
Thesis for the Degree of Doctor of Philosophy

On finite element schemes for
Vlasov-Maxwell system and Schrödinger

equation

Christoffer Standar

Division of Mathematics
Department of Mathematical Sciences

Chalmers University of Technology
and University of Gothenburg
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Abstract

This thesis treats finite element schemes for two kind of problems,
the Valsov-Maxwell system and the nonlinear Schrödinger equation. We
study streamline diffusion schemes applied for numerical solution of the
one and one-half dimensional relativistic Vlasov-Maxwell system. The
study is made both in a priori and a posteriori settings. In the a priori
setting we derive stability estimates and prove optimal convergence rates,
due to the maximal available regularity of the exact solution. In addition
to this we also prove existence and uniqueness of the numerical solution.
In the a posteriori setting we use dual problems to prove error estimates in
L∞(H−1) norm. For the Maxwell equation we also prove error estimates
in H−1(H−1) norms. Further more we study a hp-version of the stream-
line diffusion scheme for the three dimensional Vlasov-Maxwell system in
an a priori setting. A Nitsche type scheme is also introduced and analyzed
for Maxwell’s equations. For the nonlinear Schrödinger equation a two
level time discretization is used. Here we derive a priori error estimates
both in L2 and H1 norms.

Keywords: Vlasov-Maxwell, streamline diffusion, a priori error anal-
ysis, a posteriori error analysis, hp-scheme, Nitsche scheme, nonlinear
Schrödinger equation
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Introduction

This thesis work is on construction and analysis of numerical schemes,
mostly finite elements, for approximate solution of i) the Vlasov-Maxwell
system in different dimensions and ii) the nonlinear Schrödinger equa-
tion. The study of the Vlasov-Maxwell system concerns different Galerkin
schemes, e.g., streamline diffusion and Nitsche, while for the nonlinear
Schrödinger equation a time-splitting approach is comined with a back-
ground spatial discretization. Below we first give a description of the
equations in the thesis. Then, we introduce the different Galerkin schemes
that has been considered. Finally, we present the results of the thesis pa-
pers.

1. Vlasov-type systems

The Vlasov equation is a hyperbolic type partial differential equation,
which describes the time evolution of the phase-space-time distribution
function for plasma of charged particles. The equation was first suggested
by Anatoly Vlasov in 1938. The Vlasov equation is often coupled with
other equations, to obtain system of equations as mathematical models of
charge particle transport. The coupling terms are of crucial importance in
describing certain physical phenomenon, e.g., the Vlasov-Maxwell system
(VM), which is the focus of our studies in this thesis, describes a self-
consistent collisionless plasma under the influence of an electromagnetic
field (Vlasov-Poisson is an approximation of the Vlasov-Maxwell system
with a Poisson equation describing a potential field). The VM system
has a wide range of applications in plasma physics such as lasers, fusion
devices and particle accelerators.

Among all Vlasov-type systems, the Vlasov-Poisson system is the one
that has been widely studied both in analytical and numerical works.
Classical analytical approaches to the Vlasov-Poisson system have been
based on Schauder’s fixed point theorem which was introduced in a work
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Vlasov-type systems

on the existence of a classical solution to the two dimensional Vlasov-
Poisson system by Ukai and Okabe [37]. Another analytic study is due to
Bardos and Degond [8] where the global existence of solutions of the three
dimensional Vlasov-Poisson system with small data has been proved. In
early 90s Lions and Perthame [28] and Pfaffelmoser [33] both proved
global existence of the three dimensional Vlasov-Poisson system in in-
dependent works. Then, as part of a survey study of classical kinetic
models, DiPerna and Lions [15] proved the global existence of a weak
solution to the Vlasov-Maxwell system in three dimensions. More elabo-
rate analytic study of the VM system is due to Glassey and Schaeffer in
several settings and various geometries; see, e.g., [18], [19], [21] or [22].
In [18] Glassey and Schaeffer proved global existence of classical solution
with the assumption of almost neutral initial data. In [19] and [21] they
have studied the global existence with small initial data for VM in one
and one-half dimensions (one space variable and two velocity variables)
and two and one-half dimensions (two space variables and three velocity
variables), respectively. We also mention some other relevant studies e.g.,
[14] and [30]. In [14] the one and one-half dimensional Vlasov-Maxwell
system is studied in an interval, while [30] considers the three dimensional
Vlasov-Poisson equation with point charges.

As for numerical approximation, the particle methods have long been
very popular for discretizing Vlasov-type systems. For studies on particle
methods related to the Vlasov equation; see, e.g., [13], [16], [38] or [20].
The first three articles concern particle methods for the Vlasov-Poisson
system in different settings, while in the fourth one the authors study the
one and one-half dimensional Vlasov-Maxwell system. Recently, the dis-
continuous Galerkin finite element method has become increasingly pop-
ular for approximating Vlasov type systems. A discontinuous Galerkin
method for the VM system with different choices of the numerical flux has
been studied by Cheng et al. in [12]. In a series of articles [26], [29], [31]
the authors have considered the study of several finite element schemes
(including discontinuous Galerkin) for approximating the Maxwell equa-
tions. As for a combined system, e.g., in [5] the authors construct and
analyze a streamline diffusion based DG scheme for the Vlasov-Poisson-
Fokker-Planck system.

Our objective is to construct a numerical scheme for the Vlasov-
Maxwell system that is both reliable (being highly stable) and efficient
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The Vlasov-Maxwell system

(converges optimally in an L2-based energy norm due to maximal avail-
able regularity of the exact solution). A desirable scheme should also
contain a self-adaptivity mechanism that is capable to circumvent over-
refinements.

2. The Vlasov-Maxwell system

The main study in this thesis is the relativistic Vlasov-Maxwell system
defined by

(2.1)

∂tf + v̂ · ∇xf + q(E + c−1v̂ ×B) · ∇vf = 0,

∂tE = c∇×B − j, ∇ · E = ρ,

∂tB = −c∇× E, ∇ ·B = 0.

Here f is density, in phase-space-time, of particles with mass m, charge
q and velocity

v̂ = (m2 + c−2|v|2)−1/2v (v is momentum).

Further, the charge and current densities are given by

ρ(t, x) = 4π

∫
qf dv and j(t, x) = 4π

∫
qf v̂ dv,

respectively. The functions E and B describe the electric and magnetic
fields, respectively.

For simplicity, we choose to describe the relativistic Vlasov-Maxwell
system in the one and one-half dimensional setting (x ∈ R, v ∈ R2), given
by the following system of equations

(2.2)



∂tf + v̂1∂xf + (E1 + v̂2B)∂v1f + (E2 − v̂1B)∂v2f = 0,

∂xE1 =

∫
fdv − ρb(x) = ρ(t, x),

∂tE1 = −
∫
v̂1fdv = −j1(t, x),

∂tE2 + ∂xB = −
∫
v̂2fdv = −j2(t, x),

∂tB + ∂xE2 = 0.

Considering such geometry, we can derive formulas of d’Alembert type for
the field functions, which facilitate the estimation of the field functions.
Studies of higher dimensional models require different treatments. To
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proceed we set

M1 =


0 0 0
1 0 0
0 1 0
0 0 1

 , M2 =


1 0 0
0 0 0
0 0 1
0 1 0


and let W = (E1, E2, B) and b = (ρ,−j1,−j2, 0). Then, introducing the
notations

G(f) = (v̂1, E1 + v̂2B,E2 − v̂1B)

and
∇f = (∂xf, ∂v1f, ∂v2f),

we can write the Vlasov-Maxwell system in a more compact form as

(2.3)

{
∂tf +G(f) · ∇f = 0,
M1∂tW +M2∂xW = b.

3. The Schrödinger equation

The Schrödinger equation is widely used in quantum mechanics and
its solution describes molecular, atomic, subatomic as well as macroscopic
systems. In its most general form Schrödinger equation can be written as

i~
∂

∂t
Ψ(t, x) = HΨ(t, x),

where H is the Hamiltonian operator for the system. For the case of a
single particle moving in an electric field the Hamiltonian is given by

H = − ~2

2µ
∆ + V (t, x)

and the Schrödinger equation takes the form

(3.1) i~
∂

∂t
Ψ(t, x) = − ~2

2µ
∆Ψ(t, x) + V (t, x)Ψ(t, x),

where µ is the reduced mass of the particle and V (t, x) is its potential
energy. In Paper IV we study a nonlinear version of (3.1). Let f :
[0,∞) → R and set, for simplicity, all constants to be equal to 1. Then
the nonlinear Schrödinger equation (NLS) can be written as

(3.2) ut = i∆u+ if(|u|2)u+ g(t, x).

For a real λ and with f(x) = λx the above equation is known as the cubic
Schrödinger equation, with eigenvalue λ.

4



The streamline diffusion method

Some analytical results on the NLS equation are discussed in a work
by Strauss [35]. The nonlinearity considered in [35] is of the form f(x) =

λx(p−1)/2 for p > 1. Under specific conditions on λ and p there exists
a unique global solution to the NLS equation. Results, regarding the
blowing up of solution, for the NLS equation can be found in [17]. As
a classical approach to the continuous problem Brezis and Gallouet [9]
consider the existence of a solution to the cubic Schrödinger equation in
a bounded domain. The nonlinear Schrödinger equation has also been
studied in higher dimensions; see, e.g., Tsutsumi and Hayashi [36].

In numerical studies of the NLS equation a complex-valued version
of Brouwer fixed point theorem is used for proving existence of the dis-
cretized form of the equation, while Newton’s method has been widely
used to handle the nonlinear term numerically. In this setting Akrivis
[1] propose a finite difference scheme combined with Newton’s method
for approximation of the cubic Schrödinger equation in one dimension.
A modified Newton method is introduced by Akrivis et al. in [2]. The
main idea of this modified method is to avoid updating the matrix of the
linear system at each time step. An alternative approach can be found
in [39], where a linear two-step finite element method is introduced and
the nonlinear term is approximated by the disretized solution in previous
time step.

4. The streamline diffusion method

Both Vlasov and Maxwell equations are hyperbolic type PDEs and as-
suming that the exact solution is in the Sobolev space Hk+1, the standard
Galerkin method for hyperbolic partial differential equations is subopti-
mal in the sense that they have a convergence rate of order O(hk), where
h is the mesh size. On the other hand, with the same regularity assump-
tion (Hk+1) the optimal convergence rate for the elliptic and parabolic
problems is of order O(hk+1). The streamline diffusion (SD) scheme,
in comparison to the classical finite element method for hyperbolic type
equations, is more stable and has an improved convergence rate of or-
der O(hk+1/2). The SD method is designed based on a Petrov-Galerkin
scheme where an extra convection term in the streamline direction has
been added to the test functions. This corresponds to the addition of
artificial diffusion to the original equation, which enhance the stability
and improves the convergence behavior of the standard Galerkin method
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The streamline diffusion method

by a factor of order O(h1/2). This is the main reason for studying the SD
method for the Vlasov-Maxwell system.

The streamline diffusion method for hyperbolic partial differential
equations has been suggested by Hughes and Brooks in [25]. For a mathe-
matical analysis of the SD method; see, e.g., [4] for Vlasov-Poisson system
and Johnson and Saranen [27] for Euler and Navier-Stokes equations. To
justify for the SD method let us look at an example in one dimensional
case and illustrate the method. Suppose we want to approximate the
solution of the Dirichlet boundary value problem ut + ux = f(t, x) for 0 < x < 1 and t > 0,

u(t, 0) = u(t, 1) = 0 for t > 0,
u(0, x) = g(x) for 0 < x < 1.

Using the classical finite element method we want to find an approxima-
tion Uh in some finite element space V h, such that the following discrete
version of the variational formulation holds true

(Uht + Uhx , v) = (f, v) ∀v ∈ V h.

For the streamline diffusion method we will instead search for Uh ∈ V h,
such that(

Uht + Uhx , v + δ(vt + vx)
)

=
(
f, v + δ(vt + vx)

)
∀v ∈ V h.

Here δ is a multiple of h (or more general a multiple of hα for some
suitable α > 0). In the SD scheme, which is used in this thesis, we will
also allow jump discontinuties at grid points in the time direction: Let
0 = t0 < t1 < . . . < tM−1 < tM = T be a partition of [0, T ] into the
subintervals Im = (tm, tm+1], m = 0, . . . ,M − 1. Then, the SD scheme
for the example above can be formulated as: find Uh ∈ V h, such that for
m = 0, 1, . . . ,M − 1,(

Uht + Uhx , v + δ(vt + vx)
)
Im×Ω

+

∫
Ω
Uh+(tm, x) v+(tm, x) dx

=
(
f, v + δ(vt + vx)

)
Im×Ω

+

∫
Ω
Uh−(tm, x) v+(tm, x) dx ∀v ∈ V h,

where v±(t, x) = lims→0± v(t + s, x). Roughly speaking, the two extra
integrals measure how large the jumps are.

With v = Uh the extra δ term can be interpreted (after partial inte-
gration) as −δ(Uhtt + Uhxx) corresponding to an extra diffusion of order δ
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in the streamline direction which is not present in the equation. Hence
the name of the method.

5. The hp-version

For the classical finite element method (FEM) the accuracy is usually
controlled by altering the mesh size h, while the polynomial degree p of the
elements are kept fixed, which leads to the so-called h-version of the FEM.
Alternatively, one could keep the mesh size fixed and instead increase the
spectral order p. Then, this is called the p-version. Combining these two
versions leads to the hp-version. The main idea is to split the physical
domain of the equation according to the degree of regularity of the exact
solution, data and geometry of the domain. Then, e.g., where the exact
solution is smooth one uses higher polynomial order and a coarse mesh,
while near singularities a more refined mesh is applied together with a
low polynomial order. In that sense the hp method may be interpreted
as an automatic adaptivity procedure.

An early study of the hp-version can be found in [7], where the authors
analyze the hp-method for an elliptic equation. In [23] and [24] Hous-
ton et al. combine the hp-version with a streamline diffusion method for
hyperbolic equations. A similar study can be found in [6] for the Vlasov-
Poisson-Fokker-Planck system.

6. Nitsche’s method

In [32] Nitsche proposed a stabilized penalty method for an elliptic
equation. This method has thereafter been widely studied by several
authors for different equations. Arnold [3] extended Nitsche’s method
to the heat equation. In a series of articles [10], [11] and [34] the au-
thors study Nitsche’s method for different equations. In [10] and [11] the
Nitsche method is applied to a domain decomposition problem for Pois-
son and Stokes equations, respectively. Sticko and Kreiss [34] extended
this method to the wave equation.

To illustrate Nitsche’s method we look at a simple example as follows.
Suppose we are interested in approximating the solution of the Poisson
equation

(6.1)

{
−∆u(x) = f(x) in Ω,

u(x) = α on ∂Ω,

7
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for given function f and constant α. Here Ω is a domain in Rn for n ≥ 2.
For a suitable finite dimensional space V h the classical finite element
method can be formulated as: find Uh ∈ V h with Uh|∂Ω = α, such that

(∇Uh,∇v) = (f, v) ∀v ∈ V h
0 ,

where V h
0 = {v ∈ V h; v = 0 on ∂Ω}. If we remove the restriction of

Uh being equal to α on the boundary and instead enforce the boundary
condition weakly (equivalently assume also v ∈ V h), then we have the
following formulation: find Uh ∈ V h, such that

(∇Uh,∇v)−
∫
∂Ω

∂Uh

∂n
v ds−

∫
∂Ω

(Uh − α)
∂v

∂n
ds = (f, v) ∀v ∈ V h.

This, however, is not satisfactory enough, since the corresponding bilinear
form is not gauranteed to be coercive. To compensate for the loss of
coercivity a particular additional boundary term is added. This yields
the Nitsche scheme, which can be formulated as follows: find Uh ∈ V h,
such that

(∇Uh,∇v)−
∫
∂Ω

∂Uh

∂n
v ds−

∫
∂Ω

(Uh − α)
∂v

∂n
ds

+
γ

h

∫
∂Ω

(Uh − α)v ds = (f, v) ∀v ∈ V h.

(6.2)

Here h is the mesh size and γ is a penalty parameter to be chosen large
enough for the bilinear form to be coercive. A simple calculation shows
that the exact solution of (6.1) satisfies (6.2) meaning that Nitsche’s
method is consistent. Since the boundary condition is enforced through
the forth term of (6.2) the third term could be removed, but then the
bilinear form will not be symmetric.

7. Summary of papers I-III

Papers I and II are devoted to the analysis of the streamline diffusion
scheme for the one and one-half dimensional relativistic Vlasov-Maxwell
system in the a priori and a posteriori settings, respectively. Since the
system is both nonlinear and coupled, we perform an iteration procedure
to approximate the solution of the Vlasov-Maxwell system (2.1). Starting
with an initial guess fh,0 we compute the fields Eh,1 and Bh,1 and insert
them into the Vlasov equation to get the numerical approximation fh,1

at the next step. This will then be inserted in the Maxwell equations to

8
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get the corresponding fields Eh,2 and Bh,2 and so on. The iteration step
i yields a Vlasov equation for fh,i with the fields Eh,i and Bh,i.

In Paper I we focus on the a priori error analysis of the scheme de-
scribed above, while Paper II is devoted to the a posteriori error analysis.
In Paper I we also consider a SD-based discontinuous Galerkin scheme,
where in addition to grid points in time, jumps are also allowed across
inter-element boundaries in phase-space variables. The a priori error es-
timates are derived in two different triple norms (energy norms), one for
the Maxwell part and another for the Vlasov part. Paper III generalize
the SD scheme introduced in Paper I to a hp-scheme for the three di-
mensional VM system. This paper contains also the study of a Nitsche
type scheme for the Maxwell equations. As in Paper I, the focus is on a
priori error estimates. A concise numerical implementation is justifying
the results.

Before stating our results from the three VM papers, we need to
introduce some notations. Let Ωx ⊂ R and Ωv ⊂ R2 denote the space
and velocity domains, respectively. Now we will introduce a finite element
structure on Ωx × Ωv. Let T xh = {τx} and T vh = {τv} be finite elements
subdivisions of Ωx with elements τx and Ωv with elements τv, respectively.
Then Th = T xh ×T vh = {τx×τv} = {τ} is a subdivision of Ωx×Ωv. Let 0 =
t0 < t1 < . . . < tM−1 < tM = T be a partition of [0, T ] into sub-intervals
Im = (tm−1, tm], m = 1, 2, . . . ,M . Further let Ch be the corresponding
subdivision of QT = [0, T ] × Ωx × Ωv into elements K = Im × τ , with

h = diamK as the mesh parameter. We also introduce C̃h as the finite
element subdivision of Q̃T = [0, T ] × Ωx, which is considered for the
Maxwell part solely. Before we define our finite dimensional spaces we
need to introduce some function spaces, viz

H0 =

M∏
m=1

H1
0 (Im × Ωx × Ωv) and H̃0 =

M∏
m=1

H1
0 (Im × Ωx),

where
H1

0 (Im × Ω) = {w ∈ H1;w = 0 on ∂Ω}
with Ω = Ωx × Ωv for VM or Ω = Ωx for the Maxwell part. For k =
0, 1, 2, . . ., we define the finite element spaces

Vh = {w ∈ H0;w|K ∈ Pk(Im)× Pk(τx)× Pk(τv), ∀K = Im × τ ∈ Ch}
and

Ṽh = {g ∈ [H̃0]3; gi|K̃ ∈ Pk(Im)×Pk(τx), ∀K̃ = Im× τx ∈ C̃h, i = 1, 2, 3},
9
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where Pk(·) is the set of polynomial of degree at most k on the given set.
We shall also use some notation as

(f, g)m = (f, g)Sm =

∫
Sm

f(t, x, v)g(t, x, v) dt dx dv, ‖g‖m = (g, g)1/2
m

and

〈f, g〉m = (f(tm, . . .), g(tm, . . .))Ω, |g|m = 〈g, g〉1/2m ,

where Sm = Im×Ω, is the slab at m-th time interval Im, m = 1, 2, . . . ,M .
Here, the domain Ω equals Ωx for the Maxwell equations, while Ω =
Ωx × Ωv for the Vlasov equation.

To proceed we define fh,i, bh,i and W h,i as the approximation on the
ith step for f , b and W , respectively. We are now ready to formulate the
SD scheme for (2.2). This is stated separately for the Maxwell equations
and the Vlasov equation. The streamline diffusion method on the ith step
for the Maxwell part can now be formulated as follows: Find W h,i ∈ Ṽh
such that for m = 1, 2, . . . ,M ,

(7.1) (M1W
h,i
t +M2W

h,i
x , ĝ + δ(M1gt +M2gx))m + 〈W h,i

+ , g+〉m−1

= (bh,i−1, ĝ + δ(M1gt +M2gx))m + 〈W h,i
− , g+〉m−1, ∀ g ∈ Ṽh,

where ĝ = (g1, g1, g2, g3)T . The corresponding streamline diffusion method
on the ith step for the Vlasov equation can be formulated as follows: Find
fh,i ∈ Vh such that for m = 1, 2, . . . ,M ,

(fh,it +G(fh,i−1) · ∇fh,i, g+δ(gt +G(fh,i−1) · ∇g))m

+ 〈fh,i+ , g+〉m−1 = 〈fh,i− , g+〉m−1, ∀g ∈ Vh,

(7.2)

where

G(fh,i−1) = (v̂1, E
h,i
1 + v̂2B

h,i, Eh,i2 − v̂1B
h,i).

As stated above the a priori error estimates will be derived in two different
triple norms. These triple norms are defined by

|||g|||2M =
1

2

(
|g+|20 + |g−|2M +

M−1∑
m=1

|[g]|2m + 2δ

M∑
m=1

‖M1gt +M2gx‖2m

)
for the Maxwell equations and

|||g|||2V =
1

2

(
|g+|20 + |g−|2M +

M−1∑
m=1

|[g]|2m + 2δ
M∑
m=1

‖gt +G(fh,i−1) · ∇g‖2m

)
10
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for the Vlasov part.
The main result of Paper I is the following convergence theorem for

the density function f .

Theorem 7.1. Let fh,i be the solution to (7.2) and assume that the
exact solution f for (2.3) is in the Sobolev space Hk+1 and that some
additional conditions holds (see Paper I for details), then there exists a
constant C such that

|||f − fh,i|||V ≤ Chk+ 1
2 + Chi−

1
2 .

We have a corresponding error estimate for the solution W h,i of (7.1)
and the exact solution W for (2.3). If we assume that W is in the Sobolev
space Hk+1, then there exists a constant C such that

|||W −W h,i|||M ≤ Chk+ 1
2 + Chi−1.

In the a posteriori setting in Paper II, the errors are measured in terms
of the residuals. Due to the nature of the approximating scheme, two
kinds of residuals will appear in our estimates. The first kind measures
how well the approximate solution satisfies the equation. This is done
replacing the exact solution by a symbol for an approximate solution into
the equation and taking the difference between the right and the left
hand side. The second kind of residual measures how large the jumps
of approximated solution is. Consequently, the residuals for the Maxwell
equations are defined as

R̃i1 = bh,i−1 −M1W
h,i
t −M2W

h,i
x

and

R̃i2|Sm =
(
W h,i

+ (tm, x)−W h,i
− (tm, x)

)
/h.

The corresponding residuals for the Vlasov equation are

Ri1 = fh,it +G(fh,i−1) · ∇fh,i

and

Ri2|Sm =
(
fh,i+ (tm, x, v)− fh,i− (tm, x, v)

)
/h,

where the residuals with index 2 are considered to be constant in time on
each slab.

Let us decompose the error into two parts

W −W h,i = W −W i︸ ︷︷ ︸
analytical iteration error

+ W i −W h,i︸ ︷︷ ︸
numerical error

= Ẽ i + ẽi,

11
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where W i is the exact solution to the approximated Maxwell equations
at the ith iteration step:

M1W
i
t +M2W

i
x = bh,i−1.

We do a similar decomposition of the error

f − fh,i = f − f i︸ ︷︷ ︸
analytical iteration error

+ f i − fh,i︸ ︷︷ ︸
numerical error

= E i + ei,

where f i is the exact solution of the approximated Vlasov equation at the
ith iteration step:

f it +G(fh,i−1) · ∇f i = 0.

We will now assume thatW i and f i converge to the analytical solutionsW
and f , respectively. For a sufficiently large i, ẽi and ei are the dominating
part of the errors W −W h,i and f − fh,i. Therefore, for large enough i,
we have that

‖Ẽ i‖H−1(Q̃T ) << ‖ẽ
i‖H−1(Q̃T ).

As the main results in Paper II we have the following a posteriori
error estimates in L∞(H−1)-norms

Theorem 7.2. There exists a constant C such that

‖W (T, ·)−W h,i(T, ·)‖H−1(Ωx) ≤ C
(
‖hR̃i1‖L2(Q̃T ) + ‖hR̃i2‖L2(Q̃T )

)
.

and

Theorem 7.3. There exists a constant C such that

‖f(T, ·)− fh,i(T, ·)‖H−1(Ω) ≤

C
(
‖hRi1‖L2(QT )(2 + ‖G(fh,i−1)‖L∞(QT )) + ‖hRi2‖L2(QT )

)
.

For the Maxwell part we also have the following a posteriori estimate
in the H−1(H−1)-norm

Theorem 7.4. There exists a constant C such that

‖W −W h,i‖H−1(Q̃T ) ≤ C
(
‖hR̃i1‖L2(Q̃T ) + ‖hR̃i2‖L2(Q̃T )

)
.

In Paper III the SD scheme, introduced in Paper I, is generalized to
a hp-scheme for the three dimensional VM system. The a priori analysis
of the hp-scheme in Paper III follows the analysis in Paper I, with some
modification because of the use of a hp method. An important ingredient
is the interpolation error estimates in Theorem 3.2 of [6]. The following

12
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bounds hold for the interpolation error η = g − g̃ of a function g ∈
Hk+1([0, T ]×Ω) (where Ω stands for Ωx in the Maxwell’s equations and
Ωx × Ωv for the Vlasov case) and its gradient:

‖η‖2 ≤ C
∑
K

(
hK
2

)2sK+2

Φ1(pK , sK)‖g‖2sK+1,K ,

‖Dη‖2 ≤ C
∑
K

(
hK
2

)2sK

Φ2(pK , sK)‖g‖2sK+1,K ,

where the sums are taken over all space-time elements of the triangulation
of the domain, [0, T ] × Ω, 0 ≤ sK ≤ min(pK , k), with pK being the
spectral order of the element K. The norm ‖ · ‖s,K is the standard norm
on Hs(K). Closed form formulas for Φ1 and Φ2 are given in Theorem 3.2
of [6]. A less involved formula for Φ1 can be found in [24]. In the error
estimates we use ΦM = max(Φ1,Φ2) with dimension N = dim Ωx+1 and
ΦV = max(Φ1,Φ2) with dimension N = dim Ωx + dim Ωv + 1. The main
theorems of the hp-scheme for the Vlasov-Maxwell system consist of the
error estimates

|||W −W h,i|||2M ≤C
∑
K∈C̃h

h2sK+1
K p−1

K ΦM(pK , sK)‖W‖2sK+1,K

+ C‖f − fh,i−1‖2QT
,

for the fields and

|||f − fh,i|||2V ≤ C
( ∑
K∈C̃h

h2sK+1
K p−1

K ΦM(pK , sK)‖W‖2sK+1,K

+
∑
K∈Ch

h2sK+1
K p−1

K ΦV(pK , sK)‖f‖2sK+1,K

)
+ Cph‖f − fh,i−1‖2QT

for the density function. Note that the triple norms appearing here are
not exactly the same as in Paper I. The explicit expressions of the triple
norms and the relevant conditions for the above error estimates can be
found in Paper III. The results are justified through numerical simulations
in a lower dimensional case.

In Paper III a Nitsche scheme is studied for the Maxwell equations as
well. This can be viewed as an alternative method to the SD scheme for

13
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the Maxwell part. By assuming extra regularity and differentiating the
Maxwell’s equations

Et −∇x ×B = −j,
Bt +∇x × E = 0,

with respect to t, we obtain second order differential equations

Ett +∇x × (∇x × E) = −jt,
Btt +∇x × (∇x ×B) = ∇x × j.

Since the equations for E and B are similar, it suffices to analyze the
equation for one of them: E. To this end we define the bilinear form

a(E, g) :=

∫
Ωx

∇x × E · ∇x × g dx−
∫

Γx

∇x × E · (g × n) ds

−
∫

Γx

(E × n) · ∇x × g ds+
γ

h

∫
Γx

E · g ds

and the finite element space

V x
h = {g ∈ H(curl,Ωx) : g|τx ∈ P1(τx), ∀τx ∈ T xh }.

The semi-discrete problem can now be formulated as: for each fixed t,
find Eh(t, ·) ∈ V x

h , such that

(Ehtt, g)Ωx + a(Eh, g) = −(jt, g)Ωx ∀g ∈ V x
h .

The continuity and coercivity for the bilinear form a(·, ·) hold in the mesh
dependent norm

|||g|||2h := ‖∇x × g‖2Ωx
+ ‖h−1/2g‖2Γx

+ ‖h1/2∇x × g‖2Γx
.

However, the coercivity is only valid when the penalty parameter γ is
chosen large enough (see Paper III for more details on how to choose γ).
An important feature in the analysis of the Nitsche method is the use of
the projection Qh : H(curl,Ωx)→ V x

h defined by

a(Qhu, v) = a(u, v) ∀v ∈ V x
h ,

with the following error estimates

Lemma 7.5. There exists a constant C, such that

‖u−Qhu‖Ωx + h|||u−Qhu|||h ≤ Ch2‖u‖H2(Ωx).

14
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To formulate the fully discrete problem we define the notations

∂̄2
t u

m =
um − 2um−1 + um−2

k2
,

ûm =
um + 2um−1 + um−2

4
,

where um = u(tm). Then, the fully discrete problem for the Maxwell
part, reads as follows: for m = 2, 3, . . . ,M , find Em such that

(∂̄2
t Em, χ) + a(Êm, χ) = −(jm−1

t , χ) ∀χ ∈ V x
h .

Here E0 = QhE
0 and E1 is assumed to be chosen as an approximation

of E1 satisfying ‖E1 − E1‖Ωx ≤ C(h2 + k2). Then we have the following
error estimate for the fully discrete problem:

‖E(tm)− Em‖Ωx ≤ C(h+ k).

8. Summary of paper IV

Paper IV is devoted to a two level time stepping scheme for the non-
linear Schrödinger equation (3.2). To formulate the discretization pro-
cedure, we introduce a not necessarily uniform partition {tn}Nn=0 of the
time interval [0, T ], i.e. tn < tn+1 for n = 0, 1, . . . , N − 1 , t0 = 0 and
tN = T . Then, we set kn := tn − tn−1 for n = 0, 1, . . . , N . For a suitable
finite element space Sh, the following two time-step numerical scheme is
analyzed in Paper IV:

Step 1. Set

U0
h = u0,h,

where u0,h = Rhu0 is the Ritz projection of the initial data.

Step 2. For n = 1, 2, . . . , N , first find U
n− 1

2
h ∈ Sh such thatUn− 1

2
h − Un−1

h

kn/2
, χ

 =i

∇Un− 1
2

h +∇Un−1
h

2
,∇χ


+ i

f(|Un−1
n |2)

U
n− 1

2
h + Un−1

h

2
, χ

+ (g(tn−1, ·), χ) ,

15
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for all χ ∈ Sh and then find Unh ∈ Sh such that(
Unh − U

n−1
h

kn
, χ

)
=i

(
∇Unh +∇Un−1

h

2
,∇χ

)

+ i

(
f(|Un−

1
2

h |2)
Unh + Un−1

h

2
, χ

)
+
(
g(tn− 1

2
, ·), χ

)
,

for all χ ∈ Sh.
An important step in the analysis of the above scheme is the consis-

tency analysis. For n = 1, 2, . . . , N , we define rn−
1
2 and rn by

un−
1
2 − un−1

kn/2
=i∆

(un− 1
2 + un−1

2

)
+ if(|un−1|2)

un−
1
2 + un−1

2

+ g(tn−1, ·) + rn−
1
2

and

un − un−1

kn
=i∆

(un + un−1

2

)
+ if(|un−

1
2 |2)

un + un−1

2

+ g(tn− 1
2
, ·) + rn,

respectively, where un = u(tn, ·) for n = 0, 1, . . . , N . The terms rn−
1
2 and

rn measure how consistent our time discretization is with the original

equation. We have the following estimates for rn−
1
2 and rn:

Proposition 8.1. Assume that there is a constant C1 such that

(8.1) max
(
‖∂tu‖∞, ‖∂2

t u‖∞, ‖∆∂tu‖∞
)
< C1,

then

‖rn−
1
2 ‖ ≤ Ckn.

Further if, in addition to (8.1), we have that there is a constant C2 such
that

(8.2) max
(
‖∂3

t u‖∞, ‖∆∂2
t u‖∞

)
< C2,

then

‖rn‖ ≤ Ck2
n.

The main result of Paper IV is given by the following theorem.
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Theorem 8.2. Let en := Unh −un be the error at the time level t = tn.
Assume that u satisfies the conditions (8.1) and (8.2). Then there is a
constant C such that

‖en‖ ≤ C(k2 + hr),

and

‖∇en‖ ≤ C(k + hr−1),

with k := max1≤n≤N kn.

One would expect an order of O(k2 + hr−1) for the error estimate of
the gradient, since we only have spatial derivatives (cf. [39]).
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