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Hall sensors batch-fabricated on 
all-CVD h-BN/graphene/h-BN 
heterostructures
André Dankert  , Bogdan Karpiak   & Saroj P. Dash

The two-dimensional (2D) material graphene is highly promising for Hall sensors due to its potential 
of having high charge carrier mobility and low carrier concentration at room temperature. Here, we 
report the scalable batch-fabrication of magnetic Hall sensors on graphene encapsulated in hexagonal 
boron nitride (h-BN) using commercially available large area CVD grown materials. The all-CVD grown 
h-BN/graphene/h-BN van der Waals heterostructures were prepared by layer transfer technique and 
Hall sensors were batch-fabricated with 1D edge metal contacts. The current-related Hall sensitivities 
up to 97 V/AT are measured at room temperature. The Hall sensors showed robust performance over 
the wafer scale with stable characteristics over six months in ambient environment. This work opens 
avenues for further development of growth and fabrication technologies of all-CVD 2D material 
heterostructures and allows further improvements in Hall sensor performance for practical applications.

Magnetic field sensors today represent a significant growing market, estimated to reach USD 4.16 billion in value 
terms by the year 20221. The areas of application cover many fields, such as automotive, consumer electronics, 
healthcare and defense industry, where magnetic field sensors are used for position detection, current monitoring 
and angular sensing. Many different magnetic sensors based on a variety of effects have been realized for different 
applications2. Hall effect-based sensors constitute a significant part of the industry, with an estimated market 
share to be over 55% in 20143. They are used for magnetic field detection in the field range from 10−7 T to 102 T  
in a temperature range from −40 °C up to 150 °C. Today, the most ubiquitous sensors utilize an active region 
made of Si due to the low fabrication cost, highly developed processing technology, good integration into signal 
processing circuits and reasonable performance properties (current-normalized sensitivity SI~100 V/AT)4–7. In 
comparison, Hall sensors based on III-V compound semiconductors provide better performances8–11, but are 
expensive and more difficult to integrate in circuits.

Graphene is highly interesting material to be used as active region of magnetic Hall sensors, owing to its 2D 
nature, low carrier concentration n2D and high carrier mobility μ. The previous reports on graphene Hall sensors 
demonstrated current-related sensitivities ( ∝S n1/I D2 ) up to 1200 V/AT on large area unprotected CVD graphene 
on SiO2 substrate12 and 1020 V/AT on epitaxial graphene on SiC substrates13. However, single layer graphene 
devices are prone to contaminations from environment and encapsulated structures are needed for reliable and 
durable performance for practical applications14. Recent studies on graphene encapsulation by Al2O3 grown by 
atomic layer deposition showed good results with low doping levels15. However, the encapsulated graphene with 2D 
insulating h-BN flakes provide superior interface, containing low amount of dangling bonds and charge traps and 
retaining the high electronic properties of graphene for high Hall sensor performance16. Moreover, the smoothness 
of h-BN allows using it as a high-quality substrate in addition to top encapsulation. Thus, current-related 
sensitivities SI ~ 5700 V/AT were obtained on stacks of all-exfoliated h-BN/graphene/h-BN17, SI ~ 2270 V/AT on 
single crystal CVD graphene patches encapsulated between exfoliated h-BN18, and SI ~ 1986 V/AT with 
batch-fabricated CVD graphene on in-situ grown CVD h-BN substrate without top encapsulation19. In addition 
to increased sensitivities, high linearity12,20 and low noise of the devices20–22 combined with transparency and 
flexibility18,23 generates a high interest in graphene for the use in magnetic Hall sensors. However, for practical 
utilization in ambient environment over longer period, there is a necessity to investigate graphene Hall sensors 
fabricated by a scalable process using all-CVD grown 2D material heterostructures with full encapsulation of 
graphene active region.
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Here we report a scalable graphene Hall sensor fabrication process by using commercially available large area 
all-CVD grown 2D materials van der Waals heterostructures. The devices used here involve an active region con-
sisting of CVD graphene, which is encapsulated with CVD grown multilayer h-BN. The 1D edge metal contacts 
are utilized to connect the graphene active region to the electronic circuit24. The Hall sensors exhibit stable perfor-
mance over the wafer scale in ambient environmental conditions over a longer period of time. Although further 
improvements are required in the fabrication process, such large-scale batch fabrication of h-BN encapsulated 
graphene Hall elements can bring the technology closer to practical applications.

Results
The Hall sensors were prepared by using a scalable fabrication process. An optical picture of a chip-size 
batch-fabricated graphene Hall elements is shown in Fig. 1a. Figure 1b shows the schematic representation of 
the Hall bar devices with 1D edge contacts. Figure 1c presents an optical microscope picture of the chip and an 
individual graphene Hall element, which were fabricated through the micro-fabrication process as schemati-
cally shown in Fig. 1d. Each Hall element consists of CVD graphene (from Graphenea25) sandwiched between 
multilayer CVD h-BN (from Graphene Supermarket26). The 2D material heterostructure was prepared on a Si/
SiO2 wafer by large area PMMA-supported wet-transfer technique and Ar/H2 annealing for each layer (service of 
Graphenea). Next, they were patterned to Hall bar structures by using an Al (20 nm) hard mask for etching with 
CHF3 and O2 gas. The Al hard mask was removed by wet chemical etching in Shipley Microposit MF-319. The 1D 
edge contacts were fabricated by means of photo-lithography and electron beam evaporation of metals followed 
by liftoff in acetone. More specifically, we investigated 1D edge metal contacts of Cr (5 nm)/Au (95 nm) and Ti (20 
nm)/Au (60 nm) to 2D graphene channels.

Figure 2a shows the prepared all-CVD h-BN/graphene/h-BN heterostructures on a 4-inch SiO2/Si wafer. The 
Raman spectrum of monolayer CVD graphene27 on SiO2/Si substrate show the G and 2D peaks at 1597 cm−1 and 
2652 cm−1 respectively28 with a small D peak (see Supplementary Fig. S1a). The grain size of the CVD graphene 
is mostly between 1–5 µm range. The Raman characterization of the h-BN film revealed a peak at 1357 cm−1 at 
selective places29 (see Supplementary Figure S1b). The thickness of the CVD h-BN used in the heterostructures 
was measured by AFM (~10–13 nm, as shown in Fig. 2b). The rms roughness of the h-BN films were found to be 
1–2 nm on Cu foil and SiO2 substrate. Although we could get rid of organic contamination introduced on h-BN 
from the transfer and device fabrication process by annealing in Ar/H2, the roughness remains at similar values 
(see Supplementary Fig. S2). Earlier, Kim et al. reported the multilayer CVD h-BN films to be polycrystalline in 
nature and indicated sp2 bond coordination of B and N atoms30.

The electrical characteristics of 1D edge contacts with Cr/Au and Ti/Au metals to graphene are shown in 
Fig. 2c–f. As observed from current-voltage (IV) characteristics, the Cr/Au contacts provide a low-resistive lin-
ear behavior, while Ti/Au contacts show a high-resistive non-linear tunneling behavior. The weak temperature 
dependence of the resistance for the Cr/Au contacts at zero bias and at 0.5 V bias (Fig. 2d) indicates high quality 
interfaces31. However, the high resistance and tunneling behavior of the Ti/Au edge contact to graphene (Fig. 2e 
and f) could be due to interfacial species, such as oxidation at the interfaces. The encapsulated CVD graphene is 
found to be hole-doped with sheet resistances RS between 520–870 Ω/□.

First, we present the characterization of the h-BN/graphene/h-BN Hall sensors with Cr/Au edge contacts. The 
samples were measured at ambient conditions, i.e. at room temperature of 293 K, pressure of 750 Torr, relative 
humidity ~70%. Except for the cases where measurements were done at room temperature, pressure was 10−2 
Torr. The Hall voltage VH is measured at a constant applied current, while sweeping a perpendicular magnetic 
field (Fig. 3a). The Lorentz force acting on the moving charges in graphene resulted in a voltage difference in the 
transverse direction (Hall voltage VH). The detected Hall voltage, measured as a function of applied perpendicular 
magnetic field B⊥ at bias current I = 90 μA, is shown in Fig. 3b. A very weak temperature-dependent change is 
observed within the range of 75–293 K. A background voltage offset Voffset, due to a misalignment between Hall 
probe contacts, has been subtracted. Fitting the Hall response with = +⊥V VH

IB
en offset

2D
, where e is the electron's 

Figure 1. Fabrication of magnetic Hall elements based on large area CVD graphene encapsulated in CVD 
h-BN on Si/SiO2 substrate. (a) Picture of the chip carrier with batch-fabricated graphene Hall elements. (b) 
The schematic representation of the fabricated Hall sensor devices with h-BN/graphene/h-BN heterostructure 
and 1D edge contacts. (c) Optical microscope picture of the batch-fabricated chip and individual graphene 
Hall element. (d) Schematic of the fabrication process steps involving the preparation of h-BN/graphene/h-BN 
heterostructures by layer transfer method, followed by patterning and formation of 1D edge metal contacts.

http://S1a
http://S1b
http://S2


www.nature.com/scientificreports/

3Scientific RepoRts | 7: 15231  | DOI:10.1038/s41598-017-12277-8

elementary charge and n2D is the sheet charge carrier concentration4,11, we can extract the Hall mobilities 
μ = | |1/(e n R2D S) around 1200 cm2/Vs−1 with carrier concentrations around 8 × 1012 cm−2 at zero gate voltage. 
The high charge doping is most likely due to the wet transfer process that might have trapped impurities at the 
h-BN/graphene interfaces. The linearity error is found to be around 0.25% and independent of temperature. The 
Hall sensors also showed stable performance and good response to magnetic field changes in time (Fig. 3c and d).

In order to investigate the effect of the 1D edge contact material on Hall sensor performance, we also carried 
out measurements on devices with Ti/Au contacts. The output Hall voltage as a function of applied magnetic field 

Figure 2. Characterization of the 2D heterostructures and 1D contacts. (a) The prepared h-BN/graphene/h-BN 
heterostructures using all-CVD grown 2D materials on a 4-inch SiO2/Si wafer by layer transfer method. 
Different regions containing 2D layers and heterostructures are indicated by schematics. (b) AFM image and 
thickness profile of CVD h-BN on SiO2/Si wafer. (c) Two-terminal IV characteristic of the device with Cr/Au 
edge contacts to graphene at 293 K and 75 K. (d) Cr/Au edge contact resistance at 0.5 V bias (red) and zero 
bias voltage (green) as a function of temperature. (e) 2-terminal IV characteristic of the device with Ti/Au edge 
contacts to graphene at 293 K (red) and 75 K (blue). (f) Ti/Au edge contact resistance at 0.5 V bias (red) and 
zero bias voltage (green) as a function of temperature.

Figure 3. Characterization of the graphene Hall elements with Cr/Au 1D edge contacts. (a) The schematic of 
Hall measurements. (b) Hall voltage as a function of perpendicular magnetic field at 293 K and 75 K. (c) Hall 
voltage as a function of time at different applied magnetic fields at 293 K and (d) 75 K. Measurements are shown 
for a bias current of I = 90 μA and the background offset voltage is subtracted from the measured data.
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measured at 293 K and 75 K with a bias current of I = 90 μA is shown in Fig. 4a. Despite an order of magnitude 
higher contact resistance in Ti/Au devices, we observed a similar Hall sensitivity as in Cr/Au devices. The linearity 
errors in Hall measurements were found to be at an average level of ~2 % at 293 K down to ~0.4 % at 75 K, which 
is 2 to 8 times higher than for the Cr/Au device. Figure 4b and c show the Hall voltage responses measured as a 
function of time at different perpendicular magnetic fields at 293 K and 75 K, respectively. This shows that Cr/Au 
edge contacts perform better in terms of higher linearity of the Hall response and lower noise compared to Ti/
Au. Noise spectral characterization of device with Cr/Au contacts (see Supplementary Fig. S3) revealed minimum 
magnetic resolution of 0.4 mT/Hz0.5.

From the Hall measurements the current-related sensitivity = ∂S ( V )/II B H  was extracted. Figure 5a shows the 
temperature dependence of SI for the Cr/Au and Ti/Au contacts, which are found to be thermally stable with the 
values of ~S 75I  V/AT. The absence of temperature variation of SI ( ~S 1/nI 2D) is due to a stable carrier concen-
tration (n2d) in graphene. Figure 5b shows the current bias dependence with slight decrease of SI at higher bias, 
which could be due to heating-related effects19. The more prominent bias-induced decrease of SI with Ti/Au 
contacts compared to Cr/Au indicates more heating-related effects due to higher contact resistances. Comparing 
several different devices yields a narrow distribution of Hall sensitivity SI (Fig. 5c) ranging from 60–97 V/AT. 
Furthermore, variations in geometry and size of the graphene Hall elements did not affect the sensitivity, with the 
SI values ranging from 65–78 V/AT at room temperature (Fig. 5d). From the Hall measurement at constant volt-
age bias of 250 mV the voltage-related sensitivity for device with Cr/Au contacts was found to be 0.03 V/VT.

To compare the results of all-CVD h-BN/graphene/h-BN with differently prepared graphene Hall sensors, we 
have fabricated control samples of CVD graphene on SiO2 substrate with and without exfoliated h-BN capping 
(see Supplementary Fig. S4). The CVD graphene devices on SiO2 substrate without any encapsulation show SI in 
the range of 100–200 V/AT at room temperature. However, we observed degradation in sensitivity with time 
showing values below 65 V/AT after few weeks of fabrication. The Hall sensors with exfoliated h-BN encapsula-
tion show the current-related sensitivity up to 363 V/AT at room temperature, which is 3 to 4 times higher than 
the all-CVD heterostructure devices. For the control CVD graphene samples, the Hall mobility and carrier con-
centrations are found to be around 150 cm2/Vs−1 and ×2 1012 cm−2, respectively, which is lower in comparison 
to all-CVD heterostructures prepared by wet transfer process. The higher carrier concentrations due to trapped 
impurities at the h-BN/graphene interfaces are supposed to give rise to lower Hall sensitivity in our all-CVD 
h-BN/graphene/h-BN Hall sensors.

In order to verify the stability of our all-CVD h-BN/graphene/h-BN Hall sensors over time in an ambient 
environment, we have carried out measurements up to 190 days after fabrication. The Hall voltages measured 
after 1, 22, 49 and 190 days from device fabrication are shown in Fig. 6a. The Hall sensors showed a good response 
to magnetic field changes even after 190 days (Fig. 6b) and a consistent Hall sensitivity SI of 53–78 V/AT at room 
temperature (Fig. 6c), without much degradation of the contacts and the graphene channel over time. However, 
unencapsulated graphene showed fast degradation of sensitivity with time after fabrication of devices. The atom-
ically thin graphene is known to degrade quickly in ambient conditions not only due to electronic doping, but 
also chemical and mechanical damages due to exposure to different environmental conditions32,33. Although 
the high doping of graphene in our devices can contribute to less degradation of Hall sensitivity over time, the 
utilized h-BN encapsulation is imperative step forward towards protection of graphene for practical applications 
in ambient environment.

Discussion
Our observed current-related Hall sensitivities in large area all-CVD h-BN encapsulated graphene devices are 
comparable to those in magnetic Hall sensors based on Si4–7. However, sensitivities were at least one order of mag-
nitude below exfoliated graphene/h-BN structures17, unprotected CVD graphene devices on Si/SiO2 substrate12 
and on CVD h-BN substrate19. Also, our control experiment with CVD graphene on SiO2 substrate with/without 
exfoliated h-BN capping showed 2–4 times higher sensitivity. However, the unprotected graphene showed faster 

Figure 4. Characterization of the graphene Hall elements with Ti/Au 1D edge contacts. (a) Output Hall voltage 
as a function of perpendicular magnetic field strength at 293 K and 75 K. (b) Output Hall voltage as a function 
of time at different applied magnetic fields at 293 K and (c) 75 K. Measurements are shown at a bias current of 
90 μA and the background voltage offset is subtracted from the data.
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degradation of sensitivity with time. The higher sensitivity of devices with exfoliated h-BN encapsulation can be 
due to introduction of roughness, ripples and wrinkles in the CVD graphene in all-CVDh-BN/graphene/h-BN 
heterostructures. The CVD grown multilayer h-BN films are known to be polycrystalline in nature and the c-axis 
of the crystallites points to random directions30, giving rise to defects and roughness in the heterostructures. 
The significant doping of graphene in the all-CVD heterostructure devices is another major reason behind the 
reduced Hall sensitivities and it could be due to contaminations introduced during wet-transfer process of large 
area graphene and h-BN layers. This could explain also the significantly lower minimum magnetic field resolu-
tion of Hall sensors based on all-CVD h-BN/graphene/h-BN heterostructures compared to previous reports on 
graphene Hall sensors17,19–22. These are currently the practical challenges for the development of graphene and 2D 
materials science and technology.

Figure 5. Current-related sensitivities (SI) of graphene Hall elements. (a) Temperature dependence of SI for Cr/Au  
and Ti/Au contacts measured at 90 μA current bias. (b) Current bias dependence of SI for Cr/Au and Ti/Au 
contacts at room temperature. (c) Distribution of sensitivities SI measured in 13 Hall elements with Ti/Au 
contacts at 90 μA current bias and at room temperature. The devices were selected from different parts of the 
wafer. (d) Sensitivities SI for Hall sensors measured on devices with different size and geometry (Cr/Au 
contacts). Typical two-terminal resistances are shown with average resistivity value of –~75 100 kΩ·μm 
(graphene sheet concentration . ⋅ −~8 5 10 cm12 2). Scale bars in the inset images are 60 μm.

Figure 6. Stability of all-CVD h-BN/Graphene/h-BN Hall sensors over time in ambient environment. (a) Hall 
voltage as a function of magnetic field and (b) time at different applied magnetic fields at 293 K after keeping the 
device in ambient environment for 1 day (black), 22 days (red), 49 days (blue) and 190 days (green). (c) Current-
related Hall sensitivity SI over time.
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Such Hall sensors would greatly benefit from improved CVD growth methods of graphene and multi-layer 
h-BN, and large area layer transfer techniques for fabrication of heterostructures. Furthermore, development of 
methods for in-situ growth34–36 of high-quality h-BN/graphene/h-BN van der Waals heterostructures on large 
areas would by-pass fabrication-related problems and allow for higher Hall sensitivities with lower graphene 
doping levels. Additionally, the contacts resistance in 1D geometry can also play an important role on device 
performance. Our reported reduction in contact resistance by switching from Ti to Cr can be further improved 
by optimizing the fabrication process, in particular the etching angle and 1D edge contact deposition to eliminate 
incorporated species at the interfaces24.

Conclusion
In summary, we demonstrated h-BN/graphene/h-BN van der Waals heterostructure Hall sensors using all-CVD 
2D materials available on the market. The batch-fabricated Hall sensors with Cr/Au 1D edge contacts showed 
reproducible contact properties with low resistances. Hall measurements and time-dependent response at differ-
ent applied magnetic fields revealed current-related Hall sensitivities in the range of 60–97 V/AT at room temper-
ature. Such encapsulated Hall sensors also showed durable operations in ambient environmental conditions over 
six months. This study demonstrates proof-of-concept batch fabrication of fully encapsulated all-CVD graphene 
Hall elements allowing for further development towards practical applications.
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