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Objective 

 

The objective of this thesis is to investigate and mitigate power fluctuations of tethered 

undersea kite (TUSK) system by modelling a TUSK plant power output for a given 

trajectory and suggest a co-ordination strategy for several plants in a farm.  

This involves synchronising the operations of two or more plants by time shifting a 

second plant to compliment the first plant. The shifting of a plant relative to another 

momentarily disturb power production. Multiple plants can be coupled to optimize the 

shifting required while minimising power disruption. Therefore, the collection of 

plants, known as a tidal farm, will produce a more regular power output during 

production on par with traditional marine turbines. 
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1 Introduction 

Ocean energy is a virtually untapped source of renewable energy. This is expected to 

change with the concentrated effort in development underway in many countries around 

the world [1]. Canada, France, Sweden, the United Kingdom's and the United States are 

all developing marine technologies that are maturing to full scale testing phase [2] [3]. 

These technologies can contribute to meet environmental policy goals against climate 

change and limit the adverse effects of fossil fuels use while producing power.  

One of these recent technological developments is led by Minesto AB, a company based 

in Gothenburg, Sweden. Minesto has been researching and testing Tethered Under-Sea 

Kite (TUSK) systems [4]. The TUSK system produces electrical power from a 

hydrokinetic turbine submerged in the tidal current. The power plant consist of a turbine 

and generator fixed to a large rigid winged kite. The plant is anchored either to the sea 

floor or to a floating barrage by a flexible tether. The tether and winged kite allow the 

plant to move in a cross current figure 8 pattern. Figure 1 is a simplified diagram of the 

TUSK system anchored to the sea bed. The plant experiences velocities 5 to 10 times 

greater than the tidal current. This increases in velocity is a distinct cost effective 

advantage for TUSK systems compared to fixed marine turbine technologies [5].  

 

Figure 1 Tethered undersea kite system and components (not to scale) 

 

Figure 2 Rendering of the Minesto Deep Green TUSK system [6] 

Multiple TUSK plants are arranged as an array on the sea floor and are electrically 

grouped to exported power to a single point of connection with the local distribution 

grid. These tidal arrays are expected to produce power in the Megawatts range [4].  

Tidal currents have natural fluctuation patterns that are predictable. This predictability 

gives it a distinct advantage compared to weather based renewable energy sources [1]. 

Yet, TUSK systems have an addition source of power fluctuations. As it progresses 

through the figure 8 path, the plant must slow down to make the turns and accelerates 
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during the straighter portion of the loop. Therefore, the plant experiences changes in 

speed while completing a loop. Since power output is related to speed, the plant will 

produce fluctuating power as a consequence. This phenomenon is modelled and will be 

explained in greater detail in Section 4: Methodology.  

The power fluctuations are compounded when multiple turbines are synchronized. Two 

or more plants are synchronized when they are at the same position on their paths and 

will experience the same accelerations at the same time. Therefore, the synchronized 

plants will exaggerate power peaks and dips, i.e. the variance in power production. This 

greater swing in power furthers the difficulties of balancing demands.  
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2 Tidal Currents Background 

Power generation from TUSK plants is not dispatchable and will fluctuate with the 

tides. Power fluctuation is the increase and decrease of the electrical current feeding 

into the power grid. Fluctuations in power supply are not desired and difficult to handle 

on grids with limited inertia [7]. Ideally, the power supply must be balanced with power 

demand. Unfortunately, the oscillating patterns found in tidal kite power generation do 

not follow demand load variations. The following section describes the sources of 

fluctuations for tidal power generation and the varying time scale and the magnitude. 

This is useful to understand to determine an appropriate solution and the feasibility of 

a steady power supply.  

TUSK tidal power generation will oscillate on time scale of minutes to yearly scales. 

Other sources of renewable energy also suffer from this variable power production. Yet, 

the important difference is that with sufficient understanding of the various sources of 

fluctuations described in this section, the power supplied from tidal generation can be 

predicted reliably [8].  

Currents from the thermo-halin belts, river flows, floods and meteorological conditions 

can cause temporary currents that interfere with tidal current patterns. These currents 

can be important locally, but will not be expanded on in this thesis.  

 

 Tidal origins 

As the rain forests are the lungs of the earth, the ocean’s tides are the pulse of the earth. 

The tides are a continuous force seen all over the world. The tides are the periodic rise 

and fall of sea levels of large bodies of water from the changes in gravitational forces 

of the Moon and the Sun upon the spinning Earth [9]. All bodies of water experience 

tides. But only largest bodies have enough collective continuous surface area to have 

measurable tides.  

As the tides rise and fall, vast amounts of water must travel around the world to follow 

the Moon and the Sun. The tidal currents are simply the transport of this water. It is 

important to distinguish the vertical movement of the tides and the horizontal movement 

of the tidal current, since the relationship between them is complex. Tidal plants 

operators are concerned with the tidal current behaviour for power production.  

The power extracted from the tidal current will vary over time, magnitude and 

placement. The largest source of power fluctuation is the oscillations of the tides 

themselves. As the tides rise and falls, the tidal current will reach its maximum velocity, 

slow down to a halt then accelerate to the same maximum velocity in the opposite 

direction. These tidal currents are known as the ebb and flood and will be correlated to 

the peak height of the tides. The shape of the sea floor, referred to as the bathymetry, 

can affect the magnitudes of the tides. These currents are intensified when water is 

funnelled through basins, between straights, narrows, around peninsulas and islands. 

In addition, the tides amplitude will fluctuate over a lunar month influenced by the 

relative position of the moon, the sun and the earth known as the astral alignment. The 

highest and lowest “high tides” are called the spring and neap tides respectively.   

Therefore, the nature of the fluctuations the plants will determine the location and the 

power production of the tidal plants. These types of fluctuations are predictable with 

enough knowledge of the site conditions. 
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 Tidal energy source  

The tides are mainly caused by the gravitation pull of the moon. The sun exerts a less 

important gravitation force pull on to the tides. Although the moon is smaller in mass, 

it exerts a stronger force onto the tide than the sun due to its proximity to the Earth. 

The gravitational force exerted on the largest bodies of water are describe as follows: 

(1)  𝐹𝑑𝑚 =
𝐺𝑀𝑚𝑅𝑒

𝑑𝑚
3  [9] 𝐹𝑑𝑚 = Tide generating force of the Moon [N] 

Mm = Mass of the Moon[kg] 

Re = Radius of the Earth 

G = Gravitational Constant  

d = Distance between the centre of mass of the two 

objects 

(2)  𝐹𝑑𝑠 =
𝐺𝑀𝑠𝑅𝑒

𝑑𝑠
3  [9] 𝐹𝑑𝑠 = Tide generating force of the Moon [N] 

Ms = Mass of the Sun [kg] 

The above equations (1) and (2) are derived from Newton’s Law of Gravity and 

Newton’s Second Law of motion. These simplified equations show the cubic inverse 

relationship between distance and the deferential force. The force is a function of the 

distance between the centres of masses of the two bodies. The tide-generating force of 

the Moon is 2.18 times the tide generating force of the Sun due to fact that the moon is 

so much closer than the sun.  Therefore, the tides will rise and fall with relations to the 

distance of the arterial alignments.  

The accumulation of the tangential force exerted on the surfaces on the oceans that 

squeezes to form the bulge of the oceans. This force is known as the traction force. 

Therefore, the tides only occur in large body of water with sufficient continuous 

surface.  

 

Figure 3 Forces of gravity exerted by the moon onto the large bodies of waters 

If the Earth was covered by a single ocean, the effective force of gravity of the Moon 

is seen both perpendicular and in line with the Earth-Moon alignment, as shown 

Figure 3. It is important to understand that the forces aligned with the Earth-Moon 

line is not sufficient to cause the tidal bulge. It is the traction force form the entire 
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continuous ocean surface that squeezes the ocean surface to form the tidal bulge. The 

differential traction force is demonstrated in Figure 4. The effects of the spinning 

earth cause the bulge to appear on opposite sides of the planet.  

 

  

Figure 4: Accumulation of traction forces to create tidal bulges [9] 

The continents and the ocean bathymetric can obstruct or intensify the timing and 

amplitude the tides. The figure below show a map of the tidal heights around the 

world.  

  

Figure 5 Mean Daily Tidal Range [10] 

The regions of high tides are not uniformly distributed around the world. This is due to 

the influences of the continents which produce complex geographic variations with the 

ocean basins [11].  

 

 Daily tidal fluctuation 

The tides are constantly rising and falling and are characterized by the number of peaks 

and lows in a lunar day of 24 hours and 50 minutes [12] . Figure 6 shows the tides that 

peak once a lunar day, known as diurnal tides. Semi-diurnal tides peak twice a lunar 

day (Figure 7). There are also mixed tides that are a combination of diurnal and semi-

diurnal tides (Figure 8).  
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The timing and magnitude of tides are locally effected by the geographical location, the 

seabed depth and shape of bays and estuaries [13]. Funnel-shaped coastlines will 

exaggerate tidal rise. The opposite is true for narrow inlets. Shallow sea floor dissipate 

tides due to bottom drag [13]. 

Narrow and long bays, such as fjords, can exhibit a special property where the 

tides can be exaggerated in part because of the resonance frequency of the bay. As the 

sea level rises in the open ocean from the tides, a “tidal wave” enters the bay and 

propagates until it is reflected back toward the open ocean. If the timing is right, under 

the right conditions, this reflecting wave can overlap and interfere with the next tidal 

wave coming from the ocean at the next tidal cycle, creating a standing wave. The 

resulting the tides can “slosh” around like a water in a moving bath tube.  

In order for this phenomena to occur the bay inlet (L) must be less than twice 

the Rossby radius (𝐿𝑅). The Rossby Radius is a function the sea floor depth (H) and the 

regional tidal cycle frequency (f) as defined in equation (3) [14].  

(3)    𝐿𝑅 = 
√𝑔𝐻

𝑓
  

When the geographic conditions satisfy inequality 𝐿 < 2𝐿𝑅 , the area can experience 

very large tides and fluctuate such as in the Bay of Fundy on Canada’s East coast.  

 

 Monthly tidal fluctuations 

The height of the high tides will also fluctuate over the course of a lunar month: 29 and 

half days. When both the moon and the sun are in line, the amplitudes of the tides are 

exaggerated and are referred to as the spring tides.  Yet when the two celestial bodies 

are perpendicular, the tidal effects are negated, and so high tide does not reach as high. 

These are called the Neap tides. The orientation of the tidal bulges are show in Figure 

9 , for the moon phases in a lunar month.  

 

Figure 6 Diurnal Tides [11] 

 

Figure 7 Semidiurnal Tides [11]  

 

Figure 8 Mixed Semidiurnal [11] 
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Figure 9 Astral Alignment for the Spring and Neap Tides 

In addition to Spring and Neap tides, there are also Perigean and Apogean tides that 

are due to the elliptical orbit of the moon that effect semi-diurnal tides. Tropical and 

Equatorial tides are the result of the change in declination of the Sun and Moon and 

effect diurnal tides.  These tides introduce further oscillation to consider.  

 

 Other sources of tidal fluctuations 

Meteorological tides are the result of variation of local sea level due persistent strong 

winds and barometric pressure changes. These “tides” can cause sea level to rise on the 

same scale of lunar tides (several meters) in combination with storm surges. High 

pressure weather systems can lower these tides. Similarly, low pressure weather system 

can raise high tides [9]. Meteorological tides are neither cyclical nor predictable and are 

not considered in this study for energy extraction. 

Coastal and island communities can take advantage of the high-energy areas to power 

their communities. Giving the right geographical conditions and bathymetry, these 

currents can be funnelled up to 5.04 m/s (highest in North America [15]). This funnel 

effect can be found between straights and around peninsulas. These special locations 

with high energy content are more favourable locations for tidal energy production. 

Therefore, tidal power is variable but highly predictable; 35 days is the recommended 

time for sufficient data set to predict tides [16]. 

 

 Relationship between tide height and tide current  

The ebb and flood currents accompany the rise and fall of the tide. Tidal currents are 

described by the predominant tidal cycle that cause the tide to rise, i.e. a spring current 

brings in the spring tides, etc. The following graph demonstrate different correlation 
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patterns between the height (in black) and the tidal current strength and direction (in 

red). Slack water are periods of stand still as the current transitions from ebb to flood 

and vice versa. 

 

Figure 10 Relationship between tidal heights and tidal currents [15] 

These correlation between the tidal peaks and tidal current will vary on a spectrum form 

standing wave relationship to progressive wave relationship depending on the coastal 

topography and location. This emphasizes the fact that there exists a relationship 

between tidal height and the intensity and direction of the tides but the timing of the 

peaks may be offset by up to quarter a cycle [11].  
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3 TUSK Plants Background 

A single Minesto Deep Green TUSK plant is rated for 500 kW. The first commercial 

scale plant is expected to be installed in 2017. As of February 2017, Minesto will be 

the first to install a multi- TUSK plant array. Up to 80 MW of tidal power generation 

capacity will be connected to the Welsh electricity grid [17]. This means the array will 

be up to 160 plants.  

 

 Plant farm array 

A large array of TUSK plants can be connected together in smaller collections of plants. 

The plants must be at least two tether lengths apart from the nearest plant. Figure 11 is 

a top view of a possible array layout of seven TUSK plants arranged in a flower pattern.  

The grouping can be an odd or even numbers of plants. This will affect the coordination 

strategy for operating the plant relative to each other. 

 

Figure 11 Seven plant TUSK array, top view 

 

 Synchronous start up 

During a lunar cycle, the tidal current velocity will reduce to a stop in order to switch 

direction from ebb to flood. During this pause, the neutrally buoyant plant will float in 

slack. Then, as the tidal current ramps up, the plant will natural extend downstream to 

its farther point. Once the current is sufficiently strong, the plant will be being 

producing power and start on its trajectory. Therefore, it is assumed that all the plants 

in a tidal farm will naturally be synchronized since they all experience this start-up 

process.  
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Figure 12 Synchronous start-up of a three plant tidal farm, side view 

This means that without external control, the power output of a TUSK tidal farm will 

introduce large fluctuations into the local power grid or require further power quality 

and storage investment.  

For normal operations, the shifting will occur during or shortly after start-up. This 

reduces the impact of shifting onto the farm’s power output as plants may need to be 

slowed down or take a longer route to be appropriately off set relative to other plants 

in the array.  

 Current research on TUSK tidal farms 

Tethered Under-Sea Kit turbines are a new technology. Only recently has there been 

major focus on these types of systems for off shore power [2]. Major breakthroughs in 

related fields and growing popular interest and political incentives have contributed in 

bringing this technology to light.  

Published works on TUSK systems are limited [18]. The idea for submersible plant 

using tendered kits for harvesting of tidal energy was introduce by Minesto’s patent in 

2012 [19].  Recent research has been conducted on Airborne Wind Energy (AWE) 

begging by a paper from Miles Lyod on “Crosswind Kite Power” in the Journal of 

Energy back in 1980 [20]. The methodology for modelling AWE can be transferred to 

TUSK system. In 2015 and 2016, David Olinger and Yang Wang from Worcester 

Polytechnic Institute published the first technical papers on modelling and simulation 

of tethered undersea kites from their experience on airborne wind energy [18]. This 

research focus on the plant dynamics to simulate the maximum theoretical power and 

issues of cavitation on turbine blades. The models developed predict that the plant 

power curves are not constant nor follow a simple sinusoidal shape, i.e. are not smooth 

repetitive oscillations.  

Marcus Jansson’s master thesis on the hydrodynamic simulations of the TUSK was 

published by Lund University in 2013. The report included a detailed assessment of the 

force balance and modelling software. The results were limited to a circular trajectory 

with a fixed rudder angle [21].  

Moodley et al. conducted an economic analysis on the Minesto Deep Green TUSK 

technology compared to other marine technologies to develop the Agulas Current off 

the South African Coast in 2012. This study suggested that the most cost effective 

solution in areas with low velocity currents is the TUSK system [22].  

The European PowerKit Project is a European Union’s Horizon 2020 funded project to 

gather open-sea experience to ensure high survivability, reliability and performance for 

TUSK systems. Starting in early 2016, this project has 9 industry and academic partners 
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and publish an environmental report on the TUSK system. Two of their main 

deliverables include a power take-off system and a complete array and grid connection 

for the TUSK plants [23]. 

Modelon Inc. is a modelling specialist and has also worked on modelling the TUSK 

system closely with Minesto using Dymola software. Modelon has published a blog 

post of their work with simulating TUSK systems in late 2016 with an example of the 

different angles of attack along the kite wing going throw a complete loop [24].  
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4 Modelling the Plant Trajectory  

A mathematical description of the trajectory the plant movements in space is needed to 

being obtain a power performance curve.  The formal definition of a function describes 

the relation between an input and exactly one output. To trace a path in kinematics, an 

independent input known as a “parameter” is the input and three outputs are needed to 

define a position in Cartesian coordinates: x, y and z coordinates.  

A solution is to use parametric equations. Parametric equations are a set of equations 

that together can output a position for an independent input. These equations are a 

convenient way to represent curves and surfaces [25]. Once such parametric curve is 

the Lemniscate of Bernoulli.  

The Lemniscate of Bernoulli is a useful description of a sideways figure 8 shape that 

the trajectory of the plant resembles. This pattern is preferred as the crisscrossing figure 

8 shape allows for a tether to complete a loop without twisting. Bernoulli’s Lemniscate 

is describes as the following equations: 

In 2D Cartesian coordinates: 

(4) (𝑥2 + 𝑦2)2 = 2𝑎2(𝑥2 − 𝑦2) a = Amplitude 

In Polar coordinates: 

(5) 𝑟2 = 2𝑎2 Cos(2𝜃) 
r = Radius 

θ = Degrees 

Using parametric equations in 2D Cartesian co-ordinates: The parameter t will complete 

a full cycle at every 4π interval.  

 

(6) 𝑥(𝑡) =
𝑎 𝐶𝑜𝑠(𝑡)

1 + 𝑆𝑖𝑛(𝑡)2
 

t = parameter 

(7) 𝑦(𝑡) =
𝑎 𝐶𝑜𝑠(𝑡)𝑆𝑖𝑛𝑡(𝑡)

1 + 𝑆𝑖𝑛(𝑡)2
 

(8) 𝜅(𝑡) =  
3√3 − 𝐶𝑜𝑠(2𝑡)√1 + 𝐶𝑜𝑠(2𝑡)

𝑎(−3 + 𝐶𝑜𝑠(2𝑡))
 

κ(t) = curvature 
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Figure 13 Bernoulli's Lemniscate (a=1) 

 Other trajectories 

The path can also resemble a circle or a race track. The path configuration depends on 

many factors such as the material limits of the tether and the zone where the plant should 

operate with-in the water column. A circular path will have a constant curvature as seen 

in Figure 14 but will still be susceptible to current changes with the water column depth.   

 

Figure 14 Example of unit circular trajectory 

Both circular and the race track path requires the tether to have a ball joint to avoid 

twisting. These joints may complicate the electrical connections and reduce the tension 

tolerance.  

The optimal trajectory balances the minimal curvature and maximum straighten flight 

path. Turning is a form of acceleration which required an applied torque derived from 

lift power. Therefore, the sharper the path curves, the more power is extracted to turn 

and less is available to generate forward speed.  

A trajectory optimised with respect to tidal current distribution in the water column, 

tether tension or twist tolerance on power fluctuations is not included in this work.  

 

 Bernoulli’s lemniscate described in three dimensions 

Geometric distortion is unavoidable when a two-dimensional figure is projected onto a 

spherical surface according to Carl Friedrich Gauss's Theorema Egregium [26]. 

Therefore, the characteristics of Bernoulli’s lemniscate cannot be exactly duplicated in 

three dimensions. A Viviani’s curve is used as an approximation in three dimensions. 

Viviani’s curve is defined as the intersection between a cylinder and a sphere; 
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specifically, when a cylinder shares a tangent line with the sphere. The Viviani’s curve 

is described by the following parametric equations as a function of the sphere radius 

(R) and the radius of the cylinder (r).  

 

(9) 𝑥(𝑡) = 𝑎 + 𝑟 ∗ cos(𝑡) r = Cylinder radius [m] 

R = Sphere radius [m] 

a = R-r = Distance between the cylinder axis 

and the sphere origin 

t = Parameter  

(10) 𝑦(𝑡)  =  2 ∗ √𝑎 ∗ 𝑟 ∗ 𝑠𝑖𝑛 (
𝑡

2
) 

(11) 𝑧(𝑡) = 𝑟 ∗ sin (𝑡) 

(12) 𝜅(𝑡) =  
√13 + 3 ∗ 𝐶𝑜𝑠(𝑡)

𝑎(3 + 𝐶𝑜𝑠(2𝑡))
3
2

 
κ(t) = Curvature  

 

Figure 15 Bernoulli's Lemniscate compared with Viviani's Curve 

For every parameter step “t”, there exit a position vector describe as �̅�(𝑡) = [

𝑥(𝑡)

𝑦(𝑡)

𝑧(𝑡)
] in 

the Cartesian coordinate system. The point of origin is the centre of the sphere and is 

the anchor of tether. Meaning point [
0
0
0
] is the center of the sphere bounded by the 

tether length “R”. The path of the plant occurs at an elevation from the sea floor. 

 

Figure 16 Depiction of altitude angle 
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The altitude angle “D” is found between the sea floor and chord line from the origin to 

the midpoint (the criss-cross) of the lemniscate to define the rotation matrix: 

(13) 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑖𝑥 = [
cos(𝐷) 0 − sin(𝐷)

0 1 0
sin(𝐷) 0 cos(𝐷)

] 

The following diagram is the result of applying the rotation matrix to the parametric 

function to describe the Viviani’s curve trajectory.  

 

Figure 17 Depiction the intersection of a unit sphere and cylinder (left) and then applying the rotation 
matrix (right) 

Therefore, the trajectory of the plant can be described by using the length of the tether, 

the radius of the cylinder, and the degree of elevation into the parametric equation of 

the Viviani curve with a rotation matrix. The Figure 18 shows the rotated Viviani curve 

from different orthogonal perspectives. This simplification of the plant trajectory is 

enough to give insight into the potential power output.   

 

Figure 18 Orthogonal Projections of unit Viviani's Curve 

The Viviani’s curve consist of two mirrored pedals. The circumference of a pedal is 

given by the following formula:  

This is similar to the circumference of circle where instead of π, the circumference and 

radius ratio is 𝛤 = 7.64005 and use the radius of the cylinder 𝑟𝑐. Therefore, the full linear 

(14) 𝐶𝑝𝑒𝑑𝑎𝑙 =  𝛤 ∗ 𝑟𝑐 

𝐶𝑝𝑒𝑑𝑎𝑙  = Circumference of one pedal [m] 

𝑟𝑐 = Radius of the cylinder [m] 

𝛤 =  Viviani’s pedal constant 
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distance travelled by the plant to complete one cycle is twice the circumference of a 

pedal. Given a cylinder radius of 25 meters, the total Viviani’s curve perimeter is equal 

to: 

(15) 𝐶𝑉𝑖𝑣𝑖𝑎𝑛𝑖 = 2 ∗  𝛤 ∗ 𝑟𝑐 

= 2 ∗ 7.64005 ∗ 25.0 
=  382.0 meters 

𝐶𝑉𝑖𝑣𝑖𝑎𝑛𝑖  = Viviani’s curve circumference 

 

 Plant Trajectory 

The simulated plant followed a Viviani’s curve with a tether length of 100 meters and 

a rotation of 45 degrees. The trajectory has a cylinder radius of a quarter of the tether 

length of 25 m. These values are approximations of real world TUSK plants for 

modelling. The Viviani curve is projected onto a sphere and cylinder in Figure 19 and 

orthogonal projections of the interpolation points are shown in Figure 20. 

 

  

Figure 19 3D simulation of base trajectory Figure 20 Orthogonal projections of Viviani curve 

The relative position of each interpolation point of this trajectory is the foundations 

for further simulation of plant velocity and power output.  
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5 Power Curve Modelling 

The objective is to model the power curve of a plant given only the trajectory and the 

tidal current intensity. The trajectory is described in three dimensions using the 

appropriate parametric equations. These equations are derived further to give direction 

and curvature at any point within the trajectory. A local coordinate systems is overlaid 

onto the trajectory. This enables to record how a curve segment manifests itself in 

changing the pitch, roll, and yaw of the plant. Knowing the rotation about these axis 

gives the required torque need to navigate the plant to stay on path. Power output is 

reduced to compensate for the torque applied.  

 

Figure 21 Methodology map from a given trajectory to power curve output 

Figure 21 describes the approach to find an approximate power curve of a TUSK plant 

from simply knowing the path geometry and the tidal current speed. 

The power output of a hydrokinetic turbines is governed by basic power equation (16).  

(16) 𝑃 =
1

2
𝜌𝐴𝐶𝑝𝑉𝑐

3 

𝑃 = Power output [Watts] 

𝜌 = Salt Water density [1025kg/m3] 

𝐴 = Turbine inlet area [1.77 m2] 

𝐶𝑝 = Coefficient of performance 

 𝑉𝑐  = Turbine linear velocity [m/s] 

Since the generator and turbine are placed on the kite, the plant operates as ‘drag 

power’. This means that as the kite gains cross current speed, the turbine can extract 

more power from the current, yet induces greater drag. The following derivation will 

demonstrate that there exist an optimal speed to extract power before incurring a 

detrimental amount of drag.  

 Optimal power derivation  

The power produced is modelled in equation (17) and is the product of the available 

current power density, in brackets, the kite wing area, the lift coefficient of the kite and 

the relative drag power coefficient. The relative drag power coefficient represent the 

portion of the available lift power that produces turbine power.  
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(17) 𝑃𝑜 = (
1

2
𝜌𝑉𝑤

3)𝐴𝑤𝐶𝑙𝑃𝑑 

𝑃𝑜 = Power produced from drag model [W] 

Pd = Cross current kite relative drag power 

Aw = Wing reference area of kite [m2] 

Cl = Lift Coefficient of the kite 

𝑉𝑤= Tidal current velocity [m/s] 

(18) 𝐿 =
1

2
𝜌𝐶𝑙𝐴𝑤𝑉𝑎

2 𝐿 = Lift force of the kite [N] 

The apparent linear or forward velocity can be related to the lift and drag of the kite 

from similar triangle ratios. Figure 22 shows the force balance of a weightless TUSK 

and the velocity triangle. The TUSK is directly downstream of the tidal current, so the 

tether tension 𝑇 is co-linear with the current velocity 𝑉𝑤 . The crosscurrent velocity 𝑉𝑐   

is perpendicular to the current velocity 𝑉𝑤 . The kite drag 𝐷𝑡 and kite lift are also 

perpendicular. Since drag 𝐷𝑡 and the apparent velocity 𝑉𝑎  are collinear, then the 

velocities and the forces create similar triangles.  Figure 22 display the drag vector 𝐷𝑡 

parallel with the apparent velocity vector 𝑉𝑎 .  

 

Figure 22 Forces and velocity triangle on a crosswind TUSK (similar to [20]) 

From similar triangles ratios yields equation (19) which can be rearranged for the 

crosscurrent velocity in equation (20).  

(19) 
𝑉𝐶

𝑉𝑤
=

𝐿

𝐷𝑡
 

𝑉𝑐  = Kite velocity cross current [m/s] 

𝑉𝑤  = Tidal Current velocity [m/s] 

(20) 𝑉𝑐 = 𝑉𝑤 ∗
𝐿

𝐷𝑡
 

𝐿 = Lift of kite 

𝐷𝑡 = Total Drag of kite 

The cross current kite velocity is approximately equal to the apparent velocity for large 

lift-to-drag ratio. 

(21) 𝑉𝑎 = 𝑉𝑤 ∗
𝐿

𝐷𝑡
 𝑉𝑎  = Apparent Kite velocity [m/s] 
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Having a turbine on board loads the kite with additional drag 𝐷𝑝. The power extracted 

results in this additional drag 𝐷𝑝 travelling at velocity 𝑉𝑎  assuming no turbine losses. 

(22) 𝐷𝑡 = 𝐷𝑝 + 𝐷𝑘 

𝐷𝑡 = Total Drag  

𝐷𝑝 = Turbin Drag  

𝐷𝑘 = Drag of kite 

(23) 𝑃𝑜 = 𝐷𝑝 ∗ 𝑉𝑎  𝑃𝑜 = Drag power 

Therefore, substituting equation (22) into equation (21) results in (24). 

(24) 𝑉𝑎 = 𝑉𝑤 ∗
𝐿

𝐷𝑝 + 𝐷𝑘
 

 

Combining equations (17), (18), (23) and (24) to give the following ‘relative drag power 

output’ Pd as a function of drag ratio 
𝐷𝑝

𝐷𝑘
.   

(25) 𝑃𝑑 =
(

𝐿
𝐷𝐾

)
2

(
𝐷𝑝

𝐷𝑘
)

(1 +
𝐷𝑝

𝐷𝑘
)
3  

 

Normalized the relative drag power function and plot in Figure 23.  

(26)  
𝑃𝑑

(
𝐿

𝐷𝐾
)
2 =

(
𝐷𝑝

𝐷𝑘
)

(1+
𝐷𝑝

𝐷𝑘
)
3 = 

0.5

(1+0.5)3
=

0.5

3.375
= 0.1481 =

4

27
  

 

Figure 23 Optimal drag ratio for maximum power output 

The maximum drag power 𝑃𝑑 is at: 𝑃𝑑𝑚𝑎𝑥 =
4

27
(

𝐿

𝐷𝑘
)
2

 and this occurs at a drag ratio of  

𝐷𝑝

𝐷𝑘
= 0.5 as shown in Figure 23. So for optimal apparent velocity from equation (24):  

(27) 𝑉𝑎_𝑚𝑎𝑥 = 𝑉𝑤
𝐿

(2𝐷𝑘) + 𝐷𝑘
 =

2

3

𝐿

𝐷𝑘
𝑉𝑤  
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Therefore, equation (27) describes the maximum forward velocity as a function of the 

lift and drag ratio and the current velocity when the kite is at optimal drag power 

extraction.  

 Power calculations 

The power equation used for this model is as followed:  

(28) 𝑃 =
1

2
𝜌𝐴𝐶𝑝𝑉𝑎

3 − 𝐿𝑖𝛾�̇� 

P = Power output [Watts] 

ρ = Salt Water density [1025kg/m3] 

Cp = Coefficient of performance 

Va = Apparent turbine linear velocity [m/s] 

Li = Torque coefficient [Nm/degree] 

𝛾�̇� = Angular velocities in Pitch, Yaw and Roll 

directions [degree/s] 

The Coefficient of performance for the turbine is set to the optimal Betz limits for un-

ducted turbine. This formula reveals that the power output will fluctuate with respect to 

2 terms: the velocity term Va which is a function of the angle of attack and the torque 

term 𝐿𝑖𝛾�̇� which reduces the power output when making sharper turns. Therefore, both 

terms in this power equation demonstrate the influence of the trajectory’s curvature and 

plant placement and orientation.  

 

 Definition of world frame of reference,  

The World frame of reference (World F.o.R) is described by the simple Cartesian 

coordinate systems:[
𝑥
𝑦
𝑧
]. The centre point is defined by the plant anchor on the sea floor. 

The x-axis is in line with the tidal current flow and the z-axis indicate the elevation 

from the sea floor. Finally, the y-axis tracks the sided to side motion relative to the 

anchor. The parametric equations describing the plants trajectory is modelled from this 

frame of reference. Therefore, with a tether length of R, the initial point for an elevated 

path is:[
𝑅 ∗ cos (𝐷)

0
𝑅 ∗ sin (𝐷)

].  
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Figure 24 World Frame of Reference 

 Definition of plant body frame of reference,  

The Plant frame of reference (Plant F.o.R.) is the local coordinate system is 

applied to each point interpolated along the path. Therefore the axis directions are 

changing relative to the World frame of reference, but seems fixed from the plant’s 

perspective. The origin of the body frame is the centre the plant. The three axis are 

defined by the plant position relative to the world axis’s origin. 

 

Figure 25 Plant F.o.R. with respect to World F.o.R. 

The three-dimensional orthogonal axes are e1, e2, and e3. Axis e3 is in line with the tether 

vector direction. The tether vector is found between the sphere origin and the plant 

position. Axis e3 extends beyond the plant pointing away (positive) from the world 

origin.  

 

Figure 26 Viviani's curve with interpolation points 
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The plant’s apparent velocity vector which points from the plant’s position towards the 

next interpolation point as shown on the Viviani Curve in Figure 26. The actual velocity 

vector is tangential to the curve and aligned with the chord connecting two adjacent 

points along the path. The e1 axis is defined as the velocity vector projected upon a 

plane that is tangential to the tether sphere. Thus, the e1 axis is always pointing forwards 

for the plant. Figure 27 is an example a local coordinate system on a two dimension for 

three interpolation points on a trajectory function F (t).   

The e2 axis is defined as the cross product between the e1 and e3 axis. This results in the 

e2 axis being co-linear with the plant wings.   

 

Figure 27 Example of a local coordinate system in 2-D 

 

 Rate of change of yaw, roll and pitch 

The rate of change in Yaw, Roll and Pitch are related to the torque applied to turn the 

plant to re-orient it to travel toward the next interpolation point. This is the critical 

advantage of following a predetermined trajectory.  

The change in pitch angle is calculated as the velocity angle relative to the e1 axis on 

the e1 and e3 plane. Meaning a change of pitch of 0°, the plant is moving straight 

forward in the e1 direction. Since the plant is following the surface of a sphere and the 

e1 is co-linear with the tangent by definition, then the rate of change of the pitch angle 

should never be zero.  

The Yaw angle is measure from the velocity vector and the e1 axis on the e1 and e2 

plane.  

The Roll angle is measured from the velocity vector and the e3 axis on the e2 and e3 

plane.  

   

Figure 28 Depiction of changes in Pitch, Roll and Yaw 
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The change in pitch, yaw and roll, also known as the angular velocities, represent how 

the curves in the trajectory manifest itself from the plant’s perspective. Figure 29 

presents the angles from the plant’s principle forward axis. Note, that the pitch angle is 

never zeros since the plant follows the curved surface of a sphere and will never goes 

in a straight line during operation.    

 

Figure 29  Changes in pitch, yaw and roll angles for one cycle 

 Torque modelling 

The rate of change in pitch, yaw and roll reflects the how much the plant needs to turn 

to continue to follow the trajectory. Therefore, the sharper the turn, the larger the rate 

of change in angles and thus the greater the power need to apply the torques needed to 

make the turn.  

The relationship between the applied torque and the rate of change in angles is assumed 

to linear. Both computational fluid dynamic analysis and an intimate knowledge of the 

plant geometry would be needed to determine the non-linear torque functions. After 

consultation with Minesto, linear approximation of the torque behaviour is adequate. 

The torque coefficient Li is used to approximate the relationship. 

In addition, due to the hydrofoil shape, the torques needed to change the pitch, yaw and 

roll are not be equal and would differ on orders of magnitude. Therefore, the torque 

coefficient assigned to each angular velocity are the following: 

(29)   𝐿𝑖�̇� =  [
10𝑎
5𝑎

100𝑎
] ∙ 2 ∗ [∆𝑃𝑖𝑡𝑐ℎ ∆𝑌𝑎𝑤 ∆𝑅𝑜𝑙𝑙] 

Let “a” be the scale appropriate for the plant size and operating environment.  

The following section is a series of power curves that progress in intricacy to result in 

a base simulation to describe a typical power curve for a TUSK plant. Each iteration 

adds another degree of complexion to the power curve until a satisfactory 

approximation is reached. 

 

 Modelling the tidal stream  

The tidal steam is modelled as a uniform vector field. This means that at every point on 

the trajectory, the plant experiences the same stream magnitude and direction relative 

to the world frame of reference.   
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Figure 30 Vector field representing the tidal current stream 

In Figure 30, the tidal stream is represented as the vector field of equal magnitude and 

direction in blue. The trajectory is outline in black onto a hemisphere bounded by the 

tether length. This velocity profile does not consider “no-split condition” of the sea 

floor or surface wave interference.  

 

 Angle of attack 

The angle of attack α is determined by the vector sum of the plant velocity 𝑉𝑐⃗⃗⃗   and the 

tidal stream direction 𝑉𝑤⃗⃗ ⃗⃗  ⃗. The angle of attack can also be defined as the angle between 

the where the wing is going and where it seems to be going. The resultant vector is the 

apparent velocity of the plant 𝑉𝑎⃗⃗  ⃗. The angle of attack is the angle between the apparent 

velocity and the cord length of the wing. The cord length can be appropriately pitched 

from the relative forward velocity to insure feasible angles of attack by adding an angle 

of inclination. In Figure 31, the chord line is co-linear with the actual velocity of the 

plant 𝑉𝑐⃗⃗⃗  .    

 

Figure 31 Angle of Attack α of the plant 

 

 Lift and drag coefficient 

The plant is modelled as a single hydro-foil: NACA 0015. This hydro-foil was chosen 

because extensive studies has been done on this particular shape for a large range of 

angle of attack. According to Olinger and Wang [18], preliminary studies showed that 

the angle of attack for TUSK can exceed 20 degrees at low velocities and during sharp 

turns. In other TUSK modelling work, Marcus Jansson used NACA 012 [21]. Olinger 

also suggested that TUSK plant would more likely have a cambered foil, i.e. an 
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asymmetrical profile [27]. Later works of Olinger uses a NACA 0021 for numerical 

simulation of a TUSK plant in lift power production mode [28].  

5.9.1 Lift coefficient 

The 2-D lift co-efficient for NACA 0015 was determined by for a range of angle of 

attack from -90 degrees to 90 degrees [29].   

 

Figure 32 Angle of Attack for NACA 0015 [29] 

Olinger and Wand used the following equations (30) and (31) to fit the curve presented 

in Figure 32. For an angle of attack (𝛼) between -20 degrees and 20 degrees [18]: 

(30) 𝐶𝐿 = −2.27 ∗ 10−4𝛼3 − 1.65 ∗ 10−19𝛼2 +  0.123𝛼 +  0.2 
𝛼 = angle of 

attack [deg] 

For an angle of attack below -20 and beyond 20 degrees [18]: 

(31) 
𝐶𝐿 =  5.16 ∗ 105 + 7.3 ∗ 10−24𝛼4 − 9.06 ∗ 10−6𝛼3

− 9.27 ∗ 10−20𝛼2 + 0.0405𝛼 + 0.2 

 
Figure 33 Angle of attack curve fit using equations (30) and (31) [18] 

 

5.9.2 Drag coefficient: 

The total wing drag co-efficient (𝐶𝐷𝑊) can be determined as a function of the lift co-

efficient using the sum of parasitic drag and induced drag [18].  

(32) 𝐶𝐷,0 = Parasitic drag coefficient = 0.05 [18] 
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𝐶𝐷𝑊 = 𝐶𝐷,0 +
𝐶𝑙𝑊

2

𝜋𝑒𝐴𝑅
 

𝐶𝑙𝑊 = Kite Wing total Lift Coefficient 

e = Oswald efficiency = 0.9 [18] 

AR = Aspect Ratio = 3 [18] 

The following Figure 34 shows the lift coefficient for a wide range of angle of attack 

from -90 degrees to 90 degrees. The drag coefficient is also displayed on the same axis 

as a function of the lift coefficient. It is to be noted that the drag coefficient is not valid 

after 40 degrees. Beyond this point, the drag coefficient is no longer a direct function 

of the lift coefficient and equation (32) is no longer a satisfactory approximation.  

 

Figure 34 Relation between lift and drag co-efficient for a wide range of angles of attack 

 Affective velocity 

For this model, the plant is assumed to be able to operate at the optimal affective 

velocity for a given trajectory and current velocity. Per Loyd [20], the optimal cross 

current velocity for a tether system is as followed: 

(27) 𝑉𝑐 =
2

3

𝐶𝐿

𝐶𝐷
𝑉𝑊 

𝑉𝑐  = Cross current Velocity [m/s] 

𝑉𝑊  = Current Velocity [m/s] 

𝐶𝐿 = Kite Lift Coefficient 

𝐶𝐷 = Total Drag Coefficient 

See theory section for derivation of equation (27) from Loyd [20]. Therefore, the 

affective velocity is a function of the lift to drag ratio which is determined by the angle 

of attack.  

 

 Angle of inclination 

Combing the lift (30) and drag (31) coefficient equations into the affective velocity 

equation (27) to give equation (33). The affective velocity is sensitive to the angle of 

attack. Equation (33) is for angles of attack α between 0 and 20 degrees: 
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(33) 𝑉𝑐 = 
2

3
∗ 𝑉𝑤 ∗ (

(−2.27 ∗ 10−4𝛼3 − 1.65 ∗ 10−19𝛼2 +  0.123𝛼 +  0.2)

𝐶𝐷,0 +
(−2.27 ∗ 10−4𝛼3 − 1.65 ∗ 10−19𝛼2 +  0.123𝛼 +  0.2)2

𝜋𝑒𝐴𝑅

) 

Therefore, an angle of inclination can be imposed to correct the angle of attack to the 

optimum value. This is done by pitching the wing relative to the plant. Pitching the 

wing also requires an applied torque. This is included in the torque calculations in 

section 5.17. 

 

 Angle of attack and angle of inclination 

The angle of attack is calculated from the vector sum from the tidal current relative to 

the plant’s position and the affective velocity of the plant. The plant needs to operate at 

the optimal turbine drag and kite drag ratio and at the optimal lift to drag ratio to reach 

maximum affective velocity. 

 

Figure 35 Angle of attack for one cycle 

Without an angle of inclination, the angle of attack during operation varies between 8° 

and 14.5°. This range of angle of attack is found to be at a local minimum of the lift to 

drag ratio, highlighted in yellow in Figure 36. Yet, the local maximum for lift to drag 

ratio occurs at an angle of attack of 3.7°. Therefore, an angle of inclination is necessary 

to ensure that the angle of attack is reduced to optimal operations.   

 

Figure 36 Lift to Drag Ratio plotted with comparison to lift efficient plot and drag coefficient plot. 

The angle of attack is calculated for a single cross section of the TUSK wing. The angle 

of attack will vary along the wing during a cycle. Modelon also modelled the angle of 
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a TUSK plant shown in Figure 37. Modelon calculated the range of angle of attack at 

various points along a TUSK’s wing with a 12 meter wing span following a similar 

trajectory for 1.6 m/s tidal current. This figure was generated using Modelica and 

Dymola modelling software. This shows that calculated angle of attack in this study is 

approximately within the same magnitude and range of the angle of attack calculated 

by Modelon.  

 

Figure 37 Modelon model of angle of attack and how it varies along the wing [24] 

The angles of attack in Figure 37 are plotted for one side of a TUSK wing. Meaning 

that for half the cycle, the wing half is on the outside of the trajectory and the wing tip 

experiences higher velocities relative to the centre. The other half of the cycle, the wing 

half is inside the trajectory and experiences lower velocities relation to the centre. This 

is why the angle of attack is asymmetric in Figure 38 (left). 

 

Figure 38 Variation of the TUSK angle of attack over the trajectory 

In Figure 38 is the angle of attack of the TUSK plant modelled in this study. The angle 

of attack is assumed to be averaged over both sides of the TUSK wing. This is why the 

angle of attack is symmetric in Figure 38 (left). Also, the modelled trajectory has a 

wider breath than the Modelon trajectory. This shows that the angle of attack will vary 

for slightly different trajectories.  

 Fixed angle of attack and variable angle of inclination 

To compensate for the variation in angle of attacked, the wing can be pitch relative to 

the plant by an angle of inclination presented in Figure 39. The new vector sum gives a 

steady angle of attack at the optimal angle of attack 3.7° for each position. Yet, the 

consequence is that the plant will still have to exert a torque to pitch the wing and will 

experience a decrease in velocity show in section 5.6. 
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Figure 39 Adjusted angle of attack with adapted angle of inclination 

With the wing appropriately pitch at each position, the affective velocity is presented 

in Figure 40. Since the optimum lift to drag ratio is set to 6.512, according to equation 

(34), the maximum cross current velocity is 4.3 times the current tidal velocity of 1.6 

m/s by the following proof.  

(34)   𝑉𝑐 =
2

3

𝐿

𝐷𝑘
𝑉𝑤 = 

2

3
(6.512)𝑉𝑤 = 4.341 𝑉𝑤 

Substitute in the tidal current of 1.6m/s in equation (34): 4.341 (1.6
𝑚

𝑠
) = 6.946 

𝑚

𝑠
 

 

Figure 40 Affective Velocity for one cycle 

Therefore, the affective velocity revolves around the predicted maximum affective 

velocity. The fluctuations seen in Figure 40 is simply due to whether the plant is going 

against the current or with the tidal current during the cycle. This influence is 

investigating in greater detail the next section 5.14. 

 Relative velocity to the stream current 

In the Figure 40, the affective velocity’s mean is below the predicted maximum 

affective velocity. This is due to the relationship between the plant’s orientation and the 

direction of the tidal current velocity.  
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Figure 41 Mapping of plant orientation onto the trajectory 

The due to the geometry of the trajectory, the plant does not spend the same amount to 

time going against (in yellow) and going with the flow (in green). The plant spends 

more time going against the tidal stream as seen in yellow in Figure 41. When the plant 

does along with the flow the drop in relative velocity is more substantial. Therefore, the 

oscillation in velocity will centre on a lower mean due to this more significant dips.  

 

 Variable angle of attack and fixed angle of inclination 

Another strategy is to fix the angle of inclination in order to reduce the range of angle 

of attack to include the local maximum of lift to drag ratio. This strategic eliminates the 

need to constantly apply a torque to change the wing pitch, yet the affective velocity is 

not as consistent as the previous strategy.  

 

Figure 42 Adjusted angle of attack with fixed angle of inclination 

The angle of inclination was set to 5.0°. This result in an range of angel of attack 

between 3.7° and 9.53° degrees, highlighted in yellow in Figure 43. Since the 

relationship between the angle of attack and the power curve output is not linear, a clear 

optimal of a fixed angle of inclination is not evident and would require further study.   
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Figure 43 Lift to drag ratio with the range of operation 

The resultant affective velocity is displayed on the Figure 44 for one cycle. The 

affective velocity is then calculated to include the relationship with the tidal current 

direction.  

 

Figure 44 Affective velocity for one cycle with a fixed angle of inclination 

 Turbine velocity comparison 

In Figure 45, both affective velocities relative to the tidal current are presented to 

compare the different curve characteristics. The plant velocity of the variable angle of 

inclination has a higher mean velocity and smaller amplitude range.     

 

Figure 45 Comparison of turbine velocity and means 
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 Power loss from pitch with angle of inclination torque 

For the variable angle of inclination mode, the affective pitch is the sum of the angle of 

inclination and trajectory pitch. Figure 46 shows the combination of the two pitch 

requirements to result in the effective pitch.  

 

Figure 46 Effective pitch angular velocity 

From the power equation (28), the torque losses are a function of the angular velocity. 

Therefore, Figure 47 shows the power curve before considering torques and after to 

highlight the torques influence on the power curve. In addition, the power curve that 

includes the torque require to pitch the wings to the correct angle of inclination is also 

include for comparison. 

 

 

Figure 47 Power Curves progression in complexity 

The asterisks indicate the interpolation points to relate to the position on the trajectory 

for reference. As seen in Figure 47, the effects of torques reduces the overall power 

output and introduces irregularities. Even when considering the angle of inclination, the 

influence of the relative velocity on the angle of attack dominates the power curve 

fluctuations.  

 

 Final power curve 

In conclusion, the final power curve is presented in Figure 48. The power curve is the 

result of the plant following the Viviani curve anchored by a 100 meter tether. It 

includes the influence of a 1.6 m/s tidal current, the cross-current speed, the plant’s 
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position and orientation and the torque dynamics. This power curve will be used as the 

base model for further analysis. A sensitivity analysis of the parameters onto the power 

curve’s shape is not included in this study. 

 

Figure 48 Base power curve for one cycle 
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6 Mitigating Power Fluctuations 

As discussed in the background, the tides will ebb and flow at least once a lunar day 

the time scale of hours at various magnitude around the world. A tidal plant power 

production will fluctuate according to tidal partners. This has shown, a TUSK tidal plant 

will suffer an additional layer of power fluctuation during operation.  

The total distance the plant travels for a cycle is 382.0 meters for a tether length of 100 

meter. The apparent velocity of each interpolation point is used to approximate the 

average speed of each chord between the interpolation points. Therefore, by 

aggregating the quotients of the average speed of the chords and its respective length; 

the total time to complete a cycle was determined to be approximately 57 seconds.   

The time scale for the fluctuation is in seconds to minutes. Meaning within a minute, 

the power output will peak twice. This puts the fluctuations on a time scale significantly 

less than tidal flow (hours) yet an order of magnitude more than grid regulation issues 

(seconds). This time scale of fluctuations requires a solution other than common power 

quality control measures such as short term storage, ramping capacity or spinning 

reserves.  

Therefore, this work will investigate a control strategy to eliminate or reduced the 

impact of TUSK plant operations fluctuations.   

 

 Fourier analysis 

The power curve produced by the model plant for one cycle can be considered as an 

oscillating signal. A Fourier analysis is a useful tool to study the properties of the power 

curve signal. A complex signal can be broken down into multiple simpler sinusoidal 

signals of different amplitude, frequencies and phases by using the following Fourier 

Transform:  

(35) 𝑓(𝜔) =  ∫ 𝑓(𝑡)𝑒−2𝜋𝑖𝑡𝜔
∞

−∞

 𝑑𝑥 
 

The example power curve function 𝑓(𝑡) in the time domain is be transformed into the 

frequency domain to produce 𝑓(𝜔). This allows for the spectral energy to be identified 

in a signal. A Fourier analysis reveals the dominant simple sinusoid present in the power 

curve as shown in Figure 49. These signals are identified by their magnitude relative to 

the other signals. These constituent signals are known as the signal harmonics. These 

simple signals can be recombined using Fourier synthesis to reproduce the original 

complex signal. This method can be used to simulate an identical power curve of a 

second plant without having to re-simulate from first principals, see all of section 4 and 

section 5.  
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Figure 49 Fourier transform from time domain to frequency domain (Modified from [30]) 

 

 Fluctuation index 

The quality of the power performance is the amount of fluctuations in the power curve.  

A fluctuation index is used to rate the power performance quality. 

 

Figure 50 Example power curves and properties 

 Figure 50 is an example of two power curves for a cycle duration.  The multiple 

turbine signal is the sum of two turbines and a mean twice that of a single turbine. 

This “Fluctuation index” is the measure of the magnitude of the spread relative to the 

mean power output in percent.  

(35) 𝐹𝑙𝑢𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 % =  
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑀𝑒𝑎𝑛
∗ 100 

This equation is also known as the “Relative Standard Deviation”. A lower fluctuation 

index, the less significant the fluctuation are and the better the power performance 

quality.  

 

 Signal shifting  

Combining two identical power curves in phase reinforce one another producing a new 

signal with bigger peaks and valleys. Yet, if the signals are shifted out of phase so that 

the peaks correspond with the troughs of the counterpart, the signals will “cancel” each 

other out resulting in a new signal with reduced variations and a lower fluctuation index.  
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  Fourier analysis method 

Fourier analysis of the complex signal reveals the phases and magnitude of the 

constituent signal. The larger the magnitude of the constituent signals, the more 

influence it has on the original signal’s shape. The phases of the dominant signals are 

recovered. So, a new signal can be reconstructed using this information and the phase 

shifted by half the phase of the dominant constituent signals to compliment the original 

signal. This ensures that the major peak of the new signal corresponds with the most 

major through of the original signal.   

This method may not eliminate all fluctuations in the power curve but can be used as a 

heuristic to avoid large computation of the iterative method for multiple plants.  

  Iterative method 

The Iterative method conducts a Fourier analysis on the original signal and reconstruct 

a new identical signal. The new signal’s phase is then sifted slightly and the two signals 

are added together to create the “sum signal”. The sum signal’s fluctuation index is 

evaluated and the phase shift recorded. The 2nd signal is then shifted slightly again with 

a new sum signal’s fluctuation index. This iteration continues until the 2nd signal has 

been shifted by one half of its period. All the fluctuation indexes are compared. The 

phase shift of the sum signal with the lowest fluctuation index is the optimal phase shift.   

This method ensures that the optimum phase shift is chosen but requires more 

computation, especially for multiple plant combination.  

 

 Harmonics analysis of basic curve  

Figure 52 is the result of the Fourier analysis of the base power curve plotting in 

Figure 51. This reveals the dominant sinusoid present in the power curve. The zeroth 

bin’s magnitude represent the mean of the power curve at 145.3 kW. It also reveals 

that 2nd harmonic and 4th harmonics dominate the signal, and yet there is still a 

noteworthy 1st and 3rd harmonic. The fluctuation index reveals the influence of the 

largest harmonics. The Fluctuation index for the base power is 39.45%. Note that in 

Figure 51 the power curve is still for one complete cycle, which is 2π in radians for 

spectral analysis. 

 

Figure 51 Power curve of a complete cycle 

 

Figure 52 Harmonic analysis of base power curve 
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 Two plants optimization 

When two plants are paired, their power productions are off set relative to each other. 

One plant it kept in phase, referred to as the master. The second plant, referred to as the 

slave, is offset or phase shifted relative to the phase of the master plant. This allows for 

the combined output of the paired plants to cancel out some of the harmonics to reduce 

the relative fluctuations. The Figure 53 has the power curve of a synchronized pair, 

where the two plants are in phase. The fluctuation index of the synchronized pair is 

39.45%. This fluctuation index is expected to be the same as a single plant since the 

index accounts for the spread of the variance relative to the power mean. 

 

Figure 53 Power Curves of a synchronized pair compared with the optimal pairing 

Using the iterative method, the optimal time shift is applied to the slave plant. The result 

is also shown as the Optimum output in Figure 53 to compare with the synchronized 

pair output.  

 

Figure 54 Optimal pairing power curve 

The optimal shifted pairs power output has a fluctuation index of 7.60%. This an 80% 

reduction in fluctuation. Figure 55 shows the fluctuation index of each iteration of the 

phase shifting. Note that the local minima is almost at ¼ cycle shift.   
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Figure 55 Paired plants power curve analysis for each iteration 

The benefit of pairing is revealed by conducting another Fourier analysis on the 

optimized power curve. As shown in Figure 56, only the fourth harmonic remains as 

the significant outlier.   

 

Figure 56 Frequency energy of the optimized pairing power curve 

 

  Three plants optimization 

When combing three plants to smooth out the fluctuation, one plant is considered the 

master and is kept in line with its original phase and the other two plants are shifted 

with respect to the master plants, referred to as slaves.  Figure 57 shows the power curve 

of the three plants in phase with each other and the optimized power curve, where the 

three plants are appropriately shifted. One master plant and two slave plants are referred 

to as triplets. The fluctuation index is reduced to 2.13% for the triplets.  

 
Figure 57 Power curves of synchronized triplets and optimized triplets 
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Figure 58 Optimum triplets off set 

Figure 58 shows the optimum off set of both slaves in the triplet. The optimisation was 

done using the iterative method. The resultant power curve is displayed in Figure 59. 

As the dominant harmonics are cancelled out, the high order harmonics are seen to 

influence the power curve’ shape. Yet, their overall impact is less noticeable relative to 

the power output’s magnitude. This phenomenon is evident after a spectral analysis on 

the optimized power curve in Figure 60. 

 
Figure 59 Power curve of triplets at optimum off set 

 
Figure 60 Fourier analysis of the triplets optimized power curve (unlabled and labled) 

In Figure 60, the spectral analysis relevels that the power output mean is approximately 

434.8 kW, yet the second harmonic is a 40th fraction of the magnitude or 2.6%.  

  Two pairs 

Finally, two pairs of plants are simulated to further reduce the fluctuations.  Each pair 

has been optimally shifted and now the pair is shifted relative to another optimally 

shifted pair. The power curve of a pair is shown in Figure 54. The Figure 61 is the 
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power curve of the plant pairs in synchronous operation and optimally shifted using the 

iterative method.   

 

Figure 61 Power curves of two plant pairs 

The first optima shift is found at a 1/8th of the cycle. This confirms that the dominant   

harmonic for each pair was the fourth harmonics. This was shown in Figure 56 using 

spectral analysis. This two pair shifting reduces the fluctuation index to 0.81%.  

 

Figure 62 Fluctuation index for shifting two plant pairs 

Figure 63 is the power curve of the four plants combined in this fashion. Again, the 

high order harmonics are more influential on the shape of the power curve but have 

less impact on the magnitude of the fluctuation as seen in Figure 63.  

 

Figure 63 Power curve of the optimum shift between two plant pairs 

Therefore, the more plants are involved to coordinate shifting, the more harmonics can 

be cancelled and reduce the overall fluctuations. Simply combining the pants in 

synchronous does not reduce the relative fluctuation, since the fluctuations scale with 

respect to the number of combined plant power output. There is a diminishing return on 



 
47 

plant shifting as each pairing cancels out harmonics, the higher order harmonics have 

less impact on fluctuation magnitude. The trend of diminishing returns is displayed in 

Figure 64. 

 

Figure 64  Fluctuation Index of each plant combination 

Therefore, the operation strategy of shifting the plants can by applied for odd and even 

collections of plants. Plant pairs can be used to greatly minimize the power fluctuations 

of an array and plant triplets can be used to include any remaining plants. Below are 

two example strategy for coupling plants in a seven plant array to improve power 

output.  

  

Figure 65 Tidal farm with multiple plant pairs  
and a plant triplet 

Figure 66 Tidal farm with 4 plants pairing  
and a plant triplet 

The pairing strategy in Figure 66 has the advantage of targeting 3rd and 4th order 

harmonics directly if these are significant enough to merit the greater control 

intervention, otherwise the pairing strategy in Figure 65 require less control intervention 

and still reduce power fluctuations.     

 Benefits of reducing fluctuations for tidal energy 

This work has shown that the power output from tidal energy has inherit fluctuations. 

This fluctuation may cause supply and demand imbalances know as contingencies. 

Large integration of tidal power in an electricity network will change the supply 

conditions and requires contingencies management. Considerable effort is spent by 
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power system operators to anticipate contingencies to maintain system frequency [31]. 

The grid can be constraints by limited ramp rates and limited energy supply of other 

power producers. The operation strategy suggested in this work can be a preventive 

alternative for operators.  

This operation strategy also allows for better forecasting of tidal energy which leads to 

better market reliability and thus a higher priority in an optimal dispatch order.  

 

 Future work 

This study approximate the power curve for a given trajectory of TUSK plants using 

Matlab modelling. Simplifying assumptions used to approximate parameters and 

reduce computations such as neglecting tether dynamics and uniform tidal velocity 

profile. A sensitivity analysis on input parameters can refined the modelling of the 

power output.      

A stochastic study of the plant power output can be used to investigate the likely hood 

of plant synchronization of multiple plants. Further research and field tests or historical 

data are needed to develop a historical probability distribution of power output of TUSK 

tidal plants. From this stochastic analysis, an optimal number of plants can be coupled 

to reduce invasive controls operations.  
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7 Conclusion 

In conclusion, tidal energy production is a new renewable energy technology and has 

the potential to locally change power supply condition of electrical grids due to it 

intermittency. Tidal energy’s main advantage comes from its predictability compared 

to other renewable energy sources. This study highlighted the benefits of the 

predictability of tidal energy with sufficient understanding of the natural cycles and 

modelling.  

The power cure of the TUSK can be reasonably modelled given only the geometry, the 

tidal velocity and using simplified assumptions on the wing shape and tidal velocity 

profile. The power curve of a TUSK plant has been show to fluctuate on the time scale 

of approximately a minute during operation. The apparent velocity of the plant relative 

to the tidal current was shown to have the most influence on the power curve’s 

fluctuation for during optimal operations. Fourier analysis allowed to investigate the 

impact of various scales of fluctuations with in the power curves. Using phase shifting, 

the plants can be couples in multiples of pairs or in triplets. This operation strategy 

significantly reduces power fluctuation without incurring addition cost for contingency 

management.  
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