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1 INTRODUCTION 

This report outlines the theory and methodology used in the Chalmers in-house propeller design code OPTOPROP. 

The design code was developed in order to enable the design of propeller blades for aircraft engines, particularly 

for open rotor engines. A literature study of existing propeller design and analysis methods is done, and a number 

of promising design methods based on the Blade Element-Momentum and Blade Element-Vortex methods are 

implemented. An in-house variant of these design and analysis methods is also derived which can account for non-

uniform inflow to the propeller. The methods are validated against experimental results from literature and 

numerical (CFD) simulations and show good accordance in their trends. The design methods would benefit from 

calibration since the thrust obtained thrust values from CFD are slightly under-predicted relative to OPTOPROP. 

Nevertheless, the design program has shown itself to be very useful for the design and optimization of propellers 

and open rotor blades. 

2 LITERATURE REVIEW 

A literature study was conducted regarding methods on how to design and analyze propellers, with methods 

ranging in complexity from Blade Element Methods (BEM) to Panel Methods. The main idea of this literature study 

is to investigate what kind of tools, methodology, and reasoning are being used for propeller design. 

2.1 ZONDERVAN 

The author gives a small review [1] of the modelling challenges associated with propellers, starting with the 

simplest models all the way to Euler methods. The main points are: 

 Propeller design for open rotors is complicated due to the complex shape of the blades, transonic operating 

regime, and high blade loading (at least during take-off).  

 Highly loaded propeller blades experience non-linear effects, and will not have the ordered helical wake 

structures common for lightly loaded propellers. Unfortunately, this paper does not mention what can be 

considered light or heavy loading. Only direct reference is that loading is high during take-off. 

 Any distortion (high loading, low forward speed, wings, nacelles, engine angle-of-attack, etc) of the helical 

wake structures complicate the propeller analysis.  

 When designing for a large number of blades, cascade effects has to be considered.  

 Nacelle boundary layers are usually omitted when analyzing propellers with methods simpler than CFD. 

 Some sort of tip model has to be used in order to account for the effects of the tip vortex on blade design and 

performance.  

 Momentum Theories (Rankine, Froude) are very rough models. The blade is treated as a discontinuity where 

thrust is produced.  

 The Blade Element Method does not include the effects of the wake on the blade. 

 The Momentum-Blade Element Theory models both the blade and wake, and can also include a tip loss factor 

(commonly the Prandtl tip loss factor). 

 Vortex methods have a wake with a prescribed shape, and does not include wake contraction. The induced 

axial velocities at the disk are half of the values in the downstream wake. Goldstein [2] and Theodorsen [3] 

ŵade fuƌtheƌ deǀelopŵeŶts to these theoƌies iŶ the ϭ9ϮϬ’s aŶd ϭ94Ϭ’s.  
 Theodorsen showed that the important factor for when designing an optimum propeller, is that the axial 

velocity increase (called displacement velocity) of the wake is constant with respect to radius, which in the end 

results in a helical wake. This idea is similar to the constant downwash of an elliptically loaded wing, which is 

the optimum for a wing with a tip vortex.  

 Using vortex methods for off-design analysis is only valid very close to the design point, since at off-design the 

wake no longer adheres to its heliĐal ͞optiŵuŵ͟ shape. Any condition where the wake does not behave in this 



4 

 

helical way (take-off, landing, high loading, and highly 3D flow) will lead to larger discrepancies between the 

vortex methods and reality. 

2.2 MCCORMICK  

A second review of propeller design and analysis methods can be found in a book by McCormick [4]. Several 

concepts are similar to the ones mentioned by Zondervan, so only the additional ones will be mentioned here: 

 Vortex methods assume that the induced velocities at the disk are perpendicular helical vortex sheets that 

extend from the propeller blade sections. 

 The Betz condition for an optimum propeller is that the pitch of the helical vortex sheets in the far wake have 

the same value.   ௪� = ሺ��ሻ݊�ݐݎߨʹ =  ݐݏ݊ܿ

 The circulation at the blade and in the far wake must be the same.  

2.3 LARRABEE 

This paper [5] discusses a straight-forward way of obtaining propeller designs for the Minimum Induced Loss 

condition, which also adheres to the Betz condition.  

 Based on the Vortex methods. 

 Uses the Prandtl tip loss factor. 

 Larrabee models the wake as an infinite trailing vortex sheet, and uses the concept of constant displacement 

velocity (similar to wings with constant downwash). 

 One unfortunate approximation made by Larrabee is the one of light loading which neglects the induced 

velocities at the propeller plane, which simplifies some of his equations. This also leads to the design and 

analysis methods in his paper to give different results at the design point. 

 The displacement velocity is solved for directly from a second order polynomial, and the only input needed is 

either the required power or thrust. 

2.4 ADKINS 

Builds [6] on the Theodorsen methodology, but is much simpler to implement.  

 Conceptually similar to the Larrabee paper, but without any light loading assumptions. 

 Uses the Prandtl tip loss factor and Betz condition for optimum propellers.  

 Connects the displacement velocity to the Betz condition and shows that the displacement velocity is 

constant with respect to radius. 

 The displacement velocity is solved iteratively from a second order polynomial with pre-specified thrust or 

power. Larrabee could solve it directly, but only because of his light loading assumption. 

 The design and analysis methods of the paper give virtually the same results for the same propeller 

design. 

2.5 DRELA 

A student of Larrabee which has written his own propeller analysis code QPROP. The theory behind QPROP [7] is 

available online, and can be briefly described in the following way: 

 Larrabee and Adkins use variants of the Momentum-Blade Element Theory together with a prescribed wake. 

Drela instead uses the equations for describing what happens at the blade element to calculate the circulation 

produced there, and equals it to circulation of the wake.  
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 The blade and the wake are connected with an unreferenced equation, which relates the tangential velocity in 

the blade with the circulation in the wake. Unfortunately no source or derivation of this equation is given.  

 Drela assumes that the induced velocities at the blade are perpendicular to the velocity in the relative frame.  

 The esseŶtial paƌt of Dƌela’s Đode is that it takes aŶ eǆistiŶg pƌopelleƌ geoŵetƌǇ aŶd an uninduced flowfield, 

and iterates on the induced velocities at the blade until the circulation in the blade matches what it is in the 

wake. 

 Drela has used a very clever parametrization of the velocities in the blade element, which allows the program 

to quickly converge on a result. 

 For minimum induced loss design, some variables (chord, blade angle, sectional induced efficiency) are set to 

vary in order to find a target thrust or power. 

 Drela shows that for a minimum induced loss propeller, the induced efficiency for each blade section is 

independent of blade radius. A higher induced efficiency gives lower thrust, while a lower induced efficiency 

gives higher thrust, so the efficiency acts a lever in order to reach a target thrust. 

2.6 BECHET AND NEGULESCU (2011) 

This paper [8] is a basis for the Negulescu paper below, and contains mainly: 

 Explanation of the design process used for the AI-PX7 open rotor configuration. 

 The lifting line method is used, but is only valid for preliminary design of blades. It is still important 

because it captures a large part of the physics. 

 Initial design of the AI-PX7 was done with the lifting line tool LPC2, and then performing small changes to 

the geometry and simulating it using CFD. The chord, sweep, camber, and thickness are varied over 

relative small ranges and the trends on performance are observed. 

2.7 NEGULESCU (2013) 

A good overview [9] of the main parameters influencing the design and performance of a CROR. The design used in 

the same as in the paper by Bechet [8] (Negulescu is a co-author). The author gives sensible parameter ranges for 

number of blades, rotor spacing, rear rotor clipping, etc. 

2.8 GONZALEZ-MARTINO (2013) 

The authors [10] compare results between CFD and an unsteady lifting line tool called HOST to compare a generic 

open rotor configuration (AI-PX7) at Mach 0.73. The results for the lifting line are very well aligned with the CFD, 

with the thrust differing only 1.5%. The lifting line tools seems quite capable, but is more complex to implement 

than the BEM and vortex methods.  

The AI-PX7 blade and nacelle configuration has been mentioned in another paper by Negulescu [8], in which blade 

parameter sweeps are done with a lifting line tool called LPC2. 

2.9 KOBAYAKAWA (1985) 

A sophisticated and complex vortex lattice method is used in this paper [11] for the simulation of the NASA SR-3 

propeller. Unfortunately, this particular method is only suitable for tip speeds below Mach 1 and cannot handle 

transonic flow. The method accounts both for sweep and lean, but is incompressible. The results agree well with 

experiments, but the performance can only be calculated for axial Mach numbers below 0.6.   
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3 THEORY 

Based on the literature study, it was decided to start with the simpler BEM and vortex methods because of their 

approachability and simplicity in comparison with the lifting line and vortex lattice methods. 

3.1 COMMON TERMINOLOGY 

3.1.1 Blade element velocities 

 
Figure 1 - Propeller blade section including induced velocities and 

flow angle. Source: Adkins [6]. 

 

 
Figure 2 – Propeller wake far downstream. Source: Adkins [6]. 

 

The induction factors � and �′ denote the induced axial and tangential velocities at the blade element, giving 

velocities and flow angle at the blade element corresponding to: 

 �ܹ = ܸሺͳ + �ሻ (1) 

 ௧ܹ = Ωݎሺͳ − �′ሻ (2) 

 ܹ = √ �ܹଶ + ௧ܹଶ (3) 

 tan � = ܸሺͳ + �ሻΩݎሺͳ − �′ሻ (4) 

This is done assuming that the inflow is uniform with velocity ܸ and no upstream induced tangential velocities 

(from other propellers or nacelles).  

3.1.2 Wake velocities 

The axial velocity displacement ݒ′ in the far wake is shown in Figure 2. It is common to rewrite it using an axial 

velocity displacement ratio ߞ =  For the Larrabee and Adkins theories, the vortex sheet is assumed to move .ܸ/′ݒ

with same angle as the flow angle at the propeller blade section. 

3.1.3 Prandtl tip loss factor 

The Prandtl tip loss factor is a simple model that accounts for the effects of a tip vortex on the flow passing 

through it. This is done by decreasing the amount of momentum that the blade tip can impart on the flow at the 

blade tip. The definition is as displayed below: 

ܨ  = ߨʹ acos ݁− (5) 

Where the factor ݂ is defined differently for the various methods in this article.  
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3.2 METHODOLOGY OF LARRABEE 

The foundation of the methodology of Larrabee rests mainly on the following concepts: 

 Blade element force calculation based on induced axial � and tangential velocity factors (� and �′, see 

Figure 1). 

 Prescribing a shape for the propeller helical wake (Figure 2). 

 The Betz condition for an optimum propeller is expressed through an axial velocity displacement (ݒ′), 
which is constant with respect to radius. 

 Light loading assumption, which neglects wake contraction, and assumes that the induced velocities are 

small relative to the magnitude of the axial and rotational non-induced velocities. 

 The flow angle of the helical wake is assumed to identical to the one at the blade section. 

3.2.1 Wake equations 

The helical wake is modelled as a vortex sheet extending from the propeller section, and its tangential velocity is 

determined by (see Figure 1): 

௧ݓ  = ݓ sin� = ′ݒ sin� cos� (6) 

This is the tangential velocity of the helical wake that the whole propeller produces, and varies with radius. The 

circulation can then be calculated for annular strips of the wake as follows: 

Γܤ  = ܨ௧ݓݎߨʹ = ′ݒݎߨʹ sin� cos�  (7) ܨ

Where ܨ is the Prandtl tip loss factor, and Γ is the circulation produced by each blade. The trigonometric terms can 

be rewritten using the velocities in Figure 1, and assuming light loading one can neglect the induced velocities to 

obtain: 

 sin� = ͳ√ͳ + ଶ cosݔ � = ͳ√ݔ + ݔ ଶݔ = Ω(8) ܸ/ݎ 

This is a rather major simplification (since Adkins later showed it to be unnecessary), which will later lead to the 

Larrabee design and analysis routines returning slightly different results. Combining equation (7) and (8): 

′ݒܸߨʹΓΩܤ  = ଶͳݔ + ଶݔ ܨ =  (9) ܩ

Where: ܨ = ߨʹ acosሺ݁−ሻ ݂ = ܤʹ ଶߣ√ + ͳ ߣ ሺͳ − �ሻ ߣ = Ωܸܴ (10) 

The nondimensional radius is denoted with �. Equation (9) above can be rewritten for the blade circulation in 

terms of the axial velocity displacement ratio ߞ: 

 Γ = Ωܤܩ′ݒܸߨʹ = Ωܤܩߨʹ ܸଶζ (11) 
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3.2.2 Blade section equations 

 

Figure 3 - Forces acting on a blade element. Source: Adkins (1994). 

Blade thrust sectional thrust ܶ′ =  : can be written with the help of Figure 3 ݎ݀/ܶ݀

 ܶ′ = ′ܮ cos � − ′ܦ sin � = ′ܮ cos�ሺͳ − ߳ tan �ሻ (12) 

Where ߳ is the drag-to-lift ratio for the airfoil section. The trigonometric terms can be rewritten using the relations 

in equation (8). The lift term can be written with the Kutta-Joukowski theorem using the blade circulation: 

 ܶ′ = ′ܮ cos �ሺͳ − ߳ tan�ሻ = Γܹߩܤ cos�ሺͳ − ߳ tan�ሻ (13) 

 ܶ′ = ΓΩrሺͳߩܤ − �′ሻሺͳ − ߳ tan�ሻ (14) 

The tangential velocity induction factor �′ is assumed to be half the value of the tangential velocity in the wake ݓ௧: 

 �′ = ͳʹ ݎ௧Ωݓ = ͳʹ ′ݒ sin� cos�Ωݎ = .ݍ݁} ሺͺሻ} = ͳʹ ߞ  ͳͳ +  ଶ (15)ݔ

 → ܶ′ = ΓΩrߩܤ (ͳ − ͳʹ ߞ  ͳͳ + (ଶݔ ሺͳ − ߳ tan�ሻ (16) 

The circulation Γ is taken from the wake (eq. (11)), and the tan� term is simplified with equation (8): 

 → ܶ′ = ߞଶܸܩߩݎߨʹ (ͳ − ͳʹ ߞ  ͳͳ + (ଶݔ ቀͳ −  ቁ (17)ݔ߳

The interesting result here is that the velocity displacement ratio ߞ is constant with respect to the radius, and 

therefore the entire expression above can be integrated from hub to blade tip. This results in the blade thrust on 

the left hand side, and a number of integrals on the right hand side which will form the coefficients of a second 

order equation with ߞ as the variable. In this way, one can specify thrust, and obtain the needed velocity 

displacement ratio.  

3.2.3 Constraint equations 

The design will now be constrained to a particular thrust or power. For this document only thrust will be used, but 

power can easily be implemented. First, the sectional thrust is rewritten with the help of the thrust coefficient ܶ: 

 �ܶ = ଶܴߨଶܸߩܶʹ → ܶ′ = ݎ݀ܶ݀ = ͳʹ ܴߨଶܸߩ ݀ ܶ݀�  (18) 
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Where � is the dimensionless radius. Substituting equation (18) into (17): 

 ݀ ܶ݀� = Ͷ�ߞܩ ቀͳ − ቁݔ߳ − ଶߞܩ�ʹ ( ͳ − ଶݔ߳ + ͳ) (19) 

Integrating this expression from hub (�ଵ = �) to tip (ܴܶܪ = ͳ), will allow the velocity displacement to be solved 

for given a thrust coefficient ܶ: 

ߞ  = ଶܫʹଵܫ ቌͳ + √ͳ − Ͷܫଶ ܶܫଵଶ ቍ (20) 

Where the integrals ܫଵ and ܫଶ can be computed directly: 

ଵܫ  = ∫ Ͷ�ܩ ቀͳ − ቁݔ߳ ݀��మ
�భ ଶܫ  = ∫ ܩ�ʹ ቌ ͳ − ଶݔݔ߳ + ͳቍ݀��మ

�భ  (21) 

Knowing ߞ allows the calculation of the induction factors. The tangential induction factor is found with equation 

(15), and the axial induction factor is assumed to be half of the wake axial velocity: 

 � = ͳʹ ′ݒ cosଶ � = .ݍ݁} ሺͺሻ} = ͳʹ ܸߞ  ଶͳݔ +  ଶ (22)ݔ

The flow angle becomes according to Figure 1: 

 � = atan ቆ ܸሺͳ + �ሻΩݎሺͳ − �′ሻቇ (23) 

3.2.4 Larrabee design algorithm 

Below is a short description of the algorithm based on the Larrabee method. Blade diameter, hub radius, axial 

velocity, rotational velocity, and number of blades have to be set before initiating design. 

Larrabee design algorithm 

1. Specify �ܶ  and design lift coefficient distribution ܿ = ݂ሺݎሻ. 

2. Calculate:  

a. The Prandtl tip loss factor with eq. (10). 

b. The G function with eq. (9). 

c. The coefficient of drag ܿௗ  and angle of attack ߙ from airfoil data. Allows calculation of ߳ = ܿௗ/ܿ.  
3. Calculate the integrals ܫଵ and ܫଶ with equation (21). 

4. Solve the polynomial for ߞ. 

5. Calculate the induction factors � and �′ using equations (15) and (22). The total velocity W can also be 

calculated.  

6. Calculate the flow angle �. The blade angle can be calculated through ߚ = � +  .ߙ

7. Calculate ݀ܶ/݀ݎ and ݀ܳ/݀ݎ and integrate to obtain thrust, torque, power, and efficiency.  

8. The circulation can be calculated with equation (11), which then together Kutta-Joukowski equation for lift 

yields the chord of the blade section: 

Γܹߩ  = ͳʹ ଶܹܿܿߩ → ܿ = ʹΓܹܿ 
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If Reynolds and Mach numbers are needed in order to estimate the blade section ܿ, ܿௗ, and ߙ, then one should 

iterate from point 2 to 8, and update the Reynolds and Mach numbers with the obtained total velocity ܹ and 

chord. This should be done until the drag-to-lift ratio ߳ reaches convergence. 

 

Chord is in this case an output variable since the lift distribution is pre-specified. The lift coefficient distribution can 

be iterated on to yield a wanted chord distribution.  

3.2.5 Larrabee analysis algorithm 

If the blade design already exists, then Larrabee provides another method that can be used to analyze the 

performance given a particular flowfield. This method will not be elaborated on further, since Adkins uses the 

same method, and is presented in the next section. 

3.3 METHODOLOGY OF ADKINS 

The ŵethodologǇ used ďǇ AdkiŶs is siŵilaƌ to Laƌƌaďee’s, but introduces some additional concepts: 

 Incorporates momentum equations between far upstream and far downstream of the blade, which is 

consistent with Actuator Disk Theory.  

 Does not use the light loading assumption in which the induced velocities are assumed small relative to 

the magnitude of the freestream velocities (axial and tangential). 

3.3.1 Momentum equations 

The air flowing through an annular volume extending from far upstream, through a blade section with length ݀ݎ, 

and continuing far downstream, will experience a force and torque equal to the thrust and torque of the blade. 

This can be written for the sectional thrust and torque as follows: 

 ܶ′ = ሺͳܸߩݎߨʹ + �ሻሺʹܸ�ܨሻ (24) 

ݎ′ܳ  = ሺͳܸߩݎߨʹ + �ሻሺʹΩܨ′�ݎሻ (25) 

The terms in the second parenthesis are the changes in axial and tangential velocity that the air experiences when 

travelling through the annular streamtube.  

3.3.2 Wake equations 

The eƋuatioŶ foƌ the ĐiƌĐulatioŶ iŶ the ǁake is the saŵe as iŶ Laƌƌaďee’s method.  

 Γ = Ωܤܩ′ݒܸߨʹ = Ωܤܩߨʹ ܸଶζ (26) 

ܩ  = ݔܨ cos� sin� (27) 

The Prandtl tip loss factor is defined slightly different: 

ܨ  = ߨʹ acosሺ݁−ሻ ݂ = ܤʹ ሺͳ − �ሻ ͳsin�� �� = atan ቆߣ (ͳ +  ቇ (28)(ߞʹ

3.3.3 Blade section equations 

The blade section equations are identical to the ones used by Larrabee: 

 ܶ′ = ′ܮ cos �ሺͳ − ߳ tan�ሻ (29) 
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ݎ′ܳ  = ′ܮ sin� (ͳ + ߳tan �) (30) 

 

3.3.4 Induction factors 

The sectional lift term is replaced by the Kutta-Joukowski equation for lift together with eq. (11): 

′ܮ  = Γܹߩܤ = Ωܩߞଶܹܸߩߨʹ  (31) 

Which is then inserted into the blade section thrust and torque equations (29) and (30): 

 ܶ′ = Ωܩߞଶܹܸߩߨʹ cos�ሺͳ − ߳ tan�ሻ (32) 

ݎ′ܳ  = Ωܩߞଶܹܸߩߨʹ sin� (ͳ + ߳tan�) (33) 

In order to get expressions for the axial and tangential induction factors, the momentum equations (24) and (25) 

are equaled to the expressions for blade thrust and torque above, and solved for � and �′. 
 � = ߞʹ cosଶ � ሺͳ − ߳ tan �ሻ (34) 

 �′ = ݔߞʹ sin� cos� (ͳ + ߳tan �) (35) 

3.3.5 Proof of minimum induced loss 

The Betz condition for a propeller or windmill with minimum induced loss (MIL) is that the wake behaves as a 

helicoid, and that the expression ݐ ݎ�݊ � is constant with respect to radius (according to Adkins). A proof of the 

statement that the velocity displacement ratio ߞ =  is constant with radius for a MIL propeller will be ܸ/′ݒ

obtained in this section. Starting with equation (34) and (35) the drag-to-lift ratio ߳ can be eliminated: 

 (ͳ − ߞ�ʹ cosଶ �) ͳtan� = ቆ ߞ′�ݔʹ cos � sin � − ͳቇ tan� (36) 

After some manipulation, the following is obtained: 

ߞʹ  = � + ′�ݔ tan� (37) 

 tan � = ܸሺͳ + �ሻΩݎሺͳ − �′ሻ → ሺ͵ሻ (38) 

 → ݎ tan � = Ωܸ ߞʹ) + ͳ)  (39) 

Since the Betz condition states that the left hand side must be constant with respect to radius for MIL propeller, so 

must the right hand side, including the velocity displacement ratio ߞ. Rewriting the equation above in a more 

convenient form: 

 tan � = �ߣ (ͳ +  (40)  (ߞʹ
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3.3.6 Constraint equations 

As was the case for Larrabee, the design must be constrained by setting either a thrust or torque. The approach is 

similar, and will not be treated in any great detail here, but instead outlined: 

ߞ  = ଶܫʹଵܫ ቌͳ + √ͳ − Ͷܫଶ ܶܫଵଶ ቍ (41) 

�ଵ݀ܫ݀  = Ͷ�ܩሺͳ − ߳ tan�ሻ 
�ଶ݀ܫ݀ = �ߣʹ �ଵ݀ܫ݀ (ͳ + ߳tan �) sin� cos� (42) 

The expressions in eq. (42) above are written in un-integrated form for clarity. After integrating both, the velocity 

displacement ratio can be calculated. One difference relative to the Larrabee method is the inclusion of the flow 

angles, which makes this method iterative instead of direct. 

3.3.7 Reynolds number calculation 

The Reynolds number is needed for the correct calculation of blade section lift and drag coefficients. Equaling the 

lift produced by a blade section with the Kutta-Joukowski equation gives: 

 ͳʹ ଶܹܿܿߩ =  Γ (43)ܹߩ

With equation (26) the term ܹܿ can be written as follows: 

 ܹܿ = Ͷܿߞܴܸܩߣߨܤ  (44) 

3.3.8 Adkins design algorithm 

Below is a short description of the algorithm based on the Adkins method. Blade diameter, hub radius, axial 

velocity, rotational velocity, number of blades, thrust coefficient �ܶ , and design lift distribution have to be set 

before initiating design. 

Adkins design algorithm 

1. Set an initial guess for ߞ (equal to zero works). 

2. Calculate:  

a. The Prandtl tip loss factor with eq. (28). 

b. The flow angle for each radial position with eq. (40). 

c. The G function with eq. (27). 

d. The product of total velocity ܹ and chord, which is used to calculate Reynolds number. 

3. Calculate coefficient of drag ܿௗ  and angle of attack ߙ from airfoil data. Allows calculation of ߳ = ܿௗ/ܿ. 
4. Calculate � and �′, which gives the total velocity ܹ = ܸሺͳ + �ሻ/ sin �. 

5. Calculate chord and blade angle ߚ = � +  .ߙ

6. Integrate the terms in eq. (42) and solve for ߞ with eq. (41). 

7. Go back to step 2 and Iterate until ߞ converges on a final value. 

8. Calculate ݀ܶ/݀ݎ and ݀ܳ/݀ݎ in and integrate to obtain thrust, torque, power, and efficiency.  

 

Mach number can be included for the airfoil sections, but will only be calculated after step 4, and it will only 

effect the next iteration. 

 

 

Chord is in this case an output variable since the lift distribution is pre-specified. The lift coefficient distribution can 

be iterated on to yield a wanted chord distribution, exactly as with the Larrabee method. 
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3.3.9 Adkins analysis method 

The method for analysis in AdkiŶ’s papeƌ is ǀeƌǇ siŵilaƌ to the Momentum-Blade Element Theory. Starting with 

Figure 4, the blade element force coefficients ܿ௫  and ܿ௬ are written using the lift and drag coefficients, which are 

then used in expressions for sectional thrust and torque: 

 ܿ௬ = ܿሺcos � − ߳ sin�ሻ ܿ௫ = ܿሺsin� + ߳ cos�ሻ (45) 

 ܶ′ = ͳʹ  ௬ܿܿܤଶܹߩ
ݎ′ܳ = ͳʹ ௫ܿܿܤଶܹߩ  (46) 

By equaling equation (46) with the momentum equations (24) and (25), and solving for the induction factors � and �′ results in two expressions: 

 � = �ܿ௬Ͷܨ sinଶ � − �ܿ௬ �′ = �ܿ௫Ͷܨ sin � cos� + �ܿ௫  � =  (47) ݎߨʹܿܤ

The solidity of the blade is termed �. The analysis algorithm is outlined below. 

 

Figure 4 - Blade element force coefficients �࢞ and �࢟. Source: Adkins (1994). 

Adkins analysis algorithm 

1. Set the initial guess for the flow angle. Use � = atanሺܸ/Ωݎሻ. 

2. Since the blade angle and flow angle are known, angle-of-attack can be calculated with ߙ = ߚ − �. 

3. Calculate airfoil coefficients ܿ and ܿௗ. If Reynolds and Mach numbers are needed, use either the initial 

values for velocity or the velocity from the previous iteration. 

4. The Prandtl tip loss factor with eq. (28). Adkins suggests tan�� = � tan� for calculating ��  for analysis. 

5. Calculate the blade element force coefficients ܿ௫  and ܿ௬ with eq. (45). 

6. Calculate the induction factors � and �′ with eq. (47), which will give an update on the total velocity ܹ. 

7. Calculate a new flow angle: �௪ = atan ܸሺͳ + �ሻΩݎሺͳ − �′ሻ 

 

8. Update the flow angle using a relaxation factor ߢ: 

 � = ሺͳ − ሻ�ௗߢ + ௪�ߢ  

 

9. Back to step 2 and iterate until the flow angle has converged. 
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The AdkiŶs desigŶ aŶd aŶalǇsis ŵethods ǁill ƌetuƌŶ the saŵe peƌfoƌŵaŶĐe at the desigŶ poiŶt, ǁhiĐh Laƌƌaďee’s 

method could not achieve. 

3.3.10 Extending the methodology of Adkins for upstream induced flow 

The methodology of Adkins is essentially a Momentum-Blade Element Theory that is constrained by the Betz 

condition on the wake (i.e. the wake being helicoidal). In this section of the report, the author has derived an 

extension to Adkins method which incorporates upstream velocities that have been induced by either a nacelle or 

an upstream counter-rotating propeller, giving rise to a non-uniform inflow. 

The design and analysis methods are based on the Adkins analysis algorithm, with modification to account for non-

uniform upstream flow. The momentum equations are very similar to previous ones, but with a modification in the 

mass flow through the control volume (marked bold below): 

 ܶ′ = ሺܸߩݎߨʹ + � + �∞ሻሺʹܸ�ܨሻ = Ͷܸߩݎߨଶ�ሺͳ + � + �∞ሻ(48) ܨ 

ݎ′ܳ  = ሺܸߩݎߨʹ + � + �∞ሻሺʹΩܨ′�ݎሻ = ͶݎߨଶߩΩܸ�′ሺͳ + � + �∞ሻ(49) ܨ 

The blade section velocities and are now defined in the following way: 

 �ܹ = ܸሺͳ + � + � ∞ሻ ௧ܹ = Ωݎሺͳ − �′ − � ∞′ ሻ ܹ = √ �ܹଶ + ௧ܹଶ (50) 

If the upstream axial velocity is below the freestream velocity ܸ, then �∞ < Ͳ. If an upstream rotor has produced 

swirl that is in the opposite direction of Ω, then �∞′ < Ͳ. If the momentum equations are equaled to the thrust and 

torque acting on the blade element (eq. (46)), one obtains equations of the induction factors that are very similar 

to eq. (47). The only difference is the inclusion of the upstream velocities: 

 � = ሺͳ + �∞ሻ�ܿ௬Ͷܨ sinଶ � − �ܿ௬ �′ = ሺͳ − �∞′ ሻ�ܿ௫Ͷܨ sin � cos� + �ܿ௫  � =  (51) ݎߨʹܿܤ

These equations will naturally become eq. (47) if the inflow is uniform. The analysis algorithm is outlined below. 

Capitao analysis algorithm 

1. Set the initial guess for the flow angle. Use � = atan(ܸሺͳ + �∞ሻ/Ωݎሺͳ − �∞′ ሻ). 

2. Since the blade angle and flow angle are known, angle-of-attack can be calculated with ߙ = ߚ − �. 

3. Calculate airfoil coefficients ܿ and ܿௗ. If Reynolds and Mach numbers are needed, use either the initial 

values for velocity or the velocity from the previous iteration. 

4. The Prandtl tip loss factor with eq. (28). Use the present flow angle at the tip as ��. 

5. Calculate the blade element force coefficients ܿ௫  and ܿ௬ with eq. (45). 

6. Calculate the induction factors � and �′ with eq. (51), which will give an update on the total velocity ܹ. 

7. Calculate a new flow angle: �௪ = atan ܸሺͳ + � + �∞ሻΩݎሺͳ − �′ − �∞′ ሻ 

 

8. Update the flow angle using a relaxation factor ߢ: 

 � = ሺͳ − ሻ�ௗߢ + ௪�ߢ  

 

9. Back to step 2 and iterate until the flow angle has converged. 
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3.3.10.1 Proof of minimum induced loss 

The analysis routine outlined above can only analyze existing blade geometries, and in order to find a propeller 

with minimum induced loss, the geometry needs to be modified (and then analyzed again). A MIL propeller with a 

uniform inflow respects the Betz condition by having a constant velocity displacement ratio ߞ with respect to 

radius. A more general way to express the Betz condition is to use some sort of efficiency. Starting with the 

propeller efficiency for a propeller blade section: 

ߟ  = ܸ݀ܶΩ݀ܳ (52) 

Expanding the thrust and torque with the Kutta-Joukowski equation: 

ݎ݀ܶ݀  = ݎ݀ܮ݀ ሺcos� − ߳ sin�ሻ = �Γሺcosܹߩܤ − ߳ sin�ሻ (53) 

 → ݎ݀ܶ݀ = Γሺܹߩܤ cos� − ܹ߳ sin�ሻ = Γሺߩܤ ௧ܹ − ߳ �ܹሻ (54) 

 ͳݎ ݎܳ݀݀ = ݎ݀ܮ݀ ሺsin � + ߳ cos�ሻ = �Γሺsinܹߩܤ + ߳ cos�ሻ (55) 

 → ݎܳ݀݀ = Γሺܹݎߩܤ sin � + ܹ߳ cos�ሻ = Γሺߩܤ �ܹ + ߳ ௧ܹሻ (56) 

 → ߟ = Ωܸݎ ሺ ௧ܹ − ߳ �ܹሻሺ �ܹ + ߳ ௧ܹሻ (57) 

The sectional propeller efficiency can with some additional work be subdivided into three efficiencies, an upstream 

efficiency ߟ௨, and induced efficiency ߟ�, and a profile efficiency ߟ: 

ߟ  =   (58)ߟ�ߟ௨ߟ

௨ߟ  = ͳ − �∞′ͳ + �ߟ ∞� = ͳ − �′ͳ − �∞′ͳ + �ͳ + ߟ ∞� = ͳ − ߳ �ܹ/ ௧ܹͳ + ߳ ௧ܹ/ �ܹ (59) 

The upstream efficiency can go above 100%, if there is upstream swirl (�∞′ < Ͳ) or lower axial velocity. The 

induced efficiency goes towards 100% as the induction factors � and �′ go towards zero. Profile efficiency is always 

below 100% except for the exceptional case where the airfoil procures no drag. For a minimum induced loss 

propeller that has a non-uniform inflow, the profile efficiency is ignored by setting ߳ = Ͳ in equation (58): 

ߟ̅  = �ߟ௨ߟ = ܸ ௧ܹΩݎ �ܹ = ܸܹ cos�Ωܹݎ sin � = ܸΩݎ tan� (60) 

 → ݎ tan� = Ωܸ ͳ̅ߟ =  (61) .ݐݏ݊ܿ

In order for a propeller to be at the MIL condition it has to adhere to the Betz condition, which results in ̅ߟ (here 

called the induced efficiency from now on) being a constant, independent of radius. 

3.3.10.2 Constraint equations and design algorithm 

In order to reach an optimal design, the geometry needs to be changed until reaching a thrust target and 

maximizing efficiency. Two cases have been implemented, one for pre-specified chord and one for pre-specified ܿ 
distribution. The set of constraint equations used are in the form of residual equations that are driven to zero with 
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different numerical schemes. There are two levels of residual equations, a global residual equation in order to 

reach desired thrust (or power), and local residual equations in order to reach desired chord or lift distributions. 

Pre-specified chord Pre-specified ܿ 
Global residual: ܴ� = ܶሺ̅ߟሻ − ௦ܶ → Ͳ 

or ܴ� = ܲሺ̅ߟሻ − ௦ܲ → Ͳ 

 

Global variable: ̅ߟ 

 

Minimization routine: 

Bisection method (interval halving) 

 

Global residual: ܴ� = ܶሺ̅ߟሻ − ௦ܶ → Ͳ 

or ܴ� = ܲሺ̅ߟሻ − ௦ܲ → Ͳ 

 

Global variable: ̅ߟ 

 

Minimization routine: 

Bisection method (interval halving) 

 

Residual for each radial position: ܴ�̅ = ߟ̅ − �ܹݎΩݐܹܸ → Ͳ 

 

Local variable: ߚ 

 

Minimization routine: 

Newton-Raphson : �ߚ = − ��̅���̅ ��⁄  

 

Residuals for each radial position: ܴ�̅ = ߟ̅ − �ܹݎΩݐܹܸ → Ͳ 

 ܴ� = ܿ − ܿ,௦ → Ͳ 

 

Local variable: ܿ,  ߚ

 

Minimization routine: 

Newton-Raphson: 

 

⌈ܿ�ߚ�⌉ = [   
  ߲ܴ�߲ߚ ߲ܴ�߲߲ܴܿ�߲̅ߚ ߲ܴ�߲̅ܿ ]   

  −ଵ
[ܴ�ܴ�̅ ] 

 

 

As an example, the pre-specified chord case is carried out as follows: 

1. Set a starting value for ̅ߟ together with an initial geometry.  

2. Calculate performance for the present geometry and the value of the residual ܴ�̅, perturb ߚ, calculate the 

derivative of ܴ�̅, and calculate a new value for ߚ. Iterate until it converges on a value for ߚ and calculate the 

final thrust ܶ. 

3. Compare the obtained thrust with the target thrust, and increase ̅ߟ if the obtained thrust is too high, or 

decrease ̅ߟ if the obtained thrust is too low. 

4. Go back to point 2 and iterate until ̅ߟ has converged too. 

The case for pre-specified ܿ is approached in a similar manner. 

3.4 METHODOLOGY OF DRELA 

Dƌela’s methodology is based on having equal circulation Γ on the blade and in the wake, and therefore does not 

use any momentum equations.  

3.4.1 Wake equations 

The circulation bounded in a circle with radius ݎ can be expressed with the average swirl in the wake ̅ݒ௧, assuming 

that it behaves as a semi-infinite vortex sheet (explains the factor of 1/2): 
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Figure 5 - The circuation present in a semi-infite vortex sheet. Source: Drela [7]. 

௧ݒ̅ݎߨʹ  = ͳʹܤΓ → ௧ݒ̅ =  (62) ݎߨΓͶܤ

Drela connects the average swirl at the wake ̅ݒ௧ with the induced swirl on the blade ݒ௧ section with an 

unreferenced equation: 

௧ݒ̅  = ͳ√ܨ௧ݒ + (Ͷߣ௪ܤߨ�)ଶ
 (63) 

Drela also uses a different formulation for the Prandtl tip loss factor ܨ: 

ܨ  = ߨʹ acosሺ݁−ሻ ݂ = ܤʹ ሺͳ − �ሻ ͳߣ௪ ߣ௪ = � tan� (64) 

Combining eq. (62) and (71), and solving for the induced swirl at the blade: 

௧ݒ  = ݎߨΓͶܤ ͳ
ͳ√ܨ + ቀͶߣ௪ܤߨ�ቁଶ 

(65) 

3.4.2 Blade section equations 

Drela uses a clever parametrization of the velocities at the blade, illustrated in Figure 6. Dƌela’s ŵethod takes iŶto 
consideration the upstream induced velocities ݑ� and ݑ௧ to form intermediate velocities ܷ�  and ௧ܷ: 

 ܷ� = ܸ + =)     �ݑ ܸሺͳ + �∞ሻ) (66) 

 ௧ܷ = Ωݎ − ௧ݑ      (= Ωݎሺͳ − �∞′ ሻ) (67) 

 ܷ = √ܷ�ଶ + ௧ܷଶ (68) 
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The velocities at the blade are written using the dummy variable � which varies with radius: 

 �ܹ = ͳʹܷ� + ͳʹܷ sin� ௧ܹ = ͳʹܷ� + ͳʹܷ cos� ܹ = √ �ܹଶ + ௧ܹଶ (69) 

This allows the calculation of the circulation at the blade section with equation (43): 

 Γ = ͳʹܹܿܿ (70) 

 

Figure 6 - Velocity parametrization used by Drela. Source: Drela (2006). 

3.4.3 Drela analysis method 

Dƌela’s methodology is centered on analyzing an existing geometry, and the iterative algorithm is outlined below. 

Drela design algorithm 

1. Set an initial value for �. 

2. Calculate the following expressions: ܷ� = ܸ + ௧ܷ             �ݑ = Ωݎ − ܷ ௧ݑ = √ܷ�ଶ + ௧ܷଶ 

�ܹ = ͳʹܷ� + ͳʹܷ sin �               ௧ܹ = ͳʹܷ� + ͳʹܷ cos� ܹ = √ �ܹଶ + ௧ܹଶ → � �ܯ,ܴ݁ = atan �ܹܹ௧ → �ݒ ܨ = �ܹ − ௧ݒ ܷ� = ௧ܷ − ௧ܹ ߙ  = ߚ − � → ܿ , ܿௗ , ߳ → Γ = ௧ݒ Ͷܤݎߨ ͳ√ܨ + (Ͷߣ௪ܤߨ�)ଶ
 

ܴ� = Γ − ͳʹܹܿܿ 
 

3. The residual ܴ� is to be driven to zero for all radial positions by the means of a Newton-Raphson iteration. 

The derivative is calculated with finite differences after perturbing � and then updating ܴ� by going back to 

step 2. 

4. After � has converged all relevant performance parameters such as ݀ܶ/݀ߟ ,ܶ ,ݎ, etc. can be calculated.  
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3.4.4 Drelas design method 

The design method for Drela follows exactly the same setup as the Capitao design method (Drela used this method 

first), and is explained in section 3.3.10.2. The only difference is that Dƌela’s desigŶ ŵethod uses the Dƌela aŶalǇsis 
method to evaluate designs. 

3.5 SWIRL-CANCELLING RESIDUAL 

In case the design target is to cancel out all possible swirl from an upstream device, then the performance (thrust, 

torque, efficiency, etc.) cannot be set as targets, but will instead be results from an iterative procedure similar to 

the two described in sections 3.3.10.2 and 3.4.4. The differences are: 

 Removing the global residual on thrust/ power. 

 Exchanging the residual ܴ� based on ߟ to one based on the amount of induced swirl at the disk ܴ௦௪� . 
Note that �∞ ′  is negative when coming from an upstream counter-rotating device. 

Pre-specified chord Pre-specified ܿ 
 

Residual for each radial position: ܴ௦௪� = �′−�∞′ − ͳ → Ͳ 

 

Local variable: ߚ 

 

Minimization routine: 

Newton-Raphson : �ߚ = − ��̅���̅ ��⁄  

 

 

Residuals for each radial position: ܴ௦௪� = �′−�∞′ − ͳ → Ͳ 

 ܴ� = ܿ − ܿ,௦ → Ͳ 

 

Local variable: ܿ,  ߚ

 

Minimization routine: 

Newton-Raphson: 

 

⌈ܿ�ߚ�⌉ = [   
  ߲ܴ�߲ߚ ߲ܴ�߲߲ܴܿ௦௪�߲ߚ ߲ܴ௦௪�߲ܿ ]   

  −ଵ
[ܴ�ܴ�̅ ] 

 

 

  



20 

 

4 PROPELLER DESIGN CODE - OPTOPROP 

4.1 OPTOPROP CODE STRUCTURE 

The methods from section 3 have been implemented in the Matlab code OPTOPROP. The main structure of the 

code is displayed in Figure 7.  

 

Figure 7 - OPTOPROP code structure. 

The program can design propellers according to the minimum induced loss criterion or for swirl-cancellation. The 

obtained design can then be analyzed with any of the four analysis routines. The program can also analyze existing 

propeller blades by importing sectional properties such as chord, thickness, camber, blade angle, and airfoil 

sections. 

For design and analysis the program needs the number of blades, diameter,  hub-to-tip ratio (HTR), height above 

sea level, axial Mach number, rotational velocity, and upstream velocity profiles (for non-uniform inflow). For the 

design routines, there are power and thrust targets that need to be set. 

For the cases of non-uniform inflow or swirl cancelling design condition only two design and analysis methods are 

applicable, namely the Drela and Capitao codes. 

4.2 AIRFOIL TYPES 

Three types of airfoil profiles have been implemented; an analytical Clark-Y profile, NACA-4415, and NACA-16 

profiles. Post-stall models, Reynolds corrections, compressibility corrects have not been implemented. 

4.2.1 Clark-Y 

From reference [4] one can obtain a simple analytical expression for the sectional lift and drag coefficients for the 

CLARK-Y airfoil: 

 ܿ = ௗܿ ߙߢ = Ͳ.ͲͲ + Ͳ.ͲͳͲሺܿ − Ͳ.ͳͷሻଶ ߢ =  [ܿ/ݎ�݀] (71) 
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4.2.2 NACA-4415 

The paper by Adkins [6] includes a chart for the variation of ܿ and ܿௗ  as function of angle-of-attack. Albeit of rough 

quality and without high accuracy, it has been digitized and is included in OPTOPROP. 

 

Figure 8  - NACA 4415 sectional properties. 

4.2.3 NACA-16 

  
Figure 9 - NACA 16-204 sectional lift and drag coefficients as function Mach number and angle-of-attack. 

The NACA-16 sectional properties have been included in an extensive report by Borst [12], and covers a large range 

of thicknesses, desing lift coefficients (camber), Mach numbers, and a limited amount of angle-of-attack values. 

For OPTOPROP, all sectional properties have been digitized for all thicknesses from 4% to 21%, design lift 

coefficients from 0 to 0.5, Mach numbers from 0.3 to 1.1, and angles-of-attack from 0 to 8 degrees. Unfortunately, 

this dataset is not complete, and therefore the following rules have been applied: 

 If Mach number is below 0.3 or above 1.1, then the Mach number will be set to 0.3 and 1.1, respectively 

(nearest neighbor extrapolation). Any blade profiles operating outside the Mach number range will then 

get ܿ and ܿௗ  values from the closest range limit. 

 Coefficients of lift are extrapolated linearly outside the angle-of-attack range. This is not seen as a serious 

issue, since 8 degrees is a sufficient upper limit for most sections. 

 Coefficients of drag are assumed to be symmetric with respect to angle-of-attack, and will therefore have 

the same drag coefficients for negative and positive angles-of-attack. 
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 Thicknesses above 0% and below 4% will be treated as 4% thick.  

 Thicknesses above 21% are not allowed. 

The program also warns if a propeller section is outside the ranges of the dataset. 

5 RESULTS 

5.1 MCCORMICK PROPELLER 5868-9 

The propeller named 5858-9 is mentioned by McCormick [4] and the necessary information for its analysis can be 

found in a paper by Hartman [13] from 1938. This propeller was run in a NACA wind tunnel with constant 

rotational velocity, but varying axial velocity, in this way covering a range of advance ratios between 0 and 2.6. The 

whole blade pitch angle was also varied between 15 to 45 degrees. In this report, only the whole blade pitch angle 

of 45 degrees was used. More information on the propeller itself is presented below in Figure 10. 

Number of blades: 3 

Profile: CLARK-Y* 

Diameter [m]: 3.048 

Altitude [m]: 0 

Rotational velocity [rpm]: 1000 

Whole blade pitch angle [deg]: 45 

*analytical expression 

 

Figure 10 - Propeller sectional properties and planform (source: Hartman [13]). 

The pƌopelleƌ desigŶ ǁas aŶalǇzed ǁith Laƌƌaďee’s, AdkiŶs’, aŶd Dƌela’s ŵethodologies aŶd aƌe pƌeseŶted iŶ Figure 

11 together with experimental data. All methods give decent results in the area of advance ratios between stall 

(low J) and below the area where the blade experiences negative angle of attack (high J). 

 

Figure 11  - Propeller performance for different advance ratios. The red lines represent experimental values, while the black lines represent 

analysis with different methods. The analysis methods return similar results. 
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5.2 LARRABEE PROPELLER 

A propeller was designed with the same inputs as in the paper by Larrabee [5] in order to validate the Matlab 

implementation of the Larrabee design code in Matlab. The main design inputs are specified in Table 1. 

Table 1  - Larrabee propeller design input 

Diameter [m]: ͳ.ͺʹͻ 

Freestr. vel. [m/s] ͷ͵.Ͷ 

Rot. vel. [rpm] : ʹͲͲ 

Design thrust [N] : ͺͻ.ʹ 

Drag-to-lift ratio: Ͳ.Ͳʹͷ 
 

 
Figure 12 – Obtained propeller planform 

 

The obtained design was then analyzed with the Larrabee, Adkins and Drela analysis codes. The performance from 

the paper [5] is compared with other analysis methods in Table 2. The discrepancy between the Larrabee design 

and analysis routines is the fact that Larrabee uses small angle approximations in the design equations, leading to 

an inconsistency between design and analysis. As can be seen, the the Matlab implementation of the Larrabee 

code gives very similar results, except for a minor difference in efficiency. 

Table 2  - Performance for design from the Larrabee paper [5] and the author's implementation of the Larrabee code. Results from the other 

implemented analysis routines are also included. 

 Larrabee Paper Larrabee Design Larrabee Analysis Adkins Analysis Drela Analysis ܶ[ܰ] ૡૢ.  ૡૢ.  ͻʹͶ.ͷ ͻʹͳ. ͻ͵Ͳ.ͳ ߟ [%] ૡ.   ૡ. ૡૢ ͺͷ.Ͷ ͺͷ.ͺ ͺͷ.ͻ 

 

5.3 ADKINS PROPELLER 

The implementation of the Adkins methodology was also validated against the work of the original paper [6] in the 

same manner as the Larrabee propeller. The main design inputs are specified in Table 3, and for this case power is 

specified as design target rather than thrust. 

Table 3  - Adkins propeller design input 

Diameter [m]: ͳ.ͷ͵ 

Freestr. vel. [m/s] Ͷͻ.ͳ 

Rot. vel. [rpm] : ʹͶͲͲ 

Design power [kW] : ͷ͵.ͲͲ 

Profile: ܰܣܥܣ ͶͶͳͷ 
 

 
Figure 13 - Obtained  propeller planform 

 

The performance from the paper [6] is compared with other analysis methods in Table 4. There is quite a large 

difference in efficiency relative to the paper, which is probably due to the bad quality of the image used to obtain 

the drag coefficient for the NACA 4415 profile. The drag coefficient is close to zero and very small compared to the 

lift coefficient (see Figure 8), which can lead to large errors in ߳. In order to illustrate the sensitivity in the efficiency 

and thrust for varying ܿௗ, a case has been run without any drag (߳ = Ͳ) in Table 4. As can be seen in the table the 

ƌesults fƌoŵ the AdkiŶs papeƌ lies iŶ the ƌaŶge ďetǁeeŶ the Matlaď iŵpleŵeŶtatioŶ of AdkiŶs’ ŵethodologǇ ǁith 
and without any drag. The siŵilaƌ ƌesults oďtaiŶed ǁith Laƌƌaďee’s aŶd Dƌela’s ŵethods support that the error 

might be in the airfoil sectional data. As promised by Adkins, the design and analysis methods give the same 

results. 
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Table 4 - Performance for design from the Adkins paper [6] and the author's implementation of the Adkins code. Results from the other 

implemented analysis routines are also included. 

 Adkins Paper Adkins Design Larrabee Analysis Adkins Analysis Drela Analysis Adkins Design  

(no drag) ܶ[ܰ] ૢ.  ૡૢ. ૡ ͺ͵.͵͵ ͺͻ.ͺ ͺ. ૢ.  ߟ [%] ૡ. ૢૢ  ૡ. ૢ ͺʹ.Ͳ ͺͳ.ͻͶ ͺʹ.ͳͲ ૢ.  

 

5.4 REID PROPELLER 

In the article by Adkins [6] there is a comparison between experiment and code for a propeller designed by NACA 

and published in an article by Reid [14]. The propeller is described in Figure 14. 

 

 

 ͳ ܣܥܣܰ :݊�ݐܿ݁ݏ ݈�݂ݎ�ܣ Ͳ.ͺͷ͵Ͷ [݉] ܦ Ͳ.ͳͷ ܴܶܪ ͵ ܤ
 

Figure 14 - NACA propeller model 5 properties. 

This propeller geometry was analyzed in the Larrabee, Adkins, and Drela methods for three different blade angles ߚ.75�, three rotational velocities, and advance ratios ranging from 0.2 to 1.8. The analyses are compared to 

experimental values in Figure 15. The analysis methods follows the trends relatively well, although the Adkins 

method collapses for lower advance ratios, where the blade stalls. 

 

Figure 15  - Performance for the NACA Propeller Model 5. Continuous lines are values from the analysis methods, while points are 

experimental data. Blue represents �.ૠ� = °, red represents �.ૠ� = ૠ°, and yellow is �.ૠ� = ૠ°. 
5.5 GPS604 AND GPS609 

Two existing, in-house propellers that have been simulated using CFD with free slip hubs were chosen to be 

analyzed with the different analysis methods. The operating conditions are described in Capitao Patrao [15]. 

Performance is compared for the two propellers in Table 5 and Table 6. 
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Table 5 - GPS604 performance comparison between CFD and different analysis methods. 

GPS604 CFD Larrabe analysis Adkins analysis Drela analysis 

Thrust [N] 367.4 421.6 416.7 385.6 

Efficiency [%] 76.34 76.28 76.16 75.12 

 

Table 6 - GPS609 performance comparison between CFD and different analysis methods. 

GPS609 CFD Larrabe analysis Adkins analysis Drela analysis 

Thrust [N] 387.4 394.5 390.3 361.5 

Efficiency [%] 77.13 77.24 77.13 76.04 

 

The CFD and analytical results compare rather well, especially for the GPS609 case. The sectional thrust profile for 

the two propellers is shown in Figure 16, where it can be seen that the propellers have different sectional thrust 

distributions relative to CFD, even if the global thrust is similar. 

  
Figure 16 - Sectional thrust profiles for the GPS604 and GPS609 propeller blades for CFD and different analysis methods. 

5.6 GPS621 

The GPS621 propeller is a new 8-bladed propeller designed with OPTOPROP. Two variants were designed; one with 

AdkiŶs’ desigŶ ŵethodologǇ, aŶd oŶe ǁith Dƌela’s desigŶ ŵethodologǇ. The design parameters are specified in 

Table 7. 

Table 7 – GPS621 design input parameters. 

Diameter [m]: Ͳ.ͷ Chord dist: SR7L 

Freestr. Mach nr.: Ͳ.ͷ Thickness dist: SR7L 

Freestr. vel. [m/s]: ʹʹʹ.Ͷ Camber dist: SR7L 

Rot. vel. [rpm] : Ͷͻͻ Airfoil profile: NACA 16 

Design thrust [N] : .  

Design �� .  

 

The design method also returns the performance of the design, which is tabulated together with the CFD values in 

Table 8. The sectional thrust is plotted in Figure 17. The designs did not reach the expected thrust levels, and some 

sort of calibration of the design methods might be needed. 
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Table 8 - GPS609 performance from the design methods and CFD simulations. 

GPS609 Adkins design perf. Adkins design CFD perf. Drela design. Perf. Drela design CFD perf. 

T [N]: 333.2 268.8 333.1 299,9 

P [kW]: 93.35 76.46 95.43 85,50 

Efficiency [%]: 79.38 78.20 77.64 78,05 

 

  
Figure 17 - Sectional thrust profiles for the GPS621 propeller blade designed with the Adkins and Drela methodologies. The thrust profiles 

are from the design process and from CFD simulations. 

 

6 CONCLUSIONS 

The aim of this work has been to review propeller design and analysis methodology, and to implement a propeller 

design code, OPTOPROP. This code can pave the way for future aero engine propeller research. 

The developed propeller code has shown itself to be fast and quite capable of designing propeller and open rotor 

blades, but with slightly under-predicted thrust values. This can be overcome by re-designing the blades after 

analyzing the numerical results, specifically by adjusting the target thrust or power. Then the re-designed blades 

can be simulated numerically once again to check if the blades reaches target performance. 

The capabilities of OPTOPROP will be used in the future for designing aero engine propellers, and its designs can 

potentially also be used to serve as baseline cases for more advanced optimization studies involving CFD. 
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