CHALMERS, Architecture and Civil Engineering, Master’s Thesis BOMX02-17-99 58 

the plate, which in itself could be argued is too much work to validate such an unclear 

approach. Nevertheless, it was still shown here that it is possible to model the response 

of the 3D model by using only 2D models in a plate action load case. 

 Assessment of discrepancy by using an additional 

global moment 

The shear-related punching-like effect was here assumed to contribute with a constant 

bending moment on the investigated cell. The size of this added moment was calculated 

by regarding the sandwich panel under a simplified load case. A simply supported 

beam, being subjected to an evenly distributed load corresponding to the patch load 

area, see Figure 51. The edge supports were placed at the position of the closest welds 

outside on either side of the applied load. The contributing moment could then be 

calculated according to elementary cases. The calculated maximum moment, found in 

the middle of the span of the isolated element, was inserted as a constant contribution 

on the final results. 

 

 

Figure 51 Sketch of the additional global transversal moment My. 

The global shear force was previously assumed to be equal to zero, since the global 

shear force in the transversal direction will be exactly zero in the center of the applied 

load. This assumption will however, only be the true in the center of the unit cell. The 

global shear force was here given one constant value for each side of the zero-point, 

equal to the average value on each separate side. With these assumptions, the 

contribution from the shear force will be overestimated for some regions and 

underestimated in the other regions, hopefully resulting in a response closer to reality 

overall. The local moment from the global shear force was then calculated by 

multiplying the shear force (extracted from the ESL-model) with the shear 

transformation factor MS. 

 

 Results  

Results for this study can be seen in Figure 52-54, for geometry cases 1-3, subjected to 

load case 1. As the bending moment extracted from the combined approach was already 

larger than for the 3D FE-model for geometry case 4, the extended study presented here 

would obviously only yield further diverging results. Therefore this case was not 

included in this particular study. 
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The presented moment results were once again normalized against the highest 

calculated total moment for each studied case. The results for the combined approach 

include contributions from; global shear force and moment from the ESL-model, local 

moment from the 2D beam-model and an additional constant moment, calculated by 

subjecting the top beam element to a simplified load case. The results are plotted over 

a length of one corrugation unit, where the distance from the left side has been 

normalized against the total distance.    

 

Figure 52 Result for the study with extra global moment geometry 1. 
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Figure 53 Results for the study with  extra global moment geometry 3. 

Figure 54 Result for the study with extra global moment geometry 2. 
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 Discussion  

The new assumptions seem to yield clear improvement for results for geometry cases 1 

and 2. Results for geometry 3 are of equal accuracy compared to the previous study. 

For geometry case 3, the total bending moment is overestimated compared to the 

moment from the 3D-model. Since this geometry is naturally quite weak in the 

thickness direction - having a large pitch to height-ratio - it reasonable to assume that 

this model will exhibit some semi-global behavior even in the 2D beam local model. 

Therefore, the extra contribution would be redundant for this case and lead to an 

overestimation of the total stress.   

 

Another factor that could possibly influence the accuracy of the presented approach, is 

the relation between the width of one corrugation unit and the width of load application 

(0.5m). For both geometry case 1 and 2, the width of load application could be divided 

almost perfectly over an even number of unit cells. Geometry 3 (and 4) however, did 

not match as accurately, meaning there was some parts on the beam element between 

the edge supports and the area of load application. Thus, this method is not accurate for 

all cross sections whereas case 1 and 2 could be estimated well with Equation 26: 

 

            𝑀𝑒𝑥𝑡𝑟𝑎  =  𝑞𝑙2/8         (26) 

 

The fact that altering the global sectional forces in the region of the patch load yield 

accurate stress predictions in the constituent members indicate that the displayed 

divergence originates from the adopted plate theory in the ESL-model. Possible causes 

of this divergence can be the assumption of the shear strain distribution on the cross 

section or an effect of in plate compression of the cross-section in the 3D-model, among 

others.   
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12 Discussion 

This chapter will present a broad discussion of aspects of the presented work that have 

not already been addressed throughout the report. For discussions targeted at results 

from specific studies, see the discussion-section for that particular study. 

 

This thesis suggests a way of FE-modelling that could simplify the design of corrugated 

core SSPs. The method is based to a large extent on the principles proposed by 

Romanoff et al. in [30]. While Romanoff et al. [30] presented the suggested approach 

for a web-core sandwich panel, this thesis tried to apply the same evaluation approach 

for a panel with a corrugated core geometry. As there are several differences between 

web-core and corrugated-core panels, the initial theory had to be expanded and 

additional contributions, exclusive for corrugated-core panels, had to be considered. 

 

The general uncertainty and lack of previous theory on the subject creates a big question 

regarding what was the explicit cause to the divergence of the results in the presented 

study. The error might for example have come from: the local 2D beam-model, 

assumptions made in the adopted plate theory or even something else that has not been 

discussed in this thesis. As the major differences can be seen in the outer region of the 

unit cell, where the impact of the local moment induced shear is zero, it is likely that 

the error originates from something else. 

 

One of the key assumptions in this project, related to the structural behavior of the 

panel, was the choice of boundary conditions for the 2D beam-model.  While the first 

set-up of boundary conditions seemed reasonable, it was seen that it did not capture the 

punching-like behavior. In order to find a good constellation of BCs, several set-ups 

were afterwards investigated. Even though the final set of boundary conditions gave 

good results, the working process to reach this set-up, as well as for every new iteration 

of the set-up, was deemed to be too complicated to be worthwhile using on a regular 

basis. While these approaches are not recommended to be used on a large scale, they 

still show that it is possible to approximate the response of the 3D model by using only 

2D models, which is encouraging for future studies on the subject.  

 

Another important assumption was made as a consequence of implementing the 

transformation factors Ms and Mm, as they were both derived for a state of constant 

global shear force and moment. This was shown to impact the results (compare Figure 

32 with Figure 33). For the study away from load, the gradient of the shear force is 

small over the unit cell, whereby the impact is modest.  For the second study however, 

the shear force changes rapidly under the area of load application and it also changes 

sign in the middle of the applied load. Consequently, utilizing transformation factors 

based on assumptions of constant shear forces is an inherent approximation in the 

homogenization approach and will always affect the accuracy to some extent.  
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13 Conclusions and further studies 

This project studied multiscale modelling of corrugated core SSPs subjected to patch 

loading. A suggestion whereby the full 3D response could be captured with only 2D 

model(s), was made as this would simplify e.g. the early design phase. Four different 

geometric cases of the SSP together with one load case for plate action and one for 

beam action were analyzed.  

 

Three major conclusions were drawn from the project. The first one, which was found 

early in the project was: 

 

 The global moment in the transversal direction creates a local moment in the 

top face plate of the corrugated core SSP (described in Section 7.2). 

 

More specifically, it was not possible initially to match the real case of the 3D-model 

with only the shear induced local moment. After investigating the matter further it was 

found that the global moment might cause a local moment similar to the global 

transversal shear in the top face plate. This was then verified by the means of a 4-point 

bending analysis. The contribution was seen to be largest in the weld region and smaller 

in the outer regions of the unit cell. It was also noted that the impact changed between 

the geometric cases. It was, however, not investigated exactly what parameters had the 

most influence on the size of the moment induced local moment. It was also noted that 

the 4-point bending analysis was very time consuming. If possible, this should be 

investigated in further studies in order to find an analytical expression for the 

contribution.     

 

Further, when the moment- and shear-induced local moment factors are known, it was 

shown that:  

 

 It is possible to estimate the local moment in the top face plate away from the 

load with just an ESL-model and the corresponding shear- and moment-

induced local moment factors (see Chapter 9). 

 

While the estimation for the plate action load case showed a slight deviation, it was also 

shown that the beam action load case leads to perfectly matched results. As discussed 

in the previous chapter, this difference between the load cases is most probably because 

of the constant shear force in load case 2, which is beneficial. Nevertheless, it was 

concluded that a very good estimation could be made. Consequently, the difference was 

not enough to disregard the proposed methodology and the same kind of approach was 

therefore used in the study directly under the load as well.  

 

It is suggested that further research should investigate how the varying shear force over 

a unit cell impacts the local moment in the top face, as this has previously only been 

done for the case with constant global shear. If this relation could be determined, similar 

results to the beam action case can probably be achieved. Similar research could be 

done on the global moment in the transversal direction, however, efforts should 

preferably be put into finding an analytical expression first.  

 

Finally, the last study tried to develop a method where the local moment and stress 

under load could be estimated more accurately. This was done by expanding the 
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initially suggested approach, both by changing boundary conditions for the local model 

and also by an approach that added global sectional forces. While a general solution 

could not be found, results still indicate that: 

 

 It is possible to estimate the local stress/moment in the top face plate directly 

under a patch load using an ESL-model and a local 2D beam model (see Chapter 

11 and 12). However, more research is required to further investigate this field. 

 

A few points as to why a general solution could not be found is discussed in Chapter 

11 and also in the discussion directly related to each result. Future studies should be 

carried out to further investigate what the cause of the difference is. Possible causes of 

error pointed out in this work was the 2D beam model and the adopted plate theory.  

 

 

 



 

 

 

CHALMERS Architecture and Civil Engineering, Master’s Thesis BOMX02-17-99 65 

14 References 

 

[1]  C. Huang and A. R. Mangus, “An International Perspective:Widening Existing 

Bridges with Orthotropic Steel Deck Panels,” Structural Engineering 

International, vol. 4, pp. 381-389, 2008.  

[2]  S. R. Bright and J. W. Smith, “A new design for steel bridge decks using laser 

fabrication,” The Structural Engineer, pp. 49-57, 2007.  

[3]  J. Maljaars, F. van Dooren and H. Kolstein, “Fatigue assessment for deck plates 

in orthotropic bridge decks,” Steel Construction - Design and Research, vol. 5, 

pp. 93-100, 2012.  

[4]  I. Koc and E. Beneus, “Innovative road bridges with steel sandwich decks,” 

CHALMERS UNIVERSITY OF TECHNOLOGY, Göteborg, 2014. 

[5]  V. Caccese and S. Yorulmaz, “Laser Welded Steel Sandwich Panel Bridge Deck 

Development: Finite Element Analysis and Stake Weld Strength Tests,” 

University of Maine Department of Transportation, Orono, 2009. 

[6]  P. Nilsson, “Steel-sandwich elements in bridge applications,” CHALMERS 

UNIVERSITY OF TECHNOLOGY, Göteborg, 2015. 

[7]  L. Persson, “A parametric study of shear-induced fatigue in corrugated steel 

sandwich elements,” CHALMERS UNIVERSITY OF TECHNOLOGY, 

Göteborg, 2016. 

[8]  SANDCORE, “Best Pratise Guide for Sandwich Structures in Marine 

Applications.,” Prepared by the SAND.CORe CO-ordination Action on 

Advanced Sandwich Structures in the Transport Industries Under European 

Commision Contract No.FP6-506330. 

[9]  A. Romeo, D. P. Boso and U. Galvanetto, “APPLICATION OF SANDWICH 

STRUCTURES TO AUTOMOTIVE RIMS,” in 18th International Conference 

on Composite Materials, Jeju Island.  

[10]  U. Alwan and D. Järve, “New Concept for Industrial Bridge Construction,” 

CHALMERS UNIVERSITY OF TECHNOLOGY, Göteborg, 2012. 

[11]  J. Romanoff, Bending response of laser-welded web-core sandwich plates - 

Doctoral Dissertion, Espoo: Helsinki University of Technology, 2007.  

[12]  C. Libove and S. B. Batdorf, “A general small-deflection theory for flat 

sandwich plates,” National advisory committee for aeronautics, 1948. 

[13]  P. Kujala and A. Klanac, “Steel SDandwich Panels in Marine Applications,” 

BRODO GRADNJA, vol. 56, no. 4, pp. 305-314, 2005.  

[14]  M. Wouters, “Hybrid Laser-MIG welding: An investigation of geometrical 

considerations, Licentiate Thesis,” Luleå University of Technology, Luleå, 

2005. 

[15]  D. Dackman and W. Ek, “Steel sandwich decks in medium span bridges,” 

CHALMERS UNIVERSITY OF TECHNOLOGY, Gothenburg, 2015. 

[16]  C. Libove and R. E. Hubka, “Elastic constants for corrugated-core sandwich 

plates,” NACA, Wachington, 1951. 

[17]  P. Nilsson, M. Al-Emrani and S. R. Atashipou, “Transverse shear stiffness of 

corrugated core steel sandwich panels with dual weld lines,” Thin-walled 

structures, vol. 117, pp. 98-112, 2017.  



CHALMERS, Architecture and Civil Engineering, Master’s Thesis BOMX02-17-99 66 

[18]  MSC Software, “MSC Software - Simulating Reality, Delivering Certainity,” 11 

July 2013. [Online]. Available: http://simulatemore.mscsoftware.com/choosing-

the-right-finite-element-msc-nastran/. [Accessed 29 June 2017]. 

[19]  MSC Software, Linear Static Analysis User's Guide, Santa Ana: MSC.Software 

Corporation, 2012.  

[20]  A. Stühmeyer, “The thick shell element for metalforming and other 

applications,” in 5th European LS-DYNA Conference, Birmingham, 2005.  

[21]  SIMULIA, “Abaqus 6.12 Analysis User's Manual Volume IV: Elements,” 

Dassault Systèmes, Providence, 2012. 

[22]  J. Dean, “Introduction to the Finite Element Method (FEM) - Lecture 2, First 

and Second Order One Dimensional Shape Functions,” [Online]. Available: 

http://www.ccg.msm.cam.ac.uk/images/FEMOR_Lecture_2.pdf. [Accessed 30 

06 2017]. 

[23]  SIMULIA, “Abaqus 6.12 Getting Started with Abaqus: Interactive Edition,” 

Dassault Systêmes, Providence, 2012. 

[24]  E. Carrera, “Historical review of Zig-Zag theories for multilayered plates and 

shells,” Applied Mechanics Reviews, vol. 56, no. 3, pp. 287-308, 2003.  

[25]  ANSYS, “ANSYS Online Manuals release 5.5,” ANSYS, [Online]. Available: 

http://ans2.vm.stuba.sk/html/elem_55/chapter4/ES4-181.htm. [Accessed 29 

June 2017]. 

[26]  K. H. Tan, P. Montague and C. Norris, “Steel sandwich panels:finite element, 

closer solution, and experimental comparisons, on a 6m x 2.1m panel,” The 

Structural Engineer, vol. 67, no. 9, pp. 159-166, 2 May 1989.  

[27]  S. Kazemahvazi and D. Zenkert, “Corrugated all-composite sandwich 

structures. Part 1: Analytical model,” Composites Science And Technology, vol. 

69, no. 7-8, pp. 913-919, 2008.  

[28]  L. Valdevit, Z. Wei, C. Mercer, F. W. Zok and A. G. Evans, “Structural 

performance of near-optimal sandwich panels with corrugated cores,” 

International Journal of Solids and Structures, vol. 43, pp. 4888-4905, 2006.  

[29]  M. Leekitwattana, S. W. Boyd and R. A. Shenoi, “Evaluation of the transverse 

shear stiffness of a bi-directional corrugated-strip-core sandwich beam,” Journal 

of Constructional Steel Research, vol. 67, pp. 248-254, 2011.  

[30]  J. Romanoff, P. Varsta and R. Heikki, “Laser-welded web-core sandwich plates 

under patch loading,” Marine Structures, vol. 20, pp. 25-48, 2007.  

[31]  T. Lok and Q. Cheng, “Elastic Deflection of Thin-Walled Sandwich Panel,” 

Sandwich structures and Materials, vol. 1, 1999.  

[32]  T. Adolfsson, “Element to element joints of corrugated core steel sandwich 

bridge decks,” Chalmers, Gothenburg, 2016. 

[33]  S. R. Bright and J. W. Smith, “Fatigue performance of laser-welded steel bridge 

decks,” The Structural Engineer, pp. 31-39, 2004.  

[34]  H. G. Allen, Analysis and Design of Structural Sandwich Panels, Southampton: 

Pergamon Press, 1969.  

[35]  W.-S. Chang, E. Ventsel, T. Krauthammer and J. John, “Bending behaviour of 

corrugated-core sandwich plates,” Composite structures, vol. 70, pp. 81-89, 

2004.  



 

 

 

CHALMERS Architecture and Civil Engineering, Master’s Thesis BOMX02-17-99 67 

[36]  J. Samuelsson, “FE-Design 2003 - Improved Usage of High Strength Steel by 

an Effective FE-based Design Methodology for Fatigue Loaded Complex 

Welded Structures,” Volvo, Stockholm, 2004. 

[37]  J. Hoffart and E. Hasen, “Welding design & fabrication,” ESAB Welding & 

Cutting Products, 1 Oct 2008. [Online]. Available: 

http://weldingdesign.com/archive/design-implications-sandwich-panels. 

[Accessed 31 Jan 2017]. 

[38]  Z.-G. Xiao, K. Yamada, S. Ya and X.-L. Zhao, “Stress analyses and fatigue 

evaluation of rib-to-deck joints in steel orthotropic decks,” INternational 

Journal of Fatigue, vol. 30, pp. 1387-1397, 2008.  

 

 



CHALMERS Architecture and Civil Engineering, Master’s Thesis BOMX02-17-99 A1 
 

APPENDIX A 

The convergence studies of the 3D FE-model geometry case 2-4 are presented in this section. 
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APPENDIX B 

The remaining geometric cases plot’s of the study under load are presented in this part of the 
appendix.  
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APPENDIX C 

The remaining geometric cases plot’s of the study with removed supports under the load are 
presented in this part of the appendix.  
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APPENDIX D 

The remaining geometric cases plot’s of the study with springs as supports under the load are 
presented in this part of the appendix. 
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