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Abstract 
 

Polymer solar cells are quickly approaching viability as a large scale electrical power source. 

To increase their stability and processability in green solvents, we want to modify their 

solubilizing side chains with different functionalities. Therefore, in this thesis, a several series 

of conjugated polymers are presented along with their characterization and utilization. A 

specific focus is put on the morphology characterization of polymer:PCBM-blends with the use 

of transmission electron microscopy, which can be a powerful tool to illuminate the bulk of 

materials where the morphology is of utmost importance. Three case studies are presented 

where polymer solar cells were characterized with this instrument along with the different 

conclusions that can be drawn from the data. Afterwards a series of conjugated random 

copolymers bearing thermocleavable side chains is presented with the purpose of introducing 

solvent processability which can be removed, leaving insoluble polymer films. They are 

characterized extensively and their thermal degradation is studied in detail. A morphological 

study is performed in order to analyze the effect the thermal stabilization has on the morphology 

and the pure thermocleavable polymer completely stabilized the film. In the following section, 

a series of fluorene based polymers with polar pendant groups were presented. The polymers 

were used as cathode interfacial material in all-polymer solar cells and increased the 

performance from 2.7% to a maximum of 5.4%, a level comparable to that of the inorganic 

lithium fluoride material. This method thus shows a good alternative for future high throughput 

production of solar cells. In a related project, similar polymers with varied energy levels were 

produced with the aim of studying their performance as active layer materials. Polymers bearing 

tertiary amines are common in interlayers, but not in active layers, due to hole trappingWhen 

tried in solar cells, one polymer showed a performance of above 1%. These results are a step 

towards polymer solar cell active layers processable in alcohol/water. 

Keywords: conjugated polymers, polymer solar cells, side chain engineering, transmission 

electron microscopy, green solvent solubility   
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1. Introduction 

We face large problems. The amount of CO2-emissions remaining to stay below the 2-degree 

limit is rapidly decreasing. According to the International Energy Agency’s World Energy 

Outlook Special Report from 2015, at the current rate that limit will be passed by 2040.[1] A 

graph of the progress is shown in figure 1.1. The need for new and sustainable is dire, but the 

outlook is not completely bleak. In the same report, it is mentioned that the increase in emissions 

is slowing down and investments in renewable energy are rapidly growing. Still, there is great 

need for further development of new technology to accelerate green energy production. One of 

the most promising energy sources is solar energy. The investments in solar energy production 

are steadily increasing,[1] but even with a rapidly decreasing solar cell prices, the initial 

investment is still daunting. It takes several years of operation before the energy and money is 

paid back for conventional solar panels.[2-3]  

Figure 1.1. Global CO2 emissions related to the remaining carbon budget for a >50% chance 
of clearing the 2 degree goal.[1] 

Organic semiconductors grew to prominence by the end of last century with the promise of 

highly tunable, cheap and solution processable electronics. The properties of conjugated 

polymers enable a wide variety of interesting applications, such as light emitting diodes,[4] 

thermoelectric devices,[5] field-effect transistors[6] as well as for photovoltaics.[7] Making use of 

the solubility of polymers, large scale production is potentially far cheaper than production of 

conventional electronics.[7-10] The hope is to utilize these semiconducting polymers in 

photovoltaic devices as scalable green technology.  
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This thesis contains summary from three manuscripts, focused on side-chain engineering of 

conjugated polymers for organic photovoltaics. It begins, however, with a section that 

summarizes and compares parts of three publications, focusing on the morphological study of 

active layers using transmission electron microscopy. 

In chapter 4 of this thesis, a method for introducing solvent resistance in a conjugated polymer 

film is presented. Making use of a common protecting functional group which is sensitive to 

heat, heat annealing the film makes it insoluble in any common solvent. This method has been 

applied to a common building block of conjugated polymers, namely the isoindigo (II) 

structure. This has been polymerized and characterized, studying the solubility, electrochemical 

and optical properties along with some produced conjugated polymers along with 

characterization of them. 

After this study, a series of alcohol-soluble conjugated polymers aimed at interlayers for all-

polymer solar cells (all-PSCs) is presented. In it, three polyfluorene- and one poly(fluorene-alt-

phenylene) polymers are presented with three different amine containing pendant groups on 

their alkyl side chains. These polymers are used as cathode interlayers in all-PSCs with an active 

layer consisting of previously presented polymers with high performance. The interlayers are 

compared to conventional lithium fluoride(LiF)/Al electrode and found to perform just as well. 

Finally, in chapter 6 a different use for tertiary amine pendant groups is studied. In this study, 

several conventional active layer donor-acceptor polymers were outfitted with tertiary amine 

pendant groups on their side chains. Amine containing polymers have been shown to be highly 

damaging for device performance, due to space charge buildup. This potentially enables a 

switchable solubility in the form of protonation/deprotonation. Theoretically this should enable 

processing with a weakly acidic alcohol solution with a volatile acid, which will evaporate and 

leave the polymer resistant to the next device layer solvent. Seven polymers based on 

benzotriazole (BTz), diketopyrrolopyrrole (DPP) and II are presented and one benzotriazole-

based polymer showed a stable PCE of ~1%.  

  



3 

2. Organic photovoltaics 

2.1 Solar Energy 

The sun inundates the earth with vast amounts of electromagnetic radiation every day. The 

energy reaching the surface mostly consists of photons in the visible and infrared-region of the 

spectra, with wavelengths between 300 and 2000 nm with a long tail of light with ever longer 

wavelengths.[11] This light is essential to life on earth and is used by plants in photosynthesis to 

store chemical energy. It can also be utilized to generate electrical energy and heat. Due to the 

sheer amount of energy, a relatively small piece of the surface area of our planet could fulfill 

the entire global energy demand for the foreseeable future.  

 
Figure 2.1. Solar irradiance over Europe, illustrating the difference depending on latitude.[12-

13]  

The solar energy is highly dependent on where on the globe you are, for example the closer to 

the equator the stronger inundation. As can be seen in figure 2.1 the dose of solar energy over 

Europe varies close to a factor of three from the north of Norway to the south of Spain. 

Nevertheless, for comparison there is a standard spectra of solar irradiation called the AM1.5G 
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solar radiation spectrum. This standard spectra, seen in figure 2.2, shows the importance of a 

wide absorption.  

 
Figure 2.2. AM1.5G standard spectra compared to a solar cell with P3HT:PCBM.[7] 

2.2 Conjugated Polymers 

Traditional bulk polymers are used as effective insulators, e.g. in high-voltage cable 

applications. However, when the chemical structure of the polymer has alternating double 

bonds in the main chain, this changes. The discovery and development of conducting polymers 

started with Nobel price winners Alan MacDiarmid, Alan J. Heeger and Hideki Shirakawa in 

1977.[14] Their work concerned iodine doped polyethyne, which can be considered the simplest 

conjugated polymer possible and consists of linear backbone with alternating single- and double 

bonds, sp2-hybridized carbon atoms, seen in figure 2.3. Poly(p-phenylene vinylene) is a slightly 

more complex polymer, which also has an aromatic phenyl ring. The last polymer is 

polythiophene,  

S n
n

n

Polyethyne Poly(p-phenylene vinylene) Polythiophene  
Figure 2.3. Three simple conjugated polymers.  
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Since conjugated polymers are not conducting in the ground state like metals, they are 

semiconductors. They have a band gap; an energy gap which needs to be overcome for 

electronic conductivity. Conjugated systems have empty π-orbitals above and below the plane 

of the molecule that can overlap. This means an electron excited from the ground state will 

enter a delocalized state where it can be transported away, leading to electrical conductivity. 

The band gap is central to the photovoltaic properties of a polymer. When the polymer is hit by 

a photon of an energy identical or higher to the band gap, an electron can be excited. 

The third polymer in figure 2.3 is polythiophene, a five membered ring with a sulfur atom. Poly-

3-hexyl thiophene (P3HT) is a polymer based on the polythiophene backbone, which is still 

commonly seen in modern applications. The large band gap energy needed to be overcome 

means only high-energy photons of wavelengths around 650 nm and below are absorbed. This 

can be seen in figure 2.2, where the absorption spectra for P3HT blended with Phenyl-C61-

butyric acid methyl ester (PCBM) is compared to the solar spectra. This means that less than 

half of all photons striking this solar cell can even potentially be converted into electrical 

energy.  

To improve the organic solar cell, a smaller band gap is required. The most prominent method 

to accomplish this is by combining electron rich and electron poor moieties in the polymer. 

Since the highest occupied molecular orbital (HOMO) will tend to be localized on the electron 

rich moieties and the lowest unoccupied molecular orbital (LUMO) will be localized on the 

electron pool moieties, the band gap will be closer to the difference in the high HOMO and the 

low LUMO of respective groups.[15] This way, a far lower band gap is achieved.  

2.4 Polymer Solar Cells 

Over the last few decades, the advancement of organic photovoltaic devices has been dramatic. 

One drastic improvement on the previously mediocre performances of organic photovoltaics 

came in 1995 when the bulk heterojunction (BHJ) was introduced.[16] Instead of bilayer devices, 

the interface between electron donating polymers and electron accepting fullerenes was 

drastically increased by intermixing of the phases. This resulted in a record power conversion 

efficiency (PCE) of 2.9%. Since then the development has been drastic and regularly exceed 

11% with a recent publication showing above 13% efficiency for single junction devices.[17-20] 

One problem today, however, is the toxic nature of the most commonly used processing 

solvents such as chloroform and dichlorobenzene.[21] While they contribute little to the overall 

energy consumption in device production, in order to be called a green technology, they should 
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be replaced whenever possible.[2] In order to improve solubility in less harmful solvents, a 

variety of methods are employed to alter the solubility of conjugated polymers, with the end 

goal of making polymers suitable for printing from completely green solvents such as ethanol 

or ethanol/water-mixtures. There are many problems with this approach however. A major 

hurdle is the multi-layer structure of the organic solar cell. Sequential processing of the layers 

is needed, and it is important that the previous layer remains stable when subsequent layers are 

deposited on top,[21] or the device will have large current leakage and most likely fail 

completely.  

The basic structure of a polymer solar cell For a polymer solar cell (PSC) to function, there are 

a few basic components needed. In the most basic shape, a solar cell consist of the following: 

A substrate, electrodes and an active layer. The substrate is often glass, or in printed applications 

PET-plastic. The cathode and anode transport electrons and holes, respectively. One of these 

needs to be transparent, so the photons can reach the active layer. The active layer is where the 

current is generated. In PSCs, this is a BHJ system with electron donating and electron accepting 

phases. To make sure there is no current leakage it is also beneficial to have interfacial layers 

in between the electrodes and active layer. This can also serve the purpose of tuning the work-

function of the metal electrodes, to increase the contact and wettability to make sure a good 

film can be formed. 

What governs how much energy a solar cell can produce depends on several factors. In simple 

terms, it depends on how much incoming light there is, and how much of it can be converted 

into electrical energy.[22] The PCE of a solar cell produces is described by:  

𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖

= 𝐹𝐹𝐹𝐹
𝐽𝐽𝑆𝑆𝑆𝑆𝑉𝑉𝑂𝑂𝑂𝑂
𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖

  

Where Jmax and Vmax are the maximum values of the current and voltage and Pinc is the incident 

power density. JSC is the short-circuit current, which can be said to depend on factors such as 

absorption, exciton diffusion, exciton dissociation into free charge carriers, charge transport 

and charge collection.[22] VOC is the open-circuit voltage, which is mainly a function of the 

difference between electron donor HOMO and electron acceptor LUMO, i.e. the band gap. The 

fill factor (FF) is a function of the VOC and the ideality factor of the diode.[23] This can be 

described as the “squareness” of the J-V curve. The closer to 1 the better, but typical values can 

be between 0.5-0.7. These factors are illustrated in the J-V diagram in figure 2.4.  



7 

 
Figure 2.4. J-V curve where important factors are marked. The gray square illustrates the FF 
and the maximum power output is given by the square JmVm.[23] 

2.5 Synthesis of Conjugated Polymers 

Due to the commonly used donor-acceptor (D-A)-motif, the most commonly employed 

methods of synthesizing conjugated polymers for solar cells include having two bifunctional 

monomers, and using a palladium catalyzed reaction, often Stille Cross Coupling 

Polymerization or Suzuki Cross Coupling polymerization. These methods are both step-growth 

processes, which means they need to have a very high degree of polymerization to reach high 

molecular weight polymers. This, in turn, means the monomer purity and molar ratio needs to 

be highly accurate.[24]  

Since the goal is often the highest achievable molecular weight when performing these 

polymerizations, there is a degree of superstition present in many polymer chemists. However, 

they are not necessarily very complicated. The two monomers are weighed up as precisely as 

possible, along with palladium catalyst and ligands. These are then put in a dry reaction vessel, 

dissolved in anhydrous, degassed solvent. In our case, often toluene. This is then heated under 

inert atmosphere with vigorous stirring until judged finished. This can be judged from solution 

viscosity of precipitation test, both highly dependent on experience. The polymer is then 

precipitated from a non-solvent, such as methanol. The solids are then filtered into a soxhlet 

thimble, after which several steps of solvent extractions take place. They can be used both to 

clean the polymer and to separate different molecular weight fractions. Most of the polymers 

are extracted with chloroform. After this step, the polymer is purified over a short silica gel 

column and then once again precipitated from methanol, filtered, dried and collected.  
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2.6 Characterization of Conjugated Polymers 

There are a wide variety of ways to characterize polymers. Some of the most common methods 

are presented briefly below. Since conjugated polymers for organic electronics serve 

completely different purposes than common bulk polymers like polystyrene and polyethylene, 

their characterization differs accordingly. More focus is put on electrochemical- and optical 

properties and less on mechanical properties. 

Gel Permeation Chromatography GPC 

Gel permeation chromatography (GPC) is a very common way to study the molecular weight 

of polymers, and can give information about weight average-(Mw) and number-average 

molecular weight (Mn) as well as the polydispersity index (PDI) of the polymer.[24] It is a variety 

of size-exclusion chromatography where molecule size determines the speed at which they can 

travel through a column. In our case, porous beads of crosslinked polystyrene is used as 

stationary phase and the mobile phase is 1,2,4-trichloro benzene heated to 150 °C.. Because of 

diffusion in and out of the pores, smaller molecules travel slower.  

UV-Vis Spectroscopy 

To study the optical properties of polymers, the common way is to use spectroscopy to study 

absorption spectra in either solution or film. In its most basic form, UV-Vis spectroscopy is 

very simple. A light of known intensity and wavelength passes through a sample of known 

length. For simplicity, in solution this is usually 1 cm. The detector detects how much of the 

light is absorbed by the sample, and the fraction I/I0 is calculated. This uses the Beer-Lambert 

law.[25]  

𝐴𝐴 = 𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝐼𝐼0
𝐼𝐼
� =  𝜀𝜀𝜀𝜀𝜀𝜀  

A is the absorption, I0 incident light and I light transmitted through the sample, ε the absorption 

coefficient, c the concentration and l is the length. Often, the spectra is normalized, in order to 

see the shape and absorption maximum, without taking the absorption coefficient into 

consideration. When the absorption is used to calculate the optical band gap, the onset of 

absorption is used. 

Electrochemistry 
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In order to study the electrochemical properties of polymers, the most common methods are 

cyclic voltammetry (CV) and square wave voltammetry (SWV).[26-28] These can be measured 

using an electrochemical workstation. The polymer is deposited onto a platinum electrode, 

dipped into an electrolyte solution with a counter electrode and a silver (Ag/Ag+) reference 

electrode. A potential is applied over the sample and the current is measured. This is done for 

both positive and negative potential, and a curve of current over potential is received. For SWV 

the oxidation and reduction are calculated from the maximum and minimum peak currents,[28] 

while the onset of oxidation or reduction is used in CV.[26] 

Thermogravimetric analysis 

A common method to study thermal stability in a polymer is thermogravimetric analysis (TGA). 

This method uses a finely calibrated balance which can be heated. The weight transitions are 

then registered as a function of temperature. The temperature is slowly increased, but the 

degradation is still somewhat time dependent, so a thermal transition temperature is calculated 

from onset temperature. Here the temperature was increased from 25 °C to 550 °C using a speed 

of 10 °C per minute.  

Atomic Force Microscopy 

Atomic force microscopy (AFM) is a surface sensitive method which can be used to analyze 

the morphology of surfaces down to the atomic level. AFM uses a cantilever with an extremely 

fine tip which can tap a surface. By focusing on the back of the cantilever with a laser, which 

is constantly monitored, it is possible to sequentially scan a surface and gain information about 

the topology of it.  

Contact Angle Measurements 

By measuring the angle between a surface and a drop of deionized water, it is possible to 

measure the free energy of a surface.[29] This is a simple but effective method, where modern 

instruments automatically measure drop volumes and contact angles, enabling a larger sampling 

and statistical robustness. The surface free energy is directly related to the 

hydrophilicity/hydrophobicity which is important for the morphology at the interface in organic 

electronic application where thin layers of different surface energies are stacked.  
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3. Morphology Analysis by Transmission Electron Microscopy 

Transmission electron microscopy (TEM) is very powerful method to study the bulk of a 

sample. TEM makes use of the short wavelength of electrons accelerated to high speeds to 

visualize material properties. By comparison, the relatively large wavelength of photons in the 

visual range limit the maximum resolution to around 1 µm, while electron microscopy has 

theoretical resolutions of less than 1 Å, which means atomic resolution is achievable. In 

transmission electron microscopy the electron beam is transmitted through an extremely thin 

sample in the range of 100 nm. The electrons will interact with the atoms in the sample in 

several ways, generating signals that can be used to analyze the bulk properties.  

TEM is very useful to analyze films of polymer:PCBM used in organic photovoltaics.[30] The 

bulk morphology of these blends directly affect the performance of devices which means 

surface sensitive methods such as AFM are less interesting.[30-31] Furthermore, TEM sample 

preparation can be very time consuming and tedious, depending on the sample. This is generally 

not the case for organic thin films from solar cells since they are of suitable thickness and can 

be spin coated on top of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate 

(PEDOT:PSS) which is dissolved in water, leaving the active layer floating. The active layer 

thin film can then be deposited directly onto a TEM sample grid from the water and studied in 

the microscope. A disadvantage when used to study organic thin films, is that some of the power 

of the technique can be lost, since much of the sample consists of amorphous carbon with 

roughly the same electron scattering. This means sufficient contrast between phases of material 

can be hard to generate, leading to images of gray noise.[32]  

In addition to common morphology analysis in organic photovoltaics, TEM has been used to 

study other parameters, such as time- and temperature dependent processes in the morphology, 

e.g. phase separation and PCBM crystallization.[33-36]  
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Morphology study from paper 1: Polymer PC71BM blends with donor polymers with ortho- 

or meta-substitution of alkyl chains on the IDTT segment. 

Figure 3.1. The four active layer donor polymers used in the study. 

The primary goal here was to study the effect of changing the para-substituted phenyl pendants 

to meta-substitution, as well as to see if fluorination of the quinoxaline acceptor segment would 

positively affect device performance. The chemical composition of the polymers are shown in 

figure 3.1. The morphology was investigated using TEM and representative micrographs are 

shown in figure 3.2.  

 
Figure 3.2. TEM bright field images of the four polymers in 1:4 ratio with PC71BM. 

For the two fluorinated polymers PIDTT-QF-p and PIDTT-QF-m large areas with very high 

electron scattering can be seen. These are attributed to extensive aggregation of PC71BM, which 

has a higher scattering density than the polymer. Both of these polymers gave poor results in 

solar cell devices due to the large phase separation. When comparing PIDTT-Q-p and PIDTT-

Q-m, a drastic effect on bulk morphology can be seen. For the para-substituted polymer, large 

polymer fabric can be seen, while the meta substituted polymer showed very fine morphology, 

but still continuous pathways of finely aggregated PC71BM. This resulted in significantly 
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improved device performance, which was further improved when processed with trace amounts 

of diiodooctane (DIO). By density functional theory (DFT) calculation, the improved 

morphology of PIDTT-Q-m was ascribed to the para-substituted chains extended in either 

direction, while the meta-substituted chains tended to wrap around the polymer backbone, 

enabling more efficient stacking. These results are a good example of the power of TEM 

analysis of bulk morphology, which gives important information about device performance.  

Morphology study from paper 2: Solar cells based on novel electron deficient unit PQD.  

In this study, the new electron deficient block PQD was presented and used in four different 

copolymers. The donor-segments used were three varieties of BDT and one with a thiophene 

spacer. Their chemical compositions are shown in figure 3.3. 

Figure 3.3. Chemical composition of the four novel polymers. 

These polymers were tried in PSCs with PC71BM and the films were studied by bright field 

TEM. The resulting micrographs in figure 3.4 are a perfect example where TEM is not the 

optimal instrument.  
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Figure 3.4. Bright field TEM micrographs of the four polymers in 1:3 blend with PC71BM. 

By first glance, the four images are close to identical. This is the result from highly intermixed 

blends where the individual phases are hard to make out and further study might be needed. As 

for the previous section, the darker areas are attributed to PC71BM-richer areas and the light 

areas are polymer rich. There are likely no significantly pure domains here. The morphology 

for all four polymers are likely to be favorable for charge separation, since domains are close 

to the exciton diffusion length of around 10 nm in these materials. The four polymers had 

significant differences in photovoltaic performance, however it cannot be attributed to 

differences in morphology, as in the previous paper.  

Morphology study from paper 3: A novel low band gap polymer which exhibits very low 

voltage loss in devices. 

In this study a novel low band gap polymer is presented and used in PSCs with PC71BM. The 

polymer, abbreviated PIDTT-TID is shares the meta-substituted IDTT block shown in figure 

3.1, but with a new acceptor segment called TID. The chemical composition is shown in figure 

3.5.  

  
Figure 3.5. The novel low band gap polymer PIDTT-TID. 
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By comparison, this study consisted of only one donor polymer and instead the PC71BM content 

was varied and an optimum ratio of 1:3 or 1:3.5 was found, where both had similar performance. 

The micrographs from this study are shown in figure 3.6. 

Figure 3.6. TEM bright field micrographs of PIDTT-TID:PC71BM with ratios from 1:1 to 1:4. 

This study is interesting in when compared to the previous two studies, since the ratio of 

PC71BM is varied, instead of including different donor polymers. An obvious trend can be seen 

where the 1:1 ratio has extremely fine morphology, the phase separation increases gradually, 

until the 1:4 ratio shows large, phase separated regions similar to what was seen in figure 3.2. 

The morphology is not the only factor affecting the performance of a BHJ-film, but in this case 

it likely played a role. The optimal ratios were somewhere around 1:3 to 1:35, where the former 

had slightly higher JSC but lower FF, giving identical total PCE of 6.7%. As the TEM-

micrographs show, when going from 1:1 to 1:3, PCBM rich domains around 1-10 nm start 

forming. In the 1:1 case, the morphology might have been too fine to form large enough 

contionous domains for efficienty charge extraction.  
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4. Thermocleavable polymers 

One way to modify the solubility of polymers is to include cleavable moieties that solubilize 

the polymer until toggled off by external stimuli. These stimuli can be many, such as heat, UV-

light, acid or base.[37-48] Since solar cell devices are produced by sequential deposition of layers, 

any treatment after the active layer is at risk of leaving cleaved off compounds in the film. 

Generally, unwanted compounds containing ions or radicals will be very harmful for the 

stability and performance of a solar cell.[49] One simple protecting group called tert-

butyloxycarbonyl (BOC), however, produces only gaseous products after cleaving.[43] This 

means that the solar cell can be heat treated after deposition of the active layer, leading to an 

insoluble active layer with increased long term stability.[38]  

Previous studies have mostly focused on thiophenes.[38, 40-42, 45-46] A few have made use of the 

facile synthesis using BOC-protection of amines, instead of esterification from alcohols and 

carboxylic esters. This method has been used for some electron-accepting units such as 

diketopyrrolopyrrole (DPP) and isoindigo (II).[43-44, 50] In order to produce solvent resistant 

polymers for solar cells, based on conventional solar cell materials, the II moiety was chosen 

as a suitable candidate. In order to study the properties of the BOC-protected indigo compared 

to conventional branched alkyl chain one, a series of copolymers and pure polymers were 

produced and the solubility and thermal stability was investigated. The chemical composition 

of the polymers are illustrated in figure 4.1. 
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Figure 4.2. Monomer synthesis. 

The synthesis of the monomers in this study were quite simple one step reactions from the basic, 

dibrominated isoindigo moiety. The reaction schemes are shown in figure 4.2. For M1 it 

includes a base-catalyzed alkylation reaction, taking place in dimethylformamide (DMF). Due 

to the mirrored structure with two reactive sites, and relatively slow reaction rate, it is important 

with proper purification after alkylating. Monoalkylated isoindigo byproduct is always present, 

but the big difference in polarity makes column chromatography a suitable way to purify the 

monomer. The reaction yield can be anywhere from good to excellent.  

For M2, the reaction is also a one-step reaction based on the work of Nguyen et al where DPP 

was BOC-protected in a similar position. In this case, the dimethylamino pyridine (DMAP) 

base catalyst is used to cleave a di-tert-butyl dicarbonate molecule and attach to the secondary 

amine in the isoindigo molecule. This reaction is commonly used to protect reactive amines in 

subsequent steps, thus the intention is to have a simple, high yielding reaction that is easy to 

revert after the protection is not needed anymore. The formed tertiary butyloxycarbonyl product 

is sensitive to both thermal energy as well as acid. Due to this instability, an ordinary silica 

column is unsuitable as it is a bit acidic. This means the compound is unprotected and binds to 

the silica. It was instead purified on a short column of neutral aluminium oxide. The yield in 

this case was unsatisfactory at around 50%, but should be possible to increase with some heating 

or longer reaction time. 
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For this study, two D-A alternating polymers and three random copolymers were synthesized. 

They were all made using stille cross coupling polymerization and a reaction scheme can be 

seen in figure 4.3.  
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Figure 4.3. Synthesis of thermocleavable sidechain containing polymers. 

P2TI contains pure conventional branched alkyl chain monomer while P2TI-BOC contains pure 

thermocleavable side chain monomer. The three polymers P2TI-BOC50, 20 and 21 are 

copolymers with varying amounts of thermocleavable monomers. The synthesis procedure was 

identical, except for the monomer amounts. The third monomer is a bithiophene with very long 

sidechains, namely n-tetradecyl chains containing fourteen carbons. This was intentionally 

chosen, since without the much longer branched sidechain on isoindigo, the polymer was 

judged to have too low solubility without it. It also serves the purpose of clearly showing that 

a solvent resisting polymer after cleavage would depend on hydrogen bonding and not just lack 

of sidechains.  

The polymerization reactions took place in round bottom flasks, carefully dried, in anhydrous 

solvent, under nitrogen atmosphere for up to 72 hours. Due to the somewhat unstable nature of 

the cleavable side chain, the reaction temperature was 60 °C. Generally these reactions are 

performed at 80 °C or higher. For purification, the polymers were precipitated from methanol, 

filtered into a soxhlet thimble, washed in a sixhlet extractor with petroleum ether, diethyl ether, 

acetone and then extracted with chloroform. They were then pushed through a short column of 

neutral aluminium oxide to get rid of residual traces of catalysts and other impurities, which 

can severely damage device performance, and then reprecipitated from methanol. They were 

then filtered on very fine PTFE-filters and dried at 40 °C in a vacuum oven. 

The polymers’ molecular weight was measured by GPC and presented in table 4.1, showing 

acceptable molecular weights for all but P2TI-BOC50. This was later judged to be a 

miscalculation of monomer ratios, which once again highlights the importance of accurate 

ratios for polymerization reactions.  
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Table 4.1. Molecular weights of the polymers.  

Polymer 
Mn 

(kDa) 
Mw 

(kDa) 
PDI 

P2TI 42 108 2.6 

P2TI-BOC 41 108 2.7 

P2TI-BOC50 6 13 2.0 

P2TI-BOC20 22 51 2.3 

P2TI-BOC10 30 70 2.3 

The optical properties were measured in chloroform solution, in film, and in annealed film after 

10 min at 200 °C. The results are shown in figure 4.4. 
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Figure 4.4. UV-Vis spectra of the five polymers in solution, film and annealed films. 

It is common to see a red shift in absorption when going from solution to film, however no such 

transition is seen here. This indicates that the inter-chain interaction is weak, possibly due to 

steric hindrance from the side chains. There is a small red shift going from alkyl to t-BOC side 

chain, which can be explained by the increased electron deficiency of the isoindigo group. This 

leads to a deeper LUMO, giving a smaller band gap. The interesting shift takes place when 

going from film to annealed film. When the sidechain cleaves off, there is a noticeable increase 

in low wavelength absorption and notably a new absorption maximum below the two peaks. To 

study electrochemical properties, cyclic voltammetry was used. The results are shown in figure 

4.5.  
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Figure 4.5. Cyclic voltammogrammes for the five polymers showing oxidation and reduction 
peaks for the two polymers.  

Both electrochemical and optical properties are summarized in table 4.4.  

Table 4.4. Electrochemical- and optical properties determined by CV and UV-Vis. 

  electrochemistry  
absorption 

solution film 

polymer  HOMO 
(eV) 

LUMO 
(eV) 

Eg
ec 

(eV)c  λmax
a
 

(nm) 
λmax

b
 

(nm) 
λonset 
(nm) 

Eg
opt 

(eV)d 

P2TI  −5.9 −3.8 2.2  600 596 704 1.8 

P2TI-BOC10  −6.0 −3.9 2.1  607 601 705 1.8 

P2TI-BOC20  −6.0 −3.8 2.2  608 605 706 1.8 

P2TI-BOC50  −5.9 −3.7 2.2  615 610 709 1.8 

P2TI-BOC  −5.9 −4.0 2.0  642 642 819 1.5 
a)Electrochemical band gap; b)Absorption maximum in chloroform solution; c)Absorption 
maximum in film; d Optical band gap  
 

To verify cleavage of the t-BOC group, thermogravimetric analysis (TGA) was performed for 

all five polymers and is shown in figure 4.6.  
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Figure 4.6. TGA analysis of the five polymers, showing onset of degradation below 200 °C for 
the t-BOC containing polymers.  

The TGA analysis clearly shows that the polymer without cleavable sidechain stays stable to 

around 400 °C while the others have a mass-loss that corresponds to complete decarboxylation. 

Based on previous publications, this result was expected. Interesting to note is also that the 

thermocleavable polymers stabilize on higher weight-% at above 500 °C. The values from the 

TGA measurements, compared with theoretical weight losses are displayed in table 4.5. 

Table 4.5. Molecular weights and thermal degradation of copolymers 

  molecular weight  thermal degradation 

polymer  Mn 
(kDa) 

Mw 
(kDa) PDI  𝑇𝑇𝑑𝑑1𝑎𝑎 

(oC) 
𝑇𝑇𝑑𝑑2𝑎𝑎 

(oC) 
weight lossb 
(%) 

weight lossc 
(%) 

P2TI  42 108 2.6  - 434 - - 

P2TI-BOC10  30 70 2.3  183 434 1.6 2.4 

P2TI-BOC20  22 51 2.3  182 434 3.3 2.8 

P2TI-BOC50  6 13 2.0  170 427 8.8 8.8 

P2TI-BOC  41 108 2.7  189 422 19.6 18.7 
a)𝑇𝑇𝑑𝑑1 = Temperature of the first decomposition; 𝑇𝑇𝑑𝑑2 = Temperature of the second decomposition; 
b)Theoretical weight loss of the t-BOC side chain; c)Experimental weight loss observed 
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A rudimentary solubility study using films were also performed. The polymers were spin coated 

onto glass slides, annealed and then submerged in chloroform. It turns out P2TI was still 

completely soluble, which is to be expected. P2TI-BOC was completely insoluble after 

cleaving, and the copolymers were somewhat soluble. To further study the effect of this 

stabilization, a morphological study for a polymer:PCBM blend using TEM and AFM was 

performed. Figure 4.7 shows example micrographs of the films in TEM and figure 4.8 is the 

AFM. 

Figure 4.7. TEM bright-field micrographs of the five polymers in 1:1 blend with PC60BM. (a-
e)Without thermal annealing (f-j) with thermal annealing. 

Figure 4.8. AFM images of the five polymers in 1:1 blend with PC60BM. (a-e)Without thermal 
annealing (f-j) with thermal annealing.  

When exposed to high temperatures, the sensitive morphology of these blends is expected to 

coarsen and large crystallites of PCBM form. This trend is clearly seen for P2TI-BOC50-P2TI-

BOC10, where huge crystals form. For P2TI-BOC, however, this trend is not observed at all. 

This indicates a stabilized morphology. If not for this effect, the high annealing temperature 
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needed would be impossible to utilize in solar cells, since the performance is greatly dependent 

on film morphology.  
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5. Conjugated Cathode Interlayers for All-Polymer Solar Cells 

The polymers presented in section 3 of this thesis were D-A-polymer with diethylamine pendant 

groups. The use for these polymers is more commonly as interfacial layers between active layer 

and cathode. In this position, they can be utilized in extremely thin layers, around 5 nm, which 

means the harmful effects of their hole-trapping amine functions doesn’t affect the devices 

significantly. Used in this way, they serve several important functions.[51-53] Primarily, they can 

modify the work function of the electrode metal, tuning it more finely to the active layer energy 

levels. They have also been proven to n-dope the PCBM-acceptor of the BHJ, increasing their 

electron transport and reducing interfacial resistance. They serve as an compatibilizer, tuning 

the wettability of the two faces which affects the interfacial morphology. They also serve as a 

diffusion barrier, stopping metal ions from diffusing into the active layer where they would 

harm the device performance.  

Since one of the main function of these polymers is to dope fullerenes and organic solar cell 

research has focused more and more on fullerene-free solar cells, the question is what purpose 

they can serve in an all-PSC. The expected increase in performance is lower, even if the 

important work function tuning would still be present. In order to study if conventional 

conjugated cathode interlayers design is still valid, we present a series of four polymers used as 

cathode interfacial material in all-PCSs. The chemical composition of the polymers used in this 

study are shown in figure 5.1 where the backbones are colored blue, and the pendant groups are 

red. 
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Figure 5.1. Chemical structures of the active layer polymers (Top) and interfacial polymers 
(Bottom). 

The monomers used to produce these polymers were purchased and used without further 

purifications, except for the monomer M1 which was made in a one-step reaction from 2,7-

dibromo-9H-fluorene. The polymers were synthesized in a similar fashion to previously 

presented polymers, with the addition of a post-polymerization reaction step for PFN, 

PFN(EtOH)2 and PFIm. These three polymers were synthesized from a precursor polymer 

called PFBr. The synthesis of these polymers and the monomer synthesis are illustrated in 

figures 5.2.  
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Figure 5.2. Synthesis of the four interlayer polymers. 

Since the primary focus in this work was the interfacial layers, they were characterized 

extensively. Their energy levels were determined by CV and their optical properties by UV-Vis 

and compared to that of the precursor polymer PFBr. These results are summarized in table 5.1.  

Table 5.1. Electrochemical and optical properties 

  electrochemistry  
absorption 

solution film 

polymer  HOMO 
(eV) 

LUMO 
(eV) 

Eg
ec 

(eV)  λmax
b 

(nm) 
λmax

c 

(nm) 
λonset 
(nm) 

Eg
opt 

(eV)d 

PBDB-T  −5.63 −3.34 2.29  616 578 678 1.83 

PNDI-T10  −6.36 −4.02 2.31  639 688 798 1.55 

PFBr  −6.09 −2.38 3.71  381 377 420 2.95 

PFN  −6.02 −2.44 3.58  389 385 425 2.92 

PFN(EtOH)2  −5.83 −2.52 3.44  381 386 424 2.92 

PFIm  −6.14 −2.45 3.69  390 381 424 2.92 

PBzFN  −5.94 −2.57 3.37  375 370 415 2.99 
a)Electrochemical band gap; b)Absorption maximum in chloroform solution; cAbsorption 
maximum in film; d)Optical band gap. 

All four of the interlayer polymers show very similar properties to the precursor polymer PFBr, 

which is not strange considering their backbone similarities. The conjugated backbone is the 

component that governs these properties. While PBzFN differs a bit, it is still a series of phenyl-

rings, giving a twisted backbone structure from the high dihedral angle.[54]  
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The polymers were used in all-PCS devices with conventional structure (ITO/PEDOT:PSS(40 

nm)/active layer (~90 nm)/Interlayer/Al(90 nm)). The interfacial layer polymers (0.2 mg/mL) 

were spin-coated from an acetic acid: methanol solution (0.5%, v/v) onto active layers. PFN 

and PBzFN showed good solubility, while PFIm and PFN(EtOH)2 had limited solubility and 

had to be filtered before spin-coating. The photovoltaic parameters are summarized in table 5.2 

and the J−V curves and EQE curves are depicted in figure 5.3.The performance of devices with 

bare Al-electrodes was expectedly very low. The low performance of these devices can be 

explained by the lack of work-function tuning of the electrode, as well as inefficient charge 

extraction due to high contact resistance. This is clearly visualized in the J-V-curve where 

significant losses in both Jsc and Voc, as well as FF lead to a low PCE of 2.7%. When LiF is 

added the contact is dramatically improved and the end result is a doubled PCE of 5.3%. When 

comparing the polymeric interlayers to LiF, PFN, PFN(EtOH)2 and PBzFN had close to 

identical performance. This indicates that the tertiary amine functional group in these three 

polymers tuned the Al-electrode to a similar degree. In the case of PBzFN, it also shows the 

backbone does not affect the performance significantly. For the polymer PFIm, which had 

imidazole-functionalized side chains, a significant reduction in performance was seen. The Voc 

and FF were unchanged while the current extraction was reduced. The EQE-curves show a 

similar trend. The bare Al-electrode devices are far below the others. PFIm improves it slightly 

and the rest of the interlayers were close to identical, with maximum efficiencies of around 55% 

in the two peaks at 470 nm and 630 nm.  
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Table 5.2. Device parameters of the all-PSCs. 

Cathode Voc 
[V] 

Jsc 
[mA/cm2] FF PCE 

[%] 

Al 0.79 7.9 0.43 2.7 

LiF/Al 0.90 9.9 0.60 5.3 

PFN/Al 0.87 10.2 0.60 5.3 

PFN(EtOH)2/Al 0.86 10.6 0.58 5.3 

PFlm/Al 0.89 8.4 0.60 4.5 

PBzFN/Al 0.87 10.4 0.60 5.4 

The surface morphology of the films was studied using AFM. The resulting images, shown in 

figure 5.4, have almost identical surfaces with very similar roughness. This is not surprising, 

considering the extremely thin layers of the polymers.  

Figure 5.4. AFM images (2.5×2.5 µm) of (a) the naked active layer and (b-e) four interlayers 
on top of the active layer. 

To further study the properties of the polymers, and to verify the presence of interlayers, surface 

contact angle measurements was performed. Five drops per film was used and the average of 

all angles is shown in figure 5.5. The resulting angles are significantly different from the naked 

active layer film, but the difference between the four interlayers are minimal, varying from 88.6 

°to 92.0 °.  

Figure 5.5. Contact angle measurements for (a) the naked active layer and (b-e) the four 
different interlayers. 

This proves that the CIMs are present and that all four of the polymers reduce the 

hydrophobicity of the active layer surface, which should improve wettability between the active 

layer and the electrode.  
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6. Tertiary amine pendant group polymers 

One way to introduce switchable solubility is to include amines into the solubilizing side chains. 

These can easily be oxidized, increasing the solubility in polar solvents dramatically.[55-57] By 

utilizing volatile acids, our hope is to process them and then evaporate the solvent together with 

the acid, regaining the original uncharged amine. Due to the negative effect on solar cell 

performance when highly polar groups such as hydroxyl or amine are included in the active 

layer, the studies of these materials as active layer components in solar cells are few and far in 

between.[56, 58-59] 

Our hypothesis was that the oxidation potential of the donor polymer, related to the oxidation 

potential of the tertiary amine determined if efficient charge transfer could take place inside the 

polymer. This idea is supported by a few publications from the last few years.[56-57, 60] This study 

aimed to verify this, as well as to see if we could tailor the material to work in a satisfactory 

manner with the amines present. This is not such a strange idea, conventional electron transport 

supports that an amine that oxidizes far more easily than a polymer would form a charge trap, 

effectively stopping hole transport of the device.[61]  

In order to study this, a series of seven polymers were synthesized and characterized. The 

polymers have not yet been tried in solar cell devices, but have undergone a series of 

characterization methods to study their electrochemical and optical properties. In some cases, 

the film forming ability has been studied using TEM and AFM.  

To make the polymers comparable to conventional polymers without tertiary amine pendant 

groups, three commonly used moieties were chosen. These were BTz, DPP and II. The 

monomer synthesis pathways are shown in figure 6.1. 



30 

HN
N

N

Br Br

H2N NH2

Br Br

N NaNO2, H2O
AcOH

Br Br

N Zn, AcOH

60oC

S
Br Br

NaOH, KI N
N

N

BrBr

N
N

N

Br Br

NEt2H

DMSO THF

Br N

N

N

Br

Br

NEt2H
H
N

N
H

O

O

S

S

N

N

O

O

S

S

Br Br

NaOH
NBS

N

N

O

O

S

S

Br

Br

DMSO CHCl3 THF

Br

Br

Br

Br

S

S

O

O

N

N

1 2 3 4 M1

5 6 7 M2

H
N

N
H

O

O
Br

Br N

N

O

O
Br

Br

NEt2H

N

N

O

O
Br

Br

THF

M39
8

Br

K2CO3, KI

DMSO

N

N

Br

Br

Figure 6.1. Synthesis of tertiary amine pendant group monomers M1, M2 and M3. 

In the case of benzotriazole the synthesis pathway was longer, since it included the reductive 

ring opening of benzothiadiazole and ring closing with sodium nitrite. The next step was similar 

for all three monomers and was an alkylation reaction with 1,6-dibromohexane. These reactions 

turned out to require drastically different conditions. After a large amount of trial and error, the 

BTz and DPP moieties turned out to require sodium hydroxide while isoindigo degraded under 

the same conditions. After the alkylation step the DPP monomer required bromination. The last 

step for all three was to introduce the tertiary amine group. Due to the relatively short hexyl 

chain, it was judged diethyl amine was suitable to increase solubility. These reactions were 

simple to perform, but the final monomer purification was challenging in all three cases. Several 

steps of chromatography over neutral aluminium oxide and subsequent recrystallization with 

various solvents were required. The following polymers were performed by both Stille and 

Suzuki reactions, as can be seen in figure 6.2. 
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Figure 6.2. Polymerization reactions for the seven copolymers, PBTzBDT-N, PDPPT-N, 
PDPPBDT-N, PBTzT-N, PIIFl-N, PBTzFl-N and PIIBDT-N. 

In all these cases the second monomer was a commercially available monomer that were used 

as received from vendor. Generally, the polymerization reactions were performed under inert 

atmosphere, around 100 °C in anhydrous toluene/DMF 10:1 solvent mixture. The monomers, 

catalyst and co-catalyst solids were mixed in a round bottom flask, held under vacuum for 30 

min and then dissolved in degassed solvent and further degassed for a few minutes. The Suzuki 

reactions were also injected with 2 M K3PO4(Aq) and a few drops of Aliquat 336. They were 

then heated and stirred vigorously until judged complete, which varies from five minutes to 

three days. The polymers were then precipitated from hexane, filtered into a soxhlet thimble, 

successively cleaned with petroleum ether, diethyl ether, and acetone and then extracted with 

chloroform. The chloroform solution was passed through short neutral alumina columns and 

then precipitated from hexane again. The solids were filtered, dried and collected. 

Electrochemical characterization using CV as well as SWV took place for all seven polymers 

and is shown in figure 6.3 and the HOMO and LUMO levels are illustrated in an energy level 

diagram in figure 6.4. 
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Figure 6.3. a) SWV and b) CV for the seven polymers. 
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Figure 6.4. Energy level of the seven donor polymers measured by square wave voltammetry. 

Optical properties measured by UV-Vis gave spectra of staggered absorption for the different 

polymers. Since the aim was to make polymers with a wide variety of band gaps, this was 

expected. The absorption can be seen in figure 6.5. 
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Figure 6.5. (a) Normalized UV-Vis absorption spectra of polymers in film. (b) Normalized 
UV-Vis absorption spectra of polymers in solution. 

For some of the polymers, PBTzBDT-N, PDPPT-N, PDPPBDT-N and PIIFl-N, there is a small 

secondary oxidation peak at around 0.5 V potential. This is likely the oxidation of the pendant 

tertiary amine. This could possibly be dependent on the strength of transition, meaning the 

strongly allowed electron transitions of the polymers which do not show the amine oxidation 

drench out the weak amine oxidation. Table 6.1 presents a summary of the optical properties 

and the electrochemical properties determined by SWV.  

Table 6.1. Optical and electrochemical properties of the copolymers. 

 UV−Vis absorption  
SWV 

 Solution  Film  

Polymer λmax
a
 

(nm)  λmax
b
 

(nm) 
λonset 
(nm) 

Eg
opt 

(eV) c  HOMO 
(eV) 

LUMO 
(eV) 

Eg
ec 

(eV)d 

PBTzBDT-N 625  504 601 2.07  −5.40 −3.49 1.91 

PDPPT-N 571  697 934 1.32  −5.51 −3.76 1.75 

PDPPBDT-N 738  751 940 1.32  −5.62 −3.80 1.82 

PBTzT-N 569  569 671 1.85  −5.67 −3.30 2.37 

PIIFl-N 328  330 644 1.92  −5.99 −3.98 2.01 

PBTzFl-N 415  425 482 2.58  −6.13 −2.84 3.29 

PIIBDT-N 396  400 727 1.71  −5.66 −3.97 1.69 
aAbsorption maximum in chloroform solution; bAbsorption maximum in film; cOptical band 
gap; dElectrochemical band gap. 

In previous publications, the oxidation peak of the tertiary amine has been observed for some 

polymers, while in others it is not observed.[56] To analyze this effect, we decided to compare 
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two different methods of electrochemistry. The common methods SWV and CV were employed 

and analyzed together. A trend can be observed in the resulting voltammogrammes, seen in 

figure 6.6, where SWV and CV for the polymers are compared to measurements of 

triethylamine. 

 
Figure 8. Comparison of oxidation measured by SWV (solid lines) and CV (dashed lines) for 
all seven polymers with TEA as a reference.  
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Due to the difference in method between SWV and CV, it is important to differentiate between 

the data. For SWV the oxidation potential is calculated for the peaks, while for CV the onset of 

oxidation is used. Several of the polymers exhibit oxidation potentials lower than that of the 

TEA, and in these cases the SWV peak is not helpful since the measurement is stopped at the 

first peak. This seems to be the case for all polymers except PIIFl-N and PBTzFL-N and 

possibly a double peak found for PBTzT-N. These former two polymers were designed to have 

a deep HOMO level, which is represented in their oxidation potential. For these two polymers, 

the SWV peaks correspond well with that of TEA. Thus it is quite likely the reported energy 

levels were incorrect, and the second oxidation peaks seen in the CV should be used instead. 

Secondary oxidation peaks in the CV show up in some of the other polymers, but it is harder to 

judge when using the onset in an already oxidized state. The polymers with likely side chain 

oxidation are PBTzBDT-N, PDPPT-N, PDPPBDT-N and most likely PBTzT-N. The last 

polymer, PIIBDT-N, seems to show no tendency of a secondary oxidation peak close to that of 

TEA. PBTzBDT-N and PDPPBDT-N were chosen for further study in blends with PC71BM, 

using TEM and AFM. The results are shown in figure 6.7.  

 

Figure 6.7. a-d) AFM topography, (2×2 μm2) e-h) TEM bright field micrographs of 
polymer:PC71BM blends. 

As seen in the AFM images, and the TEM micrographs, PBTzBDT-N seems to form a rougher 

morphology with domains at the 100 nm scale, while PDPPBDT-N forms smaller domains.  

After the seven polymers were exposed to several series of screening in solar cell devices with 

various treatments, a couple of polymers showed higher than the expected ~0% in device 

performance. These were PBDTzBDT-N and PDPPBDT-N. To study this in a systematic way 
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a series of solar cells were produced from them, as well as a second batch of PBTzBDT-N 

called PBTzBDT-Nb. This polymer seemed to exhibit slightly higher molecular weight as 

well as solubility. Table 6.2 shows a summary of the device performance, as an average of six 

devices, with a few different device configurations. The conventional device structure used 

was: ITO/MoOx/Polymer:PC71BM/LiF/Ag and the inverted device structure was: 

ITO/ZnO/Polymer:PC71BM/MoOx/Ag where some devices also included an interlayer 

between the ITO/ZnO cathode and the active layer.  

Table 6.2. Photovoltaic parameters of devices fabricated using Polymer:PC71BM (1:2.5) bulk 
heterojunction. The average is from six identical devices. 

Polymer JSC 
(mA cm-2) 

FF 
(%) 

VOC 
(V) 

PCE 
(%) 

PBTzBDT-N:PC71BMa 3.1 
(2.98 ± 0.13) 

42 
(41 ± 1) 

0.83 
(0.82 ± 0.01) 

1.01 
(1 ± 0.02) 

PBTzBDT-N:PC71BMb 2.72 
(2.57 ± 0.1) 

40 
(40 ± 0.5) 

0.88 
(0.86 ± 0.02) 

0.94 
(0.87 ± 0.04) 

PBTzBDT-N:PC71BMc 2.15 
(1.85 ± 0.5) 

38 
(36 ± 1) 

0.82 
(0.79 ± 0.03) 

0.61 
(0.53 ± 0.04) 

PBTzBDT-Nb:PC71BM 2.4 
(2.25 ± 0.1) 

43 
(41 ± 2) 

0.37 
(0.34 ± 0.02) 

0.34 
(0.31± 0.02) 

PBTzBDT-Nb:PC71BM 2.25 
(2.57 ± 0.1) 

37 
(36 ± 0.5) 

0.51 
(0.50 ± 0.01) 

0.41 
(0.38 ± 0.03) 

PBTzBDT-Nb:PC71BMd 1.24 
(1± 0.14) 

27 
(26± 0.4) 

0.45 
(0.44± 0.02) 

0.14 
(0.11± 0.01) 

PDPPBDT-N:PC71BMa 1.08 
(1 ± 0.05) 

34 
(32 ± 1) 

0.13 
(0.12 ± 0.01) 

0.04 
(0.04± 0.00) 

PDPPBDT-N:PC71BMb 1.64 
(1.52 ± 0.06) 

35 
(34 ± 0.5) 

0.34 
(0.33 ± 0.01) 

0.18 
(0.17 ± 0.07) 

PDPPBDT-N:PC71BMc 1.65 
(1.38± 0.13) 

38 
(36± 3) 

0.34 
(0.32± 0.03) 

0.21 
(0.16± 0.03) 

a)Inverted device without TPD b)Inverted device with TPD c)Conventional device with MoOx 
d)Conventional device with PEDOT:PSS 
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7. Conclusion and Outlook 

In this thesis, a variety of conjugated polymers were presented with the common theme of side-

chain modification. These show what a flexible method side-chain engineering can be to affect 

the properties of conjugated polymers. Three studies were presented with the focus on 

morphological analysis using TEM. The three different studies presented illustrated what a 

powerful tool TEM can be to characterize thin films of organic material. In the first case, a 

polymer had the alkyl side chains moved one position on a phenyl-ring, resulting in dramatic 

morphological differences. Two of the polymers were also fluorinated on the electron-deficient 

quinoxaline unit, which gave severe phase separation for both polymers. These effects were 

clearly visible in the presented micrographs. The second case illustrated a case where TEM was 

less useful. Due to very fine intermixing the micrographs were mostly gray noise and not much 

information could be gained. In the third case, TEM was used to find the optimal morphology 

range for a polymer:PCBM system. These are interesting examples where TEM has been used 

to gain information in PSCs. Unfortunately, it seems like the future of PSCs might be in either 

all-PSCs or devices with small molecule acceptors. Neither of these generate much contrast to 

the donor polymer, which means TEM might lose its importance.  

In chapter 4, a series of polymers bearing thermocleavable sidechains was presented. Based on 

the results of the TEM- and AFM analysis, BOC protection was shown to be a practical and 

simple way to produce insoluble polymer films from processable polymers. The morphology 

study here showed that the induced hydrogen bonding stops phase separation and PCBM-

crystallization. Utilization of this effect to get long term stability seems like an attractive design. 

Due to the good solubility before heating and the insolubility after, there are many other 

possible applications for these materials outside of PSCs.  

In the following section, four different polymers were synthesized, characterized and used as 

cathode interlayers in all-PSCs. The polymers had three different pendant groups and two 

backbone configuration, to study the effect of these on device performance. All polymers 

significantly improved the performance when compared to bare Al-electrode and the three 

polymers with tertiary amine pendant groups showed almost identical performance to the 

conventional LiF-layer. These results show that the backbone structure is less important, since 

PFN and PBzFN has identical performance. The last polymer, containing an imidazole pendant 

group, was slightly less effective. On the other hand, this polymer showed a higher degree of 

thermal stability. Interfacial layer polymers for all-PSCs is a detail which needs to be further 



38 

studied. The polymers presented in this study performed well, but not above that of the 

benchmark polymer PFN.  

In the last section, seven polymers bearing tertiary amine sidechains were presented. The aim 

was to produce alcohol-/water processable polymers with staggered energy levels to see if it 

would affect the generally poor device performance when tertiary amines are present in the 

active layers. Using different monomer combinations, the difference in energy levels gave 

staggered absorption spectra and oxidation-/reduction potentials. To carefully analyze the 

electrochemical properties, both CV and SWV were used and in some of the polymers, it was 

possible to see a small secondary oxidation in the same position, around 0.5 V. This is attributed 

to the tertiary amine oxidation. The polymers were screened in solar cells to see if any 

performance was seen, and in depth study for three polymers was performed. One polymer 

showed a steady efficiency of ~1% but the fundamental reasons to why one polymer works the 

others do not is still not clear. Even though it is likely the solar cell performance will always be 

lackluster at best, they still might be useful in other application where the amine might be useful, 

instead of harmful.  
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