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ABSTRACT 

Data is an important resource, which through data science can yield many interesting insights 

and predictions. To utilize data, it needs to be collected, stored, preprocessed and modelled. 

The purpose of this project was to develop components that together form a simple data-

driven stock trading system. Firstly, software to web scrape publicly available news and 

pricing data from the Swedish stock exchange AktieTorget, is developed. Secondly, this data 

is then used to test whether it is possible to create models and tools able of aiding/performing 

trading decisions. To support the development of the above-mentioned software and models, 

some theory is provided about stock markets, together with a walkthrough of the workflow 

and components of data science. The result is a system that utilizes a Python module, Scrapy, 

to automatically collect news and pricing data and then pass it on to a MongoDB database. 

The characteristics of the collected pricing data made it hard to work with, which was partly 

solved by manually collecting data from Nasdaq OMX. In addition to the system to collect 

and store data, three experiments were conducted to test the model and tool developed. All 

three experiments gave interesting insights, even though the results weren’t assertive. The 

single most interesting result was the model’s predicting performance for clustered signals. 

As a notice of potential future work, an API connection to a broker (e.g. Nordnet) could be 

developed. This would enable models to be used for real time trading. Moreover, the news 

and pricing data can be used together with natural language processing to create more 

sophisticated models. 

Keywords: web scraping, data science, machine learning, stock market 



 

 

SAMMANFATTNING 

Data har blivit en viktig resurs och med hjälp av data science kan den ge intressanta insikter. 

För att kunna utnyttja data bör den inhämtas, lagras, processeras och modelleras. Syftet med 

detta projekt var att utveckla delkomponenter till ett aktiehandelssystem, där data står i fokus. 

Första delmålet var att utveckla en komponent som ska utföra automatisk inhämtning av 

nyhets- och prisdata, genom s.k. “web scraping”. Det andra delmålet var att utveckla en 

komponent för att kunna analysera den inhämtade datan. Detta i form av en modell och ett 

visualiseringsverktyg som ska kunna användas som beslutsunderlag för aktiehandel. För att 

underlätta utvecklandet av ovannämnt system gås teori om aktiemarknaden samt data science 

igenom. Det resulterande systemet använder en Pythonmodul, Scrapy, för att utföra den 

automatiska inhämtningen av nyhets- och prisdata. Datan skickas sedan vidare från Scrapy 

till en MongoDB-databas. Prisdatan som inhämtades visade sig vara svåranalyserad, vilket 

löstes genom att istället analysera manuellt inhämtad prisdata från Nasdaq OMX. När första 

komponenten var utvecklad utfördes tre experiment, alla tänkta att testa den modell och det 

verktyg som utvecklats. Alla tre experiment gav intressanta insikter, även om de inte gav 

definitiva resultat. Det mest intressanta resultatet var utan tvekan hur bra prisutvecklingen 

blev då den utvecklade modellen gav köpsignal i flera aktier under samma dag. Framtida 

arbete skulle kunna vara att utveckla komponenten i systemet som ska koppla upp det mot en 

mäklare (t.ex. Nordnet), vilket möjliggör aktiehandel i realtid. Utöver en uppkoppling mot 

mäklare kan natural language processing (NLP) utnyttjas för att klassifiera och bestämma 

vilka nyheter som ska tolkas som köpsignal. 

 

 

Nyckelord: webbskrapning, data science, maskinlärning, aktier  
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NOMENCLATURE AND ABBREVIATIONS 

Dividends - A way of distributing company earnings to the shareholders of a company. 

Efficient market hypothesis (EMH) - A hypothesis about the efficiency of stock pricing. 

Indicator (stock market) - A way of representing some part of the dynamics of stock 

pricing/volume data.  

Jupyter notebook - A browser based interactive IDE.  

Kaggle - An online site for machine learning competitions.  

Leverage (stock market) - Makes it possible to buy x worth of stocks with less than x 

amount invested. 

Machine learning (ML) - Enables computers to recognize patterns through computational 

learning. 

Moving average (SMA or MA) - Indicator which mathematically represents an unweighted 

rolling mean. 

Natural language processing (NLP) - A way of processing human language, to make it 

understandable for computers. 

Numpy - Python module for fast numerical computations. 

Pandas - Python module that can organize data in data structures. It allows for easy data 

manipulation. 

Price - will be used interchangeably with closing price, if nothing else is explicitly stated 

(such as opening price). 

Risk-adjusted return - Metric that accounts for both risk and return. Sharpe ratio is an 

example of a risk-adjusted return metric. 

Schema (database schema) - A way of defining the structure of data stored in a database. 

Regular expression - A standardized way of finding patterns and certain substrings in a string 

of characters.  

Scikit-learn - Python module for machine learning. 

Simulated out of sample test - In this project, simulated out of sample test means that the 

test set used “is yet to come”, from the training set point of view.  

TAlib - Python module for technical analysis which has a great variety of different 

indicators. 
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1. INTRODUCTION 

Data science in combination with the stock market provides an interesting learning platform. 

By creating a framework for working with data related to the stock market, ideas and theories 

can easily be tested and implemented. As the title suggests, focus will be on making data the 

driving force of a trading system. 

 

1.1 Background 

This thesis is done as an in-house project at Wibelius Consulting AB and is supervised by 

Niklas Wibelius. Wibelius Consulting AB is a consultancy company specialized in software-, 

hardware- and business development. The company is currently in the process of expanding 

its area of expertise to be able to provide services related to financial technologies. 

 

Trading platforms can be costly and often lack flexibility. Tying the data analysis to a widely 

used programming language (e.g., Python), rather than a trading platform, can increase the 

flexibility. Creating a flexible framework can make it easier to produce trading strategies that 

differentiates from the norm, which in turn can give an edge. Additionally, utilizing 

uncommon data sources can increase differentiation from the norm even more. 

 

1.2 Purpose 

The purpose of this project is to develop components that together form a simple data-driven 

stock trading system. Figure 1A illustrates the different components in question (excepting 

the live trading, which will be omitted and left as a possible future component to develop). 

 

 
Figure 1A. An illustration of the system to be developed. Note that the 

component handling live trading is not a part of the purpose nor goal. 
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1.3 Goal 

1. Develop software to automatically collect and store news and pricing data. 

2. Using the collected data, develop models and tools to aid/perform stock trading 

decisions. 

 

1.4 Limitation 

● To develop the part of the system that connects it to a broker API will not be a part of 

the goal. Thus, no live trading will take place. 

● Existing libraries and frameworks will be used as much as possible. 

● The approach to different modelling techniques will be on an applied level. Hence, 

how a model works mathematically will not be discussed in depth. 

● The correctness of the collected data cannot be guaranteed. 
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2. DATA SCIENCE 

Data science is a field that tries to derive insights or predictions by analyzing data. In his 

work “The future of data analysis” from 1962, John W. Tukey wrote: 

All in all, I have come to feel that my central interest is in data analysis, which I take 

to include, among other things: procedures for analyzing data, techniques for 

interpreting the results of such procedures, ways of planning the gathering of data to 

make its analysis easier, more precise or more accurate, and all the machinery and 

results of (mathematical) statistics which apply to analyzing data [1, p. 2]. 

He discussed this further by stating “I would regard it as a science” [1, p. 6], referring to the 

above-mentioned interest. This is the first time someone in an academic paper tried to 

consolidate and bring together data-driven analysis techniques and the surrounding work into 

a single field or concept. What Tukey was trying to articulate was probably what the term 

data science today stands for. 

 

The term (and field) data science is not widely accepted, nor well defined. There are different 

ideas about what it is, or if it even should exist as its own field. However, academic 

institutions have now started adopting it, for instance as master programs [2] and other 

initiatives [3]. To bring clarity throughout the coming chapters, data science will hereafter be 

defined as “to gain insights into data through computation, statistics, and visualization” [4, p. 

4]. 

 

2.1 Data science workflow and components 

The need for a correct methodology and workflow cannot be stressed enough when working 

with data. To mention a few possible fallacies when working on a data science problem: Data 

leakage, overfitting, underfitting and wrong assumptions made regarding the data. By falling 

into one of the many traps, faulty conclusions can be made. 

 

There are numerous ways to approach a data science project. However, the key components 

stay the same. Without getting specific about any order, below are some of these components. 

This approach is inspired by Harvard’s data science class CS109 online material [4, p. 39]. 

 

2.1.1 Asking a question or stating a hypothesis 

One of the core components of a data science project is the question (or hypothesis). It will 

guide the rest of the work. However, asking the right question can be hard. E.g., a potential 

question can be “What’s the strategy that yields the best return?” Depending on how “return” 

is defined, this might not be an optimal question, since it doesn’t account for risk. A better 

question might be “What’s the strategy that yield the best risk-adjusted return?” Moreover, to 

take it even further, some trading strategies can be stressful and consequently reduce the 

quality of one's life. If quality of life is the reason why a trading strategy is developed and 
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used in the first place, taking stress into account might be needed. From this example, a good 

lesson learned is that the quality of the question will unambiguously determine the value of 

the answer. In other words, a high-quality answer cannot outweigh the poorly asked question 

it answers. 

 

2.1.2 Collecting the data 

The complexity of collecting data varies a lot. Sometimes downloading an already existing 

file of a few kilobytes will suffice. In some instances, text from hundreds of millions of 

webpages needs to be collected and preprocessed. To give easy access to data, organizations 

provide APIs (Application Programming Interface). Not all organizations provide APIs, 

which means that the data needs to be collected by other means. This is where web scraping 

and web crawling enters the picture. 

 

According to [5], web scraping means gathering data programmatically, without the use of 

any API (Application Programming Interface). Usually, this is done by writing automated 

programs that interact with a web server. Content available on the web, which people are 

meant to read using a web browser, can be gathered by utilizing web scraping. The targeted 

data can either be structured (e.g. tables of containing today’s weather data) or unstructured 

(e.g. blog posts). When data gathering involves software based and systematic browsing of 

several websites, this is referred to as web crawling. Search engines use web crawling to find 

index content from the Internet [6]. 

 

Scrapy is a Python module (software library) with a framework in place for web scraping and 

web crawling. It consists of different components, such as spider, item, pipeline and 

scheduler. The scheduler sends requests to a website which the spider later receives the 

responses for and parses them. The spider is meant to create items containing the data of 

interest and pass it on to the pipeline. Items gets passed on to the pipeline, which among other 

things can be used to filter out items. The final purpose of the pipeline is to display data or 

store it. 

 

Web scraping/crawling should nevertheless not be brought up without a word of caution. 

Firstly, some websites explicitly state scraping/crawling as disallowed. This is done by 

making rules accessible on www.exampledomain.com/robots.txt. Secondly, the requests 

made to a website can in different ways cause harm. Further reading about precautions to take 

is needed, before one starts web scraping/crawling. 

 

2.1.3 Storing the data 

When working with data, storing it in files can be convenient and simple. With the python 

module pandas, it’s possible to import data from a file with a single line of code, namely 

pandas.read_csv(“data.csv"). With regards to scalability and some other factors, this might 

http://www.exampledomain.com/robots.txt
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not be the best option in the long run. Nevertheless, in a phase of exploration, it will probably 

suffice (and possibly even keep a project lightweight and agile). 

 

When designing a long-term solution, with data being added continuously, a database might 

be needed. A relational database management system (RDBMS), such as PostgreSQL, can be 

useful when working with data. The strength of a RDBMS is also its weakness; it enforces 

data to adapt to a schema. Sometimes enforcing schemas is good, because you expect the data 

to be structured in a certain way. On the other hand, sometimes the data collected is 

unstructured. NoSQL (Not only SQL) is another type of database system, which utilizes a 

non-relational architecture. MongoDB is a NoSQL database system, which doesn’t enforce 

any schema. This makes it flexible to design and work with. 

 

2.1.4 Understanding the data 

You are provided with an array of numbers, without getting any context as to what it 

represents. The goal is now to predict which the next number will be. This problem can be 

approached in many ways and the prediction made might even be correct. But what if you 

were told that the array is a time series, containing price data for a stock? Now, you know for 

certain that the number cannot be negative. Additionally, you now know that the array is 

ordered. If you also happen to know something about the dynamics of stock price 

movements, this will most definitely help as well. Depending on the situation, understanding 

the data might help, or even be essential to successfully analyze it. 

 

Understanding how data was collected and sampled is also important. It sets the foundation 

for a properly made analysis. E.g., when testing trading strategies with historical data, a 

common way of choosing the historical data is from the current OMXS30 index list. The list 

consists of the 30 most actively traded stocks (by turnover) on Nasdaq OMX Stockholm. This 

will however not be a good representation of how well OMXS30 will perform in the future. 

For example, “Fingerprint Cards” is currently on the list, but wasn’t a few years ago. The 

total return from five years ago until today (as of 2017-08-08) is over 5000% [7]. If a strategy 

was made for OMXS30 stocks, Fingerprint Cards wouldn’t have been traded at that time, 

since it didn’t enter the list until January 4th, 2016 [8]. A better choice of dataset would be to 

only include historical data for stocks when they were included in the OMXS30 list. Even 

though it sounds trivial that the current OMXS30 list is not fully representative of OMXS30 

past performance, it can be hard to spot these type of assumptions. Especially without domain 

knowledge about stock markets. 

 

2.1.5 Preparing the data 

Once the data is collected, it is to be preprocessed so that it’s easier to store and work with. 

One of the parts of preparing data is cleaning it. This can consist of anything from 

decoding/encoding text, converting strings to integers, changing short forms to its original 
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form, to filtering out insignificant parts of the data. Sometimes there’s missing data which 

needs to be handled somehow. 

 

Even though data should mostly be cleaned before storing it, it’s a good practice to also store 

the raw format of it as well, since information might otherwise be lost. If for instance a new 

machine learning model is developed that depends on raw data rather than cleaned data, it 

should be possible to access the raw data easily.  

 

Normalizing is another part of the data preparation. Some models work better with unit 

variance and zero mean. Some work better when data is rescaled to fit in the range from 0 to 

1. Other models work well without any type of normalization. In the case of stock pricing, 

normalization can be a good practice. It’s otherwise hard to compare stock A with a price of 5 

units to stock B with a price of 200 units. An interesting metric is rather how the stocks 

performed (percentage increase) from day X to day Y. 

 

Feature engineering prepares data in a way that a machine learning algorithm easily can find 

patterns. In statistics, features are called synthetic variables. If a dataset includes titles of 

people, such as “Mr Peter Anderson”, “Mrs Olivia Robertson” and “Ms Tina Roper”, one 

idea for a feature would be “male” or “female”. 

 

Using features is a common practice in stock trading. Features are instead called indicators 

and can be used for visualization purposes as well as a mean to prepare the data for 

modelling. An example of an indicator is the simple moving average (SMA or MA), which 

shows the rolling mean of the close price over a certain time period. It can be a way of 

reducing “noise”, which in this case is fast price fluctuations. 

 

Usually, MA is used together with current close price. Comparing close price with a MA is a 

well-known practice within the world of stock trading [9]. Let 𝐶𝑆𝑀𝐴 =
𝑐𝑙𝑜𝑠𝑒 𝑝𝑟𝑖𝑐𝑒

𝑚𝑜𝑣𝑖𝑛𝑔 𝑎𝑣𝑒𝑟𝑎𝑔𝑒
. 

Depending on the characteristics of CSMA, it is possibly ready to be used as a data input for 

a model, or it might need further preprocessing. 

 

Feature engineering has shown to be an effective way of improving the performance of a 

model. “For most Kaggle competitions the most important part is feature engineering, which 

is pretty easy to learn how to do” [10] - Tim Salimans, two time Kaggle competition winner. 

This quote makes a compelling argument about how important feature engineering is. 

However, it’s important to point out that the machine learning competitions held by Kaggle 

are given an already well defined problem domain. The wanted output is already determined 

and sometimes domain insight is given or otherwise open for discussion among participants 

[11]. 
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2.1.6 Exploring the data 

Exploring data is a good way to get familiar with it. This can be done by looking at the raw 

data, plot it and make histograms of the distribution. Are there any patterns? Are there any 

anomalies? Sometimes, it might be difficult to come up with a question or hypothesis about a 

dataset. By exploring the dataset, interesting questions might arise. 

 

The histogram below (Figure 2A) shows the distribution of the close-to-close price 

development for the stock SCA B (Svenska Cellulosa AB). Close-to-close price development 

is calculated by the close price of a given day divided by the close price of the day before it. 

The distribution looks somewhat Gaussian. Notice that there is an anomaly close to the center 

of the distribution. It is much more probable that the close-to-close price development is 

slightly higher than 0% as compared to slightly lower than 0%. 

 

 
Figure 2A. Shows a distribution histogram of the close-to-close price 

development in the stock SCA (Svenska Cellulosa AB). The data source is 

Nasdaq OMX, with a time period chosen to be all available data (1987-11-17 

to 2017-08-02). 

2.1.7 Modelling the data 

According to [12], a mathematical model is “a representation in mathematical terms of the 

behavior of real devices and objects.” In this case, the object (or system) to be described is 

the stock market and stock price movements in particular. The model doesn’t have to 

describe the complete behavior of the system. George E.P. Box, a British statistician, 

famously wrote a paper containing a section with the title “All models are wrong but some 

are useful” [13, p. 2]. He ends the section with: 
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Now it would be very remarkable if any system existing in the real world could be 

exactly represented by any simple model. However, cunningly chosen parsimonious 

models often do provide remarkably useful approximations. For example, the law PV 

= RT relating pressure P, volume V and temperature T of an "ideal" gas via a constant 

R is not exactly true for any real gas, but it frequently provides a useful 

approximation and furthermore its structure is informative since it springs from a 

physical view of the behavior of gas molecules. 

For such a model there is no need to ask the question "Is the model true?". If "truth" is 

to be the "whole truth" the answer must be "No". The only question of interest is "Is 

the model illuminating and useful?" [13, pp. 2-3] 

This section provides insight on how a model can be useful, even though it cannot describe 

the complete behavior of the system in question. The real question is if a model can provide 

value. As a comparison to theoretical models, such as the one described above, models can be 

created using empirical data. This can be done using a variety of tools/methods, for instance 

machine learning. 

 

Closely related to asking the right question is stating a correct optimization problem. An 

optimization problem or metric can be defined by a cost function. It can be fairly simple to 

define the loss function. Beware though, the phrase “Be careful of what you wish for, you 

might just get it” has never been more appropriate. Nick Bostrom, a Swedish philosopher, 

wrote in 2003 about a seemingly harmless “paperclip maximizer” problem. The moral of the 

story is that if an objective is described, for example “produce as many paperclips as 

possible,” a possible way of pursuing the given objective could be to transform all land on 

Earth to factories and to use all humans as raw material [14]. This example is of course an 

extreme one, but it does point out the importance of defining the optimization problem. It 

also assumes that the optimizer isn’t limited in what possible actions it can take to achieve its 

goal. In machine learning, the possible actions to take and available resources are usually 

limited. 

 

One example of a machine learning model is the so called random forest. It utilizes a learning 

method called supervised learning. Supervised learning effectively means that the training of 

a model is done by giving it both the wanted output (answer) and the corresponding inputs. 

Exactly how the model learns from this information varies. 

 

2.1.8 Privacy and dangers of data science 

The example given earlier about feature engineering gender/sex (male or female) can be 

relevant in some instances and irrelevant in others. For instance, sex is highly relevant when 

looking for breast cancer and prostate cancer. On the other hand, it might be a good idea to 

make gender/sex irrelevant when looking through resumes for good job candidates. In some 

cases, sex/gender can be inferred by looking at other parts of the data. E.g., if the sex is 

removed from a dataset with medical journals, there might still exist data regarding how 

many prostate cancer and breast cancer checkups an individual previously had. These are 
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clear examples that highlight the possibility of discrimination. However, the discrimination or 

harmful biases might be subtler and more hidden than this. With a more complex and 

comprehensive dataset, such as millions of news articles, biases can stay well hidden in the 

data and influence the insights derived from the dataset. Asking the right question is the first 

step to getting a high-quality answer, but the question is to be answered using data. 

Therefore, if empirical data containing biases is used to train a model, the answer will most 

likely contain biases. E.g., a model is created to predict (or even decide) who the next 

president of the U.S. will be. By training the model using data about former presidents, and 

having gender among the feature inputs, the model will most likely be highly biased against 

women. In the case where models make decisions, the biases might get reinforced. However, 

if done right, these biases can be found and accounted for [15]. 

 

Some data can be determined as safe to share (with people or software applications).  

Smartphones are usually equipped with accelerometers, which captures orientation (tilting) 

and movements. A research team at Georgia Tech used an iPhone 4 to record accelerometer 

readings while it was placed next to a computer keyboard. Using the data readings, they were 

able to decipher sentences written on the computer keyboard with up to 80% accuracy [16]. 

This discovery shows how a seemingly harmless sensor can become a privacy and security 

issue. 
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3. STOCK MARKET 

A stock market is a marketplace where investors (individuals and organizations) can trade 

(buy and sell) shares of companies. To be able to trade shares, a connection to a stock 

exchange API is needed. This can be done directly to the exchange, but is usually done 

through a broker, such as Avanza or Nordnet. There are a few different stock exchanges in 

Sweden; Nasdaq OMX Nordic and AktieTorget among others. Both Nasdaq OMX and 

AktieTorget opens at 09.00 and closes 17.30, apart from weekends and certain holidays. 

Every day, the closing price is recorded, as well as the highest/lowest price of the day. 

Nasdaq OMX stores opening price data, while AktieTorget doesn’t. 

 

The companies listed on the Swedish exchanges ranges from multinational corporations 

valued at hundreds of billions of SEK [17] to small companies valued at less than 50 million 

SEK [18]. Liquidity is a term that describes how easy it is to buy or sell a stock, without 

affecting the stock price [19]. Generally, stocks with higher valuation will inherently have 

better liquidity. 

 

The price of a stock is essentially determined by supply and demand. When buyers dominate, 

the price goes up and vice versa [20]. A stock price is dependent on the information available 

for the investors. When new information is made available, such as news that influences the 

outlook of a stock, the stock price will most likely adjust. According to “Efficient capital 

markets: A review of theory and empirical work” by Eugene F. Fama, the stock price always 

reflects all current available information [21, p. 383]. The paper proposes three different 

levels of market efficiency. One of them being the weak form efficient market hypothesis 

(henceforth weak form EMH). It argues that future asset (e.g. stock) pricing cannot be 

predicted using historical pricing data [21, p. 388]. 

 

Another level of the hypothesis is the semi-strong form EMH. It proposes that all publicly 

available information, such as historical pricing data, news and other information regarding 

the asset, will be fully reflected in the asset pricing [21, p. 388]. Notice that this hypothesis is 

a superset of the weak form EMH. Thus, if the weak form EMH is nullified, so is the semi-

strong form EMH. 

 

3.1 Technical analysis 

Technical analysis (hereafter TA) is a common practice in stock trading [22]. It utilizes 

historical pricing data to predict future pricing. Note that this is exactly what the weak form 

EMH proposes to be unfeasible. Even though it is difficult to completely nullify the weak 

form EMH, the fact that TA is a common practice casts doubt upon it. 

 

To give an insight into what TA is, let’s take the example of moving average (MA). MA is a 

simple so called indicator, commonly used in TA [23]. Indicators are meant to capture some 

of the dynamics of price and volume change over time. In Figure 3A, price and MA200 (MA 

using the previous most 200 days) is visualized. Notice that when price is trending either 
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upwards or downwards, MA200 lags. The stock can be defined as in a “positive trend” when 

price is higher than the MA200 and as in a “negative trend” otherwise. A simple strategy can 

be developed, which buys this stock shown below when a positive trend is started and sells it 

when entering a negative trend. By excluding trading fees and dividends from the equation, 

this simple strategy would approximately yield a 380% return, meaning 1000 SEK invested 

would end up as 4800 SEK. Meanwhile, if a buy-and-hold strategy was used instead, the 

corresponding result would be approximately -6% and 940 SEK. These results should 

however not be presented without clearly warning the reader; There are many, many possible 

fallacies when drawing conclusions from looking at historical prices. A robust way of testing 

strategies is needed. 

 

 
Figure 3A. The closing price each day is shown together with MA200. A trend 

can be defined as positive or negative when the MA200 lags. This can be used 

to create a simple trading strategy. 

 

In the example above, price together with an indicator was used to make a strategy. 

Sometimes, several indicators can be used in combination to create strategies. There are 

indicators to measure price volatility (e.g., Bollinger Band® [24]), price range (e.g., 

Stochastics [25]) and many more aspects of the price and volume. 

 

3.2 Fundamental analysis 

Accompanying the technical analysis is the fundamental analysis (hereafter FA). According 

to [26], FA is “a method of evaluating a security in an attempt to measure its intrinsic value, 

by examining related economic, financial and other qualitative and quantitative factors”. The 

analysis can be as simple as looking at the price-earnings ratio [27]. A complex analysis can 

be performed by taking hundreds of different aspects into account, such as macroeconomic 
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events, competitor outlook and news releases regarding the company in question. As 

mentioned earlier, the semi-strong form EMH proposes that publicly available information 

will be fully reflected in the stock pricing. This goes against FA, if the FA is assumed to be 

performed using only publicly available information. 
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4. SYSTEM AND METHOD 

The system to be developed will consist of a few components. The components will together 

create the foundation for a data-driven trading system. As stated in the limitations, the live 

trading part will be left for future work. Focus will instead be on developing tools for data 

collection, storage and modelling. First, a tool for automatically collecting and storing news 

data from AktieTorget is developed. Second, using knowledge from the first tool, another 

tool for collecting and storing stock pricing data is developed. Third, a tool for general 

analysis of price movements before and after a set of events is developed. To test this tool, an 

experiment is conducted, which utilizes the previously collected and stored pricing and news 

data from AktieTorget. Since the experiment turned out to contain faulty assumptions about 

the data, a modified version of the experiment was conducted. Fourth, a tool for analysis and 

modelling of stock data is developed. To test it, an experiment is conducted by developing a 

model and testing if it can predict future pricing. 

 

4.1 News data collection and storage 

The objective is to collect news data from AktieTorget and store it in a database. There were 

several reasons as to why AkieTorget was chosen. Firstly, there are no policies against 

automatic scraping and the robots.txt allow bots to request news articles (as of 2017-08-13). 

Secondly, all deals made on AktieTorget are recorded and made publicly available, which 

among other things, makes experiment replication easier. Lastly, greater stock liquidity is 

presumed to roughly translate into more interest in the stock. Subsequently, obvious patterns 

to trade on are rapidly found and exploited. 

 

As a way of collecting the data, Scrapy is used together with MongoDB. One of the core 

components of Scrapy is the “spider”. The spider, which is implemented as a Python class, 

holds information about what links to follow as well as parsing the incoming http response 

html. In this case, the link following rule is defined using the regular expression 

“NewsItem\.aspx\?ID=\d+”. The website domain is omitted since the spider later adds it. The 

“\d+” is the regular expression for the integer mentioned above, which in this case is the 

unique identifier for every news article. 

 

The link following rule will only tell the spider what links to follow while already on a page. 

What it doesn’t tell the spider is where to begin scraping. That’s where the start url(s) enters 

the picture. The only start url needed here is 

“http://www.aktietorget.se/News.aspx?Page=1&Show=25000”. Since there are currently 

about 21000 news available on AktieTorget, this will expose all news article links at the same 

time, which is a mere 15MB of html data. It could, for instance, be divided into 10 start urls 

of 2500 news articles to show on each. However, if there are news released in between the 

http requests of these pages, some news might jump from one page to another. Thus, it cannot 

be assured that all news are scraped. 

 

http://www.aktietorget.se/News.aspx?Page=1&Show=25000
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Every time the spider follows a link and get an http response, it will pass the response to a 

method as an argument. The method’s purpose is to pass on an “item” to the item pipeline. A 

Scrapy item is a class with untyped fields. In this case, every item is populated with a 

headline, url, time of release, time of scrape, news body and raw html. The raw data can 

come in handy if some other information is needed later, such as html keyword tags etc. In 

that case, no http requests are needed and the work can be done without involving Scrapy. 

 

Before populating the fields, the http response needs to be parsed. An easy, yet not very 

efficient, way of extracting the wanted data is to use regular expressions. Online tools like 

regextester.com/ together with the raw html will make the construction of regular expressions 

rather simple. To extract news articles from AktieTorget, the regular expression can look like 

this: 

 
(<h1 style[\s\S]+>)([\s\S]+)(<\/h1>[\s\S]+class="ingress">)([\s\S]+<\/h2>)([\s\S]+<\/div>)([\s\S]+)(Publicerat: )([\d\- :]+) 

 

A regular expression can be subdivided into groups using parentheses, where some groups 

holds the data of a field. If there is a matching substring to the regular expression, group 2 

will hold headline, group 4 and 5 will hold the body and group 8 will hold the time of release. 

 

The time of release is at this point a string with the format “YYYY-MM-DD HH:MM:SS”. 

This can either be stored as a string or a datetime object. MongoDB can interpret and store 

Python datetime objects. To convert the time of release string to a datetime object, Python 

module ciso8601 can be used. It’s a fast way of converting datetime strings of various 

formats to a Python datetime object [28]. Because of other dependencies in the overall 

system, the current version of the software is implemented by using the original datetime 

string. 

 

BeautifulSoup is another scraping module for Python. In this case it is only used to remove 

html tags from the text (in the different groups). Once html tags are removed, the data is 

clean and ready to be stored. As mentioned earlier, this is done by creating an item, 

populating its fields and then simply letting the method return the item. By returning the item 

it gets passed on to the item pipeline. The Scrapy item pipeline connects to MongoDB using 

the Python module pymongo. Scrapy documentation includes code for the interface between 

Scrapy and MongoDB at [29]. Every item passed to the item pipeline will be inserted to the 

wanted collection in the database. Now, the Scrapy spider can be started and the news articles 

will be collected and then stored in the MongoDB. 

 

4.2 Pricing data collection and storage 

The next objective is to collect pricing data related to the collected news. AktieTorget 

provides full order book publicly. Every time a stock is traded (changes owner), the details 

about the deal can be found on AktieTorget’s webpage at [30]. The deal data is hereafter 

referred to as intraday data. 
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The intraday data is normally collected or viewed manually. The data is however not as easily 

scraped as the news data, since there are a few user interactions needed before it can be 

displayed. The important user inputs are: choose stocks from a list, choose the wanted time 

frame and if it should reply with end of day or intraday data. To be able to collect the intraday 

data using scraping, one needs to find out how and what user input data is sent from the web 

browser client to the web server. The first try to find this data was done by analyzing the html 

and JavaScript code for the web page. It gave some initial insights, but was unfortunately not 

enough to solve the problem. Next attempt was made using a network protocol analyzer 

called Wireshark. By logging the packets sent by the web browser, the user input data gets 

exposed. Figure 4A below shows an example of how a packet with user input data can look 

like. 

 

 
Figure 4A. The figure shows the packet of interest, which was found using 

Wireshark. The packet contains an html form which holds user input 

information. 

 

Scrapy has native support for sending html form requests. Therefore, the mimicked user input 

can be incorporated in a spider, in a similar way as with the spider mentioned earlier. 

Scraping news meant parsing a single page for links and then following them. The intraday 

data spider needs to choose stocks and time period to show. There are roughly 500 stocks in 

the list and for every stock there’s a time period for which it’s been traded. The intraday data 

is, for some of the stocks, to comprehensive to show in a single web page. By showing the 

intraday data a month at a time, it will fit on one page. The intraday data is shown from the 

year 2000 and onward. To brute force all pages for all stocks, it would take roughly 100 000 

http requests (500 𝑠𝑡𝑜𝑐𝑘𝑠 ×  18 𝑦𝑒𝑎𝑟𝑠 ×  12 𝑚𝑜𝑛𝑡ℎ𝑠 = 108 000 ℎ𝑡𝑡𝑝 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠). With a 

time delay of two seconds between requests, it would take 60 hours to complete the scraping. 

Since stocks gets listed and delisted, many of the requests will return no intraday data. To 

reduce load on the web server as well as scrape time, a better way needs to be found. This can 

be done by dividing the scraping task into the three following steps: 

1. Send an http request for the web page containing the form at 

http://www.aktietorget.se/QuoteSearch.aspx?Language=2. This is to obtain the list of 

stocks, which is included in the http response message. By parsing the http response’s 

html code with regular expression, the list is extracted. The previous regular 

expression found was meant to find one match. This regular expression is meant to 

find all matches within the html code. 

http://www.aktietorget.se/QuoteSearch.aspx?Language=2
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2. All the end of day data for a stock fits in a single page. For every stock in the list, a 

form request is sent with a time period enclosing all dates available (2000-2017). 

Moreover, end of day data is asked for, instead of intraday data. This will yield all 

dates that are available for that stock. 

3. Brute force is now avoided, since the first and last dates from part 2 determine the 

first and last month to scrape intraday data for. Form requests are sent to iteratively 

collect intraday data, stock and month wise. The http response’s html code is then 

parsed and values are extracted with regular expression. Every deal made is then 

inserted to the MongoDB server as a document. The document includes ticker (a short 

security identifier, such as “SLOTT A”), time of the deal, amount of securities traded 

and price. 

 

The pricing data was collected and stored using the above-mentioned steps. MongoDB 

document IDs will be set as the primary key and is the only field to be initially indexed. 

When querying the intraday data, ticker together with time period is useful for sorting and 

filtering. The database can therefore be optimized by indexing ticker and datetime. A simple 

query to get the intraday data for a stock on a single day takes 19.04 seconds to perform. By 

indexing ticker and datetime, the same query takes 0.58 seconds. This should of course be 

seen as a rough comparison. 

4.3 Price distribution over a set of events 

There are many ways to come up with a set of events that are of interest. Trading strategies 

and news releases are among them. To visualize a price movement from a single event can be 

insightful. It is, however, not statistically significant. The stock market has a lot of variance. 

Let’s instead take a set of events and calculate the mean (μ) and standard deviation (σ) at 

each time step. The mean and standard deviation is visualized with timestep t=0 being the 

time of the event. 

 

To provide a set of events, the model developed during experiment 3 (see chapter 4.4.1) is 

used. The number of events in the set is 17, which is low and should thus not be used to draw 

too many conclusions. Furthermore, using standard deviation as a measurement of variation 

might not be fully optimal, since it assumes the price distribution to be Gaussian. Below is 

Figure 4B, which illustrate the how the visualization works. Notice that there’s a sudden price 

spike from t=0 to t=1. 
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Figure 4B. This visualization is meant to communicate a summarized view of how the 

price develops over a set of events. It shows both mean price and standard deviation, 

at every discrete timestep t. 

 

4.3.1 Experiment 1 - Testing impact of news on stock pricing 

Observation: Events, such as news releases (e.g. a news article stating a patent was approved 

for company X), seem to trigger stock price movements. A part of stock price adjustments 

seems to be delayed, instead of fully adjusting for the newly added information immediately. 

This suggests that the semi-strong form EMH does not apply. 

 

Hypothesis: The return as well as the risk-adjusted return can be above average when trading 

a stock after a news release. Even if the stock is bought tentry time units after it was released. 

 

Method: The hypothesis is tested by visualizing the price movement around news releases, 

from tbefore time units to tafter after. The data used in the experiment will be obtained from the 

MongoDB-database. The stock is “bought” tentry after the news release. texit time after the 

news release, the stock is “sold”. As mentioned earlier, price movement after a single event is 

not statistically significant. Therefore, mean price μ(t) is calculated using several news 

releases that contain the same keyword (e.g. “patent”). In addition to mean price, standard 

deviation σ(t) is also calculated. Risk-adjusted return is determined by Sharpe ratio with the 

following formula: 𝑆𝑅 =
𝐴𝑅−𝑅𝐹

𝑆𝐷
, where 𝑆𝑅 = 𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜, 𝐴𝑅 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑡𝑢𝑟𝑛, 𝑅𝐹 =

𝑅𝑖𝑠𝑘 𝐹𝑟𝑒𝑒 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒 and 𝑆𝐷 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛. Since the time horizon is short, 

risk-free interest rate can be approximated to be zero. The risk-adjusted return is therefore 

calculated using 𝑆𝑅 =
𝐴𝑅

𝑆𝐷
. An important note is that the average return and standard deviation 
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should be calculated from 𝑡𝑒𝑛𝑡𝑟𝑦, not t=0. In addition to the risk-adjusted return, average 

return is also included in the hypothesis. To compare both return and risk-adjusted return to a 

benchmark, random samples of “non-events” will be taken from the same stock. 

 

Limitations: 

● The pricing used is taken from the deals made. This does not fully reflect if the fictive 

buying and selling done at 𝑡𝑒𝑛𝑡𝑟𝑦 and 𝑡𝑒𝑥𝑖𝑡 could have been performed at those price 

levels. On the other hand, if the liquidity is high enough, fictive buying and selling 

price levels can be approximated by the price levels of deals made. 

● By binning the deals made, time at a given timestep does not reflect the price at that 

exact moment. Instead, it reflects the price of the deals made inside that particular bin. 

To avoid data leakage, price at time t is determined by the price within the period 𝑡 −

𝑏𝑖𝑛𝑠𝑖𝑧𝑒 to 𝑡. This can be put in contrast with binning made using 𝑡 −
𝑏𝑖𝑛𝑠𝑖𝑧𝑒

2
 to 𝑡 +

𝑏𝑖𝑛𝑠𝑖𝑧𝑒

2
 or 𝑡 to 𝑡 + 𝑏𝑖𝑛𝑠𝑖𝑧𝑒, which will both leak information backwards in time. 

● Related to the binning problem described above is that deals made on tevent+1 micro 

second will be displayed on timestep 𝑡 + 𝑏𝑖𝑛𝑠𝑖𝑧𝑒. Thus, it’s a good idea to avoid 

using 𝑡 + 𝑏𝑖𝑛𝑠𝑖𝑧𝑒 as entry. 

● The resolution of news release timestamps is on second level. However, the resolution 

of deals made is on minute level. The timestamp of a deal is determined by simply 

removing the seconds (i.e., deal made at 12:52:42 becomes 12:52:00). 

 

4.3.2 Experiment 2 - Testing impact of news on stock pricing (modified) 

Observation: Same as in experiment 1. 

 

Hypothesis: Same as in experiment 1, except that risk-adjusted return won’t be covered. 

Instead, return will be the metric of interest. 

 

Method: To tackle the problem with sparse pricing data (see subsection 5.2.1.1), a second 

experiment concerning the impact of news on stock pricing is conducted. This time, mean 

price and standard deviation for each timestep will be neglected. Instead, only release time 

price, “buy” price and “sell” price will be of interest. The first deal after 𝑡𝑒𝑛𝑡𝑟𝑦 will be used 

as the “buy” price and the first deal made after 𝑡𝑒𝑥𝑖𝑡 will be used as the “sell” price. The 

release time price is determined by the deal assured to be before the news release. 

 

A plot is made, where lines are drawn between every entry point and its corresponding exit 

point. The points are determined by price level and time of buying/selling. The plot will only 

give an idea of price development. The actual result is determined by average return, which 

in turn is determined by the entry and exit prices. 
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Limitations: 

● The pricing used is taken from the deals made. This does not fully reflect if the fictive 

buying and selling done at 𝑡𝑒𝑛𝑡𝑟𝑦 and 𝑡𝑒𝑥𝑖𝑡 could have been performed at those price 

levels. On the other hand, if the liquidity is high enough, fictive buying and selling 

price levels can be approximated by the price levels of deals made. 

● The first deal after 𝑡𝑒𝑛𝑡𝑟𝑦 will be used as the buy price and the first deal made after 

𝑡𝑒𝑥𝑖𝑡 will be used as the sell price. These deals are assumed to be representative of the 

current price level. Since AktieTorget stocks doesn’t provide a lot of liquidity, this 

might be false premises. 

 

4.4 Developing a model to aid/perform trading decisions 

By using historical pricing data from some of the OMXS30 stocks, a model to predict the 

next day’s closing price will be developed. Further details will be explained in the experiment 

below. 

 

4.4.1 Experiment 3 - Testing a trading model using historical stock pricing data 

The database (the one populated by scraping news and pricing data from AktieTorget) is not 

publicly available for querying. Therefore, it’s hard to reproduce the experiment made with 

the data. To contrast the previous experiment, this experiment will be based on data that can 

be easily collected manually; end of day data from the OMXS30 list. In addition to 

reproducibility, OMXS30 stocks generally provide better liquidity (as mentioned earlier). 

 

Observation: It seems possible to use historical stock pricing data to develop a trading model 

that outperforms the market in general, in terms of risk-adjusted return. Consequently, weak 

form EMH should not apply. 

 

Hypothesis: Using end of day pricing data from OMXS30 historical data, a model can be 

created that yields a better risk-adjusted return per day than average. 

 

Method: To test the hypothesis, a random forest model with a binary classifier will be 

developed. The output is to simply predict if a day’s closing price will be 0.5% higher than 

the previous day’s closing price (
𝐶𝑙𝑜𝑠𝑒(𝑡+1)

𝐶𝑙𝑜𝑠𝑒(𝑡)
> 1.005). Input for the model will be features 

created from pricing data. Random forest is chosen because of its simplicity and flexibility. 

 

1. End of day data for OMXS30 stocks is downloaded manually from 

nasdaqomxnordic.com/aktier/historiskakurser. The full list of stocks can be found in 

“Ticker symbols for the stocks used in experiment 3” (appendix B). The period 

chosen when downloading data for all stocks is 1900-01-01 to 2017-08-03 (note that 

the data doesn’t actually start at 1900-01-01, it’s just a way of catching all data 

available). 

http://www.nasdaqomxnordic.com/aktier/historiskakurser
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2. Features are engineered using pricing data only. These will be used as the inputs for 

the model. The random forest model will, as a byproduct of the trained model, 

provide results of how important the different features are. The engineered features 

are described in the table “Features” (appendix A). 

3. To test the model, the dataset is divided into three subsets (training set, test set 1 and 

test set 2). The last year of the dataset (2016-08-03 to 2017-08-03) is used as test set 2 

and will be used for simulated out of sample testing. The remaining data will be used 

to randomly sample training set and test set 1. 

4. When dividing the data into training set and test set 1, price and volume for stock A 

on 2015-05-02 could end up in the training set, while the corresponding data for stock 

B on the very same date ends up in the test set. Since stock prices correlate, this might 

cause the model to overfit. This is solved by putting all the data from a particular date 

in either the training or test set. 

5. A random forest model is developed. Hyperparameters are tuned by trial and error, 

while examining the performance of the model. 

6. The first observable result is available when the model has been trained. To produce 

the result, test set 1 is used. The real result is obtained from using the model to make 

predictions for test set 2. The average close-to-close risk-adjusted return for the whole 

test set 2 will be compared to the average close-to-close risk-adjusted return when the 

model output is above a certain threshold. To calculate risk-adjusted return, the 

previously mentioned Sharpe ratio will be used. Just as in experiment 1, risk free 

interest rate is approximated to be 0. This results in the following formula: 𝑆𝑅 =
𝐴𝑅

𝑆𝐷
. 

 

Further details on how the experiment was performed is explained by the resulting source 

code, available as a Jupyter notebook at [31]. 

 

Limitations: 

● Data is taken from current (as of 2017-08-03) OMXS30 list. This was earlier 

mentioned as not fully representative of the historical performance of OMXS30. In 

this case, it’s assumed to not affect the outcome too much. 

● Training and test data is randomly sampled from the dataset. If data from day x is 

used to train the model, data from day x-1 might be used to test the model. To counter 

this, another test set will be made using the last 365 days of the dataset. The last 365 

days is unfortunately a relatively short period of time. Neither of the two types of test 

set sampling methods are optimal, but combining the results will have to suffice for 

this experiment. 

● Hyperparameters are tuned by trial and error. This might cause overfitting. 
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5. RESULT 

The goal was split into two sub-goals. Both should be considered achieved. 

 

5.1 Develop software to automatically collect and store news and pricing data 

The first of the two sub-goals were to develop software to automatically collect and store 

news and pricing data. The software/tools described in subchapters 4.2 and 4.3 is/are 

functioning according to the set goal. It utilizes Python together with the Python module 

Scrapy to automatically collect news and pricing data. It then passes the data to be stored on a 

MongoDB database. Currently, scraping is not performed using any scheduling. Instead, 

commands need to be entered to start the scraping. This means that the level of autonomy is 

limited. Since there was a second sub-goal to consider, automatic scheduling was left as a 

future feature to develop. 

 

5.2 Develop models and tools to aid/perform stock trading decisions 

The second of the two sub-goals was to use the collected data, develop models and tools to 

aid/perform stock trading decisions. To achieve the sub-goal, a visualization tool and a 

machine learning model was developed. The software developed for the tool and model is 

considered a part of the result. Moreover, the model and tool have experiments tied to them, 

with results that are relevant for testing if the sub-goals were achieved. 

5.2.1 Price distribution over a set of events 

The resulting visualization can neatly communicate a summarized view of several price 

movements, in a single graph. Mean price μ(t) can be used to find a good exit point, for 

instance when it’s visibly clear that the price movement upwards has started decaying. E.g., 

in Figure 4B, the price movement plateaus between t=4 and t=12. A good exit point might 

therefore be at t=4. Furthermore, the standard deviation “bands” 𝜇(𝑡) + 𝜎(𝑡) and 𝜇(𝑡) − 𝜎(𝑡) 

gives a notion of how wide the distribution is at a given timestep. It gives an impression of 

how risky it is to buy a stock using the event as trigger. In addition to looking at what 

happens to the price after a set of events, it’s also interesting to look at what happens before. 

 

The resulting software to visualization price distribution over a set of events mostly prepares 

the data in different ways. Once the data is prepared, it’s easy to visualize it. 

5.2.1.1 Experiment 1 - Testing impact of news on stock pricing 

The impact of news on AktieTorget was hard to quantify using the described experimental 

hypothesis and method. The method contained faulty assumptions about the pricing and news 

data. It was assumed that there were deals made during every timestep. This assumption was 

important to the calculation of mean price and its standard deviation at every timestep. There 

might be ways of neatly dealing with this sparse data problem. However, with regards to the 

other experiments to perform, the sparse data problem won’t be investigated further. A new 
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and short experiment will instead be performed, which is supposed to be more tolerant to 

sparse data. 

 

5.2.1.2 Experiment 2 - Testing impact of news on stock pricing (modified) 

After trying a few different keywords in combination with different stocks, no patterns of 

significance were found. The Swedish keywords avtal, patent, order, uppköp and förvärv 

(translation: deal/contract, patent, order, buyout and acquisition) were queried for on news 

related to the company Cherry AB. The key metrics related to these keywords can be seen in 

the table below (see Figure 5A). 

 

Summary of results for price development (stock: Cherry AB) 

Keyword 

(Swedish) 

Keyword 

(English) 

Average 

return 

(AR) 

Standard 

deviation 

(SD) 

Number of 

news 

Avtal Deal/Contract 0.28% 1.91% 17 

Patent Patent -0.34% - 1 

Order Order 0.05% 0.47% 3 

Uppköp Buyout - - 0 

Förvärv Acquisition 0.24% 1.37% 35 

Figure 5A. The database is queried for the Swedish keywords. “Number of 

news” show how many news were found for each of the queries. For every 

news article, the underlying stock was fictively bought at 𝑡𝑒𝑛𝑡𝑟𝑦 and 

fictively sold at 𝑡𝑒𝑥𝑖𝑡. This yielded an average return as well as standard 

deviation for the fictive trades performed. 

 

As seen in the figure above, the number of news are relatively low. Since news are released 

both during and outside the open hours of the stock exchange, not all them can be used as buy 

signals. What’s more, sometimes there were no deals made in between 𝑡𝑒𝑛𝑡𝑟𝑦 and 𝑡𝑒𝑥𝑖𝑡. These 

instances were neglected and left out of the result. With all things considered, the outcome of 

this experiment shows that a price movement caused by a news release might partly be 

delayed. Even if a stock is bought 𝑡𝑒𝑛𝑡𝑟𝑦 minutes after the news release. The experiment is 

nonetheless minuscule, causing the result only to be slightly indicative whether there’s any 

truth to the hypothesis or not. A more extensive experiment is therefore required for the result 

to carry weight. The tool made to visualize the result did however serve its purpose (see 

Figure 5B below). 

 

The news was firstly filtered using the keyword “förvärv”. Using only keywords turned out to 

be a bad way of classifying good and bad news. Therefore, to simulate that a human or 

computer (that utilizes NLP) was classifying news, they were filtered by simply glancing at 
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the headline for no more than five seconds to determine them to be positive or not. The result 

was slightly better than simply using the keyword. As a final notice, the figure looks messy 

(which speaks in favor of the “Price distribution over a set of events” visualizer). After a 

certain amount of news to plot price development for, it becomes hard to interpret. But it 

serves a few purposes. First, it surfaces any possible outliers. There seems to be two positive 

outliers. The clustered part is somewhat hard to make sense of, though. Second, it gives a hint 

on how long it takes before the first deal is made after 𝑡𝑒𝑛𝑡𝑟𝑦 and 𝑡𝑒𝑥𝑖𝑡. If the liquidity is low, 

it will probably show on the visualization.  

 

 
Figure 5B. A visualization that is meant to give a summarized view of how company 

news impact the company’s underlying stock price. When showing price development 

for 15 or more news simultaneously, it fails to communicate the summarization in a 

clear manner. 

 

5.2.2 Developing a model to aid/perform trading decisions 

The model developed seems to have found patterns. However, the biggest gain from 

developing the modelling is not the model itself. The resulting software that reads data from 

csv files and prepares it (mostly consisting of feature engineering) can be used together with 

other types of models. Likewise, adding more features is easily done. The resulting code is 

available at [31]. 

5.2.2.1 Experiment 3 – Testing a trading model using historical stock pricing 

data 

The random forest was initially fitted (trained) using 200 decision trees and 10 samples per 

leaf. By looking at the performance (close-to-close return) when model output was above the 
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threshold, these were changed to 2000 and 15. Using these parameters, and only trading when 

model output is above the threshold of 0.5 units, the following results were obtained: 

 

Test set 1: 

Percentage of days where model output was above threshold: 5.70% 

Benchmark Average Return (BAR): 0.12% 

Benchmark Standard Deviation (BSD): 2.23% 

Benchmark Sharpe Ratio (BSR): 0.05 

Average Return (AR): 0.81% 

Standard Deviation (SD): 3.38% 

Sharpe Ratio (SR): 0.24 

Number of buy signals: 1609 

Number of days with a buy signal: 720 

Total number of days: 28232 

 

Test set 1 provides a first impression whether the model found any patterns. Notice that AR is 

significantly higher than BAR. On the other hand, SD is slightly higher than BSD. All in all, 

it adds up to SR being 380% higher than BSR. The training and test data used was sampled 

from the same period. The result will probably not reflect how well the model would perform 

on current data. The real question is if the found patterns from this period still applies to test 

set 2. 

 

Test set 2 (simulated out of sample test): 

Percentage of days where model output was above threshold: 1.02% 

Benchmark Average Return (BAR): 0.06% 

Benchmark Standard Deviation (BSD): 1.66% 

Benchmark Sharpe Ratio (BSR): 0.04 

Average Return (AR): 0.28% 

Standard Deviation (SD): 1.57% 

Sharpe Ratio (SR): 0.18 

Number of buy signals: 67 

Number of days with a buy signal: 55 

Total number of days: 6578 

 

Using test set 2, the resulting performance metrics changed drastically. Only 1% of the model 

outputs were above the threshold, in comparison to test set 1 which had a corresponding 

figure of over 5%. This meant that the model only flagged 67 out of the 6578 data points as 

buy signals. The AR dropped from 0.81% to 0.28%. 0.28% can still be seen as a positive 

result, since it outperformed the BAR. BAR and BSD also dropped from test 1 to test 2, but 

BSR more or less stayed the same. Test set 1 was expected to provide a better result than test 

set 2. However, the resulting SR only dropped from 0.24 to 0.18. 

 

The 67 fictive trades made using the buy signals were compounded and a total return of 

19.6% was achieved. This was unfortunately based on a faulty assumption that the trades 
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were made sequentially. As seen in test 2, there were more buy signals made than the number 

of days with trade signals. To tackle this, when there were several buy signals on the same 

day, the fictive portfolio was equally allocated to the different stocks that produced a buy 

signal. E.g., if ABB and Autoliv produces a buy signal on the very same date, 50% of the 

current balance will be allocated to each of them. Surprisingly, this made the total return drop 

to a mere 2.4%. At a first glance, this might look like a bad result. But it raised an interesting 

question: If the return drops when clustered signals are made less significant, what does that 

imply? This question lead to a new discovery about the result. 

 

The 67 buy signals are divided into two sets. One with the clustered signals (signals occurring 

on the same date) and one with non-clustered signals. The mean outcome of the non-clustered 

signals was in fact negative (-0.26%). In contrast, the mean outcome of the clustered signals 

was 1.39%! To better exemplify the difference between the two sets just described, a 

histogram is displayed below (Figure 5C). 

 

 
Figure 5C. The signals produced with test set 2 were divided into clustered and non-

clustered signals. The figure clearly shows that the outcome for clustered signals 

outperform the non-clustered signals. 

 

As seen in the figure above, the clustered signals are clearly shifted towards positive 

outcomes. Furthermore, it can also be inferred that less than 25% of the trades had a negative 

outcome. 
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6. CONCLUSION AND DISCUSSION 

The problem at hand, to develop components for a data-driven stock trading system, 

presented many challenges. To begin with, the different learning curves for new things: Data 

science, Python, Scrapy, MongoDB, Pandas, Numpy, etc. At the beginning of the project, 

having multiple things to learn at the same time made the progress slow going. Towards the 

end of the project, an acceptable proficiency level for the different things was reached. This 

meant moving forward in a significantly higher pace. Furthermore, data related to the stock 

market has a lot of complex dependencies and correlations. During the development of the 

tool and model, assumptions made about the data were found mid-process. E.g., the model 

was originally meant to predict 5 days ahead, instead of 1 day ahead. This would cause 

information leakage, if not properly addressed. The list goes on. In conclusion, the experience 

from developing components for a data-driven trading system is definitely both fun and 

valuable. 

 

During the process of developing components, some dead ends were reached. Visualizing 

mean and standard deviation over time around a set of news releases was one of them. Price 

distribution over a set of events implemented with daily closing prices, did however provide a 

neat and informative summarization of price development. This was the second best resulting 

component. The single best component was, without question, the model developed. It was 

made without much emphasis towards perfecting it. It’s rather comparable to a minimum 

viable product. This implicates that a better model is within grasp. Because of the recently 

gained proficiency and already developed software related to the model, it would now take 

only a few hours to add and test new features. Since the results already hinted that clustered 

buy signals are strong ones, developing features that detect clustering can be a good start for 

future work. 

 

The resulting database system and Scrapy software worked as expected. It automatically 

collects and stores news and pricing data. Querying the database to get insights into the data 

is easy, especially when software developed for the experiments is reused. The system does 

on the other hand not automatically collect real time data. What this means is that it needs to 

be upgraded to be able to make trading decisions in real time. 

 

Experiment number one and two can be seen as inconclusive. They still give the impression 

that there might be a delayed price development after news releases. To make an assertive 

conclusion, a more extensive experiment needs to be conducted. 

 

Experiment number three, where a model was developed, did provide an interesting result. 

The test carried out was made on “new” data, with a positive outcome. The average return as 

well as Sharpe ratio was above the corresponding benchmark values. However, there were 

only 67 buy signals, which is a bit low to make an assertive conclusion. It does however 

imply that the weak form efficient market hypothesis might be faulty. The existence and 

extent of the TA community is another hint that the hypothesis is faulty. Disproving the EMH 

is nonetheless out of the scope of the purpose and goal. 
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As mentioned in section 2.1.8, there are a few ethical aspects to consider when using a data-

driven approach towards getting insights. The example where the US president is to be 

chosen using empirical data about previous presidents sheds light onto one of the problems. It 

teaches us that a data-driven approaches should be performed with caution, since making 

decisions based upon it can create dangerous reinforcement loops. In the case of stock 

trading, the problems are slightly different from the ones mentioned above. For instance, the 

underlying system (stock market or stock price) can be affected by trades made by an 

algorithm (or trading model). Therefore, it might in fact be performing trading in an unlawful 

way. Since the developed model only provides buy signals during the closing of Nasdaq 

OMX, which is a time of high liquidity, it is highly unlikely that it would be able to perform 

unlawful trading. 
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APPENDIX 

Features - Appendix A 

Feature name Formula Explanation 

CC-1 𝐶𝑙𝑜𝑠𝑒(𝑡)

𝐶𝑙𝑜𝑠𝑒(𝑡 − 1)
 

Price development from 

yesterday’s close till today’s 

close 

CBBL1 𝐶𝑙𝑜𝑠𝑒(𝑡)

𝐵𝑜𝑙𝑙𝑖𝑛𝑔𝑒𝑟𝐵𝑎𝑛𝑑𝐿𝑜𝑤𝑒𝑟(20,2)
 

This feature is meant to 

capture if the current price 

deviates from the previous 

20 days’ price levels. See 

Bollinger Band [SOURCE]. 

The second parameter make 

any difference for the 

random forest model 

CBBL2  𝐶𝑙𝑜𝑠𝑒(𝑡)

𝐵𝑜𝑙𝑙𝑖𝑛𝑔𝑒𝑟𝐵𝑎𝑛𝑑(5,2)
 

See above description 

BBW1 𝐵𝑜𝑙𝑙𝑖𝑛𝑔𝑒𝑟𝐵𝑎𝑛𝑑𝑈𝑝𝑝𝑒𝑟(20,2)

𝐵𝑜𝑙𝑙𝑖𝑛𝑔𝑒𝑟𝐵𝑎𝑛𝑑𝐿𝑜𝑤𝑒𝑟(20,2)
  

Bollinger band width is 

meant to capture how 

volatile the price has been 

during the previous 20 days 

BBW2 𝐵𝑜𝑙𝑙𝑖𝑛𝑔𝑒𝑟𝐵𝑎𝑛𝑑𝑈𝑝𝑝𝑒𝑟(5,2)

𝐵𝑜𝑙𝑙𝑖𝑛𝑔𝑒𝑟𝐵𝑎𝑛𝑑𝐿𝑜𝑤𝑒𝑟(5,2)
 

See above description 

CSMA1 𝐶𝑙𝑜𝑠𝑒(𝑡)

𝑀𝐴(200)
 

Current price is compared to 

the moving average of the 

previous 200 days. 

CSMA2 𝐶𝑙𝑜𝑠𝑒(𝑡)

𝑀𝐴(3)
 

See above description 

HL 𝐻𝑖𝑔ℎ(𝑡)

𝐿𝑜𝑤(𝑡)
 

Highest price of the day 

divided by lowest price of 

the day 

CL 𝐶𝑙𝑜𝑠𝑒(𝑡)

𝐿𝑜𝑤(𝑡)
 

Close price divided by 

lowest price of the day 

HC 𝐻𝑖𝑔ℎ(𝑡)

𝐶𝑙𝑜𝑠𝑒(𝑡)
 

Highest price of the day 

divided by close price 
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Ticker symbols for the stocks used in experiment 3 - Appendix B 

ABB, ALFA, ALIV, ASSA, ATCO, AZN, BOL, ELUX, ERIC, GETI, HM, INVE, KINV, LUPE, NDA, 

SAND, SCA, SEB, SECU, SKF, SSAB, SWED, SWMA, TEL2, TELIA and VOLV. 

 


