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Capacity Bounds in Optical Communications

Erik Agrell

Department of Electrical Engineering, Chalmers University of Technology, Sweden, agrell@chalmers.se

Abstract The fundamental concept of channel capacity and related information-theoretic metrics are
reviewed and some techniques to quantify them by means of lower and upper bounds are explained.
The importance of properly discretizing the channel model is highlighted.

Introduction: What is capacity?

Claude Shannon proved in 1948 that no matter
how badly a communication channel distorts a
transmitted signal, it is always possible to transmit
digital information across it almost without errors,
under the condition that the data rate is not too
high1. The transition between sufficiently low and
too high data rate is quite abrupt2, and the rate
where this happens is in information theory de-
fined as the channel capacity. In other words, the
capacity is the maximum achievable rate over a
given channel for virtually error-free transmission.

The channel includes not only the physical
transmission medium between the source and the
destination, but also often parts of the transmit-
ter and receiver; namely, those parts that the de-
signer is unwilling or unable to change3. For a
mathematical treatment, a statistical description
is needed of the output signal for a given input
signal. We distinguish between continuous-time
channels, for which the transmitted signals are
waveforms, and discrete-time channels, for which
the transmitted signals are sequences of sam-
ples. The relation between the input and output
signals may in the former case be described by,
e.g., a stochastic differential equation and in the
latter case by a conditional probability distribution.

The maximization should be done over all parts
of the transmitter and receiver that are not in-
cluded in the channel model. This may include
modulation, pulse shaping, filtering, sampling, de-
modulation, detection, forward error correction
(FEC) coding, and other kinds of signal process-
ing. Additional constraints may apply, for example
if the capacity is to be quantified as a function of
power and/or bandwidth.

The data rate, and therefore the capacity, can
be normalized in different ways, and some con-
fusion unfortunately exists between different ver-
sions of capacity. A safe way to circumvent the
potential ambiguity is by giving the unit when-
ever capacity is discussed. The capacity Cdt of
discrete-time channels is measured in bit/channel

use and the capacity C of continuous-time chan-
nels is measured in bit/s. Normalizing this quan-
tity by the signal bandwidth W yields the spec-
tral efficiency SE = C/W , which is measured in
bit/s/Hz. Researchers with experience from lin-
ear systems should be warned that the capacity
in bit/channel use is not the same as the spectral
efficiency in bit/s/Hz for nonlinear channels, be-
cause of spectral broadening. Another difficulty is
the lack of a universal bandwidth definition.

Calculating or approximating capacity
The channel capacity as defined in the previous
section is sometimes called the operational chan-
nel capacity, because it connects to the operation
of a communication system. It does however not
admit a numerical evaluation, because the maxi-
mization over all transmitter and receiver options
is prohibitively complex.

For evaluation and analysis, the celebrated
channel coding theorem can be invoked1. It
states that the operational capacity of any
discrete-time channel is equal to the information
channel capacity4

Cdt = lim
N→∞

1

N
sup
pX

I(X;Y ) [bit/channel use],

(1)

where

I(X;Y ) =

∫
pX,Y (x,y) log2

pY |X(y|x)
pY (y)

dxdy

(2)

is the mutual information in bit/block between
blocks of N input and output samples X and Y ,
resp., and p denotes the (joint or conditional) dis-
tributions of the corresponding blocks. The chan-
nel is here represented by a sequence of condi-
tional distributions pY |X for increasing N and the
input distribution, which in practice is usually con-
trolled by the modulation format, is similarly rep-
resented by a sequence of distributions pX .

The channel coding theorem is an indispens-
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Fig. 1: The dilemma of channel modeling. Available optical
channel models are either tractable for capacity analysis (left)

or accurate representations of fiber propagation (right), but
not both.

able utility in capacity analysis, as it predicts the
performance using an ideal (so-called “capacity-
achieving”) FEC code without implementing any
FEC. There is however no analogous channel
coding theorem for continuous-time channels,
which is why the vast majority of information-
theoretic research has considered discrete-time
channels only.

Although the channel coding theorem is ex-
tremely powerful, the numerical evaluation of (1)
is often beyond reach for complexity reasons.
This is because I(X;Y ) includes a multidimen-
sional integral, which often cannot be solved an-
alytically, and furthermore, pY in the integrand is
itself given by another multidimensional integral
given pX and pY |X . Also, I(X;Y ) should be
maximized over a multidimensional distribution.

Hence, the channel capacity is unknown for all
channels except a few idealized ones. In partic-
ular, the capacity of the fiber-optic channel is un-
known. In the absence of exact expressions, one
can characterize the capacity using estimates,
bounds, and asymptotic results.

Channel modeling
As explained in the previous two sections, a math-
ematical description of the channel is essential
for analyzing the channel capacity. In general,
the simpler a channel model is, the more accu-
rately can its capacity be characterized, but at
the same time, the obtained capacity results may
be less relevant for the underlying physical chan-
nel. In the context of fiber-optic transmission, this
dilemma is illustrated in Fig. 1, where the chan-
nel models towards the left are more “information-
theory-friendly”5 and those towards the right are
more realistic. The two extremes are the linear
additive white Gaussian noise (AWGN) channel,
whose capacity is exactly known, and the actual
physical channel, which can only be appraised in
experiments. The illustrated classes of models
are described, with references, in5.

Time discretization
Although all physical communication channels,
including the fiber channel, operate in continu-
ous time, the vast majority of information-theoretic

theorems and results apply in discrete time. For
example, all channels in Fig. 1 except the two
right-most are discrete-time models. Hence, an
important and often overlooked element in op-
tical capacity analysis is the discretization of
continuous-time channel models. In linear com-
munication systems, which include most wire-
less and (electric) wired systems, this is not
an issue, since the sampling theorem tells us
that a strictly bandlimited waveform can be per-
fectly reproduced from a sequence of its sam-
ples. In information-theoretic terms, the dis-
cretization process is lossless for linear systems
and the continuous- and discrete-time versions of
the same channel have the same capacity.

This is not the case for the nonlinear fiber chan-
nel. To illustrate this, we simulated propagation
of a strictly bandlimited waveform over an opti-
cal fiber.∗ The transmitted and received signals
corresponding to 10 transmitted symbols at bau-
drate R = 10 Gbaud are shown in Fig. 2, ne-
glecting noise. They were obtained by split-step
Fourier simulations of the discretized NLSE, and
the temporal sampling rate Rs was varied. At
high enough sampling rate, the simulations con-
verged to the output of the regular (continuous-
time) NLSE (thick).

We recall from the sampling theorem that Rs =

R is sufficient for linear propagation of complex-
valued sinc-shaped signals. This was confirmed
in our simulations at low power, when the nonlin-
earities are insignificant. In the nonlinear example
of Fig. 2, the errors introduced by discretization
seem, from a visual inspection, to be negligible
only when Rs > 8R. If Rs < 4R, the output loses
all resemblance with the ideal (nondiscretized)
signal. These observations are somewhat arbi-
trary and depend significantly on the simulation
parameters; the results even change for different
transmitted data sequences. No analytic results
are yet available about the Rs/R required for neg-
ligible discretization errors in the split-step Fourier
representation of the NLSE. Therefore, capacity
results Cdt for the discretized NLSE do not imme-
diately extend to capacities C of the continuous-
time NLSE or the true fiber channel.

The need for higher sampling rates Rs in nonlin-
ear transmission simulations can partially be ex-
plained by spectral broadening, but no analytic re-

∗Parameters: 16-QAM single-wavelength, single-
polarization transmission at 10 dBm launch power; raised-
cosine pulse shaping with roll-off factor 10 %; 300 km single-
mode fiber with ideal distributed amplification; dispersion
β2 = −21.7 ps2/km; and nonlinearity γ = 1.27 (W · km)−1.
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Fig. 2: As the temporal sampling rate in split-step Fourier
simulations decreases, the output gets increasingly

inaccurate.

lation is yet known between the minimum required
Rs and the bandwidth W . For example, the band-
width of the lightwave whose output is shown in
Fig. 2 is W = 3.2R.† Note that the strict band-
width is infinite, and hence this bandwidth defi-
nition, which is the cornerstone of the sampling
theorem, is useless for nonlinear systems.

Lower bounds
A lower bound on the capacity can be obtained
from the operational capacity definition above or
from the information capacity in (1) by relaxing the
maximization. In other words, the rate achievable
by any (suboptimal) transmitter and receiver is a
lower bound, and it can be calculated from the
mutual information (2) using any (suboptimal) in-
put distribution.

Another lower-bounding technique, which is of-
ten combined with the previous one, is based on
mismatched decoding. It can be proved that if
the channel law pY |X inside the logarithm in (2)
is replaced by an arbitrary conditional distribu-
tion, say qY |X , the integral expression cannot in-
crease. Mathematically,

I(X;Y ) ≥
∫

pX,Y (x,y) log2
qY |X(y|x)
qY (y)

dxdy

[bit/block], (3)

where qY (y) =
∫
pX(x)qY |X(y|x). While (2)

is often hard or impossible to compute, as dis-
cussed above, (3) may be estimated by Monte
Carlo integration, even if pY |X is intractable.
From a practical viewpoint, good mismatched-
decoding lower bounds are highly desirable, be-
cause those rates are achievable using a re-
ceiver optimized for the so-called auxiliary chan-
nel qY |X . Since this channel is under the system
designer’s control, it can be chosen to enable a
moderate-complexity receiver, whereas the opti-
mal receiver for pY |X , which is needed to achieve

†Here W is defined as the smallest frequency range that
contains at least 99 % of the signal power at all positions along
the fiber.

the mutual information in (2), may be unknown or
prohibitively complex.

The most popular auxiliary channel for fiber-
optic applications is the Gaussian distribution.
This yields the so-called “nonlinear Shannon
limit,” which, despite its misleading name, is not
a Shannon limit but a lower bound6.

Upper bounds
While a lower bound on capacity tells which rate is
possible with a selected transmitter–receiver pair,
an upper bound states what is impossible using
all possible such pairs. Therefore, it is generally
harder to derive upper bounds.

The most well-known capacity upper bound in
optical communications states that the capacity of
the discretized NLSE is no greater than N log2(1+

SNR) bit/block, where SNR is the launched signal
power divided by the total additive noise power,
for any R and Rs

7, which corresponds to C ≤
Rs log2(1 + SNR) bit/s or SE ≤ (Rs/W ) log2(1 +

SNR) bit/s/Hz. This again illustrates the channel
modeling dilemma of Fig. 1: A high Rs implies an
accurate model but less interesting bounds on C

or SE , and vice versa. If for example Rs = 8R and
W = 3.2R, as observed in the simulation example
above, then SE ≤ 2.5 log2(1+ SNR) bit/s/Hz. The
choices of Rs and W are however somewhat ar-
bitrary, which leaves the interpretation of capacity
results in terms of spectral efficiency uncertain.
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