VOLTAGE SAG INDICES and STATISTICS

by

František Kinčeš

Thesis for the Degree of Master of Science

December 2004

Department of Electric Power Engineering Chalmers University of Technology 412 96 Göteborg, Sweden

> ISSN 1401-6184 M.Sc. No. 113E

ii

Title Index och statistik för spänningsdippar

Title in english Voltage Sag Indices and Statistics

Författare/Author František Kinčeš

Utgivare/Publisher

Chalmers Tekniska Högskola Institutionen för elteknik 412 96 Göteborg, Sverige

ISSN 1401-6184

Examensarbete/M.Sc. Thesis No. 113E

Ämne/Subject Power Systems

Examiners Associate Prof. Ambra Sannino

Date 2004-12-17

Tryckt av/Printed by

Chalmers tekniska högskola 412 96 GÖTEBORG

iv

Abstract

Voltage sag indices are a way of quantifying the performance of the power supply, as far as voltage sags are concerned. Indices can be defined for individual events, for individual sites, and for a whole system. A standard method for single-event methods is part of IEC standard 61000-4-30.

This thesis emphasizes the importance of voltage sag indices and different methods for calculating three-phase voltage sag characteristics. Three-phase events measured in a medium network voltage over period of one month were analyzed, results examined and statistically evaluated. An algorithm for calculating voltage sag characteristics and indices was created in Matlab.

Algorithm detects if the event is voltage sag, interruption or swell. Two different methods, symmetrical component method and six-phase rms method, for calculating sag type are used in the algorithm. Single-event characteristics as duration, retained voltage, voltage sag energy index, voltage sag severity and sag type are calculated for each event and summarized in synoptic table.

After single-event characteristic results were satisfactory, site and system indices were implemented in MatLab and some statistics were carried out.

Also various implementation issues with a detailed description of symmetrical component method and six-phase rms method were written.

Keywords: power quality, voltage sag, swell, interruption, duration, retained voltage

Acknowledgements

Thanks to Prof. Math Bollen and Associate Prof. Ambra Sannino who helped me with my thesis as my supervisors.

Thanks to my family, that supported me during my studies at Chalmers University of Technology.

Contents

1	\mathbf{Intr}	oducti	on	1
	1.1	What	is Voltage Sag?	1
	1.2	Voltag	e Sag Indices	2
	1.3	Aim a	nd structure of this thesis	2
2	Sing	gle-Eve	ent Characteristics and Indices	4
	2.1	Exact	Frequency Estimation	4
	2.2	RMS (Calculation	5
	2.3	Durati	on and Retained Voltage	5
		2.3.1	Interruption	6
		2.3.2	Swell	6
	2.4	Voltag	e-Sag Energy Index	7
	2.5	Voltag	e-Sag Severity	8
	2.6	Three-	phase classification of a voltage sag	9
		2.6.1	Voltage sag classification	9
		2.6.2	Methods for extracting sag type	12
3	Imp	lement	tation Issues and Results of Single-Event Characteristics	17
	3.1	Impler	nentation Issues	17
		3.1.1	Reference Voltage	17
		3.1.2	Exact Frequency	18
		3.1.3	RMS Calculation	19
		3.1.4	Implementation of the Two Methods	20
	3.2	MatLa	b Results	21
		3.2.1	Results of Single-Event Characteristics	21
		3.2.2	Different calculations of Voltage Sag Energy Index	23
		3.2.3	Voltage Sag Severity Results	25
		3.2.4	Sag Type Results	26
		3.2.5	Statistics	28
4	\mathbf{Site}	Indice	es	31
	4.1	SARF	I-X	31
	4.2	SARF	I-Curve	32
		4.2.1	SARFI-ITIC (CBEMA)	32
		4.2.2	SARFI-SEMI	33
	4.3	Voltag	e-Sag Table	34
	4.4	Voltag	e-sag energy method	34
		4.4.1	Voltage-Sag Energy Index	35

	4.5	4.4.2Average Sag Energy Index4.4.3Number of event per siteVoltage-Sag Severity Method	$35 \\ 35 \\ 35 \\ 35$	
5	Site	Indices Results	37	
	5.1	SARFI Indices	37	
	5.2	IEC Table	40	
6	Syst	tem Indices	42	
	6.1	SARFI System Indices	43	
	6.2	Voltage-Sag Tables for a system	43	
	6.3	Voltage-Sag Energy Index of a System	43	
	6.4	Voltage-Sag Severity System Index	44	
7	Con	aclusions	45	
\mathbf{A}	Mat	tlab Code	47	
	A.1	Making .mat Files	47	
	A.2	Generating Synthetic Sags	67	
	A.3	Site Indices and Figures	72	
в	\mathbf{Syn}	thetic Sags with Characteristic Voltage V $=$ 0.5 pu	88	
Re	References			

Chapter 1

Introduction

1.1 What is Voltage Sag?

There are two main standards, standard IEC 61000-4-30 [1] and IEEE Std. 1159-1995 [25], that define voltage sag, interruption and swell. In standard IEC 61000-4-30 [1] the following is defined:

- Voltage sag or voltage dip is temporary reduction of the voltage at a point in the electrical system below a threshold.
- Interruption is reduction of the voltage at a point in the electrical system below a threshold.
- Swell is temporary increase of the voltage at a point in the electrical system above a threshold.

In IEEE Std. 1159-1995 [25] the following is defined:

- Voltage sag or voltage dip is a decrease to between 0.1 and 0.9 pu in rms voltage at the power frequency for durations of 0.5 cycle to 1 min.
- Interruption is a type of short duration variation and is the complete loss of voltage (<0.1 pu) on one or more phase conductors for a time period between 0.5 cycles and 3 s.
- Swell is an increase in rms voltage at the power frequency for durations from 0.5 cycles to 1 min. Typical values are 1.1-1.8 pu.

Throughout the text voltage sag, interruption and swell will be understood as following:

- The voltage sag starts when at least one of the rms voltages drops below the threshold and ends when all three rms voltages have recovered above the threshold [7]. Voltage sag threshold is chosen 90% of the reference voltage.
- Interruption starts when all three rms voltages drop below the threshold and ends when at least one of them rises above the threshold [7]. Interruption threshold is chosen 10% of the reference voltage.
- Swell starts when at least one of the rms voltages rises above the threshold and ends when all three rms voltages have recovered below the threshold [7]. Swell threshold is chosen 110% of the reference voltage.

In the Fig. 1.1 example of event that is classified as voltage sag, interruption and swell is shown.

Figure 1.1: Example of voltage sag, interruption and swell in one event

Voltage sags can be mitigated by many different electric devices, depending on the application, but that is not a subject that will be discussed in the following chapters. In the following chapters I will discuss voltage sag indices in more detail along with the analysis of the measured data.

Voltage sags in the electrical system is something we do not like, but we can make improvements in the system to prevent them from happening. Therefore there is a high need for better analysis and understanding of these events.

1.2 Voltage Sag Indices

Nowadays power providers are building databases of power quality events with megabytes to gigabytes of measurements. Therefore there is a need to analyse these data accurately and with a high efficiency. Voltage sag indices are a good tool for analysing these data. Voltage sag indices are a way of quantifying the performance of the power supply, as far as voltage sags are concerned. Indices can be defined for individual events, for individual sites, and for a whole system.

There continues to be a lack of common terminology to assess utility service quality performance, therefore also an overview of the existing knowledge on voltage sag indices together with various statistics will be discussed.

The main document that will be used to obtain voltage sag indices is Voltage sag indices - draft 5, working document for IEEE P1564 [2]. In this document voltage sag indices are explained in a very good manner, so one can understand it.

1.3 Aim and structure of this thesis

The aims of this thesis is firstly to implement the algorithms to calculate site and system indices from sampled voltages according to the listed documents [1] and [2] in Matlab, with written overview of the existing knowledge on voltage sag indices.

Secondly to develop a method for calculating single-event, site and system indices based on three-phase characteristics using document [3] as starting point and to implement this in Matlab as well, with a detailed description of the two methods plus the various implementation issues.

Finally to apply these algorithms to measured data and obtain statistics on the resulting indices.

This thesis is structured in six Chapters.

In Chapters 2, 4 and 6 an overview of the existing knowledge on voltage sag characteristics and indices is given.

In Chapters 3 and 5 results for single event characteristics and site indices are presented. In these two Chapters also various implementation issues are discussed.

In Chapter 7 all the results are summarized.

Chapter 2

Single-Event Characteristics and Indices

In this chapter methods, selected from documents [1] and [2], that have been implemented in Matlab and applied to a large number of events. The starting point is a time-domain waveform of a three-phase voltage sampled with known frequency. Firstly it is important to calculate RMS voltage versus time characteristics, calculate retained voltage and duration of a voltage sag. The second step is to calculate voltage-sag energy index and voltage-sag severity.

2.1 Exact Frequency Estimation

Before calculating some of the single-event characteristics, accurate frequency of the signal is needed. According to [7], this is only possible when at least two cycles of pre-event waveform data are available. The first step is to estimate the length of one cycle of the power system frequency. An integer number of samples with a duration as close as possible to 20 ms (for a 50-Hz system) is used for this. Let the length of this estimation be T. The initial angle α_1 of the fundamental component is determined over the window [0, T]by using a DFT algorithm. The angle over the next "period", [T, 2T] is α_2 . The second angle is obtained by increasing the first angle by $2\pi fT$ with f the actual frequency and T the estimated period [7]. The actual frequency can be obtained from the expression:

$$2\pi + \alpha_2 = \alpha_1 + 2\pi f T \tag{2.1}$$

from which the following explicit expression for the actual frequency is obtained:

$$f = \frac{1}{T} \left(1 + \frac{\alpha_2 - \alpha_1}{2\pi} \right) \tag{2.2}$$

Some events start with a voltage sag recovering to nominal post-event voltage. In these cases the pre-event waveform is not available. To get the angles α_1 and α_2 , the last two cycles of the post-event voltage are considered instead.

2.2 RMS Calculation

The IEC power-quality measurement standard IEC 61000-4-30 [1] prescribes a very precise method for obtaining the voltage magnitude as a function of time. The first step in this procedure is to obtain the rms voltage over a window with a length exactly equal to one cycle of the power-frequency. The standard does not prescribe a method to obtain the window length, but it does state an accuracy requirement [7].

According to [7], the calculation of this "one-cycle rms voltage" is repeated every half cycle; in other words: the window is shifted one half cycle in time. This results in a discrete function with a time step equal to one half cycle of the power-system frequency. The one-cycle rms voltage calculated every half-cycle is obtained by,

$$U_{rms}(n) = \sqrt{\frac{1}{N} \sum_{k=1+n\frac{N}{2}}^{(\frac{n}{2}+1)N} u(k)^2}$$
(2.3)

where N is number of samples per cycle, u(k) is the sampled voltage waveform and k = 1, 2, 3, etc. The first value is obtained over the samples (1,N), the next over the samples $(\frac{1}{2}N + 1, 1\frac{1}{2}N)$, etc [1].

The one-cycle rms voltage calculated every sample is obtained by,

$$U_{rms}(n) = \sqrt{\frac{1}{N} \sum_{k=n-N+1}^{n} u(k)^2}$$
(2.4)

where N is number of samples per cycle, u(k) is the sampled voltage waveform and k = 1, 2, 3, etc.

According to [7], in some cases it may be more appropriate to use a half-cycle window to calculate the rms voltage. The main advantage of using a half-cycle window, compared to a one-cycle window, is a faster transition from the pre-fault voltage to the during-fault voltage and from the during fault voltage to the post-fault voltage.

The half-cycle rms voltage calculated every sample is obtained by,

$$U_{rms\frac{1}{2}}(n) = \sqrt{\frac{1}{N} \sum_{k=n-N+1}^{n} u(k)^2}$$
(2.5)

where N is number of samples per half-cycle, u(k) is the sampled voltage waveform and k = 1, 2, 3, etc.

2.3 Duration and Retained Voltage

According to [7] voltage sags are described by two main indices: duration and retained voltage.

The duration of a voltage sag is the amount of time during which the voltage magnitude is below the sag threshold. The sag threshold is typically chosen as 90% of the nominal voltage magnitude. In a three phase system, the duration of the voltage sag is the time during which at least one of the rms voltages is below the threshold. The voltage sag starts when at least one of the rms voltages drops below the sag-starting threshold. The sag ends when all three rms voltages have recovered above the sag-ending threshold [7].

Figure 2.1: Calculation of duration of the voltage sag.

This means that the duration of the voltage sag is the time between the start of the voltage sag and end of the voltage sag. Duration can be then calculated as the difference between the time when all three rms voltages have recovered above the sagending threshold and the time when at least one of the rms voltages drops below the sag-starting threshold. Figure 2.1 illustrates how the duration is calculated, where the rms voltage is calculated over one half-cycle and updated every sample.

The retained voltage of the voltage sag is the lowest rms voltage in any of the three phases. To be able to represent retained voltage in per unit, it is important to say that the reference voltage is chosen as the pre-event voltage. The reason why pre-event voltage is chosen, is that the nominal voltage is different for every file that is analysed.

2.3.1 Interruption

According to IEC standard in [1], the interruption starts when all three rms voltages drop below the threshold and ends when at least one of them rises above the threshold. The interruption threshold is typically chosen 10% of the nominal voltage. The duration of the interruption is the time during which all the three rms voltages are below the interruption threshold. If the voltage is zero in all three phases the event is classified as a voltage sag and as an interruption.

2.3.2 Swell

A voltage swell can be characterized in the same way as a voltage sag. The duration of a swell equals the amount of time the rms voltage is above the swell threshold. The swell starts when at least one of the rms voltages rises above the swell-starting threshold. The swell ends when all three rms voltages have recovered below the swell-ending threshold. The retained voltage is the highest value of the rms voltages. The recommended value for the swell threshold is 110% of the declared voltage or of the sliding-reference voltage.

2.4 Voltage-Sag Energy Index

According to [2], the voltage sag energy E_{vs} is defined as:

$$E_{vs} = \int_0^T \left\{ 1 - \left(\frac{U(t)}{U_{nom}}\right)^2 \right\} dt$$
(2.6)

where U(t) is the rms voltage during the event and U_{nom} is the nominal voltage. The integration is taken over the duration of the event, e.g. for all the values of the rms voltage below the threshold. The voltage-sag energy has the unit of time.

Substituting Eq. 2.5 in Eq. 2.6, we obtain an expression with the half-cycle rms voltage that can be implemented in Matlab:

$$E_{vs} = \frac{1}{2f_o} \sum_{n=1}^{N} \left\{ 1 - \left(\frac{U_{rms\frac{1}{2}}(n)}{U_{nom}}\right)^2 \right\}$$
(2.7)

where f_o is the frequency and the sum is taken over the whole duration of the event, e.g. for all values of the rms voltage below the threshold.

In case only retained voltage and duration of an event are available, the rms voltage is assumed constant over the duration of the event. This results in the following expression for the voltage sag energy:

$$E_{vs} = \left\{ 1 - \left(\frac{U}{U_{nom}}\right)^2 \right\} \times T \tag{2.8}$$

with T the duration and U the retained voltage of the event.

The voltage-sag energy is the duration of an interruption leading to the same loss of energy for an impedance load as the voltage sag [2].

For multi-channel events (e.g. three-phase systems) the voltage-sag energy is defined as the sum of the voltage-sag energy in the individual channels (phases).

$$E_{vs} = E_{vs_a} + E_{vs_b} + E_{vs_c} \tag{2.9}$$

Voltage swell energy can be defined analogous to voltage-sag energy as follows:

$$E_{vs} = \int_0^T \left\{ \left(\frac{U(t)}{U_{nom}} \right)^2 - 1 \right\} dt$$
(2.10)

where U(t) is the rms voltage during the event and U_{nom} is the nominal voltage. The integration is taken over the duration of the swell, i.e. for all values of the rms voltage that exceed the swell threshold (typically 110%).

Substituting Eq. 2.5 in Eq. 2.10, we obtain an expression with the half-cycle rms voltage

$$E_{vs} = \frac{1}{2f_o} \sum_{n=1}^{N} \left\{ \left(\frac{U_{rms\frac{1}{2}}(n)}{U_{nom}} \right)^2 - 1 \right\}$$
(2.11)

where f_o is the frequency and the sum is taken over the whole duration of the swell, e.g. for all values of the rms voltage above the threshold [2].

2.5 Voltage-Sag Severity

The voltage sag severity is according to [2] calculated from the retained voltage (in pu) and the duration of a voltage sag in combination with a reference curve:

$$S_e = \frac{1 - U}{1 - U_{curve}(d)}$$
(2.12)

where U is the retained voltage, d is the duration of the event and $U_{curve}(d)$ is the retained voltage of the reference curve for the same duration. SEMI curve, as shown in Figs. 2.2 and 2.3, is recommended as the reference. SEMI curve can be found in SEMI standard F-47 and in [21]. SEMI is the Semiconductor Equipment and Materials International Group. Construction of CBEMA curve can be found in [17] and [20]. More information can be also found according to [2] in the IEEE Orange book [14].

Figure 2.2: Overlay of CBEMA and SEMI curves [21].

From Fig. 2.3 it can be observed, that as the duration of the event gets longer and the retained voltage lower, the voltage-sag severity index increased. For an event

- on the reference curve the voltage-sag severity equals one,
- above the reference curve the voltage-sag severity is less than one,
- below the reference curve the voltage-sag severity is greater than one,
- with retained voltage above the voltage-sag threshold (90%) the voltage-sag severity is equal to zero.

Using the SEMI curve as a reference gives the algorithm for calculating the voltage-sag severity from the retained voltage U and the duration d reported in Table 2.1:

Figure 2.3: Voltage-sag severity with reference to the SEMI curve [2].

U_{curve}	d , duration range	S_e , voltage-sag severity calculation
0.0 pu	$d \le 20 ms$	$S_e = \frac{(1-U)}{(1-0.0)} = \frac{(1-U)}{1} = 1 - U$
0.5 pu	$20 \text{ms} \le d \le 200 \text{ms}$	$S_e = \frac{(1-U)}{(1-0.5)} = \frac{(1-U)}{0.5} = 2(1-U)$
0.7 pu	$200 \mathrm{ms} < \mathrm{d} \le 500 \mathrm{ms}$	$S_e = \frac{(1-U)}{(1-0.7)} = \frac{(1-U)}{0.3} = 3.3(1-U)$
0.8 pu	$500 \mathrm{ms} < \mathrm{d} \le 10 \mathrm{s}$	$S_e = \frac{(1-U)}{(1-0.8)} = \frac{(1-U)}{0.2} = 5(1-U)$
0.9 pu	10s <d< td=""><td>$S_e = \frac{(1-U)}{(1-0.9)} = \frac{(1-U)}{0.1} = 10(1-U)$</td></d<>	$S_e = \frac{(1-U)}{(1-0.9)} = \frac{(1-U)}{0.1} = 10(1-U)$

Table 2.1: Algorithm for calculating the voltage-sag severity.

2.6 Three-phase classification of a voltage sag

Each sag in a three-phase system according to [7] can be characterized by a sag type, retained voltage and duration. Characteristics as retained voltage and duration of a voltage sag were introduced in section 2.3. To obtain sag type two methods can be used:

- symmetrical-component method and
- six-phase RMS method

2.6.1 Voltage sag classification

Before introducing these two methods, it is necessary to classify voltage sags. To classify them ABC classification or Symmetrical component classification can be used. The ABC classification is the oldest classification and the one most commonly used. This is likely due to its simplicity. However the classification is based on incomplete assumptions and cannot be used to obtain the characteristics of measured sags. The symmetrical component classification is more general and gives a direct link with measured voltages. However the method is harder to understand and a translation to the ABC classification may be suitable for many applications [2].

The ABC classification

In [2] the ABC classification distinguishes between seven types of three-phase unbalanced voltage sags. Expressions for the complex voltages for these seven types are given in figure 2.4. The complex pre-fault voltage in phase a is indicated by E_1 . The voltage in the faulted phase or between the faulted phases is indicated by V^* . One of the reasons for introducing this classification was to describe the propagation of sags through transformers. Origin and transformation of the seven types are given in Table 2.2 and Fig. 2.5 [2].

Type	Voltages	Phasors
A	$U_{\mu} = V^{*}$ $U_{\mu} = -\frac{1}{2}V^{*} - \frac{1}{2}jV^{*}\sqrt{3}$ $U_{\mu} = -\frac{1}{2}V^{*} + \frac{1}{2}jV^{*}\sqrt{3}$	\rightarrow
В	$U_{a} = V^{*}$ $U_{b} = -\frac{1}{2}E_{1} - \frac{1}{2}jE_{1}\sqrt{3}$ $U_{c} = -\frac{1}{2}E_{1} + \frac{1}{2}jE_{1}\sqrt{3}$	>
С	$\begin{split} U_{a} &= E_{1} \\ U_{b} &= -\frac{1}{2}E_{1} - \frac{1}{2}jV^{*}\sqrt{3} \\ U_{a} &= -\frac{1}{2}E_{1} + \frac{1}{2}jV^{*}\sqrt{3} \end{split}$	\rightarrow
D	$U_{i} = V^{*}$ $U_{j} = -\frac{1}{2}V^{*} - \frac{1}{2}jE_{1}\sqrt{3}$ $U_{i} = -\frac{1}{2}V^{*} + \frac{1}{2}jE_{1}\sqrt{3}$	<u>}</u>
Е	$U_{\mu} = E_{\mu}$ $U_{\mu} = -\frac{1}{2}V' - \frac{1}{2}jV'\sqrt{3}$ $U_{\mu} = -\frac{1}{2}V' + \frac{1}{2}jV'\sqrt{3}$	\rightarrow
F	$U_{a} = V^{*}$ $U_{b} = -\frac{1}{2}V^{*} - \left(\frac{1}{2}E_{b} + \frac{1}{2}V^{*}\right)j\sqrt{2}$ $U_{a} = -\frac{1}{2}V^{*} + \left(\frac{1}{2}E_{b} + \frac{1}{2}V^{*}\right)j\sqrt{2}$	<u>}</u>
G	$U_{a} = \frac{2}{3}E_{1} + \frac{1}{3}V^{*}$ $U_{b} = -\frac{1}{3}E_{1} - \frac{1}{4}V^{*} - \frac{1}{2}jV^{*}\sqrt{3}$ $U_{c} = -\frac{1}{3}E_{1} - \frac{1}{4}V^{*} + \frac{1}{2}jV^{*}\sqrt{3}$	\rightarrow

Figure 2.4: Seven types of three-phase unbalanced voltage sags according to the ABC classification.

This method was originally developed to be part of stochastic prediction of voltage sags. From known statistics on faults it is possible to calculate the frequency of occurrence of the different types of voltage sags. This classification can also be used for testing of equipment against voltage sags. By using this classification it is possible to generate the sags that can be expected at the terminals of three-phase equipment [2]. Generating such sags, referred later as "synthetic sags" is very useful to check if the Matlab code created for real measured data gives correct results for sag characteristics.

Figure 2.5: Sags at different voltage levels due to different fault types.

Fault type	location		
	Ι	II	III
Three-phase	A	А	А
Two-phase-to-ground	E	F	G
Two-phase	С	D	С
Single-phase-to-ground	В	С	D

Table 2.2: Sags at different voltage levels due to different fault types.

The weak point of this method is that it is only simulation-based. Extraction of the sag type from measured voltage waveforms was not immediately possible. Recent work however has shown that the sag type may be estimated in the majority of cases from the three rms voltages only [2].

The symmetrical component classification

In [2] the symmetrical component classification does not suffer from the same limitation as the ABC classification. The symmetrical component classification distinguishes between sags with the main voltage drop in one phase and sags with the main voltage drop between two phases. Sags due to three-phase faults, with an equal drop in the three phases, are a limit case for both single-phase and two-phase drops. The zero-sequence voltage is treated as a separate characteristic from the beginning and in many studies not even considered. The two other characteristics are the "characteristic voltage" and the "PN factor". The general expression for the "non-zero-sequence part" of a voltage sag with the main drop in phase a (referred to as sag type Da) is [2]:

$$U_{a} = V$$

$$U_{b} = -\frac{1}{2}V - \frac{1}{2}jF\sqrt{3}$$

$$U_{c} = -\frac{1}{2}V + \frac{1}{2}jF\sqrt{3}.$$
(2.13)

The general expression for a voltage sag with the main drop between phases b and c (sag type Ca), is:

$$U_{a} = F$$

$$U_{b} = -\frac{1}{2}F - \frac{1}{2}jV\sqrt{3}$$

$$U_{c} = -\frac{1}{2}F + \frac{1}{2}jV\sqrt{3},$$
(2.14)

where $|F| \ge |V|$. Note that a balanced sag, due to a three-phase fault, is obtained for F = V. Similar expressions hold for the other four sag types:

- Db (drop in phase b), Dc (main drop in phase c),
- Cb (main drop between phases a and c), Cc (main drop between phase a and b).

The somewhat illogical notation was used to make the classification consistent with the older ABC-classification. For $F = E_1$ and $V = V^*$, Eq. 2.13 and 2.14 are identical to type D and type C, respectively, as defined for the ABC classification in Fig. 2.4. The definition of characteristic voltage and PN-factor as well as the algorithm for obtaining the characteristics from measured voltage wave shapes, are both based on symmetrical components. The underlying mathematics will be described in later Section 2.6.2 [2].

2.6.2 Methods for extracting sag type

The sag type can at most take 19 different values. Seven different types (A through G) have already been introduced in the section 2.6.1. However when extracting voltage-sag characteristics from measurements, the affected phases have to be considered as well. This is shown graphically in Fig. 2.6. Only types C and D are shown for simplicity but similar subdivisions can be defined for other sag types with the exception of type A. Type Ca is a voltage drop between phases b and c (thus with a as "symmetrical phase", type Cb between phases a and c, and type Cc between phases a and b. Type A cannot be further subdivided as it is symmetrical in the three phases.

Figure 2.6: Six types of three-phase unbalanced sags.

To obtain sag type two methods can be used:

- symmetrical-component method and
- six-phase RMS method

Symmetrical-component method

The whole method is in a very good manner described in [7]. Symmetrical component method in [7] uses the angle difference of positive and negative-sequence complex voltages to estimate the sag type.

From Eq. 2.13 and 2.14 similar expressions have been derived for sag types Cb, Cc, Db and Dc. The aim of the characterization algorithm is to determine the sag type and to estimate the value of characteristic voltage and PN-factor. A first look at Eq. 2.13 and 2.14 shows that additional information is required. This is given in the form of the requirement that the characteristic voltage in absolute value is less than the PN-factor [7].

The characterization algorithm is based on the expressions for the positive and negativesequence voltage for the six sag types. The positive-sequence voltage (with reference to a-phase pre-fault voltage) is the same for all sag types [7]:

$$V_1 = \frac{1}{2}(F + V) \tag{2.15}$$

The negative-sequence voltage is the same in magnitude but different in argument [7]:

$$V_{2} = \frac{1}{2}(F - V) \qquad \text{TypeC}_{a}$$

$$V_{2} = \frac{1}{2}a(F - V) \qquad \text{TypeC}_{b}$$

$$V_{2} = \frac{1}{2}a^{2}(F - V) \qquad \text{TypeC}_{c}$$

$$V_{2} = -\frac{1}{2}(F - V) \qquad \text{TypeD}_{a}$$

$$V_{2} = -\frac{1}{2}a(F - V) \qquad \text{TypeD}_{b}$$

$$V_{2} = -\frac{1}{2}a^{2}(F - V) \qquad \text{TypeD}_{c}$$

$$(2.16)$$

where a constitutes a rotation over 120° . For sags due to single-phase and phase-to-phase faults, the PN-factor is close to unity (in per-unit with the pre-event voltage as a base). If we assume that F = 1 the angle between the drop in positive-sequence positive and negative-sequence is an integer multiple of 60 [7].

$$angle(1 - V_1, V_2) = 0^{\circ} \qquad \text{TypeC}_a$$

$$angle(1 - V_1, V_2) = 120^{\circ} \qquad \text{TypeC}_b$$

$$angle(1 - V_1, V_2) = -120^{\circ} \qquad \text{TypeC}_c$$

$$angle(1 - V_1, V_2) = 180^{\circ} \qquad \text{TypeD}_a$$

$$angle(1 - V_1, V_2) = -60^{\circ} \qquad \text{TypeD}_b$$

$$angle(1 - V_1, V_2) = 60^{\circ} \qquad \text{TypeD}_c$$

$$(2.17)$$

According to [7], it has been assumed here that the pre-event voltage is 1 per-unit and along the positive real axis. The angles are multiples of 60° and different for the different sag types. The sag type can be estimated by comparing the measured angle with the values in Eq. 2.17. The angle is obtained by calculating the positive and negative-sequence voltage by standard expressions [22]

$$\overline{V_1} = \frac{1}{3} \left(\overline{V_a} + a \overline{V_b} + a^2 \overline{V_c} \right)$$

$$\overline{V_2} = \frac{1}{3} \left(\overline{V_a} + a^2 \overline{V_b} + a \overline{V_c} \right)$$

$$\overline{V_0} = \frac{1}{3} \left(\overline{V_a} + \overline{V_b} + \overline{V_c} \right)$$
(2.18)

and next determining the argument of the ratio between the complex positive and negativesequence voltage [7].

This results in the following algorithm for obtaining the sag type T:

$$T = \frac{1}{60^{\circ}} \times \arg\left(\frac{V_2}{1 - V_1}\right) \tag{2.19}$$

where T is rounded to an integer. The method of rounding will be closely explained in Chapter 3. Initially let's assume that the rounding takes place to the nearest integer. The value of T is related to the earlier classification in accordance with the following table [7]:

$$T = 0 \quad \text{TypeC}_{a}$$

$$T = 1 \quad \text{TypeD}_{c}$$

$$T = 2 \quad \text{TypeC}_{b}$$

$$T = 3 \quad \text{TypeD}_{a}$$

$$T = 4 \quad \text{TypeC}_{c}$$

$$T = 5 \quad \text{TypeD}_{b}$$

$$(2.20)$$

Knowing the sag type, the other characteristics can be obtained, e.g. from the sum and difference of positive and negative-sequence voltage according to Eq. 2.15 and 2.16. For example, for type C_a we can obtain characteristic voltage and PN-factor from the following expressions [7]:

$$V = V_1 - V_2 F = V_1 + V_2$$
(2.21)

and for type D_c :

$$V = V_1 + aV_2 F = V_1 - aV_2$$
(2.22)

A general expression can be obtained by using the sag type T as an additional parameter [7]:

$$V = V_1 - b^{6-T} V_2$$

$$F = V_1 + b^{6-T} V_2$$
(2.23)

with $b = -a^2 = \frac{1}{2} + \frac{1}{2}j\sqrt{3}$ a rotation over 60° [7].

Six-phase RMS method

A simplified algorithm for extracting three phase characteristics is described in [6]. According to [7], the first stage in this so-called "six-phase algorithm" is the subtraction of zero-sequence component voltage. The zero-sequence voltage does not affect the sag type and is therefore treated separately. After subtraction of the zero-sequence voltage,

$$v_0 = \frac{1}{3} \Big(v_a + v_b + v_c \Big) \tag{2.24}$$

the rms voltage is obtained for the three phase voltages and the three phase-to-phase voltages [7]:

$$V_{A} = \operatorname{rms} \left\{ v_{a} - \frac{1}{3} (v_{a} + v_{b} + v_{c}) \right\}$$

$$V_{B} = \operatorname{rms} \left\{ v_{b} - \frac{1}{3} (v_{a} + v_{b} + v_{c}) \right\}$$

$$V_{C} = \operatorname{rms} \left\{ v_{c} - \frac{1}{3} (v_{a} + v_{b} + v_{c}) \right\}$$
(2.25)

$$V_{AB} = \operatorname{rms}\left\{\frac{v_a - v_b}{\sqrt{3}}\right\}$$

$$V_{BC} = \operatorname{rms}\left\{\frac{v_b - v_c}{\sqrt{3}}\right\}$$

$$V_{CA} = \operatorname{rms}\left\{\frac{v_c - v_a}{\sqrt{3}}\right\}$$
(2.26)

The sag characteristics are obtained directly from these six rms voltages:

- the characteristic voltage is the lowest of the six rms voltages,
- the PN factor the highest of the six.

The sag type is determined from the voltage according to Eq. 2.25 and 2.26 with the lowest rms value, as in Table 2.3

lowest rms voltage	dip type
V_A	D_a
V_B	D_b
V_C	D_c
V_{AB}	C_c
V_{BC}	C_a
V_{CA}	C_b

Table 2.3: Sag type from the six-phase algorithm.

The six-phase algorithm can also be used to obtain the arguments of the complex voltages V and F. The argument of the characteristic voltage is the phase angle of the voltage that gives the lowest rms value: $v_a - v_0$ for type $D_a, v_b - v_0$ for type C_c , etc. The argument of the PN factor is the phase angle of the voltages that gives the highest rms value [7].

One of the advantages of using six rms method compared to symmetrical component method is that it is easier to understand and implement, especially when large number of events needs to be investigated. Both methods are in a very good manner described in [3] and [7].

Chapter 3

Implementation Issues and Results of Single-Event Characteristics

3.1 Implementation Issues

The data analyzed in this thesis consists of 887 files that were recorded on different sites in a medium-voltage network during one month in June 1997. In each .dat file one event is stored, three phase voltages, three phase currents and time are recorded. Although all files contained a current record, the values did not in all cases correspond to actually measured currents. For the work presented here only the voltage records were used.

I decided to analyse these data with help of MatLab. In MatLab environment it is more convenient to work with .mat files. The time to load them is faster and only desired variables are stored in the workspace. Each .dat file was loaded into MatLab and three phase voltages and time were stored into .mat files. This was done automatically by the code attached in Appendix A.

Another code was written to automatically take each .mat file with stored data and calculate single-event characteristics and indices for each event as discussed in Chapter 2. Code was stored in the file SingleEvent.m and is also attached in Appendix A. Firstly the exact frequency for each phase was calculated. Secondly the rms voltage versus time in cycles was calculated and printed in the figure. Then per unit characteristics were obtained and also printed in the same figure.

3.1.1 Reference Voltage

To be able to represent rms voltage in per unit, the pre-event voltage instead of the nominal voltage is chosen as the reference. The reason is that a large number of events have been analysed and the nominal voltage is different for each of them. Some events start with a voltage sag, usually also classified as an interruption, and recovering to the post-event voltage close to the nominal voltage. In these cases the pre-event waveform is not available and therefore the post-event voltage was chosen as the reference voltage. Examples of the characteristics before and after corrections of the reference voltage are shown in Figs. 3.1 and 3.2. Note that the difference is only in the per-unit scale in the lower figures. Two upper plots in the figures are kept for better illustration.

Figure 3.1: Sag ZQ619.dat before and after correction of the reference voltage.

Figure 3.2: Sag ZQ872.dat before and after correction of the reference voltage.

3.1.2 Exact Frequency

Exact frequency was estimated from the pre-event or post-event voltage, depending on the chosen reference. That means, if the pre-event voltage in the file was chosen as the reference, also frequency was estimated from the pre-event voltage or if the post-event voltage was chosen as the reference, also the frequency was estimated from the post-event voltage. To estimate the exact frequency, angles α_1 and α_2 had to be obtained as discussed earlier in the Section 2.1. When the frequency was estimated from the pre-event voltage, corrections were made in those cases when the first cycle was not fully recorded at the beginning of the event. To obtain the angles α_1 and α_2 , the DFT algorithm was applied over the window of the next two periods [T, 2T] and [2T, 3T] respectively.

When the length of the recorded event is time t, the frequency of the post-event voltage was estimated over the last two periods [t - 2T, t - T] and [t - T, t] to obtain angles α_1 and α_2 respectively. Example of the characteristics before and after corrections of the frequency calculation were made, is shown in Fig. 3.3. In the left-hand plot in Fig. 3.3 the frequency was estimated over the first two periods. Because voltage was almost equal to zero, the frequency was estimated wrongly (about 90 Hz) and big oscillations occurred in the rms voltage. Therefore corrections were made and frequency was estimated over the last two periods as shown in the right-hand plot in Fig. 3.3. In both plots in Fig. 3.3 half-cycle rms voltage updated every sample was used to calculate the rms voltages. Code for the exact frequency estimation named "FreqEstim-3phase.m" is included in Appendix A.

Figure 3.3: Sag ZQ566.dat before and after correction of the frequency calculation.

To be able to correctly calculate the rms value, estimation of the actual frequency is made. Implementing this correctly would however require a resampling of the data. After all, the sampling rate is not synchronized with the actual power-system frequency. The exact frequency estimation plays important role in calculation of the sag type by the symmetrical-component method, but does not necessarily have to be used to calculate rms characteristics. According to [23], the relative error in rms is half the relative error in frequency: thus 0.5% error in frequency (49.75 Hz) gives 0.25% error in rms voltage (0.8975 pu instead of 0.9 pu).

3.1.3 RMS Calculation

RMS calculation can be done by one of the following calculations:

- one-cycle rms voltage calculated every half cycle,
- one-cycle rms voltage calculated every sample,
- half-cycle rms voltage calculated every sample

Equations for every one of them were introduced in Section 2.2. Eq. 2.3 for one-cycle rms voltage calculation every half cycle and Eq. 2.5 for half-cycle rms voltage calculation every sample were implemented in MatLab. The impact of using these two methods on voltage-sag energy index calculation will be reported in Section 3.2. In all the other calculations of single-event indices only half-cycle rms voltage calculated every sample was used. Code for the RMS calculation named "RMS-3phase.m" is included in Appendix A.

3.1.4 Implementation of the Two Methods

Symmetrical-component method

Symmetrical-component method explained in Section 2.6.2 was implemented in MatLab according to Eq. 2.15 to 2.23. Code for the symmetrical-component method named "SymmComp.m" is included in Appendix A. To estimate the sag type, the angle difference of positive and negative-sequence complex voltages needs to be calculated. To obtain the sequence complex voltages, number of steps need to be carried out.

The first step is the implementation of the exact frequency calculation, as it was done in Section 3.1.2.

The second step is to determine the complex phase voltages in rotating frame [7]. DFT algorithm with calculation over one-cycle pu voltage updated every sample is used to obtain these complex voltages. Code for DFT algorithm named "comp-samp.m" is included in Appendix A.

The result of the "sliding-window DFT" gives an estimate of \widetilde{V}_a defined as

$$v_a(t) = \text{Real}\{\widetilde{V}_a\}$$
 thus $\widetilde{V}_a = \overline{V}_a \cdot e^{j\omega t}$ (3.1)

 $\overline{V_a}$ can be obtained from Eq. 3.1 as

$$\overline{V_a} = \widetilde{V_a} \cdot e^{-j\omega t} \tag{3.2}$$

where $\overline{V_a}$ is rotating or synchronous-frame voltage and $\widetilde{V_a}$ is non-rotating or stationary-frame voltage. The stationary-frame sequence voltages are obtained as

$$\widetilde{V}_1 = \frac{1}{3} \left(\widetilde{V}_a + a \widetilde{V}_b + a^2 \widetilde{V}_c \right) = \frac{1}{3} \left(\overline{V}_a + a \overline{V}_b + a^2 \overline{V}_c \right) \cdot e^{j\omega t} = \overline{V}_1 \cdot e^{j\omega t}$$
(3.3)

The synchronous-frame sequence voltages are obtained as $\overline{V_1} = \widetilde{V_1} \cdot e^{-j\omega t}$.

The symmetrical component voltages are calculated according to Eq. 2.20 and the angle between the positive-sequence and negative-sequence complex voltages are obtained from Eq. 2.17. Sag type is finally obtained by the Eq. 2.19 and Eq. 2.20.

The resulting value has to be taken modulus 6 when it is outside of the interval zero through five [7].

After sag type was obtained, characteristic voltage V and PN-factor F were calculated according to Eq. 2.23.

There are only six possible sag types according to this method: C_a , C_b , C_c , D_a , D_b , D_c ; against 19 types under the ABC classification [7]. It is possible to define additional sag types in accordance with ABC-classification. In code only relation back to ABC-classification for type A was made.

Sag is classified as sag type A when $F \approx V$. The boundary for V and F was set to ± 0.0065 pu. Boundary has to be selected carefully, because if too wide, some sags that are not type A might fall in that group.

Code could classify sag as three phase sag, if all three phases are below the threshold but the sag is not balanced sag (sag type A).

Six-phase RMS method

Six-phase RMS method was implemented in Matlab according to Eq. 2.24 to Eq. 2.26, as explained in Section 2.6.2.

The sag characteristics are obtained directly from these six rms voltages according to Eq. 2.25 and Eq. 2.26:

- the characteristic voltage is the lowest of the six rms voltages,
- the PN factor the highest of the six rms voltages.

Important is to realize, that the lowest of the six rms voltages for each time instant need to be calculated and then the lowest value is the characteristic voltage V. To calculate the PN factor F, the highest of the six rms voltages for each time instant need to be calculated and then the lowest value is the PN factor. Sag type is obtained according to Table 2.3.

Synthetic sags

Before applying code to a large number of events, code was tested by synthetic sags generated in MatLab. Code for generating synthetic sags named "SyntheticDips.m" can be seen in Appendix A and results will be discussed in the next Section 3.2.

Generated synthetic sags were used on code to obtain all the characteristics. The characteristic voltage was chosen from 0.1 to 0.9 pu with step of 0.1 pu. Sag types from type A to G were chosen to represent the unbalanced voltage sags according to ABC classification introduced in 2.6.1. In total 171 (9 × 19) generated synthetic sags were tested on code. For illustration, synthetic sags for characteristic voltage V = 0.5 pu and the pre-fault voltage $E_1 = 1$ pu are included in Appendix B.

After all the corrections in the MatLab code were made, the code was applied to a large number of recorded events. When an event was classified as voltage sag or swell, the duration and retained voltage was calculated. If an event was classified as voltage sag and as interruption, the duration of interruption was also calculated. Indices as voltage sag energy index and voltage sag severity were calculated for all voltage sags or swells according to equations from Sections 2.4 and 2.5. Two different methods, symmetrical component method and six-phase rms method, for calculating sag type, characteristic voltage and PN-factor were used.

3.2 MatLab Results

3.2.1 **Results of Single-Event Characteristics**

All the results were stored into table that is shown in Appendix C. In the first column of the table, analysed files are listed. The second column indicates if the event was classified as voltage sag or not.

If the event was classified as voltage sag, in the next columns duration and retained voltage are shown respectively. If the event was classified as voltage sag and as interruption, the duration of interruption is also shown.

If the event was not classified as voltage sag, then in the column "Retained voltage", the minimum voltage is shown instead. The seventh column indicates if the event was

Figure 3.4: Examples of calculation of duration for transformer saturation sags.

Figure 3.5: Retained voltage vs. duration.

classified as swell or not. If the event was classified as swell, in the next two columns duration and retained voltage for swell are shown respectively.

In the next columns voltage sag energy index calculated by two different equations, Eq. 2.7 and Eq.2.8 and also total voltage sag energy index are shown according to Eq. 2.9. If the event was classified as swell, also voltage swell energy index is shown in the next column according to Eq. 2.11.

Voltage sag severity calculated according to Eq. 2.12 is listed in the 16^{th} column.

Finally results for sag type, characteristic voltage V and PN-factor F from both methods, symmetrical-component method and six-phase rms method are listed in last columns.

Another table with only voltage sags listed is shown in Appendix D.

Voltage sags in Fig. 3.4 are typical examples of measurements of transformer saturation sags that take place during energising of transformers. In the left-hand plot in Fig. 3.4 is shown how duration of such a voltage sag is calculated. Because of half-cycle rms voltage calculation, oscillations in rms voltage can be observed. In spite of the fact that rms voltage oscillates, the duration is the amount of time during which the voltage magnitude is below the sag threshold. In the right-hand plot in Fig. 3.4 is shown how some events are classified as sags, but the duration is very small and should not be therefore considered in further calculations. In the right-hand plot in Fig. 3.5 sags with duration greater than half-cycle were plotted. The reason why only sags with duration greater than half-cycle were plotted is the definition of the voltage sag itself, as defined in IEEE Std. 1159-1995 [25]. In the left-hand plot in Fig. 3.5 results of retained voltage versus duration for all the voltage sags with SEMI-curve used as reference were plotted. In both plots in Fig. 3.5 half-cycle rms voltage updated every sample was used to calculate the rms voltages from which retained voltage was obtained.

Figure 3.6: Pie charts for all events and sags.

In the left-hand plot in Fig. 3.6 pie chart diagram for all events is shown and in the right-hand plot in Fig. 3.6 pie chart diagram for only sags is plotted. From the left-hand plot in Fig. 3.6 can be observed that only 1% of all events were classified as swells only. Example of such a swell is shown in the left-hand plot in Fig. 3.7. These were not the only events that were classified as swells. From the right-hand plot in Fig. 3.6 can be observed that 25% of all the events that were classified as swells as swells, too. Example of such event that is classified as swell and sag is shown in the right-hand plot in Fig. 3.7.

3.2.2 Different calculations of Voltage Sag Energy Index

Two different equations, Eq. 2.7 and Eq. 2.8, were used to calculate voltage sag energy index. Eq 2.7 uses integration over the duration of voltage sag and Eq. 2.8 uses calculated retained voltage and duration of voltage sag as input variables. Therefore voltage sag energy index calculated from Eq. 2.8 is always higher than the one calculated from Eq. 2.7. It was found also that, when duration of voltage sag is calculated from RMS voltage calculated over one-cycle updated every half-cycle, the difference in voltage sag energy index calculated by Eq. 2.7 and Eq. 2.8 is very small. The RMS calculation in code is calculated over one half-cycle updated every sample. One of the reasons is that RMS calculation over one half-cycle updated every sample is easier to implement. The different

Figure 3.7: Swells.

(a) RMS calculation over one-cycle updated (b) RMS calculation over one half-cycle upevery half-cycle. dated every sample.

Figure 3.8: Voltage sag energy index vs. retained voltage for synthetic sags.

calculation of RMS voltage was only tested for synthetic sags and table is included in Appendix E. Result of these differences for calculation of voltage sag energy index for synthetic sags was plotted in Fig. 3.8. Only voltage sag energy results for one phase were plotted in Fig. 3.8. The highest value from table in Appendix E in the 10^{th} to the 12^{th} columns was taken and plotted against voltage energy index calculated in the 9^{th} column.

In the Fig. 3.9 voltage sag energy index vs. retained voltage for real measured data using RMS calculation over one half-cycle updated every sample is plotted. There was not any particular relation observed, only the difference of using two different equations for calculation of voltage sag energy index.

In the left-hand plot in Fig. 3.10 voltage sag energy index using two different equations for synthetic sags is plotted. There is a small difference, but nothing significant. In the right-hand plot in Fig. 3.10 the same relation as in the left-hand plot is shown, but this time for real measured data of large number of sags. For real measured data it was observed that for some of the events there was a big difference in calculation of voltage sag energy index using two different equations. The big difference in calculation occurred

Figure 3.9: Voltage sag energy index vs. retained voltage for real measured data using RMS calculation over one half-cycle updated every sample.

Figure 3.10: Voltage sag energy index results for synthetic sags and real measurements.

because these sags were all classified as developing faults.

3.2.3 Voltage Sag Severity Results

In Fig. 3.11 voltage sag severity vs. voltage sag energy index for synthetic sags and real measurements is shown. From the left-hand plot in Fig. 3.11 it can be observed that for all synthetic sags there is likely to be a relation, since all the synthetic sags have the same duration. However for measured sags shown in the right-hand plot in Fig. 3.11 there is not any relation expected as they all have different duration. The fact that there is some correlation is understandable as both quantify the severity of the sag.

Figure 3.11: Voltage sag severity vs. voltage sag energy index for synthetic sags and real measurements.

3.2.4 Sag Type Results

Sag type was calculated by symmetrical-component method and six-phase rms method. Matching probability of sag types calculated from two different methods was 70%.

There were several reasons found for probability mismatch of 30%, while looking back on sag characteristics of these mismatched sag types:

Figure 3.12:

9.35% of all voltage sags were possible sags with large phase angle jump. For these sags, phase angle jump was not calculated and therefore it was not proved that phase angle was big enough to obtain wrong sag type for six-phase rms method. Examples of possible voltage sags with large phase angle jump are shown in Fig. 3.13. The differences in sag type for large phase angle jump are in detail explained in [6] and [7].

Figure 3.13: Examples of possible sags with phase angle jump.

• 6.41% of all voltage sags were classified as measurements of transformer saturation sags that take place during energising of transformers or due to reclosing actions after a fault clearing operation. Different RMS calculation makes the RMS voltage to oscillate and therefore six-phase rms method can obtain different sag type than the symmetrical-component method. Example of such voltage sag is shown in the left-hand plot in Fig. 3.4. How to deal with transformer saturation measurements is in detail explained in [24] and [7].

 $\operatorname{comp.}$).

Figure 3.14: Examples of developing fault.

- 1.34% of all voltage sags had too short duration of voltage sag
- 7.55% of all voltage sags were classified as developing faults. Since code calculates sag type of symmetrical component method in the middle of the sag, it can generate different sag type than the six-phase rms method. Six-phase rms method does not calculate sag type in the middle of the sag, but depending on which of the six rms

voltages is the lowest. Sag type of the developing fault changes throughout the sag as it propagates. Examples of such voltage sag are shown in Fig. 3.14. In the left-hand plot in Fig. 3.14 voltage sag for which both methods give the same result is shown. In the right-hand plot in Fig. 3.14 voltage sag for which both methods give different result is shown. In the left-hand plot in Fig. 3.14 in the middle of the sag also rms voltage is the lowest, therefore both methods give the same result. In the right-hand plot in Fig. 3.14 in the middle of the sag the rms voltage is not the lowest, therefore symmetrical component method classifies the sag as type Ca, but the six-phase rms method as type Db. The problem could be solved, if the six-phase rms method calculates the sag type also in the middle of the sag.

• 5.35% of all voltage sags was matter of setting the threshold right for sags type A. In Section 3.1.4 the boundary for sag type A was explained.

In Fig. 3.12 pie chart diagram of matching probability for sag types calculated by two different methods are plotted.

3.2.5 Statistics

Figure 3.15: Probability distribution of duration and retained voltage for all sags.

In the next Figs. 3.15 to 3.19 some probability plots are shown. In the Fig. 3.15 probability distributions of duration and retained voltage for all sags are plotted. From Figs. 3.15 and 3.5 can be observed that most of the sags have duration less than 50 cycles. Measured data contained recordings that were stopped before the voltage recovered. These events were removed from database and were not plotted in Figs. 3.15 to 3.19. Examples of such events that were not fully recorded are shown in Fig. 3.16. The highest probability of retained voltage is for sags with retained voltage from 0.78 pu to 0.9 pu.

In the Figs. 3.17 to 3.19 probability distributions of duration and retained voltage for each sag type are plotted in the separate plots.

From Fig. 3.17 can be observed that type A sags are usually interruptions with retained voltage 0.0 pu and with duration of around 2s.

From Fig. 3.18 can be observed that the highest probability of retained voltage for sags type C is between 0.8 and 0.9 pu. Most of the sags of this type have duration of between 0.5 cycles and 0.5 s.

Figure 3.16: Examples of recordings that stopped before the voltage recovered.

Figure 3.17: Probability distribution of duration and retained voltage for sag type A.

Figure 3.18: Probability distribution of duration and retained voltage for sag type C.

From Fig. 3.19 the similarity with type C can be observed. The highest probability of retained voltage for sags type D is again between 0.8 and 0.9 pu. Most of the sags of this type have duration of between 0.5 cycles and 0.6 s.

Figure 3.19: Probability distribution of duration and retained voltage for sag type D.

Note that all the plots are plotted with a normal probability distribution curve, but the purpose of it was not to show if the distribution is normal or not. The purpose of it was to see what are the probabilities for duration and retained voltage to occur for certain sag types.

Chapter 4 Site Indices

In this chapter methods to calculate site indices, selected from documents [1] and [2], will be discussed, to be later implemented in Matlab and applied to a large number of events. As input to the site indices, the single-event characteristics are used as obtained from all events recorded at a given site over a given period, typically one month or one year [2].

Firstly it is important to calculate SARFI indices. SARFI is an acronym for *System* Average RMS Variation Frequency Index from which we recognize two types: SARFI-X and SARFI-curve. Secondly is to present the performance of a site by means of a voltage sag table, use the voltage-sag energy method of characterization and the voltagesag severity method.

4.1 SARFI-X

SARFI index relates how often the retained voltage of a voltage sag is below a specified threshold. According to [2] SARFI-X corresponds to a count or rate of voltage sags, swell and/or interruptions below or above a voltage threshold:

- SARFI-90 counts voltage sags and interruptions that are below the threshold of 90% of the reference voltage
- SARFI-70 counts voltage sags and interruptions that are below the threshold of 70% of the reference voltage
- SARFI-110 counts voltage swells that are above the threshold of 110% of the reference voltage

 $SARFI_X$ is expressed in the equation 4.1 as the number of events per 30 days with a retained voltage below X percent threshold:

$$SARFI_X = \frac{N_E}{D} \cdot 30 \,\mathrm{days} \tag{4.1}$$

where N_E is number of events at a single site and D number of days measuring these events at a single site.

The $SARFI_X$ indices are meant to assess short-duration rms variation events only, meaning that only those events with durations less than the minimum duration of a sustained interruption (5 minutes) are included in its computation [2].

4.2 SARFI-Curve

SARFI-curve corresponds to a rate of voltage sags below or above an equipment compatibility curve. We recognize two basic curves: ITIC(CBEMA) curve and SEMI curve. These curves again limit the duration of an rms variation event to the minimum duration of a sustained interruption (5 minutes according to IEEE Std.1366 [18]) [2].

4.2.1 SARFI-ITIC (CBEMA)

The ITIC curve in Fig. 4.1 is being proposed as the new CBEMA curve. The original CBEMA curve is a general curve to describe operational voltage limits for electronic equipment. It was developed a number of years ago based on educated guesswork, and does not apply exactly to all equipment. The new ITIC curve was developed by *Information Technology Industry Council* to better reflect real world performance of electronic equipment [19]. Therefore only the ITIC curve will be used from now on.

Figure 4.1: ITIC (CBEMA) curve [17].

The ITIC curve describes an ac input that typically can be tolerated (e.g. without an interruption in function) by most information technology equipment. ITIC curve includes two overlay curves that represent upper and lower limits. Events above the upper curve or below the lower curve are presumed to cause misoperation of information technology equipment (e.g., computers, computer network components, and communications networks). The curve is not intended to serve as a design specification for products or ac distribution systems. However, the normal functional state of information technology equipment is not typically expected when rms variations occur that are outside the upper and lower magnitude-duration limits described by the curve [2].

Using the ITIC curve gives the following algorithm for calculating the SARFI-ITIC presented in Table 4.1. The table shows the region of the semiconductor manufacturing equipment, where voltage sags cause damage to the information technology equipment. If a voltage sag is within the boundary, set by the ITIC curve retained voltage U_{ITIC} for a specified duration d, then that event is counted to SARFI-ITIC.

UITIC	duration d
0.0 pu	$1 ms < d \le 20 ms$
< 0.7 pu	$20 \text{ms} < \text{d} \le 500 \text{ms}$
$< 0.8 { m pu}$	$500 \mathrm{ms} < \mathrm{d} \le 10 \mathrm{s}$
< 0.9 pu	10s < d

Table 4.1: Algorithm for calculating the SARFI-ITIC.

4.2.2 SARFI-SEMI

The SEMI curve presented in Figs. 2.2 and 2.3 shows the prohibited region for voltage sags below the SEMI curve. Using the SEMI curve gives the algorithm for calculating the SARFI-SEMI presented in Table 4.2. The table shows the region where a voltage sag causes damage to the semiconductor manufacturing equipment. If a voltage sag is within the boundary, set by the SEMI curve retained voltage U_{SEMI} for a specified duration d, then that event is counted to SARFI-SEMI.

U_{SEMI}	duration d
0.0pu	$d \le 20 ms$
$< 0.5 \mathrm{pu}$	$20ms < d \le 200ms$
$< 0.7 \mathrm{pu}$	$200 \mathrm{ms} < \mathrm{d} \le 500 \mathrm{ms}$
$< 0.8 \mathrm{pu}$	$500 \mathrm{ms} < \mathrm{d} \le 10 \mathrm{s}$
$< 0.9 \mathrm{pu}$	10s < d

Table 4.2: Algorithm for calculating the SARFI-SEMI.

4.3 Voltage-Sag Table

A commonly used method of presenting the performance of a site is by means of a voltage sag table. Four different tables are presented in [2]:

- Unipede table
- Table based on IEC 61000-4-11
- South-African standard NRS 048-2:2003
- Table from IEC 61000-2-8

In each example, a maximum voltage-sag duration has been used equal to the minimum duration of a sustained interruption (5 minutes) as defined in IEEE Std.1366 [18]. A voltage-sag table can be used as a system index as well as a site index. Strictly speaking a voltage-sag table is not an index but a way of presenting a set of indices [2].

retained voltage	duration $d[s]$								
U[%]	d < 0.1	$0.1 \le d < 0.25$	$0.25 \le d < 0.5$	$0.5 \le d < 1$	$1 \le d < 3$	$3 \le d < 20$	$20 \le d < 60$	$1min \leq d < 5min$	
$80\% < U \le 90\%$									
$70\% < U \le 80\%$									
$60\% < U \le 70\%$									
$50\% < U \le 60\%$									
$40\% < U \le 50\%$									
$30\% < U \le 40\%$									
$20\% < U \le 30\%$									
$10\% < U \le 20\%$									
$U \le 10\%$									

Table 4.3: Voltage sag table according to IEC 61000-2-8.

Here the *table as proposed in IEC 61000-2-8*, presented in Table 4.3 is chosen. The main difference with the UNIPEDE table is in the higher resolution in the remaining voltage ranges. Also, an additional duration range is added with 250 ms as a limit [2]. The columns of Table 4.3 represent ranges of voltage-sag duration, the rows represent ranges of retained voltage. Each cell in the table gives the number of events with the corresponding range of retained voltage and duration.

4.4 Voltage-sag energy method

The voltage-sag energy method of characterization uses three site indices:

- total lost energy per site represented by Sag Energy Index (SEI)
- average lost energy per event represented by Average Sag Energy Index (ASEI)
- number of events per site represented by $SARFI_{90}$

4.4.1 Voltage-Sag Energy Index

The Sag Energy Index (SEI) is the sum of the voltage sag energies for all qualified events at a given site during a given period

$$SEI = \sum_{i=1}^{n} E_{vs(i)} \tag{4.2}$$

where i is the sag event number and n is the number of qualified events during the given period at a given site. The indices are usually calculated monthly and annually. The Sag Energy Index, when expressed in units of time, can be interpreted as the length of the equivalent interruption with the same lost energy as all sags together that occurred during the observation period [2].

4.4.2 Average Sag Energy Index

The Average Sag Energy Index or ASEI is the average of the voltage sag energies for all qualified events measured at a given site during a given period [2]

$$ASEI = \frac{1}{n} \sum_{i=1}^{n} E_{vs(i)}$$
(4.3)

4.4.3 Number of event per site

The $SARFI_{90}$ index is used as a third index to quantify the number of events at the site. Note that only two of the three indices are needed as they are related according to [2]

$$SEI = ASEI \cdot SARFI_{90} \tag{4.4}$$

When using voltage-sag energy indices it is recommended to not include momentary interruptions, as one momentary interruption may have a larger contribution to the index than all voltage sags together.

The *Swell Energy Index* is the sum of the voltage-swell energies for all qualified events at a given site during a given period.

The Average Swell Energy Index is the average of the voltage-swell energies for all qualified events measured at a given site during a given period.

4.5 Voltage-Sag Severity Method

The calculation of site indices for the *voltage-sag severity method* is very similar to the calculation of site indices based on the *voltage-sag energy method*.

Three site indices are introduced to characterize the site performance:

• total voltage-sag severity

$$S_{site} = \sum_{i=1}^{N} S_{e(i)}$$
 (4.5)

• average voltage-sag severity

$$S_{average} = \frac{S_{site}}{N} \tag{4.6}$$

• number of events for the site N.

Note that N is equal to $SARFI_{90}$ and that the same relation between the indices holds as for the voltage-sag energy method:

$$S_{site} = S_{average} \cdot SARFI_{90} \tag{4.7}$$

The *Total Voltage Swell Severity* is the sum of the voltage-swell severity for all qualified events at a given site during a given period.

The Average Voltage Swell Severity is the average of the voltage-swell severity for all qualified events measured at a given site during a given period.

Chapter 5 Site Indices Results

Because all events measured at different sites were not in any kind of logically saved form, that one could distinguish what event is from what site, all the measured data were considered as one site. Even if one could try to separate data, the amount of data for each site might not be enough to obtain any suitable statistics. Data measured over one month period were not categorized according to different sites.

To calculate site indices new code attached in Appendix A was used and in next sections result will be shown.

5.1 SARFI Indices

What SARFI indices are and how to calculate them was in detail explained in Chapter 4. The results for calculations of different SARFI indices are shown in Table 5.1.

In the first row in Table 5.1 results of SARFI indices calculations for all sags are shown. In second row all the indices are recalculated in the number of events per 30 days, as in Eq. 4.1. Because analyzed data were measured over one month period, also next row of recalculated indices in number of events per 30 days will be the same. If the measured period of the events would be longer than one month, all indices in the second row will decrease. On the other hand if the measured period of the events would be shorter than one month, all indices in the second row will increase.

	Events	SARFI-110	SARFI-90	SARFI-70	SARFI-50	SARFI-10	SARFI-ITIC	SARFI-SEMI
Count of events	374	94	350	188	128	91	193	167
Events per 30 days	374	94	350	188	128	91	193	167
Six Phase RMS method								
Count of events for type A	374	33 (35.1%)	85 (24.3%)	80 (42.6%)	77 (60.2)	77 (84.6)	82 (42.5%)	82 (49.1%)
Count of events for type C	374	21 (22.3%)	125 (35.7%)	49 (26.1%)	22 (17.2%)	1 (1.1%)	51 (26.4%)	40 (24%)
Count of events for type D	374	33 (35.1%)	140 (40%)	59 (31.4%)	29 (22.7%)	13 (14.3%)	60 (31.1%)	45 (26.9%)
Six Phase RMS method			•		•			
Count of events for type A	374	37 (39.4%)	92 (26.3%)	82 (43.6%)	81 (63.3%)	77 (84.6%)	84 (43.5%)	84 (50.3%)
Count of events for type C	374	23 (24.5%)	128 (36.6%)	54 (28.7%)	24 (18.8%)	5 (5.5%)	56 (29%)	42 (25.1%)
Count of events for type D	374	27 (28.7%)	130 (37.1%)	52 (27.7%)	23 (18%)	9 (9.9%)	53 (27.5%)	41 (24.6%)

Table 5.1: SARFI indices table

In the next rows of Table 5.1 SARFI indices for different sag types are calculated depending on what method is used to obtain the sag type. Results for some SARFI indices that were the most interesting can be seen also in PIE Diagram in Fig. 5.1. Note that 7 events were classified as swells only and therefore, there is no sag type defined for them. Because of this, SARFI-110 index is always greater than sum of events for each sag type. Note that also only events with duration greater than 0.5 cycles were taken into calculations.

Figure 5.1: Pie chart diagrams for SARFI indices for different sag types.

From Table 5.1, differences in number of SARFI-ITIC and SARFI-SEMI can be observed. But this is not the case for calculation of these two indices for sag type A. Sag type A is usually classified when an event is interruption with retained voltage 0.0 pu. When interruption with 0.0 pu occurs it is usually not restored. Because sags type A occur in duration range where both reference curves have the same characteristics, SARFI-ITIC and SARFI-SEMI will be equal.

Figure 5.2: Retained voltage vs. duration for sag type A.

Figure 5.3: Retained voltage vs. duration for sag type C.

Figure 5.4: Retained voltage vs. duration for sag type D.

Illustrations of how counting of the events was done for different sag types with different curves used as reference are shown in Figs. 5.2 to 5.4. In Figs. 5.2 to 5.4 retained voltage vs. duration characteristics are shown for different sag types. In the left-hand plot of each figure, for each sag type, SEMI curve is used as reference. In the right-hand plot ITIC curve is used as reference. In Figs. 5.2 and 5.4 large number of sags with retained voltage 0.0 pu can be observed. Most of these sags are recordings that stopped before the voltage recovered, so the duration in these plots is not the real duration of the sag, but the duration until the end of recording.

Results of this counting are shown in the last two columns "SARFI-ITIC and SARFI-SEMI" in Table 5.1.

If SARFI-ITIC for upper and lower curve as one index needs to be calculated, following has to be considered:

In Fig. 5.5 all events that were classified as sags and swells are plotted. However, it is difficult to see the same event that is classified as sag and swell in Fig. 5.5. Usually duration of sag is different than duration of swell. For this reason in the right-hand plot of Fig. 5.5 example of five such events is shown. If one would like to calculate SARFI-ITIC above the upper ITIC curve, one has to realize that same event could be counted once in

Figure 5.5: Retained voltage vs. duration for events that are swells and sags.

Figure 5.6: Retained voltage vs. duration for events classified as swells.

the SARFI-ITIC for upper curve and in the SARFI-ITIC for lower curve. For example, events number 17, 19 and 20 in the right-hand plot in Fig. 5.5 will be counted once in SARFI-ITIC for upper curve and once in SARFI-ITIC for lower curve. On the other hand event number 16 would be counted only to SARFI-ITIC for lower curve and not in SARFI-ITIC for upper curve. Event number 18 would not be counted to SARFI-ITIC at all. Note that in Table 5.1 SARFI-ITIC is calculated only for the lower ITIC curve.

In the left-hand plot in Fig. 5.6 all swells are plotted, also those that were classified as sags. In the right-hand plot in Fig. 5.6 only events that were classified as swells are plotted. Out of all 887 events only 7 events were classified as swells and 87 were classified as voltage sags and swells.

5.2 IEC Table

In the Table 5.2 all sags with its duration and retained voltage are shown according to Table 4.3. Because the recording time of all the events measured at site were not longer than 250 cycles (5s), there is not more any reason why the last two columns of Table 4.3 should appear in the table.

retained voltage	duration $d[s]$								
U [%]	d < 0.1	$0.1 \le d < 0.25$	$0.25 \le d < 0.5$	$0.5 \le d < 1$	$1 \le d < 3$	$3 \le d < 20$			
$80\% < U \le 90\%$	80	32	17	7	7	0			
$70\% < U \le 80\%$	9	24	4	5	1	0			
$60\% < U \le 70\%$	6	14	9	6	3	0			
$50\% < U \le 60\%$	3	11	7	1	0	0			
$40\% < U \le 50\%$	0	3	3	1	3	0			
$30\% < U \le 40\%$	1	2	7	2	1	0			
$20\% < U \le 30\%$	1	3	1	1	3	0			
$10\% < U \le 20\%$	3	2	0	0	0	0			
$U \le 10\%$	3	34	11	4	36	3			

Table 5.2: Voltage sag table according to IEC 61000-2-8.

Some correspondence between Table 5.1 and Table 5.2 was observed. In Table 5.2 sum of the last row is the count of events for SARFI-10 in Table 5.1 and the sum of all rows is the count of SARFI-90. In analogous also SARFI-70 and SARFI-50 similarities can be observed.

If the sum of rows represent SARFI index, one could define also index for sum of all cells in one column in Table 5.2. The new introduced index would count all sags with a certain duration range, regardless of the magnitude. This could play an important role when designing a mitigation device for specific applications.

Chapter 6 System Indices

In this chapter indices for the whole system are introduced. The procedure for obtaining voltage sag system indices is shown in the Fig. 6.1. Firstly it is important to calculate SARFI system indices. Secondly is to present the performance of a system by means of a voltage sag table, calculate the sag energy index for the whole system and the voltage-sag severity system index.

Figure 6.1: Voltage sag system indices procedure

System indices are calculated from the site indices obtained for a number of sites. Two different methods can be distinguished for calculating system indices:

- The system index is defined as a weighted average of the site indices.
- The system index is defined as the value not exceeded for 95% of the sites (the 95 percentile of the site indices).

When calculating voltage sag system indices one ideally has to have access to all sites over a long period of time [2].

6.1 SARFI System Indices

The SARFI indices for a system are obtained as the average of the indices for the different sites. The SARFI thus gives the average voltage quality over the whole system. As not all sites are monitored and not all monitored sites are equal, a kind of weighing is needed to get an appropriate average [2].

6.2 Voltage-Sag Tables for a system

When voltage-sag tables are used, both average values over all sites and 95 percentile values can be used. When average values are used, weighing of the values may be considered. Weighing is also possible when using the 95 percentile but less useful unless a very large number of sites is being monitored. The voltage-sag table for the whole system may contain a smaller number of cells than for individual sites. For individual sites a certain level of detail is needed to determine the compatibility of sensitive equipment with the supply. For system indices a smaller level of detail may be more appropriate as that makes e.g. the study of year-to-year variations easier. Such a table is presented in Cigre final report on Power Quality Indices and Objectives [15].

6.3 Voltage-Sag Energy Index of a System

When using voltage-sag energy indices, system indices are calculated by taking the average value of the site indices [2]. The SEI and SARFI-90 values for the system are obtained by dividing the sum of the site values with number of sites [2]

$$SEI_{system} = \frac{1}{N} \sum_{s=1}^{N} SEI_s \tag{6.1}$$

where N is the number of sites

$$SARFI_{90(system)} = \frac{1}{N} \sum_{s=1}^{N} SARFI_{90(s)}$$
 (6.2)

The average sag energy for the whole system is obtained from the SEI and SARFI-90 values for the system [2]

$$ASEI_{system} = \frac{SEI_{system}}{SARFI_{90(system)}}$$
(6.3)

6.4 Voltage-Sag Severity System Index

The system index for voltage-sag severity should be obtained from the site indices in the same way as for the other indices: either as a weighted average or as a 95 percentage [2].

Chapter 7 Conclusions

In this thesis algorithms to calculate site and system indices from sampled voltages according to the listed documents [1] and [2] were implemented in Matlab, with written overview of the existing knowledge on voltage sag indices. Method for calculating singleevent, site and system indices based on three-phase characteristics using document [3] was developed and implemented in Matlab as well, with a detailed description of the two methods plus the various implementation issues. Finally these algorithms were applied to measured data and statistics on the resulting indices were obtained.

In total 887 recorded events on different sites in a medium-voltage network during one month in June 1997 were analysed in Matlab.

All the results and code for calculation of single-event indices was included in Appendixes. It was found that out of all the events 42% were classified as sags and 1% as swells only. For events classified as sags, it was found that 25% of them were classified as swells, too. There were 27% of sags classified as interruptions.

Two different equations to obtain voltage sag energy index were tested on synthetic sags as well as on the measured large number of events. It was observed that both of these equations could be used when one-cycle rms calculation updated every half-cycle is used to obtain rms voltages. When these two equations were tested on a large number of measured data, some bigger differences in using these equations were observed. This was due to the fact that some of the measured events were developing faults. When applying the equation for using voltage sag energy index equation with retained voltage and duration as input variables, voltage sag energy index was much higher because of the fact that rms voltage throughout the sag changes rapidly.

All the implementation issues for calculation of single-event indices were discussed in detail in Chapter 3.

Two methods, six-phase RMS and symmetrical component methods, to obtain the sag type were implemented in Matlab. It was found that in 70% of cases, these two methods give the same result for the sag type. Various reasons why two methods give 30% of different results for sag type were observed. Some of the differences were due to implementation procedures and some of them because of the different calculations of these two methods themselfs. It was found that 9.35% of all the sags were possible sags with large phase angle jump and therefore in these cases the sag type obtained by these two methods gives different results. For 6.41% of all voltage sags it was observed that the sag type gave different result because these events were caused by transformer saturations. Half-cycle rms calculation updated every sample was used to calculate rms

voltages, therefore oscillations in rms voltage characteristics were observed. Another main group in obtaining different results on sag types consists of sags classified as developing faults. Since code calculates sag type of symmetrical component method in the middle of the sag, it can generate different sag type than the six-phase rms method. Sag type of the developing fault changes throughout the sag as it propagates.

In the future the prove of the large phase angle jump mismatch in obtaining sag type could be done. Better calculation of sag type for developing faults sholud be also improved. Interesting to see would be, how different calculation of the rms voltages changes the sag type. Because of the incomplete description of the procedure how to calculate single-event indices, especialy sag type, in Std. IEEE P1564 there was additional literature needed. Therefore there is high need to improve the Std. IEEE P1564 in these points and describe in more detail how to obtain sag type and rms voltages, since there is more than one way to calculate it. General MatLab code included in Std. IEEE P1564 would be a very good way how to solve implementation issues in obtaining such results. However MatLab is copyrighted programme and may not be available for every user. This could be solved by a possibilite to use this programme only for those people willing to use the St. IEEE P1564. It could be done by some additional membership fee to IEEE organisation for use of MatLab, only for those users interested in using MatLab code created to calculate voltage sag indices.

Appendix A

Matlab Code

A.1 Making .mat Files

```
MakingMAT files.m
1 %-----
2 % Creating .mat file from .dat file for large number of files
3 %
4 % by FRANTISEK KINCES, CHALMERS University of Technology, Goteborg
7% VARIABLES :
s\ \mbox{\sc x} SignalName: name of the data file
        : voltage samples in phase A
9 % Ua
10 % Ub
                   : voltage samples in phase B
11 % Uc
                   : voltage samples in phase C
                         : time samples, t stored in seconds
12 % t
13 clear
14 clc
15
16 for j=0:887
17 FileName=([['ZQ' num2str(j)] '.DAT']);
18 SignalName=Strtok(FileName,'.');
19 Signal=dlmread(FileName);
20 if (isempty(Signal)==1)
    NewFile=strcat(Strtok(FileName,'.'),'.mat');
21
22
     clear('j','FileName','SignalName','Signal');
    t=[];
23
    save(NewFile,'t');
24
     clear('NewFile','t');
25
26 else
     t =Signal(:,2)*1e-6;
27
     Ua=Signal(:,3);
28
29
     Ub=Signal(:,4);
     Uc=Signal(:,5);
30
     NewFile=strcat(Strtok(FileName,'.'),'.mat');
31
     save(NewFile,'t','Ua','Ub','Uc');
32
     clear('j','FileName','Signal','t','Ua','Ub','Uc','NewFile');
33
34 end
35 end
36
```

SingleEvent.m

```
9 % t = time in seconds, loaded from .mat file
10 % tC = time in cycles, tC=t/0.02s
11 % freq = estimated frequency, for each phase separately
12
13 clear all
14 clc
15
16 k=0;
17 m=0:
18
19 for j=0:29
20
      load([['DATonly\ZQ' num2str(j) ] '.mat']);
21 %for j=1:19 %19
22 %load([['SyntheticDips\GeneratingSyntheticDips\Sags\' num2str(j)] '_01.mat'])
23
24 % load('DATonly\ZQ3.mat');
25 disp(['ZQ' num2str(j)])
26 %flag=0; % sets flag to 0, when no voltage dip % uncomment only if voltage dips in the table wanted
27
       if (isempty(t)==1) \% and my created empty files are not included in the results
28
29
30
          X(j,1)=j;
31
          x=nonzeros(X);
          k = length(x);
32
33
      %
          Status='EMPTY'; %if empty field of created .mat files wanted in the results
34
         Duration=[];
      %
         Retained=[];
35
      %
36
      else
          tC=t/0.02; % time in cycles
37
38
39
          % frequency estimation for 3-phases, file: FreqEstim_3phase.m
40
41
           [freq1,freq2,freq3]=FreqEstim_3phase(Ua,Ub,Uc,t,j);
42 % disp(['freq1= ' num2str(freq1)])
43 % disp(['freq2= ' num2str(freq2)])
44 % disp(['freq3= ' num2str(freq3)])
45 % freq1=50;
46 % freq2=50;
47 % freq3=50;
48
               %C(j,1)=c; % when corection in frequency calculation was tested, c taken out of FreqEstim_3phase.m
49
               %c1=nonzeros(C);
50
          % RMS calculation for 3-phases(in samples & pu calc), in file: RMS_3phase.m
51
52
           [Ua_rms, Ua_pu, Ub_rms, Ub_pu, Uc_rms, Uc_pu, Nc1, Nc2, Nc3, pre_event_reference] = RMS_3phase(Ua, Ub, Uc, t, freq1, freq2, freq3, j);
53
54
          % [Ua_rms,Ua_pu]=RMS(Ua,t,freq1);
55
          % [Ub_rms,Ub_pu]=RMS(Ub,t,freq2);
56
          % [Uc_rms,Uc_pu]=RMS(Uc,t,freq3);
57
58
          % ploting phase voltages, RMS voltages (insamples and p.u.) into the figures
59
60 %
            figure(j+1);
             set(gcf,'visible', 'on');
61 %
            subplot(3.1.1)
62 %
63 %
            plot(tC,Ua,'r',tC,Ub,'g',tC,Uc,'b'), xlim([0 tC(length(tC))]), ylabel('Voltage [samples]'), title([['ZQ' num2str(]
64 %
            subplot(3,1,2)
            plot(tC,Ua_rms,'r',tC,Ub_rms,'g',tC,Uc_rms,'b'), xlim([0 tC(length(tC))]), ylabel('RMS Voltage [samples]');
65 %
66 %
            subplot(3,1,3)
            plot(tC,Ua_pu,'r',tC,Ub_pu,'g',tC,Uc_pu,'b'), xlim([0 tC(length(tC))]), xlabel('Time [cycles]'), ylabel('RMS Volta
67 %
68
69
          %clear('Ua_rms', 'Ub_rms', 'Uc_rms');
70
71
72 %
             % saving figures in .eps format
             \texttt{filename=['DATonly\ExmpFigures\ZQ'\num2str(j)];}
73 %
            print(['-f' num2str(j+1)], '-depsc', filename)
74 %
            clear('filename');
75 %
76
          % detection if there is a voltage dip, calc. of duration & retained voltage, file: VoltageDip.m
77
78
79
           threshold=0.9; %p.u.
           [Status, Duration, Retained, Dip TypeA, t_mid]=VoltageDip(Ua_pu, Ub_pu, Uc_pu, tC, threshold, Nc1, Nc2, Nc3);
80
81
```

```
if (isempty(Duration)==0)
  82
                                   thresholdI=0.1;
  83
                                  % detection if a voltage dip is also an interruption, file: Interruption.m
  84
                                   [StatusI, DurationI] = Interruption(Ua_pu, Ub_pu, Uc_pu, tC, thresholdI);
  85
                                  % calculation of a voltage sag energy index, file: VoltageSagEnergy.m
  86
 87
                                   [\texttt{Evs\_a},\texttt{Evs\_b},\texttt{Evs\_c},\texttt{Evs},\texttt{Evs\_Ret}] = \texttt{VoltageSagEnergy} (\texttt{Ua\_pu},\texttt{Ub\_pu},\texttt{Uc\_pu},\texttt{freq1},\texttt{freq2},\texttt{freq3},\texttt{threshold},\texttt{Duration},\texttt{Retained},\texttt{Suration},\texttt{Retained},\texttt{Suration},\texttt{Retained},\texttt{Suration},\texttt{Retained},\texttt{Suration},\texttt{Retained},\texttt{Suration},\texttt{Retained},\texttt{Suration},\texttt{Retained},\texttt{Suration},\texttt{Retained},\texttt{Suration},\texttt{Retained},\texttt{Suration},\texttt{Retained},\texttt{Suration},\texttt{Retained},\texttt{Suration},\texttt{Retained},\texttt{Suration},\texttt{Retained},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration},\texttt{Suration}
                                  % calculation of a voltage sag severity, file: VoltageSagSeverity.m
  88
                                   [Severity]=VoltageSagSeverity(Duration,Retained);
  89
                                  % calculation of a voltage dip type, file: SixPhaseRMS.m
  90
  91
                                   [DipType,V,F]=SixPhaseRMS(Ua,Ub,Uc,t,freq1,freq2,freq3,j,DipTypeA,DurationI);
                                  %disp(['DipType=' num2str(DipType)])
  92
  93
                                   [DipTypeS, V_s, F_s, M, angleV_s]=SymmComp(Ua, Ub, Uc, t, freq1, freq2, freq3, j, DipTypeA, t_mid, pre_event_reference);%,XY1
  94
  95
                        else StatusI=['NO'];
  96
                                  DurationI=[];
                                  Evs=[]; Evs_a=[]; Evs_b=[]; Evs_c=[]; Evs_Ret=[];
  97
                                  Severity=0;
  98
  99
                                  DipType=[''];
                                  V=[]; F=[];
100
                                  V_s=[]; F_s=[];
101
                                  %XY1=[' '];
102
                                  DipTypeS=[''];
1.03
104
                                  M = [];
                                  angleV_s=[];
105
1.06
107
                          end
108
109
                       % detection if an event is a voltage swell, calc. of duration, file: Swell.m
                        thresholdS=1.1; %p.u.
110
111
                        [StatusS, DurationS, RetainedS] = Swell(Ua_pu, Ub_pu, Uc_pu, tC, thresholdS);
112
                       if (isempty(DurationS)==0)
113
114
                                   [Evsw] = VoltageSwellEnergy(Ua_pu, Ub_pu, Uc_pu, freq1, freq2, freq3, thresholdS);
115
                        else
                                  Evsw=[7]:
116
                        end
117
118
                       %clear('Ua','Ub','Uc','Ua_pu','Ub_pu','Uc_pu','Nc1','Nc2','Nc3');
119
                            120 %
121 %
                            if (isempty(Duration)==1) % uncomment only if voltage dips in the table wanted
122 %
123 %
                                     Y(j+1,1)=j;%
124 %
                                    v=nonzeros(Y):%
125 %
                                    m=length(y);%
126 %
127 %
                            else %
128 %
                                     flag=1; %subtracts 1 when voltage dip occurs; in voltage dip cell array
129 %
130 %
                            % ploting phase voltages, RMS voltages (insamples and p.u.) into the figures
131 %
132 % %
                                figure(j+1);
133 % %
                                set(gcf,'visible', 'off');
134 % %
                                subplot(3,1,1)
135 % %
                                plot(tC,Ua,'r',tC,Ub,'g',tC,Uc,'b'), xlim([0 tC(length(tC))]), ylabel('Voltage [samples]'), title([['ZQ' num2str
136 % %
                                subplot(3,1,2)
137 % %
                                plot(tC,Ua_rms,'r',tC,Ub_rms,'g',tC,Uc_rms,'b'), xlim([0 tC(length(tC))]), ylabel('RMS Voltage [samples]');
138 % %
                                subplot(3,1,3)
139 % %
                                plot(tC,Ua_pu,'r',tC,Ub_pu,'g',tC,Uc_pu,'b'), xlim([0 tC(length(tC))]), xlabel('Time [cycles]'), ylabel('RMS Vol
140 % %
141 % %
                                % saving figures in .jpg format
142 % %
                                filename=['DATonly\SagsONLY\ZQ' num2str(j)];
                                print(['-f' num2str(j+1)], '-djpeg', filename)
143 % %
144 % %
                                clear('filename');
145 %
146 % end
                        147
148
149
                       clear('freq1', 'freq2', 'freq3');
                        clear('Ua_rms', 'Ub_rms', 'Uc_rms');
150
                       clear('Ua', 'Ub', 'Uc', 'Ua_pu', 'Ub_pu', 'Uc_pu', 'Nc1', 'Nc2', 'Nc3');
151
1\,52
                       clear('pre_event_reference');
153
154
                       % R E S U L T S shown in a cell array variable VoltageDip - table, just copy paste to xls:(cell array:C={'x'...})
```

```
155
           % VoltageDip = {'Event'
                                        'Voltage Dip or Not ' 'Duration [cycles] ' 'Retained [pu] ';
156
                             num2str(j)
                                                                num2str(Duration)
                                                                                      num2str(Retained)}:
157
           %
                                               Status
158
            VoltageDip{1,1}
                               ='File n.
                                           ':
159
160
            VoltageDip{1,2}
                               ='Sag';
            VoltageDip{1,3}
                               ='Duration [cycles] ';
161
            VoltageDip{1,4}
                               ='Retained [pu] ';
162
            VoltageDip{1,5}
                               ='Interruption';
163
164
            VoltageDip{1,6}
                               ='Int. Dur. [cycles] ';
            VoltageDip{1,7}
                               ='Swell':
165
166
            VoltageDip{1,8}
                               ='Swell Dur. [cycles] ';
            VoltageDip{1,9}
167
                               ='Swell retained voltage [pu] ';
1.68
            VoltageDip{1,10}
                               ='Voltage-Sag Energy calc. from Dur.& Ret [cycles] ';
169
            VoltageDip{1,11}
                               ='Evs_a, Voltage-Sag Energy Index [cycles] ';
                               ='Evs_b, Voltage-Sag Energy Index [cycles] ';
            VoltageDip{1,12}
170
171
            VoltageDip{1,13}
                               ='Evs_c, Voltage-Sag Energy Index [cycles] ';
172
            VoltageDip{1,14}
                                ='Evs, Voltage-Sag Energy Index [cycles] ';
                               ='Voltage-Swell Energy Index [cycles] ';
173
            VoltageDip{1,15}
            VoltageDip{1,16}
                               ='Voltage-Sag Severity [pu] ';
174
                               ='Six Phase RMS - Dip Type ';
            VoltageDip{1,17}
175
                               = 'V' :
176
            VoltageDip{1,18}
            VoltageDip{1,19}
                               ='F';
177
                               ='Symmetrical comp Method';
            VoltageDip{1,20}
1.78
179
            VoltageDip{1,21}
                               ='V';
                               ='F';
180
            VoltageDip{1,22}
                               ='m':
181
            VoltageDip{1,23}
182
            %VoltageDip{1,24}
                               ='angle(V) [deg]';
            VoltageDip{j+2-k,1} = ['ZQ' num2str(j)];
183
184
            VoltageDip{j+2-k,2} = Status;
185
            VoltageDip{j+2-k,3} = num2str(Duration);
            VoltageDip{j+2-k,4} = num2str(Retained);
186
187
            VoltageDip{j+2-k,5} = StatusI;
188
            VoltageDip{j+2-k,6} = num2str(DurationI);
            VoltageDip{j+2-k,7} = StatusS;
189
            VoltageDip{j+2-k,8} = num2str(DurationS);
190
            VoltageDip{j+2-k,9} = num2str(RetainedS);
191
            VoltageDip{j+2-k,10} = num2str(Evs_Ret);
192
            VoltageDip{j+2-k,11} = num2str(Evs_a); %[num2str(Evs_a) ' ' num2str(Evs_b) ' ' num2str(Evs_c) ' ' num2str(Evs)]; %Vo
193
            VoltageDip{j+2-k,12} = num2str(Evs_b);
194
195
            VoltageDip{j+2-k,13} = num2str(Evs_c);
            VoltageDip{j+2-k,14} = num2str(Evs);
196
            VoltageDip{j+2-k,15} = [num2str(Evsw)];
197
198
            VoltageDip{j+2-k,16} = num2str(Severity);
            VoltageDip{j+2-k,17} = DipType;
199
200
            VoltageDip{j+2-k,18} = num2str(V);
            VoltageDip{j+2-k,19} = num2str(F);
201
            VoltageDip{j+2-k,20} = DipTypeS;
202
203
            VoltageDip{j+2-k,21} = num2str(V_s);
204
            VoltageDip{j+2-k,22} = num2str(F_s);
            VoltageDip{j+2-k,23} = num2str(M);
205
206
            %VoltageDip{j+2-k-m-flag,24} = num2str(angleV_s);
207
           \% flag needs to be subtracted, e.g.: VoltageDip{j+2-k-m-flag,_} when only table with voltage dips wanted
208
209
210
           clear('flag', 't', 'tC', 'threshold', 'thresholdI', 'thresholdS', 'Status', 'StatusS', 'Duration', 'DurationS', 'RetainedS');
            clear('Retained','StatusI','DurationI','Evs_a','Evs_b','Evs_c','Evs','Evs','Evs_Ret','Evsw','Severity')
211
            clear('DipType', 'DipTypeA', 'V', 'F', 'DipTypeS', 'V_s', 'F_s', 't_mid', 'M', 'angleV_s');
212
213
214 end
215 % saving all the calculations in a table, file Results.mat
216
217 save('Results\ResultsSymmCompKonecne.mat', 'VoltageDip');
218
219 clear('t'):
220
221 % phase angle jump calculation, file: AngleJump.m
222
223 % dip type calculation, file: DipType.m
224
225
226 end
```

```
FreqEstim3phase.m
 2 % file: FreqEstim.m
 3% FREQUENCY estimation of a three phase signal
4 %
 5 % estimates the true frequency of the three phase signal
 ===
 7% VARIABLES :
 8 % dt
           = Time step
 9 % T
           = period
           = Number of samples per one cycle
10 % Nc
11 \% alpha1 = initial angle of the fundamental component over the first period
12 % alpha2 = initial angle of the fundamental component over the first period
13 % freqX = estimated frequency (X=1,2,3)
14
15 function [freq1, freq2, freq3]=FreqEstim(signal1, signal2, signal3, time, j)
16
17 dt=(time(11)-time(1))/10;
18 T=0.02;
19 Nc=round(T/dt);
20 % calculation of the frequency from post-event voltage (correction)
21
22 \text{ vect1=find(time<0.02):}
23 vect2=find(time<0.02);</pre>
24 vect3=find(time<0.02);
25 max1=max(signal1(vect1));
26 max2=max(signal2(vect2));
27 max3=max(signal3(vect3));
28
      if ((max1<=300) || (max2<=300) || (max3<300) ||j==97||j==99||j==104||j==106||j==167||j==324||j==385||j==396||j==417||j=
29
       % disp('freq = post-event')
30
       %c=0;
31
32
      fftSign1_1=fft(signal1(length(time)-2*Nc:length(time)-Nc))/(Nc/2);
      fftSign2_1=fft(signal2(length(time)-2*Nc:length(time)-Nc))/(Nc/2);
.3.3
34
      fftSign3_1=fft(signal3(length(time)-2*Nc:length(time)-Nc))/(Nc/2);
35
36
      alphaSign1_1=atan2(imag(fftSign1_1(2)), real(fftSign1_1(2)));
      alphaSign2_1=atan2(imag(fftSign2_1(2)),real(fftSign2_1(2)));
37
      alphaSign3_1=atan2(imag(fftSign3_1(2)), real(fftSign3_1(2)));
38
39
40
      fftSign1_2=fft(signal1(length(time)-Nc:length(time)))/(Nc/2);
      fftSign2_2=fft(signal2(length(time)-Nc:length(time)))/(Nc/2);
41
      fftSign3_2=fft(signal3(length(time)-Nc:length(time)))/(Nc/2);
42
43
      alphaSign1_2=atan2(imag(fftSign1_2(2)),real(fftSign1_2(2)));
44
      alphaSign2_2=atan2(imag(fftSign2_2(2)), real(fftSign2_2(2)));
45
      alphaSign3_2=atan2(imag(fftSign3_2(2)), real(fftSign3_2(2)));
46
47
48
      freq1=1/T*(1+(alphaSign1_2-alphaSign1_1)/(2*pi));
49
      freq2=1/T*(1+(alphaSign2_2-alphaSign2_1)/(2*pi));
      freq3=1/T*(1+(alphaSign3_2-alphaSign3_1)/(2*pi));
50
51
52 % calculation of the frequency from pre-event voltage
53 else
      %disp('freq = pre-event')
54
      %c=0;
55
      fftSign1_1=fft(signal1(1:Nc))/(Nc/2);
56
      fftSign2_1=fft(signal2(1:Nc))/(Nc/2);
57
      fftSign3_1=fft(signal3(1:Nc))/(Nc/2);
58
59
      alphaSign1_1=atan2(imag(fftSign1_1(2)), real(fftSign1_1(2)));
60
61
      alphaSign2_1=atan2(imag(fftSign2_1(2)), real(fftSign2_1(2)));
      alphaSign3_1=atan2(imag(fftSign3_1(2)),real(fftSign3_1(2)));
62
63
      fftSign1_2=fft(signal1(Nc:2*Nc))/(Nc/2);
64
      fftSign2 2=fft(signal2(Nc:2*Nc))/(Nc/2);
65
      fftSign3_2=fft(signal3(Nc:2*Nc))/(Nc/2);
66
67
      alphaSign1_2=atan2(imag(fftSign1_2(2)), real(fftSign1_2(2)));
68
69
      alphaSign2_2=atan2(imag(fftSign2_2(2)),real(fftSign2_2(2)));
```

```
alphaSign3_2=atan2(imag(fftSign3_2(2)),real(fftSign3_2(2)));
 70
 71
       % correction of the frequency calculation for the pre-event voltage,
 72
       \% when the frequency is not calculated from the first and second cycle, but from
 73
 74
       \% the second and third cycle, because the first cycle is not complete
 75
             if (alphaSign1_1 <0 && alphaSign1_2 >0 || alphaSign1_1 >0 && alphaSign1_2 <0)
 76
                 %disp('correction1')
 77
                 %C(j,1)=j;
 78
 79
                 %c=nonzeros(C);
                 fftSign1_1=fft(signal1(Nc:2*Nc))/(Nc/2);
80
 81
                 alphaSign1_1=atan2(imag(fftSign1_1(2)),real(fftSign1_1(2)));
                 fftSign1_2=fft(signal1(2*Nc:3*Nc))/(Nc/2);
82
83
                 alphaSign1_2=atan2(imag(fftSign1_2(2)),real(fftSign1_2(2)));
84
                end
             if (alphaSign2_1 <0 && alphaSign2_2 >0 || alphaSign2_1 >0 && alphaSign2_2 <0)
85
                 %disp('correction2')
 86
                 %C(j,1)=j;
87
                 %c=nonzeros(C):
88
                 fftSign2_1=fft(signal2(Nc:2*Nc))/(Nc/2);
 89
                 alphaSign2_1=atan2(imag(fftSign2_1(2)),real(fftSign2_1(2)));
90
                 fftSign2_2=fft(signal2(2*Nc:3*Nc))/(Nc/2);
 91
                 alphaSign2_2=atan2(imag(fftSign2_2(2)),real(fftSign2_2(2)));
 92
               end
93
 94
             if (alphaSign3_1 <0 && alphaSign3_2 >0 || alphaSign3_1 >0 && alphaSign3_2 <0)
                 %disp('correction3')
95
96
                 %C(j,1)=j;
97
                 %c=nonzeros(C);
                 fftSign3_1=fft(signal3(Nc:2*Nc))/(Nc/2);
98
                 alphaSign3_1=atan2(imag(fftSign3_1(2)),real(fftSign3_1(2)));
99
100
                 fftSign3_2=fft(signal3(2*Nc:3*Nc))/(Nc/2);
                 alphaSign3_2=atan2(imag(fftSign3_2(2)),real(fftSign3_2(2)));
1\,01
102
               end
103
       freq1=1/T*(1+(alphaSign1_2-alphaSign1_1)/(2*pi));
104
1\,05
       freq2=1/T*(1+(alphaSign2_2-alphaSign2_1)/(2*pi));
       freq3=1/T*(1+(alphaSign3_2-alphaSign3_1)/(2*pi));
106
107
108 end
```

RMS3 phase.m

```
2 % file: RMS_3phase.m
  3 %
  4 % three phase RMS calculation of a signal
  5 %
  _{6} % function that calculates all three phase RMS over a signal, over 1/2 period = half cycle RMS
  7 %------
 9% INPUTS :
10 % signal = signal, given in .mat file, now it is voltage
                                         = time given in .mat file
11 % time
                                         = frequency of the signal, for now assuming 50 Hz
12 % freq
13 % O U T P U T S:
14 % Signal_rms = instantaneous RMS values of a signal
15 % Signal_pu = RMS in pu
16% VARIABLES:
17 % dt
                                         = Time step
18 % Nc
                                         = Number of samples per half cycle
19
20 function [Sign1_rms,Sign1_pu,Sign2_rms,Sign2_pu,Sign3_rms,Sign3_pu,Nc1,Nc2,Nc3,pre_event_reference]=RMS_3phase(signal1,signa_rms,Sign3_pu,Nc1,Nc2,Nc3,pre_event_reference]=RMS_3phase(signal1,signa_rms,Sign3_pu,Nc1,Nc2,Nc3,pre_event_reference]=RMS_3phase(signal1,signa_rms,Sign3_pu,Nc1,Nc2,Nc3,pre_event_reference]=RMS_3phase(signal1,signa_rms,Sign3_pu,Nc1,Nc2,Nc3,pre_event_reference]=RMS_3phase(signal1,signa_rms,Sign3_pu,Nc1,Nc2,Nc3,pre_event_reference]=RMS_3phase(signal1,signa_rms,Sign3_pu,Nc1,Nc2,Nc3,pre_event_reference]=RMS_3phase(signal1,signa_rms,Sign3_pu,Nc1,Nc2,Nc3,pre_event_reference]=RMS_3phase(signal1,signa_rms,Sign3_pu,Nc1,Nc2,Nc3,pre_event_reference]=RMS_3phase(signal1,signa_rms,Sign3_pu,Nc1,Nc2,Nc3,pre_event_reference]=RMS_3phase(signal1,signa_rms,Sign3_pu,Nc1,Nc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc3,Pu,Sc
21
22 % Number of samples per half cycle calculation
23 T1=1/freq1; T2=1/freq2; T3=1/freq3;
24 dt=(time(11)-time(1))/10;
25 Nc1=round((T1/2)/dt);
26 \text{ Nc} 2 = round((T2/2)/dt):
27 Nc3=round((T3/2)/dt);
28
29 for n=Nc1:length(time)
                 Sign1_rms(n)=sqrt(1/Nc1*sum(signal1(n-Nc1+1:n).^2));
```

```
31 end
32 for n=Nc2:length(time)
      Sign2_rms(n)=sqrt(1/Nc2*sum(signal2(n-Nc2+1:n).^2));
33
34 end
35 for n=Nc3:length(time)
36
     Sign3_rms(n)=sqrt(1/Nc1*sum(signal3(n-Nc3+1:n).^2));
37 end
-38
39 Sign1_rms(1:Nc1)=Sign1_rms(Nc1);
40 Sign2_rms(1:Nc2)=Sign2_rms(Nc2);
41 Sign3_rms(1:Nc3)=Sign3_rms(Nc3);
42
43 %pu calculation
44 vect1=find(time<0.02);
45 vect2=find(time<0.02);
46 vect3=find(time<0.02);
47 max1=max(signal1(vect1));
48 max2=max(signal2(vect2));
49 max3=max(signal3(vect3));
50\ \mbox{\%} post-event voltage chosen as the reference to calculate pu
51
      if ((max1<=300)||(max2<=300)||(max3<300)||j==97||j==99||j==104||j==106||j==167||j==324||j==385||j==396||j==417||j==437||
52
       %disp('ref = post-event')
53
       Sign1_pu=Sign1_rms./Sign1_rms(length(Sign1_rms));
54
55
       Sign2_pu=Sign2_rms./Sign2_rms(length(Sign2_rms));
       Sign3_pu=Sign3_rms./Sign3_rms(length(Sign3_rms));
56
57
58
       pre_event_reference=[];
59
60\ \mbox{\%} pre-event voltage chosen as the reference to calculate pu
61 else
      %disp('ref = pre-event')
62
63
      Sign1_pu=Sign1_rms./Sign1_rms(1);
      Sign2_pu=Sign2_rms./Sign2_rms(1);
64
      Sign3_pu=Sign3_rms./Sign3_rms(1);
65
66
      pre_event_reference='pre_event';
67 end
68
```

```
1 X ------
2 % file: VoltageDip.m
3%
4 % detection if there is a voltage dip or not, calculation of retained voltage and duration of the dip
5 %
6\ \% function that checks if the RMS voltage is below a certain threshold, if it is a voltage dip,
7 \% and finds a duration of the dip and its retained voltage
s %------
10 % I N P U T S :
11 % sign1, sign2, sign3 = signal1, signal2, signal3
                      = time in cycles
12 % time
13 % threshold
                      = threshold set for the voltage dip
14 % OUTPUTS :
15 % Status
                      = status of the event: "YES" voltage dip or "NO" voltage dip
16 % Dur
                      = duration of the voltage dip
17 % Retained
                      = retained voltage of the dip
18 % VARIABLES:
19 % vectX
                      = vector of signal, below threshold (X=1,2,3)
20 % t_start
                      = beginning of the dip
21 % t_stop
                      = end of the dip
22
23 function [Status, Dur, Retained, DipTypeA,t_mid]=VoltageDip(sign1, sign2, sign3, time, threshold, Nc1, Nc2, Nc3)
24
25 vect1=find(sign1<threshold);</pre>
26 vect2=find(sign2<threshold);</pre>
27 vect3=find(sign3<threshold);</pre>
     %0&0&0:
28
29 if (isempty([vect1 vect2 vect3])==1)
     %disp('No voltage dip')
30
31
     Status='NO';
```

```
DipTypeA='';
32
33
      Dur=[];
       t mid=[]:
34
       Retained=min([sign1 sign2 sign3]);
35
      Retained=roundn(Retained,-4);
36
       % disp(['Minimum voltage is ' num2str(Retained) ' pu'])
37
       %1&1&1:
38
39 elseif (isempty(vect1)==0 && isempty(vect2)==0 && isempty(vect3)==0)
       %disp('VOLTAGE DIP')
40
       Status='YES';
 41
          if (length(vect1)>=(Nc1) && length(vect2)>=(Nc2) && length(vect3)>=(Nc3))
42
 43
              DipTypeA='3-ph sag';
 44
           else
              DipTypeA='';
 45
 46
           end
47
      %Duration of the dip calculation
 48
       t_start1=time(vect1(1));
 49
       t_start2=time(vect2(1));
      t_start3=time(vect3(1));
50
 51
      t_start=min([t_start1 t_start2 t_start3]);
52
53
       t_stop1 =time(vect1(length(vect1)));
 54
       t_stop2 =time(vect2(length(vect2)));
55
       t_stop3 =time(vect3(length(vect3)));
 56
57
       t_stop=max([t_stop1 t_stop2 t_stop3]);
58
 59
       t_mid =t_start+(t_stop-t_start)/2;
60
      Dur= t_stop-t_start;
 61
 62
       Dur=roundn(Dur,-4);
       %disp(['Duration
                               = ' num2str(Dur) ' cycles'])
63
 64
       %Retained voltage calculation:
 65
       Retained=min([sign1(vect1) sign2(vect2) sign3(vect3)]);
66
 67
       Retained=roundn(Retained,-4);
       %disp(['Retained voltage = ' num2str(Retained) ' pu'])
68
       %======
                               _____
                69
       %0&1&1
 70
 71 elseif (isempty(vect1)==1 && isempty(vect2)==0 && isempty(vect3)==0)
       %disp('VOLTAGE DIP')
 72
       Status='YES';
 73
      DipTypeA='';
 74
 75
      %Duration of the dip calculation
      t_start2=time(vect2(1));
 76
      t_start3=time(vect3(1));
 77
 78
      t_start=min([t_start2 t_start3]);
 79
80
81
       t_stop2 =time(vect2(length(vect2)));
       t_stop3 =time(vect3(length(vect3)));
82
83
       t_stop=max([t_stop2 t_stop3]);
84
       t_mid =t_start+(t_stop-t_start)/2;
85
86
87
      Dur= t_stop-t_start;
       Dur=roundn(Dur,-4);
88
       %disp(['Duration
                               = ' num2str(Dur) ' cycles'])
89
       %Retained voltage calculation:
90
91
92
       Retained=min([sign2(vect2) sign3(vect3)]);
       Retained=roundn(Retained,-4);
93
94
       %disp(['Retained voltage = ' num2str(Retained) ' pu'])
       95
       202021
96
97 elseif (isempty(vect1)==1 && isempty(vect2)==1 && isempty(vect3)==0)
       %disp('VOLTAGE DIP')
98
       Status='YES';
99
      DipTypeA='';
100
      %Duration of the dip calculation
101
1\,02
       t_start=time(vect3(1));
1\,03
       t_stop =time(vect3(length(vect3)));
104
```

```
105
       t_mid =t_start+(t_stop-t_start)/2;
1.06
      Dur= t_stop-t_start;
107
      Dur=roundn(Dur,-4);
108
       %disp(['Duration
                              = ' num2str(Dur) ' cycles'])
109
110
       %Retained voltage calculation:
111
112
      Retained=min(sign3(vect3));
113
       Retained=roundn(Retained,-4);
       %disp(['Retained voltage = ' num2str(Retained) ' pu'])
114
       115
116
       %1&1&0
117 elseif (isempty(vect1)==0 && isempty(vect2)==0 && isempty(vect3)==1)
       %disp('VOLTAGE DIP')
118
       Status='YES';
119
      DipTypeA='';
120
121
       %Duration of the dip calculation
122
       t_start1=time(vect1(1));
      t_start2=time(vect2(1));
123
124
      t_start=min([t_start1 t_start2]);
125
126
       t_stop1 =time(vect1(length(vect1)));
127
      t_stop2 =time(vect2(length(vect2)));
128
129
130
      t_stop=max([t_stop1 t_stop2]);
      t_mid =t_start+(t_stop-t_start)/2;
131
132
133
      Dur= t_stop-t_start;
      Dur=roundn(Dur,-4);
1.34
135
       %disp(['Duration
                              = ' num2str(Dur) ' cycles'])
       %Retained voltage calculation:
136
137
138
      Retained=min([sign1(vect1) sign2(vect2)]);
      Retained=roundn(Retained,-4);
139
1\,40
      %disp(['Retained voltage = ' num2str(Retained) ' pu'])
1\,41
       Y_____
142
       %1&0&0
143
144 elseif (isempty(vect1)==0 && isempty(vect2)==1 && isempty(vect3)==1)
       %disp('VOLTAGE DIP')
145
       Status='YES';
146
      DipTypeA='';
147
1\,48
       %Duration of the dip calculation
      t_start=time(vect1(1));
149
150
       t_stop =time(vect1(length(vect1)));
1\,51
      t_mid =t_start+(t_stop-t_start)/2;
1\,52
153
154
       Dur= t_stop-t_start;
      Dur=roundn(Dur,-4);
155
156
       %disp(['Duration
                              = ' num2str(Dur) ' cycles'])
157
      %Retained voltage calculation:
158
      Retained=min(sign1(vect1));
1\,59
1\,60
      Retained=roundn(Retained,-4);
      %disp(['Retained voltage = ' num2str(Retained) ' pu'])
161
       162
       %0&1&0
163
164 elseif (isempty(vect1)==1 && isempty(vect2)==0 && isempty(vect3)==1)
       %disp('VOLTAGE DIP')
165
       Status='YES':
166
167
      DipTypeA='';
      %Duration of the dip calculation
1\,68
1.69
      t_start=time(vect2(1));
170
       t_stop =time(vect2(length(vect2)));
171
1.72
       t_mid =t_start+(t_stop-t_start)/2;
173
      Dur= t_stop-t_start;
174
1\,75
      Dur=roundn(Dur,-4);
1\,76
       %disp(['Duration
                              = ' num2str(Dur) ' cycles'])
177
       %Retained voltage calculation:
```

```
178
179
       Retained=min(sign2(vect2));
       Retained=roundn(Retained,-4);
180
181
       %disp(['Retained voltage = ' num2str(Retained) ' pu'])
       182
183
      212021
184 elseif (isempty(vect1)==0 && isempty(vect2)==1 && isempty(vect3)==0)
       %disp('VOLTAGE DIP')
185
       Status='YES';
186
      DipTypeA='';
187
      %Duration of the dip calculation
188
189
       t_start1=time(vect1(1));
      t_start3=time(vect3(1));
190
191
      t_start=min([t_start1 t_start3]);
192
193
194
      t_stop1 =time(vect1(length(vect1)));
195
       t_stop3 =time(vect3(length(vect3)));
196
197
      t_stop=max([t_stop1 t_stop3]);
      t_mid =t_start+(t_stop-t_start)/2;
198
199
      Dur= t_stop-t_start;
200
      Dur=roundn(Dur,-4);
201
                              = ' num2str(Dur) ' cycles'])
202
       %disp(['Duration
203
      %Retained voltage calculation:
204
205
      Retained=min([sign1(vect1) sign3(vect3)]);
206
      Retained=roundn(Retained,-4);
       %disp(['Retained voltage = ' num2str(Retained) ' pu'])
207
208
209 end
```

Interruption.m

```
2 % file: Interruption.m
3 %
4 % detection if there is a interruption or not, calculation of the duration of the interruption
5 %
6 % function that checks if the RMS voltage is below a certain threshold, if it is a interruption,
7 % and finds a duration of the interruption
.
.
10% INPUTS:
11 % sign1, sign2, sign3 = signal1, signal2, signal3
                     = time in cycles
12 % time
13 % threshold2
                     = threshold set for the interruption
14 % OUTPUTS :
                     = status "Yes" interruption or "No" Interruption
15 % Status
                      = duration of the interruption
16 % Dur
17 % VARIABLES:
18 % vectX
                      = vector of signal, below threshold
19 % t_start
                      = beginning of the interruption
                     = end of the interruption
20 % t_stop
21
22 function [Status,Dur]=Interruption(sign1, sign2, sign3, time, threshold2)
23
24 vect1=find(sign1<threshold2);</pre>
25 vect2=find(sign2<threshold2);</pre>
26 vect3=find(sign3<threshold2);</pre>
27
28
29 %0&0&0:
30 if (isempty([vect1 vect2 vect3])==1)
31
     %disp('NO')
     Status='NO';
32
     Dur=[7]:
.3.3
     %1&1&1:
34
35 elseif (isempty(vect1)==0 && isempty(vect2)==0 && isempty(vect3)==0)
     %disp('Interruption')
36
37
     Status='YES';
```

```
%Duration of the dip calculation
38
      t_start1=time(vect1(1));
39
      t_start2=time(vect2(1));
40
41
      t_start3=time(vect3(1));
42
43
      t_start=max([t_start1 t_start2 t_start3]);
44
45
      t_stop1 =time(vect1(length(vect1)));
46
      t_stop2 =time(vect2(length(vect2)));
      t_stop3 =time(vect3(length(vect3)));
47
48
49
      t_stop=min([t_stop1 t_stop2 t_stop3]);
50
      Dur= t_stop-t_start;
51
52
      Dur=roundn(Dur,-4);
      %disp(['Duration
                             = ' num2str(Dur) ' cycles'])
53
54
55
      %-----
      %0&1&1
56
57 elseif (isempty(vect1)==1 && isempty(vect2)==0 && isempty(vect3)==0)
       %disp('Interruption')
58
      Status='YES';
59
      %Duration of the dip calculation
60
      t_start2=time(vect2(1));
61
      t_start3=time(vect3(1));
62
63
      t_start=max([t_start2 t_start3]);
64
65
66
      t_stop2 =time(vect2(length(vect2)));
      t_stop3 =time(vect3(length(vect3)));
67
68
      t_stop=min([t_stop2 t_stop3]);
69
70
71
      Dur= t_stop-t_start;
72
      Dur=roundn(Dur,-4);
73
      %disp(['Duration
                             = ' num2str(Dur) ' cycles'])
74
      Y_____
75
      %0&0&1
76
77 elseif (isempty(vect1)==1 && isempty(vect2)==1 && isempty(vect3)==0)
      %disp('Interruption')
78
      Status='YES';
79
      %Duration of the dip calculation
80
81
      t_start=time(vect3(1));
82
      t_stop =time(vect3(length(vect3)));
83
84
      Dur= t_stop-t_start;
85
      Dur=roundn(Dur,-4);
86
87
      %disp(['Duration
                             = ' num2str(Dur) ' cycles'])
88
89
      %_____
90
      %1&1&0
91 elseif (isempty(vect1)==0 && isempty(vect2)==0 && isempty(vect3)==1)
      %disp('Interruption')
92
      Status='YES';
93
      %Duration of the dip calculation
94
      t_start1=time(vect1(1));
95
      t_start2=time(vect2(1));
96
97
      t_start=max([t_start1 t_start2]);
98
99
1\,00
      t_stop1 =time(vect1(length(vect1)));
1\,01
      t_stop2 =time(vect2(length(vect2)));
1.02
      t_stop=min([t_stop1 t_stop2]);
103
104
1.05
      Dur= t_stop-t_start;
      Dur=roundn(Dur,-4);
106
      %disp(['Duration
                             = ' num2str(Dur) ' cycles'])
107
1\,08
1\,09
      %-----
      %1&0&0
110
```

```
111 elseif (isempty(vect1)==0 && isempty(vect2)==1 && isempty(vect3)==1)
112
       %disp('Interruption')
       Status='YES';
113
114
       %Duration of the dip calculation
      t_start=time(vect1(1));
115
116
       t_stop =time(vect1(length(vect1)));
117
118
119
      Dur= t_stop-t_start;
      Dur=roundn(Dur,-4);
120
      %disp(['Duration
                              = ' num2str(Dur) ' cycles'])
121
122
       123
       %0&1&0
124
125 elseif (isempty(vect1)==1 && isempty(vect2)==0 && isempty(vect3)==1)
      %disp('Interruption')
126
       Status='YES';
127
128
      %Duration of the dip calculation
      t_start=time(vect2(1));
129
130
      t_stop =time(vect2(length(vect2)));
131
1.32
      Dur= t_stop-t_start;
133
      Dur=roundn(Dur,-4);
134
                              = ' num2str(Dur) ' cycles'])
135
      %disp(['Duration
136
       %-----
137
138
       %1&0&1
139 elseif (isempty(vect1)==0 && isempty(vect2)==1 && isempty(vect3)==0)
       %disp('Interruption')
140
1\,41
       Status='YES';
      %Duration of the dip calculation
142
143
      t_start1=time(vect1(1));
      t_start3=time(vect3(1));
144
145
1\,46
      t_start=max([t_start1 t_start3]);
147
      t_stop1 =time(vect1(length(vect1)));
148
      t_stop3 =time(vect3(length(vect3)));
149
1\,50
151
       t_stop=min([t_stop1 t_stop3]);
152
      Dur= t_stop-t_start;
153
154
      Dur=roundn(Dur,-4);
      %disp(['Duration
                              = ' num2str(Dur) ' cycles'])
155
156
157 end
```

Swell.m

```
1 X ------
2 % file: Swell.m
3 %
4 % detection if there is a swell or not, calculation of the duration of the swell
5 %
_{6} % function that checks if the RMS voltage is above a certain threshold, if it is a swell,
7 % and finds a duration of the swell
8 %-----
9
10 % I N P U T S :
11 % sign1, sign2, sign3 = signal1, signal2, signal3
12 % time
                    = time in cycles
13 % threshold3
                    = threshold set for the swell
14 % O U T P U T S :
                    = status of the event: "YES" swell or "NO" swell
15 % Status
16 % Dur
                    = duration of the swell
17 % VARIABLES:
                    = vector of signal, above threshold3 (X=1,2,3)
18 % vectX
19 % t_start
                    = beginning of the swell
20 % t_stop
                    = end of the swell
21
22 function [Status, Dur, Ret] = Swell(sign1, sign2, sign3, time, threshold3)
```

```
23
24 vect1=find(sign1>threshold3);
25 vect2=find(sign2>threshold3);
26 vect3=find(sign3>threshold3);
27
28 %0&0&0:
29 if (isempty([vect1 vect2 vect3])==1)
      %disp('NO')
30
      Status='NO';
31
     Dur=[];
32
     Ret=[];
33
34
     %1&1&1:
35
36 elseif (isempty(vect1)==0 && isempty(vect2)==0 && isempty(vect3)==0)
      %disp('Swell')
37
      Status='YES';
38
     %Duration of the swell calculation
39
40
     t_start1=time(vect1(1));
     t_start2=time(vect2(1));
41
42
     t_start3=time(vect3(1));
43
     t_start=min([t_start1 t_start2 t_start3]);
44
45
      t_stop1 =time(vect1(length(vect1)));
46
      t_stop2 =time(vect2(length(vect2)));
47
      t_stop3 =time(vect3(length(vect3)));
48
49
50
      t_stop=max([t_stop1 t_stop2 t_stop3]);
51
     Dur= t_stop-t_start;
52
53
      Dur=roundn(Dur,-4);
     %disp(['Duration
                              = ' num2str(Dur) ' cycles'])
54
55
      Ret=max([sign1(vect1) sign2(vect2) sign3(vect3)]);
56
      Ret=roundn(Ret.-4):
57
58
      %______
      %0&1&1
59
60 elseif (isempty(vect1)==1 && isempty(vect2)==0 && isempty(vect3)==0)
      %disp('Swell')
61
      Status='YES';
62
     %Duration of the swell calculation
63
     t_start2=time(vect2(1));
64
     t_start3=time(vect3(1));
65
66
     t_start=min([t_start2 t_start3]);
67
68
69
      t_stop2 =time(vect2(length(vect2)));
      t_stop3 =time(vect3(length(vect3)));
70
71
72
      t_stop=max([t_stop2 t_stop3]);
73
74
     Dur= t_stop-t_start;
      Dur=roundn(Dur,-4);
75
      %disp(['Duration
                              = ' num2str(Dur) ' cycles'])
76
77
78
      Ret=max([sign2(vect2) sign3(vect3)]);
     Ret=roundn(Ret,-4);
79
80
      81
      %0&0&1
82
83 elseif (isempty(vect1)==1 && isempty(vect2)==1 && isempty(vect3)==0)
      %disp('Swell')
84
85
      Status='YES';
     %Duration of the swell calculation
86
      t_start=time(vect3(1));
87
88
      t_stop =time(vect3(length(vect3)));
89
90
      Dur= t_stop-t_start;
91
     Dur=roundn(Dur,-4);
92
93
      %disp(['Duration
                              = ' num2str(Dur) ' cycles'])
94
      Ret=max(sign3(vect3));
95
```

```
96
      Ret=roundn(Ret,-4);
97
      98
      %1&1&0
 99
100 elseif (isempty(vect1)==0 && isempty(vect2)==0 && isempty(vect3)==1)
101
      %disp('Swell')
      Status='YES';
102
      %Duration of the swell calculation
103
1.04
      t_start1=time(vect1(1));
      t_start2=time(vect2(1));
1\,05
106
107
      t_start=min([t_start1 t_start2]);
1.08
      t_stop1 =time(vect1(length(vect1)));
1.09
      t_stop2 =time(vect2(length(vect2)));
110
111
112
      t_stop=max([t_stop1 t_stop2]);
113
      Dur= t_stop-t_start;
114
115
      Dur=roundn(Dur,-4);
      %disp(['Duration
                             = ' num2str(Dur) ' cycles'])
116
117
      Ret=max([sign1(vect1) sign2(vect2)]);
118
      Ret=roundn(Ret,-4);
119
120
      121
      %1&0&0
122
123 elseif (isempty(vect1)==0 && isempty(vect2)==1 && isempty(vect3)==1)
       %disp('Swell')
124
      Status='YES';
125
126
      %Duration of the swell calculation
      t_start=time(vect1(1));
127
128
      t_stop =time(vect1(length(vect1)));
129
130
131
      Dur= t_stop-t_start;
      Dur=roundn(Dur,-4);
132
                             = ' num2str(Dur) ' cycles'])
      %disp(['Duration
1.33
134
      Ret=max(sign1(vect1));
135
136
      Ret=roundn(Ret,-4);
137
      Y_____
138
139
      %0&1&0
140 elseif (isempty(vect1)==1 && isempty(vect2)==0 && isempty(vect3)==1)
      %disp('Swell')
141
      Status='YES';
142
      %Duration of the swell calculation
1\,43
      t_start=time(vect2(1));
144
145
      t_stop =time(vect2(length(vect2)));
146
147
      Dur= t_stop-t_start;
1\,48
      Dur=roundn(Dur,-4);
149
1\,50
      %disp(['Duration
                             = ' num2str(Dur) ' cycles'])
1\,51
      Ret=max(sign2(vect2));
152
      Ret=roundn(Ret,-4);
153
154
155
      %1&0&1
156
157 elseif (isempty(vect1)==0 && isempty(vect2)==1 && isempty(vect3)==0)
      %disp('Swell')
158
      Status='YES';
159
      %Duration of the swell calculation
160
      t_start1=time(vect1(1));
1\,61
      t_start3=time(vect3(1));
162
1.63
      t_start=min([t_start1 t_start3]);
164
165
1\,66
      t_stop1 =time(vect1(length(vect1)));
167
      t_stop3 =time(vect3(length(vect3)));
1.68
```

```
169
       t_stop=max([t_stop1 t_stop3]);
170
       Dur= t_stop-t_start;
171
       Dur=roundn(Dur, -4);
1.72
       %disp(['Duration
                                 = ' num2str(Dur) ' cycles'])
173
174
       Ret=max([sign1(vect1) sign3(vect3)]);
175
       Ret=roundn(Ret,-4);
176
177
178 end
```

VoltageSagEnergy.m1 % ------2 % file: VoltageSagEnergy.m 3 % 4 % calculation of the Voltage-Sag Energy Index 5 % $\scriptstyle 6$ % function that calculates the Voltage-Sag Energy Index over the duration of the event 8% I N P U T S : 9 % sign1, sign2, sign3 = signal1, signal2, signal3 = freq of signal1, freq of signal2, freq of signal3 10 % freq1, freq2, freq3 = threshold of the voltage dip 11 % threshold 12 % OUTPUTS : 13 % Evs1,Evs2,Evs3 = Voltage-Sag Energy Index for each signal = Voltage-Sag Energy Index for three-phase signal 14 % Evs 15 % V A R I A B L E S: 16 % vectX = vector of signal, below threshold (X=1,2,3) 17 18 function [Evs1,Evs2,Evs3,Evs_Ret]=VoltageSagEnergy(sign1,sign2,sign3,freq1,freq2,freq3,threshold,Dur,Ret,time) 19 20 dt=(time(11)-time(1))/10; 21 22 vect1=find(sign1<threshold);</pre> 23 vect2=find(sign2<threshold);</pre> 24 vect3=find(sign3<threshold); 25 26 Evs1=(sum(1-(sign1(vect1)).^2))*dt*freq1; %./(2*freq1); 27 Evs2=(sum(1-(sign2(vect2)).^2))*dt*freq2; %./(2*freq2); 28 Evs3=(sum(1-(sign3(vect3)).^2))*dt*freq3; %./(2*freq3); 2930 Evs=Evs1+Evs2+Evs3: 31 Evs=roundn(Evs,-3); 3233 Evs1=roundn(Evs1,-2); 34 Evs2=roundn(Evs2,-2); 35 Evs3=roundn(Evs3,-2); 36 37 Evs_Ret=(1-Ret^2)*Dur; 38 Evs_Ret=roundn(Evs_Ret,-3);

VoltageSwellEnergy.m

```
2 % file: VoltageSwellEnergy.m
3 %
4 % calculation of the Voltage-Swell Energy Index
5 %
6 % function that calculates the Voltage-Swell Energy Index over the duration of the swell
8% I N P U T S :
9 % sign1, sign2, sign3 = signal1, signal2, signal3
10 % freq1,freq2,freq3
                   = freq of signal1, freq of signal2, freq of signal3
                   = threshold of the voltage swell
11 % thresholdS
12 % OUTPUTS :
13 % Evs1,Evs2,Evs3
                   = Voltage-Sag Energy Index for each signal
14 % Evs
                   = Voltage-Sag Energy Index for three-phase signal
15 % VARIABLES:
16 % vectX
                   = vector of signal, below threshold (X=1,2,3)
```

```
17
18 function [Evsw]=VoltageSwellEnergy(sign1,sign2,sign3,freq1,freq2,freq3,thresholdS)
19
20 vect1=find(sign1>thresholdS);
21 vect2=find(sign2>thresholdS);
22 vect3=find(sign3>thresholdS);
23
24 Evsw1=(sum(((sign1(vect1)).^2)-1))./(2*freq1);
25 Evsw2=(sum(((sign2(vect2)).^2)-1))./(2*freq2);
26 Evsw3=(sum(((sign3(vect3)).^2)-1))./(2*freq3);
27
28 Evsw1=roundn(Evsw1,-4);
29 Evsw2=roundn(Evsw2,-4);
30 Evsw3=roundn(Evsw3,-4);
31
32 Evsw=Evsw1+Evsw2+Evsw3;
33
```

```
34 Evsw=roundn(Evsw,-4);
```

VoltageSagSeverity.m1 % -----_____ 2 % file: VoltageSagSeverity.m 3 % 4 % calculation of the Voltage-Sag Severity 5 % 6 % function that calculates the Voltage-Sag Severity over the duration of the event 7 %-----8 % I N P U T S : 9 % duration = duration of the event in cycles 10 % retained = retained voltage of the event in pu 11 % OUTPUTS: 12 % Severity = Voltage-Sag Severity for three-phase signal 13 1415 function [Severity]=VoltageSagSeverity(duration, retained) 16 17 if (duration <= 1) %20ms Severity = (1 - retained): 18 Severity = 19roundn(Severity,-4); elseif (duration <= 10 && duration > 1) %200ms 20Severity = 2*(1 - retained); 21 Severity = roundn(Severity,-4); 22elseif (duration <= 25 && duration > 10) %500ms 23Severity = 3.3*(1 - retained); 24 25Severity = roundn(Severity,-4); elseif (duration <= 500 && duration > 25) % 10s 2627Severity = 5*(1 - retained);Severity = 28roundn(Severity,-4); elseif (duration > 500) 29%>10s 30 Severity = 10*(1 - retained); Severity = roundn(Severity,-4); 3132 end

- SixPhaseRMS.m

1 % -----_____ 2 % file: SixPhaseRMS.m 3 % 4 % Six Phase RMS method is used to calculate the Dip Type of the Voltage Dip 5 % $_{6}$ % function that claculates six rms voltages and depending on which one of 7% them is the lowest, it calculates the dip type 8 %------10% INPUTS : 11 % sign1, sign2, sign3 = signal1, signal2, signal3 12 **% time** = time in seconds 13 % freq1, freq2, freq3 = estimated frequency 14 % O U T P U T S :
```
15 % Dip Type
                          = Type of the Voltage Dip
16% VARIABLES:
17 %
18 %
19
20 function [DipType,V,F]=SixPhaseRMS(sign1, sign2, sign3, time, freq1,freq2,freq3,j,DipTypeA,DurationI)
21
22 % zero sequence component
23 sign0=(sign1+sign2+sign3)/3;
24
25 sign10=sign1-sign0;
26 sign20=sign2-sign0;
27 sign30=sign3-sign0;
28
29 sign12=(sign10-sign20)/sqrt(3);
30 sign23=(sign20-sign30)/sqrt(3);
31 sign31=(sign30-sign10)/sqrt(3);
32
33
34 [Sign10_rms,Sign10_pu,Sign20_rms,Sign20_pu,Sign30_rms,Sign30_pu]=RMS_3phase(sign10,sign20,sign30,time,freq1,freq2,freq3,j);
35 %clear('Sign10_pu', 'Sign20_pu', 'Sign30_pu');
36
37 [Sign12_rms,Sign12_pu,Sign23_rms,Sign23_pu,Sign31_rms,Sign31_pu]=RMS_3phase(sign12,sign23,sign31,time,freq1,freq2,freq3,j);
38 %clear('Sign12_pu', 'Sign23_pu', 'Sign31_pu');
39
40 % figure(j+13)
41 % set(gcf,'visible', 'on');
42 % plot(time, Sign10_pu,time, Sign20_pu,time, Sign30_pu,time, Sign12_pu,time, Sign23_pu,time, Sign31_pu),
43 % title(num2str(j)),legend('Ua','Ub','Uc','Uab','Ubc','Uca')
44
45 %Type of the dip
46 SIGN10 = min(Sign10_pu);%rms);
47 SIGN20 = min(Sign20_pu);%rms);
48 SIGN30 = min(Sign30_pu);%rms);
49 SIGN12 = min(Sign12_pu);%rms);
50 SIGN23 = min(Sign23_pu);%rms);
51 SIGN31 = min(Sign31_pu);%rms);
52
53 clear('Sign10_rms', 'Sign20_rms', 'Sign30_rms', 'Sign12_rms', 'Sign23_rms', 'Sign31_rms');
54
55 Sign_all = [Sign10_pu;Sign20_pu;Sign30_pu;Sign12_pu;Sign23_pu;Sign31_pu];
56
57 for n=1:length(Sign10_pu)
58
      MIN(1,n)=min([Sign_all(1,n),Sign_all(2,n),Sign_all(3,n),Sign_all(4,n),Sign_all(5,n),Sign_all(6,n)]);
      MAX(1,n)=max([Sign_all(1,n),Sign_all(2,n),Sign_all(3,n),Sign_all(4,n),Sign_all(5,n),Sign_all(6,n)]);
59
60 end
61
62 % figure(j)
63 % plot(time,MIN,time,MAX)
64
65 minimum = min ([SIGN10, SIGN20, SIGN30, SIGN12, SIGN23, SIGN31]);
66
67 % minimum = min ([Sign10_pu,Sign20_pu,Sign30_pu,Sign12_pu,Sign23_pu,Sign31_pu])
68 % maximum = max ([Sign10_pu,Sign20_pu,Sign30_pu,Sign12_pu,Sign23_pu,Sign31_pu]);
69
70 if (minimum==SIGN10)% && isempty(DipTypeA)==1)
71
      DipType='Da';
72 elseif (minimum==SIGN20)% && isempty(DipTypeA)==1)
      DipType='Db';
73
74 elseif (minimum==SIGN30)% && isempty(DipTypeA)==1)
      DipType='Dc';
75
76 elseif (minimum==SIGN12)% && isempty(DipTypeA)==1)
      DipType='Cc';
77
78 elseif (minimum==SIGN23)% && isempty(DipTypeA)==1)
79
      DipType='Ca';
80 elseif (minimum==SIGN31)% && isempty(DipTypeA)==1)
      DipType='Cb';
81
82
83 % elseif (isempty(DipTypeA)==0 && isempty(DurationI)==0)
       DipType='A';
84 %
85 %
        V= roundn(minimum,-3);
        F= roundn(maximum,-3);
86 %
87 % elseif isempty(DipTypeA)==0
```

```
88 %
         DipType=DipTypeA;
         V= roundn(minimum,-3);
89 %
         F= roundn(maximum,-3);
90 %
 91 end
92
93 % calculation of V & F, - V is the minimum of minimum (in time) from all 6 rms voltages
                            - F is the minimum of the maximums (in time) of all the 6 rms
94 %
95
96
       V= roundn(min(MIN),-3);
97
       F= roundn(min(MAX), -3);
98
99
       if (F-V)<=0.005
           DipType='A';
1\,00
         elseif F==2/3+1/3*V
101 %
102 %
             DipType='E';
103
       end
```

2 % file: SymmComp.m 3 % 4 % Symmetrical components method is used to calculate the Dip Type of the Voltage Dip 5 % 6 % function that claculates 7 % ------8 9 % I N P U T S : 10 % sign1, sign2, sign3 = signal1, signal2, signal3 = time in seconds 11 % time 12 % freq1, freq2, freq3 = estimated frequency 13 % O U T P U T S : = Type of the Voltage Dip 14 % Dip TypeS 15 % VARIABLES: 16 % 17 % 18 19 function [DipTypeS, V_s, F_s, m, angleV_s]=SymmComp(sign1, sign2, sign3, time, freq1, freq2, freq3, j, DipTypeA, t_mid, pre_event_refe 2021 % Number of samples per half cycle calculation 22 T1=1/freq1; T2=1/freq2; T3=1/freq3; 23 dt=(time(11)-time(1))/10; 24 Nc1=round(T1/(dt));% !!! for practicla appl. use only one cycle window 25 Nc2=round(T2/(dt)):26 Nc3=round(T3/(dt)); 2728 % calculating pu voltage 2930 if (isempty(pre_event_reference)==0 || j==69 || j==529 || j==530) 31%disp('pre-event') vect1=find(time<0.02);</pre> 32vect2=find(time<0.02);</pre> .3.3 vect3=find(time<0.02);</pre> 34max1=max(sign1(vect1)); 35 36max2=max(sign2(vect2)); max3=max(sign3(vect3)); 37 38 39Sign1_pu=sign1./max1; 40Sign2_pu=sign2./max2; Sign3_pu=sign3./max3; 41 42 else 43%disp('post-event') vect1=find(time>(time-0.02)); 4445vect2=find(time>(time-0.02)); 46vect3=find(time>(time-0.02)): 47max1=max(sign1(vect1)); max2=max(sign2(vect2)); 48max3=max(sign3(vect3)); 49 50Sign1_pu=sign1./max1; 5152Sign2_pu=sign2./max2; 53Sign3_pu=sign3./max3;

SymmComp.m

```
54
55 end
56
57 %
        figure(j)
        plot(time,Sign1_pu,time,Sign2_pu,time,Sign3_pu),legend('Ua','Ub','Uc'),title([['ZQ' num2str(j)] '.dat']),
58 %
59 %
        xlim([0 time(length(time))])
60
62
63 %==== FFT calculation of complex voltages
64 a=-0.5+i*sqrt(3)/2;
65
66 [V1, V2, V0]=seqcalc(Sign1_pu,Sign2_pu,Sign3_pu,time,freq1,freq2,freq3,j,pre_event_reference);
68
69 clear('Sign1_pu', 'Sign2_pu', 'Sign3_pu');
 70
 71
 73
 74 % to find the position in the time vector, position of the time of the middle of the voltage dip
             r1=find(time>=(t_mid*0.02));
75
             r=r1(1);
 76
             t_mid1=t_mid; %*0.02
 77
78
79
80 m=angle(V2/(1-V1))*180/pi;
81
82 %disp(['m= ' num2str(m)])
83 if m<0
84
     m=m+360;
85 else m=m;
86 end
87 %disp(['m= ' num2str(m)]);
88 %disp(['k_notround =' num2str(m/60)])
89 k=round(m/60);
90 %disp(['k =' num2str(k)])
91 % if (k==-1 // k==-2)
92 %
       k=k+6
93 % end
94
95 if k==6
     k=0:
96
97 end
98
99 % figure(j+2*46)
100 % plot(time,k), title('k')
101
102 % determine Dip Type from calculated k
103 b=-a^2;
104 if k==0
105
     DipTypeS='Ca';
106 elseif k==1
107
    DipTypeS='Dc';
108 elseif k==2
1\,09
     DipTypeS='Cb';
110 elseif k==3
     DipTypeS='Da';
111
112 elseif k==4
113
     DipTypeS='Cc';
114 elseif k==5
     DipTypeS='Db';
115
116 % elseif k==6
117 %
       DipTypeS='Ca';
118 end
119
      %DipTypeS='none';
120
      %DipTypeS
121
122 % V and F as a function of time:
123 V_s0= (V1-(b^(6-k))*V2);
124 F_s0= (V1+(b^{(6-k)})*V2);
125
126 % plot of absolute value of V and F as a function of time
```

```
127 % figure(j)
128 % plot(time,abs(V_s0),time,abs(F_s0)), legend('abs(V)', 'abs(F)'), title('Absolute value of V and F as a function of time')
129
130 \% plot of phase angle of V and F as a function of time
131 % figure(j+44)
132 % plot(time,(angle(V_s0)*180/pi),time,(angle(F_s0)*180/pi)),legend('angle(V)', 'angle(F)'), title('Phase angle of V and F as
133
134 % phase angle jump
135 angleV_s=(angle(min(V_s0)))*180/pi;
136
137 V_s= min(abs(V_s0));
138 F_s= min(abs(F_s0));
139
       V_s= abs(min(V1-(b^(6-k))*V2));
140
       F_s = abs(min(V1+(b^{(6-k)})*V2));
1\,41
142
143
       V_s = roundn(V_s, -3);
       F_s = roundn(F_s, -3);
1\,44
145
1\,46
         if (-0.0065 \le (F_s - V_s) \& (F_s - V_s) \le 0.0065)
           DipTypeS='A';
147
         end
148
149
150 %
          figure(j+45)
          plot(time,V_s,time,F_s),legend('V_s','F_s'),title([['ZQ' num2str(j)] '.dat']),
151 %
          xlim([0 time(length(time))])
152 %
```

seqcalc.m

```
1 function [V1, V2, V0, angleV] = seqcalc(Va, Vb, Vc, time, freq1, freq2, freq3, j, pre_event_reference)
 3 %function [V1,V2,V0]=seqcalc(Va,Vb,Vc)
 4 %Function that calculates the sequence components
 5 %Inputs
 6 %The three phase to ground voltages
7 %Output
8 % V1: positve sequence
9 % V2: negative sequence
10 % VO: zero sequence
11
12 %plot(time,Va,time,Vb,time,Vc)
13
14 % Number of samples per cycle calculation
15 T1=1/freq1; T2=1/freq2; T3=1/freq3;
16 dt=(time(11)-time(1))/10;
17 Nc1=round (T1/(dt));% !!! for practicla appl. use only one cycle window
18 Nc2=round(T2/(dt));
19 Nc3=round(T3/(dt));
20
21 %defining operator a
22 a=-0.5+i*sqrt(3)/2;
23
24 %I need the complex voltages to find the system components
25 [compVa]=comp_samp(Va,time,freq1);
26 [compVb]=comp_samp(Vb,time,freq2);
27 [compVc]=comp_samp(Vc,time,freq3);
28
29 %to make the time vector same dimension
30 for g=1:length(time)
31 time1(1,g)=time(g,1);
32 end
33 compVa_s=compVa.*exp(-i*2*pi*freq1.*time1);
34 compVb_s=compVb.*exp(-i*2*pi*freq2.*time1);
35 compVc_s=compVc.*exp(-i*2*pi*freq3.*time1);
36
37 %
      figure(j)
      plot(compVa_s),title('complex voltage Ua - FFT')
38 %
      figure(j+45)
39 %
40 %
      plot(compVb_s),title('complex voltage Ub - FFT')
      figure(j+2*45)
41 %
      plot(compVc_s),title('complex voltage Uc - FFT')
42 %
43
```

```
44 V0=1/3*(compVa_s+compVb_s+compVc_s);
45 V1=1/3*(compVa_s+(a*compVb_s)+(a.^2*compVc_s));
```

46 $V2=1/3*(compVa_s+((a,^2)*compVb_s)+(a*compVc_s));$

```
comp_s amp.m
1 function [CompV]=comp_samp(signal,time,freq)
2
3 dt=(time(11)-time(1))/10;
4 T=1/freq;
5
6 N=round(T/dt);
8 %The complex voltage
9 for n=N:(length(signal));
   k=n-N+1;
10
   fftsignal=fft(signal(k:n))/(N/2);
11
12 CompV(n)=fftsignal(2);
13 end
14 Comp V(1:N)=Comp V(N);
15
16 %
      for n=N:(length(time));
17 %
           Comp V(n) = ((Comp V(n), /Comp V(1)) * exp(-i*2*pi*freq*time(n)));
18 %
      end
          Comp V(1:N) = Comp V(N);
19 %
```

A.2 Generating Synthetic Sags

```
1 clear
2 clc
 3
4 % fig8048
 5 % voltage dips of different types, 50% retained characteristic voltage, 10
 6 % cycles duration.
7 NS=128; % number of samples per cycle
 8 N1=2; % number of cycles pre-event
9 N2=5; % number of cycles during-event
10 N3=2; % number of cycles post-event
11 % t=linspace(0,6*(N1+N2+N3),6*(N1+N2+N3)*NS+1);
12 % t=t(1:6*(N1+N2+N3)*NS)/50;
13 t=linspace(0,(N1+N2+N3),(N1+N2+N3)*NS+1);
14 t=t(1:(N1+N2+N3)*NS)/50;
15 for g=1:length(t)
16 t1(g,1)=t(1,g);
17 end
18 t=t1:
19 clear('Va','Vb','Vc');
20 % calculating pre-event and post-event voltages, with a small unbalance
21 VAO= 1; %0.995;
22 VBO=-0.5-0.5*i*sqrt(3); %-0.495-0.50*i*sqrt(3);
23 VCO=-0.5+0.5*i*sqrt(3);
24 % calculating voltage dips
25 a=-0.5+i*sqrt(3)/2;
26 tC=t/0.02; % time in cycles
27
28 for k=1:9
29 V=(['0.' num2str(k)]);
30 V=str2num(V);
31 %V=0.5;Phi=0; % 50% retained voltage, no phase-angle jump
32
33
34 %voltage dip type A
35 VA=V;
36 VB=a^2*V;
37 VC=a*V;
38 Va1=VoltageDip(N1,N2,N3,VA0,VA,VA0,NS);Vb1=VoltageDip(N1,N2,N3,VB0,VB,VB0,NS);Vc1=VoltageDip(N1,N2,N3,VC0,VC,VC0,NS);
```

Synthetic Dips.m

```
39
 40 figure(7*k-6)
41 plot(tC,Va1,tC,Vb1,'--',tC,Vc1,'-.'),ylim([-1.5 1.5]),title(['Sag type: A for V=' num2str(V)]),xlabel('time[cycles]'),legend
 42
 43 %print -depsc SyntheticFigures/A.eps
 44
 45 print(['-f' num2str(7*k-6)], '-depsc', ['SyntheticFigures/A_0' num2str(k)])
 46
 47 % voltage dip type Ba
 48 VA = V;
 49 VB=-0.5-0.5*i*sqrt(3);
 50 VC=-0.5+0.5*i*sqrt(3);
 51 Va2=VoltageDip(N1,N2,N3,VA0,VA,VA0,NS);
 52 Vb2=VoltageDip(N1,N2,N3,VB0,VB,VB0,NS);
 53 Vc2=VoltageDip(N1,N2,N3,VC0,VC,VC0,NS);
54 % voltage dip type Bb
 55 VA=1;
 56 VB=-0.5*V-0.5*i*sqrt(3)*V;
57 VC=-0.5+0.5*i*sqrt(3);
 58 Va3=VoltageDip(N1,N2,N3,VA0,VA,VA0,NS);
 59 Vb3=VoltageDip(N1,N2,N3,VB0,VB,VB0,NS);
 60 Vc3=VoltageDip(N1,N2,N3,VC0,VC,VC0,NS);
 61 % voltage dip type Bc
 62 VA=1:
 63 VB=-0.5-0.5*i*sqrt(3);
 64 VC=-0.5*V+0.5*i*sqrt(3)*V;
 65 Va4=VoltageDip(N1,N2,N3,VA0,VA,VA0,NS);
 66 Vb4=VoltageDip(N1,N2,N3,VB0,VB,VB0,NS);
 67 Vc4=VoltageDip(N1,N2,N3,VC0,VC,VC0,NS);
 68
 69 figure(7*k-5)
 70 subplot(3,1,1)
 71 plot(tC, Va2, tC, Vb2, '--', tC, Vc2, '-.'), ylim([-1.5 1.5]), title(['Sag types: Ba, Bb, Bc for V=' num2str(V)]), legend('Ua', 'Ub', 'U
 72 subplot(3,1,2)
 73 plot(tC, Va3, tC, Vb3, '--', tC, Vc3, '-.'), ylim([-1.5 1.5]), ylabel('Bb')
 74 subplot(3,1,3)
 75 plot(tC, Va4, tC, Vb4, '--', tC, Vc4, '-.'), ylim([-1.5 1.5]), ylabel('Bc'), xlabel('time[cycles]')
 76
 77 %print -depsc SyntheticFigures/B.eps
 78
 79 print(['-f' num2str(7*k-5)], '-depsc', ['SyntheticFigures/B_0' num2str(k)])
80
81 % voltage dip type Ca
 82 VA5=1;
83 VB5=-0.5-0.5*i*sqrt(3)*V;
84 VC5=-0.5+0.5*i*sqrt(3)*V;
 85 Va5=VoltageDip(N1,N2,N3,VA0,VA5,VA0,NS);
86 Vb5=VoltageDip(N1,N2,N3,VB0,VB5,VB0,NS);
87 Vc5=VoltageDip(N1,N2,N3,VC0,VC5,VC0,NS);
88 % voltage dip type Cb
89 VA6=a^2*VC5;
 90 VB6=a^2*VA5;
 91 VC6=a^2*VB5; %a^2*(-0.5-0.5*i*sqrt(3)*V);
 92 Va6=VoltageDip(N1,N2,N3,VA0,VA6,VA0,NS);
 93 Vb6=VoltageDip(N1,N2,N3,VB0,VB6,VB0,NS);
 94 Vc6=VoltageDip(N1,N2,N3,VC0,VC6,VC0,NS);
 95 % voltage dip type Cc
 96 VA7=a^2*VC6;
97 VB7=a^2*VA6;%-0.5*V-0.5*i*sqrt(3);
98 VC7=a^2*VB6;
99 Va7=VoltageDip(N1,N2,N3,VA0,VA7,VA0,NS);
100 Vb7=VoltageDip(N1,N2,N3,VB0,VB7,VB0,NS);
101 Vc7=VoltageDip(N1,N2,N3,VC0,VC7,VC0,NS);
102
103 figure(7*k-4)
104 subplot(3,1,1)
105 plot(tC, Va5,tC, Vb5, '--', tC, Vc5, '-.'), ylim([-1.5 1.5]),title(['Sag types: Ca, Cb, Cc for V=' num2str(V)]),legend('Ua', 'Ub', 'Uc
106 subplot(3,1,2)
107 plot(tC, Va6, tC, Vb6, '--', tC, Vc6, '-.'), ylim([-1.5 1.5]), ylabel('Cb')
108 subplot(3,1,3)
109 plot(tC,Va7,tC,Vb7,'--',tC,Vc7,'-.'), ylim([-1.5 1.5]),xlabel('time[cycles]'),ylabel('Cc')
110
111 %print -depsc SyntheticFigures/C.eps
```

```
112
113 print(['-f' num2str(7*k-4)], '-depsc', ['SyntheticFigures/C_0' num2str(k)])
114
115 % voltage dip type Da
116 VA8=V;
117 VB8=-0.5*V-0.5*i*sqrt(3);
118 VC8=-0.5*V+0.5*i*sqrt(3);
119 Va8=VoltageDip(N1,N2,N3,VA0,VA8,VA0,NS);
120 Vb8=VoltageDip(N1,N2,N3,VB0,VB8,VB0,NS);
121 Vc8=VoltageDip(N1,N2,N3,VC0,VC8,VC0,NS);
122 % voltage dip type Db
123 VA9=a^2*VC8;
124 VB9=a^2*VA8; %-0.5*V-0.5*i*sqrt(3)*V;
125 VC9=a^2*VB8; %a^2*(-0.5*V-0.5*i*sqrt(3));
126 Va9=VoltageDip(N1,N2,N3,VA0,VA9,VA0,NS);
127 Vb9=VoltageDip(N1,N2,N3,VB0,VB9,VB0,NS);
128 Vc9=VoltageDip(N1,N2,N3,VC0,VC9,VC0,NS);
129 % voltage dip type Dc
130 VA10=a^2*VC9; %a^2*VC;
131 VB10=a^2*VA9; %a^2*VA;%-0.5*V-0.5*i*sqrt(3);
132 VC10=a^2*VB9; %a^2*(-0.5*V-0.5*i*sqrt(3)*V); %==a^2*VB in Db
133 Va10=VoltageDip(N1, N2, N3, VA0, VA10, VA0, NS);
134 Vb10=VoltageDip(N1,N2,N3,VB0,VB10,VB0,NS);
135 Vc10=VoltageDip(N1,N2,N3,VC0,VC10,VC0,NS);
136
137 figure(7*k-3)
138 subplot(3,1,1)
139 plot(tC,Va8,tC,Vb8,'--',tC,Vc8,'-.'), ylim([-1.5 1.5]),title(['Sag types: Da,Db,Dc for V=' num2str(V)]),legend('Ua','Ub','Uc
140 subplot(3,1,2)
141 plot(tC, Va9, tC, Vb9, '--', tC, Vc9, '-.'), ylim([-1.5 1.5]), ylabel('Db')
142 subplot(3,1,3)
143 plot(tC, Va10,tC, Vb10,'--',tC, Vc10,'-.'), vlim([-1.5 1.5]), vlabel('Dc'), xlabel('time[cvcles]')
144
145 %print -depsc SyntheticFigures/D.eps
146
147 print(['-f' num2str(7*k-3)], '-depsc', ['SyntheticFigures/D_0' num2str(k)])
148
149 % voltage dip type Ea
150 VA=1;
151 VB=-0.5*V-0.5*i*sqrt(3)*V;
152 VC=-0.5*V+0.5*i*sqrt(3)*V;
153 Va11=VoltageDip(N1,N2,N3,VAO,VA,VAO,NS);
154 Vb11=VoltageDip(N1,N2,N3,VB0,VB,VB0,NS);
155 Vc11=VoltageDip(N1,N2,N3,VC0,VC,VC0,NS);
156 % voltage dip type Eb
157 VA = V:
158 VB=-0.5-0.5*i*sqrt(3);
159 VC=-0.5*V+0.5*i*sqrt(3)*V;
160 Va12=VoltageDip(N1,N2,N3,VA0,VA,VA0,NS);
161 Vb12=VoltageDip(N1,N2,N3,VB0,VB,VB0,NS);
162 Vc12=VoltageDip(N1,N2,N3,VC0,VC,VC0,NS);
163 % voltage dip type Ec
164 VA=V;
165 VB=-0.5*V-0.5*i*sqrt(3)*V;
166 VC=-0.5+0.5*i*sqrt(3);
167 Va13=VoltageDip(N1,N2,N3,VA0,VA,VA0,NS);
168 Vb13=VoltageDip(N1,N2,N3,VB0,VB,VB0,NS);
169 Vc13=VoltageDip(N1,N2,N3,VC0,VC,VC0,NS);
170
171 figure(7*k-2)
172 subplot(3,1,1)
173 plot(tC, Va11,tC, Vb11,'--',tC, Vc11,'-.'), ylim([-1.5 1.5]),title(['Sag types: Ea, Eb, Ec for V=' num2str(V)]),legend('Ua', 'Ub',
174 subplot(3,1,2)
175 plot(tC, Va12, tC, Vb12, '--', tC, Vc12, '-.'), ylim([-1.5 1.5]), ylabel('Eb')
176 subplot(3,1,3)
177 plot(tC,Va13,tC,Vb13,'--',tC,Vc13,'--'), ylim([-1.5 1.5]),ylabel('Ec'),xlabel('time[cycles]')
178
179 %print -depsc SyntheticFigures/E.eps
180
181 print(['-f' num2str(7*k-2)], '-depsc', ['SyntheticFigures/E_0' num2str(k)])
182
183 % voltage dip type Fa
184 VA14=V:
```

```
185 VB14=-0.5*V-(1/3+V/6)*i*sqrt(3);
186 VC14=-0.5*V+(1/3+V/6)*i*sqrt(3);
187 Va14=VoltageDip(N1,N2,N3,VA0,VA14,VA0,NS);
188 Vb14=VoltageDip(N1,N2,N3,VB0,VB14,VB0,NS);
189 Vc14=VoltageDip(N1,N2,N3,VC0,VC14,VC0,NS);
190 % voltage dip type Fb
191 VA15=a^2*VC14;
192 VB15=a^2*VA14;
193 VC15=a^2*VB14;
194 Va15=VoltageDip(N1,N2,N3,VA0,VA15,VA0,NS);
195 Vb15=VoltageDip(N1,N2,N3,VB0,VB15,VB0,NS);
196 Vc15=VoltageDip(N1,N2,N3,VC0,VC15,VC0,NS);
197 % voltage dip type Fc
198 VA16=a^2*VC15;
199 VB16=a^2*VA15;
200 VC16=a^2*VB15;
201 Va16=VoltageDip(N1,N2,N3,VA0,VA16,VA0,NS);
202 Vb16=VoltageDip(N1,N2,N3,VB0,VB16,VB0,NS);
203 Vc16=VoltageDip(N1,N2,N3,VC0,VC16,VC0,NS);
204
205 figure(7*k-1)
206 subplot(3,1,1)
207 plot(tC, Va14, tC, Vb14, '--', tC, Vc14, '-.'), ylim([-1.5 1.5]), title(['Sag types: Fa, Fb, Fc for V=' num2str(V)]), legend('Ua', 'Ub',
208 subplot(3.1.2)
209 plot(tC,Va15,tC,Vb15,'--',tC,Vc15,'-.'), ylim([-1.5 1.5]),ylabel('Fb')
210 subplot(3,1,3)
211 plot(tC,Va16,tC,Vb16,'--',tC,Vc16,'-.'), ylim([-1.5 1.5]),ylabel('Fc'),xlabel('time[cycles]')
212
213 %print -depsc SyntheticFigures/F.eps
214
215 print(['-f' num2str(7*k-1)], '-depsc', ['SyntheticFigures/F_0' num2str(k)])
216
217 % voltage dip type Ga
218 VA17=2/3+V/3;
219 VB17=-1/3 -V/6 -0.5*i*sqrt(3)*V;
220 VC17=-1/3 -V/6 +0.5*i*sqrt(3)*V;
221 Va17=VoltageDip(N1,N2,N3,VA0,VA17,VA0,NS);
222 Vb17=VoltageDip(N1,N2,N3,VB0,VB17,VB0,NS);
223 Vc17=VoltageDip(N1,N2,N3,VC0,VC17,VC0,NS);
224 % voltage dip type Gb
225 VA18=a^2*VC17;
226 VB18=a^2*VA17;
227 VC18=a^2*VB17:
228 Va18=VoltageDip(N1, N2, N3, VA0, VA18, VA0, NS);
229 Vb18=VoltageDip(N1,N2,N3,VB0,VB18,VB0,NS);
230 Vc18=VoltageDip(N1,N2,N3,VC0,VC18,VC0,NS);
231 % voltage dip type Gc
232 VA19=a^2*VC18;
233 VB19=a^2*VA18;
234 VC19=a^2*VB18;
235 Va19=VoltageDip(N1,N2,N3,VA0,VA19,VA0,NS);
236 Vb19=VoltageDip(N1, N2, N3, VB0, VB19, VB0, NS);
237 Vc19=VoltageDip(N1,N2,N3,VC0,VC19,VC0,NS);
238
239 figure(7*k)
240 subplot(3,1,1)
241 plot(tC,Va17,tC,Vb17,'--',tC,Vc17,'-.'), ylim([-1.5 1.5]),title(['Sag types: Ga,Gb,Gc for V=' num2str(V)]),legend('Ua','Ub',
242 subplot(3,1,2)
243 plot(tC, Va18,tC, Vb18,'--',tC, Vc18,'-.'), ylim([-1.5 1.5]),ylabel('Gb')
244 subplot(3,1,3)
245 plot(tC,Va19,tC,Vb19,'--',tC,Vc19,'-.'), ylim([-1.5 1.5]),ylabel('Gc'),xlabel('time[cycles]')
246
247 %print -depsc SyntheticFigures/G.eps
248
249 print(['-f' num2str(7*k)], '-depsc', ['SyntheticFigures/G_0' num2str(k)])
250
251 %saving sags
252 %A
253 Ua=Va1;Ub=Vb1;Uc=Vc1;
254 save (['Sags/1_0' num2str(k) '.mat'],'t','Ua','Ub','Uc')
255
256 %Ba
257 Ua=Va2;Ub=Vb2;Uc=Vc2;
```

```
258 save (['Sags/2_0' num2str(k) '.mat'], 't', 'Ua', 'Ub', 'Uc')
259 %Bb
260 Ua=Va3;Ub=Vb3;Uc=Vc3;
261 save (['Sags/3_0' num2str(k) '.mat'], 't', 'Ua', 'Ub', 'Uc')
262 %Bc
263 Ua=Va4;Ub=Vb4;Uc=Vc4;
264 save (['Sags/4_0' num2str(k) '.mat'], 't', 'Ua', 'Ub', 'Uc')
265
266 %Ca
267 Ua=Va5;Ub=Vb5;Uc=Vc5;
268 save (['Sags/5_0' num2str(k) '.mat'],'t','Ua','Ub','Uc')
269 %Cb
270 Ua=Va6;Ub=Vb6;Uc=Vc6;
271 save (['Sags/6_0' num2str(k) '.mat'], 't', 'Ua', 'Ub', 'Uc')
272 %Cc
273 Ua=Va7;Ub=Vb7;Uc=Vc7;
274 save (['Sags/7_0' num2str(k) '.mat'], 't', 'Ua', 'Ub', 'Uc')
275
276 %Da
277 Ua=Va8;Ub=Vb8;Uc=Vc8;
278 save (['Sags/8_0' num2str(k) '.mat'],'t','Ua','Ub','Uc')
279 %Db
280 Ua=Va9;Ub=Vb9;Uc=Vc9;
281 save (['Sags/9_0' num2str(k) '.mat'], 't', 'Ua', 'Ub', 'Uc')
282 %Dc
283 Ua=Va10;Ub=Vb10;Uc=Vc10;
284 save (['Sags/10_0' num2str(k) '.mat'], 't', 'Ua', 'Ub', 'Uc')
285
286 %Ea
287 Ua=Va11;Ub=Vb11;Uc=Vc11;
288 save (['Sags/11_0' num2str(k) '.mat'],'t','Ua','Ub','Uc')
289 %Eb
290 Ua=Va12;Ub=Vb12;Uc=Vc12;
291 save (['Sags/12_0' num2str(k) '.mat'],'t','Ua','Ub','Uc')
292 %Ec
293 Ua=Va13;Ub=Vb13;Uc=Vc13;
294 save (['Sags/13_0' num2str(k) '.mat'],'t','Ua','Ub','Uc')
295
296 %Fa
297 Ua=Va14;Ub=Vb14;Uc=Vc14;
298 save (['Sags/14_0' num2str(k) '.mat'],'t','Ua','Ub','Uc')
299 %Fb
300 Ua=Va15;Ub=Vb15;Uc=Vc15;
301 save (['Sags/15_0' num2str(k) '.mat'],'t','Ua','Ub','Uc')
302 %Fc
303 Ua=Va16;Ub=Vb16;Uc=Vc16;
304 save (['Sags/16_0' num2str(k) '.mat'],'t','Ua','Ub','Uc')
305
306 %Ga
307 Ua=Va17;Ub=Vb17;Uc=Vc17;
308 save (['Sags/17_0' num2str(k) '.mat'], 't', 'Ua', 'Ub', 'Uc')
309 %Gb
310 Ua=Va18;Ub=Vb18;Uc=Vc18;
311 save (['Sags/18_0' num2str(k) '.mat'],'t','Ua','Ub','Uc')
312 %GC
313 Ua=Va19;Ub=Vb19;Uc=Vc19;
314 save (['Sags/19_0' num2str(k) '.mat'],'t','Ua','Ub','Uc')
315
316 end
```

VoltageDip.m

2 % [Vt]=VoltageDip(N1,N2,N3,V1,V2,V3,NS);

```
10 t=t(1:(N1+N2+N3)*NS);
```

¹ function [Vt]=VoltageDipTemp(N1,N2,N3,V1,V2,V3,NS);

 $_{3}$ % generates a time-domain waveform with complex voltage V1 during N1

 $^{4\ \}mbox{\%}$ cycles, voltage V2 during N2 cycles, voltage V3 during N3 cycles

^{5 %} sampling rate NS samples per cycle

⁶ w1=[1:floor(N1*NS)]; % number of cycles pre-event

⁷ w2=[floor(N1*NS+1):floor((N1+N2)*NS)];% number of cycles during-event

⁸ w3=[floor((N1+N2)*NS+1):floor((N1+N2+N3)*NS)];% nymber of cycles post-event

⁹ t=linspace(0,N1+N2+N3,floor((N1+N2+N3)*NS+1));

```
11 Vt=zeros((N1+N2+N3)*NS,1);
12 Vt(w1)=real(V1*exp(2*i*pi*t(w1)));
13 Vt(w2)=real(V2*exp(2*i*pi*t(w2)));
14 Vt(w3)=real(V3*exp(2*i*pi*t(w3)));
```

A.3 Site Indices and Figures

```
1 clc
 2 clear
 3
 4 load('Results\ResultsSymmCompVDonlyKoncene.mat')
 6 for j=0:373
      File{j+1,1}
                        = VoltageDip{j+2,1};
 7
 8
      Dur(j+1,1)
                        = str2num(VoltageDip{j+2,3});
                        = str2num(VoltageDip{j+2,4});
 9
      Ret(j+1,1)
      Dur_Sec(j+1,1)
                        = str2num(VoltageDip{j+2,3})*0.02;
10
                       = VoltageDip{j+2,7};
11
      StatusS{j+1,1}
12 %
        Dur_Swell(j+1,1) = str2num(VoltageDip{j+2,8});
        Ret_Swell{j+1,1} = (VoltageDip{j+2,9});
13 %
      Evs_DurRet(j+1,1) = str2num(VoltageDip{j+2,10});
14
      Evs_a(j+1,1)
                        = str2num(VoltageDip{j+2,11});
15
                        = str2num(VoltageDip{j+2,12});
16
      Evs_b(j+1,1)
      Evs_c(j+1,1)
                        = str2num(VoltageDip{j+2,13});
17
                        = str2num(VoltageDip{j+2,16});
      Se(j+1,1)
18
                        = VoltageDip{j+2,17};
19
      DipType{j+1,1}
                        = str2num(VoltageDip{j+2,18});
20
      V(j+1,1)
                        = str2num(VoltageDip{j+2,19});
21
      F(j+1,1)
22
      DipTypeS{j+1,1} = VoltageDip{j+2,20};
                        = str2num(VoltageDip{j+2,21});
23
      V_{s(j+1,1)}
                        = str2num(VoltageDip{j+2,22});
24
      F_s(j+1,1)
25
      %calculating max of Evs_a,b,c
      Evs_all = [Evs_a,Evs_b,Evs_c];
26
27
      Evs(j+1,1)=max([Evs_all(j+1,1),Evs_all(j+1,2),Evs_all(j+1,3)]);
      %setting up the matrix of dip type
28
      DipType_all=[DipType,DipTypeS];
29
      match(j+1,1)=strcmp(DipType_all(j+1,1),DipType_all(j+1,2));
30
      match_non0=nonzeros(match);
31
32
33 end
34 for q=16:20 %q=1:20 q=1:87
     vectStatusS=strmatch('YES',StatusS)+1;
35
     Dur_Swell(q,1) = str2num(VoltageDip{vectStatusS(q,1),8})*0.02;
36
     Ret_Swell(q,1) = str2num(VoltageDip{vectStatusS(q,1),9});
37
38
     Dur_SwellSags(q,1) = str2num(VoltageDip{vectStatusS(q,1),3})*0.02;
     Ret_SwellSags(q,1) = str2num(VoltageDip{vectStatusS(q,1),4});
39
40
41 end
     clear('match', 'StatusS');
42
43
44
     load('Results\ResultsSymmCompKonecne.mat') %loading the variables from file with all events
45
46
      for c = 0:774
47
     StatusSAll{c+1,1}
                         = VoltageDip{c+2,7};
     Status{c+1,1} = VoltageDip{c+2,2};
48
     StatusComp=[Status,StatusSAll];
49
50
51
52
      vectStatusSAll=strmatch('YES',StatusSAll)+1;
                position=strcmp('YES',StatusSAll);
53
54
                 position2=strcmp('YES',Status);
                 positionAll=[position2,position];
55
                   if (position2(c+1,1)==0 & position(c+1,1)==1)
56
                    positionNEW{c+1,1}='1';
57
                 else positionNEW{c+1,1}='0';
58
                 end
59
60
    end
```

StatisticsPlots.m

```
vectSwellsONLY=strmatch('1',positionNEW)+1;
 61
           for ONLY=1:7
 62
               Dur_SwellsONLY(ONLY,1) = str2num(VoltageDip{vectSwellsONLY(ONLY,1),8})*0.02;
 63
               Ret_SwellsONLY(ONLY,1) = str2num(VoltageDip{vectSwellsONLY(ONLY,1),9});
 64
 65
           end
 66
 67
    for d=1:94
     Dur_SwellAll(d,1) = str2num(VoltageDip{vectStatusSAll(d,1),8})*0.02;
 68
      Ret_SwellAll(d,1) = str2num(VoltageDip{vectStatusSAll(d,1),9});
 69
      %StatusSags{d,1} =
 70
                                 (VoltageDip{vectStatusSAll(d,1),2});
      DipTypeSwells{d,1}=
                                 (VoltageDip{vectStatusSAll(d,1),17});
 71
 72
      DipTypeSSwells{d,1}=
                                 (VoltageDip{vectStatusSAll(d,1),20});
       Dur_SwellSagsAll(d,1) = str2num(VoltageDip{vectStatusSAll(d,1),3})*0.02;
 73 %
 74 %
        Ret_SwellSagsAll(d,1) = str2num(VoltageDip{vectStatusSAll(d,1),4});
 75
 76 end
 77
 78 clear('c','d','vectSwellsONLY','ONLY','position','position2','positionNEW','positionAll');
 79 clear('StatusSAll', 'Status', 'StatusComp', 'vectStatusSAll');
 80
81 %-----% IEC table %-----
 82
 83 [IECtable]=IECTable(Dur_Sec,Ret);
84
 85
       save('Results\StatisticPlots\IECtable.mat', 'IECtable');
86
88 vectDipTypeA=strmatch('A',DipType);
 89 vectDipTypeC=strmatch('C',DipType);
 90 vectDipTypeD=strmatch('D',DipType);
 91
92 VectDur1=find(Dur>300/0.02);
 93 VectDur2=find(Dur<0.5);
 94 VectNoHC=find(Dur>0.5);
 95
 96 DurHC=Dur(VectNoHC);
97 RetHC=Ret(VectNoHC);
 98
 99 HalfCycles=Ret(VectDur2);
100 Hc=length(find(HalfCycles<0.9));
101 Ret_length=length(Ret);
102
103 % 7 files are only swells, not sags => Sarfi110 is not equal to Sarfi110A+C+D => they do not have dip type defined
104 [Sarfi110,Sarfi110A,Sarfi110C,Sarfi110D]=SarfiX(Dur_SwellAll,Ret_SwellAll,DipTypeSwells,1.1); % only swells with dur greater
105 [Sarfi90, Sarfi90A, Sarfi90C, Sarfi90D] = SarfiX(Dur, Ret, DipType, 0.9);
106 [Sarfi70, Sarfi70A, Sarfi70C, Sarfi70D] = SarfiX(Dur, Ret, DipType, 0.7);
107 [Sarfi50, Sarfi50A, Sarfi50C, Sarfi50D] = SarfiX(Dur, Ret, DipType, 0.5);
108 [Sarfi10, Sarfi10A, Sarfi10C, Sarfi10D] = SarfiX(Dur, Ret, DipType, 0.1);
1.09
110 [Sarfi_ITIC, Sarfi_SEMI] = SarfiCurve(Dur_Sec,Ret);
111
112 [Sarfi_ITIC_ANoPer,Sarfi_ITIC_A, Sarfi_SEMI_ANoPer, Sarfi_SEMI_A]= SarfiCurveType(Dur_Sec,Ret,vectDipTypeA,Sarfi_ITIC, Sarfi_
113 [Sarfi_ITIC_CNoPer,Sarfi_ITIC_C, Sarfi_SEMI_CNoPer, Sarfi_SEMI_C]= SarfiCurveType(Dur_Sec,Ret,vectDipTypeC,Sarfi_ITIC, Sarfi
114 [Sarfi_ITIC_DNoPer,Sarfi_ITIC_D, Sarfi_SEMI_DNoPer, Sarfi_SEMI_D]= SarfiCurveType(Dur_Sec,Ret,vectDipTypeD,Sarfi_ITIC, Sarfi
115
116 Sarfi_ITIC_test=Sarfi_ITIC_ANoPer+Sarfi_ITIC_CNoPer+Sarfi_ITIC_DNoPer;
117 Sarfi_SEMI_test=Sarfi_SEMI_ANoPer+Sarfi_SEMI_CNoPer+Sarfi_SEMI_DNoPer;
118
119 if Sarfi_ITIC_test==Sarfi_ITIC
120
      disp('correct')
121 else
      disp('incorrect')
122
123 end
124 if Sarfi_SEMI_test==Sarfi_SEMI
125
      disp('correct')
126 else
      disp('incorrect')
127
128 end
129
130 % %percentage:
131 % Sarfi_ITIC_Apercent=(Sarfi_ITIC_A/Sarfi_ITIC)*100;
132 % Sarfi_ITIC_Cpercent=(Sarfi_ITIC_C/Sarfi_ITIC)*100;
133 % Sarfi_ITIC_Dpercent=(Sarfi_ITIC_D/Sarfi_ITIC)*100;
```

```
134 %
135 % Sarfi_ITIC_A=[num2str(Sarfi_ITIC_A) ' (' num2str(roundn(Sarfi_ITIC_Apercent, -1)) '%)'];
136 % Sarfi_ITIC_C=[num2str(Sarfi_ITIC_C) ' (' num2str(roundn(Sarfi_ITIC_Opercent, -1)) '%)'];
137 % Sarfi_ITIC_D=[num2str(Sarfi_ITIC_D) ' (' num2str(roundn(Sarfi_ITIC_Dpercent, -1)) '%)'];
138
1.39
140 clear('VectDur1','VectDur2','VectNoHC','Sarfi_ITIC_test','Sarfi_SEMI_test');
141 clear('HalfCycles', 'Hc', 'DipTypeSwells');
142
144
145 vectDipTypeS_A=strmatch('A',DipTypeS);
146 vectDipTypeS_C=strmatch('C',DipTypeS);
147 vectDipTypeS_D=strmatch('D',DipTypeS);
1\,48
149 [SarfiS110, SarfiS110A, SarfiS110C, SarfiS110D]=SarfiX(Dur_SwellAll, Ret_SwellAll, DipTypeSSwells, 1.1);
150 [SarfiS90,SarfiS90A,SarfiS90C,SarfiS90D]=SarfiX(Dur,Ret,DipTypeS,0.9);
151 [SarfiS70, SarfiS70A, SarfiS70C, SarfiS70D] = SarfiX(Dur, Ret, DipTypeS, 0.7);
152 [SarfiS50,SarfiS50A,SarfiS50C,SarfiS50D]=SarfiX(Dur,Ret,DipTypeS,0.5);
153 [SarfiS10, SarfiS10A, SarfiS10C, SarfiS10D] = SarfiX(Dur, Ret, DipTypeS, 0.1);
154
155 [SarfiS_ITIC_ANoPer, SarfiS_ITIC_A, SarfiS_SEMI_ANoPer, SarfiS_SEMI_A]= SarfiCurveType(Dur_Sec,Ret,vectDipTypeS_A,Sarfi_ITIC_A)
156 [SarfiS_ITIC_CNoPer, SarfiS_ITIC_C, SarfiS_SEMI_CNoPer, SarfiS_SEMI_C]= SarfiCurveType(Dur_Sec,Ret,vectDipTypeS_C,Sarfi_ITIC
157 [SarfiS_ITIC_DNoPer, SarfiS_ITIC_D, SarfiS_SEMI_DNoPer, SarfiS_SEMI_D]= SarfiCurveType(Dur_Sec,Ret,vectDipTypeS_D,Sarfi_ITIC_
158
159 SarfiS_ITIC_test=SarfiS_ITIC_ANoPer+SarfiS_ITIC_CNoPer+SarfiS_ITIC_DNoPer;
160 SarfiS_SEMI_test=SarfiS_SEMI_ANoPer+SarfiS_SEMI_CNoPer+SarfiS_SEMI_DNoPer;
1\,61
162 if SarfiS_ITIC_test==Sarfi_ITIC
         disp('correct')
1.63
164 else
        disp('incorrect')
165
166 end
167 if SarfiS_SEMI_test==Sarfi_SEMI
        disp('correct')
168
169 else
         disp('incorrect')
170
171 end
172
173 clear('vectDipTypeS_A', 'vectDipTypeS_C', 'vectDipTypeS_D', 'SarfiS_ITIC_test', 'SarfiS_SEMI_test', 'DipTypeSSwells');
174
={'' 'Total number of events' 'SARFI_110*' 'SARFI_90**' 'SARFI_70**' 'SARFI_50**' 'SARFI_10**' 'SARFI_ITIC(CBH
176 Sarfi row1
177 Sarfi_row2
                       ={'Count of events' num2str(Ret_length) num2str(Sarfi110) num2str(Sarfi90) num2str(Sarfi70) num2str(Sarfi50) num2str(Sarfi90) num2str(Sarfi90)
178 Sarfi_row3
                      ={'Events per 30 days' num2str(Ret_length) num2str(Sarfi110) num2str(Sarfi90) num2str(Sarfi70) num2str(Sarfi50
                      ={'Count of events for Type A (Six RMS method)' num2str(Ret_length) num2str(Sarfi110A) num2str(Sarfi90A) num2st
179 Sarfi_row4
                      ={'Count of events for Type C (Six RMS method)' num2str(Ret_length) num2str(Sarfi110C) num2str(Sarfi90C) num2st
180 Sarfi row5
                       ={'Count of events for Type D (Six RMS method)' num2str(Ret_length) num2str(Sarfi110D) num2str(Sarfi90D) num2str
181 Sarfi_row6
                      ={``,``,``,``,``,``,``,``,``};
182 Sarfi_row7
183 Sarfi row8
                       ={'Count of events for Type A (Symm. Comp. method)' num2str(Ret_length) num2str(SarfiS110A) num2str(SarfiS90A)
                       ={'Count of events for Type C (Symm. Comp. method)' num2str(Ret_length) num2str(SarfiS110C) num2str(SarfiS90C)
184 Sarfi_row9
                      ={'Count of events for Type D (Symm. Comp. method)' num2str(Ret_length) num2str(SarfiS110D) num2str(SarfiS90D)
185 Sarfi_row10
                       186 Sarfi_row11
                      187 Sarfi_row12
188
189 SarfiTable = [Sarfi_row1;Sarfi_row2;Sarfi_row3;Sarfi_row4;Sarfi_row5;Sarfi_row6;
190
                       Sarfi_row7;Sarfi_row8;Sarfi_row9;Sarfi_row10;Sarfi_row11;Sarfi_row12];
191
192 save('Results\StatisticPlots\SarfiTable.mat', 'SarfiTable'):
1.93
194 %-----
195
196 clear('Ret_length', 'Sarfi110', 'Sarfi90', 'Sarfi70', 'Sarfi50', 'Sarfi10', 'Sarfi_ITIC', 'Sarfi_SEMI');
197 clear('Sarfi110A','Sarfi90A','Sarfi70A','Sarfi50A','Sarfi10A','Sarfi_ITIC_A', 'Sarfi_SEMI_A');
198 clear('Sarfi110C','Sarfi90C','Sarfi70C','Sarfi50C','Sarfi10C','Sarfi_ITIC_C', 'Sarfi_SEMI_C');
199 clear('Sarfi110D','Sarfi90D','Sarfi70D','Sarfi50D','Sarfi10D','Sarfi_ITIC_D', 'Sarfi_SEMI_D');
200 clear('SarfiS110', 'SarfiS90', 'SarfiS70', 'SarfiS50', 'SarfiS10', 'SarfiS_ITIC', 'SarfiS_SEMI');
201 clear('SarfiS110A', 'SarfiS90A', 'SarfiS70A', 'SarfiS50A', 'SarfiS10A', 'SarfiS_ITIC_A', 'SarfiS_SEMI_A');
202 clear('SarfiS110C', 'SarfiS90C', 'SarfiS70C', 'SarfiS50C', 'SarfiS10C', 'SarfiS_ITIC_C', 'SarfiS_SEMI_C');
203 clear('SarfiS110D', 'SarfiS90D', 'SarfiS70D', 'SarfiS50D', 'SarfiS10D', 'SarfiS_ITIC_D', 'SarfiS_SEMI_D');
204 clear('Sarfi_ITIC_ANoPer', 'Sarfi_SEMI_ANoPer', 'Sarfi_ITIC_CNoPer', 'Sarfi_SEMI_CNoPer');
205 clear('Sarfi_ITIC_DNoPer', 'Sarfi_SEMI_DNoPer');
206 clear('SarfiS_ITIC_ANoPer', 'SarfiS_SEMI_ANoPer', 'SarfiS_ITIC_CNoPer', 'SarfiS_SEMI_CNoPer');
```

```
207 clear('SarfiS_ITIC_DNoPer', 'SarfiS_SEMI_DNoPer');
2.08
209 clear('Sarfi row1'.'Sarfi row2'.'Sarfi row3'.'Sarfi row4'.'Sarfi row5'.'Sarfi row6')
210 clear('Sarfi_row7', 'Sarfi_row8', 'Sarfi_row9', 'Sarfi_row10', 'Sarfi_row11', 'Sarfi_row12');
211
212 %-----
213 %====% Table of most common values of duration and retained voltage for different dip types %======%
214
215 DurTypeA=Dur_Sec(vectDipTypeA);
216 DurTypeC=Dur_Sec(vectDipTypeC);
217 DurTypeD=Dur_Sec(vectDipTypeD);
218
219 RetTypeA=Ret(vectDipTypeA);
220 RetTypeC=Ret(vectDipTypeC);
221 RetTypeD=Ret(vectDipTypeD);
222
223 clear('vectDipTypeA', 'vectDipTypeC', 'vectDipTypeD');
224
\scriptstyle 226 % calculation of probability matching of Dip Type calculated by both methods
227 matching_probability=(length(match_non0)./(j+1)).*100;
228 disp([['matching_probability = ' num2str(matching_probability)] ' %'])
229
230 clear('matching_probability','match_non0')
231
vect1=find(V>F):
233 %
234 %
235 %
      vect2=find(V_s>F_s);
236 %
     length(vect2);
237 %
     vect3=find(F_s-V_s<-0.005);
238 %
239 %
     length(vect3);
240 %
241 %
      N=length(vect2)-length(vect3);
242 %
243 %
        for n=N+1:length(vect2)
            Vect3(n)=vect3(n-N);
244 %
245 %
        end
246 %
            Vect3(1:N)=1;
247 %
       248 %
        for g=1:length(Vect3)
249 %
250 %
            Vector3(g,1)=Vect3(1,g);
251 %
        end
252 %
253 % File_of_Vect2=File(vect2);
254 % File_of_Vect3=File(Vector3);
255 %
256 % File_all=[File_of_Vect2,File_of_Vect3];
258
259 % plotting figures
260
261 figure(1)
262 %axes('YScale','log'),
263 semilogx(Dur,Ret,'k*'), grid on, set(gca,'Fontsize',14), xlabel('Duration [cycles]'), ylabel('Retained voltage [pu]'),ylim(
264 , xlim([0 750]),
265 title('Retained voltage vs. duration'),
266 %set(gca, 'YScale', 'log')
267 line([1 1],[0 0.5]), line([1 10],[0.5 0.5]),
268 line([10 10],[0.5 0.7]),line([10 25],[0.7 0.7]),
269 line([25 25],[0.7 0.8]),line([25 500],[0.8 0.8]),
270 line([500 500],[0.8 0.9]),line([500 1000],[0.9 0.9]);
271
272 %print -depsc Results\StatisticPlots\01_RetDurCyc.eps;
273
274 figure(2)
275 semilogx(Dur_Sec,Ret,'k*'), grid on,set(gca,'Fontsize',14), ylim([0 1]), xlim([0 750*0.02]),
276 xlabel('Duration [seconds]'), ylabel('Retained voltage [pu]'),
277 title('Retained voltage vs. duration'),
278 line([0.02 0.02],[0 0.5]), line([0.02 0.2],[0.5 0.5]),
279 line([0.2 0.2],[0.5 0.7]), line([0.2 0.5],[0.7 0.7]),
```

```
280 line([0.5 0.5],[0.7 0.8]), line([0.5 10],[0.8 0.8]),
281 line([10 10],[0.8 0.9]), line([10 20],[0.9 0.9]);
282
283 %print -depsc Results\StatisticPlots\02_RetDurSec.eps;
284
285 Corelation=corrcoef(Dur,Ret);
286
287 figure(3)
288 cdfplot((Dur)), set(gca, 'Fontsize', 14), title('Probability distribution of Duration'), xlabel('Duration [cycles]');
289
290 %print -depsc Results\StatisticPlots\03_DurProb.eps;
291
292 figure(4)
293 normplot((Ret)), set(gca, 'Fontsize', 14), title('Probability distribution of Retained voltage'), xlabel('Retained voltage [pu]
295 %print -depsc Results\StatisticPlots\04_RetProb.eps;
296
297 figure(5)
298 plot(Evs_DurRet,Evs,'r*'), set(gca,'Fontsize',14), title('Voltage Sag Energy Index Results [cycles]'),
299 xlabel('Voltage Sag Energy Index calc. from Dur & Ret'),
300 ylabel('Voltage Sag Energy Index calc. from Integral'), grid on
301
302 %print -depsc Results\StatisticPlots\05a_Evs.eps
303
304 figure(19)
305 semilogx(Ret,Evs_DurRet,'bX',Ret,Evs,'g+'),set(gca,'Fontsize',14),
306 xlim([0 1]), title('Voltage Sag Energy Index Results [cycles]'), xlabel('Retained voltage [pu]'),
307 ylabel('Voltage Sag Energy Index'), legend('Evs_{DurRet}', 'Evs_{integral}'), grid on
308
309 %print -depsc Results\StatisticPlots\05b_RetEvs.eps
310
311 figure(6)
312 semilogx(Evs,Se, '*'),set(gca, 'Fontsize',14),
313 title('Voltage-Sag Severity vs. Voltage-sag Energy Index'), xlabel('Voltage-sag Energy Index [cycles]'),
314 ylabel('Voltage-Sag Severity [pu]'), grid on;
315
316 %print -depsc Results\StatisticPlots\06_EvsVS_Se.eps
317
318 figure(7)
319 semilogx(DurHC,RetHC,'k*'), grid on, set(gca,'Fontsize',14), ylim([0 1]), xlim([0 750]),
320 xlabel('Duration [cycles]'), ylabel('Retained voltage [pu]'),
321 title('Retained voltage vs. duration for all sags with duration > 10 ms (SEMI curve)'),
322 line([1 1],[0 0.5]), line([1 10],[0.5 0.5]),
323 line([10 10],[0.5 0.7]),line([10 25],[0.7 0.7]),
324 line([25 25],[0.7 0.8]),line([25 500],[0.8 0.8]),
325 line([500 500],[0.8 0.9]),line([500 1000],[0.9 0.9]);
326
327 %print -depsc Results\StatisticPlots\07_RetDurCycNoHC.eps
328
329 figure(8)
330 semilogx(DurTypeA,RetTypeA,'k*'), grid on, set(gca,'Fontsize',14),
331 ylim([0 1]), xlim([10^-3 750*0.02]), xlabel('Duration [seconds]'), ylabel('Retained voltage [pu]'),
332 title('Retained voltage vs. duration for Dip type A (SEMI curve reference)'),
333 line([0.02 0.02],[0 0.5]), line([0.02 0.2],[0.5 0.5]),
334 line([0.2 0.2],[0.5 0.7]), line([0.2 0.5],[0.7 0.7]),
335 line([0.5 0.5],[0.7 0.8]), line([0.5 10],[0.8 0.8]),
336 line([10 10],[0.8 0.9]), line([10 20],[0.9 0.9]);
337
338 %print -depsc Results\StatisticPlots\08_RetDurA_SEMI.eps
339
340 figure(9)
341 semilogx(DurTypeC,RetTypeC,'k*'), grid on, set(gca,'Fontsize',14),
342 ylim([0 1]), xlim([0 750*0.02]), xlabel('Duration [seconds]'), ylabel('Retained voltage [pu]'),
343 title('Retained voltage vs. duration for Dip type C (SEMI curve reference)'),
344 line([0.02 0.02],[0 0.5]), line([0.02 0.2],[0.5 0.5]),
345 line([0.2 0.2],[0.5 0.7]), line([0.2 0.5],[0.7 0.7]),
346 line([0.5 0.5],[0.7 0.8]), line([0.5 10],[0.8 0.8]),
347 line([10 10],[0.8 0.9]), line([10 20],[0.9 0.9]);
348
349 %print -depsc Results\StatisticPlots\09_RetDurC_SEMI.eps
350
351
352 figure(10)
```

```
353 semilogx(DurTypeD,RetTypeD,'k*'), grid on,set(gca,'Fontsize',14),
354 ylim([0 1]), xlim([0 750*0.02]), xlabel('Duration [seconds]'), ylabel('Retained voltage [pu]'),
355 title('Retained voltage vs. duration for Dip type D (SEMI curve reference)'),
356 \ line([0.02 \ 0.02], [0 \ 0.5]), \ line([0.02 \ 0.2], [0.5 \ 0.5]),
357 line([0.2 0.2],[0.5 0.7]), line([0.2 0.5],[0.7 0.7]),
358 line([0.5 0.5],[0.7 0.8]), line([0.5 10],[0.8 0.8]),
359 line([10 10],[0.8 0.9]), line([10 20],[0.9 0.9]);
360
361 %print -depsc Results\StatisticPlots\10_RetDurD_SEMI.eps
362
363 figure(11)
364 semilogx(DurTypeA,RetTypeA,'k*'), grid on,set(gca,'Fontsize',14),
365 ylim([0 1]), xlim([10<sup>-3</sup> 750*0.02]), xlabel('Duration [seconds]'), ylabel('Retained voltage [pu]'),
366 title('Retained voltage vs. duration for Dip type A (ITIC curve reference)'),
367 line([0.02 0.02],[0 0.7]), line([0.02 0.5],[0.7 0.7]),
368 line([0.5 0.5],[0.7 0.8]), line([0.5 10],[0.8 0.8]),
369 line([10 10],[0.8 0.9]), line([10 20],[0.9 0.9]);
370
371 %print -depsc Results\StatisticPlots\11_RetDurA_ITIC.eps
372
373
374 figure(12)
375 semilogx(DurTypeC,RetTypeC,'k*'), grid on, set(gca,'Fontsize',14),ylim([0 1]), xlim([0 750*0.02]),
376 xlabel('Duration [seconds]'), ylabel('Retained voltage [pu]'),
377 title('Retained voltage vs. duration for Dip type C (ITIC curve reference)'),
378 line([0.02 0.02],[0 0.7]), line([0.02 0.5],[0.7 0.7]),
379 line([0.5 0.5],[0.7 0.8]), line([0.5 10],[0.8 0.8]),
380 line([10 10],[0.8 0.9]), line([10 20],[0.9 0.9]);
381
382 %print -depsc Results\StatisticPlots\12_RetDurC_ITIC.eps
383
384 figure(13)
385 semilogx(DurTypeD,RetTypeD,'k*'), grid on, set(gca,'Fontsize',14),ylim([0 1]),
386 xlim([0 750*0.02]), xlabel('Duration [seconds]'), ylabel('Retained voltage [pu]'),
387 title('Retained voltage vs. duration for Dip type D (ITIC curve reference)'),
388 line([0.02 0.02],[0 0.7]), line([0.02 0.5],[0.7 0.7]),
389 line([0.5 0.5],[0.7 0.8]), line([0.5 10],[0.8 0.8]),
390 line([10 10],[0.8 0.9]), line([10 20],[0.9 0.9]);
391
392 %print -depsc Results\StatisticPlots\13_RetDurD_ITIC.eps
393
394
395 figure(14)
396 semilogx(Dur_Swell,Ret_Swell,'k*',Dur_SwellSags,Ret_SwellSags,'r*'), grid on, set(gca,'Fontsize',14), xlim([0 750*0.02]),
397 xlabel(' Duration [seconds]'), ylabel(' Retained voltage [pu]'), legend('Swells', 'Sags')
398 title('Retained voltage vs. duration of Swells & Sags (ITIC curve reference)'),
399 %f=gname('cases');
400 %set(f, 'Fontsize', 17);
401
402 % for q =16:20
403 % text(Dur_Swell(q)+0.001,Ret_Swell(q),num2str(q-15),'Fontsize',18)
404 % text(Dur_SwellSags(q)+0.005,Ret_SwellSags(q),num2str(q-15),'Color','r','Fontsize',18)
405 % end
406 %sag reference:
407 line([0.02 0.02],[0 0.7]), line([0.02 0.5],[0.7 0.7]),
408 line([0.5 0.5],[0.7 0.8]), line([0.5 10],[0.8 0.8]),
409 line([10 10],[0.8 0.9]), line([10 20],[0.9 0.9]);
410 %swell reference:
411 line([0.003 0.003],[1.4 1.2]), line([0.003 0.5],[1.2 1.2]),
412 line([0.5 0.5],[1.2 1.1]), line([0.5 20],[1.1 1.1]);
413
414 %print -depsc Results\StatisticPlots\14_RetDurSwells.eps
415
416 % figure(20)
417 % semilogx(Dur_SwellAll,Ret_SwellAll,'k*',Dur_SwellSags,Ret_SwellSags,'r*'), grid on, set(gca,'Fontsize',14), xlim([0 750*0.
418 % xlabel(' Duration [seconds]'), ylabel(' Retained voltage [pu]'), legend('Swells','Sags')
419 % title('Retained voltage vs. duration of Swells & Sags (ITIC curve reference)'),
420 % %sag reference:
421 % line([0.02 0.02],[0 0.7]), line([0.02 0.5],[0.7 0.7]),
422 % line([0.5 0.5],[0.7 0.8]), line([0.5 10],[0.8 0.8]),
423 % line([10 10],[0.8 0.9]), line([10 20],[0.9 0.9]);
424 % %swell reference:
425 % line([0.003 0.003],[1.4 1.2]), line([0.003 0.5],[1.2 1.2]),
```

```
426 % line([0.5 0.5],[1.2 1.1]), line([0.5 20],[1.1 1.1]);
427 %
428 % print -depsc Results\StatisticPlots\14_RetDurSwellsAll.eps
429
430 figure(15)
431 plot3(Dur_Swell, vectStatusS(1:20),Ret_Swell, 'k*',Dur_SwellSags,vectStatusS(1:20),Ret_SwellSags,'r*'), grid on,
432 set(gca,'Fontsize',14),xlabel(' Swell Duration [seconds]'), ylabel('Position in the vector'),zlabel(' Swell Retained voltage
433 title('Retained voltage vs. duration for Swells (ITIC curve reference)'), box on, xlim([0 750*0.02]),
434 set(gca,'XScale','log')
435 set(gca, 'YMinorGrid', 'on')
436 %sag reference: % need to put: vectStatusS(1:20), also need to change q at the begining
437 for vectStatusS=1:100
438 line([0.02 0.02],[vectStatusS vectStatusS],[0 0.7]), line([0.02 0.5],[vectStatusS vectStatusS],[0.7 0.7]),
439 line([0.5 0.5],[vectStatusS vectStatusS],[0.7 0.8]), line([0.5 10],[vectStatusS vectStatusS],[0.8 0.8]),
440 line([10 10], [vectStatusS vectStatusS], [0.8 0.9]), line([10 20], [vectStatusS vectStatusS], [0.9 0.9]);
441 %swell reference:
442 line([0.003 0.003], [vectStatusS vectStatusS], [1.4 1.2]), line([0.003 0.5], [vectStatusS vectStatusS], [1.2 1.2]),
443 line([0.5 0.5], [vectStatusS vectStatusS], [1.2 1.1]), line([0.5 20], [vectStatusS vectStatusS], [1.1 1.1]);
444 end
445 for vectStatusS=98:99
446 line([0.02 0.02],[vectStatusS vectStatusS],[0 0.7]), line([0.02 0.5],[vectStatusS vectStatusS],[0.7 0.7]),
447 line([0.5 0.5],[vectStatusS vectStatusS],[0.7 0.8]), line([0.5 10],[vectStatusS vectStatusS],[0.8 0.8]),
448 line([10 10], [vectStatusS vectStatusS], [0.8 0.9]), line([10 20], [vectStatusS vectStatusS], [0.9 0.9]);
449 %swell reference:
450 line([0.003 0.003], [vectStatusS vectStatusS], [1.4 1.2]), line([0.003 0.5], [vectStatusS vectStatusS], [1.2 1.2]),
451 line([0.5 0.5], [vectStatusS vectStatusS], [1.2 1.1]), line([0.5 20], [vectStatusS vectStatusS], [1.1 1.1]);
452 end
453
454 %print -depsc Results\StatisticPlots\15 RetDurSwells3D.eps
455
456 figure(16)
457 semilogx(Dur_SwellAll,Ret_SwellAll,'k*'), grid on, set(gca,'Fontsize',14), xlim([0 750*0.02]),
458 xlabel(' Swell Duration [seconds]'), ylabel(' Swell Retained voltage [pu]'),
459 title('Retained voltage vs. duration for All Swells (ITIC curve reference)'),
460 %sag reference:
461 line([0.02 0.02],[0 0.7]), line([0.02 0.5],[0.7 0.7]),
462 line([0.5 0.5],[0.7 0.8]), line([0.5 10],[0.8 0.8]),
463 line([10 10],[0.8 0.9]), line([10 20],[0.9 0.9]);
464 %swell reference:
465 line([0.003 0.003],[1.4 1.2]), line([0.003 0.5],[1.2 1.2]),
466 line([0.5 0.5],[1.2 1.1]), line([0.5 20],[1.1 1.1]);
467
468 %print -depsc Results\StatisticPlots\16_RetDurSwellsAll.eps
469
470 figure(17)
471 semilogx(Dur_SwellsONLY,Ret_SwellsONLY,'k*'), grid on,set(gca,'Fontsize',14), xlim([0 750*0.02]),
472 xlabel(' Swell Duration [seconds]'), ylabel(' Swell Retained voltage [pu]'),
473 title('Retained voltage vs. duration for Swells ONLY (ITIC curve reference) (N.=7)'),
474 %sag reference:
475 line([0.02 0.02],[0 0.7]), line([0.02 0.5],[0.7 0.7]),
476 line([0.5 0.5],[0.7 0.8]), line([0.5 10],[0.8 0.8]),
477 line([10 10],[0.8 0.9]), line([10 20],[0.9 0.9]);
478 %swell reference:
479 line([0.003 0.003],[1.4 1.2]), line([0.003 0.5],[1.2 1.2]),
480 line([0.5 0.5],[1.2 1.1]), line([0.5 20],[1.1 1.1]);
481
482 %print -depsc Results\StatisticPlots\17_RetDurSwellsONLY.eps
483
484 figure(18)
485
486 [AX,H1,H2] = plotyy(Dur_Sec,Ret,Dur_Sec,Se,'semilogx'); grid on,set(gca,'Fontsize',14), xlim([0 750*0.02]),
487 %semilogx(Dur_Sec,Se,'k.'), grid off, xlim([0 750*0.02]),
488 xlabel('Duration [seconds]'), ylabel('Voltage-sag severity [pu]'),
489 title('Voltage-sag severity vs. duration'),
490 set(H1, 'LineStyle', '. ', 'Visible', 'on', 'Color', 'w'),
491 set(H2, 'LineStyle', '.'),
492 set(AX(1), 'visible', 'on'),
493 set(get(AX(1), 'Ylabel'), 'String', 'Retained voltage [pu]'),
494 set(get(AX(2),'Ylabel'),'String','Voltage-sag severity [pu]'),
495
496 line([0.02 0.02],[0 0.5]), line([0.02 0.2],[0.5 0.5]),
497 line([0.2 0.2],[0.5 0.7]), line([0.2 0.5],[0.7 0.7]),
498 line([0.5 0.5],[0.7 0.8]), line([0.5 10],[0.8 0.8]),
```

```
499 line([10 10],[0.8 0.9]), line([10 20],[0.9 0.9]);
500 set(gcf, 'CurrentAxes', AX(2))
501 set(gca,'YDir','reverse'),ylim([0 5])
502
503 %print -depsc Results\StatisticPlots\18 DurSecSe.eps;
504
505 clear('AX','H1','H2');
506
507 figure(21)
508 normplot(RetTypeA), set(gca, 'Fontsize', 14), title('Probability distribution of Retained voltage for sag type A'), xlabel('Retained voltage for sag t
5.09
510 print -depsc Results\StatisticPlots\19_RetProbA.eps;
511
512 figure(22)
513 normplot(RetTypeC), set(gca, 'Fontsize', 14), title('Probability distribution of Retained voltage for sag type C'), xlabel('Retained voltage for sag type C')
514
515 print -depsc Results\StatisticPlots\20_RetProbC.eps;
516
517 figure(23)
518 normplot(RetTypeD), set(gca, 'Fontsize', 14), title('Probability distribution of Retained voltage for sag type D'), xlabel('Retained voltage for sag type D'), xlabel('), xl
519
520 print -depsc Results\StatisticPlots\21_RetProbD.eps;
521
522 figure(24)
523 normplot(DurTypeA), set(gca, 'Fontsize', 14), title('Probability distribution of Duration for sag type A'), xlabel('Duration [cy
524
525 print -depsc Results\StatisticPlots\22_DurProbA.eps;
526
527 figure(25)
528 normplot(DurTypeC), set(gca, 'Fontsize', 14), title('Probability distribution of Duration for sag type C'), xlabel('Duration [cy
529
530 print -depsc Results\StatisticPlots\23_DurProbC.eps;
531
532 figure(26)
533 normplot(DurTypeD), set(gca, 'Fontsize', 14), title('Probability distribution of Duration for sag type D'), xlabel('Duration [cy
534
535 print -depsc Results\StatisticPlots\24_DurProbD.eps;
536
537
538 clear('Dur_Swell','Ret_Swell','Dur_SwellSags','Ret_SwellSags','Dur_SwellAll','Ret_SwellAll');
539 clear('Dur_SwellsONLY', 'Ret_SwellsONLY', 'vectStatusS');
540 clear('DurTypeA','DurTypeC','DurTypeD','RetTypeA','RetTypeC','RetTypeD');
541 clear('File', 'Dur', 'Ret', 'Evs_DurRet', 'Evs_a', 'Evs_b', 'Evs_c', 'Se', 'DipType', 'V', 'F');
542 clear('DipTypeS','V_s','F_s','Evs_all','Evs','DipType_all','DurHC','RetHC','j','Corelation');
543 clear('Dur_Sec','q')
544
```

```
SarfiX.m
```

```
1 function [Sarfi,Sarfi_A,Sarfi_C,Sarfi_D]=SarfiX(Dur,Ret,DipType,threshold)
5 vectDipTypeA=strmatch('A',DipType);
6 vectDipTypeC=strmatch('C',DipType);
7 vectDipTypeD=strmatch('D',DipType);
9 if (threshold == 0.9 )%// threshold == 1.1)
10
11 DurTypeA=Dur(vectDipTypeA);
12 DurTypeC=Dur(vectDipTypeC);
13 DurTypeD=Dur(vectDipTypeD);
14
15 DurTypeA_NoHC=find(DurTypeA>0.5);
16 DurTypeC_NoHC=find(DurTypeC>0.5);
17 DurTypeD_NoHC=find(DurTypeD>0.5);
18
19 VectNoHC=find(Dur>0.5);
20 RetHC=Ret(VectNoHC);
21 RetHC_TypeA=RetHC(DurTypeA_NoHC);
22 RetHC_TypeC=RetHC(DurTypeC_NoHC);
23 RetHC_TypeD=RetHC(DurTypeD_NoHC);
```

```
25 Sarfi=length(find(RetHC<threshold));</pre>
26 Sarfi_A=length(find(RetHC_TypeA<threshold));</pre>
27 Sarfi_C=length(find(RetHC_TypeC<threshold));</pre>
28 Sarfi_D=length(find(RetHC_TypeD<threshold));</pre>
29 Sarfi_ACD=Sarfi_A+Sarfi_C+Sarfi_D;
      if (Sarfi==Sarfi_ACD)
30
           disp('correct')
31
32
      else
33
           disp('incorrect')
      end
34
35
36 %percentage:
37 Sarfi_Apercent=(Sarfi_A/Sarfi)*100;
38 Sarfi_Cpercent=(Sarfi_C/Sarfi)*100;
39 Sarfi_Dpercent=(Sarfi_D/Sarfi)*100;
40
41 Sarfi_A=[num2str(Sarfi_A) ' (' num2str(roundn(Sarfi_Apercent, -1)) '%)'];
42 Sarfi_C=[num2str(Sarfi_C) ' (' num2str(roundn(Sarfi_Cpercent, -1)) '%)'];
43 Sarfi_D=[num2str(Sarfi_D) ' (' num2str(roundn(Sarfi_Dpercent, -1)) '%)'];
44
45 elseif (threshold == 1.1)
46
47 Ret_TypeA=Ret(vectDipTypeA);
48 Ret_TypeC=Ret(vectDipTypeC);
49 Ret_TypeD=Ret(vectDipTypeD);
50
51 Sarfi=length(find(Ret>threshold));
52 Sarfi_A=length(find(Ret_TypeA>threshold));
53 Sarfi_C=length(find(Ret_TypeC>threshold));
54 Sarfi_D=length(find(Ret_TypeD>threshold));
55 Sarfi_ACD=Sarfi_A+Sarfi_C+Sarfi_D;
      if (Sarfi==Sarfi_ACD)
56
           disp('correct')
57
      else
58
59
           disp('incorrect')
      end
60
61
62 %percentage:
63 Sarfi_Apercent=(Sarfi_A/Sarfi)*100;
64 Sarfi_Cpercent=(Sarfi_C/Sarfi)*100;
65 Sarfi_Dpercent=(Sarfi_D/Sarfi)*100;
66
67 Sarfi_A=[num2str(Sarfi_A) ' (' num2str(roundn(Sarfi_Apercent, -1)) '%)'];
68 Sarfi_C=[num2str(Sarfi_C) ' (' num2str(roundn(Sarfi_Cpercent, -1)) '%)'];
69 Sarfi_D=[num2str(Sarfi_D) ' (' num2str(roundn(Sarfi_Dpercent,-1)) '%)'];
70
71 else
72
73 Ret_TypeA=Ret(vectDipTypeA);
74 Ret_TypeC=Ret(vectDipTypeC);
75 Ret_TypeD=Ret(vectDipTypeD);
76
77 Sarfi=length(find(Ret<threshold));</pre>
78 Sarfi_A=length(find(Ret_TypeA<threshold));</pre>
79 Sarfi_C=length(find(Ret_TypeC<threshold));</pre>
80 Sarfi_D=length(find(Ret_TypeD<threshold));</pre>
81 Sarfi_ACD=Sarfi_A+Sarfi_C+Sarfi_D;
      if (Sarfi==Sarfi_ACD)
82
83
           disp('correct')
84
       else
          disp('incorrect')
85
      end
86
87 %percentage:
88 Sarfi_Apercent=(Sarfi_A/Sarfi)*100;
89 Sarfi_Cpercent=(Sarfi_C/Sarfi)*100;
90 Sarfi_Dpercent=(Sarfi_D/Sarfi)*100;
91
92 Sarfi_A=[num2str(Sarfi_A) ' (' num2str(roundn(Sarfi_Apercent, -1)) '%)'];
93 Sarfi_C=[num2str(Sarfi_C) ' (' num2str(roundn(Sarfi_Cpercent,-1)) '%)'];
94 Sarfi_D=[num2str(Sarfi_D) ' (' num2str(roundn(Sarfi_Dpercent,-1)) '%)'];
95
96 end
```

```
SarfiCurve.m
 1 function [Sarfi_ITIC, Sarfi_SEMI] = SarfiCurve(Dur_Sec,Ret)
 5 %=% U_itic < 0.7 pu %===% 0.02 < d <= 0.500 %=====
 6 vectDur_ITIC_1=find(0.02<Dur_Sec & Dur_Sec<=0.500);
 7 Ret_ITIC_1=Ret(vectDur_ITIC_1);
 8 vectRet ITIC 1=find(Ret ITIC 1<0.7);</pre>
9 Sarfi_ITIC1=length(Ret_ITIC_1(vectRet_ITIC_1));
10
11
12 %=% U_itic < 0.8 pu %===% 0.500 < d <= 10 %=====
13 vectDur_ITIC_2=find(0.500<Dur_Sec & Dur_Sec<=10);</pre>
14 Ret_ITIC_2=Ret(vectDur_ITIC_2);
15 vectRet_ITIC_2=find(Ret_ITIC_2<0.8);</pre>
16 Sarfi_ITIC2=length(Ret_ITIC_2(vectRet_ITIC_2));
17
18 %=% U_itic < 0.9 pu %===% 10 < d %=====
19 vectDur_ITIC_3=find(10 < Dur_Sec);</pre>
20 Ret_ITIC_3=Ret(vectDur_ITIC_3);
21 vectRet_ITIC_3=find(Ret_ITIC_3<0.9);</pre>
22 Sarfi_ITIC3=length(Ret_ITIC_3(vectRet_ITIC_3));
23
24 Sarfi_ITIC=Sarfi_ITIC1+Sarfi_ITIC2+Sarfi_ITIC3;
25
26 %=% Sarfi-SEMI========
27
28 %=% U_semi < 0.5 pu %===% 0.02 < d <= 0.200 %=====
29 vectDur_SEMI_1=find(0.02<Dur_Sec & Dur_Sec<=0.200);</pre>
30 Ret_SEMI_1=Ret(vectDur_SEMI_1);
31 vectRet_SEMI_1=find(Ret_SEMI_1<0.5);</pre>
32 Sarfi_SEMI1=length(Ret_SEMI_1(vectRet_SEMI_1));
.33
34 %=% U_semi < 0.7 pu %===% 0.200 < d <= 0.500 %=====
35 vectDur_SEMI_2=find(0.200<Dur_Sec & Dur_Sec<=0.500);</pre>
36 Ret_SEMI_2=Ret(vectDur_SEMI_2);
37 vectRet_SEMI_2=find(Ret_SEMI_2<0.7);
38 Sarfi_SEMI2=length(Ret_SEMI_2(vectRet_SEMI_2));
39
40 %=% U_semi < 0.8 pu %===% 0.500 < d <= 10 %=====
41 vectDur_SEMI_3=find(0.500<Dur_Sec & Dur_Sec<=10);</pre>
42 Ret_SEMI_3=Ret(vectDur_SEMI_3);
43 vectRet SEMI 3=find(Ret SEMI 3<0.8);
44 Sarfi_SEMI3=length(Ret_SEMI_3(vectRet_SEMI_3));
45
46 %=% U_semi < 0.9 pu %===% 10 < d %=====
47 vectDur_SEMI_4=find(10 < Dur_Sec);
48 Ret_SEMI_4=Ret(vectDur_SEMI_4);
49 vectRet SEMI 4=find(Ret SEMI 4<0.9):
50 Sarfi_SEMI4=length(Ret_SEMI_4(vectRet_SEMI_4));
51
52 Sarfi_SEMI=Sarfi_SEMI1+Sarfi_SEMI2+Sarfi_SEMI3+Sarfi_SEMI4;
```

SarfiCurveType.m

- 9 %=% U_itic < 0.7 pu %===% 0.02 < d <= 0.500 %=====
- 10 vectDur_ITIC_1=find(0.02<Dur_SecType & Dur_SecType<=0.500);</pre>
- 11 Ret_ITIC_1=Ret_Type(vectDur_ITIC_1);
- 12 vectRet_ITIC_1=find(Ret_ITIC_1<0.7);</pre>
- 13 Sarfi_ITIC1=length(Ret_ITIC_1(vectRet_ITIC_1));

```
14
15 %=% U_itic < 0.8 pu %===% 0.500 < d <= 10 %=====
16 vectDur_ITIC_2=find(0.500<Dur_SecType & Dur_SecType<=10);</pre>
17 Ret_ITIC_2=Ret_Type(vectDur_ITIC_2);
18 vectRet_ITIC_2=find(Ret_ITIC_2<0.8);</pre>
19 Sarfi_ITIC2=length(Ret_ITIC_2(vectRet_ITIC_2));
20
21 %=% U_itic < 0.9 pu %===% 10 < d %=====
22 vectDur_ITIC_3=find(10 < Dur_SecType);</pre>
23 Ret_ITIC_3=Ret_Type(vectDur_ITIC_3);
24 \text{ vectRet}_ITIC_3=find(Ret_ITIC_3<0.9);
25 Sarfi_ITIC3=length(Ret_ITIC_3(vectRet_ITIC_3));
26
27 Sarfi_ITICType=Sarfi_ITIC1+Sarfi_ITIC2+Sarfi_ITIC3;
28
29 % in percentage
30 Sarfi_ITIC_TypePercent=(Sarfi_ITICType/Sarfi_ITIC)*100;
31 Sarfi_ITICTypePercent=[num2str(Sarfi_ITICType) ' (' num2str(roundn(Sarfi_ITIC_TypePercent,-1)) '%)'];
32
34
35 %=% U_semi < 0.5 pu %===% 0.02 < d <= 0.200 %=====
36 vectDur_SEMI_1=find(0.02<Dur_SecType & Dur_SecType<=0.200);
37 Ret_SEMI_1=Ret_Type(vectDur_SEMI_1);
38 vectRet_SEMI_1=find(Ret_SEMI_1<0.5);</pre>
39 Sarfi_SEMI1=length(Ret_SEMI_1(vectRet_SEMI_1));
40
41 %=% U_semi < 0.7 pu %===% 0.200 < d <= 0.500 %=====
42 vectDur_SEMI_2=find(0.200<Dur_SecType & Dur_SecType<=0.500);
43 Ret_SEMI_2=Ret_Type(vectDur_SEMI_2);
44 vectRet_SEMI_2=find(Ret_SEMI_2<0.7);
45 Sarfi_SEMI2=length(Ret_SEMI_2(vectRet_SEMI_2));
46
47 %=% U_semi < 0.8 pu %===% 0.500 < d <= 10 %=====
48 vectDur_SEMI_3=find(0.500<Dur_SecType & Dur_SecType<=10);</pre>
49 Ret_SEMI_3=Ret_Type(vectDur_SEMI_3);
50 vectRet_SEMI_3=find(Ret_SEMI_3<0.8);
51 Sarfi_SEMI3=length(Ret_SEMI_3(vectRet_SEMI_3));
52
53 %=% U_semi < 0.9 pu %===% 10 < d %=====
54 vectDur_SEMI_4=find(10 < Dur_SecType);
55 Ret_SEMI_4=Ret_Type(vectDur_SEMI_4);
56 vectRet_SEMI_4=find(Ret_SEMI_4<0.9);
57 Sarfi_SEMI4=length(Ret_SEMI_4(vectRet_SEMI_4));
58
59 Sarfi_SEMIType=Sarfi_SEMI1+Sarfi_SEMI2+Sarfi_SEMI3+Sarfi_SEMI4;
60
61 % in percentage
62 Sarfi_SEMI_TypePercent=(Sarfi_SEMIType/Sarfi_SEMI)*100;
63 Sarfi_SEMITypePercent=[num2str(Sarfi_SEMIType) ' (' num2str(roundn(Sarfi_SEMI_TypePercent,-1)) '%)'];
```

T	ECT	able.m
•		00000.110

```
function [Table]=IECTable(Dur_Sec,Ret)
1
2
      % putting dur and retained voltage in one matrix
3
      DurRet=[Dur_Sec,Ret];
4
5
      %======= making Voltage-Sag TABLE based on IEC 61000-4-11
6
      %== table_?1==== Dur_Sec < 0.1 ========
7
      %== table_11
8
9
      vectDur0_01=find(Dur_Sec<0.1);</pre>
10
      Ret0_01=Ret(vectDur0_01);
11
      vectRet0_01=find(Ret0_01 \ge 0.8);
      table_11=length(Ret0_01(vectRet0_01));
12
      %== table_21
13
      vectRet0_01=find(0.7 < Ret0_01 & Ret0_01 <= 0.8 );
14
      table_21=length(Ret0_01(vectRet0_01));
15
      %== table_31
16
      vectRet0_01=find(0.6 < Ret0_01 & Ret0_01 <= 0.7);
17
      table_31=length(Ret0_01(vectRet0_01));
18
```

```
19 %== table_41
```

```
vectRet0_01=find(0.5 < Ret0_01 & Ret0_01 <= 0.6 );
20
      table_41=length(Ret0_01(vectRet0_01));
21
      %== table 51
22
      vectRet0_01=find(0.4 < Ret0_01 & Ret0_01 <= 0.5 );
23
      table_51=length(Ret0_01(vectRet0_01));
24
25
      \% = table_{61}
      vectRet0_01=find(0.3 < Ret0_01 & Ret0_01 <= 0.4 );</pre>
26
      table_61=length(Ret0_01(vectRet0_01));
27
      %== table 71
28
      vectRet0_01=find(0.2 < Ret0_01 & Ret0_01 <= 0.3 );</pre>
29
      table_71=length(Ret0_01(vectRet0_01));
30
31
      %== table_81
      vectRet0_01=find(0.1 < Ret0_01 & Ret0_01 <= 0.2 );</pre>
32
      table_81=length(Ret0_01(vectRet0_01));
33
34
      %== table 91
      vectRet0_01=find(Ret0_01 <= 0.1);
35
      table_91=length(Ret0_01(vectRet0_01));
36
37
      % true-false test; checking
      tableX1=table_11+table_21+table_31+table_41+table_51+table_61+table_71+table_81+table_91;
38
      if (tableX1==length(Ret0_01))
39
          %disp('true')
40
          test1='true';
41
42
      else
          %disp('false')
43
44
           test1='false';
45
      end
      46
47
      vectDur01_025=find(0.1 <= Dur_Sec & Dur_Sec<0.25);</pre>
      Ret01_025=Ret(vectDur01_025);
48
49
      %== table_12
50
      vectRet01_025=find(Ret01_025 >= 0.8);
      table_12=length(Ret01_025(vectRet01_025));
51
      %== table_22
52
      vectRet01_025=find(0.7 < Ret01_025 & Ret01_025 <= 0.8 );</pre>
53
      table_22=length(Ret01_025(vectRet01_025));
54
      %== table_32
55
      vectRet01_025=find(0.6 < Ret01_025 & Ret01_025 <= 0.7 );</pre>
56
      table_32=length(Ret01_025(vectRet01_025));
57
58
      \%== table_42
      vectRet01_025=find(0.5 < Ret01_025 & Ret01_025 <= 0.6 );</pre>
59
      table_42=length(Ret01_025(vectRet01_025));
60
      %== table_52
61
      vectRet01_025=find(0.4 < Ret01_025 & Ret01_025 <= 0.5 );</pre>
62
63
      table_52=length(Ret01_025(vectRet01_025));
      %== table_62
64
      vectRet01_025=find(0.3 < Ret01_025 & Ret01_025 <= 0.4 );</pre>
65
      table_62=length(Ret01_025(vectRet01_025));
66
      %== table_72
67
      vectRet01_025=find(0.2 < Ret01_025 & Ret01_025 <= 0.3 );</pre>
68
69
      table_72=length(Ret01_025(vectRet01_025));
      %== table 82
70
71
      vectRet01_025=find(0.1 < Ret01_025 & Ret01_025 <= 0.2 );</pre>
      table_82=length(Ret01_025(vectRet01_025));
72
      %== table 92
73
      vectRet01_025=find(Ret01_025 <= 0.1 );</pre>
74
75
      table_92=length(Ret01_025(vectRet01_025));
76
          % true-false test; checking
      tableX2=table_12+table_22+table_32+table_42+table_52+table_62+table_72+table_82+table_92;
77
      if (tableX2==length(Ret01_025))
78
79
           %disp('true')
          test2='true';
80
      else
81
          %disp('false')
82
          test2='false';
83
84
      end
      %===table_?3:===== 0.25 <= Dur_Sec < 0.50 ========
85
      vectDur025_050=find(0.25 <= Dur_Sec & Dur_Sec<0.50);</pre>
86
      Ret025_050=Ret(vectDur025_050);
87
88
      %== table_13
      vectRet025_050=find(Ret025_050 >= 0.8);
89
90
      table_13=length(Ret025_050(vectRet025_050));
      %== table_23
91
      vectRet025_050=find(0.7 < Ret025_050 & Ret025_050 <= 0.8);</pre>
92
```

```
table_23=length(Ret025_050(vectRet025_050));
 93
       \chi = = table 33
 94
       vectRet025_050=find(0.6 < Ret025_050 & Ret025_050 <= 0.7);
 95
       table_33=length(Ret025_050(vectRet025_050));
 96
       %== table 43
97
 98
       vectRet025_050=find(0.5 < Ret025_050 & Ret025_050 <= 0.6);</pre>
       table_43=length(Ret025_050(vectRet025_050));
 99
       %== table 53
100
       vectRet025_050=find(0.4 < Ret025_050 & Ret025_050 <= 0.5);</pre>
101
102
       table_53=length(Ret025_050(vectRet025_050));
       %== table 63
103
104
       vectRet025_050=find(0.3 < Ret025_050 & Ret025_050 <= 0.4);
       table_63=length(Ret025_050(vectRet025_050));
105
1.06
       %== table_73
       vectRet025_050=find(0.2 < Ret025_050 & Ret025_050 <= 0.3);
107
       table_73=length(Ret025_050(vectRet025_050));
1.08
       %== table 83
109
       vectRet025_050=find(0.1 < Ret025_050 & Ret025_050 <= 0.2);
110
       table_83=length(Ret025_050(vectRet025_050));
111
       %== table_93
112
       vectRet025_050=find(Ret025_050 <= 0.1);</pre>
113
114
       table_93=length(Ret025_050(vectRet025_050));
115
       % true-false test; checking
       tableX3=table_13+table_23+table_33+table_43+table_53+table_63+table_73+table_83+table_93;
116
117
       if (tableX3==length(Ret025_050))
           %disp('true')
118
           test3='true':
119
120
       else
           %disp('false')
121
122
            test3='false';
123
       end
       %===table_?4:===== 0.50 <= Dur_Sec < 1.0 =========
124
125
       vectDur050_1=find(0.50 <= Dur_Sec & Dur_Sec<1);</pre>
       Ret050_1=Ret(vectDur050_1);
126
       %== table 14:
127
       vectRet050_1=find(Ret050_1 >= 0.8);
128
       table_14=length(Ret050_1(vectRet050_1));
129
130
       \chi = table 24
       vectRet050_1=find(0.7 < Ret050_1 & Ret050_1 <= 0.8);</pre>
131
       table_24=length(Ret050_1(vectRet050_1));
132
       %== table_34
133
       vectRet050_1=find(0.6 < Ret050_1 & Ret050_1 <= 0.7);
134
       table_34=length(Ret050_1(vectRet050_1));
135
136
       %== table_44
       vectRet050_1=find(0.5 < Ret050_1 & Ret050_1 <= 0.6);</pre>
137
1.38
       table_44=length(Ret050_1(vectRet050_1));
139
       %== table 54
       vectRet050_1=find(0.4 < Ret050_1 & Ret050_1 <= 0.5);</pre>
140
1\,41
       table_54=length(Ret050_1(vectRet050_1));
142
       %== table_64
       vectRet050_1=find(0.3 < Ret050_1 & Ret050_1 <= 0.4);</pre>
143
       table_64=length(Ret050_1(vectRet050_1));
1\,44
145
       %== table 74
       vectRet050 1=find(0.2 < Ret050 1 & Ret050 1 <= 0.3):
146
       table_74=length(Ret050_1(vectRet050_1));
147
       \%== table_84
1\,48
       vectRet050_1=find(0.1 < Ret050_1 & Ret050_1 <= 0.2);
149
       table_84=length(Ret050_1(vectRet050_1));
150
       %== table 94
151
1\,52
       vectRet050_1=find(Ret050_1 <= 0.1);</pre>
153
       table_94=length(Ret050_1(vectRet050_1));
154
           % true-false test; checking
       tableX4=table_14+table_24+table_34+table_44+table_54+table_64+table_74+table_84+table_94;
155
       if (tableX4==length(Ret050_1))
156
157
            %disp('true')
158
            test4='true';
       else
159
160
           %disp('false')
161
            test4='false':
162
       end
1\,63
       %===table_?5:===== 1.0 <= Dur_Sec < 3.0 =========
       vectDur1_3=find(1.0 <= Dur_Sec & Dur_Sec < 3.0);</pre>
164
1.65
       Ret1_3=Ret(vectDur1_3);
```

```
166
       %== table_15
       vectRet1_3=find(Ret1_3 \ge 0.8);
167
       table_15=length(Ret1_3(vectRet1_3));
168
       %== table_25
1\,69
       vectRet1_3=find(0.7 < Ret1_3 & Ret1_3 <= 0.8);</pre>
170
171
       table_25=length(Ret1_3(vectRet1_3));
172
       %== table 35
       vectRet1_3=find(0.6 < Ret1_3 & Ret1_3 <= 0.7);</pre>
173
       table_35=length(Ret1_3(vectRet1_3));
174
175
       %== table_45
       vectRet1_3=find(0.5 < Ret1_3 & Ret1_3 <= 0.6);</pre>
176
177
       table_45=length(Ret1_3(vectRet1_3));
       %== table 55
1.78
       vectRet1_3=find(0.4 < Ret1_3 & Ret1_3 <= 0.5);</pre>
179
       table_55=length(Ret1_3(vectRet1_3));
180
       %== table 65
181
       vectRet1_3=find(0.3 < Ret1_3 & Ret1_3 <= 0.4);</pre>
182
       table_65=length(Ret1_3(vectRet1_3));
183
       %== table 75
184
       vectRet1_3=find(0.2 < Ret1_3 & Ret1_3 <= 0.3);</pre>
185
       table_75=length(Ret1_3(vectRet1_3));
186
187
       %== table 85
       vectRet1_3=find(0.1 < Ret1_3 & Ret1_3 <= 0.2);</pre>
188
       table_85=length(Ret1_3(vectRet1_3));
189
190
       %== table_95
       vectRet1_3=find(Ret1_3 <= 0.1);
191
192
       table_95=length(Ret1_3(vectRet1_3));
193
                  % true-false test; checking
       tableX5=table_15+table_25+table_35+table_45+table_55+table_65+table_75+table_85+table_95;
194
195
       if (tableX5==length(Ret1_3))
196
            %disp('true')
            test5='true';
197
198
       else
199
            %disp('false')
            test5='false';
200
       end
201
        %===table_?6:===== 3.0 <= Dur_Sec < 20 =========
202
       vectDur3_20=find(3.0 <= Dur_Sec & Dur_Sec < 20);</pre>
2.03
       Ret3_20=Ret(vectDur3_20);
204
       %== table_16
205
       vectRet3_20=find(Ret3_20 \ge 0.8);
206
207
       table_16=length(Ret3_20(vectRet3_20));
208
       %== table 26
209
       vectRet3_20=find(0.7 < Ret3_20 & Ret3_20 <= 0.8);</pre>
       table_26=length(Ret3_20(vectRet3_20));
210
       %== table_36
211
       vectRet3_20=find(0.6 < Ret3_20 & Ret3_20 <= 0.7);</pre>
212
       table_36=length(Ret3_20(vectRet3_20));
213
214
       %== table_46
215
       vectRet3_20=find(0.5 < Ret3_20 & Ret3_20 <= 0.6);
       table_46=length(Ret3_20(vectRet3_20));
216
217
       %== table_56
       vectRet3_20=find(0.4 < Ret3_20 & Ret3_20 <= 0.5);
218
       table_56=length(Ret3_20(vectRet3_20));
219
       %== table_66
220
       vectRet3_20=find(0.3 < Ret3_20 & Ret3_20 <= 0.4);
221
222
       table_66=length(Ret3_20(vectRet3_20));
223
       %== table 76
       vectRet3_20=find(0.2 < Ret3_20 & Ret3_20 <= 0.3);</pre>
224
225
       table_76=length(Ret3_20(vectRet3_20));
226
       %== table 86
       vectRet3_20=find(0.1 < Ret3_20 & Ret3_20 <= 0.2);</pre>
227
        table_86=length(Ret3_20(vectRet3_20));
228
       %== table_96
229
230
       vectRet3_20=find(Ret3_20 <= 0.1);</pre>
231
       table_96=length(Ret3_20(vectRet3_20));
                      % true-false test; checking
232
       \texttt{tableX6=table_16+table_26+table_36+table_46+table_56+table_66+table_76+table_86+table_96;}
233
       if (tableX6==length(Ret3_20))
234
           %disp('true')
235
236
            test6='true';
       else
237
            %disp('false')
238
```

```
test6='false';
       end
240
        %===table_?7:===== 20 <= Dur_Sec < 60 =========
241
       vectDur20_60=find(20 <= Dur_Sec & Dur_Sec < 60);</pre>
2\,42
       Ret20_60=Ret(vectDur20_60);
243
244
       %== table_17
       vectRet20_60=find(Ret20_60 \ge 0.8);
245
       table_17=length(Ret20_60(vectRet20_60));
246
       %== table 27
247
       vectRet20_60=find(0.7 < Ret20_60 & Ret20_60 <= 0.8);</pre>
248
       table_27=length(Ret20_60(vectRet20_60));
249
250
       %== table_37
       vectRet20_60=find(0.6 < Ret20_60 & Ret20_60 <= 0.7);</pre>
251
252
       table_37=length(Ret20_60(vectRet20_60));
253
       %== table 47
       vectRet20_60=find(0.5 < Ret20_60 & Ret20_60 <= 0.6);</pre>
254
       table_47=length(Ret20_60(vectRet20_60));
255
       %== table_57
256
       vectRet20_60=find(0.4 < Ret20_60 & Ret20_60 <= 0.5);</pre>
257
       table_57=length(Ret20_60(vectRet20_60));
258
259
       %== table 67
       vectRet20_60=find(0.3 < Ret20_60 & Ret20_60 <= 0.4);</pre>
260
       table_67=length(Ret20_60(vectRet20_60));
261
       %== table 77
262
263
       vectRet20_60=find(0.2 < Ret20_60 & Ret20_60 <= 0.3);
       table_77=length(Ret20_60(vectRet20_60));
264
265
       %== table 87
266
       vectRet20_60=find(0.1 < Ret20_60 & Ret20_60 <= 0.2);</pre>
       table_87=length(Ret20_60(vectRet20_60));
267
       %== table 97
2.68
269
        vectRet20_60=find(Ret20_60 <= 0.1);</pre>
       table_97=length(Ret20_60(vectRet20_60));
270
271
                           % true-false test; checking
272
        tableX7=table_17+table_27+table_37+table_47+table_57+table_67+table_77+table_87+table_97;
       if (tableX7==length(Ret20_60))
273
274
            %disp('true')
            test7='true';
275
2.76
       else
            %disp('false')
277
            test7='false';
2\,78
2.79
       end
        %===table_?8:===== 60 <= Dur_Sec < 300 =========
280
       vectDur60_300=find(60 <= Dur_Sec & Dur_Sec < 300);</pre>
281
282
       Ret60_300=Ret(vectDur60_300);
283
       %== table_18
       vectRet60_300=find(Ret60_300 >= 0.8);
284
       table_18=length(Ret60_300(vectRet60_300));
285
       %== table_28
286
       vectRet60_300=find(0.7 < Ret60_300 & Ret60_300 <= 0.8);</pre>
287
288
       table_28=length(Ret60_300(vectRet60_300));
       %== table 38
289
290
       vectRet60_300=find(0.6 < Ret60_300 & Ret60_300 <= 0.7);</pre>
       table_38=length(Ret60_300(vectRet60_300));
291
       %== table 48
292
       vectRet60_300=find(0.5 < Ret60_300 & Ret60_300 <= 0.6);</pre>
293
       table_48=length(Ret60_300(vectRet60_300));
294
295
       %== table 58
       vectRet60_300=find(0.4 < Ret60_300 & Ret60_300 <= 0.5);
296
       table_58=length(Ret60_300(vectRet60_300));
297
298
       %== table 68
       vectRet60_300=find(0.3 < Ret60_300 & Ret60_300 <= 0.4);</pre>
299
       table_68=length(Ret60_300(vectRet60_300));
300
       \%== table_78
301
       vectRet60_300=find(0.2 < Ret60_300 & Ret60_300 <= 0.3);</pre>
302
303
       table_78=length(Ret60_300(vectRet60_300));
304
       %== table 88
       vectRet60_300=find(0.1 < Ret60_300 & Ret60_300 <= 0.2);</pre>
305
       table_88=length(Ret60_300(vectRet60_300));
306
307
       %== table_98
       vectRet60_300=find(Ret60_300 <= 0.1);</pre>
308
309
       table_98=length(Ret60_300(vectRet60_300));
       % true-false test; checking
310
311
       tableX8=table_18+table_28+table_38+table_48+table_58+table_68+table_78+table_88+table_98;
```

```
if (tableX8==length(Ret20_60))
312
           %disp('true')
313
           test8='true':
314
       else
315
           %disp('false')
316
317
           test8='false';
       end
318
319
320
       %All Test:
       Test={test1 test2 test3 test4 test5 test6 test7 test8 };
321
       Table_test=tableX1+tableX2+tableX3+tableX4+tableX5+tableX6+tableX7+tableX8;
322
323
       if Table test==length(Ret)
324
325
           disp('correct')
326
       else
          disp('incorrect')
327
328
       end
329
       % Making the table
330
       Table_row1
                     ={ 'Retained voltage [pu]' 'd < 0.1' '0.1 <= d < 0.25' '0.25 <= d < 0.50' '0.50 <= d < 1.0' '1.0 <= d < 3.
331
       Table_row2
                     ={ '0.8 < U <= 0.9', num2str(table_11) num2str(table_12) num2str(table_13) num2str(table_14) num2str(table_
332
                     ={ '0.7 < U <= 0.8' num2str(table_21) num2str(table_22) num2str(table_23) num2str(table_24) num2str(table_
333
       Table_row3
                     ={ '0.6 < U <= 0.7' num2str(table_31) num2str(table_32) num2str(table_33) num2str(table_34) num2str(table_
334
       Table_row4
       Table_row5
                     ={ '0.5 < U <= 0.6' num2str(table_41) num2str(table_42) num2str(table_43) num2str(table_44) num2str(table_
335
                     ={ '0.4 < U <= 0.5' num2str(table_51) num2str(table_52) num2str(table_53) num2str(table_54) num2str(table_54)
336
       Table_row6
                     ={ '0.3 < U <= 0.4' num2str(table_61) num2str(table_62) num2str(table_63) num2str(table_64) num2str(table_64)
       Table_row7
337
                     ={ '0.2 < U <= 0.3' num2str(table_71) num2str(table_72) num2str(table_73) num2str(table_74) num2str(table_
338
       Table_row8
339
       Table_row9
                     ={ '0.1 < U <= 0.2' num2str(table_81) num2str(table_82) num2str(table_83) num2str(table_84) num2str(table_
       Table row10
                    ={ '0.0 < U <= 0.1' num2str(table_91) num2str(table_92) num2str(table_93) num2str(table_94) num2str(table_
340
                     ={ ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,;};
341
       Table_row11
                     ={ 'Total number of events ' num2str(length(Ret)) ', ', ', ', ', ', ', '};
342
       Table row12
343
       Table= [Table_row1 ; Table_row2; Table_row3 ; Table_row4; Table_row5; Table_row6; Table_row7; Table_row8; Table_row9; Ta
344
345
346 clear('Table_row1', 'Table_row2', 'Table_row3', 'Table_row4', 'Table_row5', 'Table_row6', 'Table_row7', 'Table_row8', 'Table_row9',
347
```

Appendix B

Synthetic Sags with Characteristic Voltage V=0.5 pu

Figure B.1: Sag Type: A

Figure B.2: Sag Types: B and C

Figure B.3: Sag Types: D and E

Figure B.4: Sag Types: F and G

Appendix C

MatLab Results - all recordings

Synthetic Dip	Sag	Duration of voltage sag [cycles]	Retained voltage * [pu]	Interrup-tion	Interruption Duration [cycles]	Swell	Swell Duration [cycles]	Swell retained voltage [pu]	Sag Energy calc. from Dur.& Ret [cycles]	Evs_a, Voltage-Sag Energy Index [cycles]	Evs_b, Voltage-Sag Energy Index [cycles]	Evs_c, Voltage-Sag Energy Index [cycles]	Evs, Voltage-Sag Energy Index [cycles]	Voltage-Swell Energy Index [cycles]	Voltage-Sagl Severity [pu]	Six Phase RMS - Dip Type	V (from sixRMS)	F (from sixRMS)	Symmetrical Component Method	V (from symm. comp. method)	F (from symm. comp. method)
ZQ0	NO		0.9186	NO		NO									0						
ZQ1	NO		0.9926	NO		NO									0						
ZQ2	NO		0.9926	NO		NO									0						
ZQ3	NO		0.9984	NO		NO									0						
ZQ4	NO		0.9949	NO		NO									0						
ZQ5	NO		0.9186	NO		NO									0						
ZQ6	NO		0.9958	NO		NO									0						
ZQ7	NO		0.9967	NO		NO									0						
ZQ8	NO		0.9966	NO		NO									0						
ZQ9	NO		0.9998	NO		NO									0						
ZQ10	NO		0.9987	NO		NO									0						
ZQ14	NO		0.9961	NO		NO									0						
ZQ15	NO		0.9978	NO		NO									0						
ZQ16	INO		0.9958	UN		0VI									0						

ZQ17	NO		0.9981	NO		NO									0						
ZQ18	NO		0.9986	NO		NO									0						
ZQ20	NO		0.9956	NO		NO									0						
ZQ21	YES	95.1563	0	YES	88.9895	YES	0.0938	1.1192	95.156	94.38	90.35	92.4	277.12	0.0239	5	А	0	0	А	0	0
ZQ22	NO		0.9917	NO		NO									0						
ZQ23	YES	1.0938	0.891	NO		NO			0.225	0	0.02	0.02	0.033		0.2	Ca	0.874	0.9	Cb	0.956	0.947
ZQ24	NO		0.9981	NO		NO									0						
ZQ25	NO		0.9318	NO		NO									0						
ZQ27	NO		0.9788	NO		NO									0						
ZQ29	YES	6.1042	0	YES	5.3645	NO			6.104	5.63	5.66	5.57	16.861		2	А	0	0	А	0	0
ZQ30	YES	6.1042	0	YES	5.3645	NO			6.104	5.63	5.66	5.57	16.861		2	А	0	0	А	0	0
ZQ31	YES	65.125	0.801	NO		NO			23.341	21.51	20.97	20.48	62.961		1	А	0.801	0.8	А	0.803	0.809
ZQ32	NO		0.9823	NO		NO									0						
ZQ33	NO		0.929	NO		NO									0						
ZQ37	NO		0.9901	NO		NO									0						
ZQ38	NO		0.9304	NO		NO									0						
ZQ39	NO		0.934	NO		NO									0						
ZQ40	NO		0.9859	NO		NO									0						
ZQ41	NO		0.9959	NO		NO									0						
ZQ45	YES	0.0313	0.8981	NO		NO			0.006	0	0	0.01	0.008		0.1	Ca	0.883	0.9	Ca	0.914	0.985
ZQ46	NO		0.9093	NO		NO									0						
ZQ47	NO		0.997	NO		NO									0						
ZQ48	NO		0.998	NO		NO									0						
ZQ49	NO		0.9976	NO		NO									0						
ZQ50	NO		0.9979	NO		NO									0						
ZQ51	YES	3.3021	0.8275	NO		NO			1.041	0.21	0	0.2	0.407		0.3	Cb	0.794	0.9	Cb	0.899	0.982
ZQ52	YES	18.5208	0.862	NO		NO			4.759	0	4.59	3.02	7.615		0.5	Ca	0.846	1	Ca	0.842	0.953
ZQ53	YES	20.0104	0.8476	NO		NO			5.634	0	5.03	3.87	8.903		0.5	Ca	0.843	1	Ca	0.828	0.959
ZQ54	YES	22.4896	0.4643	NO		NO			17.641	16.31	13.29	10.61	40.202		1.8	Сс	0.456	0.5	А	0.492	0.498
ZQ55	YES	0.2292	0.8719	NO		NO			0.055	0	0	0.05	0.052		0.1	Dc	0.874	1	Cb	0.964	0.989
ZQ56	YES	2.1876	0.8278	NO		NO			0.689	0.55	0.52	0.49	1.569		0.3	Dc	0.827	0.8	А	0.809	0.814
ZQ57	NO		0.961	NO		NO									0						
ZQ58	NO		0.9991	NO		NO									0						
ZQ59	NO		0.9984	NO		NO									0						
ZQ60	NO		0.999	NO		NO									0						
ZQ61	NO		0.9985	NO		NO									0						
ZQ63	YES	13.25	0.0021	YES	5.375	NO			13.25	6.65	6.52	5.56	18.73		3.3	А	0.001	0	А	0.001	0.001
ZQ64	YES	13.6042	0.0007	YES	11.25	NO			13.604	12.75	12.95	12.93	38.636		3.3	А	0	0	А	0	0
ZQ65	YES	8.2188	0.0014	YES	4.4374	NO			8.219	4.64	4.94	4.91	14.493		2	А	0	0	А	0	0
ZQ66	NO		0.9003	NO		NO									0						
ZQ67	NO		0.9105	NO		NO									0						
ZQ68	YES	245.104	0.0009	YES	244.49	NO			245.1	243.92	243.82	243.65	731.383		5	А	0	0	А	0	0

ZQ69	YES	16.4479	0.7746	NO		YES	14.3334	1.2961	6.579	0.08	0.01	0.42	0.507	1.1031	0.7	Сс	0.808	0.9	А	0.002	0.003
ZQ74	YES	16.9062	0	YES	0.0104	YES	16.9479	Inf	16.906	2.12	5.31	0	7.429	Inf	3.3	Cb	0.302	0.9	Cb	0.11	0.558
ZQ75	NO		0.9091	NO		NO									0						
ZQ76	YES	8.7396	0.0009	YES	4.9895	NO			8.74	5.43	5.26	5.55	16.244		2	А	0.001	0	А	0	0
ZQ77	YES	13.2812	0.535	NO		NO			9.48	6.13	9.01	0	15.143		1.5	Сс	0.448	1	Сс	0.464	0.989
ZQ78	NO		0.9315	NO		NO									0						
ZQ79	NO		0.9317	NO		NO									0						
ZQ80	NO		0.9359	NO		NO									0						
ZQ81	NO		0.9487	NO		NO									0						
ZQ82	NO		0.9965	NO		NO									0						
ZQ83	YES	10	0.1136	NO		NO			9.871	9.38	6	4.61	19.986		1.8	Da	0.113	0.7	Da	0.14	0.749
ZQ84	NO		0.9127	NO		NO									0						
ZQ85	NO		0.9992	NO		NO									0						
ZQ86	NO		0.9979	NO		NO									0						
ZQ87	NO		0.9986	NO		NO									0						
ZQ88	NO		0.9868	NO		NO									0						
ZQ89	YES	0.5938	0.7796	NO		NO			0.233	0.14	0.01	0	0.149		0.2	Da	0.78	1	Сс	0.897	0.982
ZQ91	NO		0.9063	NO		NO									0						
ZQ92	NO		0.9995	NO		NO									0						
ZQ93	NO		0.9977	NO		NO									0						
ZQ94	NO		0.9016	NO		NO									0						
ZQ95	YES	13.0937	0.3568	NO		NO			11.427	8.65	8.33	6.5	23.481		2.1	Db	0.357	0.5	Сс	0.385	0.484
ZQ96	YES	0.0209	0.8981	NO		NO			0.004	0	0.01	0	0.006		0.1	Db	0.899	1	Ca	0.914	0.999
ZQ97	NO		0.915	NO		NO									0						
ZQ98	YES	0	0.8997	NO		NO			0	0	0	0	0.002		0.1	Ca	0.899	1	Ca	0.914	0.997
ZQ99	NO		0.9136	NO		NO									0						
ZQ100	YES	16.2708	0	YES	5.4583	YES	5.0521	1.1199	16.271	6.05	6.04	5.72	17.813	0.0685	3.3	А	0	0	Α	0	0
ZQ103	YES	0.0313	0.8944	NO		NO			0.006	0	0.01	0	0.008		0.1	Ca	0.894	1	Ca	0.9	1.002
ZQ104	NO		0.9146	NO		NO									0						
ZQ105	YES	0.0416	0.8926	NO		NO			0.008	0	0.01	0	0.01		0.1	Db	0.894	1	Ca	0.903	1.001
ZQ106	NO		0.916	NO		NO									0						
ZQ107	YES	3.8542	0.8608	NO		NO			0.998	0.96	0	0	0.955		0.3	Сс	0.851	1	Da	0.87	0.996
ZQ108	NO		0.9953	NO		NO									0						
ZQ109	YES	6.4792	0.562	NO		NO			4.433	1.46	3.32	2.19	6.962		0.9	Db	0.563	0.8	Db	0.57	0.835
ZQ110	YES	3.0625	0.8883	NO		NO			0.646	0	0.55	0	0.547		0.2	Db	0.888	1	Db	0.896	0.959
ZQ111	YES	3.3854	0.8857	NO		NO			0.73	0	0.66	0	0.664		0.2	Db	0.886	1	Db	0.886	0.954
ZQ115	NO		0.9882	NO		NO									0						
ZQ116	NO		0.9885	NO		NO									0						
ZQ117	NO		0.9878	NO		NO									0						
ZQ118	NO		0.9898	NO		NO									0						
ZQ119	NO		0.9896	NO		NO									0						
ZQ120	NO		0.9891	NO		NO									0						

ZQ121 NO		0.9861	NO	NO									0						
ZQ122 NO		0.9893	NO	NO									0						
ZQ123 NO		0.9881	NO	NO									0						
ZQ124 NO		0.9857	NO	NO									0						
ZQ125 NO		0.9889	NO	NO									0						
ZQ126 NO		0.9871	NO	NO									0						
ZQ127 NO		0.9879	NO	NO									0						
ZQ128 NO		0.9884	NO	NO									0						
ZQ129 NO		0.9621	NO	NO									0						
ZQ130 YES	4.3438	0.8855	NO	NO			0.938	0.86	0	0	0.859		0.2	Сс	0.868	1	Сс	0.87	0.995
ZQ131 YES	3.4688	0.8575	NO	NO			0.918	0.74	0	0	0.736		0.3	Da	0.857	1	Сс	0.866	0.98
ZQ132 YES	13.9479	0.8625	NO	NO			3.572	3.32	0	0	3.323		0.5	Сс	0.85	1	Сс	0.871	1.004
ZQ133 NO		0.9232	NO	NO									0						
ZQ134 NO		0.9885	NO	NO									0						
ZQ135 YES	2.1041	0.8866	NO	NO			0.45	0.03	0.04	0	0.075		0.2	Сс	0.866	0.9	Ca	0.957	0.938
ZQ136 YES	4.5208	0.8909	NO	NO			0.933	0	0.88	0	0.879		0.2	Db	0.89	1	Db	0.888	1.008
ZQ137 YES	63.1354	0.6214	NO	NO			38.756	21.64	8.79	19.95	50.378		1.9	Cb	0.609	0.7	Cb	0.618	0.669
ZQ138 YES	4	0.8673	NO	NO			0.991	0.84	0	0	0.841		0.3	Сс	0.865	1	Cc	0.875	1
ZQ139 YES	1.2187	0.8878	NO	NO			0.258	0	0.05	0.02	0.066		0.2	Ca	0.871	0.9	Ca	0.924	0.965
ZQ140 NO		0.9944	NO	NO									0						
ZQ142 YES	23.3021	0.6602	NO	NO			13.146	12.5	0	7.28	19.785		1.1	Cb	0.624	1	Cb	0.643	0.98
ZQ143 YES	4.8646	0.8178	NO	NO			1.611	0.86	1.52	0	2.379		0.4	Сс	0.802	1	Сс	0.821	0.977
ZQ144 NO		0.9831	NO	NO									0						
ZQ145 YES	51.8021	0.4973	NO	NO			38.991	10.53	15.89	5.15	31.57		2.5	Db	0.497	0.9	Сс	0.574	0.802
ZQ146 NO		0.9085	NO	NO									0						
ZQ147 NO		0.9154	NO	NO									0						
ZQ148 NO		0.9028	NO	NO									0						
ZQ151 YES	8.1771	0.874	NO	YES	10.7083	1.1554	1.931	0	0	0.28	0.283	2.6164	0.3	Dc	0.976	1	Α	0.979	0.982
ZQ152 YES	11.0625	0.8302	NO	NO			3.438	0	2.78	3.22	5.997		0.6	Ca	0.778	1	Ca	0.78	0.984
ZQ153 NO		0.9602	NO	NO									0						
ZQ154 YES	0.1562	0.8781	NO	NO			0.036	0	0	0.04	0.036		0.1	Dc	0.892	1	А	0.943	0.938
ZQ155 YES	0.5416	0.8719	NO	NO			0.13	0	0.07	0.07	0.142		0.1	Db	0.86	0.9	Ca	0.913	0.924
ZQ156 YES	0.1146	0.8861	NO	NO			0.025	0.02	0	0.03	0.047		0.1	Dc	0.877	0.9	Cb	0.899	0.959
ZQ157 NO		0.9118	NO	NO									0						
ZQ158 YES	8	0.8958	NO	NO			1.58	0	1.41	0	1.408		0.2	Db	0.895	1	Db	0.909	1.003
ZQ159 NO		0.9798	NO	NO									0						
ZQ160 NO		0.9426	NO	NO									0						
ZQ161 YES	75.3125	0.2108	NO	NO			71.966	69.11	68.6	69.49	207.209		3.9	Cb	0.191	0.2	Cb	0.154	0.238
ZQ162 YES	4.7813	0.8699	NO	NO			1.163	1.08	0	0	1.084		0.3	Сс	0.861	1	Da	0.883	1.018
ZQ163 NO		0.9581	NO	NO									0						
ZQ164 YES	12.2396	0.8515	NO	NO			3.365	2.97	2.87	2.41	8.252		0.5	Сс	0.837	0.9	А	0.895	0.894
ZQ166 YES	50.7396	0.2098	NO	NO			48.506	46.6	46.49	46.61	139.694		4	Сс	0.208	0.2	А	0.24	0.241

ZQ167	YES	1.0417	0.884	NO		NO			0.228	0.15	0.14	0.13	0.42		0.2	Сс	0.883	0.9	Сс	0.867	0.877
ZQ168	YES	19.0938	0.8723	NO		NO			4.565	3.9	4.12	3.92	11.943		0.4	Db	0.877	0.9	Db	0.859	0.881
ZQ170	NO		0.9401	NO		NO									0						
ZQ172	NO		0.9111	NO		YES	4.8959	1.1046						1.0174	0						
ZQ173	NO		0.9456	NO		NO									0						
ZQ174	NO		0.9303	NO		NO									0						
ZQ176	NO		0.9909	NO		NO									0						
ZQ177	NO		0.9506	NO		NO									0						
ZQ178	NO		0.955	NO		NO									0						
ZQ179	NO		0.9968	NO		NO									0						
ZQ181	YES	11.0208	0.8233	NO		YES	11.3854	1.2034	3.551	0	2.8	0	2.801	4.0911	0.6	Ca	0.977	1	Сс	0.973	0.993
ZQ182	YES	11.1041	0.7979	NO		YES	11.3646	1.1866	4.035	0	3.44	0	3.442	3.8237	0.7	Db	0.956	1	Db	0.953	1
ZQ184	YES	5.3125	0.8735	NO		YES	11.1042	1.1816	1.259	0	0.2	0	0.2	3.3619	0.3	Ca	0.979	1	Db	0.959	0.989
ZQ186	YES	11.9479	0.799	NO		YES	11.9688	1.2156	4.32	0	2.84	0	2.842	4.0783	0.7	Ca	0.98	1	Сс	0.977	0.996
ZQ187	YES	12.0104	0.7663	NO		YES	11.9687	1.2116	4.958	0	3.77	0	3.766	3.913	0.8	Db	0.958	1	Db	0.952	0.999
ZQ189	YES	11.4062	0.8074	NO		YES	11.927	1.2083	3.971	0	1.33	0.02	1.351	3.5342	0.6	Db	0.971	1	Db	0.958	0.989
ZQ190	YES	7.9375	0.8839	NO		NO			1.736	0	1.2	0	1.197		0.2	Db	0.885	1	Db	0.873	0.959
ZQ191	YES	8.9792	0.8794	NO		NO			2.035	0	1.84	0	1.837		0.2	Db	0.881	1	Db	0.872	0.958
ZQ193	YES	3.448	0.8156	NO		NO			1.154	0.36	0.29	0	0.647		0.4	Сс	0.786	0.9	Сс	0.879	0.983
ZQ194	YES	20.375	0.4556	NO		NO			16.146	0	13.95	14.81	28.761		1.8	Ca	0.28	0.9	Ca	0.284	0.915
ZQ195	NO		0.9859	NO		NO									0						
ZQ196	YES	17.427	0.0385	YES	0.8438	NO			17.401	1.17	12.12	12.54	25.832		3.2	Db	0.039	0.6	Ca	0.221	0.519
ZQ197	NO		0.9813	NO		NO									0						
ZQ198	NO		0.9983	NO		NO									0						
ZQ200	NO		0.9966	NO		NO									0						
ZQ201	NO		0.9977	NO		NO									0						
ZQ202	NO		0.9981	NO		NO									0						
ZQ203	NO		0.9967	NO		NO									0						
ZQ204	NO		0.9962	NO		NO									0						
ZQ205	NO		0.9971	NO		NO									0						
ZQ206	YES	8.6771	0.8776	NO		NO			1.994	1.91	0	0	1.914		0.2	Da	0.877	1	Da	0.867	0.994
ZQ207	YES	30.4271	0.5346	NO		NO			21.731	12.77	0.83	0.26	13.861		2.3	Сс	0.513	0.9	Da	0.635	0.968
ZQ208	YES	95.3229	0.0006	YES	88.5938	YES	1.0104	1.3373	95.323	92.57	93.06	93.45	279.075	0.5281	5	А	0.001	0	Α	0	0
ZQ209	YES	4.3437	0.8003	NO		NO			1.562	1.15	0.67	0	1.816		0.4	Сс	0.798	1	Сс	0.804	0.97
ZQ210	NO		0.9434	NO		NO									0						
ZQ211	YES	11	0.0023	YES	5.2499	NO			11	5.97	5.86	5.45	17.275		3.3	А	0.001	0	А	0.001	0
ZQ212	YES	95.0313	0.0008	YES	88.302	YES	1.0313	1.5221	95.031	92.03	92.62	93.14	277.792	0.8947	5	А	0	0	А	0	0
ZQ213	YES	95.1771	0.0006	YES	87.9895	YES	0.7396	1.4095	95.177	92.74	92.28	93.84	278.859	0.5497	5	A	0	0	А	0	0
ZQ214	YES	6.125	0.0022	YES	5.2499	NO			6.125	5.49	5.51	5.67	16.667		2	A	0.001	0	A	0.001	0.001
ZQ215	YES	95.2396	0.0005	YES	86.6666	YES	1.0729	1.451	95.24	93.04	92.26	93.11	278.409	0.834	5	А	0	0	А	0	0
ZQ216	YES	10.0729	0.0022	YES	5.3333	NO			10.073	5.94	5.58	5.98	17.501		3.3	А	0.001	0	А	0.001	0.001
ZQ217	NO		0.9824	NO		NO									0						

ZQ218	NO		0.9515	NO		NO									0						
ZQ219	NO		0.9943	NO		NO									0						
ZQ220	NO		0.9848	NO		NO									0						
ZQ221	NO		0.9579	NO		NO									0						
ZQ224	NO		0.9999	NO		NO									0						
ZQ225	YES	3.6563	0.0015	YES	2.8438	YES	3.3958	1.171	3.656	0	0.03	3.43	3.463	0.0871	2	Dc	0.004	1	Dc	0.007	0.952
ZQ226	YES	9.0209	0.0019	YES	8.1771	YES	8.9375	1.2094	9.021	0	0	8.63	8.628	0.1276	2	Dc	0.005	1	Dc	0.005	0.98
ZQ227	YES	0.5625	0.7774	NO		YES	0.4063	1.1435	0.223	0	0	0.2	0.2	0.1067	0.2	Dc	0.774	1	Dc	0.781	0.988
ZQ228	YES	1.677	0.005	YES	1.0834	YES	0.2292	1.2057	1.677	0	0.08	1.48	1.554	0.0844	2	Dc	0.008	1	Dc	0.009	0.912
ZQ229	YES	5.5938	0.4186	NO		NO			4.614	1.23	1.16	0	2.395		1.2	Сс	0.042	1	Сс	0.038	0.988
ZQ230	YES	2.2605	0.6847	NO		YES	0.5105	1.258	1.201	0.26	0.01	0	0.261	0.2496	0.6	Cb	0.683	1	Cb	0.774	0.944
ZQ231	YES	11.4896	0.6609	NO		YES	0.0729	1.1262	6.471	1.67	0.21	0	1.88	0.0198	1.1	Da	0.659	1	Da	0.623	0.968
ZQ232	YES	17.7188	0.0012	YES	17.0833	YES	0.2292	1.1956	17.719	0.05	0	17.44	17.484	0.0803	3.3	Dc	0.002	1	Dc	0.004	0.946
ZQ233	YES	13.1979	0.0016	YES	12.5312	YES	11.2083	1.2221	13.198	0.21	0	6.52	6.73	0.2122	3.3	Dc	0.001	1	Dc	0	0.919
ZQ234	YES	26.7292	0.0013	YES	26.0521	YES	0.2604	1.2266	26.729	0.09	0	26.37	26.465	0.1035	5	Dc	0.001	1	Dc	0	0.919
ZQ235	YES	1.1459	0.0109	YES	0.5729	YES	1.4063	1.2492	1.146	0.03	0	0.96	0.983	0.1414	2	Dc	0.018	1	Dc	0.004	0.934
ZQ236	YES	5.5521	0.002	YES	4.6979	YES	3.5208	1.1881	5.552	0.31	0	3.39	3.695	0.0695	2	Dc	0.004	1	Dc	0.003	0.91
ZQ237	YES	0.5104	0.7322	NO		NO			0.237	0.21	0	0.15	0.36		0.3	Cb	0.688	1	Cb	0.758	0.979
ZQ238	YES	95.6354	0.0007	YES	95	YES	0.1875	1.1746	95.635	94.68	94.85	94.81	284.337	0.0832	5	А	0.001	0	А	0	0
ZQ242	YES	7.4062	0.7035	NO		NO			3.741	0.16	0.16	0.88	1.203		0.6	Dc	0.701	0.9	Dc	0.821	0.965
ZQ243	NO		0.9602	NO		NO									0						
ZQ244	YES	5.4062	0.7196	NO		NO			2.607	0.03	0.08	0.51	0.629		0.6	Dc	0.717	0.9	Dc	0.811	0.942
ZQ245	YES	8.3125	0.7981	NO		NO			3.018	0.04	0	0.46	0.5		0.4	Dc	0.798	0.9	Dc	0.867	0.938
ZQ246	NO		0.9936	NO		NO									0						
ZQ247	NO		0.9884	NO		NO									0						
ZQ248	NO		0.9929	NO		NO									0						
ZQ249	YES	11.9687	0.001	YES	5.1354	NO			11.969	5.47	5.47	5.9	16.834		3.3	А	0.001	0	А	0	0
ZQ250	YES	5.125	0.8752	NO		NO			1.199	0	1.16	0	1.16		0.2	Db	0.875	1	Db	0.889	1.008
ZQ251	YES	5.5105	0.8327	NO		NO			1.69	0	1.62	0	1.622		0.3	Db	0.833	1	Db	0.856	1.024
ZQ253	YES	19.9895	0.2506	NO		NO			18.734	14.32	15.41	6.8	36.532		2.5	Da	0.25	0.3	А	0.261	0.262
ZQ254	NO		0.9985	NO		NO									0						
ZQ255	YES	16.6771	0.5241	NO		NO			12.096	7.81	10.12	2.41	20.34		1.6	Da	0.525	0.6	Сс	0.544	0.56
ZQ258	YES	15.948	0.5382	NO		NO			11.329	7.22	9.37	2.62	19.198		1.5	Da	0.538	0.6	Сс	0.564	0.584
ZQ259	NO		0.9975	NO		NO									0						
ZQ260	YES	15.9584	0.5298	NO		NO			11.479	7.35	9.41	2.65	19.412		1.6	Da	0.531	0.6	Сс	0.56	0.578
ZQ269	YES	53.1979	0.8712	NO		NO			12.821	11.96	6.55	6.65	25.154		0.6	А	0.872	0.9	А	0.876	0.882
ZQ270	YES	12.1666	0.8744	NO		NO			2.864	2.61	2.54	2.63	7.786		0.4	А	0.876	0.9	Cb	0.869	0.88
ZQ280	NO		0.9881	NO		NO									0						
ZQ281	YES	0.6458	0.8539	NO		NO			0.175	0.1	0.09	0	0.193		0.1	Cc	0.841	0.9	Cb	0.909	0.921
ZQ282	NO		0.9273	NO		NO									0						
ZQ283	NO		0.9186	NO		NO									0						
ZQ284	NO		0.9311	NO		NO									0						

ZQ285	NO		0.9999	NO		NO									0						
ZQ286	YES	13.0104	0.8995	NO		NO			2.484	0	0.06	0	0.063		0.3	Db	0.899	1	Db	0.905	1.007
ZQ287	YES	5.5001	0.8904	NO		NO			1.14	0	0	1.11	1.109		0.2	Cb	0.982	1	Da	0.989	1.002
ZQ288	NO		0.9902	NO		NO									0						
ZQ290	YES	20.7813	0.4759	NO		NO			16.075	14.7	0	12.45	27.152		1.7	Cb	0.283	0.9	Cb	0.283	0.919
ZQ291	YES	17.0313	0.6253	NO		NO			10.372	9.93	0	6.71	16.636		1.2	Cb	0.572	1	Cb	0.573	0.97
ZQ293	NO		0.9113	NO		NO									0						
ZQ294	NO		0.9952	NO		NO									0						
ZQ295	YES	14.3645	0.7345	NO		NO			6.615	6.02	3.94	0	9.963		0.9	Сс	0.731	0.9	Сс	0.73	0.925
ZQ296	YES	94.7813	0.0009	YES	94.3334	YES	0.5521	1.8438	94.781	93.99	94.12	94.21	282.328	1.3146	5	А	0.001	0	А	0	0
ZQ297	NO		0.977	NO		NO									0						
ZQ298	YES	16.9375	0.6407	NO		NO			9.985	9.6	0	6.27	15.867		1.2	Cb	0.595	1	Cb	0.597	0.969
ZQ299	YES	16.9063	0.6193	NO		NO			10.422	9.89	5.04	0	14.934		1.3	Da	0.619	0.9	Da	0.624	0.952
ZQ300	YES	16.9271	0.6295	NO		NO			10.219	9.73	0	6.37	16.1		1.2	Cb	0.579	1	Cb	0.591	0.976
ZQ301	NO		0.9926	NO		NO									0						
ZQ302	NO		0.9926	NO		NO									0						
ZQ303	YES	95.3229	0.0011	YES	91.1458	NO			95.323	93.9	93.34	93.67	280.915		5	А	0	0	А	0	0
ZQ304	YES	5.3229	0.8415	NO		YES	5.4584	1.1935	1.554	1.29	0	0	1.294	2.0502	0.3	Сс	0.974	1	Сс	0.976	1.001
ZQ305	NO		0.981	NO		NO									0						
ZQ306	YES	5.8334	0.4944	NO		YES	5.6042	1.3693	4.408	3.95	0	0	3.95	5.9752	1	Da	0.931	1	Сс	0.926	0.987
ZQ307	YES	5.8334	0.4944	NO		YES	5.6042	1.3693	4.408	3.95	0	0	3.95	5.9752	1	Da	0.931	1	Сс	0.926	0.987
ZQ308	YES	5.8542	0.2035	NO		YES	5.8229	1.4471	5.612	5.07	0	0	5.075	9.2905	1.6	Da	0.851	1	Da	0.857	0.998
ZQ309	YES	5.6042	0.5628	NO		YES	5.5834	1.3318	3.829	3.53	0	0	3.527	4.8986	0.9	Da	0.935	1	Da	0.944	1.005
ZQ310	YES	0.2604	0.8794	NO		YES	7.3855	1.1622	0.059	0.06	0	0	0.057	1.988	0.1	Сс	0.984	1	Сс	0.985	1.002
ZQ311	YES	0.2396	0.8895	NO		YES	0.1563	1.1022	0.05	0.05	0	0	0.05	0.0343	0.1	Da	0.981	1	Сс	0.983	0.997
ZQ312	NO		0.9799	NO		NO									0						
ZQ313	YES	7.6146	0.7035	NO		YES	7.5833	1.2812	3.846	3.61	0	0	3.607	4.2959	0.6	Сс	0.962	1	Сс	0.958	0.994
ZQ314	NO		0.9886	NO		NO									0						
ZQ315	YES	7.9271	0.2078	NO		YES	7.9063	1.4385	7.585	7.14	0	0	7.139	12.8015	1.6	Da	0.85	1	Da	0.854	0.996
ZQ316	YES	7.6667	0.5481	NO		YES	7.6771	1.3456	5.364	4.97	0	0	4.972	6.2911	0.9	Da	0.934	1	Da	0.942	1.004
ZQ317	YES	7.9063	0.6723	NO		YES	7.5625	1.1945	4.333	4.04	0	0	4.039	2.8866	0.7	Da	0.938	1	Da	0.934	0.991
ZQ318	NO		0.9213	NO		NO									0						
ZQ319	YES	9.8541	0.0011	YES	5.0312	NO			9.854	5.6	5.34	5.38	16.327		2	А	0.001	0	А	0	0
ZQ320	NO		0.9906	NO		NO									0						
ZQ321	NO		0.9906	NO		NO									0						
ZQ322	NO		0.9879	NO		NO									0						
ZQ324	NO		0.9167	NO		NO									0						
ZQ325	YES	5.8542	0.0012	YES	5.0208	NO			5.854	5.21	5.4	5.44	16.04		2	Α	0	0	Α	0	0
ZQ326	NO		0.9542	NO		NO									0						
ZQ327	NO		0.9007	NO		NO									0						
ZQ328	NO		0.9036	NO		NO									0						
ZQ329	YES	3.5625	0.7116	NO		NO			1.759	0	0.04	1.56	1.593		0.6	Dc	0.724	1	Dc	0.712	0.964

ZQ330 NO		0.9056	NO	NO							0						
ZQ331 YES	10.9271	0.5337	NO	NO		7.815	7.43	0	4.14	11.563	1.5	Cb	0.519	1	Cb	0.507	0.966
ZQ332 NO		0.9052	NO	NO							0						
ZQ333 NO		0.9951	NO	NO							0						
ZQ334 YES	1.5625	0.7348	NO	NO		0.719	0	0.06	0.64	0.696	0.5	Dc	0.743	1	Dc	0.73	0.918
ZQ335 YES	1.4375	0.8396	NO	NO		0.424	0	0.13	0.03	0.164	0.3	Db	0.84	0.9	Сс	0.908	0.917
ZQ336 YES	3.375	0.8298	NO	NO		1.051	0.99	0	0	0.987	0.3	Da	0.826	1	Da	0.81	0.97
ZQ337 YES	0.0625	0.8864	NO	NO		0.013	0	0.02	0	0.015	0.1	Db	0.887	0.9	Сс	0.917	0.959
ZQ338 YES	3.4271	0.6402	NO	NO		2.022	1.18	1.71	1.31	4.206	0.7	Db	0.649	0.8	Db	0.661	0.761
ZQ339 YES	0.4791	0.8409	NO	NO		0.14	0.07	0	0.12	0.187	0.2	Cb	0.821	0.9	Cb	0.874	0.948
ZQ340 YES	0.0938	0.8715	NO	NO		0.023	0	0	0.02	0.023	0.1	Dc	0.887	1	Cb	0.906	0.952
ZQ341 YES	0.0729	0.8819	NO	NO		0.016	0	0	0.02	0.017	0.1	Dc	0.88	0.9	Da	0.945	0.935
ZQ342 YES	24.9895	0.847	NO	NO		7.062	0	5.34	6.13	11.468	0.5	Ca	0.828	1	Ca	0.836	0.989
ZQ343 NO		0.9447	NO	NO							0						
ZQ344 NO		0.9128	NO	NO							0						
ZQ345 NO		0.9909	NO	NO							0						
ZQ346 YES	11.0937	0.5725	NO	NO		7.458	6.74	0	4.34	11.076	1.4	Da	0.576	1	Da	0.567	0.898
ZQ347 NO		0.9497	NO	NO							0						
ZQ348 YES	11.3333	0.5761	NO	NO		7.572	3.34	3.86	7.18	14.376	1.4	Dc	0.576	0.8	Ca	0.593	0.827
ZQ349 NO		0.9252	NO	NO							0						
ZQ354 YES	11.3541	0.5296	NO	NO		8.17	3.27	7.88	0	11.145	1.6	Db	0.524	1	Db	0.52	0.941
ZQ355 YES	1.4375	0.8396	NO	NO		0.424	0	0.13	0.03	0.164	0.3	Db	0.84	0.9	Сс	0.908	0.917
ZQ359 YES	14.125	0.6771	NO	NO		7.649	6.31	5.86	1.08	13.258	1.1	Сс	0.595	0.9	Dc	0.846	0.599
ZQ360 YES	12.3542	0.7217	NO	NO		5.92	5.12	4.94	0.61	10.663	0.9	Сс	0.65	0.9	Сс	0.64	0.887
ZQ361 NO		0.9924	NO	NO							0						
ZQ362 YES	4.4687	0.7892	NO	NO		1.685	1.53	0	0.07	1.6	0.4	Da	0.785	1	Da	0.773	0.972
ZQ363 NO		0.9481	NO	NO							0						
ZQ385 NO		0.9434	NO	NO							0						
ZQ386 NO		0.987	NO	NO							0						
ZQ387 NO		0.9883	NO	NO							0						
ZQ388 NO		0.9449	NO	NO							0						
ZQ389 NO		0.9848	NO	NO							0						
ZQ390 NO		0.9418	NO	NO							0						
ZQ391 NO		0.987	NO	NO							0						
ZQ392 NO		0.978	NO	NO							0						
ZQ393 NO		0.9924	NO	NO							0						
ZQ394 NO		0.9939	NO	NO							0						
ZQ395 NO		0.9304	NO	NO							0						
ZQ396 NO		0.9304	NO	NO							0						
ZQ397 NO		0.9958	NO	NO							0						
ZQ398 NO		0.9128	NO	NO							0						
ZQ399 YES	34.323	0.252	NO	NO		32.143	11.68	23.69	6.1	41.47	3.7	Db	0.252	0.8	Db	0.258	0.829

ZQ400 NO		0.9965	NO		NO									0						
ZQ401 YES	5.0105	0.8457	NO		NO			1.427	0	0	1.22	1.221		0.3	Dc	0.845	1	Cb	0.858	1.004
ZQ402 YES	4.8021	0.8685	NO		NO			1.18	0	0	1.12	1.122		0.3	Cb	0.865	1	Cb	0.874	1.002
ZQ403 NO		0.9103	NO		NO									0						
ZQ404 NO		0.9966	NO		NO									0						
ZQ405 NO		0.9948	NO		NO									0						
ZQ406 NO		0.9157	NO		NO									0						
ZQ407 NO		0.9928	NO		NO									0						
ZQ408 NO		0.9935	NO		NO									0						
ZQ409 NO		0.9556	NO		NO									0						
ZQ410 NO		0.9967	NO		NO									0						
ZQ411 YES	6.2604	0.6317	NO		NO			3.762	3.42	1.66	0	5.085		0.7	Da	0.632	1	Da	0.641	0.967
ZQ412 YES	6.2708	0.6318	NO		NO			3.768	3.41	0	2.18	5.595		0.7	Cb	0.602	1	Cb	0.602	0.974
ZQ413 YES	6.2709	0.625	NO		NO			3.821	3.47	0	2.21	5.68		0.8	Cb	0.592	1	Cb	0.595	0.981
ZQ414 NO		0.9869	NO		NO									0						
ZQ415 YES	6.0937	0	YES	5.1667	NO			6.094	5.44	5.37	5.53	16.339		2	Α	0	0	А	0	0
ZQ416 YES	11.1146	0	YES	5.3437	YES	6.1041	1.1202	11.115	5.59	5.64	6.13	17.354	0.1631	3.3	Α	0	0	Α	0	0
ZQ417 NO		0.9001	NO		NO									0						
ZQ418 YES	4.7813	0.8653	NO		NO			1.201	0	0	1.14	1.136		0.3	Dc	0.865	1	Dc	0.867	1.004
ZQ419 YES	4.8229	0.8687	NO		NO			1.183	0	0	1.14	1.144		0.3	Cb	0.865	1	Dc	0.87	1.005
ZQ420 NO		0.9719	NO		NO									0						
ZQ421 NO		0.9687	NO		NO									0						
ZQ422 NO		0.9913	NO		NO									0						
ZQ423 NO		0.9901	NO		NO									0						
ZQ424 NO		0.9976	NO		NO									0						
ZQ425 NO		0.9427	NO		NO									0						
ZQ426 NO		0.9339	NO		NO									0						
ZQ427 NO		0.9929	NO		NO									0						
ZQ428 NO		0.9825	NO		NO									0						
ZQ429 NO		0.9961	NO		NO									0						
ZQ430 NO		0.9956	NO		NO									0						
ZQ431 NO		0.9952	NO		NO									0						
ZQ432 NO		0.9974	NO		NO									0						
ZQ433 NO		0.9287	NO		YES	16.3645	1.1311						4.2318	0						
ZQ434 YES	16.9166	0.3951	NO		YES	16.7708	1.3456	14.276	0	13.74	0	13.74	19.374	2	Db	0.883	1	Db	0.887	1.002
ZQ435 NO		0.982	NO		NO									0						
ZQ436 YES	16.875	0.5837	NO		YES	16.6666	1.3186	11.126	0	10.52	0	10.521	11.2787	1.4	Db	0.933	1	Db	0.936	1
ZQ437 YES	0.3541	0.8904	NO		NO			0.073	0.07	0	0	0.074		0.1	Cc	0.858	1	Сс	0.854	0.962
ZQ438 YES	16.1041	0.8418	NO		YES	16.5417	1.2096	4.692	0	4.05	0	4.053	6.8505	0.5	Db	0.985	1	Db	0.973	0.994
ZQ439 NO		0.9976	NO		NO									0						
ZQ440 NO		0.9287	NO		NO									0						
ZQ441 NO		0.9939	NO		NO									0						
ZQ442 NO		0.9939	NO		NO									0						
-----------	---------	--------	-----	-------	-----	---------	--------	--------	------	-------	-------	--------	---------	-----	----	-------	-----	----	-------	-------
ZQ443 NO		0.9945	NO		NO									0						
ZQ444 NO		0.9939	NO		NO									0						
ZQ445 NO		0.9949	NO		NO									0						
ZQ446 NO		0.9973	NO		NO									0						
ZQ447 NO		0.9984	NO		NO									0						
ZQ448 NO		0.9857	NO		NO									0						
ZQ449 NO		0.9909	NO		NO									0						
ZQ450 YES	8.7813	0.8517	NO		NO			2.411	1.63	0.8	0	2.422		0.3	Сс	0.87	1	Сс	0.863	0.998
ZQ451 YES	8.9479	0.7998	NO		NO			3.224	2.15	1.19	0	3.335		0.4	Сс	0.804	1	Db	0.815	0.974
ZQ452 NO		0.9441	NO		NO									0						
ZQ453 YES	6.0312	0.0004	YES	5.302	YES	10.0937	1.1157	6.031	5.42	5.62	5.74	16.787	0.3174	2	А	0.001	0	А	0	0.003
ZQ454 NO		0.9774	NO		NO									0						
ZQ455 YES	0.4271	0.8848	NO		YES	6.5938	1.1399	0.093	0.09	0	0	0.09	1.6213	0.1	Сс	0.986	1	Сс	0.987	1.001
ZQ456 YES	7.4584	0.8426	NO		YES	7.6771	1.15	2.163	1.64	0	0	1.644	2.0108	0.3	Сс	0.97	1	Сс	0.978	1.006
ZQ457 NO		0.9856	NO		NO									0						
ZQ458 NO		0.9679	NO		NO									0						
ZQ459 YES	5.3855	0.8819	NO		YES	5.6458	1.1342	1.197	1.06	0	0	1.062	1.3987	0.2	Сс	0.973	1	Сс	0.975	1.001
ZQ460 NO		0.9167	NO		YES	5.9791	1.1294						1.4712	0						
ZQ461 NO		0.9881	NO		NO									0						
ZQ462 YES	38.1979	0.6835	NO		NO			20.353	0	12.11	19.75	31.862		1.6	Ca	0.654	1	Ca	0.663	1.017
ZQ463 YES	11.2917	0.6799	NO		NO			6.072	0	3.53	5.78	9.311		1.1	Ca	0.652	1	Ca	0.647	1.015
ZQ464 NO		0.9929	NO		NO									0						
ZQ465 YES	0.0313	0.8982	NO		NO			0.006	0	0.01	0	0.008		0.1	Db	0.898	1	Db	0.906	1.009
ZQ466 YES	14.875	0.8471	NO		NO			4.201	4.04	3.42	3.33	10.788		0.5	Сс	0.827	0.9	Da	0.876	0.883
ZQ467 YES	13.8958	0.8553	NO		NO			3.73	3.61	0	0	3.612		0.5	Сс	0.852	1	Сс	0.87	1.013
ZQ468 YES	13.948	0.8475	NO		NO			3.93	3.65	0.04	0	3.688		0.5	Сс	0.839	1	Сс	0.884	0.981
ZQ469 YES	13.4479	0.8453	NO		NO			3.839	3.65	0.16	0	3.807		0.5	Сс	0.827	1	Сс	0.854	1
ZQ470 NO		0.9917	NO		NO									0						
ZQ471 NO		0.9937	NO		NO									0						
ZQ472 NO		0.9909	NO		NO									0						
ZQ473 NO		0.9911	NO		NO									0						
ZQ474 NO		0.9928	NO		NO									0						
ZQ475 NO		0.9241	NO		NO									0						
ZQ476 NO		0.9792	NO		NO									0						
ZQ477 NO		0.9426	NO		NO							1		0						
ZQ478 YES	7.7917	0.6362	NO		NO			4.638	3.06	0	0.71	3.772		0.7	Da	0.641	1	Da	0.622	1.001
ZQ479 YES	4.75	0.5736	NO		NO			3.187	2.77	0	1.37	4.14		0.9	Cb	0.553	0.9	Da	0.573	0.927
ZQ480 YES	7.6979	0.5877	NO		NO			5.039	4.59	0	2.06	6.648		0.8	Cb	0.562	1	Da	0.58	0.944
ZQ481 NO		0.9334	NO		NO							1		0						
ZQ482 YES	2.3854	0.8078	NO		YES	2.3229	1.2082	0.829	0	0	0.71	0.713	0.9129	0.4	Cb	0.981	1	Cb	0.971	0.984
ZQ483 YES	25.6979	0.4698	NO		YES	25.4687	1.3881	20.026	0	0	15.07	15.067	21.0355	2.7	Cb	0.924	1	Cb	0.922	0.986

ZQ484	YES	16.8542	0.0413	YES	14.9479	YES	25.8959	1.5567	16.825	0	0	16.13	16.134	39.0739	3.2	Dc	0.83	1	Dc	0.825	0.986
ZQ485	NO		0.9782	NO		NO									0						
ZQ486	YES	16.2604	0.6056	NO		YES	16.1979	1.3263	10.297	0	0	9.68	9.676	10.8895	1.3	Dc	0.953	1	Dc	0.942	0.976
ZQ487	YES	4.5417	0.8937	NO		NO			0.914	0	0.81	0	0.811		0.2	Db	0.895	1	Db	0.9	1.014
ZQ488	YES	95.2188	0.0014	YES	71.9896	YES	6.1354	1.1682	95.219	82.02	85.51	80.64	248.17	2.8993	5	А	0.001	0	А	0	0
ZQ489	YES	5.3542	0.8844	NO		NO			1.166	0.27	0.78	0	1.058		0.2	Сс	0.85	1	Сс	0.833	0.97
ZQ490	YES	5.8958	0.0016	YES	5.4583	NO			5.896	5.73	5.66	5.77	17.164		2	А	0.001	0	А	0.001	0
ZQ491	NO		0.9271	NO		NO									0						
ZQ492	NO		0.9816	NO		NO									0						
ZQ493	YES	0.1459	0.8487	NO		NO			0.041	0	0.04	0	0.039		0.2	Db	0.972	1	Db	0.973	0.99
ZQ494	YES	5.8126	0.7676	NO		NO			2.388	1.96	2.2	0	4.153		0.5	Сс	0.68	1	Сс	0.689	0.976
ZQ495	YES	55.0417	0.7117	NO		NO			27.162	26.32	0	10.79	37.111		1.4	Cb	0.683	1	Da	0.715	0.995
ZQ496	YES	2.8125	0.7475	NO		NO			1.241	1.1	0	0.56	1.66		0.5	Da	0.747	1	Da	0.755	0.987
ZQ497	YES	17.4583	0.3733	NO		NO			15.025	8.01	0.09	9.54	17.631		2.1	Cb	0.367	0.9	Cb	0.391	0.874
ZQ498	YES	3	0.3823	NO		NO			2.562	1.41	0.16	2.18	3.758		1.2	Cb	0.361	0.9	Cb	0.38	0.885
ZQ499	YES	19.4271	0.3866	NO		NO			16.524	9.88	0.71	15.92	26.518		2	Cb	0.351	0.9	Dc	0.399	0.894
ZQ500	NO		0.9851	NO		NO									0						
ZQ501	YES	6.5834	0.595	NO		NO			4.253	0	3.86	1.38	5.238		0.8	Db	0.596	1	Db	0.613	0.987
ZQ502	NO		0.988	NO		NO									0						
ZQ503	NO		0.9974	NO		NO									0						
ZQ504	YES	95.2604	0.0005	YES	90.0208	YES	1.0417	1.3538	95.26	92.85	93.49	93.13	279.467	0.5226	5	А	0	0	А	0	0
ZQ505	NO		0.9982	NO		NO									0						
ZQ506	NO		0.9974	NO		NO									0						
ZQ507	NO		0.9919	NO		NO									0						
ZQ508	NO		0.9863	NO		NO									0						
ZQ509	NO		0.993	NO		NO									0						
ZQ510	YES	5.9792	0.0027	YES	5.1979	NO			5.979	5.44	5.43	5.54	16.415		2	Α	0	0	Α	0	0
ZQ511	YES	5.9792	0.0027	YES	5.1979	NO			5.979	5.44	5.43	5.54	16.415		2	Α	0	0	Α	0	0
ZQ512	YES	95.125	0.001	YES	89.9791	YES	0.5313	1.2435	95.125	93.6	93.47	93.43	280.504	0.2171	5	А	0	0	Α	0	0
ZQ513	YES	5.8749	0.0028	YES	5.0624	NO			5.875	5.24	5.34	5.41	15.984		2	Α	0	0	Α	0	0
ZQ514	NO		0.9924	NO		NO									0						
ZQ515	YES	5.0105	0.7704	NO		NO			2.037	0.75	0	1.91	2.654		0.5	Dc	0.77	1	Cb	0.78	1.004
ZQ516	YES	5.0521	0.774	NO		NO			2.026	0.92	0	1.94	2.857		0.5	Cb	0.771	1	Cb	0.778	1.012
ZQ517	YES	5.0104	0.7744	NO		NO			2.006	0.84	0	1.91	2.756		0.5	Cb	0.771	1	Dc	0.79	1.009
ZQ518	NO		0.9939	NO		NO									0						
ZQ519	NO		0.9875	NO		NO									0						
ZQ520	YES	5.125	0.8862	NO		NO			1.1	0	1.05	0	1.053		0.2	Db	0.888	1	Ca	0.909	0.989
ZQ521	YES	93.8646	0.8416	NO		NO			27.381	0	0	25.49	25.495		0.8	Ca	0.835	1	Dc	0.849	0.993
ZQ522	YES	79.1354	0.635	NO		YES	3.2917	1.1739	47.226	32.38	14.16	22.63	69.157	1.1151	1.8	Da	0.636	0.8	Cb	0.68	0.756
ZQ523	YES	245.25	8000.0	YES	244.688	NO			245.25	243.95	243.61	243.73	731.295		5	Α	0	0	Α	0	0
ZQ524	YES	69.9584	0.6602	NO		NO			39.466	35.72	35.6	35.4	106.71		1.7	Da	0.66	0.7	Db	0.686	0.701
ZQ525	NO		0.9144	NO		NO									0						

ZQ526	NO		0.9983	NO		NO									0						
ZQ527	NO		0.9976	NO		NO									0						
ZQ528	NO		0.9996	NO		NO									0						1
ZQ529	YES	16.5417	0.6916	NO		YES	15.5833	1.3513	8.63	2.76	0	0.86	3.622	1.1538	1	Da	0.485	1	А	0.005	0.008
ZQ530	YES	11.5417	0.8597	NO		YES	16.8124	1.3673	3.011	0	0.05	0.02	0.076	3.5342	0.5	Сс	0.799	1	А	0.001	0.003
ZQ531	YES	95.3959	0	YES	94.7188	NO			95.396	94.42	94.42	94.58	283.424		5	Α	0	0	Α	0	0
ZQ532	YES	95.4791	0	YES	94.8959	NO			95.479	94.5	94.74	94.7	283.941		5	Α	0	0	А	0	0
ZQ533	YES	5.6354	0	YES	5.1874	NO			5.635	5.42	5.36	5.5	16.276		2	Α	0	0	Α	0	0
ZQ534	NO		0.9158	NO		NO									0						
ZQ535	YES	42.4479	0.7744	NO		NO			16.992	16.2	16.47	16.28	48.955		1.1	Α	0.775	0.8	Α	0.78	0.784
ZQ536	YES	42.4376	0.7691	NO		NO			17.335	16.39	16.5	16.68	49.568		1.2	Α	0.772	0.8	Α	0.774	0.78
ZQ537	YES	9.5	0.0009	YES	5.4479	NO			9.5	5.99	6.26	5.95	18.203		2	Α	0.001	0	Α	0	0
ZQ538	NO		0.9934	NO		NO									0						
ZQ539	NO		0.9331	NO		NO									0						
ZQ540	NO		0.9929	NO		NO									0						
ZQ541	NO		0.9866	NO		NO									0						
ZQ542	NO		0.99	NO		NO									0						
ZQ543	NO		0.9844	NO		NO									0						
ZQ544	NO		0.9605	NO		NO									0						
ZQ545	YES	95.4688	0	YES	88.2813	YES	0.7396	1.2577	95.469	93.22	93.09	93.46	279.774	0.2281	5	A	0	0	A	0	0
ZQ546	NO		0.994	NO		NO									0						
ZQ547	NO		0.9936	NO		NO									0						
ZQ548	NO		0.9973	NO		NO									0						
ZQ549	NO		0.9397	NO		NO									0						
ZQ550	NO		0.9922	NO		NO									0						
ZQ551	NO		0.9979	NO		NO									0						
ZQ552	NO		0.998	NO		NO									0						L
ZQ553	NO		0.9977	NO		NO									0						
ZQ554	NO		0.9946	NO		NO									0						
ZQ555	NO		0.993	NO		NO									0						L
ZQ556	NO		0.995	NO		NO									0						
ZQ557	NO		0.9932	NO		NO									0						L
ZQ558	NO		0.9847	NO		NO									0						L
ZQ559	NO		0.981	NO		NO									0						
ZQ560	NO		0.9897	NO		NO									0						L
ZQ561	NO		0.9074	NO		NO									0						L
ZQ562	NO		0.9878	NO		NO									0						L
ZQ563	YES	20.9584	0.8531	NO		NO			5.705	0	0	5.54	5.541		0.5	Dc	0.853	1	Dc	0.872	1.018
ZQ564	YES	10.2083	0.0008	YES	5.4687	NO			10.208	5.75	5.68	5.85	17.29		3.3	A	0	0	A	0	0
ZQ565	YES	95.0834	0	YES	89.5104	YES	0.7083	1.1706	95.083	93.64	93.57	92.79	280.006	0.1111	5	A	0	0	Α	0	0
ZQ566	YES	5.6041	0.0008	YES	5.1667	NO			5.604	5.47	5.41	5.31	16.2		2	A	0	0	A	0	0
ZQ567	NO		0.9832	NO		NO									0						<u> </u>

ZQ568 NO		0.9819	NO		NO									0						
ZQ569 NO		0.9954	NO		NO									0						
ZQ570 NO		0.9544	NO		NO									0						
ZQ571 NO		0.9179	NO		NO									0						
ZQ572 NO		0.9932	NO		NO									0						
ZQ573 NO		0.9304	NO		NO									0						
ZQ574 NO		0.9869	NO		NO									0						
ZQ575 NO		0.9644	NO		NO									0						
ZQ576 NO		0.9657	NO		NO									0						
ZQ577 NO		0.9616	NO		NO									0						
ZQ578 NO		0.9482	NO		NO									0						
ZQ579 YES 2	0.9167	0.8695	NO		NO			5.103	4.76	0	0	4.761		0.4	Da	0.872	1	Da	0.885	1.005
ZQ580 NO		0.9447	NO		NO									0						
ZQ581 NO		0.9305	NO		NO									0						
ZQ582 YES 9	5.4166	0	YES	93.6666	NO			95.417	94.27	94.63	94.56	283.453		5	Α	0	0	Α	0	0
ZQ583 YES	4.75	0.8559	NO		NO			1.27	1.19	0	0	1.19		0.3	Da	0.859	1	Da	0.861	0.96
ZQ584 YES	5.75	0.1664	NO		NO			5.591	4.87	3.12	2.01	10.002		1.7	Da	0.167	0.8	Da	0.173	0.781
ZQ585 NO		0.9989	NO		NO									0						
ZQ586 NO		0.9915	NO		NO									0						
ZQ587 NO		0.9937	NO		NO									0						
ZQ588 YES	5.927	0.0004	YES	5.0937	NO			5.927	5.28	5.32	5.46	16.067		2	Α	0	0	А	0	0
ZQ589 NO		0.992	NO		NO									0						
ZQ590 NO		0.992	NO		NO									0						
ZQ591 NO		0.9922	NO		NO									0						
ZQ592 YES 1	10.125	0.8267	NO		NO			3.205	3.01	0	0	3.008		0.6	Da	0.826	1	Da	0.831	0.974
ZQ593 YES 1	0.2084	0.7608	NO		NO			4.3	3.22	0.03	0.05	3.303		0.8	Da	0.761	0.9	Da	0.804	0.939
ZQ594 YES	5.073	0.7789	NO		NO			1.995	1.86	0.65	0	2.512		0.4	Da	0.782	1	Da	0.778	0.991
ZQ595 YES 3	2.4792	0.8182	NO		NO			10.736	9.6	0	0	9.597		0.9	Сс	0.811	1	Da	0.792	1.009
ZQ596 YES 3	0.8646	0.7815	NO		NO			12.014	9.44	3.03	0	12.47		1.1	Da	0.783	1	Сс	0.786	0.974
ZQ597 YES 3	3.9687	0.881	NO		NO			0.888	0	0	0.82	0.819		0.2	Cb	0.876	1	Dc	0.889	1.011
ZQ598 NO		0.9767	NO		NO									0						
ZQ599 NO		0.9918	NO		NO									0						
ZQ600 YES 1	1.4896	0.6596	NO		NO			0.842	0.26	0.45	0	0.714		0.7	Сс	0.559	0.9	Сс	0.696	0.94
ZQ601 YES 9	2.1041	0.0003	YES	86.9479	YES	3.3959	1.3416	92.104	89.86	89.48	90.11	269.45	0.7217	5	А	0	0	А	0	0
ZQ602 NO		0.9883	NO		NO									0						
ZQ603 NO		0.9812	NO		NO									0						
ZQ604 NO		0.9969	NO		NO									0						
ZQ605 NO		0.9922	NO		NO									0						
ZQ606 NO		0.9905	NO		NO									0						
ZQ607 NO		0.9197	NO		NO									0						
ZQ608 YES 1	1.0208	0.8958	NO		NO			0.202	0	0	0.02	0.024		0.2	Dc	0.894	1	Ca	0.938	0.982
ZQ609 NO		0.9205	NO		NO									0						

ZQ610	YES	5.8542	0.001	YES	5.4062	NO			5.854	5.7	5.55	5.67	16.917		2	А	0	0	А	0	0
ZQ611	YES	95.3334	0.0003	YES	88.5625	YES	0.1042	1.112	95.333	93.23	92.92	92.87	279.023	0.0254	5	А	0	0	А	0	0
ZQ612	YES	8.0104	0.0009	YES	5.2292	YES	10.4271	1.1807	8.01	5.48	5.57	5.35	16.397	1.6667	2	А	0	0	А	0	0
ZQ613	YES	67.5	0.8105	NO		NO			23.159	13.96	21.21	12.64	47.808		0.9	Сс	0.809	0.8	А	0.816	0.822
ZQ614	YES	41.3333	0.8911	NO		NO			8.512	0	7.07	0	7.071		0.5	Db	0.893	1	Db	0.907	1.001
ZQ615	NO		0.9028	NO		YES	3.6875	1.1148						0.4502	0						
ZQ616	YES	27.9479	0.8958	NO		NO			5.521	0	3.37	0	3.367		0.5	Db	0.896	1	Db	0.895	0.998
ZQ617	NO		0.9048	NO		YES	2.5833	1.1087						0.4699	0						
ZQ618	YES	37.2709	0.8952	NO		NO			7.403	0	4.6	0	4.596		0.5	Db	0.896	1	Db	0.904	0.997
ZQ619	YES	33.4791	0.8873	NO		NO			7.121	6.61	0.21	2.69	9.516		0.6	Cb	0.887	0.9	Dc	0.899	0.908
ZQ620	YES	81.6563	0.8947	NO		NO			16.291	0	11.5	0	11.499		0.5	Db	0.894	1	Db	0.904	0.998
ZQ621	YES	83.1042	0.8914	NO		NO			17.07	0	16.31	0	16.31		0.5	Db	0.893	1	Db	0.904	0.995
ZQ622	YES	83.0834	0.8945	NO		NO			16.606	0	11.39	0	11.394		0.5	Db	0.895	1	Db	0.902	0.992
ZQ623	NO		0.9182	NO		NO									0						
ZQ624	NO		0.9748	NO		NO									0						
ZQ625	NO		0.976	NO		NO									0						
ZQ626	YES	11.9687	0.7827	NO		NO			4.636	1.7	0.71	2.76	5.164		0.7	Cb	0.768	0.9	Cb	0.789	0.845
ZQ627	NO		0.9444	NO		NO									0						
ZQ628	NO		0.9514	NO		NO									0						
ZQ629	YES	12.4896	0.8187	NO		NO			4.118	3	3.93	3.13	10.051		0.6	Ca	0.814	0.9	Ca	0.845	0.891
ZQ630	NO		0.9107	NO		NO									0						
ZQ631	NO		0.9585	NO		NO									0						
ZQ632	YES	12.7708	0.8874	NO		NO			2.714	0	2.62	0	2.616		0.4	Db	0.887	1	Db	0.886	0.994
ZQ633	YES	3.9896	0.8832	NO		NO			0.878	0	0	0.86	0.855		0.2	Dc	0.881	1	Dc	0.909	0.989
ZQ634	NO		0.9479	NO		NO									0						
ZQ635	NO		0.9142	NO		NO									0						
ZQ636	NO		0.9224	NO		NO									0						
ZQ637	NO		0.993	NO		NO									0						
ZQ638	NO		0.997	NO		NO									0						
ZQ639	NO		0.9933	NO		NO									0						
ZQ640	YES	95.5938	0	YES	86.8854	YES	0.2291	1.1533	95.594	92.58	93.11	94.05	279.736	0.0691	5	Α	0	0	Α	0	0
ZQ641	YES	9.2291	0	YES	5.4687	NO			9.229	5.7	5.92	5.8	17.413		2	А	0	0	Α	0	0
ZQ642	YES	3.5833	0.8399	NO		NO			1.056	0.92	0	0	0.925		0.3	Da	0.85	1	Cc	0.887	0.951
ZQ643	NO		0.9082	NO		NO									0						
ZQ644	YES	3.9375	0.812	NO		NO			1.341	1.04	1.2	0	2.237		0.4	Cc	0.771	0.9	Cc	0.776	0.944
ZQ645	YES	3.875	0.8516	NO		NO			1.065	0.92	0.99	0	1.918		0.3	Сс	0.806	1	Cc	0.819	1.004
ZQ646	YES	3.9167	0.8195	NO		NO			1.286	1.12	1.15	0	2.278		0.4	Сс	0.77	0.9	Сс	0.773	0.944
ZQ647	YES	3.3854	0.879	NO		NO			0.77	0	0.73	0	0.73		0.2	Db	0.879	1	Db	0.861	0.955
ZQ648	YES	3.6459	0.8685	NO		NO			0.896	0	0.83	0	0.834		0.3	Db	0.873	1	Db	0.857	0.959
ZQ649	YES	3.3959	0.8764	NO		NO			0.788	0	0.71	0	0.713		0.2	Db	0.876	1	Db	0.856	0.96
ZQ650	NO		0.9058	NO		NO									0						
ZQ651	YES	4.5625	0.8972	NO		NO			0.89	0	0.52	0	0.522		0.2	Cc	0.896	0.9	Сс	0.908	0.936

ZQ652	NO		0.9984	NO		NO									0						
ZQ653	NO		0.9958	NO		NO									0						
ZQ654	YES	8.125	0.6792	NO		YES	8.0937	1.2737	4.377	0	0	4.02	4.015	4.2769	0.6	Cb	0.955	1	Cb	0.967	1.013
ZQ655	YES	7.9687	0.7846	NO		YES	8.0208	1.2394	3.063	0	0	2.36	2.355	3.2612	0.4	Dc	0.972	1	Cb	0.979	1
ZQ656	NO		0.9616	NO		NO									0						
ZQ657	YES	7.9792	0.7828	NO		YES	8.0312	1.2335	3.09	0	0	2.42	2.42	3.205	0.4	Dc	0.958	1	Cb	0.974	1.002
ZQ658	NO		0.9751	NO		NO									0						
ZQ659	YES	8.0417	0.7439	NO		YES	8.0521	1.2308	3.592	0	0	3.06	3.062	3.4203	0.5	Cb	0.959	1	Cb	0.971	1.011
ZQ660	NO		0.9916	NO		NO									0						
ZQ661	NO		0.997	NO		NO									0						
ZQ662	YES	29.375	0.8642	NO		NO			7.437	0	7.26	0	7.262		0.7	Ca	0.856	1	Ca	0.873	1.014
ZQ663	YES	33.3229	0.8494	NO		NO			9.281	0	9.05	0	9.052		0.8	Db	0.849	1	Ca	0.87	1.009
ZQ664	YES	5.1667	0.8623	NO		NO			1.325	0	1.27	0	1.275		0.3	Db	0.863	1	Db	0.866	0.992
ZQ665	YES	5.4896	0.8174	NO		NO			1.822	0	1.72	0	1.722		0.4	Db	0.818	1	Db	0.828	1.002
ZQ666	YES	45.6771	0.6629	NO		NO			25.605	21.06	22.73	20.54	64.328		1.7	А	0.663	0.7	Db	0.653	0.663
ZQ667	NO		0.9882	NO		NO									0						
ZQ668	YES	5.5833	0.7819	NO		YES	5.5417	1.1783	2.17	0	1.91	0	1.907	1.7609	0.4	Ca	0.975	1	Ca	0.987	1.007
ZQ669	YES	5.6355	0.6846	NO		YES	5.6459	1.2558	2.994	0	2.55	0	2.55	2.7518	0.6	Ca	0.967	1	Db	0.95	0.989
ZQ670	NO		0.9795	NO		NO									0						
ZQ671	YES	5.9583	0.5344	NO		YES	5.9792	1.2993	4.257	0	3.7	0	3.7	4.5419	0.9	Ca	0.929	1	Ca	0.924	0.991
ZQ672	YES	6.3333	0.3369	NO		YES	6	1.3253	5.614	0	4.8	0	4.8	6.658	1.3	Ca	0.858	1	Ca	0.859	0.976
ZQ673	YES	41.9479	0.6675	NO		NO			23.258	21.7	21.86	21.88	65.442		1.7	А	0.668	0.7	Dc	0.662	0.67
ZQ674	YES	41.8021	0.6706	NO		NO			23.004	21.74	21.85	21.92	65.512		1.6	А	0.67	0.7	Dc	0.661	0.671
ZQ675	NO		0.9909	NO		NO									0						
ZQ676	NO		0.9808	NO		NO									0						
ZQ677	NO		0.9084	NO		NO									0						
ZQ678	NO		0.9762	NO		NO									0						
ZQ679	YES	21.6042	0.6985	NO		NO			11.063	8.37	7.28	6.42	22.062		1	Сс	0.676	0.8	Da	0.743	0.755
ZQ680	YES	2.1563	0.8801	NO		NO			0.486	0.02	0.12	0	0.138		0.2	Сс	0.865	0.9	Dc	0.958	0.914
ZQ681	YES	94.9688	0.0006	YES	28.3854	YES	0.2291	1.2186	94.969	28.53	28.52	94.06	151.116	0.0908	5	А	0	0	А	0	0
ZQ682	YES	95.3438	0.004	YES	94.3541	NO			95.342	94.25	94.36	94.48	283.095		5	А	0	0	Α	0	0
ZQ683	YES	145.406	0.4067	NO		NO			121.36	116.35	99.15	0	215.495		3	Сс	0.069	1	Сс	0.052	1.016
ZQ684	YES	32.3229	0.0041	YES	5.4583	NO			32.322	6.78	8.38	5.64	20.803		5	А	0.001	0	Α	0	0
ZQ685	NO		0.9271	NO		NO									0						
ZQ686	NO		0.9939	NO		NO									0						
ZQ687	NO		0.9951	NO		NO									0						
ZQ688	NO		0.9378	NO		NO									0						
ZQ689	YES	94.8959	0	YES	86.802	YES	1.0937	1.2238	94.896	92.12	92.9	92.3	277.317	0.2871	5	А	0	0	А	0	0
ZQ690	YES	95.5	0.0039	YES	94.4896	NO			95.499	94.78	94.89	94.81	284.481		5	A	0	0	A	0	0
ZQ691	YES	1.8021	0.1105	NO		NO			1.78	0.96	0.87	0.57	2.402		1.8	Сс	0.108	0.3	Cc	0.196	0.521
ZQ692	NO		0.9993	NO		NO									0						
ZQ693	YES	2.0834	0.8909	NO		NO			0.43	0.06	0	0.01	0.061		0.2	Cb	0.881	0.9	Da	0.926	0.963

ZQ694	YES	95.3541	0.0004	YES	86.6458	YES	2.3021	1.5272	95.354	91.53	91.4	92.36	275.29	1.3072	5	А	0	0	А	0	0
ZQ695	YES	10.0313	0.0012	YES	5.2187	YES	9.1042	1.1617	10.031	5.52	5.66	5.39	16.57	0.3201	3.3	А	0	0	А	0	0
ZQ696	YES	95.2396	0.0003	YES	85.8958	YES	0.7813	1.2542	95.24	92.87	92.48	92.83	278.186	0.236	5	А	0	0	А	0	0
ZQ697	YES	13.1458	0.0012	YES	5.4375	NO			13.146	5.99	5.99	5.76	17.736		3.3	А	0	0	А	0	0
ZQ698	NO		0.9951	NO		NO									0						
ZQ699	NO		0.9906	NO		NO									0						
ZQ700	YES	51.5209	0.3459	NO		NO			45.357	21.82	27.56	4.15	53.531		3.3	Сс	0.288	0.4	Сс	0.316	0.368
ZQ703	YES	6.9583	0	YES	5.177	NO			6.958	5.52	5.38	5.48	16.389		2	А	0	0	А	0	0
ZQ704	NO		0.9838	NO		NO									0						
ZQ705	NO		0.9909	NO		NO									0						
ZQ706	YES	95.5834	0.0015	YES	88.0416	YES	0.9896	1.2801	95.583	93.11	92.82	93.95	279.876	0.384	5	А	0	0	А	0	0
ZQ707	YES	13.0625	0.0021	YES	5.2187	NO			13.062	5.68	6.32	5.5	17.506		3.3	А	0.001	0	Α	0.001	0.001
ZQ708	YES	92.3645	0.0007	YES	85.6875	YES	1.2084	1.2875	92.364	89.84	89.64	90.6	270.08	0.7339	5	А	0	0	Α	0	0
ZQ709	YES	11.2083	0.0022	YES	5.375	NO			11.208	6.25	5.81	5.61	17.674		3.3	Α	0.001	0	Α	0.001	0.001
ZQ710	YES	46.8229	0.3045	NO		NO			42.481	39.21	39.27	39.89	118.364		3.5	Dc	0.304	0.4	Dc	0.343	0.376
ZQ711	YES	3.0938	0.6598	NO		NO			1.747	0.26	0.22	0.14	0.624		0.7	Сс	0.631	0.9	Cc	0.78	0.891
ZQ712	YES	46.8542	0.3321	NO		NO			41.687	39.23	39.23	39.64	118.088		3.3	Ca	0.305	0.4	Dc	0.358	0.378
ZQ713	YES	33.1145	0.0043	YES	5.2917	NO			33.114	7.74	8.18	5.5	21.42		5	А	0.001	0	А	0	0
ZQ714	NO		0.985	NO		NO									0						
ZQ715	YES	15.0625	0.5995	NO		NO			9.649	0	9.2	4.13	13.328		1.3	Db	0.6	1	Db	0.627	1
ZQ716	YES	0.6875	0.8511	NO		NO			0.189	0	0.15	0	0.157		0.1	Db	0.852	0.9	Dc	0.971	0.918
ZQ717	YES	15.052	0.5926	NO		NO			9.766	0	9.44	4.19	13.634		1.3	Db	0.596	1	Db	0.617	1.007
ZQ720	NO		0.9936	NO		NO									0						
ZQ730	YES	0.8125	0.8128	NO		NO			0.276	0	0.22	0	0.216		0.2	Db	0.815	0.9	Cc	0.899	0.962
ZQ731	YES	1.2812	0.8849	NO		NO			0.278	0	0.19	0.16	0.353		0.2	Db	0.89	0.9	Da	0.908	0.923
ZQ732	YES	3.0625	0.2003	NO		NO			2.94	2.14	1.77	2.36	6.271		1.6	Ca	0.198	0.2	Cb	0.214	0.221
ZQ733	YES	2.6042	0.777	NO		NO			1.032	0.79	0.68	0.85	2.329		0.4	Ca	0.777	0.8	Db	0.778	0.792
ZQ734	YES	2.1042	0.8462	NO		NO			0.597	0.45	0.45	0.49	1.391		0.3	Db	0.849	0.9	Dc	0.857	0.885
ZQ735	YES	2.2813	0.8357	NO		NO			0.688	0.5	0.51	0.57	1.579		0.3	Db	0.837	0.8	Ca	0.85	0.867
ZQ736	YES	2.2916	0.8366	NO		NO			0.688	0.58	0.49	0.52	1.594		0.3	Сс	0.839	0.8	Db	0.86	0.87
ZQ737	YES	2.0729	0.8496	NO		NO			0.577	0.42	0.42	0.48	1.322		0.3	Ca	0.849	0.9	Dc	0.866	0.893
ZQ738	YES	12.5	0.8007	NO		NO			4.486	0	4.31	0	4.309		0.7	Db	0.801	1	Ca	0.836	1.005
ZQ739	NO		0.9827	NO		NO									0						
ZQ740	YES	24.875	0.8028	NO		NO			8.843	7.44	0	5.86	13.299		0.7	Cb	0.726	1	Cb	0.753	1.002
ZQ741	YES	2.1355	0.8681	NO		NO			0.526	0	0.08	0.02	0.098		0.3	Ca	0.852	1	Ca	0.939	1.016
ZQ742	YES	3.2188	0.8505	NO		NO			0.89	0.2	0	0.03	0.233		0.3	Da	0.85	0.9	Cb	0.929	0.997
ZQ743	YES	0.0313	0.8984	NO		NO			0.006	0	0.01	0	0.008		0.1	Ca	0.885	0.9	Α	0.946	0.947
ZQ744	NO		0.9127	NO		NO									0						
ZQ745	NO		0.9985	NO		NO									0						
ZQ746	NO		0.9983	NO		NO									0						
ZQ747	NO		0.9982	NO		NO									0						
ZQ748	NO		0.9984	NO		NO									0						

ZQ749 NO		0.9985	NO		NO									0						
ZQ750 NO		0.9983	NO		NO									0						
ZQ751 NO		0.9985	NO		NO									0						
ZQ752 NO		0.9984	NO		NO									0						
ZQ753 NO		0.9129	NO		NO									0						
ZQ754 NO		0.998	NO		NO									0						
ZQ755 YES	5.0625	0.7822	NO		NO			1.965	1.87	0.89	0	2.756		0.4	Сс	0.783	1	Da	0.79	0.98
ZQ756 YES	32.1146	0.7823	NO		NO			12.461	11.05	2.67	0	13.721		1.1	Сс	0.782	1	Сс	0.792	0.966
ZQ757 NO		0.9418	NO		NO									0						
ZQ758 YES	5.573	0.8387	NO		YES	5.3542	1.1224	1.653	0	0	1.52	1.519	0.8669	0.3	Dc	0.975	1	Db	0.983	0.974
ZQ759 YES	5.0104	0.8782	NO		NO			1.146	0	0.57	0.59	1.153		0.2	Ca	0.851	1	Ca	0.839	0.96
ZQ760 NO		0.9528	NO		NO									0						
ZQ761 YES	5.6979	0.7632	NO		NO			2.379	0	1.91	1.96	3.876		0.5	Са	0.688	1	Ca	0.684	0.961
ZQ762 YES	95.2604	0.0012	YES	76.9271	YES	5.9479	1.3079	95.26	83.58	83.95	87.31	254.836	2.4675	5	А	0.001	0	А	0	0
ZQ763 YES	5.9062	0.0014	YES	5.4375	NO			5.906	5.59	5.74	5.73	17.065		2	А	0.001	0	А	0	0
ZQ764 NO		0.9837	NO		NO									0						
ZQ765 NO		0.9919	NO		NO									0						
ZQ766 YES	2.0104	0.1109	NO		NO			1.986	1.02	0.81	0.52	2.357		1.8	Сс	0.085	0.2	Cb	0.497	0.38
ZQ767 YES	95.4271	0.0043	YES	94.5729	NO			95.425	94.49	94.43	94.4	283.32		5	А	0	0	А	0	0
ZQ768 NO		0.9974	NO		NO									0						
Z0769 YES	8.4167	0.7198	NO		NO			4.056	0.18	0.1	1.11	1.401		0.6	Dc	0.719	0.9	Dc	0.84	0.976
20100 120	001	011.00	110		-					•		-			-			-		
ZQ770 YES	15.1354	0.8735	NO		YES	16.2812	1.1518	3.587	0.26	0	0.2	0.46	2.5725	0.4	Da	0.476	0.8	Da	0.023	0.044
ZQ770 YES ZQ771 YES	15.1354 245.156	0.8735 0.0008	NO YES	244.5	YES YES	16.2812 0.1042	1.1518 1.15	3.587 245.16	0.26 243.39	0 243.34	0.2 243.21	0.46 729.946	2.5725 0.0318	0.4 5	Da A	0.476	0.8	Da A	0.023 0	0.044 0
ZQ770 YES ZQ771 YES ZQ772 NO	15.1354 245.156	0.8735 0.0008 0.9937	NO YES NO	244.5	YES YES NO	16.2812 0.1042	1.1518 1.15	3.587 245.16	0.26 243.39	0 243.34	0.2 243.21	0.46 729.946	2.5725 0.0318	0.4 5 0	Da A	0.476	0.8	Da A	0.023	0.044
ZQ770 YES ZQ771 YES ZQ772 NO ZQ773 YES	15.1354 245.156 6.9374	0.8735 0.0008 0.9937 0.001	NO YES NO YES	244.5 5.0937	YES YES NO NO	16.2812 0.1042	1.1518 1.15	3.587 245.16 6.937	0.26 243.39 5.49	0 243.34 5.27	0.2 243.21 5.32	0.46 729.946 16.08	2.5725 0.0318	0.4 5 0 2	Da A A	0.476 0.001 0.001	0.8 0 0	Da A A	0.023 0 0	0.044 0 0
ZQ770 YES ZQ771 YES ZQ772 NO ZQ773 YES ZQ774 YES	15.1354 245.156 6.9374 13.8021	0.8735 0.0008 0.9937 0.001 0.0042	NO YES NO YES YES	244.5 5.0937 5.0312	YES YES NO NO	16.2812 0.1042	1.1518 1.15	3.587 245.16 6.937 13.802	0.26 243.39 5.49 5.62	0 243.34 5.27 5.3	0.2 243.21 5.32 5.35	0.46 729.946 16.08 16.262	2.5725 0.0318	0.4 5 0 2 3.3	Da A A A	0.476 0.001 0.001 0	0.8 0 0 0	Da A A A	0.023 0 0 0	0.044 0 0 0
ZQ770 YES ZQ771 YES ZQ772 NO ZQ773 YES ZQ774 YES ZQ775 NO	15.1354 245.156 6.9374 13.8021	0.8735 0.0008 0.9937 0.001 0.0042 0.9939	NO YES NO YES YES NO	244.5 5.0937 5.0312	YES YES NO NO NO	16.2812 0.1042	1.1518 1.15	3.587 245.16 6.937 13.802	0.26 243.39 5.49 5.62	0 243.34 5.27 5.3	0.2 243.21 5.32 5.35	0.46 729.946 16.08 16.262	2.5725 0.0318	0.4 5 0 2 3.3 0	Da A A A	0.476 0.001 0.001 0	0.8 0 0 0	Da A A A	0.023 0 0 0	0.044 0 0 0
ZQ770 YES ZQ771 YES ZQ772 NO ZQ773 YES ZQ774 YES ZQ775 NO ZQ776 NO	15.1354 245.156 6.9374 13.8021	0.8735 0.0008 0.9937 0.001 0.0042 0.9939 0.908	NO YES NO YES YES NO NO	244.5 5.0937 5.0312	YES YES NO NO NO NO	16.2812 0.1042	1.1518 1.15	3.587 245.16 6.937 13.802	0.26 243.39 5.49 5.62	0 243.34 5.27 5.3	0.2 243.21 5.32 5.35	0.46 729.946 16.08 16.262	2.5725 0.0318	0.4 5 0 2 3.3 0 0	Da A A A	0.476 0.001 0.001 0	0.8 0 0 0	Da A A A	0.023 0 0 0	0.044 0 0 0
ZQ770 YES ZQ771 YES ZQ772 NO ZQ773 YES ZQ774 YES ZQ775 NO ZQ776 NO ZQ777 NO	15.1354 245.156 6.9374 13.8021	0.8735 0.0008 0.9937 0.001 0.0042 0.9939 0.908 0.9925	NO YES NO YES YES NO NO NO	244.5 5.0937 5.0312	YES YES NO NO NO NO NO	16.2812 0.1042	1.1518 1.15	3.587 245.16 6.937 13.802	0.26 243.39 5.49 5.62	0 243.34 5.27 5.3	0.2 243.21 5.32 5.35	0.46 729.946 16.08 16.262	2.5725 0.0318	0.4 5 0 2 3.3 0 0 0	Da A A A	0.476 0.001 0.001 0	0.8 0 0 0	Da A A A	0.023 0 0 0	0.044 0 0 0 0
ZQ770 YES ZQ771 YES ZQ772 NO ZQ773 YES ZQ774 YES ZQ775 NO ZQ776 NO ZQ777 NO ZQ778 YES	15.1354 245.156 6.9374 13.8021 2.2708	0.8735 0.0008 0.9937 0.001 0.0042 0.9939 0.908 0.9925 0.8777	NO YES NO YES NO NO NO NO	244.5 5.0937 5.0312	YES YES NO NO NO NO NO	16.2812 0.1042	1.1518 1.15	3.587 245.16 6.937 13.802 0.521	0.26 243.39 5.49 5.62 0.01	0 243.34 5.27 5.3 0.16	0.2 243.21 5.32 5.35 0.01	0.46 729.946 16.08 16.262 0.181	2.5725 0.0318	0.4 5 0 2 3.3 0 0 0 0 0.2	Da A A A Cc	0.476 0.001 0.001 0 0 0.868	0.8 0 0 0 0	Da A A A Ca	0.023 0 0 0 0 0 0.922	0.044 0 0 0 0 0.945
ZQ770 YES ZQ771 YES ZQ772 NO ZQ773 YES ZQ774 YES ZQ776 NO ZQ776 NO ZQ777 NO ZQ778 YES ZQ779 YES	15.1354 245.156 6.9374 13.8021 2.2708 2.0521	0.8735 0.0008 0.9937 0.001 0.0042 0.9939 0.908 0.9925 0.8777 0.1249	NO YES NO YES YES NO NO NO NO NO	244.5 5.0937 5.0312	YES YES NO NO NO NO NO NO NO	16.2812 0.1042	1.1518 1.15	3.587 245.16 6.937 13.802 0.521 2.02	0.26 243.39 5.49 5.62 0.01 0.86	0 243.34 5.27 5.3 0.16 0.65	0.2 243.21 5.32 5.35 0.01 0.46	0.46 729.946 16.08 16.262 0.181 1.966	2.5725 0.0318	0.4 5 0 2 3.3 0 0 0 0 0.2 1.8	Da A A A Cc Cc	0.476 0.001 0.001 0 0.868 0.868	0.8 0 0 0 0 0 0 0.9 0.3	Da A A A Ca Da	0.023 0 0 0 0 0 0.922 0.387	0.044 0 0 0 0 0.945 0.595
ZQ770 YES ZQ771 YES ZQ771 YES ZQ773 YES ZQ774 YES ZQ776 NO ZQ776 NO ZQ776 NO ZQ777 NO ZQ778 YES ZQ779 YES ZQ780 NO	15.1354 245.156 6.9374 13.8021 2.2708 2.0521	0.8735 0.0008 0.9937 0.001 0.0042 0.9939 0.908 0.9925 0.8777 0.1249 0.9663	NO YES NO YES NO	244.5 5.0937 5.0312	YES YES NO NO NO NO NO NO NO NO NO	16.2812 0.1042	1.1518 1.15	3.587 245.16 6.937 13.802 0.521 2.02	0.26 243.39 5.49 5.62 0.01 0.86	0 243.34 5.27 5.3 0.16 0.65	0.2 243.21 5.32 5.35 0.01 0.46	0.46 729.946 16.08 16.262 0.181 1.966	2.5725 0.0318	0.4 5 0 2 3.3 0 0 0 0 0 0.2 1.8 0	Da A A A Cc Cc	0.476 0.001 0.001 0 0.001 0 0.868 0.116	0.8 0 0 0 0 0 0 0.9 0.3	Da A A A Ca Da	0.023 0 0 0 0 0 0.922 0.387	0.044 0 0 0 0 0.945 0.595
ZQ770 YES ZQ771 YES ZQ772 NO ZQ773 YES ZQ774 YES ZQ776 NO ZQ776 NO ZQ776 NO ZQ777 NO ZQ778 YES ZQ779 YES ZQ780 NO ZQ781 NO	15.1354 245.156 6.9374 13.8021 2.2708 2.0521	0.8735 0.0008 0.9937 0.001 0.0042 0.9939 0.908 0.9925 0.8777 0.1249 0.9663 0.9859	NO YES NO YES NO	244.5 5.0937 5.0312	YES YES NO NO NO NO NO NO NO NO NO NO NO NO NO	16.2812 0.1042	1.1518 1.15	3.587 245.16 6.937 13.802 0.521 2.02	0.26 243.39 5.49 5.62 0.01 0.86	0 243.34 5.27 5.3 0.16 0.65	0.2 243.21 5.32 5.35 0.01 0.46	0.46 729.946 16.08 16.262 0.181 1.966	2.5725 0.0318	0.4 5 0 2 3.3 0 0 0 0 0.2 1.8 0 0	Da A A A A Cc Cc	0.476 0.001 0.001 0 0.001 0 0.868 0.116	0.8 0 0 0 0 0 0 0.9 0.3	Da A A A Ca Da	0.023 0 0 0 0 0 9 0.922 0.387	0.044 0 0 0 0 0.945 0.595
ZQ770 YES ZQ771 YES ZQ771 YES ZQ773 YES ZQ774 YES ZQ776 NO ZQ776 NO ZQ777 NO ZQ777 YES ZQ779 YES ZQ780 NO ZQ781 NO ZQ782 NO	15.1354 245.156 6.9374 13.8021 2.2708 2.0521	0.8735 0.0008 0.9937 0.001 0.0042 0.9939 0.908 0.9925 0.8777 0.1249 0.9663 0.9859 0.9042	NO YES YES <td>244.5 5.0937 5.0312</td> <td>YES YES NO NO NO NO NO NO NO NO NO NO YES</td> <td>16.2812 0.1042</td> <td>1.1518 1.15 </td> <td>3.587 245.16 6.937 13.802 0.521 2.02</td> <td>0.26 243.39 5.49 5.62 0.01 0.86</td> <td>0 243.34 5.27 5.3 0.16 0.65</td> <td>0.2 243.21 5.32 5.35 0.01 0.46</td> <td>0.46 729.946 16.08 16.262 0.181 1.966</td> <td>2.5725 0.0318 2.1431</td> <td>0.4 5 0 2 3.3 0 0 0 0 0.2 1.8 0 0 0 0 0</td> <td>Da A A A Cc Cc</td> <td>0.476 0.001 0.001 0 0.001 0 0.868 0.116</td> <td>0.8 0 0 0 0 0 0.9 0.3</td> <td>Da A A A Ca Da</td> <td>0.023 0 0 0 0 0 9 2 0.922 0.387</td> <td>0.044 0 0 0 0 0.945 0.595</td>	244.5 5.0937 5.0312	YES YES NO NO NO NO NO NO NO NO NO NO YES	16.2812 0.1042	1.1518 1.15 	3.587 245.16 6.937 13.802 0.521 2.02	0.26 243.39 5.49 5.62 0.01 0.86	0 243.34 5.27 5.3 0.16 0.65	0.2 243.21 5.32 5.35 0.01 0.46	0.46 729.946 16.08 16.262 0.181 1.966	2.5725 0.0318 2.1431	0.4 5 0 2 3.3 0 0 0 0 0.2 1.8 0 0 0 0 0	Da A A A Cc Cc	0.476 0.001 0.001 0 0.001 0 0.868 0.116	0.8 0 0 0 0 0 0.9 0.3	Da A A A Ca Da	0.023 0 0 0 0 0 9 2 0.922 0.387	0.044 0 0 0 0 0.945 0.595
ZQ770 YES ZQ771 YES ZQ771 YES ZQ772 NO ZQ773 YES ZQ774 YES ZQ776 NO ZQ776 NO ZQ777 NO ZQ778 YES ZQ779 YES ZQ780 NO ZQ781 NO ZQ781 NO ZQ782 NO ZQ783 YES	15.1354 245.156 6.9374 13.8021 2.2708 2.0521 10.9167	0.8735 0.0008 0.9937 0.001 0.0042 0.9939 0.908 0.9925 0.8777 0.1249 0.9663 0.9859 0.9042 0.9042 0.8743	NOYESYESNOYESNO<	244.5 5.0937 5.0312	YES YES NO NO NO NO NO NO NO NO NO NO NO NO NO	16.2812 0.1042	1.1518 1.15 	3.587 245.16 6.937 13.802 0.521 2.02 2.572	0.26 243.39 5.49 5.62 0.01 0.86	0 243.34 5.27 5.3 0.16 0.65	0.2 243.21 5.32 5.35 0.01 0.46 2.35	0.46 729.946 16.08 16.262 0.181 1.966 2.348	2.5725 0.0318 2.1431	0.4 5 0 2 3.3 0 0 0 0 0.2 1.8 0 0 0 0.2 1.8 0 0 0	Da A A A A Cc Cc Cc	0.476 0.001 0.001 0 0.868 0.116 0.87	0.8 0 0 0 0 0.9 0.3 1	Da A A A Ca Da Da	0.023 0 0 0 0 0.922 0.387 0.87	0.044 0 0 0 0.945 0.595 0.595
ZQ770 YES ZQ771 YES ZQ771 YES ZQ772 NO ZQ773 YES ZQ774 YES ZQ776 NO ZQ776 NO ZQ776 NO ZQ777 NO ZQ778 YES ZQ780 NO ZQ781 NO ZQ781 NO ZQ782 NO ZQ783 YES ZQ784 YES	15.1354 245.156 6.9374 13.8021 2.2708 2.0521 10.9167 8.25	0.8735 0.0008 0.9937 0.001 0.0042 0.9939 0.908 0.9925 0.8777 0.1249 0.9663 0.9859 0.9042 0.8743 0.8883		244.5 5.0937 5.0312	YES YES NON NON NON NON NON NON NON NON NON NO	16.2812 0.1042	1.1518 1.15 	3.587 245.16 6.937 13.802 0.521 2.02 2.572 1.74	0.26 243.39 5.49 5.62 0.01 0.86 0 0	0 243.34 5.27 5.3 0.16 0.65 0 0 0	0.2 243.21 5.32 5.35 0.01 0.46 2.35 1.51	0.46 729.946 16.08 16.262 0.181 1.966 2.348 1.51	2.5725 0.0318 2.1431	0.4 5 0 2 3.3 0 0 0 0 0.2 1.8 0 0 0.2 1.8 0 0 0.4 0.4	Da A A A A Cc Cc Cc Cc Cc Cc Cc	0.476 0.001 0.001 0 0.868 0.116 0.87 0.87	0.8 0 0 0 0 0 0 0.9 0.3 1 1	Da A A A Ca Da Da Dc Dc	0.023 0 0 0 0 0.922 0.387 0.874	0.044 0 0 0 0.945 0.595 0.595 0.963 0.953
ZQ770 YES ZQ771 YES ZQ771 YES ZQ772 NO ZQ773 YES ZQ774 YES ZQ776 NO ZQ776 NO ZQ776 NO ZQ777 NO ZQ778 YES ZQ780 NO ZQ781 NO ZQ781 NO ZQ782 NO ZQ783 YES ZQ784 YES ZQ785 YES	15.1354 245.156 6.9374 13.8021 2.2708 2.0521 10.9167 8.25 2.875	0.8735 0.0008 0.9937 0.001 0.0042 0.9939 0.908 0.9925 0.8777 0.1249 0.9663 0.9859 0.9042 0.8743 0.8883 0.5746		244.5 5.0937 5.0312	YES YES NON NON NON NON NON NON NON NON NON NO	16.2812 0.1042	1.1518 1.15 	3.587 245.16 6.937 13.802 0.521 2.02 2.572 1.74 1.926	0.26 243.39 5.49 5.62 0.01 0.86 0 0 0 0 0.02	0 243.34 5.27 5.3 0.16 0.65 0 0 0 0 0.29	0.2 243.21 5.32 5.35 0.01 0.46 2.35 1.51 0.18	0.46 729.946 16.08 16.262 0.181 1.966 2.348 1.51 0.487	2.5725 0.0318 2.1431	0.4 5 0 2 3.3 0 0 0 0 0 0.2 1.8 0 0 0 0.2 1.8 0 0 0 0.2 1.8 0 0 0.2 0.4 0.2 0.2 1.8 0 0.0 0.2 0.2 0.2 0.2 0.2 0.0 0.2 0.0 0.0	Da A A A Cc Cc Cc Cc Cb Dc Db	0.476 0.001 0.001 0 0.868 0.116 0.87 0.87 0.89 0.573	0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Da A A A Ca Da Dc Dc Ca	0.023 0 0 0 0 0 0 0.922 0.387 0.877 0.874 0.755	0.044 0 0 0 0 0.945 0.595 0.963 0.963
ZQ770 YES ZQ771 YES ZQ771 YES ZQ772 NO ZQ773 YES ZQ774 YES ZQ775 NO ZQ776 NO ZQ776 NO ZQ777 NO ZQ778 YES ZQ780 NO ZQ781 NO ZQ781 NO ZQ782 NO ZQ783 YES ZQ784 YES ZQ785 YES ZQ786 YES	15.1354 245.156 6.9374 13.8021 2.2708 2.0521 10.9167 8.25 2.875 4.8958	0.8735 0.0008 0.9937 0.001 0.0042 0.9939 0.908 0.9925 0.8777 0.1249 0.9663 0.9859 0.9042 0.8743 0.8883 0.5746 0.6274	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	244.5 5.0937 5.0312	YES YES NONONNON NONONNON NONONNON NONONNON NONONNON	16.2812 0.1042	1.1518 1.15 	3.587 245.16 6.937 13.802 0.521 2.02 2.572 1.74 1.926 2.969	0.26 243.39 5.49 5.62 0.01 0.86 0 0 0.02 2.59	0 243.34 5.27 5.3 0.16 0.65 0 0 0 0.29 1.54	0.2 243.21 5.32 5.35 0.01 0.46 2.35 1.51 0.18 0	0.46 729.946 16.08 16.262 0.181 1.966 2.348 1.51 0.487 4.122	2.5725 0.0318 2.1431	0.4 5 0 2 3.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Da A A A Cc Cc Cc Cc Cc Cb Dc Db Cc	0.476 0.001 0.001 0 0.001 0 0.001 0 0.001 0.87 0.88 0.116 0.87 0.89 0.573 0.623	0.8 0 0 0 0 0 0 0.9 0.3 1 1 1 1 1	Da A A A Ca Da Da Dc Cc Ca Cc	0.023 0 0 0 0 0.922 0.387 0.877 0.874 0.755 0.639	0.044 0 0 0 0 0.945 0.595 0.963 0.963 0.964
ZQ770 YES ZQ771 YES ZQ772 NO ZQ773 YES ZQ774 YES ZQ775 NO ZQ776 NO ZQ777 NO ZQ778 YES ZQ779 YES ZQ779 YES ZQ779 YES ZQ780 NO ZQ781 NO ZQ783 YES ZQ784 YES ZQ785 YES ZQ786 YES ZQ787 NO	15.1354 245.156 6.9374 13.8021 2.2708 2.0521 2.0521 10.9167 8.25 2.875 4.8958	0.8735 0.0008 0.9937 0.001 0.0042 0.9939 0.908 0.9925 0.8777 0.1249 0.9663 0.9859 0.9042 0.8743 0.8883 0.5746 0.6274 0.9732	P P	244.5 5.0937 5.0312	YES YES NO NO NO NO NO NO NO NO NO NO NO NO NO	16.2812 0.1042	1.1518 1.15 1.15 1.1144	3.587 245.16 6.937 13.802 0.521 2.02 2.572 1.74 1.926 2.969	0.26 243.39 5.49 5.62 0.01 0.86 0 0 0.02 2.59	0 243.34 5.27 5.3 0.16 0.65 0 0 0.29 1.54	0.2 243.21 5.32 5.35 0.01 0.46 2.35 1.51 0.18 0	0.46 729.946 16.08 16.262 0.181 1.966 2.348 1.51 0.487 4.122	2.5725 0.0318 2.1431	0.4 5 0 2 3.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Da A A A Cc Cc Cc Cc Cc Cb Dc Db Cc	0.476 0.001 0.001 0 0.001 0 0.868 0.116 0.87 0.89 0.573 0.623	0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Da A A A Ca Da Da Dc Cc Ca Cc	0.023 0 0 0 0 0.922 0.387 0.877 0.874 0.755 0.639	0.044 0 0 0 0.945 0.595 0.963 0.963 0.964 0.984
ZQ770 YES ZQ771 YES ZQ772 NO ZQ773 YES ZQ774 YES ZQ775 NO ZQ776 NO ZQ777 YES ZQ776 NO ZQ777 YES ZQ779 YES ZQ779 YES ZQ779 YES ZQ781 NO ZQ781 NO ZQ783 YES ZQ784 YES ZQ786 YES ZQ787 NO ZQ788 YES	15.1354 245.156 6.9374 13.8021 2.2708 2.0521 2.0521 10.9167 8.25 2.875 4.8958 9.6875	0.8735 0.0008 0.9937 0.001 0.0042 0.9939 0.908 0.9925 0.8777 0.1249 0.9663 0.9859 0.9042 0.8743 0.8883 0.5746 0.6274 0.6274 0.9732 0.6038	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	244.5 5.0937 5.0312	YE S YE NO	16.2812 0.1042	1.1518 1.15 1.15	3.587 245.16 6.937 13.802 0.521 2.02 2.572 1.74 1.926 2.969 6.156	0.26 243.39 5.49 5.62 0.01 0.86 0 0.02 2.59 5.3	0 243.34 5.27 5.3 0.16 0.65 0 0 0.29 1.54 3.14	0.2 243.21 5.32 5.35 0.01 0.46 2.35 1.51 0.18 0 0	0.46 729.946 16.08 16.262 0.181 1.966 2.348 1.51 0.487 4.122 8.445	2.5725 0.0318 2.1431	0.4 5 0 2 3.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Da A A A A Cc Cc Cc Cc Cc Db Cc Db Cc Db	0.476 0.001 0.001 0 0 0.868 0.116 0.87 0.87 0.89 0.573 0.623 0.604	0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Da A A A Ca Da Dc Dc Cc Cc	0.023 0 0 0 0 0.922 0.387 0.877 0.874 0.755 0.639 0.629	0.044 0 0 0 0 0.945 0.595 0.953 0.963 0.963 0.964 0.9844 0.977
ZQ770 YES ZQ771 YES ZQ772 NO ZQ773 YES ZQ774 YES ZQ775 NO ZQ776 NO ZQ777 NO ZQ778 YES ZQ779 YES ZQ779 YES ZQ779 YES ZQ779 YES ZQ781 NO ZQ782 NO ZQ783 YES ZQ784 YES ZQ786 YES ZQ787 NO ZQ788 YES ZQ789 NO	15.1354 245.156 6.9374 13.8021 2.2708 2.0521 2.0521 10.9167 8.25 2.875 4.8958 9.6875	0.8735 0.0008 0.9937 0.001 0.0042 0.9939 0.908 0.9925 0.8777 0.1249 0.9663 0.9859 0.9042 0.8743 0.8883 0.5746 0.6274 0.6274 0.9732 0.6038 0.9871		244.5 5.0937 5.0312	YE S YE N N N N N N N N N N N N N N N N N N N	16.2812 0.1042	1.1518 1.15 1.15	3.587 245.16 6.937 13.802 0.521 2.02 2.572 1.74 1.926 2.969 6.156	0.26 243.39 5.49 5.62 0.01 0.86 0 0.02 2.59 5.3	0 243.34 5.27 5.3 0.16 0.65 0 0.65 0 0.29 1.54 3.14	0.2 243.21 5.32 5.35 0.01 0.46 2.35 1.51 0.18 0 0	0.46 729.946 16.08 16.262 0.181 1.966 2.348 1.51 0.487 4.122 8.445	2.5725 0.0318 2.1431	0.4 5 0 2 3.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Da A A A A Cc Cc Cc Cc Cc Db Cc Db Cc Db	0.476 0.001 0.001 0 0.868 0.116 0.87 0.89 0.573 0.623 0.604		Da A A A Ca Da Dc Dc Cc Cc	0.023 0 0 0 0 0.922 0.387 0.874 0.755 0.639 0.629	0.044 0 0 0 0 0.945 0.595 0.595 0.963 0.963 0.963 0.964 0.9844 0.977

ZQ791 YES	0.7188	0.509	NO		NO			0.533	0.37	0.25	0	0.626		0.5	Сс	0.426	1	Сс	0.589	1.019
ZQ792 YES	145.792	0.4939	NO		NO			110.23	108.84	0	108.63	217.47		2.5	Cb	0.036	1	Cb	0.039	1.022
ZQ793 NO		0.9803	NO		NO									0						
ZQ794 YES	5.5417	0.6239	NO		NO			3.385	2.78	1.66	0	4.442		0.8	Da	0.624	1	Сс	0.645	0.977
ZQ795 NO		0.9202	NO		NO									0						
ZQ796 YES	4.6042	0.6131	NO		NO			2.874	2.26	1.34	0	3.599		0.8	Da	0.613	1	Сс	0.645	0.975
ZQ797 NO		0.9326	NO		NO									0						
ZQ798 YES	5.1459	0.6104	NO		NO			3.229	2.69	1.54	0	4.234		0.8	Da	0.61	1	Сс	0.642	0.974
ZQ799 YES	9.1146	0.6088	NO		NO			5.736	4.89	3	0	7.891		0.8	Da	0.609	1	Сс	0.636	0.963
ZQ800 NO		0.9769	NO		NO									0						
ZQ801 YES	10.5521	0.6406	NO		NO			6.222	5.54	3.43	0	8.966		1.2	Сс	0.626	1	Сс	0.642	0.978
ZQ802 YES	0.1354	0.8735	NO		NO			0.032	0	0.03	0.01	0.046		0.1	Ca	0.84	1	Cb	0.979	0.959
ZQ803 NO		0.9543	NO		NO									0						
ZQ804 NO		0.9838	NO		NO									0						
ZQ805 YES	0.0313	0.898	NO		NO			0.006	0.01	0	0	0.008		0.1	Cb	0.887	1	Cb	0.937	0.971
ZQ806 NO		0.9728	NO		NO									0						
ZQ807 NO		0.977	NO		NO									0						
ZQ808 NO		0.9917	NO		NO									0						
ZQ809 YES	95.125	0.0003	YES	87.6667	YES	0.302	1.2335	95.125	93.26	93.19	92.82	279.271	0.1132	5	А	0	0	Α	0	0
ZQ810 NO		0.9853	NO		NO									0						
ZQ811 NO		0.9773	NO		NO									0						
ZQ812 YES	10.0625	0.0009	YES	5.2708	YES	10.0521	1.1197	10.062	5.41	5.55	5.6	16.549	0.1283	3.3	А	0	0	Α	0	0
ZQ813 YES	94.6875	0.0002	YES	88.8958	YES	1.0729	1.1794	94.687	92.98	92.47	93.11	278.554	0.3796	5	А	0	0	Α	0	0
ZQ814 YES	5.6874	0.001	YES	5.2499	NO			5.687	5.43	5.45	5.57	16.45		2	А	0.001	0	Α	0	0
ZQ815 NO		0.9928	NO		NO									0						
ZQ816 YES	85.9791	0	YES	82.2813	YES	8.8334	1.1434	85.979	85.04	84.42	84.19	253.643	0.2089	5	А	0	0	Α	0	0
ZQ817 YES	4.573	0.8489	NO		NO			1.278	0	0	1.12	1.124		0.3	Dc	0.849	1	Cb	0.865	1.002
ZQ818 YES	4.3334	0.8686	NO		NO			1.064	0	0	1.03	1.03		0.3	Cb	0.863	1	Cb	0.858	1.009
ZQ819 NO		0.9707	NO		NO									0						
ZQ820 NO		0.9926	NO		NO									0						
ZQ821 NO		0.9922	NO		NO									0						
ZQ822 NO		0.9803	NO		NO									0						
ZQ823 NO		0.9663	NO		NO									0						
ZQ824 NO		0.9729	NO		NO									0						
ZQ825 NO		0.9547	NO		NO									0						
ZQ826 NO		0.9491	NO		NO									0						
ZQ827 NO		0.9934	NO		NO									0						
ZQ828 NO		0.998	NO		NO									0						
ZQ829 NO		0.9923	NO		NO									0						
ZQ830 YES	9.0416	0.8969	NO		NO			1.768	0	1.35	0	1.348		0.2	Db	0.898	1	Db	0.897	1.011
ZQ831 YES	1.8021	0.7916	NO		NO			0.673	0.62	0	0	0.619		0.4	Da	0.793	1	Da	0.792	0.979
ZQ832 NO		0.9914	NO		NO									0						

ZQ833 Y	YES	7.2084	0.3773	NO		NO			6.182	4.03	4.28	4.98	13.289		1.2	Dc	0.379	0.6	Dc	0.391	0.569
ZQ834 Y	YES	19.1666	0.3708	NO		NO			16.531	10.73	11.87	13.95	36.551		2.1	Dc	0.373	0.6	Dc	0.377	0.582
ZQ835 Y	YES	17.1459	0.3753	NO		NO			14.731	10.51	11.76	13.64	35.92		2.1	Dc	0.376	0.6	Dc	0.382	0.579
ZQ836 Y	YES	15.5208	0.3749	NO		NO			13.339	10.16	11.11	12.85	34.121		2.1	Dc	0.374	0.6	Dc	0.381	0.576
ZQ837	NO		0.9696	NO		NO									0						
ZQ838	NO		0.9981	NO		NO									0						
ZQ839 Y	YES	5.0521	0.7923	NO		NO			1.881	0	0.02	1.75	1.775		0.4	Dc	0.79	1	Dc	0.781	0.97
ZQ840 Y	YES	0.3541	0.8726	NO		NO			0.084	0.04	0	0.03	0.065		0.1	Cb	0.858	1	Da	0.908	0.957
ZQ841	NO		0.9845	NO		NO									0						
ZQ842	NO		0.9911	NO		NO									0						
ZQ843 Y	YES	25.0521	0.7972	NO		NO			9.131	7.55	0	6.21	13.763		1	Cb	0.721	1	Cb	0.731	0.996
ZQ844 Y	YES	97.0104	0	YES	81.4063	YES	2.4583	1.8351	97.01	84.48	84.32	84.24	253.046	4.6028	5	А	0	0	А	0	0
ZQ845 Y	YES	2.1979	0.8598	NO		NO			0.573	0	0	0.11	0.108		0.3	Dc	0.859	0.9	Dc	0.93	0.999
ZQ846 Y	YES	24.4688	0.7969	NO		NO			8.93	7.43	0	6.58	14.01		0.7	Cb	0.721	1	Cb	0.736	1
ZQ847	NO		0.9985	NO		NO									0						
ZQ848	NO		0.998	NO		NO									0						
ZQ849	NO		0.9983	NO		NO									0						
ZQ850 Y	ſES	5.1458	0.8996	NO		NO			0.981	0	0.11	0	0.112		0.2	Db	0.898	1	Db	0.896	1.008
ZQ851	NO		0.9046	NO		NO									0						
ZQ852 Y	ſES	20.4167	0.7909	NO		NO			7.646	7.22	0	0	7.225		0.7	Da	0.792	1	Da	0.822	1.037
ZQ853 Y	ſES	0.1354	0.8864	NO		NO			0.029	0	0	0.03	0.03		0.1	Dc	0.886	1	Cb	0.974	1.012
ZQ854 Y	ſES	36.7396	0.6891	NO		NO			19.293	11.7	13.94	9.56	35.193		1.6	Ca	0.648	0.8	Db	0.708	0.745
ZQ855 Y	YES	32.1771	0.6639	NO		NO			17.995	16.03	14.15	11.99	42.172		1.7	Ca	0.619	0.7	Da	0.685	0.659
ZQ856 Y	YES	1.5104	0.8922	NO		NO			0.308	0.3	0	0	0.3		0.2	Da	0.89	1	Cb	0.938	0.98
ZQ857	NO		0.9972	NO		NO									0						
ZQ858	NO		0.9003	NO		NO									0						
ZQ859 Y	YES	3.0833	0.8866	NO		NO			0.66	0	0	0.6	0.599		0.2	Dc	0.886	1	Cb	0.898	0.999
ZQ865 Y	YES	95.5834	0	YES	94.8959	NO			95.583	94.54	94.83	94.75	284.124		5	А	0	0	А	0	0
ZQ867 Y	ſES	95.4584	0.0057	YES	89.4791	NO			95.455	93.74	94.25	94.16	282.149		5	Dc	0.006	0	Ca	0.012	0.038
ZQ868 Y	YES	95.4271	0.0052	YES	89.4479	NO			95.425	93.7	94.24	94.15	282.091		5	Dc	0.007	0	Ca	0.012	0.039
ZQ869 Y	YES	47.8958	0.0124	YES	5.2499	NO			47.888	8.68	5.68	8.2	22.56		4.9	Dc	0.014	0.1	Cb	0.007	0.029
ZQ871 Y	YES	95.3541	0.2198	NO		NO			90.747	45.75	59.24	9.01	114.003		3.9	Сс	0.198	0.3	Сс	0.218	0.238
ZQ872 Y	ſES	6.052	0.2299	NO		NO			5.732	5.44	5.35	5.32	16.112		1.5	Ca	0.23	0.3	А	0.245	0.248
ZQ873	NO		0.9895	NO		NO									0						
ZQ874	NO		0.9962	NO		NO									0						
ZQ875	NO		0.9102	NO		NO									0						
ZQ876	NO		0.9694	NO		NO									0						
ZQ877	NO		0.9076	NO		NO									0						
ZQ878	NO		0.9848	NO		NO									0						
ZQ879 Y	YES	0.0625	0.894	NO		NO			0.013	0	0.01	0	0.014		0.1	Db	0.894	0.9	Сс	0.934	0.963
ZQ881	NO		0.9978	NO		NO									0						
ZQ882	NO		0.9975	NO		NO									0						

ZQ883	NO		0.9975	NO	NO									0						
ZQ884	NO		0.9955	NO	YES	3.1458	1.1116						1.914	0						
ZQ885	NO		0.9054	NO	NO									0						
ZQ886	NO		0.9976	NO	NO									0						
ZQ887	YES	6.5834	0.595	NO	NO			4.253	0	3.86	1.38	5.238		0.8	Db	0.596	1	Db	0.613	0.987

* when an event is not classified as a voltage dip, in the column retained voltage minimum voltage is written instead.

Appendix D

MatLab Results - voltage sags only

Synthetic Dip	Sag	Duration of voltage sag [cycles]	Retained voltage * [pu]	Interrup-tion	Interruption Duration [cycles]	Swell	Swell Duration [cycles]	Swell retained voltage [pu]	Sag Energy calc. from Dur.& Ret [cycles]	Evs_a, Voltage-Sag Energy Index [cycles]	Evs_b, Voltage-Sag Energy Index [cycles]	Evs_c, Voltage-Sag Energy Index [cycles]	Evs, Voltage-Sag Energy Index [cycles]	Voltage-Swell Energy Index [cycles]	Voltage-Sagl Severity [pu]	Six Phase RMS - Dip Type	V (from sixRMS)	F (from sixRMS)	Symmetrical Component Method	V (from symm. comp. method)	F (from symm. comp. method)
ZQ21	YES	95.1563	0	YES	88.9895	YES	0.0938	1.1192	95.156	94.38	90.35	92.4	277.12	0.0239	5	A	0	0	А	0	0
ZQ23	YES	1.0938	0.891	NO		NO			0.225	0	0.02	0.02	0.033		0.2	Ca	0.874	0.9	Cb	0.956	0.947
ZQ29	YES	6.1042	0	YES	5.3645	NO			6.104	5.63	5.66	5.57	16.861		2	A	0	0	A	0	0
ZQ30	YES	6.1042	0	YES	5.3645	NO			6.104	5.63	5.66	5.57	16.861		2	A	0	0	A	0	0
ZQ31	YES	65.125	0.801	NO		NO			23.341	21.51	20.97	20.48	62.961		1	A	0.801	0.8	A	0.803	0.809
ZQ45	YES	0.0313	0.8981	NO		NO			0.006	0	0	0.01	0.008		0.1	Ca	0.883	0.9	Ca	0.914	0.985
ZQ51	YES	3.3021	0.8275	NO		NO			1.041	0.21	0	0.2	0.407		0.3	Cb	0.794	0.9	Cb	0.899	0.982
ZQ52	YES	18.5208	0.862	NO		NO			4.759	0	4.59	3.02	7.615		0.5	Ca	0.846	1	Ca	0.842	0.953
ZQ53	YES	20.0104	0.8476	NO		NO			5.634	0	5.03	3.87	8.903		0.5	Ca	0.843	1	Ca	0.828	0.959
ZQ54	YES	22.4896	0.4643	NO		NO			17.641	16.31	13.29	10.61	40.202		1.8	Cc	0.456	0.5	A	0.492	0.498
ZQ55	YES	0.2292	0.8719	NO		NO			0.055	0	0	0.05	0.052		0.1	DC	0.874	1	Cb	0.964	0.989
ZQ56	YES	2.1876	0.8278		E 075	NO			0.689	0.55	0.52	0.49	1.569		0.3	DC	0.827	0.8	A	0.809	0.814
2063	TES	13.25	0.0021	TES	5.375	NO			13.25	0.65	0.52	5.56	18.73		3.3	A	0.001	0	A	0.001	0.001
ZQ04	TES	13.6042	0.0007	TES	11.25	UNI			13.604	12.75	12.95	12.93	38.030		3.3	А	0	0	А	0	0

ZQ65	YES	8.2188	0.0014	YES	4.4374	NO			8.219	4.64	4.94	4.91	14.493		2	А	0	0	А	0	0
ZQ68	YES	245.104	0.0009	YES	244.49	NO			245.1	243.92	243.82	243.65	731.383		5	А	0	0	A	0	0
ZQ69	YES	16.4479	0.7746	NO		YES	14.3334	1.2961	6.579	0.08	0.01	0.42	0.507	1.1031	0.7	Сс	0.808	0.9	A	0.002	0.003
ZQ74	YES	16.9062	0	YES	0.0104	YES	16.9479	Inf	16.906	2.12	5.31	0	7.429	Inf	3.3	Cb	0.302	0.9	Cb	0.11	0.558
ZQ76	YES	8.7396	0.0009	YES	4.9895	NO			8.74	5.43	5.26	5.55	16.244		2	А	0.001	0	A	0	0
ZQ77	YES	13.2812	0.535	NO		NO			9.48	6.13	9.01	0	15.143		1.5	Сс	0.448	1	Сс	0.464	0.989
ZQ83	YES	10	0.1136	NO		NO			9.871	9.38	6	4.61	19.986		1.8	Da	0.113	0.7	Da	0.14	0.749
ZQ89	YES	0.5938	0.7796	NO		NO			0.233	0.14	0.01	0	0.149		0.2	Da	0.78	1	Сс	0.897	0.982
ZQ95	YES	13.0937	0.3568	NO		NO			11.427	8.65	8.33	6.5	23.481		2.1	Db	0.357	0.5	Сс	0.385	0.484
ZQ96	YES	0.0209	0.8981	NO		NO			0.004	0	0.01	0	0.006		0.1	Db	0.899	1	Ca	0.914	0.999
ZQ98	YES	0	0.8997	NO		NO			0	0	0	0	0.002		0.1	Ca	0.899	1	Ca	0.914	0.997
ZQ100	YES	16.2708	0	YES	5.4583	YES	5.0521	1.1199	16.271	6.05	6.04	5.72	17.813	0.0685	3.3	А	0	0	А	0	0
ZQ103	YES	0.0313	0.8944	NO		NO			0.006	0	0.01	0	0.008		0.1	Ca	0.894	1	Ca	0.9	1.002
ZQ105	YES	0.0416	0.8926	NO		NO			0.008	0	0.01	0	0.01		0.1	Db	0.894	1	Ca	0.903	1.001
ZQ107	YES	3.8542	0.8608	NO		NO			0.998	0.96	0	0	0.955		0.3	Сс	0.851	1	Da	0.87	0.996
ZQ109	YES	6.4792	0.562	NO		NO			4.433	1.46	3.32	2.19	6.962		0.9	Db	0.563	0.8	Db	0.57	0.835
ZQ110	YES	3.0625	0.8883	NO		NO			0.646	0	0.55	0	0.547		0.2	Db	0.888	1	Db	0.896	0.959
ZQ111	YES	3.3854	0.8857	NO		NO			0.73	0	0.66	0	0.664		0.2	Db	0.886	1	Db	0.886	0.954
ZQ130	YES	4.3438	0.8855	NO		NO			0.938	0.86	0	0	0.859		0.2	Сс	0.868	1	Сс	0.87	0.995
ZQ131	YES	3.4688	0.8575	NO		NO			0.918	0.74	0	0	0.736		0.3	Da	0.857	1	Сс	0.866	0.98
ZQ132	YES	13.9479	0.8625	NO		NO			3.572	3.32	0	0	3.323		0.5	Сс	0.85	1	Сс	0.871	1.004
ZQ135	YES	2.1041	0.8866	NO		NO			0.45	0.03	0.04	0	0.075		0.2	Сс	0.866	0.9	Ca	0.957	0.938
ZQ136	YES	4.5208	0.8909	NO		NO			0.933	0	0.88	0	0.879		0.2	Db	0.89	1	Db	0.888	1.008
ZQ137	YES	63.1354	0.6214	NO		NO			38.756	21.64	8.79	19.95	50.378		1.9	Cb	0.609	0.7	Cb	0.618	0.669
ZQ138	YES	4	0.8673	NO		NO			0.991	0.84	0	0	0.841		0.3	Сс	0.865	1	Сс	0.875	1
ZQ139	YES	1.2187	0.8878	NO		NO			0.258	0	0.05	0.02	0.066		0.2	Ca	0.871	0.9	Ca	0.924	0.965
ZQ142	YES	23.3021	0.6602	NO		NO			13.146	12.5	0	7.28	19.785		1.1	Cb	0.624	1	Cb	0.643	0.98
ZQ143	YES	4.8646	0.8178	NO		NO			1.611	0.86	1.52	0	2.379		0.4	Сс	0.802	1	Сс	0.821	0.977
ZQ145	YES	51.8021	0.4973	NO		NO			38.991	10.53	15.89	5.15	31.57		2.5	Db	0.497	0.9	Сс	0.574	0.802
ZQ151	YES	8.1771	0.874	NO		YES	10.7083	1.1554	1.931	0	0	0.28	0.283	2.6164	0.3	Dc	0.976	1	А	0.979	0.982
ZQ152	YES	11.0625	0.8302	NO		NO			3.438	0	2.78	3.22	5.997		0.6	Ca	0.778	1	Ca	0.78	0.984
ZQ154	YES	0.1562	0.8781	NO		NO			0.036	0	0	0.04	0.036		0.1	Dc	0.892	1	A	0.943	0.938
ZQ155	YES	0.5416	0.8719	NO		NO			0.13	0	0.07	0.07	0.142		0.1	Db	0.86	0.9	Ca	0.913	0.924
ZQ156	YES	0.1146	0.8861	NO		NO			0.025	0.02	0	0.03	0.047		0.1	Dc	0.877	0.9	Cb	0.899	0.959
ZQ158	YES	8	0.8958	NO		NO			1.58	0	1.41	0	1.408		0.2	Db	0.895	1	Db	0.909	1.003
ZQ161	YES	75.3125	0.2108	NO		NO			71.966	69.11	68.6	69.49	207.209		3.9	Cb	0.191	0.2	Cb	0.154	0.238
ZQ162	YES	4.7813	0.8699	NO		NO			1.163	1.08	0	0	1.084		0.3	Сс	0.861	1	Da	0.883	1.018
ZQ164	YES	12.2396	0.8515	NO		NO			3.365	2.97	2.87	2.41	8.252		0.5	Сс	0.837	0.9	А	0.895	0.894
ZQ166	YES	50.7396	0.2098	NO		NO			48.506	46.6	46.49	46.61	139.694		4	Сс	0.208	0.2	A	0.24	0.241
ZQ167	YES	1.0417	0.884	NO		NO			0.228	0.15	0.14	0.13	0.42		0.2	Сс	0.883	0.9	Сс	0.867	0.877
ZQ168	YES	19.0938	0.8723	NO		NO			4.565	3.9	4.12	3.92	11.943		0.4	Db	0.877	0.9	Db	0.859	0.881
ZQ181	YES	11.0208	0.8233	NO		YES	11.3854	1.2034	3.551	0	2.8	0	2.801	4.0911	0.6	Ca	0.977	1	Сс	0.973	0.993

ZQ182 YES	11.1041	0.7979	NO		YES	11.3646	1.1866	4.035	0	3.44	0	3.442	3.8237	0.7	Db	0.956	1	Db	0.953	1
ZQ184 YES	5.3125	0.8735	NO		YES	11.1042	1.1816	1.259	0	0.2	0	0.2	3.3619	0.3	Ca	0.979	1	Db	0.959	0.989
ZQ186 YES	11.9479	0.799	NO		YES	11.9688	1.2156	4.32	0	2.84	0	2.842	4.0783	0.7	Ca	0.98	1	Сс	0.977	0.996
ZQ187 YES	12.0104	0.7663	NO		YES	11.9687	1.2116	4.958	0	3.77	0	3.766	3.913	0.8	Db	0.958	1	Db	0.952	0.999
ZQ189 YES	11.4062	0.8074	NO		YES	11.927	1.2083	3.971	0	1.33	0.02	1.351	3.5342	0.6	Db	0.971	1	Db	0.958	0.989
ZQ190 YES	7.9375	0.8839	NO		NO			1.736	0	1.2	0	1.197		0.2	Db	0.885	1	Db	0.873	0.959
ZQ191 YES	8.9792	0.8794	NO		NO			2.035	0	1.84	0	1.837		0.2	Db	0.881	1	Db	0.872	0.958
ZQ193 YES	3.448	0.8156	NO		NO			1.154	0.36	0.29	0	0.647		0.4	Сс	0.786	0.9	Cc	0.879	0.983
ZQ194 YES	20.375	0.4556	NO		NO			16.146	0	13.95	14.81	28.761		1.8	Са	0.28	0.9	Ca	0.284	0.915
ZQ196 YES	17.427	0.0385	YES	0.8438	NO			17.401	1.17	12.12	12.54	25.832		3.2	Db	0.039	0.6	i Ca	0.221	0.519
ZQ206 YES	8.6771	0.8776	NO		NO			1.994	1.91	0	0	1.914		0.2	Da	0.877	1	Da	0.867	0.994
ZQ207 YES	30.4271	0.5346	NO		NO			21.731	12.77	0.83	0.26	13.861		2.3	Сс	0.513	0.9	Da	0.635	0.968
ZQ208 YES	95.3229	0.0006	YES	88.5938	YES	1.0104	1.3373	95.323	92.57	93.06	93.45	279.075	0.5281	5	А	0.001	0	A	0	0
ZQ209 YES	4.3437	0.8003	NO		NO			1.562	1.15	0.67	0	1.816		0.4	Сс	0.798	1	Сс	0.804	0.97
ZQ211 YES	11	0.0023	YES	5.2499	NO			11	5.97	5.86	5.45	17.275		3.3	A	0.001	0	λ	0.001	0
ZQ212 YES	95.0313	0.0008	YES	88.302	YES	1.0313	1.5221	95.031	92.03	92.62	93.14	277.792	0.8947	5	А	0	0	A	0	0
ZQ213 YES	95.1771	0.0006	YES	87.9895	YES	0.7396	1.4095	95.177	92.74	92.28	93.84	278.859	0.5497	5	A	0	0	A	0	0
ZQ214 YES	6.125	0.0022	YES	5.2499	NO			6.125	5.49	5.51	5.67	16.667		2	A	0.001	0	λ	0.001	0.001
ZQ215 YES	95.2396	0.0005	YES	86.6666	YES	1.0729	1.451	95.24	93.04	92.26	93.11	278.409	0.834	5	A	0	0	λ	0	0
ZQ216 YES	10.0729	0.0022	YES	5.3333	NO			10.073	5.94	5.58	5.98	17.501		3.3	А	0.001	0	A	0.001	0.001
ZQ225 YES	3.6563	0.0015	YES	2.8438	YES	3.3958	1.171	3.656	0	0.03	3.43	3.463	0.0871	2	Dc	0.004	1	Dc	0.007	0.952
ZQ226 YES	9.0209	0.0019	YES	8.1771	YES	8.9375	1.2094	9.021	0	0	8.63	8.628	0.1276	2	Dc	0.005	1	Dc	0.005	0.98
ZQ227 YES	0.5625	0.7774	NO		YES	0.4063	1.1435	0.223	0	0	0.2	0.2	0.1067	0.2	Dc	0.774	1	Dc	0.781	0.988
ZQ228 YES	1.677	0.005	YES	1.0834	YES	0.2292	1.2057	1.677	0	0.08	1.48	1.554	0.0844	2	Dc	0.008	1	Dc	0.009	0.912
ZQ229 YES	5.5938	0.4186	NO		NO			4.614	1.23	1.16	0	2.395		1.2	Cc	0.042	1	Cc	0.038	0.988
ZQ230 YES	2.2605	0.6847	NO		YES	0.5105	1.258	1.201	0.26	0.01	0	0.261	0.2496	0.6	Cb	0.683	1	Cb	0.774	0.944
ZQ231 YES	11.4896	0.6609	NO		YES	0.0729	1.1262	6.471	1.67	0.21	0	1.88	0.0198	1.1	Da	0.659	1	Da	0.623	0.968
ZQ232 YES	17.7188	0.0012	YES	17.0833	YES	0.2292	1.1956	17.719	0.05	0	17.44	17.484	0.0803	3.3	Dc	0.002	1	Dc	0.004	0.946
ZQ233 YES	13.1979	0.0016	YES	12.5312	YES	11.2083	1.2221	13.198	0.21	0	6.52	6.73	0.2122	3.3	Dc	0.001	1	Dc	0	0.919
ZQ234 YES	26.7292	0.0013	YES	26.0521	YES	0.2604	1.2266	26.729	0.09	0	26.37	26.465	0.1035	5	Dc	0.001	1	Dc	0	0.919
ZQ235 YES	1.1459	0.0109	YES	0.5729	YES	1.4063	1.2492	1.146	0.03	0	0.96	0.983	0.1414	2	Dc	0.018	1	Dc	0.004	0.934
ZQ236 YES	5.5521	0.002	YES	4.6979	YES	3.5208	1.1881	5.552	0.31	0	3.39	3.695	0.0695	2	Dc	0.004	1	Dc	0.003	0.91
ZQ237 YES	0.5104	0.7322	NO		NO			0.237	0.21	0	0.15	0.36		0.3	Cb	0.688	1	Cb	0.758	0.979
ZQ238 YES	95.6354	0.0007	YES	95	YES	0.1875	1.1746	95.635	94.68	94.85	94.81	284.337	0.0832	5	A	0.001	0	A	0	0
ZQ242 YES	7.4062	0.7035	NO		NO			3.741	0.16	0.16	0.88	1.203		0.6	Dc	0.701	0.9	Dc	0.821	0.965
ZQ244 YES	5.4062	0.7196	NO		NO			2.607	0.03	0.08	0.51	0.629		0.6	Dc	0.717	0.9	Dc	0.811	0.942
ZQ245 YES	8.3125	0.7981	NO		NO			3.018	0.04	0	0.46	0.5		0.4	Dc	0.798	0.9	Dc	0.867	0.938
ZQ249 YES	11.9687	0.001	YES	5.1354	NO			11.969	5.47	5.47	5.9	16.834		3.3	A	0.001	0	A	0	0
ZQ250 YES	5.125	0.8752	NO		NO			1.199	0	1.16	0	1.16		0.2	Db	0.875	1	Db	0.889	1.008
ZQ251 YES	5.5105	0.8327	NO		NO			1.69	0	1.62	0	1.622		0.3	Db	0.833	1	Db	0.856	1.024
ZQ253 YES	19.9895	0.2506	NO		NO			18.734	14.32	15.41	6.8	36.532		2.5	Da	0.25	0.3	A	0.261	0.262
ZQ255 YES	16.6771	0.5241	NO		NO			12.096	7.81	10.12	2.41	20.34		1.6	Da	0.525	0.6	i Cc	0.544	0.56

ZQ258 YES	15.948	0.5382	NO		NO			11.329	7.22	9.37	2.62	19.198		1.5	Da	0.538	0.6	Сс	0.564	0.584
ZQ260 YES	15.9584	0.5298	NO		NO			11.479	7.35	9.41	2.65	19.412		1.6	Da	0.531	0.6	Сс	0.56	0.578
ZQ269 YES	53.1979	0.8712	NO		NO			12.821	11.96	6.55	6.65	25.154		0.6	A	0.872	0.9	A	0.876	0.882
ZQ270 YES	12.1666	0.8744	NO		NO			2.864	2.61	2.54	2.63	7.786		0.4	A	0.876	0.9	Cb	0.869	0.88
ZQ281 YES	0.6458	0.8539	NO		NO			0.175	0.1	0.09	0	0.193		0.1	Сс	0.841	0.9	Cb	0.909	0.921
ZQ286 YES	13.0104	0.8995	NO		NO			2.484	0	0.06	0	0.063		0.3	Db	0.899	1	Db	0.905	1.007
ZQ287 YES	5.5001	0.8904	NO		NO			1.14	0	0	1.11	1.109		0.2	Cb	0.982	1	Da	0.989	1.002
ZQ290 YES	20.7813	0.4759	NO		NO			16.075	14.7	0	12.45	27.152		1.7	Cb	0.283	0.9	Cb	0.283	0.919
ZQ291 YES	17.0313	0.6253	NO		NO			10.372	9.93	0	6.71	16.636		1.2	Cb	0.572	1	Cb	0.573	0.97
ZQ295 YES	14.3645	0.7345	NO		NO			6.615	6.02	3.94	0	9.963		0.9	Сс	0.731	0.9	Сс	0.73	0.925
ZQ296 YES	94.7813	0.0009	YES	94.3334	YES	0.5521	1.8438	94.781	93.99	94.12	94.21	282.328	1.3146	5	А	0.001	0	А	0	0
ZQ298 YES	16.9375	0.6407	NO		NO			9.985	9.6	0	6.27	15.867		1.2	Cb	0.595	1	Cb	0.597	0.969
ZQ299 YES	16.9063	0.6193	NO		NO			10.422	9.89	5.04	0	14.934		1.3	Da	0.619	0.9	Da	0.624	0.952
ZQ300 YES	16.9271	0.6295	NO		NO			10.219	9.73	0	6.37	16.1		1.2	Cb	0.579	1	Cb	0.591	0.976
ZQ303 YES	95.3229	0.0011	YES	91.1458	NO			95.323	93.9	93.34	93.67	280.915		5	A	0	0	А	0	0
ZQ304 YES	5.3229	0.8415	NO		YES	5.4584	1.1935	1.554	1.29	0	0	1.294	2.0502	0.3	Сс	0.974	1	Сс	0.976	1.001
ZQ306 YES	5.8334	0.4944	NO		YES	5.6042	1.3693	4.408	3.95	0	0	3.95	5.9752	1	Da	0.931	1	Сс	0.926	0.987
ZQ307 YES	5.8334	0.4944	NO		YES	5.6042	1.3693	4.408	3.95	0	0	3.95	5.9752	1	Da	0.931	1	Сс	0.926	0.987
ZQ308 YES	5.8542	0.2035	NO		YES	5.8229	1.4471	5.612	5.07	0	0	5.075	9.2905	1.6	Da	0.851	1	Da	0.857	0.998
ZQ309 YES	5.6042	0.5628	NO		YES	5.5834	1.3318	3.829	3.53	0	0	3.527	4.8986	0.9	Da	0.935	1	Da	0.944	1.005
ZQ310 YES	0.2604	0.8794	NO		YES	7.3855	1.1622	0.059	0.06	0	0	0.057	1.988	0.1	Сс	0.984	1	Сс	0.985	1.002
ZQ311 YES	0.2396	0.8895	NO		YES	0.1563	1.1022	0.05	0.05	0	0	0.05	0.0343	0.1	Da	0.981	1	Сс	0.983	0.997
ZQ313 YES	7.6146	0.7035	NO		YES	7.5833	1.2812	3.846	3.61	0	0	3.607	4.2959	0.6	Сс	0.962	1	Cc	0.958	0.994
ZQ315 YES	7.9271	0.2078	NO		YES	7.9063	1.4385	7.585	7.14	0	0	7.139	12.8015	1.6	Da	0.85	1	Da	0.854	0.996
ZQ316 YES	7.6667	0.5481	NO		YES	7.6771	1.3456	5.364	4.97	0	0	4.972	6.2911	0.9	Da	0.934	1	Da	0.942	1.004
ZQ317 YES	7.9063	0.6723	NO		YES	7.5625	1.1945	4.333	4.04	0	0	4.039	2.8866	0.7	Da	0.938	1	Da	0.934	0.991
ZQ319 YES	9.8541	0.0011	YES	5.0312	NO			9.854	5.6	5.34	5.38	16.327		2	A	0.001	0	A	0	0
ZQ325 YES	5.8542	0.0012	YES	5.0208	NO			5.854	5.21	5.4	5.44	16.04		2	A	0	0	A	0	0
ZQ329 YES	3.5625	0.7116	NO		NO			1.759	0	0.04	1.56	1.593		0.6	Dc	0.724	1	Dc	0.712	0.964
ZQ331 YES	10.9271	0.5337	NO		NO			7.815	7.43	0	4.14	11.563		1.5	Cb	0.519	1	Cb	0.507	0.966
ZQ334 YES	1.5625	0.7348	NO		NO			0.719	0	0.06	0.64	0.696		0.5	Dc	0.743	1	Dc	0.73	0.918
ZQ335 YES	1.4375	0.8396	NO		NO			0.424	0	0.13	0.03	0.164		0.3	Db	0.84	0.9	Сс	0.908	0.917
ZQ336 YES	3.375	0.8298	NO		NO			1.051	0.99	0	0	0.987		0.3	Da	0.826	1	Da	0.81	0.97
ZQ337 YES	0.0625	0.8864	NO		NO			0.013	0	0.02	0	0.015		0.1	Db	0.887	0.9	Сс	0.917	0.959
ZQ338 YES	3.4271	0.6402	NO		NO			2.022	1.18	1.71	1.31	4.206		0.7	Db	0.649	0.8	Db	0.661	0.761
ZQ339 YES	0.4791	0.8409	NO		NO			0.14	0.07	0	0.12	0.187		0.2	Cb	0.821	0.9	Cb	0.874	0.948
ZQ340 YES	0.0938	0.8715	NO		NO			0.023	0	0	0.02	0.023		0.1	Dc	0.887	1	Cb	0.906	0.952
ZQ341 YES	0.0729	0.8819	NO		NO			0.016	0	0	0.02	0.017		0.1	Dc	0.88	0.9	Da	0.945	0.935
ZQ342 YES	24.9895	0.847	NO		NO			7.062	0	5.34	6.13	11.468		0.5	Ca	0.828	1	Ca	0.836	0.989
ZQ346 YES	11.0937	0.5725	NO		NO			7.458	6.74	0	4.34	11.076		1.4	Da	0.576	1	Da	0.567	0.898
ZQ348 YES	11.3333	0.5761	NO		NO			7.572	3.34	3.86	7.18	14.376		1.4	Dc	0.576	0.8	Ca	0.593	0.827
ZQ354 YES	11.3541	0.5296	NO		NO			8.17	3.27	7.88	0	11.145		1.6	Db	0.524	1	Db	0.52	0.941

ZQ355 YES	1.4375	0.8396 NO		NO			0.424	0	0.13	0.03	0.164		0.3	Db	0.84	0.9	Сс	0.908	0.917
ZQ359 YES	14.125	0.6771 NO		NO			7.649	6.31	5.86	1.08	13.258		1.1	Сс	0.595	0.9	Dc	0.846	0.599
ZQ360 YES	12.3542	0.7217 NO		NO			5.92	5.12	4.94	0.61	10.663		0.9	Сс	0.65	0.9	Сс	0.64	0.887
ZQ362 YES	4.4687	0.7892 NO		NO			1.685	1.53	0	0.07	1.6		0.4	Da	0.785	1	Da	0.773	0.972
ZQ399 YES	34.323	0.252 NO		NO			32.143	11.68	23.69	6.1	41.47		3.7	Db	0.252	0.8	Db	0.258	0.829
ZQ401 YES	5.0105	0.8457 NO		NO			1.427	0	0	1.22	1.221		0.3	Dc	0.845	1	Cb	0.858	1.004
ZQ402 YES	4.8021	0.8685 NO		NO			1.18	0	0	1.12	1.122		0.3	Cb	0.865	1	Cb	0.874	1.002
ZQ411 YES	6.2604	0.6317 NO		NO			3.762	3.42	1.66	0	5.085		0.7	Da	0.632	1	Da	0.641	0.967
ZQ412 YES	6.2708	0.6318 NO		NO			3.768	3.41	0	2.18	5.595		0.7	Cb	0.602	1	Cb	0.602	0.974
ZQ413 YES	6.2709	0.625 NO		NO			3.821	3.47	0	2.21	5.68		0.8	Cb	0.592	1	Cb	0.595	0.981
ZQ415 YES	6.0937	0 YE	S 5.1667	' NO			6.094	5.44	5.37	5.53	16.339		2	А	0	0	А	0	0
ZQ416 YES	11.1146	0 YE	5.3437	YES	6.1041	1.1202	11.115	5.59	5.64	6.13	17.354	0.1631	3.3	А	0	0	А	0	0
ZQ418 YES	4.7813	0.8653 NO		NO			1.201	0	0	1.14	1.136		0.3	Dc	0.865	1	Dc	0.867	1.004
ZQ419 YES	4.8229	0.8687 NO		NO			1.183	0	0	1.14	1.144		0.3	Cb	0.865	1	Dc	0.87	1.005
ZQ434 YES	16.9166	0.3951 NO		YES	16.7708	1.3456	14.276	0	13.74	0	13.74	19.374	2	Db	0.883	1	Db	0.887	1.002
ZQ436 YES	16.875	0.5837 NO		YES	16.6666	1.3186	11.126	0	10.52	0	10.521	11.2787	1.4	Db	0.933	1	Db	0.936	1
ZQ437 YES	0.3541	0.8904 NO		NO			0.073	0.07	0	0	0.074		0.1	Сс	0.858	1	Сс	0.854	0.962
ZQ438 YES	16.1041	0.8418 NO		YES	16.5417	1.2096	4.692	0	4.05	0	4.053	6.8505	0.5	Db	0.985	1	Db	0.973	0.994
ZQ450 YES	8.7813	0.8517 NO		NO			2.411	1.63	0.8	0	2.422		0.3	Сс	0.87	1	Сс	0.863	0.998
ZQ451 YES	8.9479	0.7998 NO		NO			3.224	2.15	1.19	0	3.335		0.4	Сс	0.804	1	Db	0.815	0.974
ZQ453 YES	6.0312	0.0004 YE	5.302	2 YES	10.0937	1.1157	6.031	5.42	5.62	5.74	16.787	0.3174	2	А	0.001	0	А	0	0.003
ZQ455 YES	0.4271	0.8848 NO		YES	6.5938	1.1399	0.093	0.09	0	0	0.09	1.6213	0.1	Сс	0.986	1	Сс	0.987	1.001
ZQ456 YES	7.4584	0.8426 NO		YES	7.6771	1.15	2.163	1.64	0	0	1.644	2.0108	0.3	Сс	0.97	1	Сс	0.978	1.006
ZQ459 YES	5.3855	0.8819 NO		YES	5.6458	1.1342	1.197	1.06	0	0	1.062	1.3987	0.2	Сс	0.973	1	Сс	0.975	1.001
ZQ462 YES	38.1979	0.6835 NO		NO			20.353	0	12.11	19.75	31.862		1.6	Ca	0.654	1	Ca	0.663	1.017
ZQ463 YES	11.2917	0.6799 NO		NO			6.072	0	3.53	5.78	9.311		1.1	Ca	0.652	1	Ca	0.647	1.015
ZQ465 YES	0.0313	0.8982 NO		NO			0.006	0	0.01	0	0.008		0.1	Db	0.898	1	Db	0.906	1.009
ZQ466 YES	14.875	0.8471 NO		NO			4.201	4.04	3.42	3.33	10.788		0.5	Сс	0.827	0.9	Da	0.876	0.883
ZQ467 YES	13.8958	0.8553 NO		NO			3.73	3.61	0	0	3.612		0.5	Сс	0.852	1	Сс	0.87	1.013
ZQ468 YES	13.948	0.8475 NO		NO			3.93	3.65	0.04	0	3.688		0.5	Сс	0.839	1	Сс	0.884	0.981
ZQ469 YES	13.4479	0.8453 NO		NO			3.839	3.65	0.16	0	3.807		0.5	Сс	0.827	1	Сс	0.854	1
ZQ478 YES	7.7917	0.6362 NO		NO			4.638	3.06	0	0.71	3.772		0.7	Da	0.641	1	Da	0.622	1.001
ZQ479 YES	4.75	0.5736 NO		NO			3.187	2.77	0	1.37	4.14		0.9	Cb	0.553	0.9	Da	0.573	0.927
ZQ480 YES	7.6979	0.5877 NO		NO			5.039	4.59	0	2.06	6.648		0.8	Cb	0.562	1	Da	0.58	0.944
ZQ482 YES	2.3854	0.8078 NO		YES	2.3229	1.2082	0.829	0	0	0.71	0.713	0.9129	0.4	Cb	0.981	1	Cb	0.971	0.984
ZQ483 YES	25.6979	0.4698 NO		YES	25.4687	1.3881	20.026	0	0	15.07	15.067	21.0355	2.7	Cb	0.924	1	Cb	0.922	0.986
ZQ484 YES	16.8542	0.0413 YE	5 14.9479	YES	25.8959	1.5567	16.825	0	0	16.13	16.134	39.0739	3.2	Dc	0.83	1	Dc	0.825	0.986
ZQ486 YES	16.2604	0.6056 NO		YES	16.1979	1.3263	10.297	0	0	9.68	9.676	10.8895	1.3	Dc	0.953	1	Dc	0.942	0.976
ZQ487 YES	4.5417	0.8937 NO		NO			0.914	0	0.81	0	0.811		0.2	Db	0.895	1	Db	0.9	1.014
ZQ488 YES	95.2188	0.0014 YE	S 71.9896	6 YES	6.1354	1.1682	95.219	82.02	85.51	80.64	248.17	2.8993	5	А	0.001	0	А	0	0
ZQ489 YES	5.3542	0.8844 NO		NO			1.166	0.27	0.78	0	1.058		0.2	Сс	0.85	1	Сс	0.833	0.97
ZQ490 YES	5.8958	0.0016 YE	S 5.4583	NO			5.896	5.73	5.66	5.77	17.164		2	A	0.001	0	A	0.001	0

ZQ493 YES	0.1459	0.8487	NO		NO			0.041	0	0.04	0	0.039		0.2	Db	0.972	1	Db	0.973	0.99
ZQ494 YES	5.8126	0.7676	NO		NO			2.388	1.96	2.2	0	4.153		0.5	Сс	0.68	1	Сс	0.689	0.976
ZQ495 YES	55.0417	0.7117	NO		NO			27.162	26.32	0	10.79	37.111		1.4	Cb	0.683	1	Da	0.715	0.995
ZQ496 YES	2.8125	0.7475	NO		NO			1.241	1.1	0	0.56	1.66		0.5	Da	0.747	1	Da	0.755	0.987
ZQ497 YES	17.4583	0.3733	NO		NO			15.025	8.01	0.09	9.54	17.631		2.1	Cb	0.367	0.9	Cb	0.391	0.874
ZQ498 YES	3	0.3823	NO		NO			2.562	1.41	0.16	2.18	3.758		1.2	Cb	0.361	0.9	Cb	0.38	0.885
ZQ499 YES	19.4271	0.3866	NO		NO			16.524	9.88	0.71	15.92	26.518		2	Cb	0.351	0.9	Dc	0.399	0.894
ZQ501 YES	6.5834	0.595	NO		NO			4.253	0	3.86	1.38	5.238		0.8	Db	0.596	1	Db	0.613	0.987
ZQ504 YES	95.2604	0.0005	YES	90.0208	YES	1.0417	1.3538	95.26	92.85	93.49	93.13	279.467	0.5226	5	А	0	0	А	0	0
ZQ510 YES	5.9792	0.0027	YES	5.1979	NO			5.979	5.44	5.43	5.54	16.415		2	А	0	0	А	0	0
ZQ511 YES	5.9792	0.0027	YES	5.1979	NO			5.979	5.44	5.43	5.54	16.415		2	А	0	0	А	0	0
ZQ512 YES	95.125	0.001	YES	89.9791	YES	0.5313	1.2435	95.125	93.6	93.47	93.43	280.504	0.2171	5	А	0	0	А	0	0
ZQ513 YES	5.8749	0.0028	YES	5.0624	NO			5.875	5.24	5.34	5.41	15.984		2	А	0	0	А	0	0
ZQ515 YES	5.0105	0.7704	NO		NO			2.037	0.75	0	1.91	2.654		0.5	Dc	0.77	1	Cb	0.78	1.004
ZQ516 YES	5.0521	0.774	NO		NO			2.026	0.92	0	1.94	2.857		0.5	Cb	0.771	1	Cb	0.778	1.012
ZQ517 YES	5.0104	0.7744	NO		NO			2.006	0.84	0	1.91	2.756		0.5	Cb	0.771	1	Dc	0.79	1.009
ZQ520 YES	5.125	0.8862	NO		NO			1.1	0	1.05	0	1.053		0.2	Db	0.888	1	Ca	0.909	0.989
ZQ521 YES	93.8646	0.8416	NO		NO			27.381	0	0	25.49	25.495		0.8	Ca	0.835	1	Dc	0.849	0.993
ZQ522 YES	79.1354	0.635	NO		YES	3.2917	1.1739	47.226	32.38	14.16	22.63	69.157	1.1151	1.8	Da	0.636	0.8	Cb	0.68	0.756
ZQ523 YES	245.25	0.0008	YES	244.688	NO			245.25	243.95	243.61	243.73	731.295		5	А	0	0	А	0	0
ZQ524 YES	69.9584	0.6602	NO		NO			39.466	35.72	35.6	35.4	106.71		1.7	Da	0.66	0.7	Db	0.686	0.701
ZQ529 YES	16.5417	0.6916	NO		YES	15.5833	1.3513	8.63	2.76	0	0.86	3.622	1.1538	1	Da	0.485	1	А	0.005	0.008
ZQ530 YES	11.5417	0.8597	NO		YES	16.8124	1.3673	3.011	0	0.05	0.02	0.076	3.5342	0.5	Сс	0.799	1	A	0.001	0.003
ZQ531 YES	95.3959	0	YES	94.7188	NO			95.396	94.42	94.42	94.58	283.424		5	A	0	0	A	0	0
ZQ532 YES	95.4791	0	YES	94.8959	NO			95.479	94.5	94.74	94.7	283.941		5	A	0	0	A	0	0
ZQ533 YES	5.6354	0	YES	5.1874	NO			5.635	5.42	5.36	5.5	16.276		2	A	0	0	A	0	0
ZQ535 YES	42.4479	0.7744	NO		NO			16.992	16.2	16.47	16.28	48.955		1.1	A	0.775	0.8	A	0.78	0.784
ZQ536 YES	42.4376	0.7691	NO		NO			17.335	16.39	16.5	16.68	49.568		1.2	A	0.772	0.8	A	0.774	0.78
ZQ537 YES	9.5	0.0009	YES	5.4479	NO			9.5	5.99	6.26	5.95	18.203		2	A	0.001	0	A	0	0
ZQ545 YES	95.4688	0	YES	88.2813	YES	0.7396	1.2577	95.469	93.22	93.09	93.46	279.774	0.2281	5	A	0	0	А	0	0
ZQ563 YES	20.9584	0.8531	NO		NO			5.705	0	0	5.54	5.541		0.5	Dc	0.853	1	Dc	0.872	1.018
ZQ564 YES	10.2083	0.0008	YES	5.4687	NO			10.208	5.75	5.68	5.85	17.29		3.3	A	0	0	A	0	0
ZQ565 YES	95.0834	0	YES	89.5104	YES	0.7083	1.1706	95.083	93.64	93.57	92.79	280.006	0.1111	5	A	0	0	А	0	0
ZQ566 YES	5.6041	0.0008	YES	5.1667	NO			5.604	5.47	5.41	5.31	16.2		2	A	0	0	A	0	0
ZQ579 YES	20.9167	0.8695	NO		NO			5.103	4.76	0	0	4.761		0.4	Da	0.872	1	Da	0.885	1.005
ZQ582 YES	95.4166	0	YES	93.6666	NO			95.417	94.27	94.63	94.56	283.453		5	A	0	0	A	0	0
ZQ583 YES	4.75	0.8559	NO		NO			1.27	1.19	0	0	1.19		0.3	Da	0.859	1	Da	0.861	0.96
ZQ584 YES	5.75	0.1664	NO		NO			5.591	4.87	3.12	2.01	10.002		1.7	Da	0.167	0.8	Da	0.173	0.781
ZQ588 YES	5.927	0.0004	YES	5.0937	NO			5.927	5.28	5.32	5.46	16.067		2	A	0	0	А	0	0
ZQ592 YES	10.125	0.8267	NO		NO			3.205	3.01	0	0	3.008		0.6	Da	0.826	1	Da	0.831	0.974
ZQ593 YES	10.2084	0.7608	NO		NO			4.3	3.22	0.03	0.05	3.303		0.8	Da	0.761	0.9	Da	0.804	0.939
ZQ594 YES	5.073	0.7789	NO		NO			1.995	1.86	0.65	0	2.512		0.4	Da	0.782	1	Da	0.778	0.991

ZQ595 \	YES	32.4792	0.8182 NO		NO			10.736	9.6	0	0	9.597		0.9	Сс	0.811	1	Da	0.792	1.009
ZQ596 \	YES	30.8646	0.7815 NO		NO			12.014	9.44	3.03	0	12.47		1.1	Da	0.783	1	Сс	0.786	0.974
ZQ597 \	YES	3.9687	0.881 NO		NO			0.888	0	0	0.82	0.819		0.2	Cb	0.876	1	Dc	0.889	1.011
ZQ600 \	YES	1.4896	0.6596 NO		NO			0.842	0.26	0.45	0	0.714		0.7	Сс	0.559	0.9	Сс	0.696	0.94
ZQ601 \	YES	92.1041	0.0003 YES	86.9479	YES	3.3959	1.3416	92.104	89.86	89.48	90.11	269.45	0.7217	5	A	0	0	A	0	0
ZQ608 \	YES	1.0208	0.8958 NO		NO			0.202	0	0	0.02	0.024		0.2	Dc	0.894	1	Ca	0.938	0.982
ZQ610 \	YES	5.8542	0.001 YES	5.4062	NO			5.854	5.7	5.55	5.67	16.917		2	А	0	0	А	0	0
ZQ611 \	YES	95.3334	0.0003 YES	88.5625	YES	0.1042	1.112	95.333	93.23	92.92	92.87	279.023	0.0254	5	A	0	0	A	0	0
ZQ612 \	YES	8.0104	0.0009 YES	5.2292	YES	10.4271	1.1807	8.01	5.48	5.57	5.35	16.397	1.6667	2	A	0	0	A	0	0
ZQ613 \	YES	67.5	0.8105 NO		NO			23.159	13.96	21.21	12.64	47.808		0.9	Сс	0.809	0.8	A	0.816	0.822
ZQ614 \	YES	41.3333	0.8911 NO		NO			8.512	0	7.07	0	7.071		0.5	Db	0.893	1	Db	0.907	1.001
ZQ616 \	YES	27.9479	0.8958 NO		NO			5.521	0	3.37	0	3.367		0.5	Db	0.896	1	Db	0.895	0.998
ZQ618 \	YES	37.2709	0.8952 NO		NO			7.403	0	4.6	0	4.596		0.5	Db	0.896	1	Db	0.904	0.997
ZQ619 \	YES	33.4791	0.8873 NO		NO			7.121	6.61	0.21	2.69	9.516		0.6	Cb	0.887	0.9	Dc	0.899	0.908
ZQ620 \	YES	81.6563	0.8947 NO		NO			16.291	0	11.5	0	11.499		0.5	Db	0.894	1	Db	0.904	0.998
ZQ621 \	YES	83.1042	0.8914 NO		NO			17.07	0	16.31	0	16.31		0.5	Db	0.893	1	Db	0.904	0.995
ZQ622 \	YES	83.0834	0.8945 NO		NO			16.606	0	11.39	0	11.394		0.5	Db	0.895	1	Db	0.902	0.992
ZQ626 \	YES	11.9687	0.7827 NO		NO			4.636	1.7	0.71	2.76	5.164		0.7	Cb	0.768	0.9	Cb	0.789	0.845
ZQ629 \	YES	12.4896	0.8187 NO		NO			4.118	3	3.93	3.13	10.051		0.6	Ca	0.814	0.9	Ca	0.845	0.891
ZQ632 \	YES	12.7708	0.8874 NO		NO			2.714	0	2.62	0	2.616		0.4	Db	0.887	1	Db	0.886	0.994
ZQ633 \	YES	3.9896	0.8832 NO		NO			0.878	0	0	0.86	0.855		0.2	Dc	0.881	1	Dc	0.909	0.989
ZQ640 \	YES	95.5938	0 YES	86.8854	YES	0.2291	1.1533	95.594	92.58	93.11	94.05	279.736	0.0691	5	А	0	0	А	0	0
ZQ641 \	YES	9.2291	0 YES	5.4687	NO			9.229	5.7	5.92	5.8	17.413		2	А	0	0	А	0	0
ZQ642 \	YES	3.5833	0.8399 NO		NO			1.056	0.92	0	0	0.925		0.3	Da	0.85	1	Сс	0.887	0.951
ZQ644 \	YES	3.9375	0.812 NO		NO			1.341	1.04	1.2	0	2.237		0.4	Сс	0.771	0.9	Сс	0.776	0.944
ZQ645 \	YES	3.875	0.8516 NO		NO			1.065	0.92	0.99	0	1.918		0.3	Сс	0.806	1	Сс	0.819	1.004
ZQ646 \	YES	3.9167	0.8195 NO		NO			1.286	1.12	1.15	0	2.278		0.4	Сс	0.77	0.9	Сс	0.773	0.944
ZQ647 \	YES	3.3854	0.879 NO		NO			0.77	0	0.73	0	0.73		0.2	Db	0.879	1	Db	0.861	0.955
ZQ648 \	YES	3.6459	0.8685 NO		NO			0.896	0	0.83	0	0.834		0.3	Db	0.873	1	Db	0.857	0.959
ZQ649 \	YES	3.3959	0.8764 NO		NO			0.788	0	0.71	0	0.713		0.2	Db	0.876	1	Db	0.856	0.96
ZQ651 \	YES	4.5625	0.8972 NO		NO			0.89	0	0.52	0	0.522		0.2	Сс	0.896	0.9	Сс	0.908	0.936
ZQ654 \	YES	8.125	0.6792 NO		YES	8.0937	1.2737	4.377	0	0	4.02	4.015	4.2769	0.6	Cb	0.955	1	Cb	0.967	1.013
ZQ655 \	YES	7.9687	0.7846 NO		YES	8.0208	1.2394	3.063	0	0	2.36	2.355	3.2612	0.4	Dc	0.972	1	Cb	0.979	1
ZQ657 \	YES	7.9792	0.7828 NO		YES	8.0312	1.2335	3.09	0	0	2.42	2.42	3.205	0.4	Dc	0.958	1	Cb	0.974	1.002
ZQ659 \	YES	8.0417	0.7439 NO		YES	8.0521	1.2308	3.592	0	0	3.06	3.062	3.4203	0.5	Cb	0.959	1	Cb	0.971	1.011
ZQ662 \	YES	29.375	0.8642 NO		NO			7.437	0	7.26	0	7.262		0.7	Ca	0.856	1	Ca	0.873	1.014
ZQ663 \	YES	33.3229	0.8494 NO		NO			9.281	0	9.05	0	9.052		0.8	Db	0.849	1	Ca	0.87	1.009
ZQ664 \	YES	5.1667	0.8623 NO		NO			1.325	0	1.27	0	1.275		0.3	Db	0.863	1	Db	0.866	0.992
ZQ665 \	YES	5.4896	0.8174 NO		NO			1.822	0	1.72	0	1.722		0.4	Db	0.818	1	Db	0.828	1.002
ZQ666 \	YES	45.6771	0.6629 NO		NO			25.605	21.06	22.73	20.54	64.328		1.7	А	0.663	0.7	Db	0.653	0.663
ZQ668 \	YES	5.5833	0.7819 NO		YES	5.5417	1.1783	2.17	0	1.91	0	1.907	1.7609	0.4	Ca	0.975	1	Ca	0.987	1.007
ZQ669	YES	5.6355	0.6846 NO		YES	5.6459	1.2558	2.994	0	2.55	0	2.55	2.7518	0.6	Ca	0.967	1	Db	0.95	0.989

ZQ671 YES	5.9583	0.5344	NO		YES	5.9792	1.2993	4.257	0	3.7	0	3.7	4.5419	0.9	Ca	0.929	1	Ca	0.924	0.991
ZQ672 YES	6.3333	0.3369	NO		YES	6	1.3253	5.614	0	4.8	0	4.8	6.658	1.3	Ca	0.858	1	Ca	0.859	0.976
ZQ673 YES	41.9479	0.6675	NO		NO			23.258	21.7	21.86	21.88	65.442		1.7	А	0.668	0.7	Dc	0.662	0.67
ZQ674 YES	41.8021	0.6706	NO		NO			23.004	21.74	21.85	21.92	65.512		1.6	А	0.67	0.7	Dc	0.661	0.671
ZQ679 YES	21.6042	0.6985	NO		NO			11.063	8.37	7.28	6.42	22.062		1	Сс	0.676	0.8	Da	0.743	0.755
ZQ680 YES	2.1563	0.8801	NO		NO			0.486	0.02	0.12	0	0.138		0.2	Сс	0.865	0.9	Dc	0.958	0.914
ZQ681 YES	94.9688	0.0006	YES	28.3854	YES	0.2291	1.2186	94.969	28.53	28.52	94.06	151.116	0.0908	5	А	0	0	А	0	0
ZQ682 YES	95.3438	0.004	YES	94.3541	NO			95.342	94.25	94.36	94.48	283.095		5	А	0	0	А	0	0
ZQ683 YES	145.406	0.4067	NO		NO			121.36	116.35	99.15	0	215.495		3	Сс	0.069	1	Сс	0.052	1.016
ZQ684 YES	32.3229	0.0041	YES	5.4583	NO			32.322	6.78	8.38	5.64	20.803		5	А	0.001	0	А	0	0
ZQ689 YES	94.8959	0	YES	86.802	YES	1.0937	1.2238	94.896	92.12	92.9	92.3	277.317	0.2871	5	А	0	0	А	0	0
ZQ690 YES	95.5	0.0039	YES	94.4896	NO			95.499	94.78	94.89	94.81	284.481		5	А	0	0	А	0	0
ZQ691 YES	1.8021	0.1105	NO		NO			1.78	0.96	0.87	0.57	2.402		1.8	Сс	0.108	0.3	Сс	0.196	0.521
ZQ693 YES	2.0834	0.8909	NO		NO			0.43	0.06	0	0.01	0.061		0.2	Cb	0.881	0.9	Da	0.926	0.963
ZQ694 YES	95.3541	0.0004	YES	86.6458	YES	2.3021	1.5272	95.354	91.53	91.4	92.36	275.29	1.3072	5	А	0	0	А	0	0
ZQ695 YES	10.0313	0.0012	YES	5.2187	YES	9.1042	1.1617	10.031	5.52	5.66	5.39	16.57	0.3201	3.3	А	0	0	А	0	0
ZQ696 YES	95.2396	0.0003	YES	85.8958	YES	0.7813	1.2542	95.24	92.87	92.48	92.83	278.186	0.236	5	А	0	0	А	0	0
ZQ697 YES	13.1458	0.0012	YES	5.4375	NO			13.146	5.99	5.99	5.76	17.736		3.3	А	0	0	А	0	0
ZQ700 YES	51.5209	0.3459	NO		NO			45.357	21.82	27.56	4.15	53.531		3.3	Сс	0.288	0.4	Сс	0.316	0.368
ZQ703 YES	6.9583	0	YES	5.177	NO			6.958	5.52	5.38	5.48	16.389		2	А	0	0	А	0	0
ZQ706 YES	95.5834	0.0015	YES	88.0416	YES	0.9896	1.2801	95.583	93.11	92.82	93.95	279.876	0.384	5	А	0	0	А	0	0
ZQ707 YES	13.0625	0.0021	YES	5.2187	NO			13.062	5.68	6.32	5.5	17.506		3.3	А	0.001	0	А	0.001	0.001
ZQ708 YES	92.3645	0.0007	YES	85.6875	YES	1.2084	1.2875	92.364	89.84	89.64	90.6	270.08	0.7339	5	А	0	0	А	0	0
ZQ709 YES	11.2083	0.0022	YES	5.375	NO			11.208	6.25	5.81	5.61	17.674		3.3	А	0.001	0	А	0.001	0.001
ZQ710 YES	46.8229	0.3045	NO		NO			42.481	39.21	39.27	39.89	118.364		3.5	Dc	0.304	0.4	Dc	0.343	0.376
ZQ711 YES	3.0938	0.6598	NO		NO			1.747	0.26	0.22	0.14	0.624		0.7	Сс	0.631	0.9	Сс	0.78	0.891
ZQ712 YES	46.8542	0.3321	NO		NO			41.687	39.23	39.23	39.64	118.088		3.3	Ca	0.305	0.4	Dc	0.358	0.378
ZQ713 YES	33.1145	0.0043	YES	5.2917	NO			33.114	7.74	8.18	5.5	21.42		5	А	0.001	0	А	0	0
ZQ715 YES	15.0625	0.5995	NO		NO			9.649	0	9.2	4.13	13.328		1.3	Db	0.6	1	Db	0.627	1
ZQ716 YES	0.6875	0.8511	NO		NO			0.189	0	0.15	0	0.157		0.1	Db	0.852	0.9	Dc	0.971	0.918
ZQ717 YES	15.052	0.5926	NO		NO			9.766	0	9.44	4.19	13.634		1.3	Db	0.596	1	Db	0.617	1.007
ZQ730 YES	0.8125	0.8128	NO		NO			0.276	0	0.22	0	0.216		0.2	Db	0.815	0.9	Сс	0.899	0.962
ZQ731 YES	1.2812	0.8849	NO		NO			0.278	0	0.19	0.16	0.353		0.2	Db	0.89	0.9	Da	0.908	0.923
ZQ732 YES	3.0625	0.2003	NO		NO			2.94	2.14	1.77	2.36	6.271		1.6	Ca	0.198	0.2	Cb	0.214	0.221
ZQ733 YES	2.6042	0.777	NO		NO			1.032	0.79	0.68	0.85	2.329		0.4	Ca	0.777	0.8	Db	0.778	0.792
ZQ734 YES	2.1042	0.8462	NO		NO			0.597	0.45	0.45	0.49	1.391		0.3	Db	0.849	0.9	Dc	0.857	0.885
ZQ735 YES	2.2813	0.8357	NO		NO			0.688	0.5	0.51	0.57	1.579		0.3	Db	0.837	0.8	Ca	0.85	0.867
ZQ736 YES	2.2916	0.8366	NO		NO			0.688	0.58	0.49	0.52	1.594		0.3	Сс	0.839	0.8	Db	0.86	0.87
ZQ737 YES	2.0729	0.8496	NO		NO			0.577	0.42	0.42	0.48	1.322		0.3	Ca	0.849	0.9	Dc	0.866	0.893
ZQ738 YES	12.5	0.8007	NO		NO			4.486	0	4.31	0	4.309		0.7	Db	0.801	1	Ca	0.836	1.005
ZQ740 YES	24.875	0.8028	NO		NO			8.843	7.44	0	5.86	13.299		0.7	Cb	0.726	1	Cb	0.753	1.002
ZQ741 YES	2.1355	0.8681	NO		NO			0.526	0	0.08	0.02	0.098		0.3	Ca	0.852	1	Ca	0.939	1.016

ZQ742 YES	3.2188	0.8505	NO		NO			0.89	0.2	0	0.03	0.233		0.3	Da	0.85	0.9	Cb	0.929	0.997
ZQ743 YES	0.0313	0.8984	NO		NO			0.006	0	0.01	0	0.008		0.1	Ca	0.885	0.9	А	0.946	0.947
ZQ755 YES	5.0625	0.7822	NO		NO			1.965	1.87	0.89	0	2.756		0.4	Сс	0.783	1	Da	0.79	0.98
ZQ756 YES	32.1146	0.7823	NO		NO			12.461	11.05	2.67	0	13.721		1.1	Сс	0.782	1	Сс	0.792	0.966
ZQ758 YES	5.573	0.8387	NO		YES	5.3542	1.1224	1.653	0	0	1.52	1.519	0.8669	0.3	Dc	0.975	1	Db	0.983	0.974
ZQ759 YES	5.0104	0.8782	NO		NO			1.146	0	0.57	0.59	1.153		0.2	Ca	0.851	1	Ca	0.839	0.96
ZQ761 YES	5.6979	0.7632	NO		NO			2.379	0	1.91	1.96	3.876		0.5	Ca	0.688	1	Ca	0.684	0.961
ZQ762 YES	95.2604	0.0012	YES	76.9271	YES	5.9479	1.3079	95.26	83.58	83.95	87.31	254.836	2.4675	5	А	0.001	0	А	0	0
ZQ763 YES	5.9062	0.0014	YES	5.4375	NO			5.906	5.59	5.74	5.73	17.065		2	А	0.001	0	А	0	0
ZQ766 YES	2.0104	0.1109	NO		NO			1.986	1.02	0.81	0.52	2.357		1.8	Сс	0.085	0.2	Cb	0.497	0.38
ZQ767 YES	95.4271	0.0043	YES	94.5729	NO			95.425	94.49	94.43	94.4	283.32		5	А	0	0	А	0	0
ZQ769 YES	8.4167	0.7198	NO		NO			4.056	0.18	0.1	1.11	1.401		0.6	Dc	0.719	0.9	Dc	0.84	0.976
ZQ770 YES	15.1354	0.8735	NO		YES	16.2812	1.1518	3.587	0.26	0	0.2	0.46	2.5725	0.4	Da	0.476	0.8	Da	0.023	0.044
ZQ771 YES	245.156	0.0008	YES	244.5	YES	0.1042	1.15	245.16	243.39	243.34	243.21	729.946	0.0318	5	A	0.001	0	А	0	0
ZQ773 YES	6.9374	0.001	YES	5.0937	NO			6.937	5.49	5.27	5.32	16.08		2	A	0.001	0	А	0	0
ZQ774 YES	13.8021	0.0042	YES	5.0312	NO			13.802	5.62	5.3	5.35	16.262		3.3	A	0	0	А	0	0
ZQ778 YES	2.2708	0.8777	NO		NO			0.521	0.01	0.16	0.01	0.181		0.2	Сс	0.868	0.9	Ca	0.922	0.945
ZQ779 YES	2.0521	0.1249	NO		NO			2.02	0.86	0.65	0.46	1.966		1.8	Сс	0.116	0.3	Da	0.387	0.595
ZQ783 YES	10.9167	0.8743	NO		NO			2.572	0	0	2.35	2.348		0.4	Cb	0.87	1	Dc	0.87	0.963
ZQ784 YES	8.25	0.8883	NO		NO			1.74	0	0	1.51	1.51		0.2	Dc	0.89	1	Dc	0.874	0.953
ZQ785 YES	2.875	0.5746	NO		NO			1.926	0.02	0.29	0.18	0.487		0.9	Db	0.573	1	Ca	0.755	0.96
ZQ786 YES	4.8958	0.6274	NO		NO			2.969	2.59	1.54	0	4.122		0.7	Сс	0.623	1	Сс	0.639	0.984
ZQ788 YES	9.6875	0.6038	NO		NO			6.156	5.3	3.14	0	8.445		0.8	Da	0.604	1	Сс	0.629	0.977
ZQ791 YES	0.7188	0.509	NO		NO			0.533	0.37	0.25	0	0.626		0.5	Сс	0.426	1	Сс	0.589	1.019
ZQ792 YES	145.792	0.4939	NO		NO			110.23	108.84	0	108.63	217.47		2.5	Cb	0.036	1	Cb	0.039	1.022
ZQ794 YES	5.5417	0.6239	NO		NO			3.385	2.78	1.66	0	4.442		0.8	Da	0.624	1	Сс	0.645	0.977
ZQ796 YES	4.6042	0.6131	NO		NO			2.874	2.26	1.34	0	3.599		0.8	Da	0.613	1	Сс	0.645	0.975
ZQ798 YES	5.1459	0.6104	NO		NO			3.229	2.69	1.54	0	4.234		0.8	Da	0.61	1	Cc	0.642	0.974
ZQ799 YES	9.1146	0.6088	NO		NO			5.736	4.89	3	0	7.891		0.8	Da	0.609	1	Сс	0.636	0.963
ZQ801 YES	10.5521	0.6406	NO		NO			6.222	5.54	3.43	0	8.966		1.2	Сс	0.626	1	Сс	0.642	0.978
ZQ802 YES	0.1354	0.8735	NO		NO			0.032	0	0.03	0.01	0.046		0.1	Ca	0.84	1	Cb	0.979	0.959
ZQ805 YES	0.0313	0.898	NO		NO			0.006	0.01	0	0	0.008		0.1	Cb	0.887	1	Cb	0.937	0.971
ZQ809 YES	95.125	0.0003	YES	87.6667	YES	0.302	1.2335	95.125	93.26	93.19	92.82	279.271	0.1132	5	A	0	0	А	0	0
ZQ812 YES	10.0625	0.0009	YES	5.2708	YES	10.0521	1.1197	10.062	5.41	5.55	5.6	16.549	0.1283	3.3	А	0	0	А	0	0
ZQ813 YES	94.6875	0.0002	YES	88.8958	YES	1.0729	1.1794	94.687	92.98	92.47	93.11	278.554	0.3796	5	A	0	0	А	0	0
ZQ814 YES	5.6874	0.001	YES	5.2499	NO			5.687	5.43	5.45	5.57	16.45		2	A	0.001	0	A	0	0
ZQ816 YES	85.9791	0	YES	82.2813	YES	8.8334	1.1434	85.979	85.04	84.42	84.19	253.643	0.2089	5	A	0	0	A	0	0
ZQ817 YES	4.573	0.8489	NO		NO			1.278	0	0	1.12	1.124		0.3	Dc	0.849	1	Cb	0.865	1.002
ZQ818 YES	4.3334	0.8686	NO		NO			1.064	0	0	1.03	1.03		0.3	Cb	0.863	1	Cb	0.858	1.009
ZQ830 YES	9.0416	0.8969	NO		NO			1.768	0	1.35	0	1.348		0.2	Db	0.898	1	Db	0.897	1.011
ZQ831 YES	1.8021	0.7916	NO		NO			0.673	0.62	0	0	0.619		0.4	Da	0.793	1	Da	0.792	0.979
ZQ833 YES	7.2084	0.3773	NO		NO			6.182	4.03	4.28	4.98	13.289		1.2	Dc	0.379	0.6	Dc	0.391	0.569

70834 VES	10 1666	0 3708 NO					16 531	10 73	11 87	13.05	36 551		2.1 Dc	0 373	06	De	0 377	0 582
20005 100	17.1450	0.0750 NO	 ;				10.001	10.75	44.70	10.00	00.001		2.1 Dc	0.070	0.0	Dc	0.011	0.502
ZQ835 YES	17.1459	0.3753 NO	1	NO			14.731	10.51	11.76	13.64	35.92		2.1 DC	0.376	0.6	DC	0.382	0.579
ZQ836 YES	15.5208	0.3749 NO	1	NO			13.339	10.16	11.11	12.85	34.121		2.1 Dc	0.374	0.6	Dc	0.381	0.576
ZQ839 YES	5.0521	0.7923 NO	1	NO			1.881	0	0.02	1.75	1.775		0.4 Dc	0.79	1	Dc	0.781	0.97
ZQ840 YES	0.3541	0.8726 NO	1	NO			0.084	0.04	0	0.03	0.065		0.1 Cb	0.858	1	Da	0.908	0.957
ZQ843 YES	25.0521	0.7972 NO	1	NO			9.131	7.55	0	6.21	13.763		1 Cb	0.721	1	Cb	0.731	0.996
ZQ844 YES	97.0104	0 YES	81.4063	YES	2.4583	1.8351	97.01	84.48	84.32	84.24	253.046	4.6028	5 A	0	0	А	0	0
ZQ845 YES	2.1979	0.8598 NO	1	NO			0.573	0	0	0.11	0.108		0.3 Dc	0.859	0.9	Dc	0.93	0.999
ZQ846 YES	24.4688	0.7969 NO	1	NO			8.93	7.43	0	6.58	14.01		0.7 Cb	0.721	1	Cb	0.736	1
ZQ850 YES	5.1458	0.8996 NO	1	NO			0.981	0	0.11	0	0.112		0.2 Db	0.898	1	Db	0.896	1.008
ZQ852 YES	20.4167	0.7909 NO	1	NO			7.646	7.22	0	0	7.225		0.7 Da	0.792	1	Da	0.822	1.037
ZQ853 YES	0.1354	0.8864 NO	1	NO			0.029	0	0	0.03	0.03		0.1 Dc	0.886	1	Cb	0.974	1.012
ZQ854 YES	36.7396	0.6891 NO	1	NO			19.293	11.7	13.94	9.56	35.193		1.6 Ca	0.648	0.8	Db	0.708	0.745
ZQ855 YES	32.1771	0.6639 NO	1	NO			17.995	16.03	14.15	11.99	42.172		1.7 Ca	0.619	0.7	Da	0.685	0.659
ZQ856 YES	1.5104	0.8922 NO	1	NO			0.308	0.3	0	0	0.3		0.2 Da	0.89	1	Cb	0.938	0.98
ZQ859 YES	3.0833	0.8866 NO	1	NO			0.66	0	0	0.6	0.599		0.2 Dc	0.886	1	Cb	0.898	0.999
ZQ865 YES	95.5834	0 YES	94.8959	NO			95.583	94.54	94.83	94.75	284.124		5 A	0	0	A	0	0
ZQ867 YES	95.4584	0.0057 YES	89.4791	NO			95.455	93.74	94.25	94.16	282.149		5 Dc	0.006	0	Ca	0.012	0.038
ZQ868 YES	95.4271	0.0052 YES	89.4479	NO			95.425	93.7	94.24	94.15	282.091		5 Dc	0.007	0	Ca	0.012	0.039
ZQ869 YES	47.8958	0.0124 YES	5.2499	NO			47.888	8.68	5.68	8.2	22.56		4.9 Dc	0.014	0.1	Cb	0.007	0.029
ZQ871 YES	95.3541	0.2198 NO	1	NO			90.747	45.75	59.24	9.01	114.003		3.9 Cc	0.198	0.3	Сс	0.218	0.238
ZQ872 YES	6.052	0.2299 NO	1	NO			5.732	5.44	5.35	5.32	16.112		1.5 Ca	0.23	0.3	А	0.245	0.248
ZQ879 YES	0.0625	0.894 NO	1	NO			0.013	0	0.01	0	0.014		0.1 Db	0.894	0.9	Сс	0.934	0.963
ZQ887 YES	6.5834	0.595 NO	1	NÖ			4.253	0	3.86	1.38	5.238		0.8 Db	0.596	1	Db	0.613	0.987

* when an event is not classified as a voltage dip, in the column retained voltage

minimum voltage is written instead.

Appendix E

MatLab Results - Synthetic sags

- half cycle rms voltage calculated every sample

Synthetic Dip	Sag	Duration of voltage sag [cycles]	Retained voltage * [pu]	Interrup-tion	Interruption Duration [cycles]	Swell	Swell Duration [cycles]	Sag Energy calc. from Dur.& Ret [cycles]	Evs_a, Voltage-Sag Energy Index [cycles]	Evs_b, Voltage-Sag Energy Index [cycles]	Evs_c, Voltage-Sag Energy Index [cycles]	Evs, Voltage-Sag Energy Index [cycles]	Voltage-Swell Energy Index [cycles]	Voltage-Sag Severity [pu]	Six Phase RMS - Dip Type	V (from sixRMS)	F (from sixRMS)	Symmetrical Component Method	V (from symm. comp. method)	F (from symm. comp. method)
A_0.1	YES	5.3906	0.1	YES	4.3203	NO		5.337	4.94	4.92	4.93	14.799		1.8	Α	0.1	0.1	Α	0.1	0.1
Ba_0.1	YES	5.3906	0.1	YES	4.4844	NO		5.337	4.94	0	0	4.94		1.8	Da	0.4	1	Da	0.4	1
Bb_0.1	YES	5.1641	0.1	YES	4.4766	NO		5.112	0	4.92	0	4.925		1.8	Db	0.4	1	Db	0.4	0.999
Bc_0.1	YES	5.1562	0.1	YES	4.3359	NO		5.105	0	0	4.93	4.934		1.8	Dc	0.4	1	Dc	0.4	1
Ca_0.1	YES	5.2422	0.4481	NO		NO		4.19	0	3.7	3.7	7.408		1.1038	Са	0.1	1	Ca	0.1	1
Cb_0.1	YES	5.3828	0.4618	NO		NO		4.235	3.7	0	3.71	7.41		1.0764	Cb	0.1	1	Cb	0.1	1
Cc_0.1	YES	5.3828	0.4692	NO		NO		4.198	3.7	3.7	0	7.397		1.0616	Сс	0.1	1	Cc	0.101	0.996
Da_0.1	YES	5.3906	0.1	YES	4.4844	NO		5.337	4.94	1.24	1.24	7.416		1.8	Da	0.1	1	Da	0.1	0.996
Db_0.1	YES	5.1641	0.1	YES	4.4844	NO		5.112	1.2	4.92	1.24	7.366		1.8	Db	0.1	1	Db	0.1	0.999
Dc_0.1	YES	5.1562	0.1	YES	4.5	NO		5.105	1.22	1.24	4.93	7.389		1.8	Dc	0.1	1	Dc	0.1	0.999
Ea_0.1	YES	5.3047	0.1	YES	4.3359	NO		5.252	0	4.92	4.93	9.859		1.8	Са	0.1	0.7	Са	0.1	0.7
Eb_0.1	YES	5.3906	0.1	YES	4.3203	NO		5.337	4.94	0	4.93	9.874		1.8	Cb	0.1	0.7	Cb	0.1	0.7
Ec_0.1	YES	5.3906	0.1	YES	4.4609	NO		5.337	4.94	4.92	0	9.865		1.8	Сс	0.1	0.7	Cc	0.1	0.7
Fa_0.1	YES	5.3906	0.1	YES	4.4844	NO		5.337	4.94	3.13	3.14	11.202		1.8	Da	0.1	0.7	Da	0.1	0.7
Fb_0.1	YES	5.3438	0.1	YES	4.4844	NO		5.29	3.14	4.92	3.13	11.195		1.8	Db	0.1	0.7	Db	0.1	0.7
Fc_0.1	YES	5.3359	0.1	YES	4.5	NO		5.283	3.13	3.13	4.93	11.203		1.8	Dc	0.1	0.7	Dc	0.1	0.7

Ga 0.1	YES	5.2812	0.345	NO	NO	4.653	2.53	4.33	4.33	11.196	1.31	Ca	0.1	0.7	Ca	0.1	0.7
Gb_0.1	YES	5.3828	0.3606	NO	NO	4.683	4.34	2.52	4.34	11.201	1.2788	Cb	0.1	0.7	Cb	0.1	0.7
Gc_0.1	YES	5.3906	0.3606	NO	NO	4.69	4.34	4.33	2.53	11.192	1.2788	Сс	0.1	0.7	Сс	0.1	0.7
A_0.2	YES	5.3906	0.2	NO	NO	5.175	4.79	4.77	4.78	14.349	1.6	А	0.2	0.2	А	0.2	0.2
Ba_0.2	YES	5.3906	0.2	NO	NO	5.175	4.79	0	0	4.791	1.6	Da	0.467	1	Da	0.467	1
Bb_0.2	YES	5.1563	0.2	NO	NO	4.95	0	4.77	0	4.775	1.6	Db	0.467	1	Db	0.467	0.999
Bc_0.2	YES	5.1562	0.2	NO	NO	4.95	0	0	4.78	4.784	1.6	Dc	0.467	1	Dc	0.467	1
Ca_0.2	YES	5.2266	0.4849	NO	NO	3.998	0	3.59	3.59	7.179	1.0302	Ca	0.2	1	Ca	0.2	1
Cb_0.2	YES	5.3672	0.5017	NO	NO	4.016	3.59	0	3.59	7.179	0.9966	Cb	0.2	1	Cb	0.2	1
Cc_0.2	YES	5.3672	0.5091	NO	NO	3.976	3.59	3.58	0	7.168	0.9818	Сс	0.2	1	Сс	0.2	0.997
Da_0.2	YES	5.3906	0.2	NO	NO	5.175	4.79	1.19	1.2	7.177	1.6	Da	0.2	1	Da	0.2	0.997
Db_0.2	YES	5.1563	0.2	NO	NO	4.95	1.16	4.77	1.2	7.132	1.6	Db	0.2	1	Db	0.2	0.999
Dc_0.2	YES	5.1562	0.2	NO	NO	4.95	1.17	1.2	4.78	7.155	1.6	Dc	0.2	1	Dc	0.2	0.999
Ea_0.2	YES	5.3047	0.2	NO	NO	5.093	0	4.77	4.78	9.558	1.6	Са	0.2	0.733	Ca	0.2	0.733
Eb_0.2	YES	5.3906	0.2	NO	NO	5.175	4.79	0	4.78	9.574	1.6	Cb	0.2	0.733	Cb	0.2	0.733
Ec_0.2	YES	5.3906	0.2	NO	NO	5.175	4.79	4.77	0	9.565	1.6	Сс	0.2	0.733	Сс	0.2	0.733
Fa_0.2	YES	5.3906	0.2	NO	NO	5.175	4.79	2.91	2.92	10.616	1.6	Da	0.2	0.733	Da	0.2	0.733
Fb_0.2	YES	5.3281	0.2	NO	NO	5.115	2.92	4.77	2.92	10.609	1.6	Db	0.2	0.733	Db	0.2	0.733
Fc_0.2	YES	5.3125	0.2	NO	NO	5.1	2.91	2.92	4.78	10.615	1.6	Dc	0.2	0.733	Dc	0.2	0.733
Ga_0.2	YES	5.2734	0.3956	NO	NO	4.448	2.29	4.16	4.16	10.61	1.2088	Са	0.2	0.733	Са	0.2	0.733
Gb_0.2	YES	5.3828	0.4055	NO	NO	4.498	4.17	2.28	4.16	10.614	1.189	Cb	0.2	0.733	Cb	0.2	0.733
Gc_0.2	YES	5.3828	0.4055	NO	NO	4.498	4.17	4.15	2.29	10.606	1.189	Сс	0.2	0.733	Сс	0.2	0.733
A_0.3	YES	5.3828	0.3	NO	NO	4.898	4.54	4.52	4.53	13.599	1.4	Α	0.3	0.3	А	0.3	0.3
Ba_0.3	YES	5.3828	0.3	NO	NO	4.898	4.54	0	0	4.54	1.4	Da	0.533	1	Da	0.533	1
Bb_0.3	YES	5.1484	0.3	NO	NO	4.685	0	4.52	0	4.525	1.4	Db	0.533	1	Db	0.533	1
Bc_0.3	YES	5.1562	0.3	NO	NO	4.692	0	0	4.53	4.534	1.4	Dc	0.533	1	Dc	0.533	1
Ca_0.3	YES	5.2109	0.5314	NO	NO	3.739	0	3.4	3.4	6.798	0.9372	Са	0.3	1	Ca	0.3	1
Cb_0.3	YES	5.3594	0.5499	NO	NO	3.739	3.4	0	3.4	6.799	0.9002	Cb	0.3	1	Cb	0.3	1
Cc_0.3	YES	5.3594	0.5569	NO	NO	3.697	3.4	3.39	0	6.791	0.8862	Сс	0.3	1	Сс	0.3	0.997
Da_0.3	YES	5.3828	0.3	NO	NO	4.898	4.54	1.12	1.13	6.79	1.4	Da	0.3	1	Da	0.3	0.998
Db_0.3	YES	5.1484	0.3	NO	NO	4.685	1.1	4.52	1.13	6.749	1.4	Db	0.3	1	Db	0.3	0.999
Dc_0.3	YES	5.1562	0.3	NO	NO	4.692	1.1	1.13	4.53	6.765	1.4	Dc	0.3	1	Dc	0.3	0.999
Ea_0.3	YES	5.2969	0.3	NO	NO	4.82	0	4.52	4.53	9.059	1.4	Са	0.3	0.767	Са	0.3	0.767
Eb_0.3	YES	5.3828	0.3	NO	NO	4.898	4.54	0	4.53	9.074	1.4	Cb	0.3	0.767	Cb	0.3	0.767
Ec_0.3	YES	5.3828	0.3	NO	NO	4.898	4.54	4.52	0	9.064	1.4	Сс	0.3	0.767	Сс	0.3	0.767
Fa_0.3	YES	5.3828	0.3	NO	NO	4.898	4.54	2.66	2.66	9.861	1.4	Da	0.3	0.767	Da	0.3	0.767
Fb_0.3	YES	5.2969	0.3	NO	NO	4.82	2.66	4.52	2.67	9.853	1.4	Db	0.3	0.767	Db	0.3	0.767
Fc_0.3	YES	5.2656	0.3	NO	NO	4.792	2.63	2.67	4.53	9.833	1.4	Dc	0.3	0.767	Dc	0.3	0.767
Ga_0.3	YES	5.2578	0.4569	NO	NO	4.16	2.03	3.91	3.91	9.847	1.0862	Ca	0.3	0.767	Ca	0.3	0.767
Gb_0.3	YES	5.3672	0.4631	NO	NO	4.216	3.92	2.03	3.91	9.86	1.0738	Cb	0.3	0.767	Cb	0.3	0.767
Gc_0.3	YES	5.375	0.4631	NO	NO	4.222	3.92	3.9	2.03	9.853	1.0738	Сс	0.3	0.767	Сс	0.3	0.766
A_0.4	YES	5.375	0.4	NO	NO	4.515	4.19	4.18	4.18	12.547	1.2	А	0.4	0.4	A	0.4	0.4

Ba 0.4	YES	5.375	0.4	NO	NO	4.515	4.19	0	0	4.189	1.2	Da	0.6	1	Da	0.6	1
 Bb_0.4	YES	5.1406	0.4	NO	NO	4.318	0	4.18	0	4.176	1.2	Db	0.6	1	Db	0.6	1
Bc_0.4	YES	5.1406	0.4	NO	NO	4.318	0	0	4.18	4.182	1.2	Dc	0.6	1	Dc	0.6	1
Ca_0.4	YES	5.1953	0.5857	NO	NO	3.413	0	3.13	3.13	6.27	0.8286	Са	0.4	1	Са	0.4	1
Cb_0.4	YES	5.3359	0.6044	NO	NO	3.387	3.13	0	3.14	6.27	0.7912	Cb	0.4	1	Cb	0.4	1
Cc_0.4	YES	5.3438	0.6083	NO	NO	3.366	3.14	3.13	0	6.262	0.7834	Сс	0.4	1	Сс	0.4	0.998
Da_0.4	YES	5.375	0.4	NO	NO	4.515	4.19	1.01	1.02	6.228	1.2	Da	0.4	1	Da	0.4	0.998
Db_0.4	YES	5.1406	0.4	NO	NO	4.318	1	4.18	1.03	6.207	1.2	Db	0.4	1	Db	0.4	0.999
Dc_0.4	YES	5.1406	0.4	NO	NO	4.318	1	1.04	4.18	6.221	1.2	Dc	0.4	1	Dc	0.4	0.999
Ea_0.4	YES	5.2891	0.4	NO	NO	4.443	0	4.18	4.18	8.358	1.2	Са	0.4	0.8	Са	0.4	0.8
Eb_0.4	YES	5.375	0.4	NO	NO	4.515	4.19	0	4.18	8.371	1.2	Cb	0.4	0.8	Cb	0.4	0.8
Ec_0.4	YES	5.375	0.4	NO	NO	4.515	4.19	4.18	0	8.365	1.2	Сс	0.4	0.8	Сс	0.4	0.8
Fa_0.4	YES	5.375	0.4	NO	NO	4.515	4.19	2.37	2.38	8.94	1.2	Da	0.4	0.8	Da	0.4	0.8
Fb_0.4	YES	5.2266	0.4	NO	NO	4.39	2.34	4.18	2.38	8.898	1.2	Db	0.4	0.8	Db	0.4	0.8
Fc_0.4	YES	5.2344	0.4	NO	NO	4.397	2.34	2.38	4.18	8.907	1.2	Dc	0.4	0.8	Dc	0.4	0.8
Ga_0.4	YES	5.2422	0.5255	NO	NO	3.795	1.71	3.58	3.58	8.872	0.949	Са	0.4	0.8	Са	0.4	0.8
Gb_0.4	YES	5.3516	0.5292	NO	NO	3.853	3.59	1.77	3.58	8.936	0.9416	Cb	0.4	0.8	Cb	0.4	0.8
Gc_0.4	YES	5.3594	0.5292	NO	NO	3.858	3.59	3.57	1.77	8.931	0.9416	Сс	0.4	0.8	Сс	0.4	0.8
A_0.5	YES	5.3594	0.5	NO	NO	4.02	3.74	3.73	3.73	11.194	1	А	0.5	0.5	А	0.5	0.5
Ba_0.5	YES	5.3594	0.5	NO	NO	4.02	3.74	0	0	3.737	1	Da	0.667	1	Da	0.667	1
Bb_0.5	YES	5.125	0.5	NO	NO	3.844	0	3.73	0	3.726	1	Db	0.667	1	Db	0.667	1
Bc_0.5	YES	5.125	0.5	NO	NO	3.844	0	0	3.73	3.731	1	Dc	0.667	1	Dc	0.667	1
Ca_0.5	YES	5.1797	0.6459	NO	NO	3.019	0	2.8	2.8	5.59	0.7082	Ca	0.5	1	Ca	0.5	1
Cb_0.5	YES	5.3047	0.6614	NO	NO	2.984	2.78	0	2.79	5.575	0.6772	Cb	0.5	1	Cb	0.5	1
Cc_0.5	YES	5.3125	0.6614	NO	NO	2.989	2.79	2.79	0	5.581	0.6772	Сс	0.5	1	Сс	0.5	0.999
Da_0.5	YES	5.3594	0.5	NO	NO	4.02	3.74	0.04	0.04	3.819	1	Da	0.5	1	Da	0.5	0.999
Db_0.5	YES	5.125	0.5	NO	NO	3.844	0.03	3.73	0.07	3.822	1	Db	0.5	1	Db	0.5	1
Dc_0.5	YES	5.125	0.5	NO	NO	3.844	0.03	0.07	3.73	3.833	1	Dc	0.5	1	Dc	0.5	1
Ea_0.5	YES	5.2734	0.5	NO	NO	3.955	0	3.73	3.73	7.457	1	Ca	0.5	0.833	Ca	0.5	0.833
Eb_0.5	YES	5.3594	0.5	NO	NO	4.02	3.74	0	3.73	7.468	1	Cb	0.5	0.833	Cb	0.5	0.833
Ec_0.5	YES	5.3594	0.5	NO	NO	4.02	3.74	3.73	0	7.463	1	Сс	0.5	0.833	Сс	0.5	0.833
Fa_0.5	YES	5.3594	0.5	NO	NO	4.02	3.74	2.06	2.06	7.85	1	Da	0.5	0.833	Da	0.5	0.833
Fb_0.5	YES	5.1953	0.5	NO	NO	3.896	2.02	3.73	2.06	7.812	1	Db	0.5	0.833	Db	0.5	0.833
Fc_0.5	YES	5.2031	0.5	NO	NO	3.902	2.03	2.06	3.73	7.821	1	Dc	0.5	0.833	Dc	0.5	0.833
Ga_0.5	YES	5.2188	0.5988	NO	NO	3.348	1.43	3.17	3.18	7.777	0.8024	Са	0.5	0.833	Са	0.5	0.833
Gb_0.5	YES	5.3281	0.6009	NO	NO	3.404	3.18	1.49	3.17	7.844	0.7982	Cb	0.5	0.833	Cb	0.5	0.833
Gc_0.5	YES	5.3359	0.6009	NO	NO	3.409	3.18	3.17	1.49	7.842	0.7982	Сс	0.5	0.833	Сс	0.5	0.833
A_0.6	YES	5.3281	0.6	NO	NO	3.41	3.18	3.17	3.18	9.538	0.8	Α	0.6	0.6	Α	0.6	0.6
Ba_0.6	YES	5.3281	0.6	NO	NO	3.41	3.18	0	0	3.184	0.8	Da	0.733	1	Da	0.733	1
Bb_0.6	YES	5.0938	0.6	NO	NO	3.26	0	3.17	0	3.174	0.8	Db	0.733	1	Db	0.733	1
Bc_0.6	YES	5.1016	0.6	NO	NO	3.265	0	0	3.18	3.179	0.8	Dc	0.733	1	Dc	0.733	1
	VEC	5 1484	0 7108	NO	NO	2.547	0	2.38	2.38	4.761	0.5784	Ca	0.6	1	Ca	0.6	1

	VEC	F 0700	0 7044	NO	NO	1	0 40 4	0.04	0	0.00	4 700	0 5570	Ch-	0.0	4	Ch-	0.0	4
CD_0.6	TES	5.0703	0.7211	NO	NO		2.434	2.34	0	2.38	4.722	 0.5578	CD	0.6	1	CD	0.6	1
CC_0.6	TES	5.0703	0.7211	NO	NO		2.434	2.34	2.37	0	4.715	0.5578		0.6	1		0.6	0.999
Da_0.6	TES	5.3281	0.6	NO	 NO		3.41	3.18	0	0.01	3.193	0.8	Da	0.6	1	Da	0.6	0.999
Db_0.6	YES	5.0938	0.6	NO	 NO		3.26	0	3.17	0	3.174	0.8	Db	0.6	1	Db	0.6	1
Dc_0.6	YES	5.1016	0.6	NO	 NO		3.265	0	0.01	3.18	3.187	0.8	Dc	0.6	1	Dc	0.6	1
Ea_0.6	YES	5.25	0.6	NO	NO		3.36	0	3.17	3.18	6.354	 0.8	Ca	0.6	0.867	Ca	0.6	0.867
Eb_0.6	YES	5.3281	0.6	NO	 NO		3.41	3.18	0	3.18	6.363	0.8	Cb	0.6	0.867	Cb	0.6	0.867
Ec_0.6	YES	5.3281	0.6	NO	 NO		3.41	3.18	3.17	0	6.358	0.8	Сс	0.6	0.867	Сс	0.6	0.867
Fa_0.6	YES	5.3281	0.6	NO	NO		3.41	3.18	1.7	1.7	6.59	0.8	Da	0.6	0.867	Da	0.6	0.867
Fb_0.6	YES	5.1563	0.6	NO	NO		3.3	1.67	3.17	1.71	6.555	0.8	Db	0.6	0.867	Db	0.6	0.867
Fc_0.6	YES	5.1641	0.6	NO	NO		3.305	1.68	1.71	3.18	6.564	0.8	Dc	0.6	0.867	Dc	0.6	0.867
Ga_0.6	YES	5.1953	0.6755	NO	NO		2.825	1.15	2.69	2.69	6.528	0.649	Са	0.6	0.867	Ca	0.6	0.867
Gb_0.6	YES	5.2813	0.6766	NO	NO		2.864	2.69	1.2	2.69	6.579	0.6468	Cb	0.6	0.867	Cb	0.6	0.867
Gc_0.6	YES	5.2969	0.6766	NO	NO		2.872	2.69	2.69	1.2	6.58	0.6468	Сс	0.6	0.867	Сс	0.6	0.867
A_0.7	YES	5.2734	0.7	NO	NO		2.689	2.53	2.52	2.53	7.578	0.6	А	0.7	0.7	Α	0.7	0.7
Ba_0.7	YES	5.2734	0.7	NO	NO		2.689	2.53	0	0	2.527	0.6	Da	0.8	1	Da	0.8	1
Bb_0.7	YES	5.0625	0.7	NO	NO		2.582	0	2.52	0	2.525	0.6	Db	0.8	1	Db	0.8	1
Bc_0.7	YES	5.0547	0.7	NO	NO		2.578	0	0	2.53	2.525	0.6	Dc	0.8	1	Dc	0.8	1
Ca_0.7	YES	5.1016	0.7794	NO	NO		2.003	0	1.89	1.89	3.779	0.4412	Ca	0.7	1	Са	0.7	1
Cb_0.7	YES	5.0156	0.7858	NO	NO		1.919	1.86	0	1.89	3.742	0.4284	Cb	0.7	1	Cb	0.7	1
Cc_0.7	YES	5.0078	0.7858	NO	NO		1.916	1.86	1.88	0	3.738	0.4284	Сс	0.7	1	Сс	0.7	1
Da_0.7	YES	5.2734	0.7	NO	NO		2.689	2.53	0	0	2.527	0.6	Da	0.7	1	Da	0.7	1
Db_0.7	YES	5.0625	0.7	NO	NO		2.582	0	2.52	0	2.525	0.6	Db	0.7	1	Db	0.7	1
Dc_0.7	YES	5.0547	0.7	NO	NO		2.578	0	0	2.53	2.525	0.6	Dc	0.7	1	Dc	0.7	1
Ea 0.7	YES	5.2109	0.7	NO	NO		2.658	0	2.52	2.53	5.05	0.6	Са	0.7	0.9	Ca	0.7	0.9
Eb 0.7	YES	5.2734	0.7	NO	NO		2.689	2.53	0	2.53	5.053	0.6	Cb	0.7	0.9	Cb	0.7	0.9
Ec 0.7	YES	5.2734	0.7	NO	NO		2.689	2.53	2.52	0	5.052	0.6	Сс	0.7	0.9	Сс	0.7	0.9
Fa 0.7	YES	5.2734	0.7	NO	NO		2.689	2.53	1.31	1.32	5.154	0.6	Da	0.7	0.9	Da	0.7	0.9
Fb 0.7	YES	5.1016	0.7	NO	NO		2.602	1.25	2.52	1.32	5.093	0.6	Db	0.7	0.9	Db	0.7	0.9
	YES	5.1016	0.7	NO	NO		2.602	1.25	1.32	2.53	5.097	0.6	Dc	0.7	0.9	Dc	0.7	0.9
 Ga 0.7	YES	5.1406	0.7544	NO	NO		2.215	0.26	2.12	2.13	4.514	0.4912	Са	0.7	0.9	Са	0.7	0.9
	YES	5.0469	0.755	NO	NO		2.17	2.09	0.86	2.12	5.072	0.49	Cb	0.7	0.9	Cb	0.7	0.9
Gc 0.7	YES	5.0547	0.755	NO	NO		2.173	2.09	2.12	0.86	5.069	0.49	Сс	0.7	0.9	Сс	0.7	0.9
A 0.8	YES	5.1328	0.8	NO	NO		1.848	1.71	1.77	1.77	5.247	0.4	A	0.8	0.8	A	0.8	0.8
Ba 0.8	YES	4.8359	0.8	NO	NO		1.741	1.71	0	0	1.708	0.4	Da	0.867	1	Сс	0.902	0.966
Bb 0.8	YES	4,9766	0.8	NO	NO		1.792	0	1.77	0	1.768	0.4	Db	0.867	1	Са	0.9	0.968
Bc 0.8	YES	4.9766	0.8	NO	NO	\neg	1.792	0	0	1.77	1.77	 0.4	Dc	0.867	1	Cb	0.902	0.966
Ca 0.8	YES	4,9922	0.8508	NO	NO	\neg	1.379	0	1.32	1.32	2,635	 0.2984	Ca	0.8	1	Ca	0.8	1
Cb 0.8	YES	4.8984	0.8544	NO	NO	\neg	1.323	1.25	0	1.32	2.569	0.2912	Ch	0.8	1	Ch	0.8	1
$C_{\rm C} = 0.8$	YES	4 8906	0.8544	NO	 NO	-	1 32	1.25	1 31	0	2.563	 0.2012	Cc	0.8	1	Cc	0.8	1
Da 0.8	YES	4.8350	0.8	NO	 NO	-	1 741	1.20	0	0	1 708	 0.2012	Da	0.0	1	Da	0.0	1
Da_0.0	VES	4 9766	0.0	NO	NO	\rightarrow	1 702	0	1 77	0	1.700	 0.4	Da	0.0	1	Dh	0.0	1
0.0_0.0	123	4.3700	0.0		110		1.132	U	1.77	v	1.700	0.4	00	0.0		00	0.0	

Dc_0.8	YES	4.9766	0.8	NO	NO	1.792	0	0	1.77	1.77	0.4	Dc	0.8	1	Dc	0.8	1
Ea_0.8	YES	5.1328	0.8	NO	NO	1.848	0	1.77	1.77	3.538	0.4	Са	0.8	0.933	Са	0.8	0.933
Eb_0.8	YES	4.9766	0.8	NO	NO	1.792	1.71	0	1.77	3.478	0.4	Cb	0.8	0.933	Cb	0.8	0.933
Ec_0.8	YES	5	0.8	NO	NO	1.8	1.71	1.77	0	3.477	0.4	Сс	0.8	0.933	Сс	0.8	0.933
Fa_0.8	YES	4.8359	0.8	NO	NO	1.741	1.71	0	0	1.708	0.4	Da	0.8	0.933	Da	0.8	0.933
Fb_0.8	YES	4.9766	0.8	NO	NO	1.792	0	1.77	0.01	1.776	0.4	Db	0.8	0.933	Db	0.8	0.933
Fc_0.8	YES	4.9766	0.8	NO	NO	1.792	0	0.01	1.77	1.777	0.4	Dc	0.8	0.933	Dc	0.8	0.933
Ga_0.8	YES	5.0469	0.8351	NO	NO	1.527	0	1.48	1.48	2.958	0.3298	Са	0.8	0.933	Са	0.8	0.933
Gb_0.8	YES	4.9297	0.8353	NO	NO	1.49	1.42	0	1.48	2.893	0.3294	Cb	0.8	0.933	Cb	0.8	0.933
Gc_0.8	YES	4.9297	0.8353	NO	NO	1.49	1.41	1.48	0	2.889	0.3294	Сс	0.8	0.933	Сс	0.8	0.933
A_0.9	YES	4.5	0.9	NO	NO	0.855	0.16	0.82	0.52	1.504	0.2	Α	0.9	0.9	А	0.9	0.9
Ba_0.9	YES	1.4141	0.9	NO	NO	0.269	0.16	0	0	0.157	0.2	Da	0.933	1	Сс	0.95	0.983
Bb_0.9	YES	4.5	0.9	NO	NO	0.855	0	0.74	0	0.741	0.2	Db	0.933	1	Са	0.95	0.983
Bc_0.9	YES	4.4141	0.9	NO	NO	0.839	0	0	0.52	0.523	0.2	Dc	0.933	1	Cb	0.95	0.983
Ca_0.9	NO		0.9245	NO	NO						0						
Cb_0.9	NO		0.926	NO	NO						0						
Cc_0.9	NO		0.926	NO	NO						0						
Da_0.9	YES	1.4141	0.9	NO	NO	0.269	0.16	0	0	0.157	0.2	Da	0.9	1	Сс	0.926	0.975
Db_0.9	YES	4.5	0.9	NO	NO	0.855	0	0.82	0	0.824	0.2	Db	0.9	1	Са	0.925	0.975
Dc_0.9	YES	4.4844	0.9	NO	NO	0.852	0	0	0.81	0.806	0.2	Dc	0.9	1	Cb	0.926	0.974
Ea_0.9	YES	4.5	0.9	NO	NO	0.855	0	0.74	0.52	1.263	0.2	Ca	0.9	0.967	Dc	0.917	0.95
Eb_0.9	YES	4.4141	0.9	NO	NO	0.839	0.16	0	0.52	0.68	0.2	Cb	0.9	0.967	Da	0.917	0.95
Ec_0.9	YES	4.5	0.9	NO	NO	0.855	0.16	0.74	0	0.898	0.2	Сс	0.9	0.967	Db	0.917	0.951
Fa_0.9	YES	1.4141	0.9	NO	NO	0.269	0.16	0	0	0.157	0.2	Da	0.9	0.967	Сс	0.917	0.95
Fb_0.9	YES	4.5	0.9	NO	NO	0.855	0	0.82	0	0.824	0.2	Db	0.9	0.967	Са	0.917	0.951
Fc_0.9	YES	4.4844	0.9	NO	NO	0.852	0	0	0.81	0.806	0.2	Dc	0.9	0.967	Cb	0.917	0.95
Ga_0.9	NO		0.9171	NO	NO						0						
Gb_0.9	NO		0.9171	NO	NO						0						
Gc_0.9	NO		0.9171	NO	NO						0						

Appendix E

MatLab Results - Synthetic Sags

- one cycle rms voltage calculated every sample

Synthetic Dip	Sag	Duration of voltage sag [cycles]	Retained voltage * [pu]	Interrup-tion	Interruption Duration [cycles]	Swell	Swell Duration [cycles]	Sag Energy calc. from Dur.& Ret [cycles]	Evs_a, Voltage-Sag Energy Index [cycles]	Evs_b, Voltage-Sag Energy Index [cycles]	Evs_c, Voltage-Sag Energy Index [cycles]	Evs, Voltage-Sag Energy Index [cycles]	Voltage-Swell Energy Index [cycles]	Voltage-Sag Severity [pu]	Six Phase RMS - Dip Type	V (from sixRMS)	F (from sixRMS)	Symmetrical Component Method	V (from symm. comp. method)	F (from symm. comp. method)
A_0.1	YES	5	0.1	YES	4.3203	NO		4.95	4.94	4.92	4.93	14.799		1.8	А	0.1	0.1	Α	0.1	0.1
Ba_0.1	YES	5	0.1	YES	4.4844	NO		4.95	4.94	0	0	4.94		1.8	Da	0.4	1	Da	0.4	1
Bb_0.1	YES	5	0.1	YES	4.4766	NO		4.95	0	4.92	0	4.925		1.8	Db	0.4	1	Db	0.4	0.999
Bc_0.1	YES	5	0.1	YES	4.3359	NO		4.95	0	0	4.93	4.934		1.8	Dc	0.4	1	Dc	0.4	1
Ca_0.1	YES	5	0.4481	NO		NO		3.996	0	3.7	3.7	7.408		1.1038	Са	0.1	1	Ca	0.1	1
Cb_0.1	YES	5	0.4618	NO		NO		3.934	3.7	0	3.71	7.41		1.0764	Cb	0.1	1	Cb	0.1	1
Cc_0.1	YES	5	0.4692	NO		NO		3.899	3.7	3.7	0	7.397		1.0616	Сс	0.1	1	Cc	0.101	0.996
Da_0.1	YES	5	0.1	YES	4.4844	NO		4.95	4.94	1.24	1.24	7.416		1.8	Da	0.1	1	Da	0.1	0.996
Db_0.1	YES	5	0.1	YES	4.4844	NO		4.95	1.2	4.92	1.24	7.366		1.8	Db	0.1	1	Db	0.1	0.999
Dc_0.1	YES	5	0.1	YES	4.5	NO		4.95	1.22	1.24	4.93	7.389		1.8	Dc	0.1	1	Dc	0.1	0.999
Ea_0.1	YES	5	0.1	YES	4.3359	NO		4.95	0	4.92	4.93	9.859		1.8	Са	0.1	0.7	Ca	0.1	0.7
Eb_0.1	YES	5	0.1	YES	4.3203	NO		4.95	4.94	0	4.93	9.874		1.8	Cb	0.1	0.7	Cb	0.1	0.7
Ec_0.1	YES	5	0.1	YES	4.4609	NO		4.95	4.94	4.92	0	9.865		1.8	Cc	0.1	0.7	Cc	0.1	0.7
Fa_0.1	YES	5	0.1	YES	4.4844	NO		4.95	4.94	3.13	3.14	11.202		1.8	Da	0.1	0.7	Da	0.1	0.7
Fb_0.1	YES	5	0.1	YES	4.4844	NO		4.95	3.14	4.92	3.13	11.195		1.8	Db	0.1	0.7	Db	0.1	0.7
Fc_0.1	YES	5	0.1	YES	4.5	NO		4.95	3.13	3.13	4.93	11.203		1.8	Dc	0.1	0.7	Dc	0.1	0.7
Ga_0.1	YES	5	0.345	NO		NO		4.405	2.53	4.33	4.33	11.196		1.31	Ca	0.1	0.7	Ca	0.1	0.7

Gb_0.1	YES	5	0.3606	NO	NO	4.35	4.34	2.52	4.34	11.201	1.2788	Cb	0.1	0.7	Cb	0.1	0.7
Gc_0.1	YES	5	0.3606	NO	NO	4.35	4.34	4.33	2.53	11.192	1.2788	Сс	0.1	0.7	Сс	0.1	0.7
A_0.2	YES	5	0.2	NO	NO	4.8	4.79	4.77	4.78	14.349	1.6	А	0.2	0.2	Α	0.2	0.2
Ba_0.2	YES	5	0.2	NO	NO	4.8	4.79	0	0	4.791	1.6	Da	0.467	1	Da	0.467	1
Bb_0.2	YES	5	0.2	NO	NO	4.8	0	4.77	0	4.775	1.6	Db	0.467	1	Db	0.467	0.999
Bc_0.2	YES	5	0.2	NO	NO	4.8	0	0	4.78	4.784	1.6	Dc	0.467	1	Dc	0.467	1
Ca_0.2	YES	5	0.4849	NO	NO	3.824	0	3.59	3.59	7.179	1.0302	Са	0.2	1	Са	0.2	1
Cb_0.2	YES	5	0.5017	NO	NO	3.741	3.59	0	3.59	7.179	0.9966	Cb	0.2	1	Cb	0.2	1
Cc_0.2	YES	5	0.5091	NO	NO	3.704	3.59	3.58	0	7.168	0.9818	Сс	0.2	1	Сс	0.2	0.997
Da_0.2	YES	5	0.2	NO	NO	4.8	4.79	1.19	1.2	7.177	1.6	Da	0.2	1	Da	0.2	0.997
Db_0.2	YES	5	0.2	NO	NO	4.8	1.16	4.77	1.2	7.132	1.6	Db	0.2	1	Db	0.2	0.999
Dc_0.2	YES	5	0.2	NO	NO	4.8	1.17	1.2	4.78	7.155	1.6	Dc	0.2	1	Dc	0.2	0.999
Ea_0.2	YES	5	0.2	NO	NO	4.8	0	4.77	4.78	9.558	1.6	Са	0.2	0.733	Са	0.2	0.733
Eb_0.2	YES	5	0.2	NO	NO	4.8	4.79	0	4.78	9.574	1.6	Cb	0.2	0.733	Cb	0.2	0.733
Ec_0.2	YES	5	0.2	NO	NO	4.8	4.79	4.77	0	9.565	1.6	Сс	0.2	0.733	Сс	0.2	0.733
Fa_0.2	YES	5	0.2	NO	NO	4.8	4.79	2.91	2.92	10.616	1.6	Da	0.2	0.733	Da	0.2	0.733
Fb_0.2	YES	5	0.2	NO	NO	4.8	2.92	4.77	2.92	10.609	1.6	Db	0.2	0.733	Db	0.2	0.733
Fc_0.2	YES	5	0.2	NO	NO	4.8	2.91	2.92	4.78	10.615	1.6	Dc	0.2	0.733	Dc	0.2	0.733
Ga_0.2	YES	5	0.3956	NO	NO	4.218	2.29	4.16	4.16	10.61	1.2088	Са	0.2	0.733	Са	0.2	0.733
Gb_0.2	YES	5	0.4055	NO	NO	4.178	4.17	2.28	4.16	10.614	1.189	Cb	0.2	0.733	Cb	0.2	0.733
Gc_0.2	YES	5	0.4055	NO	NO	4.178	4.17	4.15	2.29	10.606	1.189	Сс	0.2	0.733	Сс	0.2	0.733
A_0.3	YES	5	0.3	NO	NO	4.55	4.54	4.52	4.53	13.599	1.4	А	0.3	0.3	А	0.3	0.3
Ba_0.3	YES	5	0.3	NO	NO	4.55	4.54	0	0	4.54	1.4	Da	0.533	1	Da	0.533	1
Bb_0.3	YES	5	0.3	NO	NO	4.55	0	4.52	0	4.525	1.4	Db	0.533	1	Db	0.533	1
Bc_0.3	YES	5	0.3	NO	NO	4.55	0	0	4.53	4.534	1.4	Dc	0.533	1	Dc	0.533	1
Ca_0.3	YES	5	0.5314	NO	NO	3.588	0	3.4	3.4	6.798	0.9372	Са	0.3	1	Са	0.3	1
Cb_0.3	YES	5	0.5499	NO	NO	3.488	3.4	0	3.4	6.799	0.9002	Cb	0.3	1	Cb	0.3	1
Cc_0.3	YES	5	0.5569	NO	NO	3.449	3.4	3.39	0	6.791	0.8862	Сс	0.3	1	Сс	0.3	0.997
Da_0.3	YES	5	0.3	NO	NO	4.55	4.54	1.12	1.13	6.79	1.4	Da	0.3	1	Da	0.3	0.998
Db_0.3	YES	5	0.3	NO	NO	4.55	1.1	4.52	1.13	6.749	1.4	Db	0.3	1	Db	0.3	0.999
Dc_0.3	YES	5	0.3	NO	NO	4.55	1.1	1.13	4.53	6.765	1.4	Dc	0.3	1	Dc	0.3	0.999
Ea_0.3	YES	5	0.3	NO	NO	4.55	0	4.52	4.53	9.059	1.4	Са	0.3	0.767	Са	0.3	0.767
Eb_0.3	YES	5	0.3	NO	NO	4.55	4.54	0	4.53	9.074	1.4	Cb	0.3	0.767	Cb	0.3	0.767
Ec_0.3	YES	5	0.3	NO	NO	4.55	4.54	4.52	0	9.064	1.4	Сс	0.3	0.767	Сс	0.3	0.767
Fa_0.3	YES	5	0.3	NO	NO	4.55	4.54	2.66	2.66	9.861	1.4	Da	0.3	0.767	Da	0.3	0.767
Fb_0.3	YES	5	0.3	NO	NO	4.55	2.66	4.52	2.67	9.853	1.4	Db	0.3	0.767	Db	0.3	0.767
Fc_0.3	YES	5	0.3	NO	NO	4.55	2.63	2.67	4.53	9.833	1.4	Dc	0.3	0.767	Dc	0.3	0.767
Ga_0.3	YES	5	0.4569	NO	NO	3.956	2.03	3.91	3.91	9.847	1.0862	Ca	0.3	0.767	Ca	0.3	0.767
Gb_0.3	YES	5	0.4631	NO	NO	3.928	3.92	2.03	3.91	9.86	1.0738	Cb	0.3	0.767	Cb	0.3	0.767
60.02	VEO	5	0.4631	NO	NO	3 928	3.92	3.9	2.03	9.853	1.0738	Сс	0.3	0.767	Cc	0.3	0.766
30_0.3	YE5	5	0.4001	110	NO	0.020	0.01										
A_0.4	YES	5	0.4	NO	NO	4.2	4.19	4.18	4.18	12.547	1.2	А	0.4	0.4	А	0.4	0.4

Bb_0.4	YES	5	0.4	NO	NO	4.2	0	4.18	0	4.176	I	1.2	Db	0.6	1	Db	0.6	1
Bc_0.4	YES	5	0.4	NO	NO	4.2	0	0	4.18	4.182		1.2	Dc	0.6	1	Dc	0.6	1
Ca_0.4	YES	5	0.5857	NO	NO	3.285	0	3.13	3.13	6.27		0.8286	Са	0.4	1	Са	0.4	1
Cb_0.4	YES	5	0.6044	NO	NO	3.174	3.13	0	3.14	6.27		0.7912	Cb	0.4	1	Cb	0.4	1
Cc_0.4	YES	5	0.6083	NO	NO	3.15	3.14	3.13	0	6.262		0.7834	Сс	0.4	1	Сс	0.4	0.998
Da_0.4	YES	5	0.4	NO	NO	4.2	4.19	1.01	1.02	6.228		1.2	Da	0.4	1	Da	0.4	0.998
Db_0.4	YES	5	0.4	NO	NO	4.2	1	4.18	1.03	6.207		1.2	Db	0.4	1	Db	0.4	0.999
Dc_0.4	YES	5	0.4	NO	NO	4.2	1	1.04	4.18	6.221		1.2	Dc	0.4	1	Dc	0.4	0.999
Ea_0.4	YES	5	0.4	NO	NO	4.2	0	4.18	4.18	8.358		1.2	Ca	0.4	0.8	Са	0.4	0.8
Eb_0.4	YES	5	0.4	NO	NO	4.2	4.19	0	4.18	8.371		1.2	Cb	0.4	0.8	Cb	0.4	0.8
Ec_0.4	YES	5	0.4	NO	NO	4.2	4.19	4.18	0	8.365		1.2	Сс	0.4	0.8	Сс	0.4	0.8
Fa_0.4	YES	5	0.4	NO	NO	4.2	4.19	2.37	2.38	8.94		1.2	Da	0.4	0.8	Da	0.4	0.8
Fb_0.4	YES	5	0.4	NO	NO	4.2	2.34	4.18	2.38	8.898		1.2	Db	0.4	0.8	Db	0.4	0.8
Fc_0.4	YES	5	0.4	NO	NO	4.2	2.34	2.38	4.18	8.907		1.2	Dc	0.4	0.8	Dc	0.4	0.8
Ga_0.4	YES	5	0.5255	NO	NO	3.619	1.71	3.58	3.58	8.872		0.949	Са	0.4	0.8	Са	0.4	0.8
Gb_0.4	YES	5	0.5292	NO	NO	3.6	3.59	1.77	3.58	8.936		0.9416	Cb	0.4	0.8	Cb	0.4	0.8
Gc_0.4	YES	5	0.5292	NO	NO	3.6	3.59	3.57	1.77	8.931		0.9416	Сс	0.4	0.8	Сс	0.4	0.8
A_0.5	YES	5	0.5	NO	NO	3.75	3.74	3.73	3.73	11.194		1	Α	0.5	0.5	А	0.5	0.5
Ba_0.5	YES	5	0.5	NO	NO	3.75	3.74	0	0	3.737		1	Da	0.667	1	Da	0.667	1
Bb_0.5	YES	5	0.5	NO	NO	3.75	0	3.73	0	3.726		1	Db	0.667	1	Db	0.667	1
Bc_0.5	YES	5	0.5	NO	NO	3.75	0	0	3.73	3.731		1	Dc	0.667	1	Dc	0.667	1
Ca_0.5	YES	5	0.6459	NO	NO	2.914	0	2.8	2.8	5.59		0.7082	Са	0.5	1	Ca	0.5	1
Cb_0.5	YES	5	0.6614	NO	NO	2.813	2.78	0	2.79	5.575		0.6772	Cb	0.5	1	Cb	0.5	1
Cc_0.5	YES	5	0.6614	NO	NO	2.813	2.79	2.79	0	5.581		0.6772	Сс	0.5	1	Сс	0.5	0.999
Da_0.5	YES	5	0.5	NO	NO	3.75	3.74	0.04	0.04	3.819		1	Da	0.5	1	Da	0.5	0.999
Db_0.5	YES	5	0.5	NO	NO	3.75	0.03	3.73	0.07	3.822		1	Db	0.5	1	Db	0.5	1
Dc_0.5	YES	5	0.5	NO	NO	3.75	0.03	0.07	3.73	3.833		1	Dc	0.5	1	Dc	0.5	1
Ea_0.5	YES	5	0.5	NO	NO	3.75	0	3.73	3.73	7.457		1	Са	0.5	0.833	Са	0.5	0.833
Eb_0.5	YES	5	0.5	NO	NO	3.75	3.74	0	3.73	7.468		1	Cb	0.5	0.833	Cb	0.5	0.833
Ec_0.5	YES	5	0.5	NO	NO	3.75	3.74	3.73	0	7.463		1	Сс	0.5	0.833	Сс	0.5	0.833
Fa_0.5	YES	5	0.5	NO	NO	3.75	3.74	2.06	2.06	7.85		1	Da	0.5	0.833	Da	0.5	0.833
Fb_0.5	YES	5	0.5	NO	NO	3.75	2.02	3.73	2.06	7.812		1	Db	0.5	0.833	Db	0.5	0.833
Fc_0.5	YES	5	0.5	NO	NO	3.75	2.03	2.06	3.73	7.821		1	Dc	0.5	0.833	Dc	0.5	0.833
Ga_0.5	YES	5	0.5988	NO	NO	3.207	1.43	3.17	3.18	7.777		0.8024	Са	0.5	0.833	Са	0.5	0.833
Gb_0.5	YES	5	0.6009	NO	NO	3.195	3.18	1.49	3.17	7.844		0.7982	Cb	0.5	0.833	Cb	0.5	0.833
Gc_0.5	YES	5	0.6009	NO	NO	3.195	3.18	3.17	1.49	7.842		0.7982	Cc	0.5	0.833	Сс	0.5	0.833
A_0.6	YES	5	0.6	NO	NO	3.2	3.18	3.17	3.18	9.538		0.8	А	0.6	0.6	А	0.6	0.6
Ba_0.6	YES	5	0.6	NO	NO	3.2	3.18	0	0	3.184		0.8	Da	0.733	1	Da	0.733	1
Bb_0.6	YES	5	0.6	NO	NO	3.2	0	3.17	0	3.174		0.8	Db	0.733	1	Db	0.733	1
Bc_0.6	YES	5	0.6	NO	NO	3.2	0	0	3.18	3.179		0.8	Dc	0.733	1	Dc	0.733	1
Ca_0.6	YES	5	0.7108	NO	NO	2.474	0	2.38	2.38	4.761		0.5784	Ca	0.6	1	Ca	0.6	1
Cb_0.6	YES	5	0.7211	NO	 NO	2.4	2.34	0	2.38	4.722		0.5578	Cb	0.6	1	Cb	0.6	1

Cc 0.6	YES	5	0.7211	NO	NO	2.4	2.34	2.37	0	4.715	0.5578	Сс	0.6	1	Сс	0.6	0.999
Da 0.6	YES	5	0.6	NO	NO	3.2	3.18	0	0.01	3.193	0.8	Da	0.6	1	Da	0.6	0.999
 Db_0.6	YES	5	0.6	NO	NO	3.2	0	3.17	0	3.174	0.8	Db	0.6	1	Db	0.6	1
Dc_0.6	YES	5	0.6	NO	NO	3.2	0	0.01	3.18	3.187	0.8	Dc	0.6	1	Dc	0.6	1
Ea_0.6	YES	5	0.6	NO	NO	3.2	0	3.17	3.18	6.354	0.8	Ca	0.6	0.867	Са	0.6	0.867
Eb_0.6	YES	5	0.6	NO	NO	3.2	3.18	0	3.18	6.363	0.8	Cb	0.6	0.867	Cb	0.6	0.867
Ec_0.6	YES	5	0.6	NO	NO	3.2	3.18	3.17	0	6.358	0.8	Сс	0.6	0.867	Сс	0.6	0.867
Fa_0.6	YES	5	0.6	NO	NO	3.2	3.18	1.7	1.7	6.59	0.8	Da	0.6	0.867	Da	0.6	0.867
Fb_0.6	YES	5	0.6	NO	NO	3.2	1.67	3.17	1.71	6.555	0.8	Db	0.6	0.867	Db	0.6	0.867
Fc_0.6	YES	5	0.6	NO	NO	3.2	1.68	1.71	3.18	6.564	0.8	Dc	0.6	0.867	Dc	0.6	0.867
Ga_0.6	YES	5	0.6755	NO	NO	2.718	1.15	2.69	2.69	6.528	0.649	Са	0.6	0.867	Са	0.6	0.867
Gb_0.6	YES	5	0.6766	NO	NO	2.711	2.69	1.2	2.69	6.579	0.6468	Cb	0.6	0.867	Cb	0.6	0.867
Gc_0.6	YES	5	0.6766	NO	NO	2.711	2.69	2.69	1.2	6.58	0.6468	Сс	0.6	0.867	Сс	0.6	0.867
A_0.7	YES	5	0.7	NO	NO	2.55	2.53	2.52	2.53	7.578	0.6	А	0.7	0.7	Α	0.7	0.7
Ba_0.7	YES	5	0.7	NO	NO	2.55	2.53	0	0	2.527	0.6	Da	0.8	1	Da	0.8	1
Bb_0.7	YES	5	0.7	NO	NO	2.55	0	2.52	0	2.525	0.6	Db	0.8	1	Db	0.8	1
Bc_0.7	YES	5	0.7	NO	NO	2.55	0	0	2.53	2.525	0.6	Dc	0.8	1	Dc	0.8	1
Ca_0.7	YES	5	0.7794	NO	NO	1.963	0	1.89	1.89	3.779	0.4412	Ca	0.7	1	Са	0.7	1
Cb_0.7	YES	5	0.7858	NO	NO	1.913	1.86	0	1.89	3.742	0.4284	Cb	0.7	1	Cb	0.7	1
Cc_0.7	YES	5	0.7858	NO	NO	1.913	1.86	1.88	0	3.738	0.4284	Сс	0.7	1	Сс	0.7	1
Da_0.7	YES	5	0.7	NO	NO	2.55	2.53	0	0	2.527	0.6	Da	0.7	1	Da	0.7	1
Db_0.7	YES	5	0.7	NO	NO	2.55	0	2.52	0	2.525	0.6	Db	0.7	1	Db	0.7	1
Dc_0.7	YES	5	0.7	NO	NO	2.55	0	0	2.53	2.525	0.6	Dc	0.7	1	Dc	0.7	1
Ea_0.7	YES	5	0.7	NO	NO	2.55	0	2.52	2.53	5.05	0.6	Ca	0.7	0.9	Са	0.7	0.9
Eb_0.7	YES	5	0.7	NO	NO	2.55	2.53	0	2.53	5.053	0.6	Cb	0.7	0.9	Cb	0.7	0.9
Ec_0.7	YES	5	0.7	NO	NO	2.55	2.53	2.52	0	5.052	0.6	Сс	0.7	0.9	Сс	0.7	0.9
Fa_0.7	YES	5	0.7	NO	NO	2.55	2.53	1.31	1.32	5.154	0.6	Da	0.7	0.9	Da	0.7	0.9
Fb_0.7	YES	5	0.7	NO	NO	2.55	1.25	2.52	1.32	5.093	0.6	Db	0.7	0.9	Db	0.7	0.9
Fc_0.7	YES	5	0.7	NO	NO	2.55	1.25	1.32	2.53	5.097	0.6	Dc	0.7	0.9	Dc	0.7	0.9
Ga_0.7	YES	5	0.7544	NO	NO	2.154	0.26	2.12	2.13	4.514	0.4912	Ca	0.7	0.9	Са	0.7	0.9
Gb_0.7	YES	5	0.755	NO	NO	2.15	2.09	0.86	2.12	5.072	0.49	Cb	0.7	0.9	Cb	0.7	0.9
Gc_0.7	YES	5	0.755	NO	NO	2.15	2.09	2.12	0.86	5.069	0.49	Сс	0.7	0.9	Сс	0.7	0.9
A_0.8	YES	5	0.8	NO	NO	1.8	1.71	1.77	1.77	5.247	0.4	А	0.8	0.8	Α	0.8	0.8
Ba_0.8	YES	5	0.8	NO	NO	1.8	1.71	0	0	1.708	0.4	Da	0.867	1	Сс	0.902	0.966
Bb_0.8	YES	5	0.8	NO	NO	1.8	0	1.77	0	1.768	0.4	Db	0.867	1	Са	0.9	0.968
Bc_0.8	YES	5	0.8	NO	NO	1.8	0	0	1.77	1.77	0.4	Dc	0.867	1	Cb	0.902	0.966
Ca_0.8	YES	5	0.8508	NO	NO	1.381	0	1.32	1.32	2.635	0.2984	Ca	0.8	1	Са	0.8	1
Cb_0.8	YES	5	0.8544	NO	NO	1.35	1.25	0	1.32	2.569	0.2912	Cb	0.8	1	Cb	0.8	1
Cc_0.8	YES	5	0.8544	NO	NO	1.35	1.25	1.31	0	2.563	0.2912	Сс	0.8	1	Сс	0.8	1
Da_0.8	YES	5	0.8	NO	NO	1.8	1.71	0	0	1.708	0.4	Da	0.8	1	Da	0.8	1
Db_0.8	YES	5	0.8	NO	NO	1.8	0	1.77	0	1.768	0.4	Db	0.8	1	Db	0.8	1
Dc_0.8	YES	5	0.8	NO	NO	1.8	0	0	1.77	1.77	0.4	Dc	0.8	1	Dc	0.8	1

Ea_0.8	YES	5	0.8	NO	NO	1.8	0	1.77	1.77	3.538	0.4	Ca	0.8	0.933	Са	0.8	0.933
Eb_0.8	YES	5	0.8	NO	NO	1.8	1.71	0	1.77	3.478	0.4	Cb	0.8	0.933	Cb	0.8	0.933
Ec_0.8	YES	5	0.8	NO	NO	1.8	1.71	1.77	0	3.477	0.4	Сс	0.8	0.933	Сс	0.8	0.933
Fa_0.8	YES	5	0.8	NO	NO	1.8	1.71	0	0	1.708	0.4	Da	0.8	0.933	Da	0.8	0.933
Fb_0.8	YES	5	0.8	NO	NO	1.8	0	1.77	0.01	1.776	0.4	Db	0.8	0.933	Db	0.8	0.933
Fc_0.8	YES	5	0.8	NO	NO	1.8	0	0.01	1.77	1.777	0.4	Dc	0.8	0.933	Dc	0.8	0.933
Ga_0.8	YES	5	0.8351	NO	NO	1.513	0	1.48	1.48	2.958	0.3298	Са	0.8	0.933	Ca	0.8	0.933
Gb_0.8	YES	5	0.8353	NO	NO	1.511	1.42	0	1.48	2.893	0.3294	Cb	0.8	0.933	Cb	0.8	0.933
Gc_0.8	YES	5	0.8353	NO	NO	1.511	1.41	1.48	0	2.889	0.3294	Сс	0.8	0.933	Сс	0.8	0.933
A_0.9	YES	5	0.9	NO	NO	0.95	0.16	0.82	0.52	1.504	0.2	Α	0.9	0.9	А	0.9	0.9
Ba_0.9	YES	5	0.9	NO	NO	0.95	0.16	0	0	0.157	0.2	Da	0.933	1	Сс	0.95	0.983
Bb_0.9	YES	5	0.9	NO	NO	0.95	0	0.74	0	0.741	0.2	Db	0.933	1	Са	0.95	0.983
Bc_0.9	YES	5	0.9	NO	NO	0.95	0	0	0.52	0.523	0.2	Dc	0.933	1	Cb	0.95	0.983
Ca_0.9	NO	5	0.9245	NO	NO	0.726	0	0	0	0	0.151	Са	0.9	1	Dc	0.925	0.973
Cb_0.9	NO	5	0.926	NO	NO	0.713	0	0	0	0	0.148	Cb	0.9	1	Da	0.926	0.973
Cc_0.9	NO	5	0.926	NO	NO	0.713	0	0	0	0	0.148	Сс	0.9	1	Db	0.926	0.976
Da_0.9	YES	5	0.9	NO	NO	0.95	0.16	0	0	0.157	0.2	Da	0.9	1	Сс	0.926	0.975
Db_0.9	YES	5	0.9	NO	NO	0.95	0	0.82	0	0.824	0.2	Db	0.9	1	Са	0.925	0.975
Dc_0.9	YES	5	0.9	NO	NO	0.95	0	0	0.81	0.806	0.2	Dc	0.9	1	Cb	0.926	0.974
Ea_0.9	YES	5	0.9	NO	NO	0.95	0	0.74	0.52	1.263	0.2	Са	0.9	0.967	Dc	0.917	0.95
Eb_0.9	YES	5	0.9	NO	NO	0.95	0.16	0	0.52	0.68	0.2	Cb	0.9	0.967	Da	0.917	0.95
Ec_0.9	YES	5	0.9	NO	NO	0.95	0.16	0.74	0	0.898	0.2	Сс	0.9	0.967	Db	0.917	0.951
Fa_0.9	YES	5	0.9	NO	NO	0.95	0.16	0	0	0.157	0.2	Da	0.9	0.967	Сс	0.917	0.95
Fb_0.9	YES	5	0.9	NO	NO	0.95	0	0.82	0	0.824	0.2	Db	0.9	0.967	Са	0.917	0.951
Fc_0.9	YES	5	0.9	NO	NO	0.95	0	0	0.81	0.806	0.2	Dc	0.9	0.967	Cb	0.917	0.95
Ga_0.9	NO	5	0.9171	NO	NO	0.795	0	0	0	0	0.1658	Ca	0.9	0.967	Dc	0.917	0.95
Gb_0.9	NO	5	0.9171	NO	NO	0.795	0	0	0	0	0.1658	Cb	0.9	0.967	Da	0.917	0.95
Gc_0.9	NO	5	0.9171	NO	NO	0.795	0	0	0	0	0.1658	Сс	0.9	0.967	Db	0.917	0.951

References

- [1] IEC 61000-4-30. Electromagnetic Compatibility (EMC) -Part 4-30: Testing and measurement techniques -Power quality measurement methods.
- [2] M.H.J. Bollen; D.D. Sabin; R.S. Thallam. Voltage sag indices draft 5. Technical report, Working document for IEEE P1564, November 2003.
- [3] M.H.J. Bollen. Algorithms for characterizing measured three-phase unbalanced voltage dips. *IEEE Transactions on Power Delivery*, Vol.18(no.3):pp.937–944, July 2003.
- [4] M.H.J. Bollen. Characterisation of voltage sags experienced by three-phase adjustable-speed drives. *IEEE Transactions on Power Delivery*, Vol.12(no.4):pp.1666–1671, October 1997.
- [5] L.D. Zhang; M.H.J. Bollen. Characteristics of voltage dips (sags) in power systems. IEEE Transactions on Power Delivery, Vol.15(no.2):pp.827-832, April 2000.
- [6] M.H.J. Bollen; E. Styvaktakis. Characterization of three-phase unbalanced dips (as easy as one two three ?). In *IEEE Power Engineering Society, Summer Meeting*, Seattle, USA, July 2000.
- [7] M.H.J. Bollen; I. Gu. Signal processing of power quality disturbances. unpublished, Chapter 8, pages 377-417.
- [8] M.H.J. Bollen. Understanding Power Quality Problems Voltage Sags and Interruptions. New York: IEEE Press, 2000.
- [9] E. Styvaktakis; M.H.J. Bollen; I.Y.H. Gu. Expert system for classification and analysis of power system events. *IEEE Transactions on Power Delivery*, Vol.17(no.2):pp.423-428, April 2002.
- [10] M.H.J. Bollen; Ph. Goossens; A. Robert. Assessment of voltage dips in hv-networks: deduction of complex voltages from the measured rms voltages. *IEEE Transactions on Power Delivery*, Vol.19(no.2):pp.783-790, April 2004.
- [11] M.H.J. Bollen; L.D. Zhang. Different methods for classification of three-phase unbalanced voltage dips due to faults. *Elsevier Science S.A. Electric Power System Research 66*, pages pp.59–69, 2003.
- [12] M.R. Qader; M.H.J. Bollen; R.N. Allan. Stochastic prediction of voltage sags in a large transmission system. *IEEE Transactions on industry applications*, Vol.35(no.1):pp.152-162, January/February 1999.
- [13] E. Styvaktakis; M. H. J. Bollen and I. Y. H. Gu. Classification of power system events: Voltage dips. in Proc. 9th Int. IEEE Conf. Harmonics Quality Power, pages pp.745–750, Oct. 1-4 2000.

- [14] ANSI/IEEE Std. 446-1987. IEEE Recommended Practice for Emergency Standby Power. Systems for Industrial and Commercial Applications (IEEE Orange Book), p.75.
- [15] Joint Working Group Cigre C4.07. Power quality indices and objectives, final wg report. Technical report, Cigre, March 2004.
- [16] Sang-Yun Yun; Jae-Chul Kim. An evaluation method of voltage sag using a risk assessment model in power distribution systems. *Elsevier Science LTD, Electrical Power and Energy* Systems 25, pages pp. 829–839, 2003.
- [17] Information Technology Industry Council (ITI). Iti (cbema) curve application note, available at http://www.itic.org/technical/iticurv.pdf, 2000.
- [18] IEEE Std. 1366 2001. Ieee guide for electric power distribution reliability indices. Technical report, The Institute of Electrical and Electronics Engineers, Inc., 2001.
- [19] Fluke Corporation. Predictive power analysis/maintenance technical note. Fluke Digital Library at www.fluke.com/library, Reliable Power Meters, 2003.
- [20] M.Stephens; D.Johnson; J.Soward; J.Ammenheuser. Guide for the design of semiconductor equipment to meet voltage sag immunity standards. Technical report, International SEMATECH, December 1999.
- [21] Pacific Gas and Electric Company. Voltage tolerance boundary, January 1999.
- [22] J.Daalder. Compendium of power system analysis. Chalmers University of Technology, Department of Electric Power Engineering, Göteborg, Sweden, Spring 2004.
- [23] F. Wang. Power quality disturbances and protective relays. Component switching and frequency deviation. PhD thesis, Chalmers University of Technology, Department of Electric Power Engineering, Göteborg, Sweden, 2003.
- [24] E. Styvaktakis. Automating power quality analysis. PhD thesis, Chalmers University of Technology, Department of Electric Power Engineering, Göteborg, Sweden, May 2002.
- [25] IEEE Std. 1159-1995. Ieee recommended practice fro monitoring electric power quality. Technical report, The Institute of Electrical and Electronics Engineers, Inc., 1995.

Index

ABC classification, 10 average sag energy index, 35 average swell energy index, 35 CBEMA curve, 8 classification of a voltage sag, 9 duration, 4, 5 frequency estimation, 4 half-cycle RMS, 5, 19 implementation issues, 17, 20 interruption, 6 ITIC (CBEMA) curve, 32 ITIC(CBEMA) curve, 32 methods for extracting sag type, 12 number of events per site, 35 one-cycle RMS, 5, 19 reference voltage, 17, 18 results, 21, 23, 25, 26, 28, 37, 40 retained voltage, 4, 5 rms calculation, 19 SARFI indices, 31 SARFI system indices, 42, 43 SARFI-curve, 31, 32 SARFI-ITIC, 32, 33 SARFI-SEMI, 33 SARFI-X, 31 SEMI curve, 8, 9, 32 six-phase RMS method, 15, 21 structure of this thesis, 2 swell, 6 swell energy index, 35 symmetrical component classification, 11 symmetrical-component method, 13, 20 synthetic sags, 21 threshold, 5

voltage dip, 1

voltage sag, 1 voltage sag classification, 9 voltage sag indices, 2 voltage-sag energy index, 4, 7, 35 voltage-sag energy index of a system, 43 voltage-sag energy method, 31, 34 voltage-sag severity, 4, 8 voltage-sag severity method, 31, 35 voltage-sag severity system index, 44 voltage-sag table, 34 voltage-sag tables for a system, 43