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Most systems allocate computational resources to each executing task without any actual knowledge of the

application’s Quality-of-Service (QoS) requirements. Such best-effort policies lead to overprovisioning of the

resources and increase energy loss. This work assumes applications with soft QoS requirements and exploits

the inherent timing slack to minimize the allocated computational resources to reduce energy consumption.

We propose a lightweight progress-tracking methodology based on the outer loops of application kernels.

It builds on online history and uses it to estimate the total execution time. The prediction of the execution

time and the QoS requirements are then used to schedule the application on a heterogeneous architecture

with big out-of-order cores and small (LITTLE) in-order cores and select the minimum operating frequency,

using DVFS, that meets the deadline. Our scheme is effective in exploiting the timing slack of each application.

We show that it can reduce the energy consumption by more than 20% without missing any computational

deadlines.
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1 INTRODUCTION

The end of Dennard scaling has made power consumption of microprocessor chips a major chal-
lenge. The current technological limitations impose significant power constraints on new designs
and restrain the computational growth of next-generation systems. In addition, reducing energy
consumption of mobile systems remains important because of battery capacity and size/weight
limitations. Therefore, efficient resource allocation is paramount to minimize overprovisioning of
resources and to save energy. Initial works on reducing energy consumption targeted dynamic

This research was supported by grants from the Swedish Research Council (contract number 2012-4924) and the European

Research Council (ERC) under the MECCA project (contract 340328). The simulations were run on the resources provided

by the Swedish National Infrastructure for Computing (SNIC) at C3SE.

Authors’ addresses: M. W. Azhar, P. Stenström, and V. Papaefstathiou, Department of Computer Science and Engineering,

Chalmers University of Technology, 41296, Gothenburg, Sweden; emails: {waqarm, per.stenstrom, vaspap}@chalmers.se.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

2017 Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 1544-3566/2017/12-ART41 $15.00

https://doi.org/10.1145/3148053

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 41. Publication date: December 2017.

https://doi.org/10.1145/3148053
https://doi.org/10.1145/3148053


41:2 M. Waqar Azhar et al.

voltage-frequency scaling (DVFS), where the objective is to find the lowest voltage-frequency pair
that maintains the same level of performance across computational phases despite variations in
instruction-level parallelism (ILP) and memory-level parallelism (MLP). A limited amount of avail-
able variation in ILP and/or MLP, however, limits the amount of energy savings obtained by DVFS.

Another popular approach is to use Power Gating (PG), where some parts of or the entire proces-
sor is powered down during idle periods, still delivering the same average performance. However,
in order to save more energy than DVFS, the idle periods must be long enough to compensate for
the cubic reduction of power in relation to frequency offered by DVFS. One can make idle periods
longer using techniques like Computational Sprinting (Raghavan et al. 2012). However, the power
consumption during the active phase will be higher due to higher frequency and voltage, which,
again, is cubic with respect to frequency (Själander et al. 2014; Kaxiras and Martonosi 2008).

On the other hand, multicore processor heterogeneity (Kumar et al. 2003) is an effective and
orthogonal approach to DVFS to save energy that has been increasingly adopted by many mo-
bile chips. Such chips feature different types of computing elements, each with different perfor-
mance/energy tradeoffs (e.g., ARM’s big-LITTLE consists of big out-of-order cores and LITTLE
in-order cores, GPUs, and/or custom accelerators). Scheduling tasks on the set of heterogeneous
computing elements provided by a multicore system to meet performance and energy goals has
attracted a lot of attention (Själander et al. 2014). However, the goal of most prior work has been
to offer constant average performance rather than to reduce power and energy consumption. By
contrast, Suh et al. (2015) present an approach that regulates the Million-Instructions-Per-Second
(MIPS) rate using DVFS to meet the computational deadline to save energy. Unfortunately, they tar-
get an offline calculated MIPS rate, which is determined using the worst-case number of executed
instructions. This estimation is inherently pessimistic and leads to overprovisioning of resources.
In addition, they do not exploit processor heterogeneity.

The goal of this article is to take into account “soft” QoS requirements in an application-agnostic
manner and use both DVFS and heterogeneity to save energy. The rationale is that several classes
of applications are able to tolerate low performance as long as the deadlines imposed by their QoS
requirements are met. The notion of QoS and computational deadline offers a big opportunity to
save energy by reducing the amount of resources allocated to each task needed to meet its dead-
line. The intuition behind our proposed QoS-Based Resource Management is that systems typically
execute the tasks faster than needed to meet their QoS, and in this process, they generate timing
slack. Our thesis is that we can save energy by exploiting this slack by both slowing down the
application (by exploiting DVFS) and rescheduling it on a slower but more energy-effective core
(by exploiting processor heterogeneity) and complete it at, or just before, the deadline.

We propose online prediction of the number of instructions to be executed in the next phase
coupled with a supervisory mechanism based on slack to achieve just-in-time completion of each
computational phase. Our approach instruments the outer loops of the application (which often
constitute the bulk of the execution) and dynamically monitors the characteristics of a loop, in
terms of number of instructions and cycles per iteration, inside a runtime layer via existing hard-
ware performance counters. The runtime layer predicts the number of instructions and the time
for the whole execution of the program (or a part of it) based on the history and performs super-

vised loop execution (SLOOP) by controlling DVFS and selecting a core type (big out-of-order (OoO)
vs. LITTLE in-order core) that meets the QoS deadline.

Specifically, the contributions of this article are as follows:

(1) A lightweight runtime progress-tracking methodology based on the execution of outer
loops in the applications

(2) Simple, yet accurate, instruction and execution-time predictors based on instruction-count
history
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(3) A novel scheduler for heterogeneous multicores that saves energy by tuning the frequency
and the core type based on QoS, the prediction, and the available slack

We have implemented the scheduler and also present an evaluation of the overall proposed
methodology run on a real ARM-based big-LITTLE system to quantify the potential of using QoS
to save energy by DVFS and core-type scheduling. We show that our method can save 23% of
energy on average for the tightest QoS setting. Energy savings can further improve to 62% when
choosing a deadline that is twice that of the baseline case.

The rest of the article is organized as follows. Section 2 provides further motivation of our
approach. Then, Section 3 presents our proposed SLOOP scheme for runtime progress tracking.
We move on to the evaluation by presenting the experimental methodology in Section 4 and the
results in Section 5. Section 6 then positions our contributions in relation to prior art before we
conclude in Section 7.

2 MOTIVATION

Streaming applications (e.g., in multimedia) spend the majority of their time inside loops with mul-
tiple iterations, where each iteration typically does the computation on an object (e.g., a frame).
First, this iterative behavior can be utilized to predict the execution time of future iterations. Sec-
ond, iteration boundaries provide a natural granularity for monitoring and scheduling, compared
to fixed-time intervals that have been proposed in other studies (e.g., Craeynest et al. (2012), Suh
et al. (2015), and Su et al. (2014)). Computations in successive iterations are logically related yet
use a new set of data. Thus, scheduling decisions (e.g., switching between cores) taken at iteration
boundaries can minimize the performance penalties because of data movement. For this reason, our
approach is to monitor the behavior of past iterations to predict the behavior of the next iterations.

Using a multimedia application as an example, it is well known that while there is some
execution-time correlation between iterations, because the data being computed in consecutive
iterations is related, there is also variability in the execution time across iterations (Hughes et al.
2001a). This variability stems from differences in control flow and data locality. This variability
can, however, be put to good use. Our thesis is that, since there is correlation in data across loop
iterations, the variability in execution time can be predicted. Our goal is to use execution-time
prediction of future iterations so as to adapt the underlying computational resources (DVFS, core
type) to closely meet the deadlines in order to save energy. In the subsequent sections, we provide
motivational data for the viability of this approach.

2.1 Execution-Time Variability

In order to assess the degree of variability in application loops, we use a set of multimedia/graphics
benchmarks from ALPBench (Li et al. 2005) and SPEC2006 (Henning 2006). We study the execu-
tion time per iteration on a heterogeneous ARM big.LITTLE architecture described in detail in
Section 4. In these benchmarks, we do online profiling of the iterations of the outer loops where
each iteration performs the computations required to generate a multimedia/graphics frame.

Figure 1 presents the cumulative distribution function (CDF) of an iteration’s execution time T
for the set benchmarks used. The x-axis shows the execution time of iterations normalized to the
slowest iteration found in the specific application run. The y-axis shows the cumulative percentage
of the frame instances that have execution times less than or equal to the x value. For instance,
the CDF for mpegenc1 in Figure 1(a) shows that around 30% of the frames (y-axis) complete with
an execution time lower than or equal to 65% (x-axis) of the slowest executing frame.

The plots show that, for several applications, a considerable number of iterations execute faster
than the slowest iteration. For instance, the CDF of the application RayTrace_teapot in Figure 1(a)
shows that 60% of the iterations complete faster or at a time corresponding to 65% of the slowest
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Fig. 1. The Cumulative Distribution Function (CDF) of frame execution times for three benchmarks (Ray-
trace, MPEG encoder, and H264 encoder) on a number of input sets.

iteration instance. Given a deadline, execution of all the iterations can be adjusted to it so that each
iteration completes at roughly the same time and close to the deadline. This analysis shows that
there is an opportunity to exploit the inherent variability across frames to save energy by allowing
a frame to execute slower, using DVFS or a more energy-efficient core type, without missing its
deadline.

Another important aspect of interiteration variability is the magnitude of the variability over
time. Figure 2 (top) shows the execution time per iteration in the Raytrace benchmark with the
input set teapot. We observe that the per-iteration execution time increases or decreases by a small
amount across iterations, but during the whole execution there are spikes, upward or downward,
that last for a few tens of iterations. In order to quantify the percentage of interiteration execution-
time change as a function of time, Figure 2 (bottom) is shown. Here, we note that the iteration-
to-iteration changes are very small and do not exceed 3%. This behavior appears in most of the
benchmarks we study and, as we will see, can be easily predicted.

Table 1 shows various statistics for all benchmarks, such as average, maximum, minimum, stan-
dard deviation, relative standard deviation, and relative change of execution time per iteration.
Relative change is calculated as (Tmax −Tmin ) ∗ 100/Tmax . Here it can be seen that there is a con-
siderable amount of variability across the iteration execution times in each benchmark that can be
exploited to reduce energy. If the computational deadline is the same as the maximum execution
time, the relative change indicates how much the fastest iteration can be slowed down to save
energy. As we can see, relative change is at minimum 23% for ALP → MPEG Decoder → blah
benchmark but can be as high as 91%. Section 5.3 shows that it can lead to considerable energy
savings.

The predictable interiteration behavior allows us to accurately predict the execution time of
iterations in the near future. This opens up an opportunity to select a slower and more energy-
efficient core (processor heterogeneity) and a lower operating frequency (DVFS) when there is
enough time slack or select a high-performance core and a higher operating frequency when there
is a danger to miss deadlines. Our goal is to select the most energy-efficient power state (DVFS
and core type) that meets the QoS requirement to save as much energy as possible.
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Fig. 2. The execution time per iteration as a
function of time (top diagram) and percent-
age changes of execution time from one it-
eration to the next iteration as a function
of time (bottom diagram) for the Raytrace
application with input teapot.

Fig. 3. Energy consumption and EDP under different
frequency-voltage and core types for Raytrace applica-
tion with input teapot.

Table 1. Minimum, Maximum, Mean, Standard Deviation, Relative Standard Deviation,
and Relative Change of Execution Times Per Loop Iteration

Average Maximum Minimum Standard Relative Relative

Time Time Time Deviation Standard Change

Workload (msec) (msec) (msec) (msec) Deviation (%) (%)

ALP→ Raytrace→ teapot 1,312 1,890 848 344 26 55

ALP→ Raytrace→ balls 1,030 1,308 662 225 22 49

ALP→ Raytrace→ room 436 556 292 89 20 47

ALP→ Raytrace→ 2balls 252 291 208 31 12 29

ALP→ Raytrace→ smallballs 603 740 404 118 20 45

ALP→ Raytrace→ sc98 864 1,218 569 158 19 53

ALP→ Raytrace→ msti 986 1,259 655 203 21 48

ALP→MPEG Encoder→ blah 146 177 46 39 26 74

ALP→MPEG Encoder→ teapot 254 281 182 26 10 35

ALP→MPEG Decoder→ blah 11 13 10 1.04 9 23

SPEC 2006→ H264 Encoder→ foreman base 1,419 1,512 136 239 17 91

SPEC 2006→ H264 Encoder→ foreman main 1,749 2,049 305 366 21 85

SPEC 2006→ H264 Encoder→ sss 11,806 14,002 1,882 2,496 21 87

2.2 Energy Levels in Heterogeneous Architectures

To concretely establish the potential energy savings of heterogeneity combined with DVFS, we
review the power states offered by the ARM system we use in our investigation. Although running
slower with lower frequencies or more energy-efficient cores saves power, we are also interested
in assessing the potential of reducing the energy-to-solution. When expanding in time with the
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same amount of powered-up resources, then static energy could dominate; this is a typical case
in homogeneous platforms with big cores. However, we consider heterogeneous architectures like
ARM big.LITTLE and measure the associated energy-to-solution using the platform described in
Section 4. Figure 3 shows the total processor energy consumption (energy-to-solution) for the
execution of the RayTrace benchmark from ALP with input teapot across different frequencies
(DVFS settings) and on big and LITTLE cores. These measurements support our claim for saving
energy by running slower on heterogeneous architectures. Moreover, they show that the energy
savings can be substantial. We also show the energy delay product (EDP) for all of the cases. EDP
is presented as normalized to the EDP of the base case (i.e., 2GHz on a big core). EDP for most
power states is less than the base EDP, with a few power states showing a small increase with a
maximum value of around 6%. This indicates that the energy decrease is relatively higher than the
increase in time for most power states.

3 QOS MONITORING AND SCHEDULING

Streaming applications process input data and produce output, iteration by iteration, and often
have intuitive QoS requirements such as output per second (e.g., frames per second). Our proposed
framework monitors the number of instructions and cycle count of each iteration, so that the
iterations completing earlier than their deadlines can be slowed down to save power and energy.
The cycle count is used to determine the accumulated slack and the current and past instruction
counts are used to predict the number of instructions in future iterations. The prediction of the
instruction count and the cycle count along with the slack are used to determine an appropriate
core and frequency setting to execute the next iterations so that they finish close to the deadline
in order to maximize power and energy savings.

The runtime monitoring approach is described in Section 3.1. Section 3.2 describes the
instruction-count prediction approach. Finally, Section 3.3 completes the framework with an illus-
tration of how scheduling decisions on a big versus LITTLE core is done based on the prediction
and the available slack for heterogeneous multiprocessor platforms.

3.1 Runtime Monitoring and Time Slack

The applications that we consider typically consist of two parts: (1) an initialization and (2) a kernel.
The initialization part prepares for kernel execution by, for example, reading input parameters and
data. The execution time of this part is typically negligible in comparison with the total execution
time. In contrast, the kernel, which is embedded in a loop, processes the input to produce the output
and is the dominant part of the execution. Listing 1 illustrates an example, where the execution
time of the initialization part is typically negligible compared to the kernel part, which executes
for a large number of iterations.

The programmer must identify the most time-consuming loop and provide its QoS specification
with a compiler directive as shown in Listing 1. The loop is then automatically instrumented with
runtime library calls to read hardware-performance counters as shown in Listing 2. Each iteration
is monitored to predict the computational requirement of future iterations and in conjunction
with the QoS specifications to select a power state that minimizes the energy. In this context,
X is the deadline per loop iteration and is specified in a compiler directive. Typically, the QoS
specifications for streaming applications are provided in terms of number of frames per second
and the calculation of the deadline per loop iteration (X) is straightforwardly derived from this.

Our framework proposes to use the instruction and cycle count from each loop iteration to
estimate the computational demand for subsequent iterations and schedule them accordingly. A
supervised execution of a loop, based on QoS specifications, can save considerable amounts of
energy compared to a maximum-effort execution at full throttle. In short, our proposed framework
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Listing 1. Loop QoS specification. Listing 2. Loop instrumentation.

aims at executing every iteration on the lowest possible power state without missing the deadline
to save energy.

3.2 Instruction Count Prediction

The number of instructions in a given iteration of a loop depends on the control paths taken by
the program based on input data. Such effects can be predicted by monitoring the trends in the
number of executed instructions per iteration. We use the instruction count from the history of
h previous loop iterations to predict the instruction count for the p future iterations, where h is
the size of the history buffer and p is the prediction window. Initially, we simplistically assume
that the predicted instruction count per iteration for the next p iterations is the same. Specifically,
we refer to the history of instruction counts as I [n], where n represents the iteration number.
Furthermore, we refer to the number of predicted instructions for the next iteration as IP [n + 1],
where P ∈ A,G, (A) represents our proposed average predictor and (G) represents our proposed
gradient predictor described in the following sections. We implement these predictors in a runtime
system and analyze their performance and energy overheads in Section 5.

3.2.1 The Average Predictor. Averaging provides a reasonable mechanism to estimate future
trends in a curve with relatively small overhead. The predicted number of instructions for the next
iteration is expressed in Equation (1), where IA[n + 1] is the prediction for the next iteration using
the average predictor, I [n − k] is the instruction counts from previous iterations, and k ranges
from 0 to h − 1, where h is the size of the history buffer. Despite its simplicity and low overhead,
the average predictor adapts slowly to changes in the instruction count. Decreasing the size of the
history window will certainly make the predictor response faster but will make it prone to noise,
potentially making it oscillate. Therefore, we have to choose a conservative history window size,
detailed in Section 4.

IA[n + 1] =
1

h

h−1∑

k=0

I [n − k] (1)

3.2.2 The Gradient Predictor. The rate of change between the number of instructions from con-
secutive iterations is a potentially more accurate mechanism to predict the behavior of an applica-
tion. In this context, we apply geometric progression (GP) and use the current value as a base along
with the rate of change from previous values to estimate a future value. A general expression for
GP to estimate the kth term is given by the Equation (2), where r is the gradient (or rate of change),
a[n] is the current value, and a[n + k] is the kth next value. The rate r is typically assumed to be
constant; however, we dynamically revise it on every iteration from the instruction count of the
last two iterations. When applications change phases, the gradient also changes and it is impor-
tant to recalculate it during the entire course of execution. Similarly, the instruction count of the

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 41. Publication date: December 2017.



41:8 M. Waqar Azhar et al.

Fig. 4. Details of scheduling on a heterogeneous multiprocessor platform.

previous iteration is used as the new base. The prediction IG [n + 1] for the next iteration is given
by Equation (3).

a[n + k] = a[n] × rk (2) IG [n + 1] = I [n] × I [n]

I [n − 1]
(3)

However, the instruction count of an individual iteration may differ from the overall application
trend and it can deteriorate the accuracy of a predictor based on Equation (3). We address this
shortcoming by proposing a new predictor that uses Equation (5). We divide the history buffer into
two equally sized groups and calculate the mean for each group. Mean1 corresponds to instruction

counts for iterations n − h to n − h
2 and Mean2 for iterations n − h

2 to n. The gradient is calculated
as the ratio of Mean2 over Mean1 and is given by Equation (4). Moreover, Mean2 is used as the
new base to calculate the number of instructions for the next iterations.

r =
Mean2

Mean1
=

2
h

∑ h
2 −1

k=0
I [n − k]

2
h

∑h−1

k= h
2

I [n − k]
(4)

IG [n + 1] = r × 2

h
×

h
2 −1∑

k=0

I [n − k] (5)

3.3 QoS-Based Scheduler for Heterogeneous Cores

The goal of the scheduler is to use the accumulated time slack and the prediction to allocate optimal
resources to each iteration of the kernel, such that the execution completes close to the deadline.
The execution starts at the highest frequency (e.g., in the context of our experimental system at
2GHz on the big core), and then future iterations are rescheduled on a suitable core and a frequency
such that the accumulated time slack is minimized in order to save energy.

3.3.1 Operation. An overview of the operation of our proposed scheduler is depicted in Fig-
ure 4(a). The runtime scheduler is the primary controller that monitors each iteration of an applica-
tion to predict future trends and to make scheduling decisions for future iterations. The sequence
of operations performed by the scheduler is summarized as follows:

—The instruction count from the last iteration is injected into the predictor to get a prediction
for the next iteration as discussed in Section 3.2.
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—The predicted execution time is calculated based on the predicted instruction count. The
scheduler maintains the history of CPI to calculate average CPI for both types of cores and
uses these values to estimate the execution time. The details about execution time calcula-
tion are discussed in Section 3.3.2.

—The frequency and the selected core type for future iterations are estimated based on the
predicted time, the time slack, and the deadline as described in Section 3.3.3.

3.3.2 Estimation of Execution Time. Our framework predicts the instruction count for future
iterations and converts it to actual time in order to make scheduling decisions that respect the
deadline. The execution time T for the next iteration is based on the predicted instruction count
I and is given by Equation (6), where CPI is the estimated cycles per instruction and F is the fre-
quency. We extend the model by deducting the timing overhead for SLOOP framework expressed
in cycles, denoted as SLOOPOH in Equation (7). Please note that this value is the sum of the over-
heads for reading performance counters, prediction of instructions, and scheduling. These over-
heads are automatically added to the execution time, resulting in higher execution time, and thus it
is important to compensate for the overheads in the estimation model of the new Frequency/Core;
otherwise, it can cause missed deadlines.

T =
I ×CPI

F
(6)

T =
I ×CPI − SLOOPOH

F
(7)

For the estimation of CPI we use the average CPI per type of core based on previously observed
history. This approach provides a coarse but adequate estimate of CPI for a given application
running on each core type. Workloads have different CPIs that mainly depend on the available
instruction-level parallelism and memory-access pattern. So, the average CPI from recent history
provides a coarse measure of these properties in real time. Since the execution always starts on
a big core, we need an estimate of the LITTLE-core CPI until the first switch to a small core. A
simple model of CPIsmall = CPIbiд ×O is used for this scenario, where O is estimated offline and
is discussed in detail in Section 4. After the first switch, we have CPI history for both types of cores
and the offline estimate is no longer used. We extend Equation (6) to estimate the execution time at
different frequencies on the same core and take into account the associated overheads by deriving
Equation (8). The DVFS time overhead is denoted as TDV F S . Similarly, to estimate the execution
time on another type of core, we introduce the core switching overhead TCor eSwitch instead of
DVFS overhead and derive Equation (9).

T =
(I ×CPI ) − SLOOPOH

Fnew
+TDV F S (8)

T =
(I ×CPI ) − SLOOPOH

Fnew
+TCor eSwitch (9)

3.3.3 Policy and Operating Modes. The prediction methodology proposed in this work is sim-
ple and effective. However, relying solely on a prediction to schedule future iterations may lead
to either missed deadlines or faster-than-needed execution and higher energy consumption. Ac-
curate predictions keep the accumulated slack low (ideally zero). On the contrary, less accurate
predictions increase or decrease the accumulated slack beyond the expected margins. To this end,
we augment our scheduler with a supervision mechanism that monitors the accumulated slack
to assess the effectiveness of the predictor and safeguard against miss-predictions. An important
effect of core switching is the cold misses that occur afterward. Our methodology automatically
accounts for this in the following manner. The number of cycles required to execute the predicted
number of instructions can increase after a core switch. This eventually results in reduction of the
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slack. Since we measure the slack after every iteration, the effect of “cold misses after core switch”
is taken into account by the scheduler, which uses the prediction and slack to schedule subsequent
iterations.

We use a relatively simple policy that strives to keep the accumulated slack within a guard band
and applies corrections to the prediction whenever the slack crosses the boundaries of this guard
band. When the slack is within the allowable limits, the scheduler does not make new decisions.1

A high-level flow diagram of the scheduling policy is illustrated in Figure 4(b).
The scheduler applies a correctionC to the predicted execution time whenever the accumulated

slack crosses the boundaries of the guard band. In such cases, a new core type and/or a new fre-
quency are selected to push the slack back inside the guard band. If the slack increases beyond the
upper limit, we slow down the processor (to consume slack) by adding the correction factor given
by Equation (10) to the predicted time. GBU and GBL are the upper and lower limits of the guard
band, respectively; p is the prediction window; and S is the accumulated slack. Here, the first term
represents the difference between the slack and the upper level of the guard band and the second
term is a constant that attempts to push the slack back to the guard band. Here, the scaling factor
of 0.25 pushes slack only one-quarter into the guard band, while the factorp applies this correction
to the whole prediction window. Similarly, if slack is below the lower limit, then we speed up the
processor (to generate slack) by subtracting the correction factor shown in Equation (11) from the
predicted time. Here, the first term represents the difference between the slack and the lower limit
of the guard band and the second term is the constant described before.

C = S −GBU + (GBU −GBL ) × p × 0.25 (10) C = GBL − S + (GBU −GBL ) × p × 0.25 (11)

The selection of the guard-band boundaries is very important and allows for scheduling de-
cisions that minimize the energy consumption without missing any deadlines. Since the guard-
band selection is application dependent, we decide to set the guard-band boundaries in connec-
tion with the deadline set by the QoS specification. We set the guard band between 0.5 × DQOS

and 1 × DQOS , where DQOS is the deadline per loop iteration derived by the QoS specification.
This essentially means that the scheduler will try to keep the accumulated slack within 50% to
100% of the deadline per iteration. Moreover, if the scheduler does its job properly, then the full
application will only complete no more than one DQOS time before the last deadline. As will be
discussed in Section 5, it is a big improvement over the unsupervised application execution.

4 EXPERIMENTAL METHODOLOGY

4.1 Hardware Platform and Configuration

We use an ODROID-XU3 board with the Samsung Exynos-5422 chipset (Hongsuk Chung 2013) for
our evaluation. This chipset contains an ARM big.LITTLE architecture with a cluster of four Cortex
A15 cores and a cluster of four Cortex A7 cores. The A15 is a performance-oriented, out-of-order
core referred to as “big,” while A7 is an energy-oriented, in-order core referred to as “LITTLE.”
Each core has a 32KB private L1 cache. The “big” cluster has a 2MB shared last-level cache (LLC),
whereas the “LITTLE” cluster has a 512KB shared LLC. Energy consumption is measured using the
four on-board sensors, each for the cluster of “big” and “LITTLE” cores, the GPU, and the DRAM.
The measurements for each cluster include the four cores along with their private L1s and the LLC.
For the evaluation, we consider single-threaded applications and use only one core in the cluster

1At the beginning of every new application, the predictors require some iterations to warm up and build their history;

therefore we also do not make scheduling decisions during this warm-up phase.
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Table 2. Workload Details and Baseline Energy Consumption

Suite ALP SPEC 2006

Application RayTrace MPEG Encoder MPEG Decoder H264

Input teapot balls room 2balls smallballs sc98 msti blah teapot blah foreman base foreman main sss

Workload W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13

Total Energy (J) 2,470 753 759 354 428 2,239 821 85 454 60.25 547 363 3,191

Energy/Iteration (J) 3.37 2.85 1.12 0.73 1.62 2.22 2.53 0.43 0.79 0.30 4.57 5.85 37

Table 3. Measured Statistics for the Average and Worst-Case Profiles

Average Instructions Maximum Instructions Minimum Instructions Standard Deviation Average Worst-Case

per Loop Iteration per Loop Iteration per Loop Iteration per Loop Iteration Profile Profile

Workload (Million) (Million) (Million) (Million) (Million) (Million)

W1 1,921 2,747 1,277 482

1,112 2,747

W2 1,379 1,749 889 298

W3 652 818 455 126

W4 431 495 351 52

W5 813 993 551 155

W6 1,124 1,579 760 203

W7 1,466 1,841 1,026 283

W8 556 685 189 101
510 685

W9 464 576 125 164

W10 41 45 37 2 41 45

W11 4,055 4,285 417 657

12,162 34,737W12 4,957 6,082 894 1,374

W13 27,476 34,737 5,419 6,085

at any given point in time. We also restrict the set of power states to the voltage-frequency pairs
that have a voltage change along with frequency change. All unused cores are powered off except
one LITTLE core, which executes the operating system thread.

4.2 Benchmarks

For the evaluation we use applications from the SPEC2006 (Henning 2006) and the ALP (Li et al.
2005) benchmark suites. In total, we experiment with 13 workloads including different input sets
as shown in Table 2. Rows five and six show the total energy and average energy per iteration,
respectively. The energy figures correspond to the baseline system used in our evaluation without
employing our proposed scheduler.

4.3 Baseline System

We execute the selected set of benchmarks on the Cortex A15 big core at the highest frequency
(i.e., 2GHz) and use this as the baseline. The total energy consumed during that execution is used
as the reference and is shown in Table 2. The baseline models race-to-idle. It executes the workload
at the fastest possible rate and then goes to sleep to save energy. Useful information is extracted
from these runs for each application as shown in Table 3 and Table 1 and includes the maximum,
minimum, and average instruction counts and execution time per loop iteration, respectively. The
default deadline in each benchmark, denoted as DQOS in the rest of the article, is the execution
time of the slowest outer-loop iteration of the execution. The rationale is that different iterations
have different execution times and in a real system the deadline is typically set such that even
the slowest case completes before the deadline on a given computational platform. In order to
cover a broad spectrum of use cases, we experiment with multiples of this base deadline in order
to observe its effect on energy savings. In reality, programmers will define the deadlines based
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on, for example, frame rates that can far exceed the execution time of the outer-loop iterations of
benchmarks. Hence, setting the deadline to the slowest-running iteration results in a conservative
estimate of energy savings.

4.4 Evaluated Systems

The proposed methodology is compared against a perfect prediction scheme and two offline
schemes from related work (i.e., the average profile and the worst-case profile) (Suh et al. 2015).
The perfect predictor is the one that can foresee the number of instructions to be executed in the
next iteration and can allocate the optimal amount of resources. Since this cannot be done dy-
namically, we use a simulation-based methodology to establish the effect of a perfect predictor as
follows. Each workload is executed on both the big and the LITTLE cores at each DVFS setting
and the instruction and cycle counts and the energy consumed for each iteration are recorded
in a trace, with all the nonactive cores powered off. These traces are then fed into a simulator
that generates a schedule for the perfect predictor. The scheduler for the perfect predictor calcu-
lates the minimum required frequency and core type to meet the deadline for the next iteration
using Equation (6). The simulated scheduler is fed with the instruction count of the next itera-
tion to model the perfect prediction and the deadline is modeled as DQoS + 0.8 ∗ S , where S is the
accumulated slack. We have found experimentally that if the whole slack S is added, there is a risk
that the deadline is not met. By choosing 80% of the slack, the deadline is met.

The average and worst-case profiles here refer to the schemes in which the average and worst-
case instruction count per loop iteration is used for scheduling. These values are also extracted
from the baseline execution explained in Section 4.3. Average and worst-case profile values are
calculated for each benchmark from the profile values of all the inputs to that benchmark and are
provided in Table 3. The second and third columns represent the average and worst-case number
of instructions per loop iteration for all the workloads. The sixth and seventh columns represent
the average profile and worst-case profile value calculated for each benchmark. These instruction
counts are fed to the core and frequency estimator as reference along with the average CPI and
deadline to determine a schedule. Since the average and worst-case profile values calculated offline
are constant, the schedule remains the same for the entire execution of the application. Please note
that the slack-based scheduling proposed in Section 3.3.3 is not applied. It is important to note that
the same inputs are used for both profiling and evaluation, making it the best case for the profile-
based schemes.

4.5 Instrumentation

There are two important considerations for the experiments: (1) the instrumentation of loops and
(2) a runtime system for scheduling. The first is performed by the programmer by specifying the
“#praдma QoS (Deadline ).” Based on this, the compiler inserts the required function calls at the
appropriate points. However, in this study, we manually instrument the main loop in each bench-
mark with required runtime function calls. For the second, a user-level runtime system consisting
of our proposed scheduler is implemented to schedule the iterations on the appropriate core and
frequency. The “cpu-freq” library and the “sched_setaffinity” Linux system calls are used to switch
between frequencies and the “big” and “LITTLE” cores at runtime.

The scheduling model provided in Section 3.3.2 requires the timing overhead for each com-
ponent. We measure the overhead of each component and operation in isolation on our platform.
Table 4 provides a summary of measured overheads for all the components and the operations. The
components we want to quantify include monitoring, predictions, and scheduling. These compo-
nents are typically executed in, on the order of, 1 microsecond on the platform. Unfortunately, the
on-board energy sensors can only measure energy at a sampling rate greater than a millisecond.
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Table 4. Timing and Energy Overheads of the Operational Units in SLOOP Framework

LITTLE Core big Core

Avg Grad Perf Core Avg Grad Perf Core

Pred Pred Scheduler Monitoring DVFS Switch Pred Pred Scheduler Monitoring DVFS Switch

Timing (cycles) 1,187 2,721 3,610 442 2-msec 6msec 756 2,115 2,515 470 2msec 6msec

Energy (nJ) 293 676 897 273 1,270μJ 3,810μJ 948 2,664 3,192 648 1,270μJ 3,810μJ

For this reason, we measure the energy for each of the components, by encapsulating them in a
loop that executes a billion times and taking the average. Since we have to read the performance
counters at the end of every iteration, we use a Linux kernel module that enables direct user-level
access to the performance counters using the MRC instructions, making the overhead of reading
performance counters minimal. The overhead for monitoring includes the overhead for reading
the instructions, the cycles, and the energy consumed from the on-board energy sensor. The timing
overheads for the frequency and the core switch are measured using the system timer over a large
number of iterations in the baseline execution and then taking the average. The energy overhead
is measured using the timing overhead and the power consumption. It is also important to point
out that these overheads are negligible compared to the execution time and energy consumption
of the iterations.

4.6 Experimental Parameters

Our framework uses CPI history to calculate the execution time from the number of predicted
instructions, and since we always start execution on the big core, we need a CPI estimation for the
LITTLE core to perform the first switch. Based on Shubham Kamdar (2015), we use the estimate
CPILITT LE = 2 ∗CPIbiд . This factor of “two” is only used to model the first switch to a small core.
Afterward the CPI history maintained for each core type is used. Moreover, the prediction window
size p is set to 20 for the scheduler and the history buffer size h for the predictor is set to 10.

5 EVALUATION

This section evaluates the gains provided by our proposed method and establishes the energy sav-
ings in comparison with the baseline case. First, the gradient predictor and the average predictor
are compared against the average and worst-case offline techniques (profiles) using real instruc-
tion counts in Section 5.1 in order to measure prediction accuracy. Next, the performance of the
scheduler is analyzed in Section 5.2, where the schedule using the average and worst-case profiles
are compared against the schedule, based on the average and gradient predictors. A summary of
the energy savings is presented in Section 5.3. Moreover, we also evaluate a perfect predictor with
our scheduling scheme in order to establish the upper bound of energy savings. In the end, an
analysis of overheads involved is presented in Section 5.4.

5.1 Instruction Prediction Accuracy

PredictionError (%) =
| (Prediction −Actual ) |

Actual
∗ 100 (12)

Prediction error is a good metric to assess predictor accuracy and is calculated as the difference
between the predicted and the actual number of instructions over the prediction window. The
error is calculated over the actual values as shown in Equation (12). In this context, the standard
deviation and the mean of percentage error are used for analysis. A summary of the results
for each scheme is presented in Table 5, where the last row presents the geometric mean (GM)
over all the applications. In general, the average and gradient predictors have a considerably
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Table 5. Summary of Prediction Error for Gradient Predictor, Average Predictor,
Average Profile, and Worst-Case Profiles

Gradient Predictor Average Predictor Average Profile WCET Profile

% Standard % Average % Standard % Average % Standard % Average % Standard % Average

Application Deviation Error Deviation Error Deviation Error Deviation Error

W1 3.8 5.5 5.4 7.1 13.6 41.6 32.8 44.5

W2 4.2 6.7 5.7 8.2 9.2 27.2 48.7 95.4

W3 2.7 5.1 3.6 5.8 36.0 70.3 88.8 320.5

W4 0.6 5.2 0.9 5.7 30.2 148.6 74.8 514.1

W5 4.3 6.2 5.7 7.7 28.6 32.7 70.9 238.1

W6 3.3 5.7 4.4 6.8 10.3 13.5 41.1 139

W7 2.7 5.1 3.6 5.8 15.7 24.5 39.5 86.9

W8 9.6 17.0 3 5.4 1.3 12.6 1.8 17.3

W9 7.4 13.8 2.6 5.0 3.9 5.5 6.4 40.7

W10 3.4 5.6 1.1 4.9 0.7 4.4 0.8 4.9

W11 13.9 8.3 7.7 6.7 0.9 173.7 2.5 681.9

W12 15.2 15.1 8.2 8.6 7.6 126.4 21.0 546.0

W13 9.1 11.6 3.8 5.0 0.3 58.4 1.0 18.5

GM 4.6 7.7 3.6 6.2 5.5 32.7 13.6 94.1

lower error rate compared to the offline average and worst-case profiles. Application behavior
changes continuously over the course of the execution, and offline profiling-based estimations of
instruction counts are by their nature incapable of adapting to changes. This is evident from the
higher standard deviation and average error values for the average and worst-case profiles.

Our proposed predictors are capable of adapting to changes in the application behavior with
considerable accuracy. The average prediction is stable but slow in reacting to changes in instruc-
tion counts per iteration. Consequently, it has lower accuracy for the RayTrace application (W1–
W7). However, the gradient predictor adapts faster, compared to the average predictor, which is
prone to high-frequency changes. For these reasons, the average predictor performs better than
the gradient predictor for the applications that have largely constant behavior with small changes,
that is, the MPEG decoder and encoder (W8–W10) and the H264 encoder (W11–W13). In contrast,
the gradient predictor performs better for applications that have fast changing phases, that is,
RayTrace (W1–W7).

Figure 5 presents a graphical view of predictor behavior for the selected applications, where
the x-axis represents the iteration numbers and the y-axis represents the instructions normalized
to the maximum of the actual number of instructions. The purple curve represents the actual
number of instructions, where each point in the curve is the sum of the number of instructions
for the next p iterations—the “prediction window.” We use the ALP RayTrace workload (W1) and
the SPEC2006 H264 workload (W13) for illustration. We observe that the gradient predictor and
the average predictor react to the changes in the number of instructions per iteration. RayTrace
has fast changing phases and the gradient predictor tracks the real instruction count with a small
lag. However, the average predictor is slightly slower in following the application behavior. In the
case of H264, the instruction count is mostly constant with small high-frequency changes. The
average predictor performs better in this case and the gradient predictor oscillates trying to keep
up with the changes. The average predictor is better for such applications because of its more
stable nature. However, even in these situations, the prediction errors for both predictors are quite
small and they perform far better than the offline techniques.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 41. Publication date: December 2017.



QoS-Supervised Loop Execution to Reduce Energy on Heterogeneous Architectures 41:15

Fig. 5. Predictor evaluation.

Table 6. Comparison of the Deadlines Missed for Different Schedules with the Deadline
per Loop Iteration Set Equal to 1 ∗ DQOS

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 AM

Grad Pred 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Avg Pred 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Avg Profile 97 48 0 0 0 74 98 38 0 0 0 0 84 34

WC Profile 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In general, the average and gradient predictors are suitable for different scenarios. Both predic-
tors achieve high accuracy with a mean average error of 4.6% and mean standard deviation of 7.7%
for the gradient predictor and mean average error of 3.6% and the mean standard deviation of 6.2%
for the average predictor across all applications. On the other hand, the average and worst-case
profiles show much higher error statistics. In general, the online instruction prediction schemes
perform considerably better than the profiling-based schemes.

5.2 Scheduling

The scheduler uses the prediction of the number of instructions and the accumulated slack to se-
lect the core type and the frequency to execute the future iterations of the loop so as to reduce
energy consumption without missing any deadlines. Thus, one of the main metrics for our evalu-
ation is the percentage of missed deadlines calculated over the total number of iterations. Table 6
presents our results. We present the arithmetic mean (AM) in the last column. First we note that
the schedules based on the gradient and average predictors do not miss any deadlines. However,
the schedules based on the offline average profile technique miss a large number of deadlines for
several applications. The reason is that the average profile is calculated over all the inputs to a
certain benchmark. This means that the resulting value is closer to the actual instruction count
for one input than another. The schedules based on the worst-case profile, by construction, do not
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miss any deadlines because they execute the application at full throttle and tend to overprovision
the computational resources.

Our proposed scheduler tries to keep the slack within the guard band and makes decisions
to change the core or the frequency only when the slack goes outside the guard band. An im-
portant observation is that the slowest iteration, whose execution time is used as the deadline,
could potentially miss the deadline because of the overheads. However, this is not the case be-
cause the real deadline for each iteration is actually the sum of the absolute deadline plus the slack
from the last iteration, that is, DQOS + S . Since the guard band is set between 0.5 ∗ DQOS and
1 ∗ DQOS , the last iteration will finish its execution at a time between 50% and 100% of its dead-
line. So the effective deadline is at least 1.5 ∗ DQOS , thus offering considerable margin to tolerate
the overheads generated from our framework.

Two inputs from RayTrace, teapot (W1) and sc98 (W6), are picked for graphical illustration of
the slack, frequency, and core changes. Only the last hundred iterations of execution are shown in
Figure 6. In the top four diagrams, the changes in the slack are shown, with the x-axis representing
the iteration number and the y-axis representing the normalized slack with respect to the deadline
per loop iteration (i.e., DQOS ). The top two diagrams show the behavior of slack for the average
and the worst-case profiles for two inputs, where the dashed black line represents zero slack. The
two middle diagrams show the behavior of the slack for the gradient and the average predictor.
The two bottom-most diagrams represent the frequency and core schedule over the course of the
execution, where the x-axis shows the iteration number and the y-axis represents the frequency
and core settings. Letters “B” and “L” on the y-axis’s label represent the big and LITTLE core,
respectively, while the number represents the frequency in MHz.

The schedule based on the worst-case profile executes the application at full speed and thus
overprovisions computational resources. As a result, the slack increases continuously throughout
the execution of the application and ends up around 200 at the end of the execution. Since this value
is normalized to DQOS , it means that the application finishes 200 deadlines earlier than required.
It also implies that there is a considerable margin for slowdown. It is important to note that the
worst-case-profile-based schedule shows exactly the same behavior as unscheduled execution in
this particular setting of the deadline. Another interesting fact worth noticing is that the worst-
case profile’s slack for W6 ends up at around 400. This means that the margin for slowdown varies
a lot across the workloads and our methodology of prediction can capture this behavior at runtime
and apply appropriate scheduling decisions.

The average-profile-based schedule also allocates a fixed amount of the resources (i.e., frequency
and core) to the application execution. Since this value is based on the average across a set of inputs,
it might be overprovisioning or underprovisioning resources. Obviously, it is less pessimistic than
the worst-case profile, which is why the slack for the average profile for W1 decreases and that
for W6 oscillates around the zero mark. This fact is also evident from Table 3, where the average
instructions per loop iteration for W1 and W6 are 1,921 and 1,124 million, respectively, while the
resulting profile value calculated from all the inputs to “RayTrace” is 1,112 million instructions
per loop iteration. So the resulting average profile value is more suited to W6 than W1. This is
the reason that the slack for W1 decreases and that for W6 remains close to zero. However, the
negative values of slack imply that the deadlines are missed, and W1 misses more deadlines than
W6 for average-profile-based scheduling, which is evident from Table 6, where W1 and W6 miss
97% and 74% of the deadlines, respectively.

In the schedules that are based on the average and gradient predictors, the frequency and
core changes according to computational demands of application and slack are quite successfully
managed inside the guard-band region. The gradient predictor being more accurate shows less
and smaller overshoots outside the guard band compared to the average predictor. There are two
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Fig. 6. Core and frequency schedule and its impact on slack for ALP RayTrace benchmark for input teapot
(leftmost diagrams) and for the input sc98 (rightmost diagrams).

important factors that contribute to managing slack within the defined limits: (1) the prediction is
constantly updated trying to keep up with the changes in instruction counts per loop iteration and
(2) the scheduler makes a correction to the deadline whenever slack crosses the higher or lower
limit of the guard band. If the prediction is always accurate, the slack should stay within the limits
set by the guard band. However, since the application is changing phases, the prediction could
suffer from the lag, underprediction, and overprediction that affects slack and push it outside of
the guard band. In this context, the big changes in frequency and core are primarily driven by the
phase changes in the application. However, small changes are the result of corrections that are
applied by the scheduler whenever the slack crosses the boundaries of the guard band.

In summary, offline estimations of instruction counts (i.e., the average and worst-case profiles)
are static estimations that are not capable of adapting to the changes in applications. Schedules
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Table 7. Energy Improvement for Schedules Based on the Gradient and Average Predictors
and the Average and Worst-Case Profiles with Deadlines Set to 1 ∗ DQOS

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 AM

Perf Pred 37.47 33.79 32.35 29.11 32.18 42.17 34.35 36.28 35.59 37.63 16.52 29.86 26.34 32.59

Grad Pred 30.95 22.48 24.69 20.31 22.45 36.06 25.31 18.87 19.29 18.19 13.36 21.9 21.91 22.75

Avg Pred 31.37 23.24 24.93 19.72 21.12 36.05 25.47 27.68 29.95 18.09 9.91 28.26 26.64 24.80

Avg Profile 53.93 43.6 0 0 0 41.98 44.72 36.08 0 23.87 0 0 60.89 23.47

WC Profile 0 0 0 0 0 0 0 0 0 0 0 0 0 0

based on these estimates are not capable of managing slack within the allowable margins and
cannot avoid missing deadlines, as the average profile-based schedule misses 34% of deadlines on
average. On the other hand, our proposed online predictors (i.e., the average and gradient predic-
tors) can adapt to the changes in application behavior, and the schedules based on these prediction
schemes can successfully manage the slack without missing any deadlines.

5.3 Energy Consumption

EnerдySavinдs (%) =
Ebase − Enew

Ebase
∗ 100 (13)

There exist two types of opportunities to reduce energy consumption. First, there is the inherent
variation between the execution time across iterations, and this fact was elaborated on earlier
using CDF of execution times per iteration in Figure 1. The marginal energy savings available in
this case are studied by setting the deadline equal to 1 ∗ DQOS . A summary of results for this case is
presented in Table 7, where the percentage of energy savings for the perfect, gradient, and average
predictors and the average and worst-case profiles are shown for different applications. The energy
savings are calculated using Equation (13). Since the values can be zero or negative, arithmetic
mean (AM) is used to present the average. This applies to all of the following tables showing
energy savings. The schedule generated from the worst-case profile executes the application at full
throttle and consequently there are no energy savings. Schedules based on average and gradient
predictors show 24.68% and 22.94% energy savings, respectively. The upper bound of energy saving
(i.e., 32.59%) is of course the one shown by the perfect predictor.

The average profile shows significant energy savings for some applications and no energy sav-
ings for other applications for the reasons discussed in the previous section. In some cases, the
schedule based on the average profile has higher energy savings compared to the gradient and
average predictors. However, in these cases, the average-profile-based schedule misses a large
number of deadlines as shown earlier in Section 5.2 in Table 6. For example, in case of the W1,
the schedules based on the average profile and the average and gradient predictors have energy
savings of 54%, 31%, and 31%, respectively, for the deadline of 1 ∗ DQOS . The energy saving for the
schedule based on the average profile is certainly higher than schedules based on online gradient
and average predictor. However, the average-profile-based schedule misses 97% of the deadlines,
whereas the schedules based on gradient and average predictors do not miss any deadlines.

The second opportunity to save energy is created by relaxing the deadlines further to multiples
of DQOS . In this scenario, the margin for slowdown is increased for all the iterations whether
they are slow or fast. We have analyzed our framework for three cases, where deadlines are set
equal to 1.2 ∗ DQOS , 1.5 ∗ DQOS , and 2 ∗ DQOS and results are presented in Table 8. As expected,
the energy savings are increased when increasing the deadline, but the improvement is not linear
with respect to the increase in the deadline. The reason is that the voltage change associated with

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 41. Publication date: December 2017.



QoS-Supervised Loop Execution to Reduce Energy on Heterogeneous Architectures 41:19

Table 8. Energy Improvement for Schedules Based on the Gradient and Average Predictors and the
Average and Worst-Case Profiles with Deadlines Set to 1.2 ∗ DQOS , 1.5 ∗ DQOS , and 2 ∗ DQOS

1.2 ∗ DQOS 1.5 ∗ DQOS 2 ∗ DQOS

Grad Avg Avg WC Perfect Grad Avg Avg WC Perfect Grad Avg Avg WC Perfect

App Pred Pred Prof Prof Pred Pred Pred Prof Prof Pred Pred Pred Prof Prof Pred

W1 44.3 44.3 69.7 30.3 49.1 55.3 55.1 75.3 43.5 58.1 64.3 64.4 81.8 50.6 69.2

W2 41.6 41.9 48.8 0.0 45.4 50.6 50.8 52.8 0.0 55.1 62.1 63.4 74.5 34.6 64.2

W3 38.9 40.2 0.0 0.0 45.8 48.6 48.7 17.4 0.0 51.6 56.8 56.8 42.6 0.0 60.5

W4 38.4 38.4 0.0 0.0 44.1 47.4 47.8 0.0 0.0 51.3 56.9 57.1 0.0 0.0 58.7

W5 39.8 40.7 15.2 0.0 44.6 49.6 49.1 39.4 0.0 54.1 62.4 61.7 45.4 0.0 62.9

W6 46.8 46.9 47.3 0.0 50.4 57.1 57.1 53.3 0.0 59.6 68.2 68.3 71.7 26.8 72.1

W7 40.7 40.6 51.3 0.0 45.3 49.0 49.1 55.1 0.0 52.3 57.4 57.4 66.7 37.6 60.6

W8 40.2 42.1 45.5 26.2 49.9 49.7 50.8 50.7 43.7 56.2 60.8 65.1 55.8 50.7 63.6

W9 40.2 50.7 39.3 0.0 56.6 57.6 59.9 53.4 24.8 64.5 80.5 83.1 62.5 53.4 87.1

W10 38.1 47.7 51.3 37.0 57.9 61.5 61.1 60.4 54.8 69.2 71.5 72.1 70.3 66.7 77.0

W11 38.8 38.3 0.0 0.0 46.4 49.5 49.4 0.0 0.0 53.6 56.7 56.8 0.0 0.0 60.7

W12 33.0 40.3 0.0 0.0 46.2 42.4 45.9 0.0 0.0 54.1 51.6 52.0 0.0 0.0 61.0

W13 38.3 39.9 65.9 25.6 45.4 45.6 46.4 72.0 40.6 52.9 53.7 54.1 74.5 47.0 61.5

AM 40.0 42.5 33.4 9.2 48.2 51.0 51.6 40.8 16.0 56.4 61.8 62.5 49.7 28.3 66.1

Table 9. Energy Savings Using DVFS-Only on a Big Core with Our Proposed Predictors and Scheduler

QoS Predictor W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 AM

1.2 Gradient 44.1 40.4 40.1 38.4 39 46.1 40.2 40.1 40.9 44.9 38.2 33.9 34.6 40.1

Average 44.0 40.5 40.3 38.3 38.3 46.4 40.5 43.3 51.0 46.9 38.6 40.2 38.3 42.1

1.5 Gradient 51.4 48.9 48.5 48.1 47.7 53.1 48.7 49.1 58.2 62.0 49.5 44.2 45.5 50.4

Average 51.4 49.1 48.5 47.6 47.8 53.1 48.7 50.1 59.9 62.3 49.5 45.3 45.8 50.7

2 Gradient 56.6 55.2 53.8 54.9 55.0 56.7 53.8 55.9 65.3 72.3 56.5 49.6 51.3 56.7

Average 56.5 55.2 53.8 54.9 54.9 56.7 53.8 55.8 65.3 72.4 56.5 50.3 51.4 56.7

Table 10. Usage Statistics of LITTLE-Core (% of Iterations) with Deadlines Set
to 1.2 ∗ DQOS , 1.5 ∗ DQOS , and 2 ∗ DQOS

QoS Predictor W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 AM

1.2 Gradient 3 17 0 0 16 6 0 0 0 0 0 2 0 3.4

Average 2 17 0 0 16 7 0 0 0 0 1 0 0 3.3

1.5 Gradient 42 21 19 0 20 42 19 20 0 0 0 5 0 14.5

Average 42 22 19 0 20 43 19 27 0 0 2 0 0 14.9

2 Gradient 65 52 45 33 57 83 46 56 86 18 7 2 33 45.0

Average 64 62 42 33 52 83 44 70 98 8 6 2 27 45.0

each voltage-frequency step is not linear, so the slower we go, the less are the energy savings
available.

An important factor in this scenario is the usage of the LITTLE core. We present the LITTLE core
usage of our scheduler for various deadline specifications in Table 10. Moreover, in order to isolate
the effects of core switch, we measure energy savings with a restricted version of our scheduler
that uses only DVFS on the big core and present these results in Table 9. As the usage of LITTLE
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Table 11. Final Slack Values for the Various Schedules for Deadline of 2 ∗ DQOS

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 GM

Perf Pred 0.84 0.65 0.93 0.67 0.61 0.78 0.88 0.78 0.77 0.69 0.71 0.66 0.71 0.74

Grad Pred 0.8 1.03 0.89 0.72 0.47 0.7 0.43 1.03 0.96 1 0.51 1.13 0.89 0.78

Avg Pred 0.45 0.42 0.75 0.58 1 0.93 0.92 0.44 0.83 1.04 0.76 1.18 0.74 0.77

Grad Pred (DVFS) 90.7 8.3 67.0 0.99 0.49 138 67.9 5.9 45.4 0.96 1.03 4.41 3.04 8.23

Avg Pred (DVFS) 90.7 8.3 66.8 0.99 1.22 138 68.5 4.9 45.4 1 0.66 3.02 2.96 8.19

Avg Profile −389 −47 300 275 85 21 −184 5.18 116 18 64 36 −87 N.A.

WC Profile 227 134 413 275 156 607 325 56 251 35 64 36 24 199

core increases, the energy difference between DVFS-only scheduling (Table 9) and heterogeneous
core scheduling (Table 8) becomes higher.

We observe that if the slowdown margin is high, the DVFS-only scheme cannot efficiently ex-
ploit the available slack and turn it into energy savings. This slowdown margin is largely dependent
on the deadline. Relaxing the deadline increases the usage of the LITTLE core and increases the
effectiveness of a core switch.

Consider, especially, the average predictor for W9 when the deadline is 2 ∗ DQOS . In this case,
the LITTLE core usage is 98% and the energy saving, compared to the baseline (race-to-idle),
is 83%, whereas the energy saving for DVFS-only is 65%. This means that with DVFS-only
scheduling, the energy consumption is 2.8 times smaller, while with our heterogeneous core
scheduling scheme, the energy consumption is 5.8 times smaller. We find that context switching
to LITTLE cores provides an important avenue for energy savings.

Another statistical view of scheduling efficiency is to see how well the various schemes manage
to complete the application execution closer to the deadline. Table 11 provides final slack values for
different schemes. GM is used to calculate the average and is presented in last column. Here “N.A.”
is an abbreviation for “not applicable” because the GM can not be calculated for negative values.
These values are normalized to the given deadline. That is, a value of “1” means that the application
finished one deadline time before the final deadline. We see that the profiling-based schemes fail to
exploit the slack and slow down the workload’s execution appropriately. The gradient, average, and
perfect predictor perform considerably well, with perfect predictor understandingly better than
the former two. The gradient and average predictor schemes with DVFS-only perform mediocre
and finish with a large amount of slack on hand. These experiments confirm our assumption that
we can achieve higher energy savings when heterogeneous processing elements with varying
power/performance operating points are available.

Our proposed framework can reduce power as well as energy. Because the input data-driven
variations in execution time per loop iteration are significant, it is possible to achieve just-in-time
completion and save energy. In case of a tight deadline of 1 ∗ DQOS , it is essentially the slowdown
of the faster iterations in order to complete close to the slower iterations that results in energy
savings. In case of relaxed deadlines (i.e., 1.2 ∗ DQOS , 1.5 ∗ DQOS , 2 ∗ DQOS ), the execution times
of both faster and slower iterations are slowed down to complete close to the new deadline and
achieve further energy savings.

We finally study the impact of selecting the guard-band parameters on energy savings. Initially,
the guard band is selected to range from 0.5 ∗ DQOS to 1 ∗ DQOS . This selection means that the
application completes in the second half between the two deadlines. Consequently, the final ac-
cumulated slack stays within this limit. This is a considerably pessimistic setting considering the
initial proposal of finishing close to deadline and the energy savings also reduce significantly. The
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Table 12. Energy Improvement for Schedules Based on Gradient Predictor and Average Predictor with
Deadlines Set to 1 ∗ DQOS and Guard Band Set between 0.05 ∗ DQOS and 0.1 ∗ DQOS

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 AM

Energy Grad Pred 33.4 28.6 27.4 24.3 25.9 38.6 29.3 27.1 24.7 28.3 22.1 19.0 27.2 27.4

Savings Improvement (%) 7.6 29.8 9.6 21.5 17.9 7.2 17.0 28.9 23.4 23.2 70.2 −5 4.5 19.7

Avg Pred 33.0 27.9 27.3 23.7 25.0 38.1 28.9 35.3 35.7 23.3 19.2 26.2 31.0 28.8

Improvement (%) 6.3 21.3 9.1 18.7 13.6 5.7 15.6 26.0 18.9 −6.7 92 −6.5 29.1 18.7

Deadlines Grad Pred 0 0 0 0 0 4.75 0 34.1 9.0 0.5 0 0 6.9 4.3

Missed (%) Avg Pred 5.9 8.7 0 0.05 4.1 5.5 0.5 0 0 0 0 0 0 1.9

rationale here is that this guard band is chosen over a set of applications and it represents a safe
choice, where not many of the deadlines are missed. In fact, if the guard band is lowered and tight-
ened, the energy savings are expected to increase, but the tradeoff is that additional deadlines can
be missed. Table 12 shows such a scenario where the guard band is changed to 0.05 ∗ DQOS and
0.1 ∗ DQOS and the energy savings and missed deadlines are presented. This new guard band is
set so that the application finishes between 5% and 10% of the time between two deadlines.

The energy savings are considerably improved for most of the cases. However, the number of
missed deadlines increases as well. Considering the fact that different predictors are more accu-
rate for different sets of applications, the increase in the number of missed deadlines is consistent
with the prediction accuracy. The gradient predictor has low accuracy compared to the average
predictor for the H264 encoder (W8–W9) and MPEG encoder (W11–W13). Consequently, the num-
ber of missed deadlines is higher for the gradient predictor than for the average predictor. Simi-
larly, the average predictor has slightly lower accuracy compared to the gradient predictor for the
RayTrace (W1–W7) and consequently the number of missed deadlines for the average predictor is
more than the number of missed deadlines for the gradient predictor.

In summary, the setting of the guard band has an effect on energy savings. However, this se-
lection is largely application dependent and has a slight effect on the number of deadlines missed.
Changing the guard band from 0.5 ∗ DQOS and 1 ∗ DQOS to 0.05 ∗ DQOS and 0.1 ∗ DQOS increases
the energy savings by 19.7% and 18.7% for the gradient- and average-predictor-based schedules,
respectively. However, the number of missed deadlines is slightly increased by 4.3% and 1.9% for
the gradient and average predictor, respectively.

5.4 Overhead Analysis

For our proposed method to work, the overheads incurred must be small. A summary of timing and
energy overhead incurred by our proposed scheduling methodology is presented in Table 13. Here,
we only provide the results for the gradient-predictor-based schedule as it is more computationally
demanding and will have higher overheads. The overhead (shown in Table 13 as a percentage) is
calculated as the ratio of overhead over the entire execution, where we show the ratio of timing and
energy overhead to execution time and total energy, respectively, for each application. Overall, as
we can see, the overhead is negligible for most applications. For some applications (e.g., W10), the
timing overhead is somewhat higher (a few percent) but the energy overhead is still negligible. The
maximum geometric mean of overhead, considering different QoS requirements, is only 0.062% and
0.076% for timing and energy overhead, respectively. Note that we have accounted for the energy
overheads when reporting on the energy-saving gains earlier in Section 5.3.

Finally, we analyze the contributions to the overhead in detail in Table 14 and Table 15. Since
the overheads are highest for the timing constraints of 2 ∗ DQOS , we only present the detailed
timing and energy overheads for this deadline. The timing and energy overheads are presented as

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 41. Publication date: December 2017.



41:22 M. Waqar Azhar et al.

Table 13. Summary of Timing and Energy Overhead in Percent of the Gradient-Predictor-Based
Schedule with Deadlines Set to 1 ∗ DQOS , 1.2 ∗ DQOS , 1.5 ∗ DQOS , and 2 ∗ DQOS

QoS Overhead W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 GM

1 Timing 0.01 0.02 0.05 0.08 0.03 0.02 0.48 0.18 2.28 2.28 0.01 0.03 0.01 0.05

Energy 0.006 0.009 0.019 0.026 0.013 0.013 0.009 0.154 0.059 0.089 0.003 0.008 0.002 0.0144

1.2 Timing 0.02 0.03 0.04 0.09 0.05 0.03 0.02 0.41 0.32 4.02 0.02 0.06 0.01 0.06

Energy 0.011 0.016 0.027 0.046 0.031 0.022 0.011 0.218 0.165 0.207 0.007 0.025 0.003 0.028

1.5 Timing 0.022 0.016 0.071 0.073 0.044 0.038 0.031 0.805 0.278 2.064 0.015 0.065 0.005 0.062

Energy 0.02 0.01 0.07 0.05 0.04 0.05 0.03 0.64 0.25 0.23 0.01 0.04 0.00 0.04

2 Timing 0.009 0.026 0.048 0.123 0.064 0.023 0.022 0.567 0.309 3.495 0.012 0.072 0.008 0.062

Energy 0.015 0.039 0.070 0.144 0.098 0.050 0.033 0.766 0.794 0.641 0.012 0.065 0.009 0.076

Table 14. Detailed Timing Overheads of the SLOOP Framework Represented as Percentage
to Execution Time for Deadline of 2 ∗ DQOS

Overhead (%) W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 GM

Monitoring (∗10−4) 0.13 0.19 0.44 0.82 0.31 0.19 0.19 1.26 0.91 21 0.17 0.11 0.02 0.34

Grad Pred (∗10−4) 0.65 0.93 2.05 3.71 1.53 1.0 0.91 6.13 4.86 90.8 0.74 0.49 0.07 1.6

Scheduling (∗10−4) 0.2 0.51 0.72 1.32 0.89 0.35 0.32 4.03 4.11 39.6 0.49 0.43 0.06 0.82

DVFS (∗10−2) 0.69 0.99 2.62 5.46 2.21 1.22 1.05 22.0 19.89 200 0.89 2.88 0.35 3.07

Core-Switch (∗10−2) 0.17 1.57 2.14 6.81 4.15 1.05 1.16 34.29 10.95 144 33 4.32 0.45 2.81

Total (∗10−2) 0.87 2.57 4.79 12.33 6.39 2.28 2.22 56.69 30.94 349 1.23 7.21 0.84 6.19

Table 15. Detailed Energy Overheads of the SLOOP Framework Represented as Percentage
to Total Energy for Deadline of 2 ∗ DQOS

Overhead (%) W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 GM

Monitoring (∗10−4) 0.48 0.59 1.34 2.05 1.05 0.92 0.6 3.89 4.66 7.37 0.33 0.23 0.04 0.88

Grad Pred (∗10−4) 1.03 1.53 3.74 6.39 2.48 1.43 1.64 9.57 6.9 27.89 1.27 0.72 0.11 2.26

Scheduling (∗10−4) 0.28 0.47 1.4 1.97 0.96 0.44 0.63 5.13 4.9 10.89 0.74 0.5 0.07 0.97

DVFS (∗10−2) 1.22 1.49 3.84 6.37 3.39 2.68 1.56 29.71 51.11 36.59 0.86 2.6 0.36 3.74

Core-Switch (∗10−2) 0.30 2.37 3.14 7.94 6.38 2.3 1.71 46.3 28.15 26.34 0.32 3.9 0.46 3.43

Total (∗10−2) 1.55 3.88 7.04 14.42 9.81 5.01 3.3 76.58 79.42 64.12 1.20 6.51 0.86 7.55

a percentage of the execution time and total energy, respectively. Here, we show the overheads for
the monitoring, prediction, scheduling, DVFS, and core switching assuming the gradient predictor.
Overall, the overhead (energy or timing) for monitoring, prediction, and scheduling is negligible,
although the overhead for DVFS and core switching is somewhat higher. While monitoring and
prediction happen in every iteration, the scheduling and DVFS (or core switching) overhead is
only incurred whenever the slack is outside the allocated guard band. As a result, the overhead
of them is less critical. The bottom line is that since the overhead of monitoring, prediction, and
scheduling is negligible, overall the overhead is low. It should also be noted that since we use
operating system calls to accomplish DVFS and core switching, there is considerable room for
improvement in reducing these overheads.

6 RELATED WORK

QoS specifications have been attempted in the past to reduce energy consumption in computing
systems. A methodology is presented by Hughes et al. (2001a), where the variability in execution
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times of video encoders/decoders is studied and later used to propose a framework for prediction
of the remaining execution time (Hughes et al. 2001b), as we do. However, their approach builds
into the prediction strategy what type of frame is currently analyzed (I, P, or B). Hence, it is not
application agnostic. In addition, they base their predictions on the longest executing frame in
the recent past, which may yield pessimistic predictions and less energy savings compared to
our approach. Kluge et al. (2010) also propose an execution-time prediction methodology based
on autocorrelation clustering targeting video encoders/decoders. Similar to Hughes et al. (2001b),
their approach works well because of the strong correlation between execution time and frame
type (I, P, or B). In stark contrast to both of these works, our approach is general and application
agnostic and can work robustly without any knowledge of the application.

Själander et al. (2012) present an interesting approach to energy savings in cellular base sta-
tions. The activity in base stations is measured over a time window and used as a prediction to
allocate the computational resources (i.e., the number of cores) in the next time window. Idle cores
are power-gated to save static power as well. Their approach is to always assign two extra cores
than predicted as a safeguard against underprovisioning of system resources. They demonstrate
considerable energy savings over normal execution with no resource management. Similar to the
works already discussed, this work relies on application-domain knowledge.

Mohapatra et al. (2007) use QoS specifications to apply energy-saving adaptations at all lay-
ers of the system (i.e., applications, OS, network and processors). They define a number of QoS
settings in terms of screen resolution, frames per second, and network speed that are developed
based on user perception. The proposed framework assigns the highest possible performance point
to keep the energy consumption below the given budget. Their QoS specification is based on user
perception rather than on fixed deadlines. In contrast, our approach identifies and exploits the
variability in execution time of kernels without sacrificing the quality (e.g., frame rate and resolu-
tion) by focusing specifically on processor performance. In addition, their approach targets video
encoder/decoder applications, whereas our approach is general.

Holmbacka (2015) proposed a runtime manager for energy reduction based on maintaining the
required performance. Again, the maintenance of the required performance level does not guar-
antee the maximum energy savings because applications’ performance requirements change over
time. Our approach to use QoS deadlines coupled with online application monitoring and progress
tracking provides a better mechanism that saves a significant amount of energy.

Linux OS governors typically scale the performance (i.e., frequency core) based on utilization. A
higher utilization simply results in a switch to higher frequency or a big core. Here it is important
to note that the OS lacks the information about the user program’s deadline and utilization is not
an appropriate measure to determine the computational needs of programs. A scheme relying on
this fact was proposed by Kim et al. (2014), where a new arriving task is assigned to a processor that
is predicted to have the lowest utilization (percentage of activity) instead of the load (number of
tasks in the processor queue) typically used by the Linux Completely-Fair-Scheduler (CFS). This re-
sults in keeping the utilization low and thus the governor keeps the processor in low-performance
state. However, all these schedulers are agnostic of QoS deadlines and cannot make informed deci-
sions. In contrast, our scheme provides the application with an interface to request QoS deadlines
and our runtime ensures that deadlines are met with significantly lower energy consumption.

Suh et al. (2015) propose to provide determinism to real-time applications against the variabil-
ity in the execution throughput of an out-of-order processor by stabilizing the MIPS rate using a
control system. This work uses profiling to determine the target MIPS rate based on the worst or
average case. A PID-based control system then tries to regulate the MIPS rate against target MIPS,
thus completing applications before the deadline and saving energy. However, a worst-case value
will be higher and the application may complete a lot earlier than the actual deadline. Similarly,
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an average profile can have significant variability compared to a real profile and might suit one
application more than another as we have shown in our evaluation. Instead, we use online informa-
tion from hardware performance counters to continuously predict the execution rate. Moreover,
different phases of the application require different execution speeds. In the case of streaming ap-
plications, which require their frames to meet deadlines, the average profile may lead to missed
deadlines. Therefore, it is important to continuously monitor the application and adjust the exe-
cution rate.

7 CONCLUSIONS

This article proposes a general, application-agnostic, online prediction methodology for the num-
ber of instructions to be executed in the next phase coupled with a supervisory mechanism based
on slack to achieve just-in-time completion of each computational phase. The proposed method-
ology instruments the outer loops of the application (which often constitute the bulk of the execu-
tion) and monitors the characteristics of a loop inside a runtime layer (the number of instructions
and cycles per iteration) via existing hardware performance counters. The runtime layer predicts
the number of instructions and the time for the whole execution of the program (or a part of it)
based on the history and performs supervised loop execution (SLOOP) by controlling DVFS and
selecting a core type (big O-o-O vs. LITTLE in-order core) that meets the QoS deadline.

This article makes a number of contributions: First, it proposes a lightweight runtime progress-
tracking methodology based on the execution of the outer loops in the applications. Second, it con-
tributes with a simple, yet accurate, instruction and execution-time predictor based on instruction-
count history. Finally, it contributes with a novel scheduler for heterogeneous multicores that saves
energy by tuning the frequency and the core type based on QoS, the prediction, and the available
slack. It is experimentally shown that the overall proposed methodology saves at least 23% energy
with a deadline that corresponds to the slowest iteration and 40% or more when the deadline cor-
responds to 20% longer time than the slowest iteration. We also show that the extra energy needed
for the SLOOP framework is negligible.
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