
The SDE-NLME model
The hierarchical dynamic model is described by a system of SDEs

𝑑𝒙𝑖 = 𝒇 𝒙𝑖 , 𝒖𝑖 , 𝑡, 𝜽, 𝜼𝑖 𝑑𝑡 + 𝐆 𝒙𝑖 , 𝒖𝑖 , 𝑡, 𝜽, 𝜼𝑖 𝑑𝒘𝑖

𝒙𝑖 𝑡0 = 𝒙0(𝜽, 𝜼𝑖)

together with an observation equation

𝒚𝑖𝑗 = 𝒉 𝒙𝑖𝑗 , 𝒖𝑖 , 𝑡𝑖𝑗 , 𝜽, 𝜼𝑖 + 𝒆𝑖𝑗

Parameter estimation combines three methods
• Likelihood approximation: FOCE method
• State variable estimation: Extended Kalman Filter (EKF)
• Optimization of the likelihood: nested optimization (inner and outer 

level) using an exact gradient approach

The exact gradient approach
• Symbolic differentiation of the likelihood w.r.t. model parameters
• Requires forward sensitivity equations for the model and the EKF
• Benchmarked using three common PKPD models: two-compartment

PK with first order absorption (M1), M1 combined with direct 
response (M2), and M1 combined with turnover response (M3)
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Exact Gradients Improve Parameter Estimation 
in Nonlinear Mixed Effects Models 

with Stochastic Dynamics

Nonlinear mixed effects (NLME) models based on stochastic differential equations (SDEs) have evolved into a promising approach for analysis of PKPD data [1-3]. We
present an exact-gradient version of the first order conditional estimation (FOCE) method for SDE-NLME models, and show that it enables faster estimation and
better gradient precision/accuracy compared to finite difference (FD) gradients. This method is an extension of our previous work on regular NLME models [4].

The SDE-NLME framework Three sources of variability

Exact gradients improve speed, accuracy, and precision

Relative speed-up for exact gradients compared to using central FDs (dashed line) for three 
benchmark PKPD models (M1-M3). S-F shows the speed-up using exact gradients in the inner 
problem only. S-S shows the speed-up using exact gradients in both inner and outer problems.

• SDEs are used to model uncertainty in the dynamics of the underlying 
biological process

• SDE-NLME models account for three sources of variability in PKPD data: 
observation errors, between subject variability, and state variable 
uncertainty

𝒆𝑖𝑗~𝑁(𝟎, 𝚺)
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• A method for computing the exact gradients of the FOCE likelihood 
approximation for SDE-NLME models has been developed and 
implemented in Mathematica (Wolfram Research)

• The method has been benchmarked using  three standard PKPD models 
of different complexity

• Relative run-times improved up to 50-fold when FDs were replaced by 
exact gradients

• Exact gradients are unbiased and precise, compared to FD gradients
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Summary and conclusions

total variability (𝑦𝑖𝑗) =

state variable uncertainty +
observation variability

individual-specific parameters (𝜂𝑖)

𝜼𝑖~𝑁(𝟎,𝛀)

𝑑𝒘𝑖~𝑁(𝟎, 𝑑𝑡 𝐈)
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q

Monte Carlo sample distributions of numerical errors in the gradient computation using exact 
gradients (blue), forward FDs (yellow), and central FDs (red), for different step-sizes 10−𝑞 . For large 
step sizes (small 𝑞), FDs are biased but precise. Accuracy of FDs increase when step sizes decrease 
(large 𝑞), but FDs simultaneously suffers from a loss of precision compared to exact gradients.

state variable uncertainty (𝑥𝑖) =
individual-specific parameters +
uncertain dynamics


