
Keep the Beat: On-The-Fly Clock Offset
Compensation for Synchronous Transmissions in

Low-Power Networks
Martina Brachmann

Adaptive Dynamic Systems
TU Dresden

Dresden, Germany
martina.brachmann@tu-dresden.de

Olaf Landsiedel
Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden
olafl@chalmers.se

Silvia Santini
Faculty of Informatics

Università della Svizzera italiana (USI)
Lugano, Switzerland
silvia.santini@usi.ch

Abstract—Emerging protocols for low-power wireless networks
increasingly exploit constructive interference and the capture
effect. The basic idea is that the synchronous transmission of
identical packets by neighboring nodes leads to constructive in-
terference – or at least do not cause destructive interference. This
requires that the temporal displacement of packets at receiving
nodes is lower than 0.5 µs when employing IEEE 802.15.4 radios.
However, commonly used sensor nodes are equipped with cheap
and imprecise clocks that show high frequency deviations across
nodes, making constructive interference difficult to achieve. Such
deviations further increase when individual nodes are exposed
to different temperatures. In this paper we introduce Flock, a
novel approach to compensate for differences in clock frequency
across synchronously transmitting nodes. We implemented Flock
in Contiki on the example of Glossy, a flooding protocol based
on synchronous transmissions. Our results confirm that Flock
can achieve constructive interference on real sensor nodes in
over 98% of the cases. Overall, Flock makes protocols that
exploit synchronous transmissions more robust to operate even
in challenging environments.

Index Terms—Synchronous transmission, clock offset compen-
sation, constructive interference, low-power networks

I. INTRODUCTION

In recent years, protocols for low-power wireless network-
ing increasingly build on constructive interference (CI) and the
capture effect. Dutta et al. pioneered this research direction by
introducing A-MAC – an efficient, receiver-initiated Medium
Access Control (MAC) protocol [1]. In A-MAC, multiple
receivers concurrently send identical acknowledgments for a
single data packet. Glossy [2] builds upon this idea and lets
nodes synchronously transmit the same data packet. Tight
synchronization ensures non-destructive interference of the
transmissions and allows receivers to decode a packet. Glossy
can flood a packet in a multi-hop network within few mil-
liseconds. It thereby achieves very high reliability and also
provides time synchronization with microseconds accuracy.

A-MAC and Glossy sparked a new research direction in
low-power wireless communication protocols that exploit so-
called concurrent or synchronous transmissions. Recently pre-
sented approaches – such as LWB [3], Splash [4], Choco [5],
and others – all build upon Glossy and use individual network

floods to support communication primitives like data collec-
tion. Virtus [6] also builds upon Glossy to provide virtual
synchrony [7] and Crystal [8] relies on data prediction to
reduce the number of Glossy floods. CXFS [9], Sparkle [10],
LaneFlood [11], and others [12], [13], [14], [15] limit the
number of concurrent transmitters in Glossy or LWB to
improve energy efficiency.

To ensure that concurrently transmitted packets do not inter-
fere destructively, two conditions must be fulfilled: (i) nodes
must transmit the same packet, and (ii) the transmissions
need to be tightly timed to ensure that their symbols overlap
sufficiently. For example, in IEEE 802.15.4, the synchro-
nization of transmissions within at least 0.5 µs is necessary
to prevent packets from interfering destructively [2]. Glossy
demonstrated that it is possible to fulfill this “0.5 µs condition”
by accounting for interrupt latency and ensuring that there
is a fixed number of microcontroller (MCU) cycles between
the end of the reception of a packet and the triggering of its
retransmission. This number is set to roughly one hundred
MCU cycles in the standard implementation of Glossy [2].

In this paper, we show that due to differences in clock
frequency across different nodes, even the execution of just
these one hundred clock cycles can result in a violation of
the “0.5 µs condition”. This is due to the fact that the MCUs
of common low-power hardware platforms rely on unstable
digital crystal oscillators (DCOs). DCOs are hard to calibrate,
show strong drifts over time and even larger drifts when the
temperature changes. Recent work shows that errors of up
to 20% [2], [16] are common in real-world scenarios. This
problem is further exacerbated when a larger delay between the
reception and retransmission of a packet occurs, for example
to allow for data processing as in Chaos [17] or to switch
channels to increase resilience [18], [19], [20].

This paper introduces a novel approach to address these
challenges: Flock – On-the-Fly Clock Offset Compensation.
Instead of relying on the unstable DCO clock only, Flock also
exploits the fine-grained, highly accurate clock driving the ra-
dio. This clock runs at 8 MHz and drives packet transmissions
and base-band modulation in the radio chip. It has a low-

error of at most ±40 ppm, as required by the IEEE 802.15.4
standard [21]. Its stability ensures that when a packet of known
length is sent, its duration is very predictable (up to an error
of few nanoseconds). Flock, thus, timestamps the start and
the end of each packet reception. Next, it correlates these two
timestamps with the local DCO time. Receiving a packet of
9 bytes should for instance require 1210 DCO cycles. The
difference between this value and the actual number of DCO
cycles it took to receive the packet gives a measure of the
DCO frequency offset. Flock can then compensate on-the-fly
for this offset and thus, makes it possible to fulfill the “0.5 µs
condition” even in challenging environments.

This paper makes three main contributions: (1) We introduce
Flock, a new approach to estimate and compensate on-the-fly
the frequency deviations of the free-running DCOs – common
on today’s sensor nodes – utilizing the accurate and high-
resolution radio clock; (2) We employ Flock on the example
of Glossy to enable synchronous transmissions even in the
presence of strong temperature changes or other adversary
conditions; and (3) We evaluate Flock both in simulation and
lab experiments on real sensor nodes and show its effectiveness
in several real scenarios.

The remainder of this paper is structured as follows.
Sec. II provides the required background on synchronous
transmissions, Glossy and DCO-related issues. Next, Sec. III
introduces the design of Flock. We discuss the evaluation of
Flock in Sec. IV and discuss related work in Sec. V. Sec. VI
concludes the paper and discusses future work.

II. BACKGROUND AND MOTIVATION

Before introducing the design of Flock, this section provides
the required fundamental notions necessary to understand the
remainder of the paper. Furthermore, we provide a quantitative
example to motivate our work.

A. Enabling synchronous transmissions with Glossy

The work of Glossy by Ferrari et al. [2], published in 2011,
has spawned an entire new family of communication protocols
utilizing so-called synchronous transmissions. These exploit
the basic idea that the synchronous transmission of identical
packets by neighboring nodes leads to constructive interfer-
ence – or at least non-destructive interference. To achieve
this, the temporal displacement between transmissions at a
common receiver must be lower than a given threshold. For
IEEE 802.15.4-compliant radios this threshold is known to
be 0.5 µs [2]. When neighboring nodes transmit packets
concurrently, they must do so within the bounds of 0.5 µs.

If nodes were synchronized at sub-microseconds scale, it
would be possible to coordinate these transmissions using
the common time reference. The vast majority of existing
synchronization protocols for low-power networks, however,
are only able to achieve synchronization accuracy of the
order of microseconds [22]. This is not sufficient to ensure
constructive interference. Recently presented synchronization
mechanisms can achieve sub-microseconds accuracy [23],
[24]. Their ability to support synchronous transmissions is

Fig. 1. Timeline of the radio activity during the reception and retransmission
of a packet in Glossy. The time to receive a packet Trx, the software
delay Tsw and the time to transmit a packet Ttx are highlighted at the bottom
of the image. (This illustration is a slightly modified version of Fig. 7 in [2]).

however still limited. The approach by König et al., for
instance, can achieve synchronous transmissions in slightly
more than 30% of the cases only [23].

Instead of relying on explicit synchronization, Glossy makes
nodes implicitly align their transmissions by relying on radio
events only. Glossy implements a flooding primitive that
propagates a packet quickly throughout the network. The flood
is started by a dedicated node – called the initiator – that sends
the packet to propagate. All one-hop neighbors of the initiator
receive this packet at almost exactly the same time instant.
This is because time differences due to propagation delays are
negligible (of the order of nanoseconds) in practical cases. In
Glossy these nodes then retransmit the packet immediately to
ensure that the time interval elapsed between the reception
and the retransmission of the packet is as short as possible.
Furthermore, Glossy eliminates almost entirely the sources of
randomness that can influence the length of this time interval.
This way, it ensures that nodes retransmit an incoming packet
within a delay that is (almost) equal on all nodes and thus it
manages to fulfill the “0.5 µs condition”. The flood terminates
once all nodes have retransmitted the packet for a pre-defined
number of times (e.g., 3 times).

B. The software delay in Glossy

To ensure that the time needed to retransmit a packet after
receiving it is the same on all nodes, Glossy must deal with the
existence of the so-called software delay Tsw [2]. Fig. 1 helps
explaining what the software delay is by depicting the main
activities of the radio during the reception and retransmission
of a packet in Glossy.

The physical layer header of an IEEE 802.15.4 packet
contains a Preamble followed by a Start of Frame Delim-
iter (SFD)-byte. Once the SFD is received, a corresponding
pin in the radio chip is set, as shown by the “SFD pin” line
in Fig. 1. The SFD pin remains set until the entire packet,
consisting of Length and Data fields, is received.

When the reception of the Data field is completed the
SFD pin returns unset. The changing SFD signal triggers
an interrupt at the MCU indicating that the reception of the
incoming packet is completed. In the corresponding interrupt

service routine the main goal of Glossy is to quickly trigger
the retransmission of the received packet. The time needed
by the MCU to do so is called the software delay Tsw [2].
Glossy ensures that the MCU executes exactly the same
number of instructions – corresponding to 97 clock cycles –
on all nodes during Tsw. With this setting, the (theoretical)
maximal difference between the value of Tsw on different
nodes is 0.375 µs [2], which is sufficient to ensure the “0.5 µs
condition” to be fulfilled.

This, however, only holds when the frequency of the clock
that sources the MCU is essentially equal on all synchronously
transmitting nodes. In practical settings, however, these clocks
may and do run at a different frequency on different nodes.
In the following section and in Sec. IV we show that this
in turn results in non-negligible differences in the actual
software delay.

C. How the MCU clock frequency affects the software delay

The MCU in low-power hardware platforms is often driven
by an unstable digital crystal oscillator (DCO). While the
DCO is expected to tick at a pre-specified, nominal frequency,
the actual DCO frequency may deviate significantly from the
nominal value. This deviation occurs despite the fact that the
frequency of the DCO is calibrated at frequent, pre-defined
intervals via an external, stable 32 kHz crystal.

For the MSP430 – the MCU typically found on the widely
used TelosB platform [25] – the nominal frequency of the
DCO corresponds to 4,194,304 Hz [26]. The actual frequency
may, however, vary significantly from node to node due to
manufacturing issues or depending on the internal tempera-
ture or supply voltage of the node [26], [16]. In particular,
the sensitivity of the DCO to temperature is quantified in
−0.38%/◦C [26]. This implies that if two nodes are exposed to
a temperature difference of, e.g., 20◦C, the difference between
the frequency at which their MCUs run will differ of 7.6
percentage points. Thus, while the clock of one node can
be assumed to run at 4,194,304 Hz (i.e., ∼238 ns per tick),
the other node would have a clock running at 3,875,537 Hz
(i.e., ∼258 ns per tick). While 97 ticks at the first frequency
correspond to 23.13 µs, they instead result in 25.03 µs if
the second frequency is considered. The difference between
these two delays is far higher than the maximum allowed
temporal displacement of 0.5 µs, which is required to ensure
constructive interference to occur.

We introduce Flock to compensate for these differences in
the DCO clock frequency. Flock contributes in making Glossy,
and many other protocols building upon it, more robust to op-
erate in challenging environments, like those described in [16].
Furthermore, Flock allows to cope with a further downside of
Glossy’s approach to ensure synchronous transmissions, i.e.,
the fact that it does not allow for intermediate operations to
be executed between the reception and retransmission of a
packet. Indeed, Glossy minimizes the number of instructions
executed during the software delay to mitigate “the impact of
DCO instability” [2]. Thus, approaches that need to process an
incoming packet or delay its retransmission can adopt Flock

to compensate for DCO clock frequency misalignments and
thus lift an inherent limitation of Glossy’s design.

III. DESIGN

As illustrated in the previous section the actual duration of
the software delay in Glossy may differ across different nodes
because the frequency of the DCO may deviate from the nom-
inal frequency in an unpredictable way. This causes a clock
offset to exist between nodes, which Flock can compensate for.

Flock does not cause any additional communication among
nodes and its principle of operation is rather simple. In a
nutshell, it adapts on-the-fly the number of MCU clock cycles
that must elapse during Tsw. While in Glossy this number
is fixed to 97, Flock varies it on each node individually to
account for deviations of the MCU clock frequency from the
nominal value.

A. How Flock works

To determine the actual number of MCU clock cycles that
must elapse during Tsw on each node, Flock must obtain a
reliable estimation of the actual DCO frequency – or at least
of its deviation from the nominal value. To this end, it needs a
reliable time reference. The key intuition behind the design of
Flock is to use the time between the transitions of the SFD pin
during the reception of a packet, indicated as Trx in Fig. 1,
as such a time reference. Indeed, the time Trx needed by the
radio to receive a packet has two crucial characteristics: (i) it
is known, and (ii) it can be assumed to have a stable value
across different nodes.

The length of Trx is known because it depends only on
the length of the packet, which can be fixed a priori or be
read from the packet itself in each round (see field Length in
Fig. 1). The length of Trx is stable because it depends on the
clock of the radio only. This clock is typically highly accurate
and more fine-grained than the DCO clock. In particular, the
IEEE 802.15.4 standard requires that this clock can drift at a
rate of at most ±40 ppm [21].

If Glossy runs on a platform that relies on the CC2420 radio
chip [27] – like our reference platform, the TelosB mote, does
– then Trx is equal to 288 µs. This is because the CC2420
transmits at 250 kbit/s, the Data field of a Glossy packet
is of 8-byte length, and Trx is the time needed to receive
both the 1-byte long Length field and the Data field. A total
of 9 bytes at 250 kbit/s thus results in 288 µs1. Assuming
that the clock of the radio suffers from the maximum drift of
±40 ppm, the resulting error on the value of Trx would be of
±11.52 ns (288 µs · ±40 · 10−6). Thus, we can assume the
value of Trx to be the same – up to few nanoseconds – across
all nodes, which is a factor 23 below the required bound of
0.5 µs for synchronous transmissions. Moreover, considering
a drift of ±40 ppm for the radio crystal is a worst case
scenario. The crystal needs to fulfill this requirement over its
complete lifetime and operation parameters including voltage

1Our measurements – reported in Section IV – show that the value of Trx is
indeed very stable but in reality amounts to 288.6 µs. This must be considered
when the value of Trx is used but has no effect on the design of Flock.

and temperature changes. Thus, in practice, a much smaller
error than ±40 ppm can be expected, as also confirmed by our
experiments. Furthermore, we observe that the DCO frequency
can be assumed to remain stable in the interval Trx+Tsw, thus
eliminating a further potential source of error.

Let us now indicate with Crx the number of clock cycles
that would elapse during Trx, if the DCO would run at
the nominal frequency fDCO. Accordingly, C∗

rx indicates the
corresponding number of DCO clock ticks when the DCO
frequency is the actual one, indicated as f∗DCO. Let us further
assume that I indicates the number of clock cycles that
must elapse during Tsw under the assumption that the DCO
frequency is fDCO.

If the three values defined above were known, the number
of clock cycles I∗ that must elapse during Tsw when the DCO
frequency is f∗DCO can be determined through the equation:

I∗ = bC
∗
rx

Crx
·Ie (1)

The function be in Eq. 1 indicates the nearest integer
function (i.e., the right side of the equation must be rounded
to the closest integer). Using Eq. 1, Flock can compute the
desired value of I∗ without the need of knowing the actual
value of f∗DCO. We detail below how Flock determines the
values of the three factors on the right side of Eq. 1.

B. Computing C∗
rx, Crx, and I

We determine the value of C∗
rx by letting the MCU count

the number of MCU clock ticks that elapse during Trx. This
can be easily implemented on the TelosB platform because
the MCU supports the time-stamping of transitions of the
SFD pin. Flock captures the two timestamps corresponding
to the instances at which the MCU detects when the SFD pin
rises and subsequently drops. The difference between these
two timestamps corresponds to C∗

rx. Using this procedure, the
MCU always returns an integer value.

Fig. 2(a) helps illustrating how the value of C∗
rx is actually

determined on the MCU of a TelosB mote. The rising of
the SFD pin is detected by the MCU with a variable and
unpredictable delay. This is due to the fact that the SFD pin
is set at the rising edge of the clock of the radio, while the
MCU detects it at the rising edge of its own clock. Since these
two clocks run at different frequency, the delay mentioned
above originates. We indicate the ratio between this delay
and the length of an MCU clock cycle as the factor kp. This
same parameter is defined in Glossy as “the fraction of the
DCO period [. . .] required at the MCU to sample the SFD
transition” and it is a uniformly distributed random variable
between 0 and 1.

Depending on the value of kp, the actual number of
clock cycles counted by the MCU during Trx may differ.
Furthermore, the MCU detects the transition of the falling
SFD (reception end) on the next rising edge after the actual
transition. This is due to the fact that the MCU verifies
the status of the SFD pin (and sets timestamps) only in
correspondence of the rising edge of its clock. This causes

(a)	

(b)	

Fig. 2. The MCU clock driven by the DCO and the radio clock run at
different frequency. This introduces a delay between the time at which a SFD
pin transition is signalled by the radio (at the rising edge of the radio clock)
and the time instant at which the MCU detects this transition (at the rising
edge of the MCU clock). The length of this delay varies between 0 and the
length of one DCO clock cycle and affects the number of clock cycles counted
by the MCU to elapse during Trx.

the clock tick count to be further increased by 1. The issues
become visible when Fig. 2(a) and Fig. 2(b) are compared. In
the first case, the MCU counts 6 clock ticks during Trx and
an additional tick after the SFD transition. Thus, the MCU
counts 7 ticks in total. In the second case, it counts in total
6 ticks only. Depending on the value of kp, the MCU may
thus count either 6 or 7 ticks for Trx. Using the timestamping
procedure described above and assuming a nominal frequency
fDCO, we can compute Crx as follows:

Crx = d(Trx · fDCO) + kpe+ 1. (2)

Depending on the values of kp, Trx, and fDCO, Crx may
in general take one of several values (e.g., 6 or 7 as in the
example above). Flock selects the value with higher probability
Chigh

rx as the one used to compute I∗ in Eq. 1. Because kp
is random and uniformly distributed between 0 and 1, we can
calculate the probability of the bigger value Cmax

rx (e.g., 7 in
our example) with

P (Cmax
rx) = (Trx · fDCO)− b(Trx · fDCO)c (3)

Depending on the occurrence probability of Cmax
rx , we can

determine Chigh
rx as follows:

Chigh
rx =

{
d(Trx · fDCO)e+ 1 if P (Cmax

rx) < 0.5

d(Trx · fDCO)e+ 2 if P (Cmax
rx) ≥ 0.5

(4)

The last parameter from Eq. 1 to describe is I . As mentioned
in Sec. II-C, Flock allows for intermediate operations to be
executed during Tsw. This requires the application designer to
set the value of I .

C. Statistical uncertainties on the software delay

The authors of Glossy showed that – even in the absence
of clock offsets – the value of the software delay Tsw is not
deterministic and depends on the frequency of the radio clock
fr [2]. In particular, they demonstrate that “Tsw is a discrete
random variable with granularity 1/fr” and that this is due to
the fact that the radio clock and the DCO are not synchronized.
To understand how Flock copes with this uncertainty, we
remind that while Glossy uses a constant number of software
instructions I to make the software delay as deterministic as
possible, Flock changes the number of software instructions
I∗ at runtime to mitigate the clock offset.

If there is no DCO offset, I∗ and I have the same value.
In this case, Crx can assume one or two values. If the value
Trx · fDCO in an integer number, Crx assumes a single value
with probability P (Chigh

rx) = 1. Otherwise, Crx assumes one
of two possible values that occur with different probabilities.
Eq. 4 allows us to compute the value of Crx that occurs with
higher probability. The other value can however still occur
with probability 1 − P (Chigh

rx). The possible values for Crx

differ by 1 DCO tick. Assuming that Chigh
rx = Cmax

rx then
C∗

rx becomes Crx − 1. After transformation, Eq. 1 becomes
I∗ · Crx = I · (Crx − 1). This latter equality holds if I∗ < I ,
which however contradicts our initial assumption that I∗ and
I have the same value. The resulting uncertainty for I∗ is I

Crx

DCO ticks. As a consequence, the uncertainty increases with
large I . Increasing Crx by increasing the packet size mitigates
these effects. Thus, large packets increase the probability that
the “0.5 µs condition” is fulfilled even with large processing
delays between the reception and re-transmissions of a packet.

Glossy sets I = 97 to achieve “the theoretical lower bound
of only two possible values for Tsw” [2]. Flock achieves a
lower bound of two values only when the product Trx · fDCO

results in an integer value. Otherwise, the theoretical lower
bound is three possible values for Tsw with granularity 1/fr,
due to Flock’s additional uncertainty of I

Crx
DCO ticks for I∗.

IV. EVALUATION

To demonstrate the performance of Flock, we first present
simulation results that show the distribution of Tsw with and
without Flock for different packet sizes and software delays.
Afterwards, we report results from real sensor nodes and show
how Flock performs under different conditions.

A. Flock in simulations

We first simulate the distribution of Tsw with and without
Flock. Our results confirm that the small amount of software
instructions in Glossy is still affected by DCO frequency
offsets. We further show that Flock efficiently compensates for
frequency deviations of the DCO even with large Tsw. A larger
Tsw allows processing operations between packet reception
and retransmission. We use Eq. (3) from [2] for calculating
Tsw. We set I = 97 as in Glossy and vary the DCO frequency
to simulate a deviation from the nominal value between 0%
and 7.6%. As mentioned in Sec. II, a temperature difference
of 20◦C corresponds to a DCO frequency difference of 7.6%.

Fig. 3a shows the resulting distribution of Tsw for 106 sam-
ples for Glossy without Flock. We find that Tsw spreads over
∆2.125 µs, distributed over 18 values with a distance of 125 ns
to each other. As mentioned in Sec. III-C is Tsw randomly
distributed with granularity of 1/fr. The radio clock runs with
8 MHz, resulting in a resolution of 125 ns. Our simulation
result confirms that the small amount of software instructions
that Glossy requires are still affected by frequency deviations.
With a constant number of instructions I , the temporal dis-
placement can be far above the required 0.5 µs for constructive
interference. We now apply Flock. We consider a packet size
of 9 bytes and simulate the distribution of Tsw again. As
depicted in Fig. 3b, Tsw distributes now only over ∆0.625 µs.
Further, over 99% of the values are within 0.375 µs, which is
sufficient to ensure constructive interference.

We now evaluate the influence of the packet length and the
number of instructions I on Flock. We set the packet length
to 128 bytes while I is still set to 97 and simulate again
for 106 samples. Fig. 3c illustrates that the packet length in
this configuration only has marginal effects on the distribution
of Tsw. This is expected as (I

Crx
= 97

1210) � 1. In a next
step, we set I to 2000 ticks, which is the default value for
the processing time in Chaos [17] and set the packet length
to 9 bytes. Fig. 3d shows a larger distribution of Tsw. The
calculated uncertainty for I∗ is around 2 ticks, resulting in
a larger distribution of Tsw. Constructive interference can be
achieved in 87% of the transmissions. In order to verify that
larger packets mitigate the effect of the uncertainty, we set the
packet length to 128 byte. Fig. 3e confirms that the distribution
of Tsw reduces to ∆0.5 µs, fulfilling the “0.5 µs condition”
for constructive interference. Fig. 3f shows the distribution of
Tsw without Flock for I = 97 for reference. The values spread
over ∆39.5 µs.

B. The effect of Flock on the software delay

We now evaluate the effect of Flock on Tsw in a controlled
environment in our lab. We find that Flock can achieve
constructive interference in 98% of the cases, even in chal-
lenging environments. The variable delay of Tsw is reduced
from ∆2.124 µs without Flock to maximum ∆0.75 µs when
enabling Flock. Thus, Flock makes synchronously transmitted
packets overlap with high probability.

We implement Flock in the publicly available source code of
Glossy and run it on TelosB motes. In order to reach I∗, nodes

23.25 23.375 23.5 23.625 23.75 23.875 24.0 24.125 24.25 24.375 24.5 24.625 24.75 24.875 25.0 25.125 25.25 25.375

Tsw [µs]

0

2

4

6

F
re

qu
en

cy
[%

]

1.8% 5.5% 7.0% 6.9% 6.8% 6.8% 6.7% 6.6% 6.5% 6.5% 6.4% 6.3% 6.2% 6.2% 6.2% 5.2% 2.3% 0.1%

(a) Without Flock, I = 97, packet length = 9 byte.

23.0 23.125 23.25 23.375 23.5 23.625

Tsw [µs]

0

20

40

F
re

qu
en

cy
[%

]

0.01% 11.00%36.68%38.99%13.25% 0.07%

(b) Like (a) but with Flock.

23.125 23.25 23.375 23.5 23.625

Tsw [µs]

0

20

40

F
re

qu
en

cy
[%

]

11.55% 37.27% 38.46% 12.70% 0.01%

(c) With Flock, I = 97,
packet length = 128 byte.

477.375 477.5 477.625 477.75 477.875 478.0 478.125 478.25 478.375 478.5 478.625 478.75

Tsw [µs]

0.0

10.0

20.0

F
re

qu
en

cy
[%

]

0.00% 0.26% 2.39% 8.16% 16.43% 22.96% 22.77% 16.21% 8.06% 2.42% 0.32% 0.01%

(d) With Flock, I = 2000,
packet length = 9 byte.

476.75 476.875 477.0 477.125 477.25

Tsw [µs]

0.0

20.0

40.0

F
re

qu
en

cy
[%

]

1.3% 20.5% 43.1% 29.4% 5.7%

(e) With Flock, I = 2000,
packet length = 128 byte.

476.875 479.375 481.875 484.375 486.875 489.375 491.875 494.375 496.875 499.375 501.875 504.375 506.875 509.375 511.875 514.375
Tsw [µs]

0.0

0.1

0.2

0.3

F
re

qu
en

cy
[%

]

(f) Like (d), but without Flock.

Fig. 3. Simulation results for the distribution of Tsw . Flock reduces DCO frequency offsets efficiently, even for large delays between packet reception and
retransmission requests. It is independent of packet lengths and achieves constructive interference in over 99% of the transmissions for small packet lengths
and a small I .

execute a corresponding number of no operations (NOPs).
The consequence is an increase of Tsw in dependence of the
maximum frequency deviation of the nodes in the network. In
our implementation I is set to 112. We use a lookup-table to
keep the processing overhead for calculating I∗ to a minimum.
The nodes select the number of NOPs to add to reach I∗ from
the look-up table depending on C∗

rx.
Using an oscilloscope we first measure Trx for 9 byte

packets. We find that Trx is 288.6 µs. We assume that this
discrepancy between measurements and theory is due to the
fact that the CC2420 adds a processing delay when receiving
a packet. At the sender side, we observed no such delay.
Nonetheless, this has no effect on the design of Flock but
it must be considered when the value of Trx is calculated.

We measure Tsw on four receivers by connecting their
SFD pins to an oscilloscope. Three receivers are Tmote Sky
motes and one is a MTM-CM5000 mote. Both, Tmote Sky
and MTM-CM5000 are variants of the well-known TelosB
platform. To enforce different frequency drifts of the DCO,
we repeat our experiments for three different temperature
environments, namely, room temperature (22◦), cold (10◦C)
and hot (40◦C). These temperatures are within the operating
conditions of the motes that are specified with -40◦C and
+85◦C [28]. The cold and hot environments are generated by

a refrigerator that can be switched to either cooling or heating.
We carefully place the four receivers into the refrigerator and
wait a few minutes before starting the experiments, so that
the nodes can acclimatize. The initiator – the node that starts
the communication and sends the packets to propagate – still
operates at room temperature. We set the transmission power
to maximum, which is 0 dBm, and make sure that the reception
reliability is approximately 100%. We further make sure that
the DCO calibrates with the stable 32 kHz clock before each
packet transmission to ensure a fair evaluation. We first run
Glossy at room temperature without Flock. After collecting
over 2,000 samples, we repeat the experiment, but place all
four receivers in a cold and later in a hot environment. We
repeat the experiments afterwards with Flock enabled.

The plots on the left side of Fig. 4 show the distribution
of Tsw in different temperature environments for the four
receivers without Flock. As shown in Fig 4a, while the distri-
bution of Tsw for the Tmote Sky motes is rather close to each
other, the distribution of Tsw for the MTM-CM5000 strongly
differs from the distribution of the Tmote Sky nodes. The
resulting variable delay for Tsw spreads over ∆1.375 µs. A
similar distribution of Tsw is achieved in the cold environment,
shown in Fig. 4c. In the hot environment the distribution of
Tsw expands to ∆2.125 µs, distributed over 18 values with a

22.875 23.0 23.125 23.25 23.375 23.5 23.625 23.75 23.875 24.0 24.125 24.25
Tsw [µs]

0

11

23

35

F
re

qu
en

cy
[%

]

Tmote Sky 1

Tmote Sky 2

MTM-CM5000

Tmote Sky 3

(a) Without Flock at 22◦C.

26.25 26.375 26.5 26.625 26.75 26.875 27.0

Tsw [µs]

0

10

21

32

F
re

qu
en

cy
[%

]

0.4% 5.7% 14.2% 26.5% 33.6% 18.0% 1.6%

98.0% of Tsw values
within 0.5 µs

(b) With Flock at 22◦C.

22.875 23.0 23.125 23.25 23.375 23.5 23.625 23.75 23.875 24.0 24.125 24.25
Tsw [µs]

0

5

11

17

23

29

F
re

qu
en

cy
[%

]

(c) Without Flock at 10◦C.

26.2526.375 26.5 26.62526.7526.875

Tsw [µs]

0

8

17

26

F
re

qu
en

cy
[%

]

0.3% 10.9% 26.8% 31.3% 25.3% 5.4%

99.7% of Tsw values
within 0.5 µs

(d) With Flock at 10◦C.

22.25 22.375 22.5 22.625 22.75 22.875 23.0 23.125 23.25 23.375 23.5 23.625 23.75 23.875 24.0 24.125 24.25 24.375
Tsw [µs]

0

4

8

12

F
re

qu
en

cy
[%

]

(e) Without Flock at 40◦C.

26.25 26.375 26.5 26.625 26.75 26.875 27.0

Tsw [µs]

0

13

27

F
re

qu
en

cy
[%

]

0.7% 5.0% 16.2% 27.4% 31.5% 17.8% 1.4%

97.9% of Tsw values
within 0.5 µs

(f) With Flock at 40◦C.

Fig. 4. Experimental results for the distribution of Tsw . The variable delay without Flock spreads over ∆2.125 µs. With Flock the variable delay reduces
to ∆0.75 µs. The gray area marks the range, for which values of Tsw constructive interference can be achieved. Constructive interference can be achieved
in 98% of the case.

distance of 125 ns to each other. Constructive interference is
not guaranteed in all three temperature environments.

The plots on the right side of Fig. 4 depict the distribution
of Tsw with Flock. Tsw spreads over ∆0.75 µs. In 98% of the
cases the distribution of Tsw is within 0.5 µs, the necessary
requirement to achieve constructive interference. The gray
area marks the range, for which values of Tsw, constructive
interference can be achieved. In all temperature environments,
this area spreads from 26.375 µs to 26.875 µs. That means
that constructive interference can be achieved when the nodes
are located in mixed temperature environments.

As mentioned above, the code of Flock requires a few
software instructions by itself. The average Tsw increases from
23.56 µs for Glossy without Flock to 26.63 µs with Flock.
However, we show in the following experiments that Glossy
with Flock can still achieve a lower latency and also reduces
the time the radio is active during a Glossy flood.

C. The performance of Flock in controlled lab environments

In this set of experiments, we want to investigate the effect
of clock offset and the influence of Flock on the performance
of Glossy. We can report that Flock increases the reliability of
Glossy by 3% and also reduces latency and the time the radio
is active during a Glossy flood.

We use the code from the previous experiment and deploy it
on three Tmote Sky motes – two senders and one receiver. We

assign sender 1 and the receiver a nominal MCU frequency
of 4,194,304 Hz. To simulate a frequency offset of 1.5% we
set the nominal frequency of sender 2 to 4,131,389 Hz. We
ensure that we only measure the effects of clock offset by
eliminating external factors like multipath propagation that
may also influence the temporal displacement of signals and
thus, the performance of Glossy. We connect the motes at the
SMA connection sleeves of the antennas via coaxial cables
and a tee coaxial adapter as shown in Fig. 5. Triggered by the
receiver, the two senders synchronously transmit a packet. At
the receiver we measure three key metrics: The reliability (R)
is the ratio of missed and total packets. The latency (L)
indicates the time between the transmission of a packet and its
first reception. And the radio on-time (T) is the time the radio
is active during a Glossy flood. The receiver further collects
information about dropped packets due to bit-flips caused by
destructive interference: The parameter wrong length (WL) is
the fraction of packets that have a length field which is either
smaller than 2 byte (the size of the field containing, among
others, the Cyclic Redundancy Check (CRC)) or greater than
the maximum packet length of 127 byte, specified by the
IEEE 802.15.4 standard [21]. Glossy distinguishes itself from
other coexisting protocols by a header field with value 0xa0.
The parameter wrong header (WH) indicates the fraction
packets that are dropped due to a value that differs from

Tmote Sky Tmote Sky

Tm
ote

Sky

Sender	 1 Sender	 2

Receiver

Attenuators	
(20	 dBm)

Tee	 coaxial
adapter	

Coaxial	 cable

SMA	 connection	
sleeve

Fig. 5. Experiment setup.

TABLE I
EXPERIMENTAL RESULTS FOR THE PERFORMANCE OF FLOCK.

R L T WL WH WC
[%] [ms] [ms] [%] [%] [%]

with Flock 98.74 2.464 6.986 13.21 5.98 80.81
without Flock 95.18 2.834 10.184 11.88 5.85 82.27

the expected one. Packet drops due to failed CRC checks are
indicated with the wrong CRC (WC) parameter. We perform
this set of experiments at room temperature and repeat each
experiment three times, with 2,100 Glossy floods for each
experiment. Before starting, we set the transmit power level of
the nodes to 2 and ensure that all nodes receive packets with
approximately the same power level (in our case -85 dBm).

Table I summarizes the results for this set of experiment.
Our experiments reveal that Flock increases Glossy’s reliabil-
ity by around 3%. Latency and radio-on time are decreased
by 13% and 31%, respectively. This means that even with
a longer Tsw, compared to standard Glossy, Flock decreases
latency. The reason is that the first packet is correctly received
in an earlier Glossy slot. As a consequence the radio on-time
is also reduced. The respective fractions of dropped packets
are roughly the same with and without Flock.

V. RELATED WORK

Clock offset or clock drift compensation has been largely
studied in the context of time synchronization. Examples
of protocols used to establish and maintain synchroniza-
tion among low-power nodes include RBS [29], TPSN [30],
FTSP [31], RITS [32], RATS [33], and PulseSynch [34].

The time synchronization protocols mentioned above man-
aged to achieve accuracy of the order of microseconds. For
instance, it is reported that the average synchronization error
between two nodes (for a single hop) for TPSN and RBS are
16.9 µs and 29.1 µs, respectively [30]. FTSP can reduce this
error to 1.48 µs [31]. RITS, RATS, and PulseSynch also obtain
synchronization errors of the order of a few microseconds.

To enable constructive interferences, however, sub-
microseconds timing accuracy is necessary. In particular, to
allow for constructive interference to occur with high proba-
bility, identical transmissions from separate nodes should be
triggered with a temporal displacement of at most 0.5 µs [2].
This is however an upper limit. To achieve actual gains from

concurrent transmissions in practical settings, the temporal
displacement should be even lower, e.g., 0.2 µs [23].

Glossy [2] ensures that the temporal displacement between
transmissions from concurrently transmitting nodes is below
0.5 µs with high probability. This goal is achieved by making
the time elapsed between the reception of a message and the
start of its retransmission to be very low. In particular, Glossy
makes this time to be equal to 97 ticks of the DCO clock of
the MSP430 microcontroller (MCU).2 Because the clocks of
different nodes can run at different frequency, however, the
time required to execute the 97 cycles may also differ. Flock
addresses this problem inherent in the design of Glossy and
provides a practical solution to compensate on-the-fly for DCO
clock errors. Furthermore, Flock allows to lift the constraint
introduced by Glossy that nodes must retransmit incoming
packets immediately.

König et al. [23] also recently proposed a method to achieve
sub-microseconds synchronization among nodes and, thus, al-
low for synchronous transmission to be successfully achieved.
Their approach, however, induces additional communication
overhead and is less effective than Flock in ensuring the
fulfillment of the “0.5 µs condition”.

A common way to limit the impact of DCO errors is to
rely on the Virtual High Resolution Timer (VHT) [24]. VHT
combines the different clocks found on typical MCUs of low-
power platforms. The common TelosB mote, for example, is
equipped with a MSP430 processor featuring both a 4.1 MHz
and a 32 kHz clock. While the latter is a low-resolution, but
accurate clock, the first is a high-resolution, but less accurate
one. VHT combines them both into a virtual timer, called
VHT. For example, an event is time-stamped as time x on the
low-frequency clock followed by y ticks on the high frequency
clock. Recent work [23], [18], [20] utilize VHT to time syn-
chronous transmissions, but also denote limitations [18], [20].
In particular, the accuracy obtained using VHT is mostly
insufficient to ensure the fulfillment of the “0.5 µs condition”.

VI. CONCLUSION

The Glossy protocol and subsequent work exploit the idea
that the synchronous transmission of identical packets by
neighboring nodes leads to constructive or non-destructive
interference. This occurs, however, only if the temporal dis-
placement between transmissions is less than 0.5 µs when
employing IEEE 802.15.4 radios.

In this paper, we show that – due to the unstable DCO
clocks used on common hardware platforms for low-power
networks – this “0.5 µs condition” is challenging to reach.
We thus introduce Flock, a novel approach to compensate for
differences in DCO clock frequency across nodes. Further-
more, Flock allows for intermediate operations to be executed
between the reception and retransmission of a message.

With respect to the existing literature, Flock obtains sig-
nificantly better accuracy than previous approaches and can
be seamlessly integrated into the code base of Glossy. This

2See Section 5.3 in [2], parameter I .

way, Flock ensures Glossy and other protocols that build
upon it can operate reliably even in challenging environ-
ments. The source code of Flock is publicly available at
http://github.com/martinabr/flock.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their very valuable comments. This work was partially sup-
ported by: The Collaborative Research Center SFB 921 Highly
Adaptive Energy-Efficient Computing (HAEC) funded by the
German Research Foundation; the Swedish Research Council
(VR) through the project ChaosNet; and the Swedish Founda-
tion for Strategic Research (SSF) through the project LoWi.

REFERENCES

[1] P. Dutta, S. Dawson-Haggerty, Y. Chen, C.-J. M. Liang, and A. Terzis,
“A-mac: A versatile and efficient receiver-initiated link layer for low-
power wireless,” ACM Trans. Sen. Netw., vol. 8, no. 4, pp. 30:1–30:29,
Sep. 2012.

[2] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network
flooding and time synchronization with Glossy,” in ACM/IEEE IPSN,
apr 2011.

[3] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele, “Low-Power Wire-
less Bus,” in Proceedings of the Conference on Embedded Networked
Sensor Systems (ACM SenSys), 2012.

[4] M. Doddavenkatappa, M. C. Chan, and B. Leong, “Splash: Fast data dis-
semination with constructive interference in wireless sensor networks,”
in Proceedings of the Symposium on Networked Systems Design &
Implementation (USENIX NSDI), 2013.

[5] M. Suzuki, Y. Yamashita, and H. Morikawa, “Low-power, end-to-end
reliable collection using glossy for wireless sensor networks,” in IEEE
77th Vehicular Technology Conference (VTC Spring), 2013.

[6] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele, “Virtual synchrony
guarantees for cyber-physical systems,” in Proceedings of the IEEE
International Symposium on Reliable Distributed Systems (IEEE SRDS),
2013.

[7] K. P. Birman, “The process group approach to reliable distributed
computing,” Commun. ACM, vol. 36, no. 12, 1993.

[8] T. Istomin, A. L. Murphy, G. P. Picco, and U. Raza, “Data Prediction
+ Synchronous Transmissions = Ultra-low Power Wireless Sensor Net-
works,” in ACM SenSys, November 2016.

[9] D. Carlson, M. Chang, A. Terzis, Y. Chen, and O. Gnawali, “Forwarder
selection in multi-transmitter networks,” in Proceedings of the Confer-
ence Distributed Computing in Sensor Systems (DCOSS), 2013.

[10] D. Yuan, M. Riecker, and M. Hollick, “Making ‘Glossy’ Networks
Sparkle: Exploiting Concurrent Transmissions for Energy Efficient, Reli-
able, Ultra-Low Latency Communication in Wireless Control Networks,”
in Proceedings of the European Conference on Wireless Sensor Networks
(EWSN), 2014.

[11] M. Brachmann, O. Landsiedel, and S. Santini, “Concurrent Transmis-
sions for Communication Protocols in the Internet of Things,” in IEEE
LCN, November 2016.

[12] J. Jeong, J. Park, H. Jeong, J. Jun, C. J. M. Liang, and J. Ko, “Low-
power and topology-free data transfer protocol with synchronous packet
transmissions,” in Proceedings of the Conference on Sensor, Mesh and
Ad Hoc Communications and Networks (IEEE SECON), 2014.

[13] C. Sarkar, R. V. Prasad, R. T. Rajan, and K. Langendoen, “Sleeping
beauty: Efficient communication for node scheduling,” in Proceedings
of the IEEE International Conference on Mobile Ad Hoc and Sensor
Systems (MASS), 2016.

[14] J. Zhang, A. Reinhardt, W. Hu, and S. S. Kanhere, “RFT: Identify-
ing Suitable Neighbors for Concurrent Transmissions in Point-to-Point
Communications,” in Proceddings of the ACM International Conference
on Modeling, Analysis and Simulation of Wireless and Mobile Systems
(MSWiM), 2015.

[15] D. Yuan and M. Hollick, “Ripple: High-throughput, reliable and energy-
efficient network flooding in wireless sensor networks,” in Proceedings
of the Symposium on a World of Wireless Mobile and Multimedia
Networks (IEEE WoWMoM), 2015.

[16] C. A. Boano, M. Zúñiga, J. Brown, U. Roedig, C. Keppitiyagama, and
K. Römer, “TempLab : A Testbed Infrastructure to Study the Impact
of Temperature on Wireless Sensor Networks,” in ACM/IEEE IPSN, apr
2014.

[17] O. Landsiedel, F. Ferrari, and M. Zimmerling, “Chaos: Versatile and
Efficient All-to-All Data Sharing and In-Network Processing at Scale,”
in Proceedings of the Conference on Embedded Networked Sensor
Systems (ACM SenSys), 2013.

[18] R. Lim, R. D. Forno, F. Sutton, and L. Thiele, “Competition: Robust
flooding using back-to-back synchronous transmissions with channel-
hopping,” in Proceedings of the European Conference on Wireless
Sensor Networks (EWSN), 2017.

[19] A. Escobar, J. Garcia, F. Cruz, J. Klaue, A. Corona, and D. Tati,
“Competition: Redfixhop with channel hopping,” in Proceedings of the
European Conference on Wireless Sensor Networks (EWSN), 2017.

[20] B. A. Nahas and O. Landsiedel, “Competition: Towards low-power
wireless networking that survives interference with minimal latency,” in
Proceedings of the European Conference on Wireless Sensor Networks
(EWSN), 2017.

[21] IEEE standard 802.15.4 - 2011, “Wireless medium access control (mac)
and physical layer (phy) specifications for low rate wireless personal area
networks (lr-wpans),” Available at: http://standards.ieee.org/getieee802/
download/802.15.4-2011.pdf, 2011.

[22] P. H. Huang, M. Desai, X. Qiu, and B. Krishnamachari, “On the mul-
tihop performance of synchronization mechanisms in high propagation
delay networks,” IEEE Transactions on Computers, vol. 58, no. 5, pp.
577–590, May 2009.

[23] M. König and R. Wattenhofer, “Maintaining Constructive Interference
Using Well-Synchronized Sensor Nodes,” in DCOSS, 2016, pp. 206–
215.

[24] T. Schmid, P. Dutta, and M. B. Srivastava, “High-resolution, low-power
time synchronization an oxymoron no more,” in Proceedings of the
9th ACM/IEEE International Conference on Information Processing in
Sensor Networks, ser. IPSN ’10. New York, NY, USA: ACM, 2010,
pp. 151–161.

[25] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling ultra-low
power wireless research,” in Proceedings of the 4th International Sym-
posium on Information Processing in Sensor Networks, ser. IPSN ’05.
Piscataway, NJ, USA: IEEE Press, 2005.

[26] T. Instruments, “Msp430f1611 datasheet,” March 2011. [Online].
Available: http://www.ti.com/lit/ds/symlink/msp430f1611.pdf

[27] ——, “Cc2420 datasheet,” 2013. [Online]. Available: http://www.ti.
com/lit/ds/symlink/cc2420.pdf

[28] Motiv, “Tmote Sky datasheet,” Tech. Rep., 2006.
[29] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchro-

nization using reference broadcasts,” SIGOPS Oper. Syst. Rev., vol. 36,
no. SI, pp. 147–163, Dec. 2002.

[30] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol
for sensor networks,” in Proceedings of the 1st International Conference
on Embedded Networked Sensor Systems, ser. SenSys ’03. New York,
NY, USA: ACM, 2003, pp. 138–149.

[31] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi, “The flooding time
synchronization protocol,” in Proceedings of the 2Nd International
Conference on Embedded Networked Sensor Systems, ser. SenSys ’04.
New York, NY, USA: ACM, 2004, pp. 39–49.

[32] J. Sallai, B. Kusý, A. Lédeczi, and P. Dutta, “On the scalability of
routing integrated time synchronization,” in Proceedings of the Third
European Conference on Wireless Sensor Networks, ser. EWSN’06.
Berlin, Heidelberg: Springer-Verlag, 2006, pp. 115–131.

[33] B. Kusy, P. Dutta, P. Levis, M. Maroti, A. Ledeczi, and D. Culler,
“Elapsed time on arrival; a simple and versatile primitive for canonical
time synchronisation services,” Int. J. Ad Hoc Ubiquitous Comput.,
vol. 1, no. 4, pp. 239–251, Jul. 2006.

[34] C. Lenzen, P. Sommer, and R. Wattenhofer, “Pulsesync: An efficient
and scalable clock synchronization protocol,” IEEE/ACM Trans. Netw.,
vol. 23, no. 3, pp. 717–727, Jun. 2015.

