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Abstract

In order to simulate solutions to stochastic partial differential equations (SPDE) they
must be approximated in space and time. In this thesis such fully discrete approxima-
tions are considered, with an emphasis on finite element methods combined with rational
semigroup approximations. There are several notions of the error resulting from this. One
of them is the weak error, measured in terms of the mean of a functional applied to the
solution. To approximate the mean, one typically employs Monte Carlo and multilevel
Monte Carlo methods that are based on generating a large number of realizations of the
approximate solution to the SPDE.

The thesis consists of two papers. In Paper 1 the additional error caused by Monte
Carlo and multilevel Monte Carlo methods when one attempts to simulate the weak error
is analysed Upper and lower bounds are derived for the different methods and simulations
illustrate the results.

When using multilevel Monte Carlo methods to estimate the weak error, along with
other properties of the SPDE, it is important that the discretizations used are sufficiently
stable in a mean square sense. In Paper 2 a framework for the analysis of the asymptotic
mean square stability of a general stochastic recursion scheme is set up. This framework
is then applied to several discretizations of an SPDE, which results in a series of sufficient
conditions for stability. Some of these results are found to be sharp in simulations.

In addition to the two papers, a deterministic scheme for the simulation of weak errors
in the context of finite elements is presented.

Keywords: Stochastic partial differential equations, numerical approximation of stochas-
tic differential equations, finite element method, Monte Carlo, multilevel Monte Carlo,
variance reduction techniques, weak convergence, asymptotic mean square stability, mul-
tiplicative noise, Lévy processes
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1 INTRODUCTION 1

1 Introduction

The topic of this thesis is the study of some computational aspects of approximations to
stochastic partial differential equations (SPDE) of the form

dX(t) = (AX(t) + F (X(t))) dt+G(X(t)) dL(t),

X(0) = X0,
(1)

where t ∈ [0, T ]. Here the process X takes values in a Hilbert space H, the stochastic
Lévy process L takes values in another Hilbert space U , F maps elements from H to H
and G maps elements of H onto a space of operators from U to H. The operator A on H
is the generator of a strongly continuous semigroup of bounded linear operators in H. An
example of such an operator is the Laplacian Δ on the space of square integrable functions
on some domain D ⊂ R

d, d ∈ {1, 2, 3}, so that (1) becomes a stochastic heat equation,
which one can interpret as describing heat flow perturbed by some noise, perhaps due
to measurement errors. Here the noise is said to be multiplicative, since the operator G
depends on X. SPDE have many other uses in fields such as biology, engineering and
finance, see, e.g., [18, 19] for an overview of such applications.

As the solution X to (1) is a stochastic process, a natural quantity of interest is the
mean value E[X(t)] of it at some time t ∈ [0, T ], or perhaps the mean value E[φ(X(t))] of
some functional φ : H → R of the solution. Since analytical solutions to (1) are hardly ever
available, an approximation X̂(t) is used instead and the quantity |E[φ(X̂(t))]−E[φ(X(t))]|
is referred to as a weak error. The topic of weak error analysis has been met with increasing
interest in the SPDE community during recent years.

In order to approximate quantities like E[φ(X(t))], Monte Carlo methods are often
employed, which are based on generating a large number of realizations of X. That is to
say, an approximation of the solution to (1) has to be computed many times, something
that is computationally very expensive. This may explain why simulations that illustrate
theoretical results on convergence with respect to the weak error are rarely available, as one
employs Monte Carlo methods to approximate the weak error |E[φ(X̂(t))] − E[φ(X(t))]|
itself. The first paper of this thesis analyses the additional error caused by approximating
the weak error using various Monte Carlo approaches.

One of the methods considered in Paper 1 is the multilevel Monte Carlo method, which
is based on approximating E[φ(X(t))] by applying the Monte Carlo method to a sequence
X̂0, X̂1, . . . , X̂�, . . . of approximations of X indexed by a level �. Typically the accuracy of
X̂� increases as � → ∞ but so does the computational cost. The main idea of the multilevel
Monte Carlo method is to compute a different number of realizations for each level, from
a few when � is big to many when � is small. By choosing the right balance between the
accuracy of the approximation and the number of realizations at each level, the multilevel
Monte Carlo method can be more efficient than standard Monte Carlo methods, while
retaining the same degree of accuracy. To ensure that it is more efficient, the approximation
should be sufficiently stable at all levels. More precisely, this refers to the asymptotic mean
square stability of X̂, the property that E[‖X̂(t)‖2H ] → 0 as t → ∞. The second paper
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of this thesis sets up a framework for analysing the asymptotic mean square stability of
approximations to (1) as well as more general finite-dimensional recursion schemes.

The following sections provide the theoretical background for the papers, along with
summaries of them. In Section 2 we set up the notation we use and review basic results
from the fields of functional analysis and probability theory, with an emphasis on random
fields and stochastic integration. Section 3 contains results on SPDE and finite element
approximations and Section 4 introduces Monte Carlo and multilevel Monte Carlo methods.
In Sections 5 and 7 we summarize Papers 1 and 2 while in Section 6, inspired by the results
of Paper 2, we present a way of computing weak errors that avoids the use of Monte Carlo
methods.

2 Preliminaries

In this chapter we introduce the concepts and notation needed for the construction of
solutions and approximations of SPDE. For proofs and more details on the standard claims
made in this part of the thesis, the reader is referred to [7, 13, 20].

2.1 Functional analysis

Let (U, 〈·, ·〉U) and (H, 〈·, ·〉H) be real separable Hilbert spaces and let (B, ‖ · ‖B) and
(E, ‖ · ‖B) be real Banach spaces. We write L(B;E) for the Banach space of linear and
bounded operators from B to E, or L(B) if E = B. Given an orthonormal basis (ei)i∈N
of H we denote by LHS(H;U) ⊆ L(H;U) the Hilbert space of Hilbert–Schmidt operators
with inner product

〈F,G〉LHS(H;U) =
∞∑
i=1

〈Fei, Gei〉U ,

and whenever U = H we write LHS(H) for LHS(H;H). It is not hard to see that this
inner product is independent of the chosen orthonormal basis (ei)i∈N. The embedding
LHS(H;U) ⊆ L(H;U) is continuous with embedding constant 1, i.e., for F ∈ LHS(H;U),
‖F‖L(H;U) ≤ ‖F‖LHS(H;U). Another notion that we will use is the trace of a self-adjoint and
positive semidefinite operator Q ∈ L(H) which is for any orthonormal basis (ei)i∈N of H
defined by

Tr(Q) =
∞∑
i=1

〈Qei, ei〉H = ‖Q1/2‖2LHS(H),

where Q1/2, which exists if Tr(Q) < ∞, is the unique self-adjoint and positive semidefinite
operator for which Q1/2Q1/2 = Q. Next, let us assume that −A : dom(A) ⊆ H → H is
a densely defined, linear, self-adjoint and positive definite operator with compact inverse
(−A)−1. By the spectral theorem applied to (−A)−1 we get an orthonormal eigenbasis
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(ei)i∈N of H and a positive sequence (λi)i∈N of eigenvalues of −A that is increasing and for
which limi λi = ∞. For r ≥ 0 we define fractional powers of −A by

(−A)
r
2f =

∞∑
i=1

λ
r
2
i 〈f, ei〉H ei

for f ∈ Ḣr, where

Ḣr = dom((−A)
r
2 ) =

{
f ∈ H : ‖f‖2r < ∞}

is a separable Hilbert space when equipped with the inner product

〈·, ·〉r =
〈
(−A)

r
2 ·, (−A)

r
2 ·〉

H
.

With this construction it holds for s ≤ r that Ḣr ⊆ Ḣs. The operator A is the generator
of a semigroup, which we define below.

Definition 2.1. Let B be a Banach space. A family (E(t))t∈[0,∞) with E(t) ∈ L(B) for
all t ≥ 0 is called a semigroup of operators on B if

(i) E(0) = I, where I is the identity operator and

(ii) E(t+ s) = E(t)E(s) for all s, t ≥ 0.

If in addition to this

(iii) limt↘0 E(t)f = f for all f ∈ B,

it is said to be strongly continuous or a C0-semigroup. If it also satisfies

(iv) ‖E(t)‖L(B) ≤ 1 for all t ≥ 0,

then it is called a C0-semigroup of contractions.

The linear operator A defined by

Af = lim
t↘0

E(t)f − f

t
,

with dom(A) being the space of all f ∈ B such that the limit exists, is called the infinites-
imal generator of the semigroup.

In our setting, an analytic C0-semigroup of contractions (E(t))t∈[0,∞) is, for t ≥ 0 and
f ∈ H, given by E(t)f =

∑∞
i=1 e

−λit 〈f, ei〉H ei. It can be seen that A is the generator of
this semigroup. Next, we give a concrete standard example of the notions given so far.
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Example 2.2. Let H = L2(D;R) be the space of square integrable functions on a bounded
convex domain D ⊂ R

d, d ∈ N, with polygonal boundary. Let for a function f on D the
operator A be given by

Af = ∇ · (a(x)∇f)− c(x)f

with Dirichlet boundary conditions, where a, c : D → R are sufficiently smooth functions
with c(x) ≥ 0 and a(x) ≥ a0 > 0 for all x ∈ D. Then −A fulfils the assumptions above
and its fractional powers give rise to the sequence of Hilbert spaces (Ḣr)r≥0. One can show
that Ḣ1 = H1

0 (D) and Ḣ2 = H2(D) ∩ H1
0 (D) where Hk(D), k ≥ 0, denotes the Sobolev

space of order k and H1
0 (D) is the subspace of H1(D) containing the functions that are

zero at the boundary of D.

We end this section with a brief review of tensor products of Hilbert spaces, which are
used in Paper II. For Hilbert spaces H and U the algebraic tensor product H ⊗0 U is the
vector space of finite sums

∑n
i=1 fi ⊗ gi, where fi ∈ H and gi ∈ U for i = 1, . . . , n, along

with the equivalence relations

(f1 + f2)⊗ g1 = f1 ⊗ g1 + f2 ⊗ g1

f1 ⊗ (g1 + g2) = f1 ⊗ g1 + f1 ⊗ g2

(λf1)⊗ g1 = f1 ⊗ (λg1) = λ(f1 ⊗ g1),

where λ ∈ R. The Hilbert tensor product H ⊗ U , or just H(2) when U = H, is defined as
the completion of the algebraic tensor product with respect to the norm induced by the
inner product

〈f1 ⊗ g1, f2 ⊗ g2〉H⊗U = 〈f1, f2〉H 〈g1, g2〉U .

If (e1,i)i∈N and (e2,i)i∈N are orthonormal bases ofH and U respectively then (e1,i⊗e2,j)i,j∈N is
an orthonormal basis ofH⊗U . The same statement holds when we drop the orthonormality
requirement if the spaces involved are finite-dimensional.

The Hilbert tensor product can also be constructed by identifying H ⊗U ∼= LHS(U ;H)
where the element f1 ⊗ g1, f1 ∈ H, g1 ∈ U , is interpreted as the mapping

g2 �→ 〈g1, g2〉U f1.

Here ∼= denotes the existence of an isometric isomorphism.

2.2 Probability theory

To be able to speak of stochastic processes in Hilbert spaces, we must first introduce the
concept of a Hilbert space-valued random variable. Let (Ω,A, (Ft)t∈[0,T ], P ) be a complete
filtered probability space satisfying the usual conditions, which is to say that F0 contains
all P -null sets and Ft = ∩s>tFs for all t ∈ [0, T ]. For a Hilbert space H, an H-valued
random variable, or just a random variable if H = R, is an (A,B(H))-measurable function
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X : Ω �→ H. Here B(H) refers to the Borel σ-algebra on H. The expectation of an
H-valued random variable is defined by the Bochner integral

E[X] =

∫
Ω

X(ω) dP (ω)

whenever ‖X‖L1(Ω;H) = E[‖X‖H ] < ∞. The covariance of X ∈ L2(Ω;H) is defined by

Cov(X) = E [(X − E[X])⊗ (X − E[X])]

and with the identificationH⊗H ∼= LHS(H) its counterpart, the unique self-adjoint positive
semidefinite operator Q ∈ LHS(H) for which, with f ∈ H,

Qf = E [〈X − E[X], f〉H (X − E[X])]

is called the covariance operator of X although when there is no risk of confusion we also
refer to this operator as the covariance of X. From this definition one can see that

Tr(Q) = ‖X − E[X]‖2L2(Ω;H) < ∞

and Q is said to be of trace class. The identity

E[〈X − E[X], f〉H 〈X − E[X], g〉H ] = 〈Qf, g〉H (2)

for any f, g ∈ H is a straightforward consequence of the definition of Q.
A probability measure μ on H is called Gaussian if for some m ∈ H and Q ∈ L(H)

with Tr(Q) < ∞, its characteristic functional is given by

μ̂(f) =

∫
H

exp (i 〈g, f〉H) dμ(g) = exp
(
i 〈f,m〉H − 1

2
〈Qf, f〉H

)
.

It can be shown that for each m ∈ H and self-adjoint positive semidefinite Q ∈ L(H) with
Tr(Q) < ∞ such a measure exists. A random variable X is said to be Gaussian if its image
measure P ◦X−1 is a Gaussian probability measure and we write X ∼ N (m,Q). In this
case m = E[X] and Q is the covariance operator of X.

For an interval [0, T ], with T < ∞, an H-valued stochastic process (X(t))t∈[0,T ] is a
family of H-valued random variables. It is said to be adapted to the filtration (Ft)t∈[0,T ]

if for each t ∈ [0, T ], X(t) is Ft-measurable. Two H-valued stochastic processes X, Y are
said to be modifications of one another if for all t ∈ [0, T ], X(t) = Y (t) P -almost surely.

The class of stochastic processes most important in this thesis is that of the so called
Lévy processes. Since we will only have use for Lévy processes that are square integrable
and have zero mean, as this entails that they are square integrable martingales, these are
the ones that we define next. For a trace class self-adjoint positive semidefinite operator
Q ∈ L(H), an H-valued stochastic process (L(t))t∈[0,T ]) is said to be a mean zero square
integrable Q-Lévy process with respect to the filtration (Ft)t∈[0,T ] if
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• L(0) = 0 P -almost surely,

• L is continuous in probability, i.e., for any ε > 0 and t ∈ [0, T ],

lim
s→t
s≥0

P (‖L(t)− L(s)‖H > ε) = 0,

• L has independent and stationary increments,

• L is adapted to (Ft)t∈[0,T ],

• L(t)− L(s) is independent of Fs for all 0 ≤ s < t ≤ T ,

• L is square integrable, i.e., ‖L(t)‖L2(Ω;H) < ∞ for all t ≥ 0 and

• L(t)− L(s), 0 ≤ s < t ≤ T , has zero mean and covariance (t− s)Q.

With these assumptions it holds that L is an H-valued square integrable martingale. If in
addition to this for all 0 ≤ s < t ≤ T the increment L(t) − L(s) ∼ N (0, (t − s)Q), L is
said to be a Q-Wiener process (or a standard Brownian motion in the case of H = R and
Q = 1) with respect to the filtration (Ft)t∈[0,T ], and we then denote it by W . An expansion
of a mean zero square integrable Q-Lévy process (L(t))t∈[0,T ]) on the orthonormal eigenbasis
(pi)i∈N of Q is called the Karhunen–Loève expansion

L =
∞∑
i=1

√
μiLipi, (3)

where (μi)i∈N is the decreasing sequence of positive eigenvalues of Q in H, where we note
that such eigenpairs exist since the assumption of a finite trace ensures that Q is compact.
Furthermore, (Li)i∈N is a sequence of uncorrelated identically distributed real-valued Q-
Lévy processes with Q = 1. If L is a Q-Wiener process then for any i ∈ N, Li is a
real-valued standard Brownian motion.

2.3 Random fields

Let us now consider the setting of Example 2.2 where D ⊂ R
d is a bounded convex domain

with polygonal boundary and H = L2(D;R). We introduce random fields on D and give
a condition under which such fields are elements of L2(Ω;H).

Definition 2.3. A random field is a collection of random variables (X(x))x∈D such that the
mapping x×ω �→ X(x)[ω] is measurable with respect to the product σ-algebra B(D)⊗A.

Definition 2.4. A second order random field X is a random field with X(x) ∈ L2(Ω;R)
for all x ∈ D. Its covariance function C is given by C(x, y) = Cov(X(x), X(y)) for x, y ∈ D
and its mean function m by m(x) = E[X(x)].
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If we now assume that the pair of functions C and m fulfils∫
D

C(x, x) +m(x)2 dx < ∞,

then, as a consequence of the joint measurability and Fubini’s theorem, the mapping given
by ω �→ X(·)[ω], which we denote by X, is in L2(Ω;H) and the mean function m is equal
to the expectation of X. For the same reason, the covariance operator of X is for f ∈ H
and x ∈ D given by

Qf(x) = E [〈X − E[X], f〉H (X(x)− E[X(x)])]

= E

[∫
D

(X(y)−m(y)) (X(x)−m(x)) f(y) dy

]
=

∫
D

C(x, y)f(y) dy,

a fact that can be exploited to numerically approximate the eigenpairs of Q from knowing
only the covariance function. This can then in turn be used to generate samples of, e.g., a
Lévy process by using the Karhunen–Loève expansion (3). We say that C is a kernel of the
covariance operator, or just a covariance kernel for short. With the parameters σ2, κ ∈ R,
an example of a common covariance kernel is the exponential kernel

C(x, y) =
σ2

(2π)d/2κ(d− 1)!!
exp(−κ|x− y|)

which one obtains as a special case of the Matérn covariance kernel

C(x, y) =
21−νσ2

(4π)d/2Γ(ν + d/2)κ2ν
(κ|x− y|)νKν(κ|x− y|)

by setting ν = 1/2. Here Kν denotes the modified Bessel function of the second kind. In
Figure 1 we see a realization of an approximation of a Q-Wiener process taking values in
H = L2(D;R), where D = [0, 1]2. Here Q is the covariance operator corresponding to a
Matérn kernel with parameters ν = 3, κ = 25 and σ2 chosen so that C(x, x) = 5. The
approximation was generated with FEniCS (see [2]) using the approach of [17].

2.4 Stochastic integration

To make sense of solutions to (1) we need a theory for the integration of stochastic processes
with respect to square integrable martingales. That is to say, in our setting, for t ∈ [0, T ]
and an L(U ;H)-valued stochastic process Ψ on [0, T ], we want to make sense of the H-
valued stochastic Itô integral

ILt (Ψ) =

∫ t

0

Ψ(s) dL(s)

with respect to a mean zero square integrable U -valued Q-Lévy process L. We briefly
reiterate the results of [20, Chapter 8] for our simpler setting of integration with respect
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Figure 1: Realization of a Q-Wiener process in H = L2([0, 1]2), sampled at times t =
0.25, 0.50, 0.75 and 1.00.

to such processes. The integral is first defined in terms of so called simple integrands,
which are those L(U ;H)-valued stochastic processes Ψ for which there, with m ∈ N, exist
a sequence of times 0 = t0 < t1 < . . . < ti < ti+1 < . . . < tm = T , a sequence (Ψi)

m−1
i=1 of

L(U ;H)-valued operators and a sequence (Ai)
m−1
i=1 of events in Fti such that

Ψ(s) =
m−1∑
i=0

1Ai
1(ti,ti+1](s)Ψi

for s ∈ [0, T ], where 1Ai
and 1(ti,ti+1] are indicator functions, i.e., for a set A

1A(x) =

{
1 if x ∈ A,

0 otherwise.
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For these processes one sets

ILt (ψ) =
m−1∑
i=0

1Ai
Ψi(L(ti+1 ∧ t)− L(ti ∧ t))

for which the so called Itô isometry

E
[‖ILt (Ψ)‖2H

]
= E

[∫ t

0

‖Ψ(s)‖2LHS(U0;H) ds

]
(4)

holds true, where U0 = Q1/2(U) is the Hilbert space equipped with the inner product

〈·, ·〉U0
=

〈
Q− 1

2 ·, Q− 1
2 ·
〉
U
,

Q−1/2 denoting the pseudo-inverse of Q1/2. The space N L
T (H) of admissible integrands is

now defined as the completion of the space of simple processes with respect to the norm

‖Ψ‖T =

(
E

[∫ T

0

‖Ψ(s)‖2LHS(U0;H) ds

]) 1
2

,

and ILt : N L
T (H) → L2(Ω;H) is well defined as a continuous extension. Since ‖Ψ‖t ≤ ‖Ψ‖T ,

the Itô isometry (4) holds true for any t ∈ [0, T ] and any admissible integrand.

One can also construct N L
T (H) by

N L
T (H) = L2(([0, T ]× Ω,PT , dt⊗ P ) ;LHS(U0;H))

where PT denotes the predictable σ-algebra, i.e., the σ-algebra generated by the set

{(s, t]× A ⊆ [0, T ]× Ω | 0 ≤ s < t, A ∈ Fs} .

A stochastic process which is measurable with respect to this σ-algebra is said to be
predictable.

3 Stochastic partial differential equations and approx-

imations

Let us now return to (1), the SPDE of the introduction, to discuss what we mean by a
solution to it. Recall that the equation is given by

dX(t) = (AX(t) + F (X(t))) dt+G(X(t)) dL(t),

X(0) = X0,
(5)
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where t ∈ [0, T ], X0 ∈ L2(Ω;H), F : H → H, G : H → LHS(U0;H) and L is a U -valued
Q-Lévy process. This is to be understood as the integral equation

X(t) = X0 +

∫ t

0

AX(s) + F (X(s)) ds+

∫ t

0

G(X(s)) dL(s), (6)

where the first integral is of Bochner type and the second is the stochastic integral intro-
duced in Section 2.4. In order to make sense of this process, there are several notions of
solutions in the literature. Solutions formulated in terms of the integral equation (6) are
referred to as strong solutions. We will, however, be concerned with the weaker concept of
mild solutions which are formulated in terms of the semigroup (E(t))t∈[0,T ] generated by
A.

Definition 3.1. Let X0 ∈ L2(Ω;H). A predictable process X = (X(t))t∈[0,T ] is called a
mild solution to Equation (5) if

sup
t∈[0,T ]

‖X(t)‖L2(Ω;H) < ∞

and for all t ∈ [0, T ]

X(t) = E(t)X0 +

∫ t

0

E(t− s)F (X(s)) ds+

∫ t

0

E(t− s)G(X(s)) dL(s), P -a.s.

Under the following set of assumptions, [20, Theorem 9.15] and [20, Theorem 9.29]
ensure the existence of an up to modification unique mild solution X of Equation (5).
Since in our setting (E(t))t∈[0,T ] is a semigroup of contractions, [20, Theorem 9.29] also
guarantees the existence of a càdlàg modification of X.

Assumption 3.2. The parameters F,G and L of Equation (5) fulfil the following.

• For F : H → H there exist a constant C > 0 such that for all f, g ∈ H

‖F (f)− F (g)‖H ≤ C‖f − g‖H .

• For G : H → LHS(U0;H) there exist a constant C > 0 such that for all f, g ∈ H

‖G(f)−G(g)‖LHS(U0;H) ≤ C‖f − g‖H .

• L is a U -valued mean zero square integrable Q-Lévy process.

In general, these are stronger than what is needed for the existence of a mild solution. See
e.g., [20, Chapter 9] and [13, Chapter 2] for examples of relaxed assumptions.
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3.1 Spatial discretization

Since an analytical solution to (5) is rarely available, one has to discretize the equation in
space and in time if one want to simulate it on a computer. We speak of a fully discrete
approximation of the mild solution X if it is discretized in both space and time. To arrive
at such an approximation is the goal of this section and the next. In this first part, which
mirrors the setting of [13], we consider spatial discretizations. The main idea is to seek
solutions to (5) in some finite-dimensional subspace of H, where the operators involved are
replaced with finite-dimensional counterparts.

Let (Vh)h∈(0,1] be a family of subspaces of Ḣ1 such that dim(Vh) = Nh < ∞, h ∈ (0, 1].

By Ph : H → Vh and Rh : Ḣ1 → Vh we denote orthogonal projectors onto Vh with
respect to the inner products of H and Ḣ1 respectively, which is to say that for all f ∈ H,
g ∈ Ḣ1 and fh ∈ Vh we have 〈Phf, fh〉H = 〈f, fh〉H and 〈Rhg, fh〉1 = 〈g, fh〉1. In order
to guarantee the convergence of a fully discrete approximation to the mild solution, the
following assumption on the sequence (Vh)h∈(0,1] formulated in terms of these projectors is
given in [13].

Assumption 3.3. There exists a constant C > 0 such that the following statements are
true.

• For all f ∈ Ḣ1, ‖Phf‖1 ≤ C‖f‖1.
• For all f ∈ Ḣ1, ‖Rhf − f‖H ≤ Ch‖f‖1.
• For all f ∈ Ḣ2, ‖Rhf − f‖H ≤ Ch2‖f‖2.
From [13, Section 3.2] we cite two examples of subspace sequences that fulfil Assump-

tion 3.3.

Example 3.4 (Standard finite element method). Consider the setting of Example 2.2,
where H = L2(D;R), D ⊆ R

d with d ∈ {1, 2, 3}. Let (Th)h∈(0,1] be a regular quasi-uniform
family of triangulations of D with h being the maximal mesh size. We let Vh be the space
of all functions that are continuous and piecewise linear on Th and zero at the boundary
of D.

Example 3.5 (Spectral Galerkin method). Let us restrict Example 3.4 to the case that
D = [0, 1] and A = Δ with Dirichlet boundary conditions. In this setting the orthonormal
eigenbasis (ei)i∈N and the sequence of eigenvalues (λi)i∈N to −A are explicitly known to

be ei =
√
2 sin(iπ·) and λi = i2π2 for all i ∈ N. If we now, for N ∈ N, set h = λ

−1/2
N+1 and

Vh = span(e1, e2, . . . , eN) we get a sequence (Vh)h∈(0,1] that fulfils Assumption 3.3.

Given a fixed subspace Vh, −Ah : Vh → Vh, the discrete version of −A, is now defined
by the relationship

〈−Ahfh, gh〉H = 〈fh, gh〉1 =
〈
(−A)

1
2fh, (−A)

1
2 gh

〉
H
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for all fh, gh ∈ Vh. It is straightforward to see that this operator is self-adjoint and positive
definite (hence invertible) on Vh which, in the same way as before, entails the existence of an
orthonormal eigenbasis (eh,i)i=1,...,Nh

of Vh and an increasing positive sequence (λh,i)i=1,...,Nh

of eigenvalues of −Ah. For the same reason, Ah generates a C0-semigroup of contractions
(Eh(t))t∈[0,T ]. Therefore, replacing F and G by PhF and PhG respectively, Assumption 3.2
also guarantees the existence of a semidiscrete mild solution Xh to the equation

dXh(t) = (AhXh(t) + PhFXh(t)) dt+ PhG(Xh(t)) dL(t),

Xh(0) = PhX0.

3.2 Spatio-temporal discretization

In this section we further discretize the semidiscrete solution by considering rational ap-
proximations of (Eh(t))t∈[0,T ], where we follow the approach of [21]. Let us therefore for
convenience consider a uniform time grid given by tj = jΔt for j = 0, . . . , NΔt, where
NΔt ∈ N and Δt = TN−1

Δt .
A rational approximation of order p of the exponential function is a rational function

R : C → C satisfying that there exist constants C, δ > 0 such that for all z ∈ C with
|z| < δ

|R(z)− exp(z)| ≤ C|z|p+1.

Since R is rational there exist polynomials rn and rd such that R = r−1
d rn. With the

introduced notation, R(ΔtAh) ∈ L(Vh) is for all fh ∈ Vh given by

R(ΔtAh)fh = r−1
d (ΔtAh)rn(ΔtAh)fh =

Nh∑
k=1

rn(−Δtλh,k)

rd(−Δtλh,k)
〈fh, eh,k〉H eh,k.

The family of L(Vh)-valued operators (Eh,Δt(t))t∈[0,T ] defined by Eh,Δt(t) = R(ΔtAh)
j for

t ∈ [tj−1, tj), j = 1, . . . , NΔt, is the rational approximation of the semigroup (Eh(t))t∈[0,T ].
Let us now, for fh ∈ Vh, define a deterministic approximation operator on Vh by

Ddet
Δt,h(fh) = R(ΔtAh)fh + r−1

d (ΔtAh)ΔtPhF (fh), (7)

and, for j = 1, . . . , NΔt, a stochastic approximation operator by

Dstoch,j
Δt,h (fh) = r−1

d (ΔtAh)PhG(fh)ΔLj, (8)

where the Lévy increment ΔLj = L(tj+1)− L(tj). Then, the fully discrete approximation

Xh,Δt = (X
tj
h,Δt)j=0,...,NΔt

of the mild solution to Equation (5) is, for j = 0, . . . , NΔt − 1,
given by the recursion scheme

X
tj+1

h,Δt = Ddet
Δt,hX

tj
h,Δt +Dstoch,j

Δt,h X
tj
h,Δt,

X0
h,Δt = PhX0.

(9)
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Example 3.6. An important example of a rational approximation of (Eh(t))t∈[0,T ] is the
backward Euler scheme, where R(ΔtAh) is defined through rd(x) = 1 − x and rn(x) = 1
for all x ∈ R, x �= 1. One can then rewrite Scheme (9) as

X
tj+1

h,Δt −X
tj
h,Δt =

(
AhX

tj+1

h,Δt + PhF (X
tj
h,Δt)

)
Δt+ PhG(X

tj
h,Δt)ΔLj, (10)

where j = 0, . . . , NΔt − 1. Another example is the forward Euler scheme defined through
rd(x) = 1 and rn(x) = 1 + x for all x ∈ R, which can similarly be rewritten as

X
tj+1

h,Δt −X
tj
h,Δt =

(
AhX

tj
h,Δt + PhF (X

tj
h,Δt)

)
Δt+ PhG(X

tj
h,Δt)ΔLj,

for j = 0, . . . , NΔt − 1.

3.3 Strong and weak convergence

To finish this introduction to approximations of SPDE we briefly review results for two
different notions of convergence of the family X̂ = (Xh,Δt, h ∈ (0, 1], NΔt ∈ N) to the mild
solution X of Equation (5). The approximation is said to strongly converge to X if

sup
j∈{1,...,NΔt}

‖X tj
h,Δt −X(tj)‖L2(Ω;H) → 0

as h,Δt → 0. However, one might not always be interested in approximating X in a mean
square sense but only in the mean value of a functional of the solution. We say that X̂
converges weakly to X if

sup
j∈{1,...,NΔt}

∣∣∣E [
φ
(
X

tj
h,Δt

)− φ
(
X(tj)

)]∣∣∣ → 0

as h,Δt → 0 for all φ ∈ C2
p(H;R), the space of all twice Fréchet differentiable mappings

φ : H → R such that the derivatives of φ have at most polynomial growth. One can show
that for such mappings, strong convergence implies weak convergence.

Let us now introduce a set of assumptions that together with the previous ones ensures
the strong convergence of X̂ to X.

Assumption 3.7. The rational approximation of (Eh(t))t∈[0,T ] is given by the backward
Euler scheme, i.e., R is defined through rd(x) = 1− x and rn(x) = 1 for all x ∈ R, x �= 1.
Furthermore, the noise is assumed to be Gaussian, i.e., L = W is a U -valued Q-Wiener
process, and the initial value X0 ∈ Ḣ1 is deterministic.

An important consequence of this assumption is, by [13, Theorem 2.25], the uniform
bound

sup
t∈[0,T ]

‖X(t)‖Lp(Ω;H) < ∞, (11)

which holds for any p ≥ 1. The following result on the strong convergence is a direct
consequence of [13, Theorem 3.14].
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Theorem 3.8. Under Assumptions 3.2, 3.3 and 3.7, for any p ≥ 1, there exists a constant
C such that, for any fully discrete approximation Xh,Δt,

sup
j∈{1,...,NΔt}

‖X tj
h,Δt −X(tj)‖Lp(Ω;H) ≤ C

(
h+ (Δt)

1
2

)
.

We say that the strong convergence is of rate 1 in space and 1/2 in time. As a rule
of thumb the weak convergence rate is twice that of the strong rate (see e.g. [3, 9, 12]
for fully discrete approximations with additive noise and [4, 6, 8, 10, 11] for semi-discrete
approximations with multiplicative noise). Proving this in this specific setting is work in
progress, so in the mean time we formulate the following conjecture.

Conjecture 3.9. Under Assumptions 3.2, 3.3 and 3.7, for all φ ∈ C2
p(H;R), there exists

a constant C such that, for any fully discrete approximation Xh,Δt,

sup
j∈{1,...,NΔt}

∣∣∣E [
φ
(
X

tj
h,Δt

)− φ
(
X(tj)

)]∣∣∣ ≤ C
(
h2 +Δt

)
.

4 Monte Carlo methods

Since the mean of functionals of the mild solution of Equation (5) cannot in general be
explicitly evaluated, we have to introduce an approximation of the expectation operator
E[·]. We will consider two approximations that are both based on simulating a large number
of approximate solutions to (5) and taking the average of a functional applied to it, but
we formulate the theory in the general setting of real-valued random variables.

The Monte Carlo estimator EN of a real-valued random variable Y ∈ L2(Ω;R) is given
by

EN [Y ] =
1

N

N∑
i=1

Y (i),

where (Y (i))Ni=1 is a sequence of independent, identically distributed random variables that
have the same law as Y . The convergence of EN [Y ] to E [Y ] as N → ∞ is ensured by a
mean square version of the law of large numbers

‖E [Y ]− EN [Y ]‖2L2(Ω;R) =

∥∥∥∥∥ 1

N

N∑
i=1

(
E [Y ]− Y (i)

)∥∥∥∥∥
2

L2(Ω;R)

=
1

N2

N∑
i=1

∥∥E [Y ]− Y (i)
∥∥2

L2(Ω;R)

=
1

N
Var(Y ) ≤ 1

N
‖Y ‖2L2(Ω;R).

(12)

Instead of a single random variable Y we can consider a sequence (Y�)�∈N0 of random
variables, where Y� ∈ L2(Ω;R) and the index � ∈ N0 is referred to as a level. The multilevel
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Monte Carlo estimator EL of YL ∈ (Y�)�∈N0 is, for L ∈ N, defined by

EL[YL] = EN0 [Y0] +
L∑

�=1

EN�
[Y� − Y�−1],

where (N�)
L
�=0 consists of level specific numbers of samples in the respective Monte Carlo

estimators. A telescoping sum argument shows that as an estimator of E [YL] the multilevel
Monte Carlo estimator is unbiased. Under the assumption that (Y�)�∈N0 converges to some
random variable Y , a calculation similar to (12) gives the error estimate

‖E [Y ]− EL[YL]‖L2(Ω;R) ≤ |E [Y − YL] |+
(

1

N0

‖Y0‖2L2(Ω;R) +
L∑
l=1

1

N�

‖Y� − Y�−1‖2L2(Ω;R)

) 1
2

.

In this context, the advantage of using a multilevel Monte Carlo estimator compared to a
standard Monte Carlo estimator is due to the flexibility allowed by letting the sample sizes
(N�)

L
�=0 depend on a bound on ‖Y� − Y�−1‖L2(Ω;R), � = 1, . . . , L. In the case that sampling

Y� for small � is computationally cheaper then sampling YL, we can let the sampling effort
be concentrated on the coarser levels � � L. We then need to choose the sample sizes in
such a way that the overall error is balanced. The following theorem, which is a special
case of [14, Theorem 1], shows how one does this and provides bounds on the overall
computational work.

Theorem 4.1. Let (a�)�∈N0 be a decreasing sequence of positive real numbers that converges
to zero and assume that there exist constants C1, C2, C3 and a parameter η ∈ [0, 1], such
that for all � ∈ N, Y� and Y�−1 fulfil

|E [Y − Y�]| ≤ C1a�,

and

‖Y� − Y�−1‖L2(Ω;R) ≤ C2a
η
�

for � ∈ N0 and that Y0 fulfils ‖Y0‖L2(Ω;R) = C3. For L ∈ N, � = 1, . . . , L, ε > 0, set
N� = �a−2

L aη� �
1+ε�, where �·� is the ceiling function, and N0 = �a−2

L �. Then

‖E [Y ]− EL [YL] ‖L2(Ω;R) ≤
(
C2

1 + C3 + C2 + ζ(1 + ε)
) 1

2 aL,

where ζ denotes the Riemann zeta function. Furthermore, assume that, for some constants
C4, C5, C6 and κ, δ > 0, the work WB

� of one calculation of Y� − Y�−1, � ≥ 1, is bounded
by C4a

−κ
� , that the work of one calculation of Y0 is bounded by C5 and that the addition

of the Monte Carlo estimators adds C6a
−δ
L to the overall work load WL. Then there exists

another constant C7 such that WL is bounded by

WL ≤ C7a
−2
L

(
C5 + C4

L∑
�=1

a
−(κ−2η)
� �1+ε

)
+ C6a

−δ
L .
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Furthermore, if there exists a > 1 such that a� = O(a−�) then the bound on WL simplifies
to

WL =

{
O(a

−max{2,δ}
L ), if κ < 2η

O(max{a−(2+κ−2η)
L L2+ε, a−δ

L }), if κ ≥ 2η.

Example 4.2. Let us consider a concrete example of a Monte Carlo simulation in the
context of Examples 2.2 and 3.4 under Assumptions 3.2 and 3.7 and compare the compu-
tational costs of the Monte Carlo and multilevel Monte Carlo estimators in this setting.
Below we let C > 0 be a general constant that may change from line to line.

Recall that we seek to approximate the L2(D;R)-valued solution of Equation (5) with
the family X̂ = (Xh,Δt, h ∈ (0, 1], NΔt ∈ N), where the Vh-valued sequence Xh,Δt is given
by the backward Euler scheme (10) and Vh is the space of all piecewise linear functions
on Th, a triangulation with maximal mesh width h. Let us introduce a subsequence of
approximations, indexed by levels �, by X̌ = (X� = Xh,Δt, h = 2−�, NΔt = h−2, � ∈ N0), and
suppose that it is primarily the end time value X(T ) that we are interested in. Theorem 3.8
then ensures that there for all p ≥ 1 exists a constant C such that for all � ∈ N0

‖X(T )−XT
� ‖Lp(Ω;H) ≤ C2−�.

Given a functional φ ∈ C2
p(H;R) we now set Y = φ(X(T )) and let Y� of (Y�)�∈N0 be given

by Y� = φ(XT
� ). By the mean value theorem for Fréchet differentiable mappings we have

‖Y − Y�‖2L2(Ω;R)

= E

[∣∣φ(X(T )
)− φ

(
XT

�

)∣∣2]

= E

[∣∣∣∣
∫ 1

0

〈
φ′(XT

� + s
(
X(T )−XT

�

))
, X(T )−XT

�

〉
H

ds

∣∣∣∣
2
]

≤ C‖X(T )−XT
� ‖2L2(p+1)(Ω;H)

(
1 + ‖X(T )‖2p

L2(p+1)(Ω;H)
+ ‖XT

� ‖2pL2(p+1)(Ω;H)

)
≤ C‖X(T )−XT

� ‖2L2(p+1)(Ω;H)

(13)

by using Hölder’s inequality and the assumption that there exists p ≥ 2, C > 0 such that
‖φ′(f)‖H ≤ C(1 + ‖f‖pH) for all f ∈ H (cf. [13, Chapter 1]). Here the constant of the
first inequality depends on p but not on �. In the second inequality, we use the uniform
bound (11) on X and the fact that the convergence result of Theorem 3.8 implies a similar
bound on X� to get a constant which depends on X but not on �. By a similar argument
one shows that there exists a constant C not depending on �, such that

‖Y�‖L2(Ω;R) = E

[∣∣∣∣φ
(
XT

�

)∣∣∣∣
2
] 1

2

≤ C (14)

for all � ∈ N0.
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We use these results to deduce that the error of the standard Monte Carlo estimation
of E[φ(X(T ))] is, for � ∈ N0, by the triangle inequality, Conjecture 3.9 and (12) bounded
by ∥∥E [

φ(X(T ))
]− EN

[
φ(XT

� )
]∥∥

L2(Ω;R)

≤ ∥∥E [
φ(X(T ))

]− E
[
φ(XT

� )
]∥∥

L2(Ω;R)
+
∥∥E [

φ(XT
� )

]− EN

[
φ(XT

� )
]∥∥

L2(Ω;R)

≤ C2−2� +
1√
N
‖φ(XT

� )‖L2(Ω;R) ≤ C
(
2−2� +N− 1

2

)
,

where the constant of the second inequality is that of Conjecture 3.9. Therefore, to ensure
that the Monte Carlo error does not dominate the error of the approximation of E[φ(X(T ))]
one should set the number of samples N � 24�. For the multilevel Monte Carlo scheme,
Theorem 3.8 along with Equation (13) ensure that

‖Y� − Y�−1‖L2(Ω;R) ≤ ‖Y − Y�‖L2(Ω;R) + ‖Y − Y�−1‖L2(Ω;R)

≤ C
(
2−� + 2−�−1

) ≤ C2−�,

so that the conditions of Theorem 4.1 are fulfilled with a� = 2−2�, � ∈ N0 and η = 1/2.
Therefore there exists a constant C such that for all L ∈ N

‖E [Y ]− EL [YL] ‖L2(Ω;R) ≤ C2−2�

as long as the level dependent sample sizes N�, � ∈ N0, are chosen to be N� = �24L−2��1+ε�
for � > 0 and N0 = 24L. This means that for a given level L, the majority of samples
are taken at a coarse level while retaining the same rate of convergence compared to the
standard Monte Carlo method. Assuming that the computational work of solving the
backward Euler system (10) at one time step of level � is bounded by O(2�d), where d is the
dimension of the underlying spatial domain, and that the computational cost of computing
Y� − Y�−1 is roughly equivalent to the cost of Y�, for � ∈ N0, the total cost of computing
EL [YL] is by Theorem 4.1 bounded by WL = O(2(3+d)LL2+ε). Thus the computational cost
of the multilevel Monte Carlo estimation is significantly cheaper than that of the single
level Monte Carlo estimator EN

[
φ(XT

L )
]
with N = 24L samples, which in comparison is

bounded by WL = O(2(6+d)L), while retaining the same rate of convergence.

5 Summary of Paper 1

Consider the analysis of weak errors for fully discrete approximations of solutions to SPDEs,
that is to say, in the context of Example 4.2, errors of the type |E[Y −Y�]| where φ is some
given functional, Y = φ(X(T )) and Y� of (Y�)�∈N0 is given by Y� = φ(XT

� ) for each level
� ∈ N0. This topic has been investigated in the community of numerical analysis of SPDEs
for some time. Yet, simulations that illustrate the theoretical results of such investigations
are rarely available. Furthermore, while weak convergence for equations driven by additive
noise exist, cf. Section 3.3, theoretical results for the case of multiplicative noise are
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still work in progress, at least for a finite element spatial discretization. In these cases,
simulations of weak convergence rates can inform us about the plausibility of claims on the
rate, such as the one of Conjecture 3.9.

One reason for the lack of simulations in the literature is the computational expense of
simulating a solution to an SPDE, which must be repeated a large number of times when
using a Monte Carlo method to approximate the expectation that is part of the weak error.
Due to this computational complexity, it is important to carefully consider which Monte
Carlo method one chooses in order to accurately simulate weak error rates. In Paper 1 we
present four methods of simulating such rates and analyse the additional error caused by
the Monte Carlo approximation involved in each of them.

In the paper, the analysis is done for the more general problem of approximating the
quantity |E[Y − Y�]|, where (Y�)�∈N0 is a sequence of mean square integrable random vari-
ables converging to Y ∈ L2(Ω;R). If one were interested in estimating E[Y − Y�], the
method of common random numbers would tell us that when Y and Y� are positively
correlated, which is reasonable to assume in the case that the latter random variable is
an approximation of the former, an estimator of the form E[Y ] − EN [Y�] is outperformed
by EN [Y − Y�], since the former has higher variance and both are unbiased. Now, when
estimating |E[Y − Y�]|, the estimators |E[Y ] − EN [Y�]| and |EN [Y − Y�]| are in general
biased, so a direct comparison cannot be made. Instead we show that the mean squared
error of the former estimator is bounded from below by

‖|E[Y − Y�]| − |E[Y ]− EN [Y�]|‖L2(Ω;R) ≥ −|E[Y − Y�]|+
(|E[Y − Y�]|2 +N−1 Var[Y�]

)1/2
and from above by

‖|E[Y − Y�]| − |E[Y ]− EN [Y�]|‖L2(Ω;R) ≤ N−1/2(Var[Y�])
1/2.

For the latter estimator, the corresponding bounds are shown to be

‖|E[Y − Y�]| − |EN [Y − Y�]|‖L2(Ω;R)

≥ −|E[Y − Y�]|+
(|E[Y − Y�]|2 +N−1 Var[Y − Y�]

)1/2
and

‖|E[Y − Y�]| − |EN [Y − Y�]|‖L2(Ω;R) ≤ N−1/2(Var[Y − Y�])
1/2.

Therefore, under the assumption that the quantity of interest |E[Y − Yn]| � N−1/2 is
very small, which is usually the case in the context of weak error simulations of SPDE
approximations, the former estimator will behave like N−1/2(Var[Y�])

1/2 and the latter like
N−1/2(Var[Y −Y�])

1/2. So if Y and Y� have a positive correlation, which they in general do
in such simulations, the additional error of the latter estimator will be significantly smaller
than that of the former.

In addition to this, the additional error caused by estimating |E[Y −YL]| with a multi-
level Monte Carlo estimator |E[Y ]− EL[YL]| is analysed. We find that the mean squared



6 SIMULATION OF WEAK CONVERGENCE RATES 19

error of this estimator is bounded from below by

‖|E[Y − YL]| − |E[Y ]− EL[YL]|‖L2(Ω;R)

≥ −|E[Y − YL]|+
(
|E[Y − YL]|2 +N−1

0 Var[Y0] +
L∑

�=1

N−1
� Var[Y� − Y�−1]

)1/2

and from above by

‖|E[Y − YL]| − |E[Y ]− EL[YL]|‖L2(Ω;R) ≤
(
N−1

0 Var[Y0] +
L∑

�=1

N−1
� Var[Y� − Y�−1]

)1/2

.

When choosing the sample sizes similarly to the choice made in Theorem 4.1, it turns out
that

‖|E[Y − YL]| − |E[Y ]− EL[YL]|‖L2(Ω;R) � |E[Y − YL]|,
which is to say that the additional error coming form the Monte Carlo method will asymp-
totically not affect the observed rate of the weak error simulations. For completeness, the
additional error caused by the multilevel Monte Carlo estimator |EL[Y − YL]| was also
analysed, although one should note that this estimator is of no practical interest. This
is due to the fact that EN0 [Y − Y0] has to be computed, i.e., many samples of the exact
solution must be generated, which destroys the idea of multilevel Monte Carlo methods.

An attempt was then made to simulate weak error rates using these estimators in the
context of a fully discrete approximation of the one-dimensional stochastic heat equation
driven by multiplicative Wiener noise, using a finite element approximation in space and
the backward Euler scheme in time, that is to say Example 4.2 restricted to the case that
A = Δ. Due to the large sample sizes involved, this simulation is computationally highly
expensive and was therefore performed on a cluster at Chalmers Centre for Computational
Science and Engineering (C3SE). It was observed that the estimators EN [Y − Y�] and
|E[Y ] − EL[YL]|, where Y is replaced by a reference solution, outperform E[Y ] − EN [Y�]
in the sense that the simulated weak error rate more closely resembles the prediction of
Conjecture 3.9. The error rates were also simulated for the simpler case of approximating
a geometric Brownian motion. The lower computational costs of this allowed for finer
simulations, which illustrated the theoretical bounds in an even clearer way.

6 Deterministic simulation of weak convergence rates

In Paper 1 the functional φ used in the actual simulations of the weak error was chosen
to be φ = ‖ · ‖2H , so that the goal of the computations carried out was nothing but the
approximation of the second moment E[‖X(T )‖2H ] of the end time value of the solution of
Equation (5). During the writing of Paper 2, we noted that in this case there is a simple
deterministic method for the simulation of weak convergence rates when the terms of the
SPDE are linear. The goal of this section is a brief description of it. To this end, let us
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again consider the setting of Example 4.2 under the simplifying assumption that F = 0.
Recall that H = L2(D;R) is the space of square integrable functions on a bounded domain
D ⊂ R

d, d ∈ N, and Vh is the space of all piecewise linear functions on some triangulation
Th of D. The backward Euler scheme (10) that gives the approximation XT

h,Δt ∈ L2(Ω;Vh)
of the end time value X(T ) ∈ L2(Ω;H) of the solution to the SPDE (5) can then be
rewritten as

(I −ΔtAh)X
tj+1

h,Δt = X
tj
h,Δt + PhG(X

tj
h,Δt)ΔLj,

where j = 0, . . . , NΔt − 1. Since Vh is finite-dimensional and G is assumed to be linear,
we have that PhG(·)ΔLj is an L(Vh)-valued random variable. Hence, we may rewrite the
backward Euler scheme as

(I −ΔtAh)X
tj+1

h,Δt =
(
I + PhG(·)ΔLj

)
X

tj
h,Δt

and by tensorizing this equation we get

((I −ΔtAh)⊗ (I −ΔtAh))
(
X

tj+1

h,Δt ⊗X
tj+1

h,Δt

)
=

(
I ⊗ I+I ⊗ PhG(·)ΔLj+PhG(·)ΔLj ⊗ I+PhG(·)ΔLj ⊗ PhG(·)ΔLj

) (
X

tj
h,Δt ⊗X

tj
h,Δt

)
.

Applying the expectation operator E[·] to both sides of this tensorized equation then

yields a simple recursion scheme for finding E[XT
h,Δt ⊗XT

h,Δt] ∈ V
(2)
h . To see this, note first

that for the second operator in the parenthesis on the left hand side of the equation we
have, since X

tj
h,Δt is Ftj -measurable and ΔLj is independent of Ftj with zero mean,

E

[(
I ⊗ PhG(·)ΔLj

) (
X

tj
h,Δt ⊗X

tj
h,Δt

)]
= E

[(
I ⊗ E[PhG(·)ΔLj|Ftj ]

) (
X

tj
h,Δt ⊗X

tj
h,Δt

)]
= 0,

and for the same reason the mean of the third operator applied to X
tj
h,Δt ⊗ X

tj
h,Δt is also

zero. Therefore, using the facts that X
tj
h,Δt is Ftj -measurable and that ΔLj is independent

of Ftj once again along with the fact that deterministic bounded linear operators and the
expectation operator commute, we end up with the scheme

((I −ΔtAh)⊗ (I −ΔtAh))E
[
X

tj+1

h,Δt ⊗X
tj+1

h,Δt

]
=

(
I ⊗ I + E

[
PhG(·)ΔLj ⊗ PhG(·)ΔLj

])
E

[
X

tj
h,Δt ⊗X

tj
h,Δt

]
.

(15)

for j = 0, . . . , NΔt − 1. Except for the term E [PhG(·)ΔLj ⊗ PhG(·)ΔLj], this scheme is
straightforward to implement on a computer by the use of Kronecker products of standard
sparse finite element matrices.

To see how we may represent the remaining term as a matrix, we consider an example
of the linear operator G important in applications, namely the linear Nemytskii operator
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which describes pointwise multiplication in the domain D. For this we assume that the
noise lives on the same space as the solution, i.e., that U = H = L2(D;R), and that for
each j = 0, . . . , NΔt − 1, ΔLj is a random field on D with covariance operator ΔtQ. The
Nemytskii operator is then, for f, g ∈ H and x ∈ D, given by

G(f)g[x] = f(x)g(x).

Then, any entry of the matrix representation of E [PhG(·)ΔLj ⊗ PhG(·)ΔLj] is given by

applying this operator to a basis vector ψk ⊗ ψ� of V
(2)
h and taking the inner product of

the result and another basis vector ψm ⊗ ψn. In our case, the matrix entry ends up being〈
E
[
PhG(ψk)ΔLj ⊗ PhG(ψ�)ΔLj

]
, ψm ⊗ ψn

〉
H

= E
[〈
PhG(ψk)ΔLj ⊗ PhG(ψ�)ΔLj, ψm ⊗ ψn

〉
H

]
= E

[〈
G(ψk)ΔLj, ψm

〉
H

〈
G(ψ�)ΔLj, ψn

〉
H

]
= E

[〈
ΔLj, ψkψm

〉
H

〈
ΔLj, ψ�ψn

〉
H

]
= Δt 〈Qψkψm, ψ�ψn〉H = Δt

∫
D

∫
D

C(x, y)ψ�(x)ψn(x)ψk(y)ψm(y) dx dy,

where we used the fact that G is the Nemytskii operator in the third equality and Iden-
tity (2) in the fourth. Note that the product ψ�ψn ∈ H since it is assumed that Vh ⊂ Ḣ1.

Scheme (15) is now ready to be implemented and it results in E[XT
h,Δt ⊗XT

h,Δt] ∈ V
(2)
h .

Then, writing

XT
h,Δt =

Nh∑
i=1

xiψi

using random coefficients x1, . . . , xNh
, we see that we can easily calculate E

[‖XT
h,Δt‖2H

]
from E[XT

h,Δt ⊗XT
h,Δt] since

E
[‖XT

h,Δt‖2H
]
= E

[〈
XT

h,Δt, X
T
h,Δt

〉
H

]
=

Nh∑
i,j=1

E [xixj] 〈ψi, ψj〉H

and

E[XT
h,Δt ⊗XT

h,Δt] =

Nh∑
i,j=1

E[xixj]ψi ⊗ ψj.

Let us now demonstrate this technique in a setting that is very similar to the one of
Paper 1, where we analysed the additional errors caused by Monte Carlo approximations
when attempting to numerically simulate weak convergence rates. We set D = [0, 1], T = 1
and A = Δ with zero boundary conditions, i.e., we are dealing with the homogeneous
stochastic heat equation in one dimension. We let G be the linear Nemytskii operator
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defined above and choose Q to be the covariance operator corresponding to the exponential
kernel given by C(x, y) = 20 exp(−2|x−y|), x, y ∈ D. With the notation of Example 4.2 we
compute E[Y�] = E[‖XT

� ‖2H ] for � = 1, . . . , 7 using E[‖XT
8 ‖2H ] as a reference solution when

calculating the weak error. In Figure 2(a) we see a realization of the process (X
tj
6 )j=0,...,NΔt/4

when L = W is a Q-Wiener process. In this setting, Conjecture 3.9 predicts a weak
convergence rate of order 2 in space and as we can see from Figure 2(b), this is consistent
with our numerical computations. Here, the initial value was given by X0(x) = sin(πx) for
x ∈ D and the computations were done in MATLAB.
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(a) A realization of the solution X.
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Figure 2: The one-dimensional stochastic heat equation with linear multiplicative noise.

7 Summary of Paper 2

Let us assume that the SPDE (5) is fully linear, i.e., that the operators F and G fulfil
F ∈ L(H) and G ∈ L(H;L(U ;H)). A property of such SPDE that has gathered some
interest in the community in recent years is the qualitative behaviour of the second moment
of the solution to (5). This is commonly analysed in terms of the equilibrium or zero solution
(Xe(t) = 0)t≥0 which is called mean square stable if, for every ε > 0, there exists δ > 0 such
that E[‖X(t)‖2H ] < ε for all t ≥ 0 whenever E[‖X0‖2H ] < δ. It is called asymptotically mean
square stable if it is mean square stable and there exists δ > 0 such that E[‖X0‖2H ] < δ
implies limt→∞ E[‖X(t)‖2H ] = 0.

While the main focus of the analysis of approximations of solutions to (5) has been on
showing strong and weak convergence, cf. Theorem 3.8 and Conjecture 3.9, these proper-
ties do not guarantee that the approximation shares the same (asymptotic) mean square
stability properties as the analytical solution. The goal of Paper 2 is to generalize the exist-
ing theory of asymptotic mean square stability analysis of approximations to the solutions
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of finite-dimensional stochastic differential equations to more general approximations, such
as the ones introduced in Section 3.2. An important application of mean square stability
can be found in multilevel Monte Carlo methods. If the solution is mean square unstable
on any of the included levels, this is enough for the estimator to not behave as it should,
see, e.g., [1].

The goal of the first part of the paper is the analysis of the asymptotic mean square
stability of the general linear recursion scheme

Xj+1
h = Ddet

Δt,hX
j
h +Dstoch,j

Δt,h Xj
h,

X0
h = X0

h,
(16)

for j ∈ N0, where the L(Vh)-valued deterministic and stochastic operatorsDdet
Δt,h andDstoch,j

Δt,h

are not yet assumed to be given by (7) and (8). The F0-measurable initial condition X0
h is

assumed to be square integrable. For this scheme, an equilibrium (solution) is given by the
zero solution, which is defined as Xj

h,e = 0 for all j ∈ N0. It is called mean square stable

if, for every ε > 0, there exists δ > 0 such that E[‖Xj
h‖2H ] < ε for all j ∈ N0 whenever

E[‖X0
h‖2H ] < δ and asymptotically mean square stable if it is mean square stable and there

exists δ > 0 such that E[‖X0
h‖2H ] < δ implies limj→∞ E[‖Xj

h‖2H ] = 0. When there is no risk
of confusion, the scheme (16) is itself said to be (asymptotically) mean square stable when
this holds.

First, the asymptotic mean square stability is analysed under the general assumption
that the family (Dstoch,j

Δt,h , j ∈ N0) is F -compatible in the sense that the random operator

Dstoch,j
Δt,h is Ftj+1

-measurable and E[Dstoch,j
Δt,h |Ftj ] = 0 for all j ∈ N0. It is also assumed that,

for all j ∈ N0,
‖Dstoch,j

Δt,h ‖L2(Ω;L(Vh)) = E[‖Dstoch,j
Δt,h ‖2L(Vh)

]1/2 < ∞
and

E

[
Dstoch,j

Δt,h ⊗Dstoch,j
Δt,h

∣∣∣Ftj ] = E

[
Dstoch,j

Δt,h ⊗Dstoch,j
Δt,h

]
.

This is a natural assumption that is true when Dstoch,j
Δt,h is given by (8). Next, under the

additional assumption that (Dstoch,j
Δt,h , j ∈ N0) has constant covariance, i.e., that for all

j ∈ N0,

E

[
Dstoch,j

Δt,h ⊗Dstoch,j
Δt,h

]
= E

[
Dstoch,0

Δt,h ⊗Dstoch,0
Δt,h

]
, (17)

it is shown that the zero solution of (16) is asymptotically mean square stable if and only
if the stability operator

S = Ddet
Δt,h ⊗Ddet

Δt,h + E[Dstoch,0
Δt,h ⊗Dstoch,0

Δt,h ] ∈ L(V
(2)
h )

satisfies ρ(S) = maxi=1,...,N2
h
|λi| < 1, where λ1, . . . , λN2

h
are the eigenvalues of S.

The second part of the paper treats the asymptotic mean square stability of the scheme
of Section 3.2, i.e., it is assumed that (16) approximates the mild solution to the SPDE (5).
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It is shown that when Ddet
Δt,h and Dstoch,j

Δt,h are given by (7) and (8), the stability operator
simplifies to

S = Ddet
Δt,h ⊗Ddet

Δt,h +Δt (C ⊗ C)q ∈ L(V
(2)
h ),

where q =
∑∞

k=1 μkpk ⊗ pk ∈ U (2) and C ∈ L(U ;L(Vh)) with

Cu = r−1
d (ΔtAh)PhG(·)u,

recalling that the eigenvectors of Q are given by (pi)i∈N and the eigenvalues by (μi)i∈N.
A similar result is shown for the higher order Milstein scheme, the convergence of which
was analysed in [5].

In the remainder of the paper we derive sufficient conditions for the asymptotic mean
square stability of the scheme of Section 3.2 for different rational approximations of the
discrete semigroup (Eh(t))t∈[0,T ], among those the backward and forward Euler scheme of
Example 3.6. For example, the first of these is seen to be asymptotically mean square
stable if

(1 + Δt‖F‖L(H))
2 +ΔtTr(Q)‖G‖2L(H;L(U ;H))

(1 + Δtλh,1)2
< 1,

where λh,1 is the smallest eigenvalue of the discrete operator −Ah. These conditions are
based on the observation that ρ(S) ≤ ‖S‖L(Vh). Using these results, a condition that
ensures the asymptotic mean square stability of both the zero solution to (5) and its
approximation with the backward Euler scheme is derived under Assumption 3.7. A similar
result is again shown for the Milstein scheme. Simulations using both spectral and finite
element Galerkin methods illustrate the theoretical results.
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