
Asymptotically Faster Bignum
Multiplication in a Proven Correct
Arithmetic Library
Master’s thesis in Computer Science - Algorithms, Languages, and Logic

OLLE LINDEMAN

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017

Master’s thesis 2017

Asymptotically Faster Bignum Multiplication
in a Proven Correct Arithmetic Library

OLLE LINDEMAN

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2017

Asymptotically Faster Bignum Multiplication
in a Proven Correct Arithmetic Library OLLE LINDEMAN

© OLLE LINDEMAN, 2017.

Supervisor: Magnus Myreen, Department
Examiner: Andreas Abel, Department

Master’s Thesis 2017
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2017

iv

Asymptotically Faster Bignum Multiplication
in a Proven Correct Arithmetic Library
OLLE LINDEMAN
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract

Arithmetic functions, such as +, -, *, div and mod on arbitrary precision integers
(not only machine integers), are used in many important computer programs such
as cryptographic software and computer algebra systems. Formal guarantees of
the correctness of these systems heavily rely on the correctness of the underlying
arithmetic functions.

Cryptography algorithms such as RSA and Diffie–Hellman require efficient opera-
tions over large numbers. Arbitrary precision arithmetic, also called bignum arith-
metic, is arithmetic of large numbers that exceeds the size of machine words.

In this thesis, we describe and implement two asymptotically fast bignum multiplica-
tion algorithms, namely the Karatsuba and Toom-3 algorithms, using the interactive
theorem prover HOL4. Further, we take steps towards integrating the Karatsuba
algorithm into CakeML’s verified bignum library by specifying an implementation
which satisfies parts of the required format by the integration infrastructure.

Keywords: Bignum arithmetic, formal methods, karatsuba, toom-3

v

Acknowledgements

I would like to thank my supervisor Magnus Myreen for all the support, great ideas,
and interesting discussions during this thesis project. Your help has been invaluable,
and thanks for always being available for questions, be it high-level text problems or
technical proof-related problems. Also, I would like to thank my examiner Andreas
Abel for new perspectives and constructive feedback on the work presented in this
thesis. Finally, I end with one of my favorite quotes from Yogi Berra, which is as
true in life as within the field of formal methods:

“If you don’t know where you’re going, you might not get there.”

Olle Lindeman, Gothenburg, August 2017

vii

Contents

1 Introduction 1
1.1 Related Work . 1
1.2 Contributions . 2
1.3 Method . 2
1.4 Thesis Outline . 3

2 Background 5
2.1 Bignum Arithmetic . 5
2.2 CakeML . 6
2.3 HOL4: Interactive Theorem Prover 7

2.3.1 Abstraction of bignums in HOL 7
2.3.2 Useful helper-functions . 8

3 The Karatsuba algorithm 11
3.1 Complexity Analysis . 12
3.2 Specification in HOL . 12
3.3 Algorithm verification . 14

3.3.1 Proof of termination . 14
3.3.2 Proof of correctness . 16

4 The Toom-3 Algorithm 17
4.1 Specification in HOL . 19
4.2 Algorithm verification . 21

4.2.1 Proof of termination . 21
4.2.2 Proof of correctness . 23

5 Towards a CakeML integration 27
5.1 Constraints for the CakeML-integration 27
5.2 Memory manipulation . 29

5.2.1 Memory requirements . 31
5.3 Specification in HOL . 33
5.4 Verification in HOL . 38

5.4.1 Termination proof . 39
5.4.2 Correctness proof . 39

5.5 Further steps for a CakeML-integration 40

ix

Contents

6 Conclusion 41

Bibliography 43

x

1
Introduction

Arithmetic functions (such as +, -, *, div and mod) on arbitrary precision integers,
not only machine integers, are used in many important computer programs such
as cryptographic software and computer algebra systems. Formal guarantees of
the correctness of these systems heavily rely on the correctness of the underlying
arithmetic functions [1].

Cryptography algorithms such as RSA and Diffie–Hellman require efficient opera-
tions over large natural numbers. Arbitrary precision arithmetic, also called bignum
arithmetic, is arithmetic of large numbers that exceeds the size of machine words.
These algorithms treat machine words in the same way as humans treat digits when
doing calculations by hand. Many of the simpler algorithms are familiar from school,
e.g. a variant of long multiplication is used when multiplying large numbers (com-
plexity O(n2)). However, when the inputs become very large there is a collection
of algorithms that perform better than the basic algorithms. For example, good
bignum libraries switch to fast Karatsuba and Toom-3 algorithms for multiplication
when the inputs pass a certain size [7].

CakeML is a functional programming language, based on a substantial subset of
Standard ML, with a proven correct compiler and runtime. That means that the
compiler has been proven to transform CakeML programs into semantically equiv-
alent machine code. The semantics and the compiler algorithm of CakeML are
specified in the higher-order logic of the HOL4 theorem prover [13].

This thesis project describes the implementation and verification of the Karatsuba[5]
and Toom-3[3] algorithms, two asymptotically fast multiplication algorithms (faster
than O(n2)), using the interactive theorem prover HOL4. Further, it takes steps
towards integrating the Karatsuba algorithm into CakeML’s verified bignum library
by specifying an implementation which satisfies parts of the required format by the
integration infrastructure.

1.1 Related Work

Verification of bignum arithmetic libraries is an active research field. This thesis
work is based on the verified library described in Myreen and Curello [8], where the

1

1. Introduction

authors use the HOL4 theorem prover and a proof producing compiler and decom-
piler to produce verified x86-64 code for arbitrary precision arithmetic functions.
Recently this verified bignum library has been generalized and integrated into the
verified CakeML compiler, which targets several machine languages (not just 64-bit
x86).

Affeldt [1] verifies arithmetic functions written in assembly using the Coq proof-
assistant. The paper includes a fast implementation of modular multiplication called
Montgomery multiplication. Myreen and Gordon [9] show the possibility of using
Hoare logic directly to manually verify the correctness of an optimized machine-
code implementation of Montgomery multiplication. Neither of the above consider
asymptotically fast algorithms for regular multiplication of large numbers (faster
than O(n2)).

Rieu-Helft et al. [10] presents a fully verified bignum library, developed using the
Why3 program verifier. They base their implementation on the GNUMulti-Precision
library (GMP), which is a widely used, safety-critical, library for arbitrary-precision
arithmetic. But, for multiplication the authors only verify the so called schoolbook
algorithm (O(n2)), which GMP uses for smaller numbers.

1.2 Contributions

This thesis presents the implementation and verification of two asymptotically fast
algorithms for bignum multiplication, namely the Karatsuba algorithm and the
Toom-3 algorithm. Further it describes steps towards integrating the Karatsuba
algorithm into the verified CakeML compiler’s bignum library.

The main contribution of this thesis is the work towards an extension of the bignum
library from Myreen and Curello [8] with an asymptotically fast multiplication algo-
rithm for large numbers. To the best of our knowledge, the Karatsuba and Toom-3
algorithms have not before been verified in interactive theorem provers, nor in-
tegrated into a verified compiler. Karatsuba has a complexity of O(n1.585) and
Toom-3’s complexity is O(n1.465) [7].

1.3 Method

The method for completing an integration of an algorithm into CakeML’s bignum
library is described in the three steps below. This thesis implements step 1 and 2.

1. First, we define the algorithm as a function in logic (HOL4). We then prove
that this function correctly implements integer multiplication. The function
operates over lists of machine words. The top-level correctness theorem we
prove for each of the algorithms is easy to state using the function i2mw, which

2

1. Introduction

converts an integer into signed list of machine words. Let mwi_alg_mul be an
implementation of a multiplication algorithm, then the correctness statement
relates this function to multiplication over the integers (×).

∀i j. mwi_alg_mul (i2mw i) (i2mw j) = i2mw (i× j)

2. In order to integrate the algorithm into the CakeML bignum library, we im-
plement an imperative version suitable for the existing infrastructure in the
CakeML compiler (see Section 5.1). We then prove that this implementation
correctly realizes the function defined and verified in step 1. This implementa-
tion can be constructed by stepwise refinement, i.e. multiple implementations,
that construct a chain of correctness proofs from the top-level to the final
implementation, via intermediate implementations. These intermediate func-
tions may comply to only a subset of the constraints the CakeML integration
puts on the format, and are thus easier to verify.

3. With an implementation from the previous step, that fulfills the required for-
mat, there exists a proof-producing translation from programs in the specific
format into programs of an intermediate language of the CakeML compiler.
The verified implementation of the algorithm can thus be integrated into the
CakeML compiler, in the compiler phase which implements bignum arithmetic.

1.4 Thesis Outline

Chapter 2 presents the relevant background knowledge necessary to understand the
content of this thesis. The chapter starts with an introduction to bignum arithmetic
where also the schoolbook multiplication algorithm is described. Further it presents
the CakeML-project and how the integration process works for the bignum library.
The chapter ends with an description of the interactive theorem prover HOL4 and
how bignums are represented within the system.

Chapter 3 describes the Karatsuba algorithm and Chapter 4 the Toom-3 algorithm.
Both chapters follow the structure of first defining the algorithm, then continue with
its specification in HOL, and finally define the verification process of the implemen-
tation.

Chapter 5 describes the development of an intermediate implementation of the
Karatsuba algorithm as a step towards integration into the CakeML’s bignum li-
brary. Here we present what format the integration infrastructure requires and
specify an implementation that comply to parts of it. The implementation is proven
to correspond to the functional implementation for previous chapter. We conclude
with a description of progress made in developing an implementation that strictly
follows the format and thus is ready to be integrated into CakeML’s bignum library.

Chapter 6 concludes with a summary of the thesis work, a discussion of the difficul-
ties encountered during the thesis project and directions of future work.

3

1. Introduction

4

2
Background

This chapter presents necessary background knowledge for understanding the work
presented in this thesis. It starts with an introduction to bignum arithmetic, with
a focus on the multiplication operation (Section 2.1). We also describe the basic
schoolbook O(n2) algorithm for bignum multiplication. In Section 2.2 we present
an overview of CakeML and its bignum library. After this we introduce the HOL4
interactive theorem prover and how bignums are represented within the system
(Section 2.3).

2.1 Bignum Arithmetic

Bignum arithmetic, also called arbitrary precision arithmetic, is arithmetic of large
numbers that exceeds the size of machine words. This means that the digits of
precision is limited only by the available memory of the computer, in contrast to
fixed-precision arithmetic where the precision is limited by the arithmetic logical
unit’s (AUL) hardware, usually between 8 to 64 bits. Bignum arithmetic is used
in many important computer systems such as cryptographic software and computer
algebra systems. Many cryptographic algorithms such as RSA and Diffie-Hellman
require efficient operations over large integers [12].

Bignum integer multiplication is the fundamental arithmetic operation of computing
the product of two integers, where the numbers are represented using multiple com-
puter words [12]. The most basic bignum multiplication algorithm is the standard
long multiplication, typically taught in primary school. To multiply two numbers, x
and y, start by calculating the product of x times the least significant digit of y. It
then continues with each of the higher order digits of y, where all partial products
are appropriate shifted, and finally summed. In Figure 2.1, an example of such a
calculations is presented.

The time-complexity of this classical schoolbook algorithm grows with O(n2), where
n is the length of the operands. For multiplication of large numbers there is a
collection of algorithms that perform better than this basic algorithm. This thesis
focus on two divide and conquer algorithms, namely the Karatsuba algorithm and
its generalization, the Toom-3 algorithm. Divide and conquer refers to a class of

5

2. Background

3 8 4
5 6

2 3 0 4
1 9 2 0
2 1 5 0 4

×

Figure 2.1: An example of standard schoolbook long-multiplication.

algorithms which solves a problem by dividing it into several subproblems, which
are solved recursively and the solutions to these subproblems are combined into a
solution of the original problem [6]. The Karatsuba has a complexity of O(n1.585)
and Toom-3’s complexity is O(n1.465) [7].

Good bignum libraries switch to these asymptotically faster algorithms when the
inputs passes a certain size, for example the GMP library uses seven different multi-
plication algorithms at different input sizes [14]. The selection of an optimal cut-off
length, that separates the use of the standard schoolbook algorithm to the use of
an asymptotically faster algorithm, is a difficult problem, since it depends on many
variables such as the specific architecture or hardware of the host system, and has
not been addressed sufficiently in the literature [4].

Another factor that can influence the performance of a bignum library is the concrete
representation of bignums. In Section 2.3.1 we describe how bignums is represented
in HOL, the main tool used in this thesis, and how we abstract the specifics of
the system architecture in the specification and verification of the algorithms. Also
we describe how we let the cut-off length be an argument to the top-level func-
tional implementations of the algorithms, which lets us prove their termination and
correctness without specifying a specific cut-off length.

2.2 CakeML

CakeML is a functional programming language, based on a substantial subset of
Standard ML, with a proven correct compiler and runtime. That means that the
compiler has been proven to transform CakeML programs into semantically equiva-
lent machine code. The semantics and compiler algorithm of CakeML are specified
in the higher-order logic of the HOL4 theorem prover [13].

In this thesis we are interested in the bignum library of CakeML’s verified bignum
library. It is also specified and proven using HOL4 (which is presented in the fol-
lowing section). The bignum algorithms are verified using the method described in
Section 1.3, with first a high-level implementation that is proven to correctly imple-
ment integer multiplication. Next an imperative version is implemented, which is
proven to be equivalent to the previous specified function. Finally, the implemented
functions are integrated to CakeML by a proof-producing translation from functions
of a specific format into wordLang programs (wordLang is an intermediate language

6

2. Background

in the CakeML’s compiler phases). The generated wordLang programs are attached
to the compiled CakeML programs as part of the compiler phase which implements
bignum arithmetic.

2.3 HOL4: Interactive Theorem Prover

The implementation and corresponding correctness proofs of the CakeML compiler
and its bignum library is entirely conducted within the HOL4 interactive theorem
prover. Naturally, the work presented in this thesis is also carried out using the
same system. Below is a brief overview of HOL4 and a description of how bignums
are represented in HOL.

The HOL4 interactive theorem prover is a ML-based proof assistant for higher-order
logic [11]. In HOL4, the user interactively proves theorems by steering the system
with proof-tactics. Proof-tactics are functions which divide the current proof goal
into one or more subgoals, along with a validation function. This function justifies
the decomposition of the goal, by being able to produce a proof of the original goal,
given proofs of the constructed subgoals. This allows the user to decompose a proof
into smaller, more manageable pieces. All proofs must pass the logical core of HOL4,
which is a ML-module implementing the basic inference rules of higher-order logic.
In this way, HOL4 prevents false statements from being proved.

2.3.1 Abstraction of bignums in HOL

Bignum arithmetic algorithms operate over lists of machine words, with the least
significant word first. A machine word is conveniently modelled in HOL as a finite
Cartesian product of booleans, which we write as boolα, where α is the width of a
machine word. This is convenient since, by using a variable for the width, we do not
tie the specification of our algorithm to any specific architecture. From the included
wordsTheory in HOL4, we have mappings from natural numbers to machine words
(n2w) and back (w2n).

n2w : N → boolα

w2n : boolα → N

These mappings are important building blocks in formulating theorems about the
correctness of arithmetic operations. The following theorems describe the mappings
relationship to each other.

` n2w (w2n w) = w
` w2n (n2w n) = n mod 2α

As mentioned above, the bignum arithmetic algorithms operate on lists of these
machine words, i.e. lists of type boolα list. Functions for converting a natural

7

2. Background

number into a list of multiple words (n2mw) and vice versa (mw2n) are defined by:

n2mw n =
if n = 0 then []
else n2w (n mod 2α)::n2mw (n div 2α)

mw2n [] = 0
mw2n (x::xs) = w2n x + 2α × mw2n xs,

where :: is list cons. The above definitions only cover natural numbers. To represent
integers we form a pair of a sign and a list of machine words. The functions for
translating integers to this representation (i2mw) and back (mw2i) is given below.

i2mw i = (i < 0,n2mw (abs i))
mw2i (F,xs) = mw2n xs
mw2i (T,xs) = -mw2n xs

The multiplication algorithms implemented in this thesis will operate on the above
specified representation of integers. With the type variable α we abstract the
specifics of the architecture, and as mentioned in the end of Section 2.1, we also
want to defer the decision of a cut-off length, i.e. at which input size to use the
divide-and-conquer algorithms instead of the schoolbook algorithm. We do this by
adding the cut-off length as an argument to the top-level functions of the imple-
mented algorithms. Thus, in Chapter 3 and 4 we present the functional implemen-
tations of the algorithms, which will operate over lists for machine words (as defined
above) and have an additional argument for the cut-off.

2.3.2 Useful helper-functions

The specification and verification of the algorithms presented in the following chap-
ters build on the previous work of Myreen and Curello [8]. Here we introduce the
most important functions and theorems used, also we describe a few functions de-
fined specifically for this thesis.

The first function we describe (mw_addv) computes the sum of two bignums and
a carry bit, represented as lists of machine words and a boolean. The function
operates in a restricted setting described by the following theorem.

` length ys ≤ length xs ⇒
(mw2n (mw_addv xs ys c) = mw2n xs + mw2n ys + b2n c)

From the theorem we see that it operates with two lists xs, ys, and a boolean c, where
length ys is required to be smaller or equal than length xs, which simplifies its

8

2. Background

implementation. This function works well in the setting of long-multiplication, but
for the algorithms considered in this thesis we cannot give these kinds of guarantees.
Therefore we define a helper function mwn_add which operates in a less restricted
setting.

mwn_add xs ys =
if length ys ≤ length xs then mw_addv xs ys F else mw_addv ys xs F

` mw2n (mwn_add xs ys) = mw2n xs + mw2n ys

For multiplication we have mw_mul already defined which also has restrictions on its
arguments. Therefore we also define a helper-function (mwn_mul) for this operation.
Here 0w is the machine word representing zero.

` (length ys = length zs)⇒
(mw2n (mw_mul xs ys zs) = mw2n xs × mw2n ys + mw2n zs)

mwn_mul xs ys = mw_mul xs ys (map (λ x . 0w) ys)
` mw2n (mwn_mul xs ys) = mw2n xs × mw2n ys

Finally we mention mw_fix which removes leading zeros form a list of machine
words. The function front drops the last element of a list.

mw_fix xs =
if xs = [] then []
else if last xs = 0w then mw_fix (front xs)
else xs

In the following chapters (Chapter 3 and 4) we present the Karatsuba and Toom-
3 algorithms, two bignum multiplication algorithms that are asymptotically faster
than the schoolbook algorithm presented in in the beginning of this chapter (faster
than O(n2)). We describe their functional implementation in HOL and the corre-
sponding proofs of termination and correctness. This constitute the first step in the
verification method described in Section 1.3.

9

2. Background

10

3
The Karatsuba algorithm

The Karatsuba algorithm, discovered by Anatoly Karatsuba in 1960, was the first
multiplication algorithm that was asymptotically faster than the standard quadratic
algorithm. It reduces a multiplication of two large numbers to three multiplications
of smaller numbers with some extra additions and shifts [5, 7]. This section presents
the algorithm’s definition and the following subsections describe the algorithm’s
specification (Section 3.2) and verification (Section 3.3) in HOL.

Lets consider two numbers x and y represented as n-digit strings in some base B,
and let m be a positive integer such that m < n. Then the two numbers can be
written as

x = X1B
m +X0, y = Y1B

m + Y0,

whereX1 = (xn−1, ..., xm)B is the ”most significant part” of x andX0 = (xm−1, ..., x0)B
is the ”least signification part”; similarly Y1 = (yn−1, ..., ym)B and Y0 = (ym−1, ..., y0)B.
Then the product is

x× y = (X1B
m +X0)(Y1B

m + Y0)
= z2B

2m + z1B
m + z0,

where

z0 = X0Y0,

z1 = X1Y0 +X0Y1

z2 = X1Y1.

The above formulation requires four multiplications, but Karatsuba observed that
xy can be calculated using only three multiplications with the extra cost of a few
basic arithmetic operations. This is achieved by calculating z1 using z0 and z2:

z1 = (X1 +X0)(Y1 + Y0)− z2 − z0

= X1Y1 +X1Y0 +X0Y1 +X0Y0 − z2 − z0

= X1Y0 +X0Y1

To summarize the Karatsuba algorithm, let x = x1B
m +x0 and y = y1B

m + y0 then

11

3. The Karatsuba algorithm

recursively compute:

z0 = X0Y0

z1 = (X0 +X1)(Y0 + Y1)
z2 = X1Y1,

and return z2B
2m + (z1 − z0 − z2)Bm + z0.

3.1 Complexity Analysis

A basic step of the Karatsuba algorithm with inputs of size n, performs a few basic
arithmetic operations and then makes three recursive calls with input size of n/2.
With the results from the recursive calls, it again performs a few operations to
recombine the sub-solutions into the correct product. Let T (n) be the time needed
by the algorithm for a problem of size n, we get the following recurrence relation:

T (n) = 3T (n2) + cn+ d,

for some constants c and d, which represent the time needed for the additions,
subtractions and shifts in dividing and reassembling the subproblems. When n
increases, the cost of these basic arithmetic operations becomes negligible since
they take time proportional to n. The Master Theorem [2] gives the asymptotic
bound T (n) = Θ(nlog2 3).

It follows, for sufficiently large n, that the Karatsuba algorithm is faster than the
basic schoolbook algorithm. But for small n, the additional basic arithmetic op-
erations that are performed during the basic step of the Karatsuba algorithm may
make it run slower. Therefore, good bignum libraries use different multiplication
algorithms depending on the size of the inputs. As described in Section 2.1, we
defer the specification of this cut-off point by having it as an argument to the
implementation.

3.2 Specification in HOL

When specifying the Karatsuba algorithm in HOL, we rely on the already defined
bignum arithmetic operations present in the CakeML bignum library, and a few
helper methods described in Section 2.2.

We start by defining mw_ktb_mul which implements the Karatsuba algorithm with
the help of two other functions mw_ktb_mul_init and mw_ktb_mul_final.

12

3. The Karatsuba algorithm

Definition 3.2.1

mw_ktb_mul cutoff xs ys =
(let (xl,yl) = (length xs,length ys)
in
if cutoff < 12 ∨ xl < cutoff ∨ yl < cutoff then
mw_fix (mwn_mul xs ys)

else
(let (m,x0,x1,y0,y1,x0x1 ,y0y1) = mw_ktb_mul_init xs ys
in
let z0 = mw_ktb_mul cutoff x0 y0 in
let z1 = mw_ktb_mul cutoff x0x1 y0y1 in
let z2 = mw_ktb_mul cutoff x1 y1
in
mw_ktb_mul_final m z0 z1 z2))

We structure the implementation in this way to make the verification process of the
later imperative implementation in Section 5 simpler. One of the scenarios where
we switch to the school book algorithm (mwn_mul) is when the cut-off is smaller
than 12, which serves as a practical since it removes the need of handling edge
cases and also simplifies the verification of memory requirements of the imperative
implementation, see Section 5.2.1. The init-function does all the necessary work
before the recursive calls and is defined as:

mw_ktb_mul_init xs ys =
(let m = max (length xs) (length ys) div 2 in
let (x0,x1) = (take m xs,drop m xs) in
let (y0,y1) = (take m ys,drop m ys)
in

(m,x0,x1,y0,y1,mwn_add x0 x1,mwn_add y0 y1))

Here we see the same steps as in the algorithm definition above, both xs and ys are
split into two smaller parts based on m. We select m as half of the maximum length
of xs and ys. By doing this, the most significant part of the split (i.e. X1 or Y1) can
in some cases have a length of zero, e.g. when xs is much larger than ys such that
length ys ≤ m. Both take and drop handle cases with too large or small input
gracefully.

∀ l n. length l ≤ n =⇒ take n l = l

∀ l n. length l ≤ n =⇒ drop n l = []

The other helper function mw_ktb_mul_final finalizes a basic step of the Karat-
suba algorithm by a series of shifts, subtractions and additions. The shifts are
implemented by prepending a multiword with a list of zero-words (0w). We use

13

3. The Karatsuba algorithm

replicate to construct such lists, which is a function that takes an integer n and
a value v and returns a list of length n with v as the value of every element.

mw_ktb_mul_final m z0 z1 z2 =
(let p2 = replicate (2 × m) 0w ++ z2 in
let p1 = replicate m 0w ++ mw_subv z1 (mwn_add z0 z2)
in
mw_fix (mwn_add z0 (mwn_add p1 p2)))

Here, mw_subv implements bignum subtraction in the same restricted setting as
mw_addv defined in Section 2.3.2. To conclude the specification of the algorithm in
HOL, we define the function mwi_ktb_mul which computes the resulting sign.

mwi_ktb_mul cutoff (s,xs) (t,ys) =
if (xs = []) ∨ (ys = []) then (F,[])
else (s 6= t,mw_ktb_mul cutoff xs ys)

3.3 Algorithm verification

The top-level correctness theorem we want to prove can easily be stated using i2mw
which converts an integer into a signed list of machine words. The theorem relates
mwi_ktb_mul to multiplication (×) over the integers.

Theorem 3.3.1 mwi_ktb_mul correctly implements integer multiplication.

` mwi_ktb_mul c (i2mw i) (i2mw j) = i2mw (i × j)

Since mwi_ktb_mul is a thin wrapper around mw_ktb_mul, its correctness proof
follows rather easily from the corresponding correctness proof of mw_ktb_mul.

Theorem 3.3.2 mw_ktb_mul correctly implements unsigned integer multiplication.

` mw2n (mw_ktb_mul cutoff xs ys) = mw2n xs × mw2n ys

Here we only need to reason about natural numbers, which makes the proofs simpler
and less repetitive. To complete the proof we have to first prove the termination of
the recursive algorithm and after that prove the correctness.

3.3.1 Proof of termination

First, we prove that our implementation of the Karatsuba algorithm terminates.
This is done by providing HOL4 with a metric that is shown to decrease for each

14

3. The Karatsuba algorithm

recursive call. In this case we use length xs ++ length ys as metric and prove that
the recursive calls for z0, z1, and z2 are called with smaller arguments. We state a
lemma for each of the three recursive call-points. The lemma for z0 and z1 are given
below, the lemma for z2 is similar to that for z0. Note that we only need to care
about mw_ktb_mul_init, since it handles the transformation of all the arguments
for the recursive calls.

Lemma 3.3.3

` l > 2 ∧ length xs ≥ l ∧ length ys ≥ l ∧
((m,x0,x1,y0,y1,x0x1 ,y0y1) = mw_ktb_mul_init xs ys)⇒
length x0 + length y0 < length xs + length ys

Lemma 3.3.4

` l > 4 ∧ length xs ≥ l ∧ length ys ≥ l ∧
((m,x0,x1,y0,y1,x0x1 ,y0y1) = mw_ktb_mul_init xs ys)⇒
length x0x1 + length y0y1 < length xs + length ys

The lemmas for z0 and z2 are trivial to prove given the following helpful fact:

Lemma 3.3.5

` (mw_ktb_mul_init xs ys = (m,x0,x1,y0,y1,x0x1 ,y0y1))⇒
(xs = x0 ++ x1) ∧ (ys = y0 ++ y1)

The proof for z1 is more involved since x0x1 and y0y1 are sums produced by mwn_-
add. To address this, let us first state a lemma that gives an upper bound on the
length of the result from mwn_add.

Lemma 3.3.6 The result of mwn_add has a length less or equal to that of its largest
argument plus 1.

` length (mwn_add xs ys) ≤ max (length xs) (length ys) + 1

With this lemma we can prove Lemma 3.3.4 by proving the simplified statement
below. This is proven by using Lemma 3.3.5 and considering each case of
max (lenght x0) (lenght x1) and for max (lenght y0) (lenght y1).

` max (length x0) (length x1) + max (length y0) (length y1) + 2 ≤
length xs + length ys

With the above lemmas stated and proved, the termination proof for mw_ktb_mul is
finalized using the lemmas at each recursion to show that the metric, length xs +
length ys, decreases in each call. Next we continue with the correctness theorem
which is proved by induction.

15

3. The Karatsuba algorithm

3.3.2 Proof of correctness

The correctness of the base case of mw_ktb_mul simply follows from the correctness
theorem of mwn_mul. The remaining part of the proof concerns the case when the
length of both xs and ys are larger than the cut-off. We decompose the proof by
proving one correctness theorem for mw_ktb_mul_init and one for mw_ktb_mul_-
final.

Theorem 3.3.7

` (mw_ktb_mul_init xs ys = (m,x0,x1,y0,y1,x0x1 ,y0y1))⇒
(mw2n xs = mw2n x0 + 2α×m × mw2n x1) ∧
(mw2n ys = mw2n y0 + 2α×m × mw2n y1)

Theorem 3.3.8

` mw2n (mwn_add xs zs) ≤ mw2n ys ∧
length (mwn_add xs zs) ≤ length ys ⇒
(mw2n (mw_ktb_mul_final d xs ys zs) =
mw2n xs +
2α×d × (mw2n ys − mw2n xs − mw2n zs) +
2α×(2 × d) × mw2n zs)

The first theorem describes how the value of xs and ys is related to x0, x1, y0, and
y1. The second theorem states that the final-function does the correct recomposition
of the recursive calculated products. Together with the induction hypothesis the
correctness of the presented implementation is proved.

16

4
The Toom-3 Algorithm

The Toom-3 algorithm is a specific instance of the Toom-Cook algorithm, named
after Andrei Toom and Stephen Cook [3]. The algorithm works by splitting the
operands into k parts, and compute the product by performing operations on these
smaller parts. Toom-3 is the specific instance where k is 3. Here we start with
presenting the Toom-3 algorithm in detail, then we continue with the functional
specification of the algorithm in HOL under Section 4.1, and we end with the veri-
fication of the implementation.

The Toom-3 algorithm treats its operands as polynomials U(x) and V (x) of degree
2 by partitioning the numbers into 3 parts, which are used as coefficients.

U(x) = u0 + u1x+ u2x
2

V (x) = v0 + v1x+ v2x
2

Let B be the base used to represent the bignums and m the splitting size used, then
we obtain the original operands with U(Bm) and V (Bm). The product W (x) =
U(x)V (x) is a polynomial of degree 4 with the coefficients:

w0 = u0v0

w1 = u0v1 + u1v0

w2 = u0v2 + u1v1 + u2v0

w3 = u1v2 + u2v1

w4 = u2v2

We note that calculating these coefficients would require 9 multiplications. The
Toom-3 algorithm does not calculate the coefficients in this way, instead it utilizes
the fact that a polynomial of degree d can be fully characterized from an evaluation
of d+1 points. In the specific case of Toom-3 we need to evaluate 5 points, W (xi) =
U(xi)V (xi), i = 0, ..., 4. The selection of evaluation points affects the performance
of the algorithm, in this thesis only non-negative points were selected due to simpler

17

4. The Toom-3 Algorithm

proofs.

W (0) = U(0)V (0) = u0v0

W (1) = U(1)V (1) = (u0 + u1 + u2)(v0 + v1 + v2)
W (2) = U(2)V (2) = (u0 + 2u1 + 4u2)(v0 + 2v1 + 4v2)
W (3) = U(3)V (3) = (u0 + 3u1 + 9u2)(v0 + 3v1 + 9v2)

W (∞) = lim
x→∞

U(x)V (x)
x4 = u2v2

These gives us five evaluations of the polynomial:

W (x) = w0 + w1x+ w2x
2 + w3x

3 + w4x
4,

which can be used to form the following system of equations:

W (0) = w0

W (1) = w0 + w1 + w2 + w3 + w4

W (2) = w0 + 2w1 + 4w2 + 8w3 + 16w4

W (3) = w0 + 3w1 + 9w2 + 27w3 + 81w4

W (∞) = w4

The coefficients are obtained by solving the equation system.

w0 = W (0)

w1 = −11
6 W (0) + 3W (1)− 3

2W (2) + 1
3W (3)− 6W (∞)

w2 = W (0)− 5
2W (1) + 2W (2)− 1

2W (3) + 11W (∞)

w3 = −1
6 W (0) + 1

2W (1)− 1
2W (2) + 1

6W (3)− 6W (∞)

w4 = W (∞)

Finally we evaluateW (Bm) to obtain the product U(Bm)V (Bm), this concludes the
multiplication algorithm. Instead of 9 multiplication, the Toom-3 only uses five,
with some additional cheap operation such as multiplication, division and addition
of small constants.

To summarise, the Toom-3 algorithm can be described in five steps:

1. Splitting

2. Evaluation

3. Point-wise multiplication

4. Interpolation

18

4. The Toom-3 Algorithm

5. Recomposition

The algorithm starts by splitting each operand into three partitions, that are used
as coefficients to form the polynomials U(x) and V (x). The next step is to evalu-
ate these polynomials at five points, in the thesis’s implementation we evaluate at
0, 1, 2, 3,∞. With these evaluations we can compute the point-wise multiplications
W (xi) = U(xi)V (xi) recursively. Now we have five evaluations of the W (x) polyno-
mial of degree 4, which allows us to form a system of equations with the coefficients
w0, w1, ..., w4 as unknowns. We obtain these coefficients by solving the equation sys-
tem. With the polynomial W (x) fully characterized, we can evaluate W (Bm) which
returns the wanted product U(Bm)V (Bm).

4.1 Specification in HOL

We start by defining the function mw_toom3_mul which implements the algorithm
for non-negative numbers. It performs the splitting, evaluation, point-wise multipli-
cation, interpolation, and recomposition which are implemented in the functions:
mw_toom3_split, mw_toom3_eval, mw_toom3_mul (recursive calls), mw_toom3_-
coef, and mw_toom3_recomp. The base case is implemented in the same way as
for the Karatsuba algorithm.

Definition 4.1.1

mw_toom3_mul cutoff xs ys =
if α < 4 then []
else

(let (xl,yl) = (length xs,length ys)
in
if cutoff ≤ 10 ∨ xl < cutoff ∨ yl < cutoff then
mw_fix (mwn_mul xs ys)

else
(let m = max xl yl div 3 + 1 in
let (x0,x1,x2) = mw_toom3_split m xs in
let (y0,y1,y2) = mw_toom3_split m ys in
let (p0,p1,p2,p3,pinf) = mw_toom3_eval x0 x1 x2 in
let (q0,q1,q2,q3,qinf) = mw_toom3_eval y0 y1 y2 in
let r0 = mw_toom3_mul cutoff p0 q0 in
let r1 = mw_toom3_mul cutoff p1 q1 in
let r2 = mw_toom3_mul cutoff p2 q2 in
let r3 = mw_toom3_mul cutoff p3 q3 in
let rinf = mw_toom3_mul cutoff pinf qinf in
let (w0,w1,w2,w3,w4) =

mw_toom3_coef (r0,r1,r2,r3,rinf)
in
mw_fix (mw_toom3_recomp (m,w0,w1,w2,w3,w4))))

19

4. The Toom-3 Algorithm

The first step of the implementation is to select m based on the length of the
operands. In our implementation we select m to be the maximum length divided by
three plus one. This implies that max xl yl < 3m which is an useful lemma in the
verification.

The function mw_toom3_split performs the splitting step for both xs and ys. The
implementation uses take and drop to partition the operand, where x0 is the least
significant part, followed by x1 and x2 (the same applies for the splitting of ys).

Definition 4.1.2

mw_toom3_split m xs =
(let t = take m and xs′ = drop m xs in (t xs,t xs′,drop m xs′))

The next step is the evaluation of five points each for the polynomials constructed
with the coefficients from previous step. The function mw_toom3_eval performs the
evaluation given the coefficients of a polynomial. To avoid negative integers our
implementation evaluates five non-negative points, namely 0, 1, 2, 3 and ∞. The
helper function mw_toom3_eval_x evaluates a polynomial P (x) = p0 + p1x + p2x

2

given values of p0, p1, p2, x and x2.

Definition 4.1.3

mw_toom3_eval v0 v1 v2 =
(let t1 = mwn_add (mwn_add v0 v2) v1 in
let t2 = mw_toom3_eval_x (v0,v1,v2) (n2mw 2) (n2mw 4) in
let t3 = mw_toom3_eval_x (v0,v1,v2) (n2mw 3) (n2mw 9)
in

(v0,t1,t2,t3,v2))

Definition 4.1.4

mw_toom3_eval_x (p0,p1,p2) x1 x2 =
(let r1 = mwn_mul x1 p1 in
let r2 = mwn_mul x2 p2
in
mwn_add p0 (mwn_add r1 r2))

We have now completed step 1 and 2 of the Toom-3 algorithm. The next step
is point-wise multiplication which computes W (xi) = U(xi)V (xi). This is done by
recursion, calling mw_toom3_mul for each of the five points as seen in Definition 4.1.1.

The interpolation, i.e. calculation of the coefficients of W (x), is performed by mw_-
toom3_coef, according to the same procedure described in the start of this chapter.
The final recomposition is conducted in mw_toom3_recomp which evaluates W (x)
at Bm. This is implemented as a series of shifts and additions, where the shifts are
implemented using replicate as explained in Section 3.2.

20

4. The Toom-3 Algorithm

Definition 4.1.5

mw_toom3_recomp (m,w0,w1,w2,w3,w4) =
(let xy = replicate m 0w ++ w4 in
let xy = replicate m 0w ++ mwn_add w3 xy in
let xy = replicate m 0w ++ mwn_add w2 xy in
let xy = replicate m 0w ++ mwn_add w1 xy
in
mwn_add w0 xy)

We conclude the specification of the Toom-3 algorithm in HOL, as we did for the
Karatsuba, with defining a top-level function that manages the sign of integer mul-
tiplication.

mwi_toom3_mul cutoff (s,xs) (t,ys) =
if (xs = []) ∨ (ys = []) then (F,[])
else (s 6= t,mw_toom3_mul cutoff xs ys)

4.2 Algorithm verification

The top-level theorem we want to prove is the same kind of correctness theorem
stated for the Karatsuba algorithm in Section 3.3. It relates mwi_toom3_mul to
multiplication over the integers.

Theorem 4.2.1 mwi_toom3_mul correctly implements integer multiplication.

4 ≤ α⇒
(mwi_toom3_mul c (i2mw i) (i2mw j) = i2mw (i × j))

The theorem has an assumption which ensures that there is enough space in one
machine word for the constants used in the evaluation. Since mwi_toom3_mul only
handles the sign of the resulting product, the correctness of it follows easily from
the correctness proof of mw_toom3_mul.

Theorem 4.2.2 mw_toom3_mul correctly implements unsigned integer multiplica-
tion.

4 ≤ α⇒
(mw2n (mw_toom3_mul cutoff xs ys) = mw2n xs × mw2n ys)

4.2.1 Proof of termination

We start by proving that the recursive function mw_toom3_mul terminates. This is
done by providing HOL with a metric, and show that this metric decreases at each

21

4. The Toom-3 Algorithm

recursive call. The metric used for our Toom-3 implementation is the length of the
operands, i.e. length xs+length ys. In Definition 4.1.1 we have five recursive calls.
Before these recursive calls are reached we encounter the functions mw_toom3_split
and mw_toom3_eval. We start with proving a few lemmas about the length of these
function’s results. Then we use those to show that the provided metric is smaller in
each recursive call.

The mw_toom3_split function partitions a given multiword into three smaller parts
by using take and drop in turn, as shown in Definition 4.1.2. Lemma 4.2.3 provides
an upper bound on the length of the resulting parts. Note that the lemma includes an
assumption on the splitting variablem, which our implementation in Definition 4.1.1
fulfills, as noted previously.

Lemma 4.2.3

length ls < 3 × m ∧ ((l1,l2,l3) = mw_toom3_split m ls)⇒
length l1 ≤ m ∧ length l2 ≤ m ∧ length l3 < m

With the above lemma we have an upper bound on the length of the input to mw_-
toom3_eval. Now we continue to state and prove upper bounds on the result of
this function:

Lemma 4.2.4

((t0,t1,t2,t3,tinf) = mw_toom3_eval v0 v1 v2)⇒
(length t0 = length v0)

Lemma 4.2.5

length v0 ≤ l ∧ length v1 ≤ l ∧ length v2 < l ∧
((t0,t1,t2,t3,tinf) = mw_toom3_eval v0 v1 v2)⇒
length t1 ≤ l + 2

Lemma 4.2.6

length v0 ≤ l ∧ length v1 ≤ l ∧ length v2 < l ∧ length (n2mw 4) ≤ d ∧
((t0,t1,t2,t3,tinf) = mw_toom3_eval v0 v1 v2)⇒
length t2 ≤ l + d + 2

Lemma 4.2.4 states the length of the evaluation at value 0, which is easy to prove
since the result is the first argument of the function. We have the same lemma for
W (∞), which is proved in similar fashion.

From Definition 4.1.3 we note that two additions is needed for t1. From Lemma 3.3.6
we have than the length of an addition is upper bounded by the maximum length
of the operands plus 1. Two additions thus give the bound stated in Lemma 4.2.5.

For the last two evaluation points 2 and 3, we first state a lemma for the helper
function mw_toom3_eval_x.

22

4. The Toom-3 Algorithm

Lemma 4.2.7

length p0 ≤ l ∧ length p1 ≤ l ∧ length p2 ≤ l ∧ length x1 ≤ d ∧ length x2 ≤ d ⇒
length (mw_toom3_eval_x (p0,p1,p2) x1 x2) ≤ l + d + 2

The proof of Lemma 4.2.6 (and similar for evaluation point 3) follows easily for the
above stated lemma.

With the length of p0, ..., pinf , q0, ..., qinf upper bounded by the lemmas on mw_-
toom3_eval, we continue to prove that each recursive call in mw_toom3_mul is called
with smaller arguments. For this we first need to show that our selection of splitting
length m, always is large enough to partition the operands. This is stated in the
following lemma:

Lemma 4.2.8
xl < 3 × (max xl yl div 3 + 1)
yl < 3 × (max xl yl div 3 + 1)

Now we have all the necessary parts to conclude the termination proof of our Toom-
3 implementation. The above Lemma 4.2.8 is used to fulfill the assumption in
Lemma 4.2.3 which bounds the length of the results from mw_toom3_split. From
this we continue with applying the length lemmas for each value of mw_toom3_eval,
and with this we can prove the termination of our implementation, by showing that
the length of the arguments for each recursive call is decreasing.

With the termination proof done we continue to prove the correctness theorem stated
in Theorem 4.2.2.

4.2.2 Proof of correctness

We start with proving a theorem for mw_toom3_split, which states the relationship
between the inputed number and its splitted parts. Here we see that it correctly cor-
responds to a polynomial constructed with the split parts as coefficients, evaluated
at Bm (where B = 2α below).

Theorem 4.2.9

(mw_toom3_split m ls = (l0,l1,l2))⇒
(mw2n ls =
mw2n l0 + 2α×m × mw2n l1 +
2α×(m + m) × mw2n l2)

The next function is mw_toom3_eval which is used to evaluate five points of the two
constructed polynomials. The points to evaluate is the ones stated above and the
correctness theorem is as follows:

23

4. The Toom-3 Algorithm

Theorem 4.2.10

(mw_toom3_eval v0 v1 v2 = (t0,t1,t2,t3,tinf))⇒
(mw2n t0 = mw2n v0) ∧
(mw2n t1 = mw2n v0 + mw2n v1 + mw2n v2) ∧
(mw2n t2 = mw2n v0 + 2 × mw2n v1 + 4 × mw2n v2) ∧
(mw2n t3 = mw2n v0 + 3 × mw2n v1 + 9 × mw2n v2) ∧
(mw2n tinf = mw2n v2)

From the definition of mw_toom3_eval the proofs of t0 and tinf are trivial. For t1
we use the previous stated theorem for mwn_add. Now only the more complicated
terms t2 and t3 are left to prove. Since both use mw_toom3_eval_x to calculate the
result, we prove a lemma for that helper function first.

Lemma 4.2.11

mw2n (mw_toom3_eval_x (a,b,c) x1 x2) =
mw2n a + mw2n x1 × mw2n b + mw2n x2 × mw2n c

This is exactly what we want to prove for t2 and t3 in Theorem 4.2.10, hence when
the above lemma is proven we are also done with the theorem for mw_toom3_eval.
The correctness of Lemma 4.2.11 follows easily from the definition of the function
(Definition 4.1.4) and the correctness theorems of mwn_add and mwn_mul.

Currently we have stated and proven theorems for the splitting and evaluation parts
of our Toom-3 implementation. The three remaining parts are: point-wise multi-
plication, interpolation, and recomposition. The point-wise multiplication is the
recursive calls to mw_toom3_mul and will be proven with induction on the top-level
correctness theorem (Theorem 4.2.2), which we defer to later. Now we continue with
theorems for mw_toom3_coef and mw_toom3_recomp.

With the theorem for mw_toom3_coef we want to prove that our implementation
returns the correct coefficients forW (x) given five evaluations of the two constructed
polynomials V (x) and U(x). To formulate this we need assumptions on the argu-
ments of the function. With our previously proven theorems for mw_toom3_split
and mw_toom3_eval, we can state the needed assumptions as follows:

24

4. The Toom-3 Algorithm

Theorem 4.2.12

(mw_toom3_split m xs = (x0,x1,x2)) ∧
(mw_toom3_split m ys = (y0,y1,y2)) ∧
(mw_toom3_eval x0 x1 x2 = (p0,p1,p2,p3,pinf)) ∧
(mw_toom3_eval y0 y1 y2 = (q0,q1,q2,q3,qinf)) ∧
(mw2n (mw_toom3_mul cutoff p0 q0) = mw2n p0 × mw2n q0) ∧
(mw2n (mw_toom3_mul cutoff p1 q1) = mw2n p1 × mw2n q1) ∧
(mw2n (mw_toom3_mul cutoff p2 q2) = mw2n p2 × mw2n q2) ∧
(mw2n (mw_toom3_mul cutoff p3 q3) = mw2n p3 × mw2n q3) ∧
(mw2n (mw_toom3_mul cutoff pinf qinf) =
mw2n pinf × mw2n qinf) ∧

(mw_toom3_coef
(mw_toom3_mul cutoff p0 q0,mw_toom3_mul cutoff p1 q1,
mw_toom3_mul cutoff p2 q2,mw_toom3_mul cutoff p3 q3,
mw_toom3_mul cutoff pinf qinf) =

(w0,w1,w2,w3,w4))⇒
(mw2n w0 = mw2n x0 × mw2n y0) ∧
(mw2n w1 = mw2n x0 × mw2n y1 + mw2n x1 × mw2n y0) ∧
(mw2n w2 =
mw2n x0 × mw2n y2 + mw2n x1 × mw2n y1 +
mw2n x2 × mw2n y0) ∧

(mw2n w3 = mw2n x1 × mw2n y2 + mw2n x2 × mw2n y1) ∧
(mw2n w4 = mw2n x2 × mw2n y2)

The implementation of mw_toom3_coef is basically is a direct translation of the
equations presented in the interpolation step in the description of the Toom-3 al-
gorithm. The proof mostly rely on algebraic manipulation, with one crucial detail.
Since the equations require at least one subtraction, we need to make sure that
the difference is positive (since it is a requirement of the basic subtraction function
already defined). Since we know that the resulting coefficients are non-negative, we
can rearrange the equations to have only one subtraction as the last step, which
solves the problem.

The final step of the algorithm is the recomposition, which basically is an evaluation
of the W (x) at Bm. The theorem we want to prove relates the result to the correct
evaluation.

Theorem 4.2.13

mw2n (mw_toom3_recomp (m,w0,w1,w2,w3,w4)) =
mw2n w0 + mw2n w1 × 2α×m +
mw2n w2 × 2α×(2 × m) +
mw2n w3 × 2α×(3 × m) +
mw2n w4 × 2α×(4 × m)

From Definition 4.1.5 we see that mw_toom3_recomp consists of a series of shifts
and additions. The shifts are performed by a prepending a list of zero-words to

25

4. The Toom-3 Algorithm

a multiword. The list of zeros is constructed by replicate which were defined
in Section 3.2. The proof for the above stated theorem is similar to the proof of
Theorem 3.3.8.

Now we have theorems for all the helper functions of mw_toom3_mul and thus we
can return to the main correctness theorem of our Toom-3 implementation, Theo-
rem 4.2.2.

The base case of mw_toom3_mul is trivial to prove with the correctness theorem
already proven for mwn_mul. For the non base case, we use the induction hypothesis
with the theorems for mw_toom3_split and mw_toom3_eval to fulfill the assump-
tions of Theorem 4.2.12 for mw_toom3_coef. With this we have proven that we have
calculated the correct coefficients ofW (x). With Theorem 4.2.13 we know that mw_-
toom3_recomp correctly returns the product of the original operands. Hence, we
have proven the correctness of our implementation of the Toom-3 algorithm.

26

5
Towards a CakeML integration

In this chapter we take a step closer to integrating the Karatsuba algorithm into
CakeML. This is done by another implementation of the algorithm, but this time in
a more imperative style, i.e. we are moving more towards a more concrete low-level
implementation.

The infrastructure for the CakeML-integration requires that the algorithm imple-
mentation follow a specific format, which puts constraints on for example memory
usage. In Section 5.1 we describe the format required for the integration to be
successful. Our implementation takes a step towards a CakeML integration by
complying to parts of the format. In other terms, we specify an intermediate imple-
mentation according to the method described in Section 1.3.

Section 5.2 gives an overview of how our implementation manipulates the allocated
memory, i.e. in what order and where the intermediate results are saved in memory.
The following section (Section 5.3) presents the specification in HOL. Section 5.4
continues with how the implementation’s termination and correctness is proven,
and we conclude with a discussion of the remaining steps required for a successful
CakeML-integration.

5.1 Constraints for the CakeML-integration

The integration into the CakeML’s bignum library works by specifying an implemen-
tation of the algorithm in a specific format, which is then automatically integrated
into CakeML via a proof-producing translation. In this section we describe this
format by presenting parts of the schoolbook algorithm, already implemented in
CakeML’s bignum library.

27

5. Towards a CakeML integration

Definition 5.1.1

mc_mul (l,r7,r9,r10,r12,xs,ys,zs) =
if r7 = 0w then (let r10 = r10 + r9 in (l,r10,xs,ys,zs))
else

(let r7 = r7 − 1w in
let r8 = EL (w2n r12) xs in
let r12 = r12 + 1w in
let r11 = 0w in
let r1 = r11 in
let (l,r1,r9,r10,ys,zs) =

mc_mul_pass (l − 1,r1,r8,r9,r10,r11,ys,zs)
in
let r10 = r10 − r9
in
mc_mul (l − 1,r7,r9,r10,r12,xs,ys,zs))

Theorem 5.1.1

length (xs1 ++ xs) < 2α ∧ length ys < 2α ∧
(length zs = length ys) ∧ length (zs1 ++ zs ++ zs2) < 2α ∧
length xs ≤ length zs2 ∧ ys 6= [] ∧ 2 × length xs + length xs × length ys ≤ l ⇒
∃ zs3 l2.
mc_mul_pre

(l,n2w (length xs),n2w (length ys),n2w (length zs1),n2w (length xs1),
xs1 ++ xs,ys,zs1 ++ zs ++ zs2) ∧

(mc_mul
(l,n2w (length xs),n2w (length ys),n2w (length zs1),n2w (length xs1),
xs1 ++ xs,ys,zs1 ++ zs ++ zs2) =

(l2,n2w (length (zs1 ++ mw_mul xs ys zs)),xs1 ++ xs,ys,
zs1 ++ mw_mul xs ys zs ++ zs3)) ∧

(length (zs1 ++ zs ++ zs2) =
length (zs1 ++ mw_mul xs ys zs ++ zs3)) ∧

l ≤ l2 + 2 × length xs + length xs × length ys

The implementation of mc_mul above gives an example of how a function in the
required format looks like. For example we see that almost all of its variables have
a name consisting of a ”r” and a number, and are of the type αword. This is one
restriction enforced by the integration infrastructure, it resembles low-level program-
ming with registers. The functions correctness theorem is given in Theorem 5.1.1,
which relates its result to the higher-level function mw_mul. The format consists of
the following constraints:

• Only allowed to work with register variables, which is of the type αword and
must have the name ri, where i is the register index.

• The function needs to handle a clock variable l which decrements in each
recursive call.

28

5. Towards a CakeML integration

• The function needs to return a condition variable which is set to false if any
of the functions preconditions is violated.

• For functions operating on lists (array-like structures), only EL and LUPDATE
is allowed for manipulating the list (only exception is in recursive calls, when
we are allowed to use take and drop). Also, an upper bound on the length of
the lists is needed.

For our implementation presented in the following sections, we focus on a subset of
the requirements which are: the use of a clock variable and condition variable, also
operate on a list of limited length. Hence, we are not limiting our implementation
to register variables and we also allow a more freely manipulation of lists. This
allows for an easier implementation, that works as an intermediate step towards an
implementation that fully complies with the given format.

5.2 Memory manipulation

The top-level function for our implementation needs to operate on three arrays
xs, ys, and zs, in order to satisfy the format required by the CakeML-integration.
The arrays are represented as lists of machine words (as usual), and both xs and ys
is considered immutable. Therefore zs is our working memory where all intermediate
results are saved. In this section we present how our implementation utilizes these
arrays.

In Figure 5.1 the initial state of xs,ys and zs for a multiplication is presented. We
see that xs and ys contain x and y respectively, and remember that the bignum
representation used in HOL have the least significant digit placed first in the list.
So the significance increases from left to right in the list. We also see that zs is
initialized, but we do not know what it contains, which is represented as grey area
in the rectangle.

xs: x ys: y zs:

Figure 5.1: Initial memory allocation before multiplication.

Now, the imperative implementation presented in this chapter contains the same
parts as the implementation of the Karatsuba algorithm from the previous chapter.
That is, it starts with a function that initializes the algorithm (imp_ktb_init),
then three recursive calls (to imp_ktb_mul, then ends with a call to a function
which finalizes the algorithm (imp_ktb_final). Below follows a description of how
these functions manipulates the available memory.

The first function to store its result in zs is the init-function (mw_ktb_mul_init
from Chapter 3 and imp_ktb_mul_init is the corresponding function in the imper-

29

5. Towards a CakeML integration

ative implementation). It has the responsibility to compute x0x1 and y0y1 which we
now need to store in zs. From the initial state given in Figure 5.1, the init-function
stores x0x1 and y0y1 in the beginning of zs, as depicted in Figure 5.2. We see
also that the operands have been split into its respective parts, and that x0l and
y0l describe the length of x0 and y0 (we don’t need x1l and y1l since for example
x1l = xl − x0l). The arrows in the figure shows which parts of the memory is used
to calculate x0x1 and y0y1.

xs: ys: zs:x1x0 y1y0 x0x1 y0y1

Figure 5.2: Memory state after call to init-function.

For the recursive calls we need not just to overwrite elements in zs, but also to
change what memory xs and ys refers to. In Figure 5.3, we above the dotted line,
what xs, ys, and zs are before the recursive call. Below the line we see what they
are during the recursive call. The arrows going from the pre-state to call-state show
to what memory xs, ys, and zs are referenced to. The first recursive call calculates
z0 = x0y0, and hence xs is changed to only include x0 and ys to only include y0.
We also want to keep our previous result in zs (x0x1 and y0y1) and thus change zs
to not overwrite it. In the bottom of Figure 5.4 the post-state of the recursive call
is displayed, where zs is pointing to its original memory location.

xs: ys: zs:x1x0 y1y0 x0x1 y0y1

xs: ys: zs:x0 y0

Figure 5.3: Memory reallocation before recursive call for z0.

xs: ys: zs:x1x0 y1y0 x0x1 y0y1 z0

Figure 5.4: Memory state after recursive call for z0.

The next recursive call computes z2 = x1y1 and we again change xs, ys, and zs to
point to the correct parts. Figure 5.5 presents the post state, after the recursive call
of z2.

The final recursive call of the Karatsuba algorithm calculates z1 = (x0 +x1)(y0 +y1).
We have x0x1 = (x0 + x1) and y0y1 = (y0 + y1) stored in the beginning of zs, and
thus need to point xs and ys to their respective location in zs. This is displayed in
Figure 5.6, and its post state is presented in Figure 5.7.

After the last recursive call we have z0, z1, and z2 stored in zs. The final step
of the Karatsuba algorithm is to recombine these values into the wanted product.

30

5. Towards a CakeML integration

xs: ys: zs:x1x0 y1y0 x0x1 y0y1 z0 z2

Figure 5.5: Memory state after recursive call for z2.

xs: ys: zs:x1x0 y1y0

xs: ys: zs:x0x1 y0y1

x0x1 y0y1 z0 z2

Figure 5.6: Memory state after recursive call for z1.

This is done by the mw_ktb_mul_final function, from Chapter 3, the corresponding
function in this chapter is imp_ktb_final. In Figure 5.8 we present how it perform
the needed operations within zs. It starts by calculating z1 − z0 − z2 in place of
z1. Then, z0 + B2mz2 can be computed by simply moving z0 to the front of zs,
and z2 to position 2m, since z0 has a maximum length of 2m so the numbers do not
overlap. To conclude the calculations, Bm(z1− z0− z2) is added (denoted as z1′).
Observe that some additional operations is needed, such as clearing elements in zs
to zero before moving elements, also the lengths in the figures are not representative.

With the memory usage defined, we now continue with deriving an upper bound on
the size of zs depending on the size of the operands. After that, we continue with
the specification and verification of the implementation.

5.2.1 Memory requirements

The implementation presented in this chapter operates with limited working mem-
ory, as a step towards a CakeML-compatible implementation. Hence, we need to
define how much memory needs to be allocated. We would like to formulate as tight
of a limit as possible, but since this is an intermediate implementation, and our
main goal is to prove its correctness (not efficiency) we provide a good-enough limit
here.

The memory requirement is formulated on the format A(length xs+ length ys) ≤
length zs, where A is a non-negative number (for brevity we will use the prefix l
for the length of variables, e.g. yl = length ys and x0x1l = length x0x1).

From the above description of the memory manipulation of the implementation, we
see that the recursive call for z1 have the largest requirement on the size of zs.
This is because it is the last recursive call, which means that the front of zs already
is occupied with intermediate results such as z0 and z2. Also, z1 has the largest
arguments of the recursive calls, with z1 = (x0 + x1)(y0 + y1). Therefore, if the
memory requirement for z1 can be satisfied, the requirements for z0 and z2 follows.

31

5. Towards a CakeML integration

xs: ys: zs:x1x0 y1y0 x0x1 y0y1 z0 z2 z1

Figure 5.7: Memory state after recursive call for z1.

zs: z0 z2 z1

zs: z0 z2 z1 - z0 - z2

zs: z1’z0 z2

2m

z1’

Figure 5.8: How final function calculates the final product.

From Figure 5.7 the following inequality need to hold:

A(x0x1l + y0y1l) ≤ A(xl + yl)− (x0x1l + y0y1l + z0l + z2l) (5.1)

On the left side we have the requirement for the recursive call for z1, which has the
arguments x0x1 and y0y1. On the right side the assumption on zs (A(xl+yl) <= zs)
is present, with the already occupied memory for x0x1, y0y1, z0, and z2 subtracted.
Now, z0l = x0y0 and have a maximum size of x0l + y0l, and similar statement can
be said about z2l. For this we have that z0l+ z2l ≤ x0l+ y0l+ x1l+ y1l = xl+ yl,
which gives the following from (5.1):

(A+ 1)(x0x1l + y0y1l) ≤ (A− 1)(xl + yl) (5.2)

Let xmax = max x0l x1l and xmin = xl − xmax, and the same for ymax and ymin,
e.g. if xmax = x0l then xmin = x1l and vice versa. With this notation we know the
following facts:

xl = xmax + xmin,

yl = ymax + ymin,

x0x1l ≤ xmax + 1
y0y1l ≤ ymax + 1

(5.3)

With the above, inequality 5.2 can be further simplified to:

2(xmax + ymax) + 2A+ 2 ≤ (A− 1)(xmin + ymin) (5.4)

Now we want to specify an upper bound on xmax + ymax and a lower bound on
xmin + ymin with a common term in order to get an useful statement. This term

32

5. Towards a CakeML integration

is the splitting value m = max xl yl div 2. Both xmax and ymax is bounded above
by m + 1, since m uses integer division (e.g. when xl = 2n + 1 we have x0l = n
and x1l = n+ 1). For the lower bound on xmin + ymin, lets consider the worst-case
scenario where yl < xl and yl = m. That implies that ymin = 0 and xmin = m,
which gives the lower bound m <= xmin + ymin. By applying these bounds to the
inequality (5.4) we get:

2(2m+ 2) + 2A+ 2 ≤ (A− 1)m
2A+ 6 ≤ (A− 5)m

Which implies the following constraints on m and A:

2A+ 6
A− 5 ≤ m, 5 < A (5.5)

5m+ 6
m− 2 ≤ m, 2 < m (5.6)

This presents a trade-off between the amount of allocated memory needed, and the
cut-off point of the algorithm (since the only guarantee on m is in relation with the
cut-off point). For example, if A = 6 then 18 ≤ m, which means that the cut-off
(e.g. end of recursion) needs to be at least 2×m = 36.

That the memory requirement puts limits on the cut-off point of the implementation
seems strange, but arises from the implementation detail that x0x1 and y0y1 have a
risk of exceeding the size of a machine word, and thus result in a carry. In the worst-
case scenario described above, we have only guarantees related to m to work with,
which gives the resulting requirements presented in 5.5. There exists alternative
solutions to avoid the potential carry in x0x1 and y0y1, for example use a base
smaller than the size of a machine word [4], or an alternative formulation of the
Karatsuba algorithm that have z1 = (x0 − x1)(y0 − y1) (as GMP [14]). Those are
possible options that could tighten the memory allocation needed, but could pose
other problems such as the need to handle negative integers which the alternative
formulation requires. For our implementation, we settle with the given algorithm
instance given in Section 3, and for the constraints on memory we continue with
A = 10 and m = 6 (cut-off = 12).

5.3 Specification in HOL

In this section we present an imperative styled version of the Karatsuba implemen-
tation from Chapter 3, which is a step towards a CakeML-integration. It is a step
towards satisfying the required format by the CakeML-infrastructure by operating
with a working-memory zs where intermediate results are stored, using a clock-
variable to prove its termination, and also have a conditional boolean which tracks
that memory limits are kept.

33

5. Towards a CakeML integration

The implementation’s main function is called imp_ktb_mul and corresponds to mw_-
ktb_mul. It follows the same structure, with the functions imp_ktb_init and imp_-
ktb_final in place of mw_ktb_mul_init and mw_ktb_mul_final. Also, imp_ktb_-
mul takes three additional arguments: a counter l, a list for the result zs, and a
boolean c. It also returns three additional results: a new value for l, length of result,
zs with product in front, and the boolean c which is true if everything went ok,
otherwise false. The definition of imp_ktb_mul is presented below.

34

5. Towards a CakeML integration

Definition 5.3.1
imp_ktb_mul (cutoff ,l,xs,ys,zs,c) =
(let (l0,xl,yl) = (l,length xs,length ys)
in
if cutoff < 12 ∨ xl < cutoff ∨ yl < cutoff then

(let (l,rl,zs,c) = imp_mwn_mul (l,xs,ys,zs,c)
in
imp_mw_fix (l,rl,zs,c))

else
(let (l ′,m,x0l,y0l,x0x1l,y0y1l,zs′,c′) =

imp_ktb_init (l,xs,ys,zs,c)
in
let l ′′ = min l ′ l0
in
if l ′′ = 0 then (l ′′,0,zs′,F)
else

(let c′′ = c′ ∧ x0l ≤ length xs ∧ y0l ≤ length ys in
let (l ′′′,z0l,zs′′,c′′′) =

imp_ktb_mul
(cutoff ,l ′′ − 1,take x0l xs,take y0l ys,
drop (x0x1l + y0y1l) zs′,c′′)

in
let l ′′′′ = min l ′′′ l0
in
if l ′′′′ = 0 then (l ′′′′,0,zs′,F)
else

(let c′′′′ = c′′′ ∧ x0l ≤ length xs ∧ y0l ≤ length ys in
let (l ′′′′′,z2l,zs′′′,c′′′′′) =

imp_ktb_mul
(cutoff ,l ′′′′ − 1,drop x0l xs,drop y0l ys,
drop z0l zs′′,c′′′′)

in
let l ′′′′′′ = min l ′′′′′ l0
in
if l ′′′′′′ = 0 then (l ′′′′′′,0,zs′,F)
else

(let (l ′′′′′′′,z1l,zs′′′′,c′′′′′′) =
imp_ktb_mul

(cutoff ,l ′′′′′′ − 1,take x0x1l zs′,
take y0y1l (drop x0x1l zs′),drop z0l zs′′′,
c′′′′′)

in
let l = min l ′′′′′′′ l0 in
let zs =

take (x0x1l + y0y1l) zs′ ++ take z0l zs′′ ++
take z2l zs′′′ ++ zs′′′′

in
imp_ktb_final

(l,m,x0x1l + y0y1l,z0l,z2l,z1l,zs,
c′′′′′′))))))

35

5. Towards a CakeML integration

Compared to mw_ktb_mul (Definition 3.2.1), imp_ktb_mul seems at first sight to be
much more complicated. But, if we ignore the details we see that the same structure
is there, with a few more statements around each recursive call that operates on l
and c.

The base case calculates the product with two newly defined helper functions, which
operates on zs in the same fashion as imp_ktb_mul. These helper functions are
based on the functions previously defined (see Section 2.3.2), and calculate their
results outside zs and then put the result into the list. The proper low-level im-
plementation would require the operation to be performed completely within the
bounds of zs, but for this intermediate implementation we make this simplification.
Definition 5.3.2 presents the implementation of imp_mwn_mul, where the multipli-
cation is performed and then inserted into zs, also it checks that the result fits in
zs.

Definition 5.3.2

imp_mwn_mul (l,xs,ys,zs,c) =
(let xy = mwn_mul xs ys in
let c = c ∧ length xy ≤ length zs
in

(l,length xy,xy ++ drop (length xy) zs,c))

After imp_mwn_mul any unnecessary zero-words are removed from the tail of the list
of machine words by imp_mw_fix, which is defined below in Definition 5.3.3.

Definition 5.3.3

imp_mw_fix (l,rl,zs,c) =
(let c = c ∧ rl ≤ length zs in
let rs = mw_fix (take rl zs)
in

(l,length rs,rs ++ drop (length rs) zs,c))

With the base case covered, we continue with a basic step of the imperative im-
plementation. It starts with a call to imp_ktb_init which corresponds to mw_-
ktb_mul_init, but this version stores x0x1 and y0y1 in zs instead of returning
them directly. Also note that we do not need the lengths for x1 and y1, since
length x0 = lengthxs− lengthx0.

36

5. Towards a CakeML integration

Definition 5.3.4

imp_ktb_init (l,xs,ys,zs,c) =
(let m = max (length xs) (length ys) div 2 in
let (x0,x1) = (take m xs,drop m xs) in
let (y0,y1) = (take m ys,drop m ys) in
let x0x1 = mwn_add x0 x1 in
let y0y1 = mwn_add y0 y1 in
let c = c ∧ length x0x1 + length y0y1 ≤ length zs
in

(l,m,length x0,length y0,length x0x1 ,length y0y1 ,
x0x1 ++ y0y1 ++ drop (length (x0x1 ++ y0y1)) zs,c))

After imp_ktb_init there is three recursive calls to calculate z0, z2, and z1. For
each recursive call, four steps is taken. First, we check if the clock-variable l is 0,
if so we stop the recursion and return an arbitrary value. This aids in proving the
termination of the algorithm, but for the correctness l need to have a large enough
value for the implementation to terminate correctly. If l is not zero the function
continues with a check on the length of the arguments. This is to make sure that
no out-of-bounds-error is present, if so c will become false which is then returned.
The two first steps verifies that it is ok to perform another recursive call, which is
the third step. Here we note that we do not overwrite zs in the return values, which
would result in a loss of data. Instead we receive the resulting list with a temporary
variable (in the case of the first recursive call, zs′) Finally, l is set to the minimum
of itself and its original value l0, this is an implementation-trick that makes the
termination easier to prove.

The last function call in imp_ktb_mul is the call to imp_ktb_final, which given an
initialized zs according to Figure 5.8 performs the needed shifts, subtractions, and
additions to calculate the wanted product. In Definition 5.3.5 the current imple-
mentation is presented. Note that this is, as the other helper functions, a simplified
version that gives the correct result but perform its computation outside of zs.

Definition 5.3.5

imp_ktb_final (l,m,zp,z0l,z2l,z1l,zs,c) =
(let c = c ∧ zp + z0l + z1l + z2l ≤ length zs in
let z0 = take z0l (drop zp zs) in
let z2 = take z2l (drop (zp + z0l) zs) in
let z1 = take z1l (drop (zp + z0l + z2l) zs) in
let p2 = replicate (2 × m) 0w ++ z2 in
let p1 = replicate m 0w ++ mw_subv z1 (mwn_add z0 z2) in
let xy = mw_fix (mwn_add z0 (mwn_add p1 p2))
in

(l,length xy,xy ++ drop (length xy) zs,c))

This concludes the specification of imp_ktb_mul in HOL. As mentioned, it has the
same structure as mw_ktb_mul but instead of handling intermediate results directly,

37

5. Towards a CakeML integration

it stores them in and fetches them from zs. The implementation also has two addi-
tional arguments l, which works as a clock that decreases at each function call, and
c, which checks that we stay within the length limitations of the bignum represen-
tations. In the next section a description of the verification of this implementation
is given.

5.4 Verification in HOL

For the implementation presented in this chapter we do not want to prove that it
correctly implements multiplication over the integers directly. Instead, we want to
prove that it correctly implements the previously specified Karatsuba implementa-
tion from Section 3. In this way, we build a kind of proof-chain downwards to more
machine-code like implementations. We state the top-level correctness theorem be-
low, and then we continue with the proof of termination (Section 5.4.1), which is
easier than previous proof due to the introduction of the clock l. After the termina-
tion is proven we give a description of how the correctness theorem is proven. Note
that, as of writing, not every detail of the main correctness proof is fully verified in
HOL, but hopefully this will be completed before the presentation.

The top-level correctness theorem we want to prove for imp_ktb_mul is given below.
Instead of relating the function to multiplication over the integers, the theorem
relates it to mw_ktb_mul. By proving the theorem we indirectly prove that imp_-
ktb_mul correctly implements multiplication, which follows from the already verified
correctness theorem of mw_ktb_mul (Theorem 3.3.2).

Theorem 5.4.1

10 × (length xs + length ys) ≤ length zs ∧ length xs + length ys < l ∧ (c ⇐⇒ T)⇒
∃ zs1 l2.

(imp_ktb_mul (co,l,xs,ys,zs,c) =
(l2,length (mw_ktb_mul co xs ys),mw_ktb_mul co xs ys ++ zs1,
T)) ∧ (length (mw_ktb_mul co xs ys ++ zs1) = length zs) ∧

l ≤ l2 + length xs + length ys

The above theorem also states requirements on both the length of zs and the size
of l, which need to hold for each recursive call. In Section 5.2.1 we derived an upper
bound on the memory usage, which will be useful in the proof procedure. Note also
that the theorem makes no guarantees on the preservation of the content in zs, only
that the resulting product is placed in the front. In the following section we will
start to prove the termination of the given implementation, after this we continue
with the proofs for the above state correctness theorem.

38

5. Towards a CakeML integration

5.4.1 Termination proof

The termination of imp_ktb_mul is easier to prove than for the other implementa-
tions verified in previous chapters. This is mainly due to the introduction of the
clock variable l. Our implementation, given in Definition 5.3.1, decreases the clock
for each function call, and terminates if it reaches zero. Therefore, we can prove the
termination by using l as a metric that is proven to decrease in each recursive call.

The clock-trick makes the termination proof trivial, but it comes with a downside.
The downside is that for correctness we now need to show that l never reaches zero,
so that there is enough time for the algorithm to terminate and return the correct
result.

5.4.2 Correctness proof

With the termination proven, we now want to complete the proof for the correctness
theorem stated above (Theorem 5.4.1). We begin with proving correctness theorems
for the functions used by imp_ktb_mul. Currently, when writing this, the proof of
the correctness theorem is not fully verified in HOL, but are a few steps left.

The correctness theorem for imp_ktb_init states how the functions result relates
to the result of mw_ktb_mul_init. The theorem is given below.

Theorem 5.4.2

length xs + length ys ≤ length zs ∧
((m,x0,x1,y0,y1,x0x1 ,y0y1) = mw_ktb_mul_init xs ys)⇒
∃ zs1.

(imp_ktb_init (l,xs,ys,zs,T) =
(l,m,length x0,length y0,length x0x1 ,length y0y1 ,x0x1 ++ y0y1 ++ zs1,T)) ∧

(length (x0x1 ++ y0y1 ++ zs1) = length zs)

Since the implementation of imp_ktb_init is similar to the implementation of mw_-
ktb_mul_init, the correctness theorem follows from proving that there is enough
space in zs to accommodate x0x1 and y0y1. This holds by the requirement on zs
from the theorem, since length (x0x1 ++ y0y1) ≤ length (ys ++ xs).

Next we address the correctness of imp_ktb_final which is proven in a similar
fashion. Theorem 5.4.3 states the function’s relation to mw_ktb_mul_final.

39

5. Towards a CakeML integration

Theorem 5.4.3

(xy = mw_ktb_mul_final m z0 z1 z2)⇒
∃ zs2.

(imp_ktb_final
(l,m,length zs0,length z0,length z2,length z1,zs0 ++ z0 ++ z2 ++ z1 ++ zs1,
T) =

(l,length xy,xy ++ zs2,T)) ∧
(length (xy ++ zs2) = length (zs0 ++ z0 ++ z2 ++ z1 ++ zs1))

With the above stated theorems, we can now turn our attention to the top-level
correctness. This is as of writing not completed in HOL. It turns out the most
difficult part of the proof is regarding the requirement of space in zs. Parts of the
derivation of the requirement (in Section 5.2.1) have been formalized into HOL,
but some minor details is still due. When this is in place, the two above stated
theorems of imp_ktb_init and imp_ktb_final with the induction hypothesis on
imp_ktb_mul is enough to prove the correctness.

5.5 Further steps for a CakeML-integration

The implementation presented in this chapter fulfills parts of the format required
for a CakeML integration of the algorithm, and works as a step towards a valid
implementation.

Our initial aim of this thesis was to successfully integrate the Karatsuba algorithm
into CakeML’s bignum library. An implementation that satisfies all constraints
listed in Section 5.1 have been specified, but only partially proven, with some signif-
icant challenges that were not overcome. Instead we implemented this intermediate
implementation, that takes a concrete step towards a CakeML integration, which is
left as future work.

40

6
Conclusion

In this thesis, we have described and implemented two asymptotically fast bignum
multiplication algorithms, namely the Karatsuba (Chapter 3) and Toom-3 algo-
rithms (Chapter 4), using the interactive theorem prover HOL4. The implemen-
tations have been verified to correctly implement integer multiplication. Further,
we have taken a step towards extending the CakeML’s bignum library with the
Karatsuba algorithm.

The integration into the CakeML’s bignum library works by specifying an implemen-
tation of the algorithm in a specific format, which is then integrated into CakeML
via a proof-producing translation. Our initial aim for this thesis was to specify such
an implementation, but due to mainly lack of time, we have not managed to achieve
this. Instead we have taken a step towards it, by specifying an implementation that
satisfy parts of the required format. This was presented in Chapter 5, where we
have also verified its termination and correctness.

41

6. Conclusion

42

Bibliography

[1] Reynald Affeldt. On construction of a library of formally verified low-level
arithmetic functions. ISSE, 9(2):59–77, 2013.

[2] Jon Louis Bentley, Dorothea Haken, and James B. Saxe. A general method for
solving divide-and-conquer recurrences. SIGACT News, 12(3):36–44, Septem-
ber 1980.

[3] Stephen A. Cook. On the minimum computation time of functions. PhD thesis,
Harvard University, 1966.

[4] Shamil Dzhatdoyev and Marco T. Morazan. On the implementation of bignum
multiplication. Presented at Trends in Functional Programming (TFP), Can-
terbury, UK, 2017.

[5] Anatolii Karatsuba and Yu Ofman. Multiplication of multidigit numbers on
automata. Soviet Physics Doklady, 7:595, 1962.

[6] Jon Kleinberg and Éva Tardos. Algorithm design. Pearson/Addison-Wesley,
Boston, Mass, 2006.

[7] Donald E Knuth. The art of computer programming, volume 2: (2nd ed.):
Seminumerical algorithms. Addison-Wesley Reading, 1981.

[8] Magnus O. Myreen and Gregorio Curello. Proof pearl: A verified bignum imple-
mentation in x86-64 machine code. In Georges Gonthier and Michael Norrish,
editors, Certified Programs and Proofs - Third International Conference, CPP
2013, Melbourne, VIC, Australia, December 11-13, 2013, Proceedings, volume
8307 of Lecture Notes in Computer Science, pages 66–81. Springer, 2013.

[9] Magnus O. Myreen and Michael J. C. Gordon. Verification of machine code
implementations of arithmetic functions for cryptography. Presented as a rough
diamond in the short-paper category of: Schneider, K., Brandt, J. (eds.) Theo-
rem Proving in Higher Order Logics, Emerging Trends Proceedings (TPHOLs,
Poster Session). University of Kaiserslautern, 2007.

[10] Raphaël Rieu-Helft, Claude Marché, and Guillaume Melquiond. How to Get
an Efficient yet Verified Arbitrary-Precision Integer Library. working paper or
preprint, April 2017.

43

Bibliography

[11] Konrad Slind and Michael Norrish. A brief overview of HOL4. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 5170 LNCS:28–32, 2008.

[12] Berk Sundar. Multiprecision Multiplication. Encyclopedia of Cryptography and
Security, 1, 2011.

[13] Yong K. Tan, Magnus O. Myreen, Ramana Kumar, Anthony Fox, Scott Owens,
and Michael Norrish. A New Verified Compiler Backend for CakeML. 2016.

[14] Granlund Torbjorn and the GMP development team. GNU MP: The GNU
Multiple Precision Arithmetic Library. December 2016.

44

	Introduction
	Related Work
	Contributions
	Method
	Thesis Outline

	Background
	Bignum Arithmetic
	CakeML
	HOL4: Interactive Theorem Prover
	Abstraction of bignums in HOL
	Useful helper-functions

	The Karatsuba algorithm
	Complexity Analysis
	Specification in HOL
	Algorithm verification
	Proof of termination
	Proof of correctness

	The Toom-3 Algorithm
	Specification in HOL
	Algorithm verification
	Proof of termination
	Proof of correctness

	Towards a CakeML integration
	Constraints for the CakeML-integration
	Memory manipulation
	Memory requirements

	Specification in HOL
	Verification in HOL
	Termination proof
	Correctness proof

	Further steps for a CakeML-integration

	Conclusion
	Bibliography

