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Abstract
High-temperature superconducting materials are often experimentally realized

as thin films that can be patterned into devices operating in the mesoscopic regime.
On this length scale, various finite-size and surface effects heavily influence the
nature of the superconducting state, and can induce new ground states with spon-
taneously broken symmetries. Motivated by the wide technological application of
such mesoscopic devices and the many open questions regarding the new emer-
gent ground states, this thesis sets out to study mesoscopic grains. In particular,
a recently discovered phase which spontaneously breaks translational and time-
reversal symmetries will be studied, referred here to as the “loop-current phase”.
The aim is to study how this phase responds to magnetic and geometric pertur-
bations.
The quasiclassical theory of superconductivity is used to simulate mesoscopic

thin-film grains in equilibrium, with a strong emphasis on d-wave superconductors,
e.g. the cuprates. The properties of the loop-current phase are cataloged, with
an explanation of how and why it occurs. Various phase diagrams are produced,
and the magnetic-field dependent thermodynamics is studied.
In conclusion, the loop-current phase occurs at pairbreaking interfaces that

host quasiparticle midgap states. The phase is associated with a spontaneous
superfluid momentum which drives circulating current loops that break continuous
translational symmetry, providing an energetically favorable Doppler shift of the
midgap states. The phase is found to be robust against external fields in the whole
Meissner state, but not against very high fields in the mixed state. The phase is
lost when there is a competing effect which significantly broadens the spectrum,
e.g. a strong external vector potential. The phase transition is associated with
a large jump in the heat capacity, serving as a hallmark for the phase to be
observed experimentally. It is predicted that the phase leads to a broadening of
the spectrum which is consistent with experimental findings.
Keywords: Unconventional superconductivity, quasiclassical theory, Andreev
bound states, phase transitions, spontaneous symmetry breaking, translational
symmetry, time-reversal symmetry, mesoscopic thin-films
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1 Introduction
To inspire curiosity, my father once asked me in my physics freshman year “How
come there is still considerable active basic research on materials and, in partic-
ular, metals?”. What he was referring to is that although the first alloys were
made almost 6000 years ago, and the first metal tools another 4000 years before
that, new materials are still found on an almost daily basis, with many interest-
ing phenomena that are not yet fully understood. This thesis studies how the
phenomenon of superconductivity behaves in such materials when realized on the
mesoscopic scale, the intermediate scale between the microscopic and the macro-
scopic, and how on this scale, spontaneous magnetic fields and currents can arise.
The traditional microscopic theories used to study superconductivity tend to be-
come intractable at this length scale, however, and the main challenge therefore
lies in making realistic models and simulations of such systems. This challenge is
overcome by using the quasiclassical theory of superconductivity, implemented in
a computational framework that utilizes high-performance computing. The aim
of this chapter is to give a background to this research and to explain the main
concepts mentioned above. The chapter starts by using the frameworks of solid
state and condensed matter physics to describe how electrical resistance arises
in conducting materials, and how it completely vanishes in the superconducting
state. This is followed by an introduction of the most relevant properties of super-
conductivity. The chapter is written on a very general level intended for a broader
audience. The same concepts are then described on a much more detailed and
technical level in the rest of the thesis. The chapter ends with a statement of the
research topic and an outline of the thesis.

1



2 Chapter 1. Introduction

1.1 Background
The main objective of solid state physics is to describe the electronic and thermal
properties of solids, mainly metals, through the distribution and interactions of
the constituent atoms. At zero temperature, the equilibrium distribution of the
atoms is a perfectly periodic lattice, referred to as a crystal lattice. In conductors,
electrons are delocalized from the lattice points into conduction electrons that
are free to move around in the lattice, rendering the lattice points into positively
charged ions, called cations. Different excitation mechanisms, such as increased
temperature and external perturbations, lead to deviations and vibrations of the
cations about their equilibrium points. If these deviations propagate, they can be
quantized into collective excitations known as phonons. Understanding the elec-
tronic and thermal properties of solids boils down to understanding the behavior
of the conduction electrons in their interaction with the lattice, the phonons, with
each other, and with various perturbations.
Condensed matter physics is a generalization of solid state physics to study also

other phases of matter, e.g. liquids and Bose-Einstein condensates, and consti-
tutes one of the most active disciplines of physics. Unlike nuclear and particle
physics where the fundamental interactions between the elementary particles are
unknown1, the electromagnetic interaction which lies at the heart of most con-
densed matter physics phenomena is well-known even on a quantum level, and
therefore also the governing equations describing the dynamics. What then pre-
vents us from solving these equations once and for all, to learn everything there
is to know about these condensed matter systems? The difficulty comes from the
great number of particles involved, typically on the order of Avogadro’s number
(∼ 1023). This sheer number of particles gives rise to a plethora of new phases and
phenomena, further exemplifying how great complexity can arise in nature due to
ordering at higher levels. By analogy, consider how only electrons and nucleons
when brought together form atoms, which in turn form molecules, then DNA,
proteins, and eventually, a consciousness reading and reflecting on this text.
Although the interactions are well-known and relatively simple, trying to solve

the equations of motion for ∼ 1023 particles is far beyond any contemporary, and
perhaps even future, computational capability. Instead of trying to achieve this
hopeless goal, the main aim of condensed matter physics is to formulate simpli-
fied models which shed as much of the complexity as possible, without losing the
ability to describe the essential physics. A great number of such simplified models
and theories have been developed, but we are still nowhere close to being able to
describe all the observed phenomena. Therefore, to answer the opening question
of this chapter, it is the complexity of trying to model and understand all the

1For example, we currently do not know a closed form of the attractive interaction between nu-
cleons (protons and neutrons) that binds matter together, and many nuclear physicists question
if we ever will.
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emergent phenomena that gives rise to most of the basic research in condensed
matter physics and materials science. Furthermore, the development of new tech-
nologies provides new tools to study and fabricate novel materials. As we learn
more about how these novel materials can be used, new technologies arise, forming
a cycle. An example is nanotechnology, which has enabled single-atom precision
in the manipulation of matter, and paved the way for peculiar realizations of
materials. Examples of such realizations are completely two-dimensional mate-
rials, one-dimensional nanowires, and intriguing proximity structures, together
constituting the basic building blocks for devices in quantum electronics.
Materials realized in such a microscopic nano-scale regime show unique phe-

nomena not present on the larger macroscopic scale. The aim of this thesis is
to study how the phenomenon of superconductivity behaves on the nano scale.
Superconductivity is a phase that exists in some materials below a certain critical
temperature Tc. Below this temperature2, the materials undergo a phase tran-
sition into a state where a gap opens up in the energy spectrum, resulting in
perfect diamagnetism and a complete loss of the electrical (DC) resistance. Thus,
in contrast to the solid-liquid transition where the crystal structure of a mate-
rial changes, the superconducting phase transition is associated with a change
in the spectral and electromagnetic properties of a material. Before describing
these properties further and introducing the research topic of this thesis, a brief
explanation will be given of what leads to electrical resistance in metal conductors
above the superconducting transition temperature, in the so-called normal state.

2Examples of superconductors are elemental aluminum with Tc ≈ 1.2 K, alloys like NbTi with
Tc ≈ 10 K, and more complex compounds like the ceramic “cuprate” YBa2Cu3O7 (YBCO) with
Tc ≈ 90 K. At pressures of 150 GPa, H2S becomes superconducting at Tc ≈ 203 K.
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1.2 Electrical resistance and the normal state

Although there is typically an astonishing number of interacting particles involved
in condensed matter phenomena, much of the basics can be well described with
an independent single-particle picture. The following marks the starting point
of Landau-Fermi liquid theory [1–3] to describe the conduction electrons in such
a picture. Apart from being used for this description, the theory is considered
beyond the scope of this thesis. For a more thorough review of the theories of
condensed matter physics, see the for example the standard text books of Refs. [4–
6], or the more modern works of Refs. [7, 8]. For a more advanced treatment, see
for example Refs. [9–11].
Consider a good metal conductor in thermal equilibrium at temperature T =

0 K. The Pauli exclusion principle causes the non-excited electrons to populate
different energy levels, filling up the so-called Fermi sphere, with the highest occu-
pied state at the Fermi energy, εF . In the absence of interactions, the unperturbed
electrons behave like a free-electron gas, and can be treated as independent par-
ticles with single-particle energy levels. Imagine that interactions, for example
with other electrons or with the crystal lattice, are turned on sufficiently slowly,
such that the adiabatic theorem of Born and Fock applies [12]. The system then
remains in its eigenstate3, but with energy levels shifted with a one-to-one cor-
respondence, where the new energy levels can be seen as a new modified ground
state. The system still obeys fermion statistics, and if the states are assumed to
have similar momenta, then the dispersion relation forces the new fermions to have
a new renormalized mass m∗, which can be orders of magnitude different than the
electron mass. These new fermions are called quasiparticles, or quasi-electrons.
Holes4 are similarly renormalized into quasi-holes. Thus, the independent par-
ticle model is modified into an independent quasiparticle model in the presence
of interactions, the latter which dresses electrons and holes with a surrounding
distortion cloud which renormalizes the dynamical properties (e.g. the effective
mass and magnetic moment), but leaves the conserved quantum numbers (e.g.
charge and spin) unchanged. As long as the one-to-one correspondence of the
energy levels holds in the presence of interactions, these quasiparticles constitute
what is commonly called a Fermi liquid. The excitations of the Fermi liquid are
superpositions of quasiparticle states, rather than normal single-particle states.

3Formally, a state is an eigenstate if ~/ε < τ , where ~ is the Planck constant, ε the energy and
τ the lifetime of the state.
4In an environment of electrons (for example in the conduction band), the absence of an electron
can be treated as a quasiparticle, referred to as a hole. The holes have opposite charge as the
electrons, and move through the displacement of electrons. A common misconception is that
a hole is synonymous with a positron, the antiparticle of the electron. The positron is an
elementary particle that can exist in the absence of electrons, while the hole is a quasiparticle
that cannot.
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Landau showed that the Fermi-liquid model holds even when the direct5 electron-
electron interaction is relatively strong, since the electron-electron cross section is
reduced due to screening by the crystal lattice, and more importantly, because the
scattering rate is tremendously suppressed by the Pauli exclusion principle. The
Pauli principle, together with energy and momentum conservation, asserts that
only electrons of energy ε = kBT lying in a thin shell δε ≡ |ε−εF | � εF around the
Fermi surface can interact in scattering processes, yielding a small phase space
which goes to zero exactly at the Fermi surface. Here, kB is the Boltzmann
constant and T the temperature. The renormalized properties are essentially con-
stant within this shell. Naively, the quasiparticles should have a finite lifetime,
as these excitations can decay to the independent-electron ground state. Fermi’s
golden rule states, however, that the lifetime of the free quasi-electrons should be
inversely proportional to the vanishing phase space, and hence be extremely long.
Electrical resistance is caused by scattering of the conduction electrons. The

Pauli principle together with the screening therefore causes the electron-electron
interaction to have a negligible influence on the electrical resistance. This is es-
pecially true at finite temperatures and in good conductors. Instead, resistance
mainly arises due to scattering against the lattice, and due to the deviation of the
cations from their equilibrium points. At higher temperatures, for example, the
dominant contribution is due to phonons. What happens to the resistance in clean
conductors at lower temperatures, and especially as the temperatures approaches
absolute zero, was initially the matter of some debate [13]. Dewar expected the
resistance to smoothly go to zero with temperature due to a suppressed scattering
amplitude. Lord Kelvin, Clay and (initially) Kamerlingh Onnes believed that the
electron mobility would fall to zero with temperature, yielding a minimum in the
resistance at some finite temperature, then infinite resistance at absolute zero.
Matthiessen predicted that defects (e.g. impurities, grain boundaries and other
lattice imperfections) would cause the resistance to level off to a finite value. Such
defects create scattering centers, giving rise to a temperature-independent addi-
tion to the resistance, which is the dominant contribution at lower temperatures.
In the absence of such defects, the lattice would be perfectly periodic, and there
would be perfect conductivity [9]. Indeed, Matthiessen was right, since it is virtu-
ally impossible to get rid of all defects in samples of any considerable size. Thus,
even exceptionally clean6 conductors have finite resistances at zero temperatures
due to trace amount of defects.
Therefore, it came as an astounding surprise to most when Kamerlingh Onnes

in 1911 cooled down mercury below 4.2 K and saw absolutely zero resistance [14].
He could measure a persistent current which seemed to flow indefinitely in the
absence of voltages and external fields, without any sign of degradation. The

5“Direct” refers to lowest order electron-electron interactions through the exchange of photons.
6A material is said to be dirty (impure) or clean (pure) at high respectively low concentrations
of defects.
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phenomenon was eventually termed superconductivity. Rather than being just
perfect conductors, it was shown in 1933 that these materials also exhibit perfect
diamagnetism, i.e. they perfectly expel external magnetic fields in their bulk
interior. This effect is known as the Meissner effect, or the Meissner-Ochsenfeld
effect, after its discoverers [15]. A great number of elements were later found
to exhibit these properties, and today, 53 of the pure elements in the periodic
table are known to be superconducting under various conditions [16]. As it turns
out, many of these elements are less ideal conductors such as mercury, rather
than good conductors. Copper, for example, does not become superconducting
at lower temperatures. How come then that some conductors can overcome the
scattering caused by defects and various interactions while others cannot? An
important difference to note between copper and mercury is a low respectively
high phonon contribution to the electrical resistance. The rising suspicion [17]
that superconductivity is somehow related to the electron-phonon interaction was
confirmed by experimental measurement of the isotope effect7 [18, 19]. Thus, it is
the very same interaction which gives rise to high resistances in poor conductors
at finite temperatures that is responsible for the total absence of resistance at low
temperatures! Before explaining this absurd phenomenon of superconductivity,
it seems fitting to reverberate the final words of Ashcroft and Mermin’s seminal
work on solid state physics [4],

“In no other subject are the two fundamental branches of solid state
physics - the dynamics of electrons and the vibrations of the lattice of
ions - so intimately fused, with such spectacular consequences”.

7The isotope effect states that the superconducting transition temperature scales as Tc ∝M−1/2,
where M is the mass of the isotopes of the crystal lattice. This assumes that the interaction
potential and the normal-state density of states at the Fermi surface both remain the same
between the isotopes of comparison.
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1.3 Superconductivity
Although superconductivity was discovered more than one hundred years ago, it
is still a topic of intense scientific research of both a fundamental and an applied
nature. Much like condensed matter physics in general, this owes to a continu-
ous discovery of new materials, and an overabundance of phenomena and phases
within the superconducting state which cannot be fully described in terms of the
currently available theoretical models. This was however not always the convic-
tion. By the end of the 1970s, it was believed that superconductivity was com-
pletely understood. The microscopic theory of Bardeen, Cooper and Schrieffer
(BCS) [20, 21], could together with its extensions account for most experimental
observations, forming a very concise and beautiful picture of superconductivity,
today known as classic superconductivity or conventional superconductivity.

1.3.1 Conventional superconductivity
Conventional superconductors are either elements or alloys, typically with Tc <
30 K, and where the superconductivity is induced by the electron-phonon inter-
action. The latter gives rise to an attractive interaction between electrons8 which
overcomes their repulsive Coulomb interaction. Studying the effects of such a net
attractive electron-electron interaction on a free-electron gas is commonly referred
to as the Cooper problem, after Leon Cooper [22], who studied such a situation fol-
lowing Bardeen’s suggestion. Cooper showed that in the presence of an arbitrarily
weak net attractive interaction between electrons close to the Fermi surface, the
Fermi liquid becomes unstable9 to the formation of a new ground state. Similarly
to the case of Bose-Einstein condensation of a superfluid, this ground state is
occupied by a condensate of collective excitations. In a superconductor, these col-
lective excitations consist of pairs of electrons with opposite spins and momenta,
known as Cooper pairs. The pairs are composite bosons10, but care needs to be
taken in the interpretation, however, as Cooper pairs do not follow Bose-Einstein
statistics. While they all occupy the same ground state and lie exactly at the
chemical potential (which reduces to the Fermi energy in chemical equilibrium),
they are not allowed to occupy the same momentum state, since the constituent
electrons still follow Fermi-Dirac statistics and obey the Pauli exclusion princi-
ple. This is the crucial difference with respect to a Bose-Einstein condensate of
8From here on, quasiparticles are often just called particles.
9Superconductivity leads to a breakdown of the independent quasiparticle model and Fermi-
liquid behavior. Superconductivity is but one example of a non Fermi-liquid, just like strange
metals, Luttinger liquids, superfluid helium-3, and quite generally other phases close to quantum
critical points.

10According to the Ehrenfest-Oppenheimer-Bethe rule [23, 24], any composite particle containing
an even (odd) number of fermions is a boson (fermion). Fore example, the helium-3 atom is a
fermion (3 nucleons and 2 electrons), while helium-4 atoms (4 nucleons, 2 electrons) and Cooper
pairs (2 electrons) are composite bosons.
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superfluid helium-4. In order to avoid misinterpretations, some deem it best to
think along the line that there are no Cooper pairs, just electrons with coherent
quantities like spins and momenta. Nevertheless, the paired electrons constitute
a bound state with a certain binding energy. Since these electrons were originally
situated around the Fermi surface, a gap of size |∆| opens up in the excitation
spectrum between the Fermi energy and the first excited states. At T = 0 K, the
gap is typically |∆| ≈ 1.76kBTc, such that the energy difference between the two
energy bands in the semiconductor representation is 2|∆| ≈ 0.1–1 meV. There are
no available states to scatter to within this gap, and at low energies, the Cooper
pairs can flow through the lattice without any resistance, very much like a super-
fluid. To scatter, to break a pair or to add a quasiparticle, an energy of 2|∆| has
to be supplied. Furthermore, the typical size (the radius of gyration) of a Cooper
pair is on the order of the superconducting coherence length, defined as

ξ(T ) = ~vF
|∆(T )| , (1.1)

where ~ is the reduced Planck constant and vF the Fermi velocity in the normal
state. This length scale describes the typical scale of variations of superconduc-
tivity, and is much larger than the average distance between electrons. The pairs
are thus highly overlapping, implying strong correlations. Apart from the Pauli
principle, however, there is no explicit interaction of a dynamical nature between
the pairs. The excitations above the gap primarily correspond to broken pairs
rather than pairs with higher momenta, since the density of states falls off rather
rapidly with momentum. Far above (below) the Fermi energy, the excitations are
primarily electron-like (hole-like) quasiparticles. Close to the Fermi energy and
the gap, they are coherent particle-hole mixtures (i.e. a superposition between
particle-like and hole-like states). These elementary quasiparticle excitations are
commonly known as Bogoliubons, with well-defined spins and momenta. The
particle and hole nature of the quasiparticles can be inverted through scattering
processes known as Andreev reflection.

1.3.2 Andreev reflection
The superconducting gap gives rise to interesting tunneling properties. Consider
for example an interface between a normal metal and an insulator, where an elec-
tron in the normal metal with an energy within the insulating gap impinges on
the interface. It cannot enter the insulator since there are no available states, and
consequently, will be normal reflected. The process conserves energy, charge and
spin, but not momentum. Consider now an interface between a normal metal and
a superconductor. Again, there will be no available quasiparticle states for an
electron impinging on the interface from the normal metal with an energy within
the superconducting gap. Instead of being normal reflected, however, the electron
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can be retro-reflected as a hole of opposite spin, depositing a charge of 2e in the
superconducting condensate, i.e. injecting a Cooper pair into the superconduc-
tor. This process is called Andreev reflection and conserves momentum, energy
and spin [25, 26]. The retro-reflected hole is phase coherent with the incident
electron, since it has a well-defined relative phase. The phase coherence propa-
gates into the normal metal on a length scale of the superconducting coherence
length. Thus, superconductivity leaks into the normal metal in what is known as
the proximity effect [27, 28]. Similarly, holes can be retro-reflected as electrons,
injecting charges −2e into the condensate. If there are multiple Andreev reflec-
tions occurring forming a closed loop with a total phase shift of n2π where n ∈ Z,
bound states called Andreev bound states (ABS) are formed with energies within
the superconducting gap. Additionally, these states can also exist on surfaces of
superconductors. Andreev reflection is equivalent to particle-hole conversion in
scattering processes inside a superconductor.

1.3.3 Order parameter and symmetry breaking
The main features of the superconducting state (e.g. persistent currents and
Cooper pairs) can be better understood as direct consequences of symmetry break-
ing, and therefore explained in terms of Landau’s theory of phase transitions [29].
According to Landau, a phase transition is associated with the development of an
order parameter which lowers or breaks the symmetry, and that is non-zero in the
phase and zero otherwise. As it turns out, the whole condensate can be described
by the same pair wave function Ψ, which can be chosen as the order parameter11

∆ = Ψ, which generally is complex

∆ = |∆|eiχ. (1.2)

Here, the amplitude corresponds to the temperature-dependent gap |∆|, and the
phase χ is spatially non-uniform and the same for all the condensate pairs. Hence,
the latter spontaneously breaks U(1) gauge symmetry12. Furthermore, the ground
state has a macroscopic population since the number of particles participating in
the condensation is typically on the order of Avogadro’s number. Note that parti-
cle number and phase are cannonically conjugate variables, fulfilling Heisenberg’s
uncertainty relation. By fixing the phase, there is an uncertainty in the number
of particles. This uncertainty is however small compared to the total number of
particles. This allows a quite precise specification of the particle number and the
phase simultaneously. Thus, the superconducting state is a macroscopic quantum

11Note that later on, the order parameter will instead be chosen to be a mean-field expectation
value of a product of field operators.

12The symmetry is broken both spontaneously and continuously, which means the Cooper pair
is by definition a massless Nambu-Goldstone boson [30, 31]. Similarly, the phonon is also a
Nambu-Goldstone boson, since the existence of a lattice breaks the continuous symmetry.
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phenomenon, which exhibits a phase rigidity. The condensate acts and moves as
whole, and to disrupt the phase of this state requires a disruption of a macro-
scopic number of particles. Furthermore, it is the spatial variations of the phase
of the order parameter which give rise to fluctuations in particle number, and
consequently, which drive supercurrents.

1.3.4 Unconventional superconductivity
The picture of a perfectly understood superconductivity started to fracture in
1979 with the discovery of several materials which could not be explained with
the BCS theory [32, 33]. The picture completely shattered in 1986 when Bednorz
and Müller observed superconductivity in the compound La2−xBaxCuO4 with
Tc ≈ 35 K [34]. Since then, a great number of materials have been found which
exhibits superconductivity, either directly or in proximity to a superconductor,
that does not fit in the BCS model. These materials range from complex com-
pounds like Tl2Ba2Ca2Cu3O10, to relatively simple ones like FeSe, with transition
temperatures reaching Tc ≈ 200 K. Hence, these materials are commonly called
high-temperature superconductors (abbreviated HTS, HTSC or high Tc), and gen-
erally refer to materials with transition temperatures higher than 30 K13.
Although many aspects of the superconductivity in HTS are similar to those in

the conventional superconductors (e.g. quasiparticle pairs and persistent currents
brought about by a net attractive electron-electron interaction), there are also
many important differences. For example, conventional superconductivity arise
in normal state metals which follow Landau-Fermi liquid theory with well-defined
propagating degrees of freedom (phonons). Hence, the pairing interaction respon-
sible for superconductivity (the electron-phonon interaction) is well-known and
fully described by the BCS theory. HTS on the other hand, arise in Mott insula-
tors, where the propagating degrees of freedom are unknown, as is then the pairing
mechanism. Therefore, there is currently no theory which can describe HTS from
first principles. To find such a theory, the normal state of the Mott insulators
first has to be fully understood. Furthermore, while conventional superconduc-
tors are formally defined to break only U(1) gauge symmetry, unconventional
superconductors (i.e. HTS) break additional symmetries. The additional broken
symmetries give rise to a much richer landscape of physics. For example, electrons
of opposite spins and momenta are paired with a singlet s-wave pairing symmetry
in conventional superconductivity, while the electrons can be paired with equal
spin in unconventional superconductors. Both triplet and higher order singlet
pairing symmetries are possible in the latter, as well as multi-component order
parameters having mixtures of different symmetries.
As an example of unconventional superconductors, and of particular interest for

13The predicted maximum transition temperature for conventional superconductors is ∼ 30 K,
although MgB2 was shown to have a transition temperature of 39 K [35].
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this work, are the family of superconductors discovered by Bednorz and Müller.
These are commonly called cuprates due to the existence of copper-dioxide (CuO2)
planes. Superconductivity is mainly constricted to these CuO2 planes, with a
suppression of propagation between planes. The order parameter of the cuprates
breaks the fourfold rotation symmetry of the crystal lattice, and was shown around
1990 to have an anisotropic singlet d-wave pairing symmetry [36, 37].

1.3.5 d-wave superconductors, midgap states and further
symmetry breaking

The cuprates mainly have a tetragonal crystal structure with a pairing symmetry
which is often written in Cartesian and polar form as [38]

ηdx2−y2 = p̂2
x − p̂2

y =
√

2 cos(2θp), (1.3)

respectively, where θp is the angle relative to the crystal a-axis. For strong sup-
pression between the superconducting CuO2 planes, a cylindrical symmetry is
often assumed with line nodes at which the order parameter is suppressed. The
anisotropy gives rise to a gapless density of states which extends all the way to the
Fermi energy, where it goes to zero linearly [37]. These properties modify certain
behavior of the superconducting state. For example, thermodynamic quantities
like the heat capacity show a power law behavior at lower temperatures, as op-
posed to an exponential one for the fully gapped superconductors. Thus, the
density of states is closely related to both transport properties and thermody-
namic properties, and is typically determined by measuring either the tunneling
conductance or extracted from the heat capacity in calorimetric measurements
[39]. These measurements can therefore be used to infer the pairing symmetry
of a superconductor. In such measurements, it is very difficult however to dis-
criminate a d-wave symmetry from an anisotropic s-wave symmetry. To clearly
discriminate these two, another property of the d-wave order parameter can be
exploited which the anisotropic s-wave lacks, namely the existence of lobes of dif-
ferent signs. Such lobes enable scattering processes that induce a sign change and
a suppression of the order parameter. As an example, consider a [110] interface,
i.e. an interface that is 45◦ misaligned with respect to the crystal ab-axes, with
specular reflection. An incoming and an outgoing scattering trajectory couples
a positive and a negative lobe, inducing a sign change in the order parameter.
Since the order parameter is single valued, it is suppressed exactly at the inter-
face, recovering on a length scale of the superconducting coherence length. The
suppression implies that superconducting pairs are broken, and such a [110] inter-
face is therefore referred to as a pairbreaking interface. Such pair breaking might
also occur at defects and impurities [40]. The broken pairs generate a huge den-
sity of midgap states (MGS), exactly in the middle of the gap at the Fermi energy
[41]. Hence, these states are examples of Andreev bound states. The MGS thus
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provides a strong fingerprint of the order parameter symmetry, and give rise to
many different effects, like zero-bias conductance peaks in tunneling and transport
measurements, paramagnetic currents and spontaneous symmetry breaking [41–
43]. To understand the latter, consider the internal energy which scales with the
product of the occupation, the density of states and the energy. In equilibrium,
for example, a high density of MGS exactly at the Fermi energy will overlap with
a finite occupation of the smeared Fermi-Dirac distribution, and hence, lead to
a substantial internal energy. In shifting these states symmetrically around the
Fermi energy, roughly half of the states will be occupied at a lower energy than
before, leading to a considerable lowering of the free energy. Any mechanism that
can provide such a shift is energetically favorable, and therefore opens up the pos-
sibility of further, spontaneous, symmetry breaking [44, 45]. The goal of the thesis
is to study an example of such a mechanism, referred here to as the “loop-current
phase”, in which a superfluid momentum appears spontaneously and drive cir-
culating currents that break translational and time-reversal symmetries [46–48].
In particular, superconducting grains will be studied, defined as superconductors
with a size comparable to the superconducting coherence length. This length scale
generally falls between the microscopic and macroscopic regime, and is known as
the mesoscopic regime. The field of mesoscopic physics was mainly introduced in
the early 1980s, and is an active sub-discipline of condensed matter physics.

1.3.6 Mesoscopic superconductivity and the quasiclassical
approximation

Superconducting materials are often experimentally realized as thin films that
can be patterned into devices, with the aim to exploit the properties of super-
conductivity. These devices are for example used as extremely sensitive sensors
and as components in various electronics circuits. They commonly operate in the
mesoscopic regime, combining phenomena that vary on different length scales. A
system is defined as mesoscopic if its size L in at least one of its dimensions fulfills
[49]

a0 � λF . l0 < L < lφ . lin (1.4)

where a0 is the Bohr radius, λF the Fermi wave length of the electron, l0 the
elastic mean free path, lφ the quantum coherence length (not to be confused with
the superconducting coherence length) and lin is the energy relaxation length. In
short, it means that the sample is large with respect to the atomic lattice sepa-
ration, but still small enough for quantum coherence effects to play an important
role. Put in another way, the microscopic scale is too short for the mesoscopic
effects to have a chance to fully develop, while they might instead be too local
or averaged out by bulk effects on the macroscopic scale. In analogy, observing
a painting with a microscope or from outer space does not make too much sense
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- to recognize the full beauty of the picture, the proper scale of observation is
relevant.
The superconducting coherence length is the length scale over which the order

parameter, and hence superconductivity, usually changes. It is much larger than
the atomic scale, which means that the superconductor can be treated as homo-
geneous even though there is a discrete lattice. Therefore, the full microscopic
theories which takes the atomic scale into account will often contain more infor-
mation than necessary. To make comparisons with experiment, the atomic degree
of freedom is typically discarded once calculations are done. Furthermore, these
theories often scale poorly with increasing system size. To save time and effort,
it is convenient to work within a theoretical framework that never incorporates
the atomic degree of freedom in the first place. This is the main concept of the
quasiclassical theory of superconductivity, in which the short-wavelength (hence
high energy) contributions are averaged out, or baked into parameters whose val-
ues are taken from experiments. This is formally done by integrating the wave
function over energy close to the Fermi surface and discarding the high-energy
corrections. This step is known as the quasiclassical approximation. Hence, only
low-lying excitations close to the Fermi surface are considered, and the rapid os-
cillations of the wave function on the atomic scale are replaced by the envelope
varying on the coherence length scale. In other words, the quasiclassical theory
of superconductivity is in some sense a natural language to describe many su-
perconducting phenomena. Close to interfaces, however, superconductivity can
vary on shorter length scales, and the quasiclassical approximation breaks down.
To remedy this, the theory is supplied with boundary conditions derived from
microscopic theories.
The basic understanding is however far from complete when it comes to how

superconductivity behaves on the mesoscopic length-scale, where the supercon-
ducting state and its properties often are influenced by various finite-size and
surface effects. These effects give rise to new interesting phenomena which are
not present in bulk samples. Understanding these properties, and how they can
be exploited to make new devices, are topics of modern research. The goal of
this thesis is to study some of these properties in hopes of adding to the current
knowledge.
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1.4 Research topic and scope of the thesis
The main motivation for this thesis has been hinted at throughout this introduc-
tion. The goal is to study meso-scaled superconducting grains, in the hopes of
adding to the current understanding of the properties that arise in such systems.
This work considers clean grains in the weak-coupling limit, that are in vacuum
and equilibrium, with spin-degeneracy, a cylindrically symmetric Fermi surface,
and mainly with d-wave pairing symmetry. Of particular interest are midgap
states and Andreev bound states caused by pairbreaking [110] interfaces in such
grains, and the spontaneous symmetry breaking which might occur through en-
ergetically favorable shifts of these states to finite energies. Several mechanisms
inducing such shifts have been proposed previously in the literature, some of which
involve spontaneous time-reversal symmetry breaking through spontaneous cur-
rents [46, 50–54]. Even though there are many experiments in support of such
currents, for example tunneling experiments [55–61], experimental verification of
the associated magnetic fields remains controversial [62, 63]. A possible explana-
tion was offered through the recently discovered “loop-current phase” [46–48], in
which the spontaneous currents and magnetic fields enter as a necklace of loop
currents tied to pairbreaking interfaces, where neighboring loops circulate clock-
wise and anti-clockwise. The size of these circulating currents are on the order of
5–6ξ0, and the associated flux is microscopic, making them notoriously difficult
to detect experimentally. It is the purpose of paper I to study how this phase
responds to an external magnetic field. In summary, the phase is found to be
robust in the whole Meissner state and for weak fields in the mixed state. Fur-
thermore, the response leads to several signatures that might be observable in
experiments. Previously, a similar phase was found in thin films, here referred to
as the “Vorontsov phase”, caused by a close proximity of pairbreaking interfaces
[53, 64–67]. In paper II, it is shown that the loop-current phase occurs without
such finite-size effects. This is done by considering grains with a single pairbreak-
ing [110] interface. In Ref. [46], as well as in paper I and paper II, it is argued
why the loop-current phase is believed to be competitive against other suggested
mechanisms. Furthermore, the thesis and its appended papers discuss the experi-
mental significance of the phase, mainly in the form of it as a source of broadening
of zero-bias conductance peaks.
Along the way, general properties of superconductivity will be explained, and

several basic results for both bulk systems and mesoscopic grains will be presented.
The thesis contains a collection of derivations of various quantities related to
electrodynamics, thermodynamics, quasiclassical theory, and BCS theory.
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1.5 Outline of the thesis
The idea of this introduction has been to give a complete overview of the aspects
of superconductivity that are relevant to this thesis and its research. The rest of
the thesis goes into deeper detail of the methods used to do this research, such
that the appended papers and the research results hopefully can be understood.
The thesis contains eight chapters and seven appendices, which are organized as
follows.
Chapter 2 introduces the quasiclassical theory of superconductivity, which is the

main theoretical framework used in this thesis. Chapter 3 explains how this the-
ory is implemented. The multiple possible solutions for the order parameter are
discussed, together with ideas and suggestions for speeding up calculations. Chap-
ter 4 introduces some fundamental electrodynamics properties of superconductors,
and the main electrodynamical quantities of the results. In particular, homoge-
neous superconductors and superconductors with physical holes are considered.
Along the same line, Ch. 5 introduces fundamental thermodynamic properties and
the main thermodynamic quantities. These properties are used to study phases
and phase transitions in the results. Chapter 6 presents a few basic results for
mesoscopic superconducting grains, in particular related to midgap states, vortex
phenomena and flux quantization in solenoids. Chapter 7 is devoted to cataloging
various properties of the loop-current phase. The most basic properties are stated
together with an explanation of how and why the phase arises. This is followed by
a study of various geometric effects, external-field response, and a discussion of ex-
perimental verification. Chapter 8 summarizes and concludes the thesis, together
with an outlook of open questions and potential future research.
The appendices mainly contain a collection of calculations that were too lengthy

for the main thesis. Appendix A explains the choice of units, and compares the
most common systems of units. A table of normalization units is presented,
which are used as a scale for the results, and to make equations dimensionless. A
summary of dimensionless equations is provided in App. B. In condensed matter
physics, it is common to switch between different representations, for example,
App. C shows how to go from a summation over momenta to integration over en-
ergies. Appendix D derives the BCS gap equation, the transition temperature Tc
and various properties related to the gap. Appendix E introduces the Shelankov
projectors and uses these to derive the Riccati equations. The latter are first
order differential equations which in general are more convenient to handle than
the standard Eilenberger equation. Appendix F is devoted to spin-triplet super-
conductivity and showing how various expressions are modified, in particular for
unitary p-wave superconductivity. Finally, App. G derives a few useful symmetry
relations for quasiclassical Green functions in thermal equilibrium.





2 The quasiclassical theory of
superconductivity

The theory of Bardeen, Cooper and Schrieffer (BCS) is often hailed as one of the
greatest theoretical achievements in condensed matter physics [20, 21]. It was the
first theory to give a proper account of the microscopic origin of superconductiv-
ity, and could together with its extensions explain conventional superconductivity.
Unconventional superconductivity, on the other hand, is often defined as super-
conductors that do not conform to the BCS theory or its extensions. Although
these superconductors are significantly different from the conventional supercon-
ductors and has an unknown pairing mechanism, the BCS theory can still be used
to give surprisingly accurate predictions of their properties. The reason is that
the BCS theory contains the most important ingredient for superconductivity, i.
e. a net attractive interaction between electrons leading to a bound state. The
precise nature of the attractive interaction is not crucial to describe some of these
properties, and the great success of the BCS theory in its application to even
unconventional superconductors stems from the fact that the typical energies in-
volved in superconductivity, e.g. the gap and the binding energy, are small in
comparison to other relevant energy scales. This enables a separation of scales
and the application of a quasiclassical approximation. The aim of this chapter
is to briefly sketch how to use this approximation to go from BCS theory to the
quasiclassical theory of superconductivity and the Eilenberger equation. This
equation, together with the superconducting gap equation, forms the basis for the
theoretical framework used in this thesis. In short, the steps are based on ex-
pressing the BCS theory in the powerful language of many-body Green functions.
In particular, mean-field Green functions for quasiparticle and pair propagators
are introduced. These propagators are known as the Gor’kov Green functions,
and their equation of motion as the Gor’kov equation. Applying the quasiclassi-
cal approximation to the Gor’kov equation, along with certain tricks, yields the
Eilenberger equation. For a full derivation of the Gor’kov and Eilenberger equa-
tions, see for example the book by Kopnin [68], or Refs. [69, 70]. For a more
thorough treatment of BCS theory, see for example Schrieffer [71], de Gennes [72]
and Tinkham [73].

17
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2.1 BCS theory
In its original formulation, the BCS theory and its Hamiltonian is written in terms
of fermionic creation (c†) and annihilation (c) operators acting on single-particle
states of spins α, β, momenta k, l, and single-particle energies ξk

HBCS =
∑
kα

ξkc
†
kαckα + 1

2
∑
klαβ

c†kαc
†
−kβVklαβc−lβclα. (2.1)

Here, V is the spin-dependent attractive interaction and ξk = εk − µ is relative
to the Fermi surface (FS), where µ is the chemical potential and εk is the single-
particle dispersion. For a spin-singlet systems with a spin-independent pairing, α
and β describe opposite spins, and each sum over spin simply produces a factor
of 2. The BCS ground state of Cooper pairs is written as a product of pairwise
creation operators acting on the vacuum state |0〉

|ΨBCS〉 =
∏
k

(
|uk|+ |vk| eiχc†kαc

†
−kβ

)
|0〉 , (2.2)

where χ is the coherent superfluid phase, and where u2
k and v2

k are the probabilities
of a state being empty or occupied, respectively, such that

∣∣∣u2
k + v2

k

∣∣∣ = 1. Equa-
tion (2.2) thus describes pairwise occupation of states with opposite momenta.
It is convenient to introduce a mean-field approximation, in which products of
four operators are replaced with a product of two operators times a mean-field
average. The approximation is to introduce

ckαc−kβ = 〈ckαc−kβ〉+ δkαβ, (2.3)
δkαβ ≡ (ckαc−kβ − 〈ckαc−kβ〉) , (2.4)

expanding in δ and only keeping first-order terms. As mentioned in the intro-
duction, the vast number of particles involved in the superconducting condensate
ensures that fluctuations about the expectation values are small compared to the
total number of particles (see for example Chs. 3.3–3.5 of Tinkham [73]). The
superconducting order parameter is defined as the mean-field average

∆kαβ = −
∑
l

Vklαβ 〈clαc−lβ〉 . (2.5)

With the corresponding equations to Eqs. (2.3)–(2.5) for creation operators, and
dropping a constant term containing only mean field averages that only modifies
the chemical potential, the mean-field Hamiltonian can be written as

HM =
∑
kα

ξkc
†
kαckα −

1
2
∑
kαβ

(
∆kαβc

†
kαc
†
−kβ + ∆†kαβc−kαckβ

)
. (2.6)
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This Hamiltonian can be diagonalized and solved exactly through the canonical
Bogoliubov-Valatin transformations [74, 75], yielding the excitation spectrum

Ek =
√
ξ2
k + ∆2

k, (2.7)

which illustrates that ∆ is indeed an energy gap. This gap has to be solved
self-consistently through the superconducting gap equation. The gap equation
is derived together with an expression for the superconducting transition tem-
perature Tc in App D, using a variational method. The BCS gap equation at
temperature T is

1 = V0NF

∫ 2π

0

dθp′F |η(θp′F )|2

2π

∫ ~ωc

0
dξ

tanh
(
kBT

2

√
ξ2 + ∆2|η(θp′F )|2

)
√
ξ2 + ∆2|η(θp′F )|2

. (2.8)

This equation is valid in the weak-coupling limit NFV0 ≤ 0.3, which holds for all
elemental superconductors except Pb and Hg [76, 77]. Here, NF is the normal-
state density of states (DOS) at the FS, and V0 is the pair interaction which is
attractive below the energy cutoff ~ωc. Typically1, εF � ~ωc � kBTc ∼ ∆(T =
0) ∼ ~vF/ξ0, where εF is the Fermi energy, vF the Fermi velocity at the FS,
and ξ0 ≡ ~vF/2πkBTc is the superconducting coherence length at zero tempera-
ture. For a phonon-mediated coupling, ωc is taken to be the Debye frequency ωD.
Furthermore, η is the orthogonal basis function describing the momentum pairing
symmetry, at angle θp′F between the scattering direction and the Fermi momentum
direction p̂F . Examples of typical s-wave and d-wave pairing symmetries are

ηs(θpF ) = 1, (2.9)
ηdx2−y2 (θpF ) =

√
2 cos(2θpF ). (2.10)

The BCS gap equation of Eq. (2.8) is valid in bulk systems where k is a good
quantum number, i.e. systems that have a plane wave dispersion and no spatial
dependence. To consider spatial dependence, the standard creation and annihila-
tion operators in momentum space have to be replaced by field operators in spatial
space. This is for example done in the Bogoliubov de-Gennes (BdG) theory. This
theory also deals with some of the other major short-comings of the standard
BCS theory as expressed in Eqs. (2.1) and (2.2), namely that these equations
treat standard single-particle states, while quasiparticle excitations are no longer
single-particle states but rather coherent particle-hole mixtures known as Bogoli-
ubons. Particles and holes therefore have to be treated on an equal footing, which
is not provided by Eq. (2.1). Bogoliubov solved this by introducing field oper-
ators for the quasiparticle excitations in particle-hole space. This space is also
1For conventional superconductors, typically εF/kB ∼ 10000 K, ~ωc/kB ∼ 300 K ± 100 K and
∆/kB � 30 K [78].
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known as Nambu-Gor’kov space, or simply as Nambu space [30]. Applying the
quasiclassical approximation to the BdG theory yields Andreev theory and the
Andreev equations, but both of these theories are beyond the scope of this thesis.
Instead, an alternative route is taken, through many-body Green functions and
the Gor’kov equation.
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2.2 Green function approach: The Gor’kov equation
The goal of the following is to introduce propagators (correlators) both for quasi-
particles and for superconducting pairs, denoted by the Green functions G and F ,
respectively. These Green functions are related to various observables and give
information about the dynamics of the system. The Green functions are solved
from their equations of motion, which will be introduced as well.
In the Heisenberg picture, the fermionic Heisenberg field operators are

ψ†α(x, τ) = e(H−µN )τΨ†α(x)e−(H−µN )τ , (2.11)
ψα(x, τ) = e(H−µN )τΨα(x)e−(H−µN )τ , (2.12)

where H is the Hamiltonian, N the particle-number operator, and where Ψ†α(x)
and Ψα(x) are the Schrödinger particle-field operators creating and annihilating
a particle with spin α at position x. Here, τ is the imaginary time τ = it. In this
thesis, only time-independent systems will be considered, and τ will consequently
denote the time difference τ = τ1 − τ2 = i(t1 − t2) in the following. The BCS
Hamiltonian can be rewritten in terms of the Heisenberg field operators as

H̃BCS = H0 +H1 +H′, (2.13)

H0 =
∑
α

∫
dxψ†α(x, τ)

(
− p

2

2m − µ
)
ψα(x, τ), (2.14)

H1 = 1
2
∑
αβ

∫
dxdx′ψ†β(x′, τ)ψ†α(x, τ)λψα(x, τ)ψβ(x′, τ), (2.15)

where H0 is the non-interacting Hamiltonian, H1 the pairing Hamiltonian, λ < 0
the coupling constant from the pairing interaction, andH′ describes any additional
interactions. In the presence of a vector potential A, the momentum operator p
is

p = −i~∇− e

c
A(x). (2.16)

The mean-field averages2 of the Heisenberg operators over the ground state are
defined as the Green functions

Gαβ(x,x′, τ) =
〈
Tτψα(x, τ)ψ†β(0,x′)

〉
, (2.17)

G†αβ(x,x′, τ) =
〈
Tτψ

†
α(x, τ)ψβ(0,x′)

〉
, (2.18)

where T is the time-ordering operator

Tτψα(x, τ)ψ†β(0,x′) =
ψα(x, τ)ψ†β(0,x′), τ > 0,
−ψ†β(0,x′)ψα(x, τ), τ < 0.

(2.19)

2Here, the average is over the grand canonical distribution 〈. . .〉 = tr [exp ((Ω−H)/kBT ) . . .],
where Ω(T,V, µ) is the thermodynamic potential and V is the volume.
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Here, G and G† are quasiparticle propagators. Given an electron-like quasiparticle
of spin β at position x′, the propagator Gαβ(x,x′, τ) expresses the probability
amplitude for the particle to be found at x with spin α after the time interval τ , by
averaging over all possible paths from x′ to x. Conversely, G†αβ(x,x′, τ) describes
the opposite movement for a hole-like quasiparticle. To describe superconducting
pairs, the anomalous Green functions F and F † are introduced as

Fαβ(x,x′, τ) = 〈Tτψα(x, τ)ψβ(0,x′)〉 , (2.20)
F †αβ(x,x′, τ) =

〈
Tτψ

†
α(x, τ)ψ†β(0,x′)

〉
. (2.21)

These are pair propagators describing the annihilation and creation of Cooper
pairs, respectively. Similar to G and G†, they are also related via particle-hole con-
jugation. Furthermore, the anomalous Green functions are vanishing in the nor-
mal state and non-vanishing in the superconducting state, and are consequently
used to define the superconducting order parameter

∆αβ(x) = −λFαβ(x,x′ = x, τ = 0). (2.22)

This is a self-consistency equation since F depends in turn on ∆, as will be seen
in the following equations. The arguments (x,x′, τ) are temporarily dropped for
brevity. Gor’kov used the Heisenberg equations of motion to obtain the following
generalized Dyson equations for the BCS theory

(
~
∂

∂τ
+ p2

2m − µ
)
Gαβ + ∆αγF

†
γβ = ~δαβδ(3)(x− x′)δ(τ), (2.23)

−
(
~
∂

∂τ
− p2

2m + µ

)
G†αβ + ∆∗αγFγβ = ~δαβδ(3)(x− x′)δ(τ), (2.24)(

−~ ∂
∂τ
− p2

2m + µ

)
Fαβ + ∆αγG

†
γβ = 0, (2.25)(

~
∂

∂τ
− p2

2m + µ

)
F †αβ + ∆∗αγGγβ = 0, (2.26)

where the derivative in p acts on unprimed coordinates. These equations are
known as the Gor’kov equations [79], and can be expressed more compactly in
4× 4 Nambu⊗ spin-space (denoted with the “hat” symbol), by introducing

Ĝ =
 Gαβ Fαβ
−F †αβ G†αβ

 , (2.27)

∆̂ =
(

0 ∆αβ

−∆∗αβ 0

)
. (2.28)
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Introduce also the Pauli matrices in spin space

σ0 =
(

1 0
0 1

)
, (unit matrix) (2.29)

σx = σ1 =
(

0 1
1 0

)
, (2.30)

σy = σ2 =
(

0 −i
i 0

)
, (2.31)

σz = σ3 =
(

1 0
0 −1

)
, (2.32)

with their corresponding matrices in Nambu-spin space, denoted τ̂i for i ∈ [0, 3]
(not to be confused with the imaginary time τ), and with τ̂0 = 1̂ being the unit
matrix. The matrix Gor’kov equation can then be written as[

τ̂3~
∂

∂τ
+
(
p2

2m − µ
)

1̂− ∆̂
]
⊗ Ĝ = 1̂, (2.33)

where ⊗ is a time-convolution product [80]. In Nambu-spin space, it is a matrix
product and an integral over common time and energy variables. In a mixed
representation, it can be written

(A⊗B) (x, p) = exp
(
i~
2
∂A

∂x

∂B

∂p
− i~

2
∂A

∂p

∂B

∂x

)
A(x, p)B(x, p). (2.34)

For the time-independent systems considered in this thesis, ⊗ reduces to simple
matrix multiplication. The corresponding equations to Eqs. (2.23)–(2.26) for p
acting on primed coordinates produce the equation

Ĝ⊗
[
τ̂3~

∂

∂τ
+
(
p2

2m − µ
)

1̂− ∆̂
]

= 1̂. (2.35)

Finally, Fourier transforming to energy and momentum space in the center-of-
mass coordinate R, the Gor’kov equations become[(

z + e

c
vF ·A

)
τ̂3 + ξp1̂− ∆̂

]
⊗ Ĝ(p,R) = 1̂, (2.36)

Ĝ⊗
[(
z + e

c
vF ·A

)
τ̂3 + ξp1̂− ∆̂

]
(p,R) = 1̂, (2.37)

where z is the complex energy and ξp = vF (pF ) · (p− pF )− µ the single-particle
energies at momentum p. Here vF (p) =∇pξp and pF are the Fermi velocity and
momentum at the FS, respectively. It is worth mentioning that the Green func-
tions introduced above are the imaginary-time Matsubara (M) Green functions
valid in equilibrium, defined in the finite time interval −~/kBT < τ < ~/kBT .



24 2 The quasiclassical theory of superconductivity

Fourier transforming from time to energy, the corresponding Green functions are
only defined over a set of discrete and imaginary energies z = iεn, known as the
Matsubara energies (or frequencies in natural units)

εn ≡ πkBT (2n+ 1), (2.38)

with n ∈ Z [81]. There are also real-time retarded (R) and advanced (A) Green
functions, defined for energies z = ε ± i0± with + for R and − for A, where ε is
a real energy and 0± is an infinitesimal shift. Furthermore, in non-equilibrium,
the Gor’kov equations are extended into 8 × 8 Keldysh ⊗ Nambu ⊗ spin-space,
with energies on the real axis z = ε and corresponding non-equilibrium Keldysh
(K) Green functions. The different Green functions are related through various
symmetry properties. Non-equilibrium is beyond the scope of this thesis, however,
and only the Matsubara and retarded propagators will be used in the end.
The Gor’kov equation provides a powerful microscopic theoretical framework

to study superconductivity. By solving this equation, the Green functions can be
used to obtain various observables of interest. As briefly mentioned in the intro-
duction and in this chapter, however, superconductivity is often tied to low-lying
excitations close to the Fermi surface, and described on the mesoscopic length
scale of the superconducting coherence length, which is much larger than the
atomic length scale. The goal of this thesis is to do numerical simulations of
larger mesoscopic systems, where the microscopic theories with the full atomic
resolution often are unfeasible with current computational capabilities. Further-
more, in comparing the solutions of the Gor’kov equation with experiment, it is
often the case that the atomic degree of freedom is discarded at the end anyway.
It is therefore convenient to work within a theoretical framework that operates on
the mesoscopic length scale, such as the quasiclassical theory of superconductivity.
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2.3 The quasiclassical approximation and the
Eilenberger equation

The quasiclassical theory of superconductivity is is based on applying a quasi-
classical approximation to the Gor’kov equations. This theory was developed by
Eilenberger [82] and independently by Larkin and Ovchinnikov [83]. The formu-
lation of Eilenberger is used in this thesis, and a brief overview will be given in
this section. Again, for full details, see for example Refs. [68–70], as well as the
references cited below.
Most superconducting phenomena are described by low-lying excitations close

to the Fermi surface, since the superconducting energy gap ∆ is typically much
smaller than the Fermi energy εF . Consequently, the length scale which su-
perconductivity typically varies over is the superconducting coherence length
ξ0 ≡ ~vF/2πkBTc which is much larger than the Fermi wavelength and the atomic
scale. The quasiclassical approximation is thus based on separating the atomic
and mesoscopic degrees of freedom, by expanding to leading order in the small
parameters, e.g. ~/pF ξ0, ∆/εF , kBTc/εF , see for example Refs. [69, 84–86]. This
is formally done by separating the Gor’kov Green functions into high and low
energy parts and discarding the high-energy part,

Ĝ = Ĝlow + Ĝhigh = δ(ξp)ĝ + Ĝhigh ≈ δ(ξp)ĝ. (2.39)

Integrating this equation and imposing a cutoff εc yields the quasiclassical Green
function ĝ

ĝ(pF ,R; z) = 1
a

∫ εc

−εc
dξpĜ(p,R; z), (2.40)

where kBTc � εc � εF and |ξp| � εc, i.e. considering a thin shell around the
Fermi surface. Here, a is the spectral weight, which will drop out of the theory. As
previously, R is the quasiparticle center-of-mass coordinate, and vF (p) = ∇pξp.
Thus, the rapid oscillations of the Green function on the atomic scale are inte-
grated out and replaced with the envelope, which varies on the coherence length
scale. The quasiclassical approximation generally holds very well in conventional
superconductors, where the small parameters are on the order of 10−3, while they
in the unconventional superconductors typically are 10−2–10−1 [68]. The approxi-
mation breaks down for example when superconductivity varies on a much shorter
length scale than ξ0, e.g. at interfaces, see Refs. [87–91] and references therein. To
remedy this, boundary conditions are typically derived from microscopic theories
and used as an input, see for example Ref. [80].
A quasiclassical equation of motion is not obtained by simply integrating the

Gor’kov equation as above, due to an explicit dependence on ξp which is not
bounded. To get rid of this difficulty, the “left-right-trick” is employed, where
the left and right Gor’kov Eqs. (2.36) and (2.37) are gradient expanded to first
order in ξp using Eq. (2.34), and then subtracted from each other. The resulting
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equation is ξp-integrated the same way as in Eq. (2.40), yielding the Eilenberger
equation [82]

i~vF ·∇Rĝ(pF ,R; z) +
[(
z + e

c
vF ·A(R)

)
τ̂3 − ∆̂(R), ĝ(pF ,R; z)

]
⊗

= 0, (2.41)

where [A,B]⊗ = A⊗B −B ⊗A with ⊗ defined as in Eq. (2.34) [80]. The Eilen-
berger equation is a transport-like equation which describes quasiparticles moving
along classical trajectories defined by the Fermi velocity direction v̂F . In perform-
ing the left-right-trick, the non-homogeneous Gor’kov equation was transformed
into a homogeneous equation, resulting in the loss of the normalization informa-
tion. Eilenberger showed that this information could be reintroduced through the
following normalization condition [70, 82, 83]

ĝ2 = −π21̂, (2.42)

where the arguments (pF ,R; z) have been dropped for a more compact notation.
Care needs to be taken when solving the Eilenberger equation, as it is unstable
in certain integration directions and contains additional unphysical solutions. A
solution to these issues is given by the Riccati formalism, explained in Sec. 2.5.
The Nambu×spin-space Green function ĝ can be written in terms of spin-space

Green functions as
ĝ =

(
g f

f̃ g̃

)
, (2.43)

where the tilde operator denotes particle-hole conjugation

α̃(pF ,R; z, t) = α∗(−pF ,R;−z∗, t), (2.44)

Allowing for both spin-singlet (s) and spin-triplet (t) pairing, the spin-dependence
can be written explicitly as

g = (g0 + g · σ)σ0, (2.45)
g̃ = σ2 (g̃0 − g̃ · σ)σ2, (2.46)
f = (fs + ft · σ) iσ2, (2.47)
f̃ = iσ2

(
f̃s − f̃t · σ

)
. (2.48)

Similarly, the order parameter is

∆̂ =
(

0 ∆
∆̃ 0

)
, (2.49)

∆ = (∆s + ∆t · σ) iσ2, (2.50)
∆̃ = iσ2

(
∆̃s − ∆̃t · σ

)
. (2.51)

The order parameter is solved self-consistently through the superconducting gap
equation, introduced in the following section.
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2.4 Observables
Observables are obtained from the Green functions. Depending on which observ-
ables are of interest, it is convenient to use different Green functions. In this
thesis, the Matsubara Green functions are used to calculate the superconducting
gap, the current density and the free energy. The retarded Green functions are
used to obtain the spectral observables, e.g. the density of states and the spectral
current. The gap equation and the density of states are introduced in this section,
while the currents are introduced in Ch. 4, and the free energy is introduced in
Ch. 5.

2.4.1 The superconducting gap equation
The mean-field order parameter was defined in terms of the anomalous Gor’kov
Green functions in Eq. (2.22). Following the notation of Ref. [86] and reintroduc-
ing spin-indices αβγρ, the gap equation is expressed in terms of the quasiclassical
pair-propagator f as

∆αβ(pF ,R) = NFkBT
∫
d2p′Fλαβ,γρ(p′F ,pF )

∑
|εn|≤Ωc

fγρ(p′F ,R; εn) (2.52)

whereNF is the normal state DOS at the FS per spin, the integral is over the Fermi
momentum direction on the FS, εn the Matsubara energy, Ωc a cutoff energy, and
λαβ,γρ(p′F ,pF ) is the interaction

λαβ,γρ(p′F ,pF ) = (iσ2)αβλ(g)(p′F ,pF )(iσ2)γρ

+(iσ2σ)αβ ·
↔
λ

(u)
(p′F ,pF ) · (iσσ2)γρ. (2.53)

Here, g and u denotes even and odd-parity orthogonal basis functions η and η,
i.e. spin-singlet and spin-triplet, respectively. Allowing for a mixture of different
singlet and triplet pairing channels, the interaction terms are are

λ(g)(p′F ,pF ) =
∑
Γg,ν

λΓηΓν(pF )η∗Γν(p
′
F ), (2.54)

↔
λ

(u)
(p′F ,pF ) =

∑
Γu,ν

λΓηΓν(pF )⊗ η†Γν(p
′
F ), (2.55)

where λΓ is the corresponding coupling constant, ν is an index denoting the pairing
symmetry, and Γν denotes an irreducible representations of the point group, the
latter which is D4h in this thesis. Examples of basis functions were given in
Eqs. (2.9)–(2.10) and in Ref. [86]. Similarly, the order parameter is decomposed
into singlet and triplet parts

∆(pF ,R) =
∑
ν

∆ν(R)ηΓν(pF ), (2.56)

∆(pF ,R) =
∑
ν

∆ν(R)ηΓν(pF ), (2.57)
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respectively. From now on, consider a 2D superconductor in the xy-plane with a
cylindrically symmetric FS such that ∫ d2pF = ∫

dθpF /2π, where θpF ∈ [0, 2π] is
the angle of the Fermi momentum pF relative to the crystal a-axis. Assume an
order parameter with only a single pairing channel, i.e. that is either totally sym-
metric or anti-symmetric. For the anti-symmetric spin-triplet pairing, consider
the case when the spin direction in ∆t (and consequently η) is d = ẑ. Consid-
ering normalized basis functions such that ηaη∗b = δab, the gap Eq. (2.52) can be
multiplied by iσ2η

∗ to obtain the singlet and triplet gap equations

∆s(R) = VskBT
∫ dθpF

2π η∗Γs(pF )
∑
|εn|≤Ωc

fs(pF ,R; εn), (2.58)

∆t(R) = VtkBT
∫ dθpF

2π η∗Γt(pF )
∑
|εn|≤Ωc

ft(pF ,R; εn), (2.59)

where the pairing interactions −Vs and −Vt are eliminated in favor of the transi-
tion temperature (see for example Ref. [92])

V −1
i ≡ (−NFλi)−1 = ln T

Tc
+
∑
n≥0

2
2n+ 1 . (2.60)

Using the Matsubara symmetry in App. G, the equations are converted into a
sum over only positive Matsubara energies

∆s(R) = VskBT
∫ dθpF

2π η∗Γs(pF )
Ωc∑
εn>0

(
fs(pF ,R; εn) + f̃∗s (pF ,R; εn)

)
,(2.61)

∆t(R) = VtkBT
∫ dθpF

2π η∗Γt(pF )
Ωc∑
εn>0

(
ft(pF ,R; εn)− f̃∗t (pF ,R; εn)

)
. (2.62)

Similar expressions can be obtained for order parameters with multiple pairing
channels, as well as for mixed singlet-triplet pairing.

2.4.2 The local density of states
The local density of states N is calculated from the imaginary part of the retarded
Green function through the expression

N(R; ε) = −NF
1

2π

∫ dθpF
2π Im

[
Tr
{
τ̂3ĝ

R(pF ,R; ε)
}]

= −NF
2
π

∫ dθpF
2π Im

[
gR0 (pF ,R; ε)

]
. (2.63)
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2.5 The Riccati formalism
The Riccati parametrization is an efficient and numerically stable method of solv-
ing the Eilenberger equation [80, 93–98], in which the quasiclassical Green func-
tion are rewritten in terms of the coherence functions γ(pF ,R; z) and γ̃(pF ,R; z).
These objects correspond to the probability amplitude for electron-hole conver-
sion and hole-electron conversion, respectively. Appendix E derives the coherence
functions and a way of expressing the Green function in terms of them as

ĝ = −iπN̂
(
σ0 + γγ̃ 2γ
−2γ̃ −σ0 − γ̃γ

)
, (2.64)

where
N̂ =

(
(σ0 − γγ̃)−1 0

0 (σ0 − γ̃γ)−1

)
. (2.65)

The coherence functions, or Riccati amplitudes, are written as

γ(pF ,R; z) = (γs(pF ,R; z) + γt(pF ,R; z) · σ) iσ2, (2.66)
γ̃(pF ,R; z) = iσ2 (γ̃s(pF ,R; z)− γ̃t(pF ,R; z) · σ) . (2.67)

This parametrization automatically encodes the normalization condition into the
definition of ĝ, removes the spurious solutions, and recasts the Eilenberger equa-
tion into a set of coupled Riccati-type ordinary differential equations[

i~vF ·∇R + 2
(
z + e

c
vF ·A

)]
γ = γ∆̃γ −∆, (2.68)[

i~vF ·∇R − 2
(
z + e

c
vF ·A

)]
γ̃ = γ̃∆γ̃ − ∆̃. (2.69)

These equations are solved through integration along straight (ballistic) quasi-
particle trajectories s(x) parametrized by the Fermi velocity according to s(x) =
s0 + xv̂F , with opposite directions being stable for γ and γ̃, see for example
Ref. [86]. Quantum coherence exists on the length-scale of the superconducting
coherence length along these trajectories, but not between neighboring trajecto-
ries. Appendix E.4 solves these equations analytically. The following chapter
gives a brief explanation of how these equations are implemented and solved nu-
merically for non-bulk systems.





3 Implementation
Most of the results presented in this thesis were obtained with a simulation tool
developed by Mikael Håkansson [99]. The tool is an application programming
interface (API) written in C++/CUDA, that combines a wide range of useful
components. Examples of components are a robust method for solving the Eilen-
berger equations numerically, tools for setting up complex 2D-geometries, treat-
ment of boundary conditions, general multi-component order parameters, data
post-processing and visualization. Through proper usage of object-orientation,
each component is modular, making it easy to extend or replace. A main goal
of the current PhD project is to both use the tool in its present state to study
mesoscopic superconductors, but also to continue developing it. In particular, the
purpose of the latter is to make extensions that allows the study of a wider variety
of physics and systems than what is currently possible. So far, most of the time in
this PhD project has been spent on understanding, analyzing and benchmarking
the simulation tool. This has been a daunting task, as the tool lacks documenta-
tion and the original author is no longer involved in the project. The core of the
API includes over a hundred files with some twenty thousand lines of code, and
the full code base close to a thousand files.
The tool itself is not described here, as this was done in the thesis of the orig-

inal author [99]. Instead, this chapter briefly describes the numerical method
of solving the Eilenberger equations and the gap equation self-consistently. The
discretization scheme is explained, followed by a discussion on convergence, meth-
ods of speeding up the calculations, and the multiple possible solutions for the
order parameter. Finally, the Ozaki technique is described, which is an alter-
native approach to the Matsubara technique of treating integrals containing the
Fermi-Dirac distribution.
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3.1 Discretization

The quasiclassical Green functions ǧR,A,K,M contain the dynamics of the supercon-
ducting state, and most observables of interest can be obtained from them. The
goal is therefore to solve the Eilenberger equation with respect to these Green func-
tions. To eliminate spurious solutions and ensure numerical stability, the Green
functions are expressed in terms of particle-hole coherence functions γ and γ̃ (also
known as Riccati amplitudes). The resulting Riccati equations are less complex,
provide well-defined and stable integration directions, and automatically incor-
porate the normalization condition of the Green functions. To solve the Riccati
equations, the self-energies (and thus the superconducting order parameter) need
to be known. The issue is that these in turn depend both on the Green functions
and on themselves. There is thus a cyclic dependence, as illustrated in Fig. 3.1
(a). The problem is solved self-consistently, as described in Sec. 3.2. Here follows
a description on how the problem is discretized and implemented.
At each spatial coordinate, the order parameter depends on the coherence func-

tions propagating along every possible trajectory defined by the angle θ between
the trajectory and the Fermi velocity on the Fermi surface [as illustrated in Fig. 3.1
(b)], summed over each discrete Matsubara energy. When the trajectories reach
the edges of the system, appropriate boundary conditions are applied to match
incoming and outgoing scattering trajectories, as shown in Fig. 3.1 (c). These
boundary conditions are generally derived from microscopic theory. The order
parameter and the coherence functions are defined on a discrete square lattice
with lattice spacing h, as illustrated in Fig. 3.2 (a). Some of the observables, like
the current, are defined between the lattice points of the order parameter (on the
“links”). For every energy and discretized angle, the coherence functions are cal-
culated along straight trajectories starting at the system edges in a lattice which
is rotated with respect to the order parameter lattice, as shown in Fig. 3.2 (b). As

(a) (b) (c)

Figure 3.1: (a) Illustration of the dependence between the order parameter ∆, the
anomalous Green function f , and the coherence functions γ, γ̃. (b) The Riccati equa-
tions imply that the coherence functions are solved along ballistic trajectories defined
by the angle with respect to the Fermi velocity, denoted θ. The gap equation implies
that the order parameter depends on an integral over all such angles. (c) As the tra-
jectories reach the edges of the system, appropriate boundary conditions are necessary
to relate incoming and outgoing scattering trajectories. The figure shows the case of
a clean superconducting grain in vacuum, with perfectly specular reflection.
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(a) (b) (c) (d) (e)

Figure 3.2: (a) The order parameter and the coherence functions are discretized
on square lattices with lattice spacing h. (b) For every energy and discretized angle,
the coherence functions are calculated along ballistic trajectories from edge to edge
in the system. Due to the varying angles, the lattices generally do not overlap. (c)
The order parameter is bilinearly interpolated to account for the lattice mismatch.
For general geometries, (d) the angles and (e) the positions of the trajectories at the
edges generally do not match those of the outgoing scattering trajectories (the start
trajectories of other angles). The angles and positions need to be interpolated as well.
Some graphical elements were adapted from Ref. [99].

shown in Figs. 3.2 (c)–(e), the two lattices will generally not overlap due to these
rotations, which means that the order parameter has to be interpolated bilinearly
to the coherence function lattice, as will the trajectory positions and angles due to
a mismatch with “outgoing” scattering trajectories (i.e. starting trajectories for
other angles). These interpolations are the most substantial sources of numerical
errors. Higher resolution and clever interpolation tricks reduce these errors. Other
sources of error include the finite cutoff in the energy sum, and the discretization
of the angular integral in the gap equation. Furthermore, for complicated sys-
tems like spin-triplet systems with full spin dependence, there might not always
exist solutions of a simple analytic form to the Riccati equations. An alternative
approach is to solve the equations numerically, for example with the fourth-order
Runge-Kutta algorithm [86], which might lead to further numerical errors. For
the relatively simple systems studied in this thesis, however, the Riccati equations
have exact analytic solutions.
Finally, here are some typical figures of merit for the simulations in this thesis:

lattice size: Nx ×Ny ∼ 800× 800,

lattice spacing: h ∼ 0.1ξ0,

number of discrete angles: Nθ ∼ 100, (for LDOS calculations Nθ ∼ 1600),

number of Matsubara energies: Ne ∼ 1000 (which corresponds to 20 Ozaki en-
ergies as described in Sec. 3.5).
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3.1.1 Example: calculating the magnetic flux
Here follows an example of how the magnetic flux and the total magnetic flux
density are calculated in the discretized lattice.
Consider a two-dimensional grain with area A and lattice spacings ∆x = ∆y =

h. Let Ni and Nj be the number of lattice points along x and y, respectively, and
Ntot be the total number of lattice points in the grain. The surface integral is
discretized as

A =
∫
dS ≈

Ni,Nj∑
i=0,j=0

∆x∆y =
Ntot−1∑
k=0

h2, (3.1)

such that the area is
A = Ntoth

2. (3.2)

From the definition of magnetic flux, it is found that

Φ =
∫
BdS ≈

Ntot−1∑
i=0

Bih
2. (3.3)

The magnetic flux density in the grain is found to be

B = Φ
A
≈ 1
A

Ntot−1∑
i=0

Bih
2 = 1

Ntot

Ntot−1∑
i=0

Bi, (3.4)

yielding the total magnetic flux

Φ ≈ h2
Ntot−1∑
i=0

Bi. (3.5)
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3.2 Self-consistency algorithm
A simplified algorithm for solving the self-consistency equations is shown in Alg. 1.
Note that the Riccati transport equations are first-order ordinary differential equa-
tions with a “memory” along each trajectory, meaning that the initial guess in
step 7 propagates. The propagation length is typically quite short however, and
after a few self-consistency iterations, the information about the guess is com-
pletely lost [100]. Note that setting a = 1 in step 12 (as done in this work)
generally leads to a faster convergence, but might also lead to instability, as the
algorithm then lies exactly on the convergence radius. The typical convergence
criterion used in this thesis is that the total relative error fulfills

h(∆i,∆i−1) =
Nx,Ny∑
x,y

‖∆i(x, y)−∆i-1(x, y)‖
‖∆i-1(x, y)‖ ≤ δε =

10−16, ∆ ∈ R,
10−8–10−7, ∆ ∈ C.

(3.6)
The reason for the lower criterion for ∆ ∈ C is that in this case, convergence
usually “halts” at some point, probably due to ambiguity of the phase, that
amplitude shifts back and forth between real and imaginary parts, or due to
numerical/interpolation errors at the edges of the system. Ways of improving
convergence are discussed in Sec. 3.4. The multiple possible solutions of ∆ will
be discussed in the following section.

Algorithm 1 Self-consistency algorithm (greatly simplified)
1: Set: ∆0(R)← ∆guess(R).
2: Set: g ← 0.
3: Set: δ∆ ← c > δε, where c ∈ R, and δε is the convergence criterion.
4: while δ∆ > δε do
5: for |εn| ≤ Ωc do
6: for θ = 0, . . . , 2π do
7: Initialize: γ, γ̃ at the boundary [typically: (γ, γ̃) = (γbulk, γ̃bulk)].
8: Solve the Riccati equations along ballistic trajectories.
9: end for

10: end for
11: Set: f ← −2iπ(1− γ⊗ γ̃)1⊗ γ, where f is the anomalous Green function.
12: Set: ∆i ← a∆i−1 +(1−a)g(∆i−1), where g is the RHS of the gap equation

and a ∈ [0, 1] is a real constant.
13: Set: δ∆ ← h(∆i,∆i−1), where h is some residual or relative error.
14: Set: i← i+ 1.
15: end while
16: Calculate any desired observables.
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3.3 On multiple solutions of the order parameter
For many systems, the order parameter has several possible solutions correspond-
ing to local minima in the free energy landscape. The sought solution is the
global minimum (the ground state). In principle, the converged solution should
not depend on the initial guess, but given that the free energy landscape is often
very flat and that there are several minima, the converged solution might be a
local minimum. Solving the self-consistency equations numerically as described
in the previous sections, there is no way of truly knowing which solution is the
global minimum. The local minima might still be physically relevant for several
reasons, however. To make the best out of the situation, the following should be
considered:

1. “perturbing” the system during the simulation,

2. performing several simulations with different start guesses, comparing the
free energy,

3. choosing a high convergence criterion.

Perturbing the system during simulation, for example by temperature or magnetic
field annealing, might enable the system to shift between minima, while different
start guesses might lie closer to different minima. Choosing a high convergence
criterion is advantageous because the self-consistency algorithm sometimes finds
its way out of local minima on its own. The choice of convergence criterion is
however often influenced by the availability of time for the given simulation, and
where (if ever) the convergence “stagnates”. For general complex order parameters
for example, convergence slows down exponentially after some iteration. It is
therefore desirable to speed up the convergence as much as possible. Methods of
doing so will be discussed in the following section.
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3.4 Speeding up convergence
Increasing the convergence speed of the self-consistency iterations is important
for finding the minima in the solution to the order parameter. Studying more
complicated systems might even be infeasible if the convergence is too slow. What
influences the convergence speed is of course how many iterations are required to
reach a given precision, and how long time each iteration takes. Steps 1–3 below
affect the number of iterations, while step 4 affects the iteration speed:

1. making “smart” initial guesses,

2. perturbing the system during the simulation,

3. using an “accelerator” to base the solution of each iteration on the previous
ones,

4. optimizing and speeding up the algorithm itself.

Guesses are smart if they reflect the correct answer, and if they contain the right
“seed” for it, such that the guess already lies relatively close to the minimum.
For example an order parameter with a 2π phase winding might be a good initial
guess for a system with an external flux quantum passing through an Abrikosov
vortex or a solenoid. The right amount of complexity is also important; for a bulk
system, a purely real order parameter can easily converge to machine precision
in relatively few steps, while a complex order parameter with phase gradients is
crucial for ever finding the loop-current phase. Another start guess that might be
good is to start with a highly converged solution to a similar problem. Perturbing
the system with annealing or random fluctuations might provide the seed for the
correct answer, or reduce the amount of necessary iterations.
To heavily reduce the amount of iterations, an “acceleration” method can be

used, as described in the following. The problem of solving the order parameter
can be stated as a fixed-point iteration problem

F [∆i,∆i−1] = g[∆i−1]−∆i, (3.7)

where g is the RHS of the gap equation, and the goal is to minimize F . Written
on this form, it is straightforward to apply “accelerator algorithms” that attempt
to estimate where the solution is converging towards, like the Newton-Raphson
method for example. In this thesis work, the naive but useful “gradient accelera-
tor” is employed, which bases the solution of the ith iteration on the slope of the
solutions in the previous iterations

∆i+1 = g [∆i] + (g [∆i−1]− g [∆i−2])×min
c, 1

4

∣∣∣∣∣h(∆i−1,∆i−2)
h(∆i,∆i−1) − 1

∣∣∣∣∣
−1 , (3.8)
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where h is the relative error from Eq. (3.6), and c is some upper bound for the
accelerator step. A more advanced acceleration and immensely powerful one is
the “Anderson acceleration” [101, 102] (also known as “Anderson mixing”), which
has been used with great success in many branches of natural science. In super-
conductivity, it has for example been used to solve the self-consistency equations
both in full microscopic theories [103] and in quasiclassical theory [104]. Anderson
acceleration is essentially described in Algorithm 2 from Ref. [102].

Algorithm 2 Anderson acceleration (simplified)
1: Given: ∆0 and m ≥ 1
2: for i = 1, 2, . . . do
3: Set: mi = min {m, i}
4: Set: Fi(fi−mi, . . . , fi), where fj = g(∆j)−∆j

5: Determine α(i) = (α(i)
0 , . . . , αimi

)T that solves

minα=(α0,...,αmi)T ‖Fiα‖2 such that
mi∑
j=0

αi = 1. (3.9)

6: Set: ∆i+1 = (1−βi)
∑mi
j=0 α

(i)
j ∆i−mi+j+βi

∑mi
j=0 α

(i)
j g(∆i−mi+j) where βi > 0

is a relaxation parameter (typically βi = 1).
7: end for

Apart from optimizing the code, solving the self-consistency equation can be
sped up by for example:

1. using the Metropolis-Hastings algorithm (not implemented),

2. using an adaptive discretization size (implemented),

3. using Richardson extrapolation (not implemented),

4. using the Ozaki technique instead of the Matsubara technique (implemented).

Systems with a flat free energy landscape, like the systems studied in this thesis,
can often be quickly traversed by random walks. It is therefore proposed that the
Metropolis-Hastings algorithm can be used to speed up the convergence of the
self-consistency equations. The idea is to make some kind of random modification
of the order parameter. The modification is accepted if it leads to a lower free
energy, and accepted with a certain probability if it leads to a higher free energy
(this is called the Metropolis step). The latter allows the algorithm to get out
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of local minima in search of the global minimum. The question then is which
kind of random modification to use. A method which is often highly successful is
the bisection method, where the sample space (the order parameter lattice in this
case), is divided into one or more regions. In each region, the value of the region
midpoint ∆N/2 is shifted randomly, and the rest of the points are interpolated
between this value and the values at the edges. This is followed by the Metropolis
step. Then, each point between ∆N/2 and the edges are shifted randomly in the
same way, followed by another Metropolis step. This continues until a random
shift has been suggested to each point in the region. The bisection method and
the Metropolis algorithm goes very well together with an adaptive step size [105].
An adaptive discretization size is based on starting with a low discretization,

which allows the system to converge fast to a rough estimation of the correct
solution. By then gradually increasing the number of discrete grid points, the
precision gets finer and the approximation better. Care needs to be taken, how-
ever, as a too low convergence might lock the algorithm on a path towards a less
favorable minimum, or in the worst case, instability.
The Richardson extrapolation technique is a “sequence accelerator” to improve

the convergence of a sum. This can for example be used to reduce the number
of energies required in the energy sum in the gap equation. Probably the most
effective way of reducing the number of energies though is by using the Ozaki
technique, which will be described in the following section.
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3.5 Ozaki technique versus Matsubara technique
Calculation of the grand partition function, and in particular the Green function
associated with the Fermi-Dirac function, are cornerstone problems not only in
condensed matter physics, but in quantum field theory and many-body physics
in general. The so-called Matsubara technique [81] was developed as a method
for solving these problems. In superconductivity theory, the method is commonly
used to treat the energy integrals that occur for example in the gap equation, as
well as the expression for the free energy and the current density.
In short, the Matsubara technique is based on analytic continuation to imagi-

nary time, τ ≡ it. Since the resulting Matsubara Green function (gM) is periodic
in τ , its Fourier transform is only defined over a set of discrete (imaginary) en-
ergies z = iεn, where εn ≡ πkBT (2n + 1) are called the Matsubara energies (or
frequencies, in natural units). This makes it possible to replace the energy inte-
gral with a sum, where the latter requires far less terms to converge to the same
precision as the former. Recently, a more efficient method was proposed by Ozaki
[106], based on expressing the Fermi-Dirac function in a continued fraction repre-
sentation. This method will from now on be referred to as the Ozaki technique,
and was implemented with great performance gain in this thesis. Below is a de-
scription of the Ozaki technique directly following Ref. [106], and a benchmark
against the Matsubara technique.
In the Matsubara technique, the Fermi-Dirac function f(x) is expressed as

f(x) ≡ 1
1 + exp(x) = 1

2 −
∞∑
n=1

2x
x2 + π2(2n− 1)2 , (3.10)

where x = β(z−µ) is generally a complex number, β ≡ 1/kBT , µ is the chemical
potential and z a complex energy. Equation (3.10) has the residues x = −1 and
poles distributed uniformly on the imaginary axis x = ±iπ(2n− 1). In contrast,
the Ozaki technique provides an expression where the poles are distributed non-
uniformly. As a result, there is an exponentially improved convergence compared
to the Matsubara technique [see Fig. 3.3 (a) on p. 43]. The Ozaki technique is
based on deriving the Fermi-Dirac function from a hypergeometric function as the
continued fraction (see Ref. [106] for a proof)

f(x) ≡ 1
1 + exp(x) = 1

2 −
x/4

1 +
(x/2)2

3 +
(x/2)2

5 +
(x/2)2

...
(2M − 1) + · · ·

. (3.11)

Equation. (3.11) is exact in the limit M → ∞. It is found that if the fraction
is cut off at M = 2N , where N is a positive integer, then the expression can be
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written into partial functions via the Padé approximation

f(x) ≈ 1
2 +

N∑
p=1

Rp
x− izp

+
N∑
p=1

Rp
x+ izp

, (3.12)

where Rp ∈ R and zp ∈ R are residues and poles, respectively, to be calculated.
Equation (3.12) is exact as N → ∞. There are analytic solutions to zp and Rp,
but these take on complicated expressions for larger N which are not elucidating.
Instead, an alternative method for finding zp and Rp is presented, in the form of
an eigenvalue problem.
Generally, a continued fraction can be expressed as the (1, 1) element (C−1)11

of the inverse of a tridiagonal matrix, as

(C−1)11 =
1

c11 +
c12c21

c22 +
c23c32

c33 +
c34c43

...
cMM

, (3.13)

where the tridiagonal matrix C is

C =



c11 c12 0
c21 c22 c23

c32 c33 c34
. . . . . . . . .

0 cM(M−1) cMM

 . (3.14)

Comparing Eq. (3.11) with Eqs. (3.13) and (3.14), it is found that

cpp = 2p− 1, (3.15)
cp(p+1) = c(p+1)p = i

x

2 , (3.16)

where p ∈ [1, 2, · · · ,M ] for cpp and p ∈ [1, 2, · · · , (M − 1)] for cp(p+1) and c(p+1)p.
Thus, the Fermi-Dirac function can be expressed as

f(x) ≈ 1
2 −

x

4
{
(ixB − A)−1

}
11 , (3.17)

where A and B are the (M ×M)-matrices

A =



−1 0 0
0 −3 0

0 −5 0
. . . . . .

0 −(2M − 1)

 , (3.18)
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and

B =


0 1

2 0
1
2 0 1

2. . . . . . . . .
0 1

2 0

 . (3.19)

Equation (3.17) is exact as M →∞. Finding the singular points of Eq. (3.11) is
equivalent to solving the generalized eigenvalue problem

Ab = ixBb, (3.20)

where b is an eigenvector and x the eigenvalue. It can be proven that x is an
imaginary number, such that y = ix and zp are real numbers. The eigenvalue
problem to solve becomes

Ab = yBb, (3.21)
x

4
{
(yB − A)−1

}
11 = x

4
N∑
p=1

(
R′p

y − zp
−

R′p
y + zp

)
. (3.22)

The poles and residues are found from the eigenvalues according to

zp = 1
yp
, (3.23)

R′p = 1
4Ap(p+1)A(p+1)pz

2
p . (3.24)

The following routine can then be followed to replace any Matsubara sum with
an Ozaki sum

1. Calculate the Matsubara cutoff NM = NM(T ) = int
(
εc/kBTc
2πT/Tc −

1
2

)
, for some

energy cutoff εc.

2. Obtain the Ozaki cutoff NO as the pole number where the maximum Ozaki
pole is zNO ≥ εNM [i.e. compare the solid and the dashed line in Fig. 3.3
(a)]. For example, εc = 30kBTc and T = 0.1 would give NM = 3 × 105 and
NO = 343. Note that in contrast to the Matsubara poles, the Ozaki poles
are cutoff dependent (i.e. changing NO changes the values of zp and R′p).

3. Given NO, calculate zp and R′p according to the above equations.

4. Replace any Matsubara sum with the Ozaki sum∑N
n=1 F (εn) −→ ∑N

p=1R
′
pF (zp),

where F is the summand.
Note that the Matsubara symmetry for negative energies derived in App. G also
applies to the Ozaki technique, due to symmetric distribution of poles around
z = 0.
Finally, Fig. 3.3 shows a benchmark of the Ozaki technique versus the Matsub-

ara technique. See the caption for an explanation of the figure.
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Figure 3.3: Benchmark between the Ozaki and Matsubara techniques. Note that all
ordinates are in log-scale. (a) The pole value (εn for Matsubara and zp for Ozaki)
as a function of the pole number n (dashed and dotted lines). The solid line shows
the value of the maximum Ozaki pole at n = nc. The Ozaki pole values increase
exponentially, while the Matsubara pole values increase linearly. (b) Relative error of
the s-wave bulk gap at T = 0.1Tc versus the number of terms in the Ozaki sum (solid
line) and Matsubara sum (dashed line). (c) Relative error (with respect to nc = 1000)
of the s-wave bulk gap versus temperature, for different number of terms in the Ozaki
sum. Here, ∆nc = 20.





4 Electrodynamics
The goal of this chapter is to introduce the main electrodynamical quantities of
the appended papers, as well as some fundamental properties of superconductors.
The chapter is divided into four sections.
The first section shows how the quantum-mechanical momentum operator is

modified in the presence of an external magnetic field. The superfluid momentum
is introduced, and gauge theory is briefly discussed. A gauge invariant expression
is then derived for the probability density and the current density. This expression
is used to derive the magnetic flux quantum in superconductors.
The second section goes through the magnetic classification and fundamental

phase diagrams of superconductivity. It is shown how Doppler shifts caused by
phase gradients in the order parameter, as well as by superfluid momenta, give
rise to a current density. The latter is the total current density, including both
supercurrents and quasiparticle currents.
The third section shows that a spin-degenerate superconductor couples to an

external magnetic field through a Doppler shift to the energies in the Eilenberger
equation. Appropriate magnetic vector potentials are derived for the case of
uniform superconductors as well as superconductors with holes.
The fourth section derives the magnetic vector potentials that are induced by

the currents in the superconductor.
The chapter is mainly written in Gaussian CGS units (unless otherwise speci-

fied) and uses the following sign convention for the elementary charge

e = −|e|. (4.1)

For more information about units and conversions between SI and CGS units, see
App. A.

45
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4.1 Basic electrodynamics in quantum mechanics
This section emphasizes the necessity to distinguish between canonical and kine-
matical momenta in quantum mechanics. These momenta are subsequently used
to derive an expression for the probability current. Finally, this expression is used
to show that magnetic flux is quantized in superconductors, and to derive the
corresponding flux quantum. Many of the calculations follow Sakurai [107].

4.1.1 Canonical, kinematical and superfluid momenta
Consider an electromagnetic field acting on a charge carrier with mass m and
charge q. To treat such problems, the momentum operator p ≡ −i~∇ has to be
substituted for

p→ p− q

c
A, (4.2)

where A(x) is the vector potential related to the magnetic flux density B. It will
soon be seen why this substitution is appropriate. The corresponding Hamiltonian
is written

H = qφ+ 1
2m

(
p− q

c
A
)2

= qφ+ 1
2m

(
p2 − q

c
(p ·A+A · p) + q2

c2A
2
)
, (4.3)

where x the position operator, and φ(x) is the scalar potential related to the
electric field E. In the Heisenberg picture, the time derivative of the position
operator is found to be

dx

dt
≡ [x, H]

i~

= [x, φ] + 1
2im~

[x,p2]−

q

c

(
[x,p ·A] + [x,A · p] + q2

c2 [x,A2]
), (4.4)

where the commutators are

[x,p] = i~, (4.5)
[x,p2] = 2i~p, (4.6)

[x,p ·A] + [x,A ·A] = 2i~A, (4.7)
[x, φ] = 0, (4.8)

[x,A] = [x,A2] = 0. (4.9)
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Inserting the commutators in Eqs. (4.5)–(4.9) into Eq. (4.4), it is found that
dx

dt
= 1
m

(
p− q

c
A
)
. (4.10)

Hence, the generator of translations p is not the same as the momentum mdx/dt,
and it is seen why the substitution in Eq. (4.2) was appropriate. The following
definitions are used to distinguish the two different momenta
kinematical momentum: Π ≡ mdx

dt = mv = p− q
cA (mechanical momentum),

canonical momentum: p = mv + q
cA (generator of translations).

The name canonical momentum stems from the fact that p fulfills the canonical
commutation relations, while Π does not. The name kinematical momentum (or
sometimes physical momentum) is chosen because Π represents the momentum
that would be measured in an experiment. Note that in the presence of an external
magnetic field, neither of these two momenta are necessarily conserved.
An important point is that the kinematical momentum is gauge invariant, while

the canonical momentum is not. This means that the expectation value of the
kinematical momentum, and hence the Hamiltonian in Eq. (4.3), are invariant
under the following gauge transformations (just like Maxwell’s equations)

φ → φ− 1
c

∂Λ
∂t
, (4.11)

A → A+∇Λ, (4.12)

where Λ can depend on both time and position. A particular choice of Λ thus cor-
responds to a particular gauge. It is convenient to choose a gauge which simplifies
the problem at hand. According to Noether’s theorem, global gauge invariance
is related to charge conservation. The theory of superconductivity breaks U(1)
gauge symmetry, through the existence of a complex-valued order parameter with
a non-uniform phase χ. Consequently, A is the vector potential due to exter-
nal magnetic fields as well as currents induced by gradients in this phase, and
the arbitrary function Λ is appropriately chosen to be the phase χ of the su-
perconducting order parameter. For example, a change in the phase χ/2 of the
singe-quasiparticle wave function by an arbitrary function λ/2 generates a change
λ in the phase of the superconducting order parameter. The latter term can be
compensated (“gauged away”) by gauge transforming the vector potential

A→ A− ~c
2e∇χ. (4.13)

Thus, Eq. (4.13) represents the gauge invariant vector potential in the supercon-
ducting state. The superfluid momentum, i.e. the Cooper pair momentum per
quasiparticle, can be written

ps = ~
2∇χ−

e

c
A, (4.14)
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which can be written as a dimensionless equation

1
2π
ps
p0

= 1
2 (ξ0∇)χ+ π

A

Φ0/ξ0
, (4.15)

p0 ≡
kBTc
vF

, (4.16)

where p0 is a momentum ([p0] = kg·m/s), ξ0 ≡ ~vF/2πkBTc is the zero-temperature
superconducting coherence length, and Φ0 ≡ hc/2|e| is the magnetic flux quan-
tum to be derived in Sec. 4.1.3 (hence the sign change in going from e→ −|e| in
introducing Φ0). The gauge invariant probability current will now be derived.

4.1.2 Probability current
Probability density can be seen as a heterogeneous fluid, which in some sense can
be treated equivalently to a superfluid. The probability current (also known as
probability flux) is the flow of the probability density per unit time. This current
fulfills the same continuity equations as the electric current in electrodynamics.
Therefore, the equations derived in this section holds both for the probability
current and for a supercurrent, and the fluid mentioned here can either be the
probability density or a superfluid. Consider a fluid that can be described by a
plane wave, with wave function ψ and phase χ

ψ = |ψ| eik·r = |ψ| eiχ, (4.17)

where the density is
n ≡ |ψ|2 = ψ∗ψ. (4.18)

For a superfluid, n = np = 1
2ns is the density of Cooper pairs. Acting on this

wave function with the momentum operator p ≡ −i~∇

pψ = −i~∇ |ψ| eik·r = ~kψ = ~ (∇χ)ψ. (4.19)

The current density can be written in terms of the canonical momentum (defined
in Sec. 4.1.1)

j = qvn = qnΠ = q

m

(
p− q

c
A
)
ψ∗ψ, (4.20)

where for a supercurrent q = 2e < 0 andm = 2m∗e. Noting the following relations,

∇ψ = iχψ, (4.21)
∇ψ∗ = −iχψ∗, (4.22)

ψ∗∇ψ − ψ∇ψ∗ = ψ∗ (i∇χ)ψ − ψ (−i∇χ)ψ∗

= 2i (∇χ) |ψ|2 , (4.23)
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it is possible to rewrite the current density on the familiar form

j = i
~q
2m (ψ∗∇ψ − ψ∇ψ∗)− q2

mc
Aψ∗ψ. (4.24)

Alternatively, by using Eq. (4.23), it can also be written

j = −~qn
m
∇χ− q2n

mc
A. (4.25)

Introducing the London parameter ΛL

ΛL ≡
mc

nq2 , (4.26)

which for a superfluid is ΛL = m∗ec/2ne2, the current density can finally be written

ΛLj = −
(
~c
q
∇χ+A

)
. (4.27)

This equation will now be used to derive the quantum of magnetic flux.

4.1.3 Flux quantization

Figure 4.1: Magnetic flux Φ pen-
etrating a region that is either nor-
mal conducting or a hole, with area
S1. The contour C encircles this
area.

It will now be shown that the magnetic flux
Φ passing through a superconductor is quan-
tized. The resulting magnetic flux quantum,
denoted Φ0, will also be derived. Consider a
region that is either normal conducting (like
the core of an Abrikosov vortex) or a hole (like
in a loop), with area S1 and penetrated by a
flux Φ, as illustrated in Fig. 4.1. Let C be a
contour encircling S1 that lies far enough away
such that any screening currents are vanishing
(i.e. the distance between C and the boundary
of S1 should be large compared to the super-
conducting penetration depth λL). Integrating
the probability current in Eq. (4.27) along the
contour C

−ΛL

∮
C
js · dl = ~c

q

∮
C

(∇χ) · dl +
∮
C
A · dl, (4.28)

where dl is an infinitesimal vector segment along C. Since the contour C was
chosen such that any screening currents vanish, the Meissner effect ensures that
the left-hand side also vanishes

−ΛL

∮
C
js · dl = 0. (Meissner effect) (4.29)
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Furthermore, the superconducting order parameter must be a single-valued func-
tion at each point in space. This means that along any closed trajectory, the
phase of the order parameter must return to the same value modulo 2π, and the
second integral turns out to be

~c
q

∮
C

(∇χ) · dl = ~c
q

(χ2 − χ1) = ~c
q

2πk = hc

q
k, (4.30)

where k is an integer. Finally, applying Stokes’ theorem and Maxwell’s equations
to the last integral yields∮

C
A · dl =

∫
S2

(∇×A) · dS =
∫
S2
B · dS ≡ Φ. (4.31)

Strictly speaking, the flux Φ here is the total flux that passes through S2 and not
just S1. It vanishes exponentially into the superconductor, though, making them
approximately the same. Combining Eqs. (4.28)–(4.31),

Φ = −khc
q

= k
hc

|q|
. (4.32)

Thus, the flux is quantized, and the quantum of magnetic flux is defined for a
superconductor as

Φ0 ≡
hc

2|e| , (CGS) (4.33)

which is half the quantum of flux for a normal conductor (q = e < 0). In SI
units, the flux quantum is instead h/2|e|. Historically, the quantization with 2e
rather than e, as first suggested by Onsager, was an important indication that
superconductivity involved pairs of electrons. Equation (4.32) shows that it is
possible for the flux to be multiply quantized (k > 1), but for an Abrikosov vortex,
this is an unstable state. The vortex will try to split into the more energetically
favorable state with several vortices that each have k = 1. If the geometry is
frustrated, or the region is a hole which cannot split, then it is possible to stabilize
states with k > 1. These cases will be studied in the results Ch. 6 and Ch. 7.
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4.2 The spectral current and the current density
In this section, the quasiclassical current density and spectral charge current will
be introduced. In short, to obtain these quantities, one starts with the typical
current density in quantum mechanics, for example Eq. (4.24), and goes through
second quantization to replace ψ with the fermionic field operators. By taking
the expectation value, the resulting current density can be expressed in terms
of the mean-field Green functions. This is then followed by the quasiclassical
approximation. The full derivation of these observables can be found in the first
chapters of Ref. [68].
In homogeneous superconductors, the supercurrents are distributed over the

continuum states. Any superfluid momenta or phase gradients give rise to Doppler
shifts δε of these continuum states (as well as of any midgap states)

δε = vF · ps, (4.34)

where ps is the superfluid momentum from Eq. (4.14). To obtain the total current
density, the contributions of the shifts are added up to form the spectral current

j(pF ,R; ε) = evFNF (N+(pF ,R; ε)−N−(pF ,R; ε)) , (4.35)

where vF is the Fermi velocity on the Fermi surface at Fermi momentum pF , R
is the center-of-mass coordinate, and N± are the dimensionless DOS of comoving
(+) and countermoving (−) excitations along the trajectory p̂F

N±(pF ,R; ε) = N(±pF ,R; ε)/NF . (4.36)

Here, NF is the normal-state DOS at the Fermi surface (per spin),

NF ≡
∫

FS

d2pF
(2π~)3 |vF (pF )| , (4.37)

and N is the angle-resolved DOS

N(pF ,R; ε) = − 1
2π Im

[
Tr
{
τ̂3ĝ

R(pF ,R; ε)
}]
, (4.38)

where the trace is over 4 × 4 Nambu-spin space, τ̂3 is the third Pauli matrix in
Nambu-spin space and ĝR is the retarded Green function. The spectral current in
Eq. (4.35) is a measure of the contributions of quasiparticle states at position R,
energy ε and momentum pF to the current density. Thus, the total current density
is obtained by multiplying the spectral current with the occupation distribution
and integrating over both energies and the Fermi momentum. In equilibrium,
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the occupation distribution is given by the Fermi-Dirac distribution f , and the
Matsubara technique can be employed to obtain the current distribution as a sum

j(R) =
∫
dε
∫
dpF (2f(ε)− 1) j(pF ,R; ε) (4.39)

= πeNF

∫
dpFvF (pF )kBT

∑
|εn|<εc

1
2 Tr

{
τ̂3ĝ

M(pF ,R; iεn)
}
, (4.40)

where εc is some cutoff, εn ≡ πkBTc(2n+ 1) are the Matsubara energies, and ĝM
is the Matsubara Green function. For the grains considered in this thesis

Tr
{
τ̂3ĝ

M(pF ,R; z)
}

= 4gM0 (pF ,R; z), (4.41)

where 0 denotes the scalar component. Using the Matsubara symmetry derived
in App. G, the sum can be converted to positive energies

j(R) = 2πkBTeNFvF

∫
dpF

∑
0<εn<εc

v̂F

(
gM0 (pF ,R; iεn) +

(
gMs (pF ,R; iεn)

)∗)
,

= 4πkBTeNFvF

∫
dpF

∑
0<εn<εc

v̂Fg
M(pF ,R; iεn), (4.42)

since j and gMs are real. Introducing the depairing current

jd ≡ 4πkBTc|e|NFvF , (4.43)

the current density can be written as a dimensionless equation

j(R)
jd

= − T
Tc

∫
dpF

∑
0<εn<εc

v̂Fg
M
s (pF ,R; iεn), (4.44)

where the minus sign comes from the factor e/|e|.
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4.3 Response to a uniform external magnetic field
In this section, the superconductivity phase diagram in an external magnetic
field will be introduced. Furthermore, it will be shown that in the absence of
spin dependence, an external magnetic field couples to the superconducting state
through the magnetic vector potential as a Doppler shift to the self-energy. The
vector potential is derived for two different cases, namely a uniform magnetic field
through

(a) a homogeneous superconductor,

(b) a hole in a superconductor (i.e. a solenoid).

4.3.1 Superconductivity phase diagram and magnetic
classification

There are two fundamental length scales in superconductivity; the superconduct-
ing coherence length (ξ), and the magnetic penetration depth (λ, also known as
the London penetration depth). The superconducting order parameter usually
varies on the first length-scale, while magnetic properties usually varies on the
latter. These are commonly defined as

ξ(T ) ≡ ~vF
∆(T ) , (4.45)

λ(T ) ≡
√√√√ mc2

4πe2nS(T ) , (4.46)

where nS is the superfluid density. Note that both of these expressions might be
modified by e.g. geometry and imperfections. In this thesis, the zero-temperature
coherence length and penetration depth are used as length scales, defined as

ξ0 ≡
~vF

2πkBTc
, (4.47)

λ0 ≡
√√√√ c2

4πe2NFv2
F

, (4.48)

respectively. The dimensionless ratio between the coherence length and the pen-
etration depth is known as the Ginzburg-Landau parameter (κ) and is used to
classify the magnetic-field response of a superconductor [108], according to

κ ≡ λ

ξ

<
1√
2 , type-I superconductors

> 1√
2 , type-II superconductors,

(4.49)
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where type-I (type-II) superconductors have a positive (negative) interface energy,
making normal-superconducting interfaces energetically unfavorable (favorable).
Frequently in this thesis, the ratio κ0 ≡ λ0/ξ0 will be encountered. Figures. 4.2 (a)
and (b) show the magnetic field response for a type-I and a type-II superconductor,
respectively. As a result of the positive interface energy, type-I superconductors
will strive for perfect1 diamagnetism in the whole superconducting sample, with
external fields being expelled exponentially with the distance from the boundary
of the superconductor. This effect is referred to as the Meissner effect, and the
phase is called the Meissner state, the latter which makes up the superconducting
phase diagram until the thermodynamic critical field

Hc ∝
Φ0

ξ(T )λ(T ) . (4.50)

Above this field, superconductivity is lost, and normal conduction ensues (see the
phase diagram in Fig. 4.3). Type-II superconductors are in the Meissner state
until the external field reaches the first critical field

Hc,1 ∝
Φ0

λ2(T ) . (4.51)

Above Hc,1, Abrikosov vortices start to form. These vortices have a normal core
(and thus a normal-superconducting interface), and exist up to the second critical
field

Hc,2 ∝
Φ0

ξ2(T ) , (4.52)

at which point superconductivity is lost. Note that this mainly applies for a
bulk superconductor, and that the exact values of the critical fields generally
1The deviation from perfect diamagnetism is caused by the finite region at the boundary required
to establish the diamagnetic supercurrent response.

Figure 4.2: (a) Meissner response at a normal-superconducting interface in a type-I
superconductor. (b) Abrikosov vortex in a type-II superconductor. The solid line is
the magnitude of the order parameter, and the dashed line the magnetic field.
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Figure 4.3: Superconductivity phase diagram under a magnetic field. The order
of the phase transition is labeled at each transition. (a) A type-I superconductor is
superconducting and in the Meissner state up until the thermodynamic critical field
Hc ∝ Φ0/ξ(T )λ(T ), at which point superconductivity is lost. (b) A type-II super-
conductor is in the Meissner state up until the first critical field Hc,1 ∝ Φ0/λ

2(T ).
Between Hc,1 and the second critical field Hc,2 ∝ Φ0/ξ

2(T ), the superconductor is in
the mixed state and Abrikosov vortices are present. Above Hc,2, a type-II supercon-
ductor becomes normal conducting.

depends on the geometry (among other things). For example, in a grain of area
A, then Hgrain

c,1 ∝ Φ0/A. Note that this thesis mainly studies unconventional
superconductors in the extreme type-II limit, where λ0 � ξ0, like in the cuprates
(where typically κ0 ≈ 100). In this limit, the penetration depth effectively drops
out of the theory (as will be shown later). In paper I, it is shown that midgap states
living on the boundaries of type-II superconductors give rise to a paramagnetic2

response, and that as a result, the diamagnetic response is moved further into the
bulk of the superconductor.
The following section shows how an external magnetic field couples to the su-

perconducting state in quasiclassical theory.

4.3.2 Coupling to the superconducting state: a Doppler shift
There are two main contributions from an external magnetic field: a Lorentz force
and a Doppler shift of the off-diagonal self-energies. The Lorentz term will affect
electron and hole trajectories differently, and leads to a bending of quasiparticle
trajectories. This term is generally beyond the scope of quasiclassical theory, but
is fortunately often considered to be negligible [70], and is therefore omitted. In
the following, the Doppler shift will be introduced.
Consider the Eilenberger equation (see Sec. 2.3),

i~vF ·∇Rĝ(pF ,R; z) +
[
z′τ̂3 − ∆̂(R), ĝ(pF ,R; z)

]
= 0. (4.53)

2Paramagnetic is a bit of a misnomer, as the midgap states will give the opposite response as
the superfluid momentum: the midgap states will drive a paramagnetic current if the bulk is
diamagnetic, while they will drive a diamagnetic current if the bulk is paramagnetic (e.g. the
currents surrounding a vortex core).
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In the presence of an external magnetic field, the momentum operator is modified
in the full microscopic theories (the Gor’kov equations) as shown in Sec. 4.1.1,
giving rise to an additional term proportional to the vector potential A. This
term transforms the same way as the energy

z′ = z + e

c
vF ·A. (4.54)

Here, z = iεn = iπkBTc(2n + 1) in the case of Matsubara. The vector potential
A is the full vector potential from external fields and induced due to currents,

A = Aext +Aind. (4.55)

Maxwell’s equations relate Aext to the external flux density Bext

Bext =∇×Aext, (4.56)

while Aind (derived in Sec. 4.4) is generated by the current density in the system.
This current density is in turn generated by Doppler shifts due to phase gradients
and superfluid momenta (as introduced in Sec. 4.2). To write the Eilenberger
equation on a dimensionless form, it is divided by the energy kBTc, yielding

z′

kBTc
= z

kBTc
+ 2π~

h

evF
c

1
kBTc

v̂F ·A

= z

kBTc
− 2π2 v̂F ·A

Φ0/ξ0
, (4.57)

where the sign change comes from e→ −|e| (introduced by Φ0). Thus, there is a
non-trivial pre-factor 2π2 (or π if using the modified coherence length ζ0 ≡ 2πξ0).
This shift carries over trivially to the Riccati equations. It will now be shown how
to calculate Aext for the two systems in Fig. 4.4.

4.3.3 A superconductor without holes
Assuming a uniform external magnetic field as in Fig. 4.4 (a),

Bext = Bextẑ, (4.58)

where ẑ is perpendicular to the superconducting plane, Bext = Φext/A and A is
the area of the superconductor. A possible solution that satisfies Eq. (4.56) is (see
for example Ch. 14 of Ref. [109])

Aext = 1
2Bext × ρ, (4.59)
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where

ρ = xx̂+ yŷ, (4.60)
ρ =

√
x2 + y2. (4.61)

Written on a dimensionless form, the vector potential becomes

Aext

Φ0/ξ0
= 1

2
Bext

Φ0/ξ2
0
× ρ

ξ0
(4.62)

= 1
2

Φext

Φ0

(
A
ξ2

0

)−1 (
− y
ξ0
x̂+ x

ξ0
ŷ

)
. (4.63)

4.3.4 A superconductor with a hole: a solenoid
Assume again a uniform external magnetic field, but that exists only in a cylinder
of radius ρa, as in Fig. 4.4 (b), (see for example Ch. 5 of Ref. [110])

Bext =
Bextẑ, ρ < ρa

0, otherwise.
(4.64)

Assume also that this cylinder lies completely within a hole (of arbitrary shape)
in a superconductor. This field gives rise to a vector potential which is non-
zero for ρ ≥ ρa. These fields are possible to realize by putting a solenoid in a
hole of a (super)conductor. This system is for example considered to prove the
famous Ahranov-Bohm effect (see for example Ch. 2.7 in Sakurai [107]), which
was paramount in recognizing the physical importance of the vector potential A
and the scalar potential φ as more than just mathematical supplements to B and
E, where E is the electric field.

SC

SC

V

Figure 4.4: Uniform magnetic flux penetrating (a) a homogeneous superconductor,
and (b) a hole in a superconductor. In both cases, the superconductor lies in the
xy-plane at z = 0. The vector ẑ points (a) down along the page, (b) into the page.
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Consider a circular path C of radius ρ > ρa that lies in the superconducting
region. Using Maxwell’s equations and Stokes’ theorem, it is found that∮

C
Aext · dl =

∫
(∇×Aext) · dS =

∫
Bext · dS = Φext. (4.65)

The line element is dl = ρdφφ̂, and the first integral can be written
∮
C
Aext · dl =

∫ 2π

0
dφAext · φ̂ρ

= Aext,φ2πρ. (4.66)

The surface element is dS = ẑρdρdφ, and the integral over Bext becomes
∫
Bext · dS =

∫ ρa

0
dρ
∫ 2π

0
dφBextρ

= 2πBext

∫ ρa

0
dρρ

= Bextπρ
2
a. (4.67)

Combining the results, the vector potential is

Aext = Bextρ
2
a

2ρ φ̂, (4.68)

where

Bext = Φext/πρ
2
a, (4.69)

φ̂ = − sin(φ)x̂+ cos(φ)ŷ = −yx̂+ xŷ. (4.70)

Finally, the vector potential can then be written on a dimensionless form as

Aext

Φ0/ξ0
= 1

2π

(
ρ

ξ0

)−1 Φext

Φ0
φ̂ (4.71)

= 1
2π

Φext

Φ0

−yx̂+ xŷ

x2 + y2 ξ0. (4.72)
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4.4 Internally induced flux due to currents
In this section, the vector potential (Aind) induced by internal currents (j) in
a superconductor is derived. In principle, the vector potential has to be solved
self-consistently together with the Green functions and the order parameter, as it
couples back to the self-energy, according to Eqs. (4.53)–(4.55). It will be shown
however that this back-coupling scales with (λ0/ξ0)−2, which is an extremely small
quantity for most unconventional superconductors, and therefore has a negligible
influence. This has been verified for a variety of different systems, and seems to
hold in most cases. Therefore, this backcoupling is ignored when obtaining the
results in this thesis and in the appended papers. The following calculations are
still important however, as they are used to obtain the induced magnetic flux
density Bind, which is one of the main observables in the results. As a side note,
the backcoupling seems to become non-negligible when applying strong external
fields in the mixed state, and when λ0 → ξ0.

4.4.1 Analytic solution and Poisson’s equation
The current density j (introduced in Sec. 4.2) that is induced in the supercon-
ductor in turn gives rise to an induced magnetic flux density Bind and a vector
potential Aind. Ampère’s circuit law and Maxwell’s equations give that

4π
c
j = ∇×Bind

= ∇×∇×Aind

= ∇ (∇ ·Aind)−∇2Aind

= −∇2Aind, (4.73)

where the last equality is obtained by assuming the Coulomb gauge (also known
as the London gauge)

∇ ·Aind = 0. (4.74)

Dividing Eq. (4.73) with the depairing current jd = 4πkBTc|e|NFvF from Sec. 4.2
and collecting terms on the right-hand side yields

j

jd
= − (ξ0∇)2 Aind

Φ0/ξ0

1
ξ2

0

(Φ0

ξ0

c

4π
1
jd

)
. (4.75)

The last term can be rewritten as

Φ0

ξ0

c

4π
1
jd

= hc

2|e|
4πkBTc
~vF

c

4π
1

2πkBTc|e|NFvF

= π

2
c2

4πe2NFv2
F

. (4.76)
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Introducing the zero-temperature penetration depth

λ2
0 ≡

c2

4πe2NFv2
F

, (4.77)

makes it possible to rewrite Eq. (4.73) on a dimensionless form as

(ξ0∇)2 Aind

Φ0/ξ0
= −2κ

−2
0
π

j

jd
(4.78)

where κ0 ≡ λ0/ξ0 is the Ginzburg-Landau parameter, as introduced in Sec. 4.3.1.
Taking a closer look at Eq. (4.78), it is seen that it is a Poisson equation of the

form
∇2φ(x) = f(x), (4.79)

which can be solved by introducing the Green function (kernel) Gn of the Laplace
operator 4 ≡ ∇2 in n dimensions,

∇2Gn(x,x′) = δn(x,x′). (4.80)

Assuming that it is allowed to differentiate under the integral sign,

φ(x) =
∫
d2x′Gn(x,x′)f(x′). (4.81)

In two dimensions (like the grains considered in this thesis and the appended
papers), the Green function G2 is known to be

G2(x,x′) = − 1
2π ln |x− x′| . (4.82)

With this, the induced vector potential due to the current density is found to be

Aind(x)
Φ0/ξ0

= κ−2
0
π2

∫ d2x′

ξ2
0

j(x′)
jd

ln
∣∣∣∣∣x− x

′

ξ0

∣∣∣∣∣ , (4.83)

where the factor ξ−2
0 under the integral sign comes from the factor (ξ0∇)2. The

induced magnetic flux density can then be obtained through Maxwell’s equations

Bind =∇×Aind. (4.84)
Thus, it is seen that the vector potential and the flux density due to currents
scales with κ−2

0 , which is an extremely small quantity for most unconventional
superconductors.
Equation (4.83) will now be considered in a discrete geometry. The reason

why the discretized form is not just written down immediately is that there is an
additional, non-trivial, term which comes from the singular point in the integrand.
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4.4.2 Analytic solution in a discretized lattice
Consider a discrete lattice in two dimensions, as introduced in Sec. (3.1), with
lattice spacing h. Let

x = (x, y), (4.85)
x′ = (x′, y′) = (xi, yi). (4.86)

Assuming that j is piecewise constant in each lattice cell, the integral in Eq. (4.83)
can be written as a sum

Aind(x, y)
Φ0/ξ0

= κ−2
0
π2

h2

ξ2
0

∑
xi

∑
yi

j(xi, yi)
jd

ln 1
ξ0

√
(x− xi)2 + (y − yi)2. (4.87)

The summand is singular in the point (x, y) = (xi, yi), however. This point is
treated separately by integrating over the lattice cell S′

S′ =
{

(x′, y′) : x′ ∈
[
x− h

2 , x+ h

2

]
, y′ ∈

[
y − h

2 , y + h

2

]}
. (4.88)

Denote this integral (i.e. the point (x = xi, y = yi) of the sum) as I

I = 1
ξ2

0

∫ x+h
2

x−h2
dx′

∫ y+h
2

y−h2
dy′
j(x′, y′)
jd

ln 1
ξ0

√
(x− x′)2 + (y − y′)2

=
{
α = x− x′
β = y − y′

}

= j(x, y)
jd

1
ξ2

0

∫ h
2

−h2
dα

∫ h
2

−h2
dβ ln 1

ξ0

√
α2 + β2

= j(x, y)
jd

h2

4ξ2
0

(
π − 6 + 2 ln h2

2ξ2
0

)
. (4.89)

Combining the results, the induced vector potential in the discretized lattice is

Aind(x, y)
Φ0/ξ0

= κ−2
0
π2

j(x, y)
jd

h2

4ξ2
0

(
π − 6 + 2 ln h2

2ξ2
0

)
+

h2

ξ2
0

∑
x6=xi

∑
y 6=yi

j(xi, yi)
jd

ln 1
ξ0

√
(x− xi)2 + (y − yi)2

. (4.90)





5 Thermodynamics
This chapter introduces a few important thermodynamic quantities, most notably
the free energy1 (F ), the internal energy (U), the entropy (S) and the heat capac-
ity (C). The goal is to show the procedure for calculating these thermodynamic
quantities. In this work, the free energy is obtained from a microscopically de-
rived free-energy functional. Using thermodynamic identities, the entropy and
heat capacity are obtained as temperature derivatives of this free energy.
Together, these observables will be used in the thesis and in Paper I to study

phases and phase transitions. In particular, the free energy indicates which phase
is energetically more favorable. The entropy and heat capacity, defined as the first
and second derivative of the free energy with respect to temperature, respectively,
together indicates the order of a phase transition. This is because the order of a
phase transition is defined as the order of the derivative which is discontinuous, ac-
cording to Ehrenfest’s classification. For example, the normal to superconducting
phase transition is a second-order phase transition in temperature with a discon-
tinuous heat capacity, and consequently no latent heat2. The resulting jump in
the heat capacity (∆CNS) at the transition temperature (Tc) will be derived for
both an s-wave and a d-wave bulk superconductor. Furthermore, the heat capac-
ity is of particular interest as it is a commonly measured quantity in experiment.
Therefore, it will be shown how the calculated heat capacity can be expressed in
units of ∆CNS.

1Here, F is the Helmholtz free energy in the absence of external magnetic fields, and the Gibbs
free energy in the presence of external magnetic fields.
2For Type-I superconductors, this is only true in the absence of external magnetic fields. In the
presence of such fields, the normal-superconducting transition is of first order, with an associated
latent heat. For Type-II superconductors, the phase transition is of second order both when
entering the Meissner state and the mixed state.
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5.1 The free-energy functional
The goal of this section is to introduce two different equations used to calculate
the free energy difference between the superconducting state and the normal state,
through quasiclassical Green functions and self energies. The starting point is a
general expression of the free energy, Ω, in terms of the grand partition function
Z. This expression can be manipulated into a Dyson equation, generating an ex-
pansion in interaction terms and hence energy. The quasiclassical approximation
considers only the low-energy contributions, and absorbs high-energy corrections
into terms that are either discarded or taken phenomenologically from experi-
ment. This section is based on the lecture notes of Ref. [111]. The full derivation
is beyond the scope of this thesis, but can be found in for example Refs.[69, 98,
112–114] and references therein. Note that Ω is also known in the literature as
the grand potential, the thermodynamic potential, the Landau free energy, and
the Landau potential, depending on which system is considered.
The free energy Ω depends on the chemical potential µ, volume V and temper-

ature T , and is defined as

Ω(µ,V , T ) ≡ F − µN = U − TS − µN, (5.1)

where F is the Helmholtz free energy, N the particle number, U the internal
energy and S the entropy. An expression of Ω in terms of the grand partition
function can be derived as

Ω = −kBT ln(Z), (5.2)
where kB is the Boltzmann constant. The grand partition function can be ex-
pressed in terms of expectational values with respect to Fock states

Z =
∑
E,N

e−β〈E,N |H0−µN|E,N〉, (5.3)

where N is the particle number operator, H0 is the non-interacting Hamiltonian
and E is the energy of the state. Considering an interacting Hamiltonian Hint,
the free energy can be rewritten as

Ω = −kBT 〈e−
∫ β

0 dτHint(τ)〉, (5.4)

where τ is the imaginary energy τ ≡ iε. This expression can be expanded dia-
grammatically in the energy close to the Fermi surface, but there is generally no
nice way to sum these terms up as in the Dyson equation. An expression for the
expansion was provided by Luttinger and Ward for normal state fermions [112],
which was later generalized to superfluid systems by De Dominicis and Martin
[113, 114], and to strongly correlated fermion superfluids by Serene and Rainer
[69]. The expression supplied by Luttinger and Ward will now be presented,
which will be used to estimate the free energy in bulk at zero temperature. This
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is followed by a simplified “educated guess” by Eilenberger [82], which is the free
energy functional which is used in this thesis. Subsequently, before studying the
entropy and the heat capacity, the magnetic energy density is derived.

5.1.1 The Luttinger-Ward free-energy functional
Following Luttinger and Ward, the free energy functional can be expressed as

Ω(Ĝ, Σ̂, V̂ ) = −Tr
[
Σ̂Ĝ+ ln

(
−Ĝ−1

0 + V̂ + Σ̂
)]

+ Φ
[
Ĝ
]
, (5.5)

where hat denote a 2 × 2 matrix in Nambu space, Ĝ is the Green function, V̂ is
the interaction term and Φ[Ĝ] is the “Φ-functional”, which is connected with the
self-energy functional Σ̂[Ĝ] via

δΦ[Ĝ] = Tr[Σ̂δĜ]. (5.6)

The product between two of these Nambu matrices are understood as the Nambu-
matrix product together with folding products in the R− p variables. The oper-
ator Tr means

Tr [◦] = kBT
∑
|εn|≤εc

∫ d3p

(2π)3

∫
d3R tr2 [◦] . (5.7)

The momentum integral over p can here be replaced by a ξ-integration
∫ d3p

(2π)3 [◦]→
∫
N(ξ)dξ〈◦〉Fξ ∼ NF

∫
dξ〈◦〉Fξ, (5.8)

where 〈◦〉Fξ denotes the proper average in p-space over the surface, ξ ≡ const,
and it is assumed that the density of states N is constant in a thin shell around
the Fermi surface. NF is the normal state density of states at the Fermi surface.
The relation in Eq. (5.6) implies that Ω is stationary under variation of Ĝ with
Σ̂ and V̂ constant. Additionally, Ω is also stationary with respect to variations of
Σ̂, yielding the Dyson equation

Ĝ =
(
Ĝ−1

0 − Σ̂− V̂
)−1

. (5.9)

This equations generates the Eilenberger equation in the quasiclassical approx-
imation. The free energy difference between the superconducting state and the
normal state (N) can be written as

δΩ[Ĝ, Σ̂] = Ω
[
Ĝ, Σ̂

]
− ΩN

[
Ĝ, Σ̂

]
= −Tr

[
Σ̂Ĝ− Σ̂NĜN + ln

(
−Ĝ−1

0 + V̂ + Σ̂
)
− ln

(
−Ĝ−1

0 + V̂ + Σ̂N

)]
+Φ

[
Ĝ
]
− Φ

[
ĜN

]
, (5.10)
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where the same external interactions and temperature is assumed. Applying the
quasiclassical approximation, the Luttinger-Ward free-energy functional is given
by

δΩ(T ) =
∫
dR

B
2
ind(R)
8π +NFkBT

1
2

∫ 1

0
dλ

∫ dΩpF
4π

∑
εn

Tr
[
∆̂(ĝλ −

1
2 ĝ)

], (5.11)

where ΩpF is the angle of the momentum pF on the Fermi surface relative to the
crystal a-axis, ĝλ is the solution to the Eilenberger equation with the substitution
∆̂→ ∆̂λ, with λ being a “dummy variable”. For a cylindrically symmetric Fermi
surface in 2D, ∫ dΩpF /4π = ∫ 2π

0 dθpF /2π, where θpF is the corresponding angle in
the crystal ab-plane. The first term in Eq. (5.11) is the magnetic energy density
due to magnetic fields induced in the system (to be derived in Sec. 5.1.4). A
dimensionless expression will now be derived for the free energy, by dividing it
with VNF (kBTc)2, where V is volume of the sample (replaced by the area A in
2D). Doing so leads to non-trivial scaling factors for the magnetic energy density,
which are rarely written out in the literature. These scaling factors are found to
be

B2
ind

8πNF (kBTc)2 =
(
Bind

Φ0/ξ2
0

)2 1
ξ2

0

Φ2
0
ξ2

0

1
8π

1
NF (kBTc)2

=
(
Bind

Φ0/ξ2
0

)2 1
ξ2

0

(
hc

2e

)2 (2πkBTc
~vF

)2 1
8π

1
NF (kBTc)2

=
(
Bind

Φ0/ξ2
0

)2
2π4κ2

0, (5.12)

where κ0 ≡ λ0/ξ0 is the dimensionless Ginzburg-Landau parameter (κ0 ≈ 100 for
YBCO, introduced in Sec. 4.4.1). Note that B2

ind ∝ κ−4
0 (as shown in Sec. 4.4.1),

such that the term is small for the superconductors considered in this work. Fi-
nally, the Luttinger-Ward free energy can be written on a dimensionless form

δΩ(T )
VNF (kBTc)2 =

∫ dR

V


(
Bind(R)
Φ0/ξ2

0

)2
2π4κ2

0

+1
2
T

Tc

∫ 1

0
dλ

∫ 2π

0

dθpF
2π

∑
εn

Tr
 ∆̂
kBTc

(
ĝλ −

1
2 ĝ
).(5.13)

5.1.2 Zero-temperature free energy
Consider a bulk superconductor at zero temperature. The trace in Eq. (5.13)
simplifies to

Tr
[
∆̂
(
ĝλ −

1
2 ĝ
)]

= 4π |∆|2
 1

2
√
|∆|2 − ε2

− λ√
|∆|2λ2 − ε2

 , (5.14)
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where ε = iεn = i2πkBT (n + 1
2) for Matsubara and ∆ = ∆νην(θpF ) with ν being

the basis function. At zero temperature,

∆εn = 2πkBT −−−→
T→0

0, (5.15)
εn −−−→

T→0
x, (5.16)

2πkBT
∑
|εn|<εc

−−−→
T→0

∫ εc

−εc
dx. (5.17)

Letting εc →∞, the free energy becomes

δΩ(T → 0)
VNF

= 1
2

∫ 1

0
dλ

1
2π

∫ ∞
−∞

dx
∫ 2π

0

dθpF
2π 4π|∆|2

 1
2
√
|∆|2 + x2

− λ√
|∆|2λ2 + x2


=

∫ ∞
−∞

∫ 2π

0

dθpF
2π

 |∆|2

2
√
|∆|2 + x2

−
√
|∆|2 + x2 + |x|


= −1

2

∫ 2π

0

dθpF
2π |∆|

2

= −|∆ν |2

2

∫ 2π

0

dθpF
2π |ην(θpF )|2. (5.18)

For any basis function normalized as ∫ 2π
0 dθpF |ην(θpF )|2/2π = 1, the zero-temperature

free energy becomes
δΩ(T = 0)
VNF (kBTc)2 = −1

2
|∆0|2

(kBTc)2 , (5.19)

where ∆0 is the zero-temperature gap given by Eqs. (D.52) and (D.53) on p. 177.
Inserting the numeric values of the gap,

δΩ(T = 0) ≈ −2VNF (kBTc)2. (5.20)

These result are valid for s-, d- and unitary p-wave superconductors.

5.1.3 The Eilenberger free-energy functional
In the original paper introducing the Eilenberger equations [82], the following
guess was made for the free-energy functional in Eq. (5.10)

δΩ(T ) =
∫
dR

B
2
ind(R)
8π + |∆(R)|2NF ln T

Tc

+2πNFkBT
∑
εn

 |∆(R)|2

εn
+ iI(R; εn)

, (5.21)

I(R; εn) =
∫ dθpF

2π
[
∆̃(pF ,R)γ(pF ,R; εn)−∆(pF ,R)γ̃(pF ,R; εn)

]
.(5.22)
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This form of the free energy is simpler to calculate than the Luttinger-Ward free
energy, and is therefore used in this thesis and in the appended papers. It has been
verified that this form of the free energy gives the same results as the Luttinger-
Ward functional, for the loop-current phase studied in this thesis. Equivalent to
the last section, dividing Eq. (5.21) with VNF (kBTc)2 yields a dimensionless form
of the Eilenberger free energy

δΩ(T )
VNF (kBTc)2 =

∫ dR

V


(
Bind(R)
Φ0/ξ2

0

)2
2π4κ2

0 + |∆(R)|2

(kBTc)2 ln T

Tc

+2π T
Tc

∑
εn

 |∆(R)|2

(kBTc)2
kBTc
εn

+ iI(R; εn)
kBTc

. (5.23)

5.1.4 The magnetic energy density
The term B2

ind(R)/8π represents the magnetic energy density, which is the energy
stored in the induced magnetic field (i.e. the work required to establish it). In
the results and Paper I, this term is only evaluated in the superconducting plane
(z = 0). In principle, however, there is magnetic flux outside the plane (z 6= 0),
which contributes to this energy (although decreasing non-linearly with increazed
z). The main reasons for not calculating this term for z 6= 0 is that

(a) the term is already vanishingly small (as is shown in the results in Sec. 7.1,
Fig. 7.3), which is why it is often neglected in the literature,

(b) the external field and its response is translationally invariant along z (apart
from possible fringe effects at surfaces),

(c) in a bulk system or a layered system (like the cuprates), the flux and vortices
are often translationally invariant in z (flux tubes), and each layer (pancake)
represents the system as a whole.

The calculated energy is therefore the average magnetic energy density of a pan-
cake. Still, it might be of some interest to in the future extend the calculations to
account for contributions from z 6= 0. Note that no energy exchange is assumed
with any eventual external field (adiabacity).
The term B2

ind(R)/8π will now be derived, closely following Ch. 5.16 of Jack-
son [115]. The calculations will initially be in SI units, but the results will later
be converted into CGS units. Imagine a system with a steady-state current J ,
where the current was switched on adiabatically such that ∇ · J = 0 holds. The
latter makes it possible to decompose the current distribution into current loops.
Let ∆σ, S, n̂, C, be the cross-sectional area, the path, the enclosed surface and
the surface normal, respectively, of a typical current loop. The ∆ denotes that
a single infinitesimal circuit loop is considered. The increase in work (against



5.1 The free-energy functional 69

the induced electromotive force), δW , in a loop can be written in terms of the
magnetic flux density through the loop δB

∆(δW ) = J∆σ
∫
S
n̂ · δBdr, (5.24)

where dr is an infinitesimal surface element, and the integral expresses the mag-
netic induction through the loop. Using Maxwell’s equations and Stokes’s theo-
rem, Eq. (5.24) can be rewritten as

∆(δW ) = J∆σ
∫
S
n̂ · (∇× δA)dr

= J∆σ
∮
C
δA · dl, (5.25)

where dl is an infinitesimal vector parallel to J , which means that

J∆σdl = JdR =∇×HdR, (5.26)

with dR being an infinitesimal volume element. The last step of Eq. (5.26) follows
from Ampère’s circuit law. Thus, the total incremental work done due to the
incremental change δA is

δW =
∫
δA · (∇×H)dR

=
∫

(H · (∇× δA) +∇ · (H × δA)) dR

=
∫
H · δBdR +

∫
∇ · (H × δA)dR, (5.27)

where Maxwell’s equations have been used, along with the vector identity

∇ · (A×B) = B · (∇×A)−A · (∇×B). (5.28)

For a localized field distribution, the second integral in Eq. (5.27) vanishes. For
systems where there exists a linear relation between the magnetic fieldH and the
magnetic flux B (e.g. paramagnetic and diamagnetic media),

H · δB = 1
2δ(H ·B) = δB2

2µ , (5.29)

where µ is the magnetic permeability. Summing over all infinitesimal changes up
to the full magnetic field and flux, the total work required (i.e. the total magnetic
energy density) becomes

E =
∫ B2

2µ dR. (SI) (5.30)
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Recalling that the units of magnetic flux density and flux is

B = Φ
A

= b
Φ0

ξ2
0
, (5.31)

Φ0 = h

2|e| , (SI) (5.32)

Φ0 = hc

2|e| , (CGS) (5.33)

and that when going from SI units to Gaussian CGS units µ→ 4π/c2 (see App. A),
the magnetic energy density in Eq. (5.30) can be rewritten

B2

2µ =
(
b

ξ2
0

h

2e

)2 1
2µ (SI)

=
(
b

ξ2
0

h

2e

)2 c2

8π (CGS)

= B2

8π , (CGS) (5.34)

which was to be shown.
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5.2 Entropy
The statistical expression of the entropy is given by

S = −kB
∑
k,σ

[(1− fk) ln(1− fk) + fk ln fk] , (5.35)

where k denotes momentum and σ spin, fk ≡ f(Ek) = (eβ(Ek−µ) + 1)−1 is the
Fermi-Dirac distribution at momentum k, energy (dispersion) Ek, chemical po-
tential µ, and temperature T . Here, β ≡ 1/kBT . The systems considered in this
work are spin degenerate, yielding

S = −2kB
∑
k

[(1− fk) ln(1− fk) + fk ln fk] . (5.36)

This form of the entropy depends on the excitation spectrum of the system, and
will be used for bulk and normal state systems. In this thesis, the thermodynamic
definition is used instead to otbain the entropy and heat capacity as derivatives
of the free energy functionals in Sec. 5.1. Following for example Ref. [116], the
Helmholtz free-energy is defined as

F = U − TS, (5.37)
where U is the internal energy, T the temperature and S the entropy. Under a
differential variation,

∂F = ∂U − S∂T − T∂S. (5.38)
For reversible processes, the change in heat (Q) is related to a change in entropy

∂Q = T∂S. (5.39)
Additionally, the first law of thermodynamics states that the change in heat is
related to the change in work and internal energy

∂Q = ∂R + ∂U, (5.40)
where R is the work done per unit volume by the system on the surrounding.
Substituting Eq. (5.40) into Eq. (5.39) and re-arranging slightly, yields

∂U = T∂S − ∂R. (5.41)
Substituting Eq. (5.41) into Eq. (5.38) yields

∂F = −∂R− S∂T. (5.42)
The entropy can then be obtained as the temperature-derivative of the free energy

S = −
(
∂F

∂T

)
R

. (5.43)

In the presence of external magnetic fields, it is more appropriate to use the
Gibbs free energy. A similar expression can then be found under the assumption
of stationary external fields.
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5.3 Heat capacity
The heat capacity is an important and fundamental property of solids, which is
typically measured with nanocalometric methods. It is an observable from which
a great number of properties can be inferred, for example the transition tempera-
ture, the superconducting gap, the penetration depth, the coherence length, and
the Fermi velocity [39].
This section starts by stating different kinds of heat capacities, and showing

how the heat capacity is calculated from the entropy. Using the statistical ex-
pression of the entropy, the heat capacity is then calculated for a normal-state
metal and for a bulk superconductor. The low- and high-temperature limit of the
latter is examined, and the jump in heat capacity in the normal-superconducting
phase transition (∆CNS) is derived for both an s-wave and a d-wave supercon-
ductor in bulk. Finally, ∆CNS is used to form the dimensionless equations for
calculating the heat capacity in mesoscopic systems with quasiclassics. Some of
these calculations follow Refs. [4, 16, 73, 78, 116]

5.3.1 Different kinds of heat capacities: disambiguation
The heat capacity of a system is defined as the amount of heat Q needed to raise
the temperature of the system, per degree temperature increase ∆T [117]

C ≡ Q/∆T. (5.44)

The specific heat capacity (or specific heat in short) is the heat capacity per
unit substance. Different units are used depending on the circumstance. For
example, the volumetric heat capacity is the heat capacity per volume C/V , the
molar specific heat is the heat capacity per mole etcetera. In this thesis, the heat
capacity for a given superconducting grain will exclusively be calculated, i.e. the
grain heat capacity, or just heat capacity in short.

5.3.2 Thermodynamic definition
The second law of thermodynamics states that if an infinitesimal amount of heat
δQ is added to a system at temperature T in a reversible manner, then the entropy
change is

dS = δQ

T
. (5.45)

The definition of heat capacity states that

C = δQ

dT
, (5.46)

which means that
TdS = CdT, (5.47)
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and consequently
C = T

dS

dT
. (5.48)

This can then be turned into a partial derivative if considering that certain pa-
rameters are held constant. In Sec. 5.2, it was shown that the entropy is related
to the partial derivative of the Helmholtz free energy (or Gibbs free energy in the
presence of external magnetic fields) through

S = −
(
∂F

∂T

)
R

, (5.49)

which then means that the heat capacity at constant volume, for example, can be
related to the free energy through

CV = T

(
∂S

∂T

)
V

= −T
(
∂2F

∂T 2

)
R,V

. (5.50)

5.3.3 Heat capacity in a normal-state metal
The heat capacity of a normal state metal, denoted CN , has two main contribu-
tions Cel

N and Cph
N from electrons and phonons, respectively,

CN = Cel
N + Cph

N . (5.51)

The electronic part dominates at lower temperatures, and the phononic at higher
temperatures. It is therefore customary to only consider the electronic contribu-
tion when studying the normal-superconducting phase transition for conventional
low-Tc superconductors, and often also for unconventional high-Tc superconduc-
tors. Both the electronic and the phononic heat capacities will now be derived
from the respective internal energy.

Electronic heat capacity (normal state)

The electronic heat capacity at constant volume is

Cel
N =

(
∂Un,e
∂T

)
V

. (5.52)

The electronic internal energy Un,e is defined as

Un,e =
∑
k,σ

ξkfk = 2
∑
k

ξkfk, (5.53)

Considering a bulk system in thermodynamic equilibrium, the chemical potential
is an arbitrary reference which can be set to zero. By noting that

dfk
dT

= d

dT
(eξk/kBT + 1)−1 = ξk

kBT 2fk(1− fk), (5.54)
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the heat capacity can be written as

Cel
N = 2

kBT 2
∑
k

ξ2
kfk(1− fk). (5.55)

Using the density of states N(ξ) for a system of volume V , the sum is converted
into an integral over energy (see App. C)

Cel
N = 2

kBT 2
∑
k

ξ2
kfk(1− fk) −→ 2V

kBT 2

∫ ∞
−∞

dξN(ξ)ξ2f(ξ)[1− f(ξ)], (5.56)

The Fermi-Dirac distribution is a step function centered around µ (which was
previously set to zero, meaning that ξ is an energy relative to the Fermi energy),
which at finite temperatures is smeared. The expression f(1 − f) comes from
the derivative of f , and describes a peak around µ that drops off rapidly on
an energy scale kBT � εF , where εF is the Fermi energy. Since the density of
states N(ξ) varies on an energy-scale εF , it can be considered to be constant
N(ε) ≈ N(0) ≡ N0 in the domain where f(1−f) is non-zero, and therefore pulled
out of the integral. Thus,

Cel
N = 2VN0

kBT 2

∫ ∞
−∞

dξ
ξ2eξ/kBT

(eξ/kBT + 1)2 , (5.57)

With a change of variables x = ξ/kBT , the integral becomes

Cel
N = 2k2

BTVN0

∫ ∞
−∞

dx
x2ex

(ex + 1)2 . (5.58)

This integral has the solution
∫ ∞
−∞

dx
x2ex

(ex + 1)2 = π2

3 . (5.59)

Finally, the electronic heat capacity at constant volume V turns out to be

Cel
N = γT, (5.60)

γ ≡ 2π2k2
BVN0

3 . (5.61)

Phononic heat capacity (normal state)

As a solid is heated, energy is stored in phonons. The energy E of a phonon mode
follows the expression of a harmonic oscillator

E(ω) = ~ω
(1

2 + n

)
, (5.62)
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where ω is the frequency and n the number of phonons in the mode according to
the Bose-Einstein distribution

n(ω, T ) = 1
e~ω/kBT − 1 . (5.63)

For simplicity, the density of phonon states is assumed to follow the Debye model

G(ω) =
9VN ω2

ω3
D
, ω < ωD

0, ω > ωD,
(5.64)

where ωD is the Debye frequency and N = D/V is the density of states per
volume. The phononic internal energy is then

Un,ph =
∫ ∞

0
E(ω)G(ω)dω

=
∫ ωD

0
~ω

(1
2 + 1

e~ω/kBT − 1

) 9VN
ω3
D

ω2dω

= 9VN~ωD
8 + 9~N

ω3
D

∫ ωD

0

ω3

e~ω/kBT
dω. (5.65)

With the substitutions

y = ~ω
kBT

, (5.66)

x = ~ωD
kBT

, (5.67)

the integral can be written

9~VN
ω3
D

∫ ωD

0

ω3

e~ω/kBT
dω = 9VN~

ω3
D

(
kBT

~ωD

)4 ∫ x

0

y3

ey − 1dy

= 3VNkBT
3
x3

∫ x

0

y3

ey − 1dy

= 3VNkBTD(x), (5.68)

where

D(x) ≡ 3
x3

∫ x

0

y3

ey − 1dy. (5.69)

Finally, the internal energy can be written

Un,ph = 9VN~ωD
8 + 3VNkBTD(x). (5.70)
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The phononic heat capacity at constant volume V is

Cph
N =

(
∂Un,ph
∂T

)
V

= 3VNkB
(
D(x)T ∂D(x)

∂T

∂x

∂T

)

= = 3VNkB
(
D(x)− x∂D(x)

∂T

)
. (5.71)

Here,
∂D(x)
∂T

= −3
x
D(x) + 3

ex − 1 , (5.72)

yielding
Cph
N = 3VNkB

(
4D(x)− 3x

ex − 1

)
. (5.73)

For large temperatures (x, y → 0),
3y

ey − 1 −−→
y→0

3, (5.74)

D(x) −−→
y→0

3
x3

∫ x

0

y3

y
dy = 1. (5.75)

For small temperatures (x, y →∞),
3y

ey − 1 −−→
y→0

0, (5.76)

D(x) −−→
y→0

3
x3

∫ ∞
0

y3

ey − 1dy = k3
Bπ

4

5(~ωD)3T
3. (5.77)

Combining these results, the phononic heat capacity becomes

Cph
N −−−→

T→0

12π4VNk4
B

5(~ωD)3 T 3, (5.78)

Cph
N −−−→

T→∞
3VNkB. (5.79)

Hence, it is seen that for low temperatures, the phononic heat capacity goes to
zero as T 3, compared to the linear T -dependence of the electronic heat capacity.

5.3.4 Heat capacity in a bulk superconductor
The electronic heat capacity of a bulk superconductor, denoted CS will now be de-
rived from the statistical expression of the entropy. The thermodynamic definition
of the heat capacity in Eq. (5.48) gives that

C ≡ T
dS

dT
= T

dS

dβ

dT

dβ
= −βdS

dβ
. (5.80)
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In a bulk superconductor, the excitation energy required to create a quasiparticle
of momentum k is

Ek =
√

(ξk − µ)2 + ∆2
k, (5.81)

where ξk is the single-particle energy measured relative to the Fermi energy in the
normal state. In this formalism, µ is the energy shift of the chemical potential
between the normal and superconducting states. The energy shift fulfills µ = 0
for systems with a particle-hole symmetry close to the Fermi surface. In fact, this
is quite generally a good approximation [71], which is why µ = 0 is assumed in
the rest of this calculation. With Eq. (5.36), the heat capacity is

C = 2βkB
∑
k

d

dβ
[(1− fk) ln(1− fk) + fk ln fk]

= 2βkB
∑
k

− df
dβ

ln(1− fk) + (1− fk)
−df
dβ

1− fk
+ df

dβ
ln fk + fk

1
fk

df

dβ


= 2βkB

∑
k

df

dβ
ln fk

1− fk
, (5.82)

where

ln fk
1− fk

= ln
1

eβEk+1
1− 1

eβEk+1
= ln e−βEk = −βEk. (5.83)

Substituting this result into Eq. (5.82) yields

C = −2β2kB
∑
k

Ek
df

dβ
. (5.84)

This expression can be processed further by assuming a particular form of Ek and
evaluating the total derivative

df

dβ
= ∂fk

∂β

dβ

dβ
+ ∂fk
∂Ek

dEk
dβ

. (5.85)

Assuming a bulk superconductor with an excitation spectrum given by Eq. (5.81),
the terms in the total derivative in Eq. (5.85) are

∂fk
∂Ek

= ∂

∂Ek
(eβEk + 1)−1 = −β eβEk

(eβEk + 1)2 = −βfk(1− fk), (5.86)

∂fk
∂β

= ∂

∂β
(eβEk + 1)−1 = −Ek

eβEk

(eβEk + 1)2 = Ek
β

∂fk
∂Ek

, (5.87)

dEk
dβ

= d

dβ

√
ξ2
k + ∆2

k(T ) = 1
2
√
ξ2
k + ∆2

k

d|∆k|2

dβ
= 1

2Ek
d|∆k|2

dβ
, (5.88)
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which gives

df

dβ
= ∂fk
∂Ek

(
Ek
β

+ 1
2Ek

d|∆k|2

dβ

)
= −fk(1− fk)

(
Ek + β

2Ek
d|∆k|2

dβ

)
. (5.89)

Substituting this result back into the heat capacity in Eq. (5.84) yields the elec-
tronic heat capacity for a bulk superconductor

CS = 2β2kB
∑
k

fk(1− fk)
(
E2
k + β

2
d|∆k|2

dβ

)
. (5.90)

Turning this expression into an integral over energies (see App. C) by using the
density of states per volume N(ξ)

CS = 2β2kBV
∫
dΩ

∫ ∞
−∞

dξN(ξ)f(E) [1− f(E)]
(
E2 + β

2
d|∆|2
dβ

)
, (5.91)

where E =
√
ξ2 + ∆2, ∆ = ∆0η(Ω) and V is the volume of the sample. Using the

same argument as in Sec. 5.3.3, the density of states varies on an energy scale εF
which is typically much larger than the energy scale where f(1 − f) is non-zero
(i.e. kBTc in this case), so that N(ε) ' N(0) ≡ NF , yielding

CS ≈ 2β2kBVNF

∫
dΩ

∫ ∞
−∞

dξf(E) [1− f(E)]
(
E2 + β

2
d|∆|2
dβ

)
. (5.92)

This expression will now be examined in the limits T → 0 and T → Tc.

CS at low temperatures: fully gapped superconductors

It will now be shown that the heat capacity CS goes to zero exponentially as
T → 0 for s-wave and unitary p-wave superconductors. This is a result which is
quite general for all systems with an energy gap for excitations [9].
Starting from Eq. (5.92), the second term in the sum in CS can be written as

β

2
d|∆|2
dβ

= dT

dβ

d|∆|2
dT

= −T
β

d|∆|2
dT

, (5.93)

where

T

β
= kBT

2 −−−→
T→0

0, (5.94)

d|∆|2
dT

−−−→
T→0

0. (5.95)
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Noting that for low temperatures,

f(E) [1− f(E)] = 1
eβE + 1

(
1− 1

eβE + 1

)

= e−βE
(
1 + 2e−βE + e−2βE

)−1

≈ e−βE, (5.96)

the heat capacity can be rewritten as

CS ≈ 2β2kBVNF

∫
dΩ

∫ ∞
−∞

dξe−β
√
ξ2+∆2 (

ξ2 + ∆2
)

≈ 2β2kBVNF

∫
dΩe−β∆

∫ ∞
−∞

dξe−βξ
2/2∆

(
ξ2 + ∆2

)

= 2β2kBVNF

∫
dΩe−β∆

√π
4

(2∆
β

)3/2
+ ∆2

√√√√2π∆
β

 . (5.97)

The first term goes to zero faster as T → 0 than the second, and is therefore
neglected. Assuming that the angular integral only gives rise to a trivial pre-
factor (in fact, ∫ dΩ = 1 for s-wave),

CS
k2
BTcVNF

≈
√

8π
( ∆
kBT

)5/2
e−∆/kBT −−−→

T→0
0, (5.98)

exponentially due to the factor e−∆0/kBT , as expected [73].

CS at low temperatures: d-wave

It will now be shown that the heat capacity CS goes to zero like T 2 as T → 0 for
d-wave superconductors. The deviation from an exponential suppression is caused
by the line nodes on the Fermi surface (i.e. due to the gapless density of states)
[37].
Starting from Eq. (5.92), applying Eqs.(5.93)–(5.96), and inserting the d-wave

order parameter ∆d = ∆0η(θ) = ∆0 cos(2θ), where ∆0 ≈ 2.14kBTc at T = 0 [118],

CS = 2β2kBVNF

∫ 2π

0

dθ

2π

∫ ∞
−∞

dξe−βEE2. (5.99)

Note that a cylindrically symmetric Fermi surface has been assumed with dΩ =
dθ/2π. Changing integration to E =

√
ξ2 + ∆2, the integral becomes

CS = 2β2kBVNF

∫ 2π

0

dθ

2π

∫ ∞
−µ
dEe−βEE3 Θ (|E| − |∆0 cos(2θ)|)√

E2 −∆2
0 cos2(2θ)

, (5.100)
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where Θ is the Heaviside step function. Setting µ = 0 and x = E/∆0 yields

CS = 2β2kBVNF∆3
0

∫ ∞
0
dxe−β∆0xx2

∫ 2π

0

dθ

2π
Θ (|x| − | cos(2θ)|)√

1− cos2(2θ)
x2

= 2β2kBVNF∆3
0

∫ ∞
0
dxe−β∆0xx2 4

2π

xK(x)Θ(1− x)

+K
(1
x

)
Θ(x− 1)

, (5.101)

where K(x) is the complete elliptic integral of the first kind, defined as3

K(x) ≡
∫ π/2

0
dθ

1√
1− x2 sin2(θ)

. (5.102)

The aim is to get the leading temperature dependence. Therefore, K(x) is ex-
panded to lowest order K(x) ≈ π/2, and the second term K( 1

x) is discarded. The
heat capacity becomes

CS ≈
4
π
β2kBVNF∆3

0

∫ 1

0
dxe−β∆0xx3π

2
= 2β2kBVNF∆3

06(β∆0)−4

= 12kBVNF
(kBT )2

∆0
, (5.103)

which was to be shown. Inserting ∆0 ≈ 2.14kBTc, as derived in App. D.4, yields

CS
k2
BTcVNF

= 12 (kBT )2

kBTc∆0
≈ 6

(
T

Tc

)2
. (5.104)

CS at the transition temperature Tc
As T → Tc, then ∆ → 0, and E → ξ. Starting from the integral expression for
the superconducting heat capacity in Eq. (5.92),

CS −−−−→
T→T−c

2β2kB

∫
dΩ

∫ ∞
−∞

dξN(ξ)f(ξ) [1− f(ξ)]

ξ2 + β

2
d|∆k|2

dβ

∣∣∣∣∣∣
Tc

 . (5.105)

The first term is simply Cel
N . Thus,

(
CS − Cel

N

) ∣∣∣∣
Tc

= 2β2kB

∫
dΩ

∫ ∞
−∞

dξN(ξ)f(ξ) [1− f(ξ)] β2
d|∆k|2

dβ

∣∣∣∣∣∣
Tc

. (5.106)

3Note that in the Wolfram Language (e.g. Mathematica, Wolfram Alpha), K(x) is replaced
with K(x2).
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5.3.5 Heat capacity jump in the N-S phase transition
In this section, the jump in heat capacity at the normal-superconducting phase
transition will be derived analytically for both an s and a d-wave bulk supercon-
ductor. Combining Cel

N from Eq. (5.55) and CS from Eq. (5.90), an expression for
this jump can be formed

∆CNS ≡ (CS − Cel
N)
∣∣∣∣
Tc

= β3kB
∑
k

fk(1− fk)d|∆k|2

dβ

∣∣∣∣∣∣
Tc

. (5.107)

To evaluate this sum, an analytic expression of the order parameter close to Tc
has been derived in Eq. (D.80) in App. D.5 on p. 180. The slope of the order
parameter close to Tc was then found to be (Eq. (D.84) on p. 180)

d∆2
0

dβ

∣∣∣∣∣∣
Tc

= αη̃−1(kBTc)3, (5.108)

where

∆k = ∆(θk) = ∆ην(θk), (5.109)

ην(θk) =
1, ν = s,√

2 cos(2θk), ν = dx2−y2,
(5.110)

∆0 ≡ ∆
∣∣∣
Tc
, (5.111)

α ≡ 8π2

7ζ(3) ≈ 9.4, (5.112)

η̃ ≡
∫ 2π

0

dθk|ην(θk)|4
2π =

1, ν = s,
3
2 , ν = dx2−y2,

(5.113)

α̃ ≡ αη̃−1. (5.114)

Inserting this result into ∆CNS, evaluating at T → T−c , and turning the sum into
an integral over energy (see App. C) through the density of states per volume
N(ε), yields

∆CNS = 1
k2
BT

3
c

∑
k

fk(1− fk)α̃(kBTc)3|ην(θk)|2

= α̃kB
∑
k

fk(1− fk)|ην(θk)|2

= α̃kBV
∫ 2π

0

dθ

2π |ην(θ)|
2
∫ ∞
−∞

dξN(ξ)f(ξ) [1− f(ξ)]

= α̃kBV
∫ ∞
−∞

dξN(ξ)f(ξ) [1− f(ξ)] , (5.115)
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where the angular integral is unity due to normalization. Using the same argument
as in Sec. 5.3.3, the density of states varies on an energy scale εF which is typically
much larger than the energy scale where f(1 − f) is non-zero (i.e. kBTc in this
case), so that N(ε) ' N(0) ≡ NF . Introducing the substitution

x = ξ

kBTc
, (5.116)

dx = dξ

kBTc
, (5.117)

the heat capacity jump becomes

∆CNS = α̃kBVNF

∫ ∞
−∞

dx(kBTc)
1

ex + 1

(
1− 1

ex + 1

)
= α̃k2

BTcVNF . (5.118)

Thus, for an s- and a d-wave superonductor, the jump equals to

∆Cs
NS = αk2

BTcVNF ≈ 9.38k2
BTcVNF , (5.119)

∆Cd
NS = 2

3∆Cs
NS ≈ 6.26k2

BTcVNF , (5.120)

respectively, where α ≡ 8π2/7ζ(3). In terms of the electronic normal-state heat
capacity (at the transition temperature) Cel

N from Eq. (5.60), the jumps become
the constants

∆Cs
NS

Cel
N(Tc)

= 12
7ζ(3) ≈ 1.43, (5.121)

∆Cd
NS

Cel
N(Tc)

= 2
3

12
7ζ(3) ≈ 0.95, (5.122)

which are well-known values for weak-coupling superconductors [119].

5.3.6 Calculating heat capacity in quasiclassics
It is possible to calculate the heat capacity in quasiclassics with two different
methods: from a statistical or a thermodynamic expression of the entropy. The
statistical method relies on a first-order derivative of the entropy with respect
to temperature, and the evaluation of an integral over the LDOS [120]. The
thermodynamic method relies on a numerical second-order derivative of the free-
energy functional. The latter method is much faster numerically, but requires an
adequate resolution in temperature and a much higher numerical stability. The
latter method is used in this work. Both of these methods will now be described.
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Heat capacity from the entropy and LDOS

The heat capacity in a bulk supercondcutor was derived in Eq. (5.90) from the
statistical expression of the entropy. It is possible to get an expression valid for
non-bulk system, by rewriting the entropy in Eq. (5.36) as an integral over energy
through the density of states (see App. C)

S = −2kB
∑
k

[(1− fk) ln(1− fk) + fk ln fk]

= −2V
∫ ∞
−∞

dξN(ξ) [(1− f(ξ)) ln (1− f(ξ)) + f(ξ) ln f(ξ)] , (5.123)

where the density of states N(ξ) is related to the angle-resolved DOS

N(ξ) =
∫
dp̂N(ξ, p̂), (5.124)

N(ξ, p̂)
NF (p̂) = −1

π
Im gR(p̂, ξ). (5.125)

Here, gR is the retarded Green function. The heat capacity was shown in Eq. (5.48)
to be C = TdS/dT . Under the assumption that the DOS and the order parameter
are weakly temperature dependent, the heat capacity is obtained by differentiating
only the Fermi-Dirac distribution in Eq. (5.123), yielding

C(T,H) ≈ 2kBV
∫ ∞
−∞

dξ
ξ2

(2kBT )2
N(T,H , ξ)

cosh2(ξ/2kBT )
. (5.126)

This approximation is generally good enough far from Tc [120].

Heat capacity from the free-energy functional

The method that will be used in this work is based on the second-order derivative
of the free-energy functional with respect to temperature. The free-energy func-
tional was introduced in Sec. 5.1, providing a method to calculate the free-energy
difference between the superconducting and normal states, denoted δΩ. The heat
capacity difference between superconducting and normal states can then be cal-
culated from the free energy according to Eq. (5.50), i.e.

δC = −T
(
∂2δΩ
∂2T

)
R,V

. (5.127)

In this work, the free-energy difference between different superconducting states
will be of more interest. This will be in order to determine which state is ener-
getically more favorable, and has the added benefit of canceling some systematic
errors. The free-energy difference between two superconducting states 1 and 2 is
thus

∆Ω ≡ δΩ1 − δΩ2 = (ΩS,1 − ΩN)− (ΩS,2 − ΩN) = ΩS,1 − ΩS,2. (5.128)
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This means that the contribution from the normal state cancels. To study the
heat capacity jump in second-order phase transitions, ∆C is calculated from ∆Ω
through Eq. (5.127). As a scale for the heat capacity, the jump in the heat capacity
in the superconducting-normal state transition will be used. In particular, the
analytically derived jumps for bulk systems in Eqs. (5.119) and (5.120) will be
used.
A dimensionless equation for the heat capacity in quasiclassics will now be

derived. Starting from the Eilenberger free-energy functional in Eq. (5.21)

δC = T
∂2

∂T 2 δΩ(T )

= T
∂2

∂T 2

∫
dR

B
2
ind(R)
8π + |∆(R)|2NF ln T

Tc

+2πNFkBT
∑
εn

 |∆(R)|2

εn
+ i〈I(pF ,R; εn)〉pF

, (5.129)

Noting that heat capacity has the dimension [C] = J/K, i.e.

δC = T
∂T

∂T 2 δΩ = 1
Tc

T

Tc

∂2

∂(T/Tc)2 δΩ. (5.130)

Recalling that [NF ] = #states/(energy× volume), the heat capacity can be made
dimensionless by dividing with VNFk

2
BTc, where V is the volume

δC

VNFk2
BTc

= T

Tc

∂2

∂(T/Tc)2

∫ dR

V


(
B(R)
Φ0/ξ2

0

)2
2π4κ2

0 + |∆(R)|2

(kBTc)2 ln T

Tc

+2π T
Tc

∑
εn

 |∆(R)|2

(kBTc)2
kBTc
εn

+ i
〈I(pF ,R; εn)〉pF

kBTc

. (5.131)

Thus, by dividing with the heat capacity jump at the normal-superconducting
phase transition from Eq. (5.118), ∆CNS ≡ α̃k2

BTcVNF , a dimensionless form
with a relevant scale is obtained

δC

∆CNS
= 1

α̃

T

Tc

∂2

∂(T/Tc)2

∫ dR

V


(
B(R)
Φ0/ξ2

0

)2
2π4κ2

0 + |∆(R)|2

(kBTc)2 ln T

Tc

+2π T
Tc

∑
εn

 |∆(R)|2

(kBTc)2
kBTc
εn

+ i
〈I(pF ,R; εn)〉pF

kBTc

, (5.132)

where

α̃ ≡


8π2

7ζ(3) ≈ 9.4, s-wave,
2
3

8π2

7ζ(3) ≈ 6.3, d-wave.
(5.133)



6 Mesoscopic superconductivity
This chapter studies the thermodynamics and electrodynamics of mesoscopic
grains with s, d and p-wave pairing symmetries. The first section shows that
in the absence of external fields, bulk behavior is essentially obtained for grains
that have an isotropic s-wave pairing or an anisotropic d-wave pairing with ab-
axes aligned with the grain edges. The thermodynamics and gap profiles of such
systems are benchmarked against the analytic expressions derived in this thesis,
with an excellent agreement. It is then shown that in the presence of external
fields, or when the ab-axes of a d-wave grain are misaligned with the grain edges,
mesoscopic effects are obtained which are not present in bulk samples. In the case
of the external fields, this has to do with the grain size being small compared to
the magnetic relaxation length, i.e. the penetration depth. For d-wave grains with
misaligned ab-axes relative to the grain edges, the deviation from bulk behavior
is due to pairbreaking at the edges, giving rise to quasiparticle states in the mid-
dle of the superconducting gap. The second section studies Abrikosov vortices in
d-wave and s-wave grains. Mesoscopic effects are verified, such as exotic vortex-
antivortex pairs [121–123], the vortex shell effect [124–127], and midgap states in
vortex cores [128]. The third section verifies flux quantization and its thermody-
namics in superconductors with holes. The fourth section studies surface currents
in chiral p-wave superconductors [129–131], with preliminary results on peculiar
current and flux phenomena.

6.1 Bulk versus mesoscopic behavior: Midgap
states and benchmark of thermodynamics

In this section, square superconducting grains of varying sidelengths D and tem-
peratures T = 0–1Tc will be considered for s-wave and d-wave pairing symmetries.
The grains are assumed to be clean, meaning that quasiparticles scatter specularly
at the edges of the grain. For an s-wave superconductor, the order parameter is
isotropic and the grain essentially behaves like a bulk system with a BCS gap, as
shown in Figs. 6.1 (a) and (d). A d-wave order parameter, on the other hand, is
anisotropic, which means that it makes a difference how the edges of the grain are
cut with respect to the crystal ab-axes (and thus the positive and negative lobes of
the order parameter). Let the angle between the edge and the ab-axes be denoted
as θ. For a perfect alignment (θ = 0), quasiparticles are scattered from positive to
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positive or negative to negative lobes, and the system is essentially a bulk system,
as shown in Figs. 6.1 (b) and (e). As θ increases, however, quasiparticles are scat-
tered from positive to negative lobes and vice versa, which means that the order
parameter changes sign. Thus, the single-valued order parameter is suppressed on
a length scale of ∼ ξ0 from the edge. Here, the superconducting pairs are broken
up into quasiparticle states with energies in the middle of the superconducting
gap exactly at the Fermi energy, referred to as midgap states (MGS). Thus, these
edges are referred to as pairbreaking. As θ → 45◦, the edges are maximally pair-
breaking, leading to a huge density of MGS, as shown in Figs. 6.1 (c) and (f). It
will now be shown that these midgap states give rise to a deviation from standard
bulk behavior, by studying the gap profile, the free energy, the entropy, and the
heat capacity.

+

+

-

-
++

-

-

Figure 6.1: The spatial dependence of the order parameter magnitude in grains with
(a) an s-wave and (b)–(c) a d-wave pairing symmetry. In panels (b) and (c), the
crystal ab-axes are perfectly aligned and misaligned with the grain edges, respectively,
as shown by the graphics. Panels (d)–(f) shows the LDOS at the edge for the same
grains. The misaligned edges are pairbreaking, giving rise to a huge density of midgap
states exactly at the Fermi energy, as seen in the LDOS in panel (f).
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Figure 6.2 shows the temperature-dependent gap and various thermodynamic
quantities for the same grains above with D = 60ξ0 (dashed lines) and D =
10ξ0 (solid lines). Panels (a)–(c) show the temperature dependence of the grain-
averaged order-parameter magnitude, (d)–(f) the free-energy difference, (g)–(i)
the entropy difference, and (j)–(l) the heat-capacity difference, with respect to
the normal state. Here,

ΩA ≡ ANF (kBTc)2, (6.1)
SA ≡ ANFk

2
BTc, (6.2)

CA ≡ ANFk
2
BTc. (6.3)

For the first two columns, there is virtually no difference between the two grain
sizes. This indicates that there is no size dependence. Compare the left column
with for example the plots and bulk values in Ch. 3.6 of Tinkham [73]. Indeed, it
is seen that the two left columns perfectly reproduce values expected for a bulk
system. For example, the gaps at zero temperature has the values ∆s(T = 0) ≈
1.76kBTc and ∆d(T = 0) ≈ 1.51kBTc, as derived in Eqs. (D.52) and (D.53) on
p. 177. The free-energy difference at zero temperature is also reproduced from
Eq. (5.19) on p. 67, i.e.

δΩ(T = 0)
ΩA

= −1
2

∆2(T = 0)
(kBTc)2 , (6.4)

δΩs(T = 0)
ΩA

≈ −1.762

2 ≈ −1.55, (6.5)

δΩd(T = 0)
ΩA

≈ −1.512

2 ≈ −1.14. (6.6)

Furthermore, the heat-capacity jump at the transition temperature Tc in Eqs. (5.119)
and (5.120) on p. 82 is also reproduced as

∆Cs
CA

≈ 9.4, (6.7)

∆Cd
CA

≈ 6.3. (6.8)

The right column shows a significant deviation from bulk behavior, however, which
grows as the grain becomes smaller. This is due to the fact that at D = 10ξ0,
a substantial portion of the grain hosts non-superconducting quasiparticle states.
It will be shown in Ch. 7 that these midgap states enable spontaneous symmetry
breaking, since it is energetically favorable to shift them to finite energies. The
deviation from bulk behavior is further pronounced in the presence of external
fields, which will be studied in the following section.



88 6 Mesoscopic superconductivity

Figure 6.2: Gap and thermodynamic observables in a square grain of area A, as
indicated by the legend, with different pairing symmetries as indicated by the labels.
(a)–(c) grain-averaged gap, (d)–(f) free-energy difference w.r.t. the normal state with
ΩA = ANF (kBTc)2, (g)–(i) entropy difference w.r.t. the normal state with SA =
ANFk

2
BTc, and (j)–(l) heat-capacity difference w.r.t. the normal state with CA =

ANFk
2
BTc.



6.2 Abrikosov vortices 89

6.2 Abrikosov vortices
This section studies Abrikosov vortices in s-wave and d-wave superconductors.
Figure 6.3 shows vortex lattices for external fields Bext = nΦ0/A in d-wave grains
of area A = 180ξ0× 180ξ0, with integer flux quanta n = 1–6 and a corresponding
winding of the superconducting phase χ ≡ Arg {∆}. The figure also shows that
it is possible to stabilize exotic vortex-antivortex pairs, for example for external
flux Φext = 3Φ0, where there is no unique geometric configuration minimizing
the free energy for three vortices. Here, there are four vortices and one anti-
vortex, such that the winding number and the external flux quanta are both still
n = 3. This vortex configuration was predicted by Ref. [121]. Usually vortices
and antivortices attract and annihilate, but in a mesoscopic grain, the existence of
both allows a more symmetric vortex arrangement leading to a thermodynamically
stable ground state. Indications of vortex-antivortex pairs have been seen in
experiment, see for example Refs. [122, 123] and references therein. Figure 6.4
demonstrates the vortex “shell effect” in circular and square grains with s-wave
pairing symmetry, with area A ≈ 180ξ0 × 180ξ0 and at temperature T = 0.5Tc.
The vortex shell effect is a mesoscopic effect, where for higher flux quanta, vortices
do not necessarily enter a grain one-by-one, but rather in “shells”, see Refs. [124–
127] and references therein. Seen in the same figure is another mesoscopic effect
where the geometry of the vortex lattice reflects the geometry of the grain, which
has been shown experimentally for example in disc-shaped grains [124], square-
shaped grains [125], and in triangular-shaped grains [126]. Figure 6.5 plots the
LDOS for a vortex lattice, showing pronounced midgap states in each vortex core,
and continuum states far from the centers. The midgap states are known to be
responsible for driving the currents that lies within a few coherence lengths from
the vortex cores, while continuum states carry the currents further away [132].
This is verified by the spectral currents in Fig. 6.6.
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Figure 6.3: Abrikosov vortex lattices in d-wave grains for different external flux
densities Bext = nΦ0/A, where A = 180ξ0×180ξ0 is the grain area and n is an integer
ranging between n = 1–6 from top to bottom row. The first column shows the induced
current density, the second the magnetic flux density due to these currents, the third
the induced magnetic vector potential and the fourth column shows the superconducting
phase. The penetration depth is λ0 = 100ξ0, and the temperature is T = 0.2Tc. The
red-to-blue color scale (−0.7–0.7 × 10−5Φ0/ξ

2
0) in the induced magnetic flux is the

typical scale of the fluxes due to the loop-current phase in Ch. 7.
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Figure 6.4: Order-parameter magnitude in (left column) circular and (right column)
square grains with an s-wave pairing symmetry. The dark spots are Abrikosov vortices.
From top to bottom row, an external flux of Φext = 100Φ0, 60Φ0, 30Φ0 is applied,
respectively. The temperature is T = 0.5Tc and the sidelength is 180ξ0. The figures
illustrate that vortices enter in shells, with a distribution which reflects the geometry
of the grain, e.g. in the left column layers of circles with centers at the corners of the
panels are seen.
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Figure 6.5: Local density of states in a 60ξ0 × 60ξ0 large d-wave grain (non-
pairbreaking) with 5 Abrikosov vortices, at temperature T = 0.5Tc. Each figure rep-
resents a certain energy, as indicated by the labels. At zero energy, there is a high
density of midgap states exactly in the core of each vortex. For higher energies, the
states are spread out more evenly across the grain. There are profiles in the LDOS
that reflect the d-wave pairing symmetry, as well as the geometry of the grain. A
cutoff of Nmax = 4NF has been chosen for increased visibility, although the LDOS at
zero energy in each vortex core is roughly an order of magnitude larger.
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Figure 6.6: Spatial dependence and energy dependence of the spectral current (j)
along a line-cut (y = 0) through a d-wave Abrikosov vortex at temperature T = 0.17Tc.
(a) The x-component, (b) the y-component and (c) absolute value of the spectral
current. The figure shows that midgap states are responsible for carrying the current
up until a distance ∼ 1ξ0 from the vortex core, while continuum states carry the
current further away.
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6.3 Solenoids and flux quantization
In this section, an s-wave superconductor with a hole is studied at T = 0.75Tc,
subject to a uniform external magnetic flux Φext = (n + δ)Φ0. This flux is per-
pendicular to the superconducting plane, is non-zero in the hole and zero in the
superconductor itself (i.e. a solenoid, see Sec. 4.3.4 for the derivation of the cor-
responding vector potential). Here, n represents the number of flux quanta and
is varied in integer steps from 0 to 10, while δ is a “shift” varied from −2 to 2 in
steps of 0.1. Figure 6.7 shows how the superconducting phase χ ≡ Arg {∆} looks
for different values of n (while δ = 0). The configuration with the lowest free en-
ergy is when the phase matches the number of flux quanta through the solenoid,
i.e. when the phase winds as χ = 2πn around the hole. This is illustrated in
Fig. 6.8 (a) where the free energy is plotted versus Φext. The solid and dashed
parabolas are fits to the calculated free energies, with and without the magnetic

Figure 6.7: The superconducting phase χ ≡ Arg {∆} in a grain with sidelength 60ξ0,
for different strengths of an external “solenoid” magnetic flux Φext = nΦ0. Here, the
external flux is non-zero in the hole and zero in the grain, and is perpendicular to
the grain. The figure shows the phase winding with the lowest free energy, which
corresponds to χ = 2πn around the hole (see Fig. 6.8).
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energy density taken into account, respectively. Figure 6.8 (b) shows that the
minima in Fig. 6.8 (a) follows a parabola. In principle, the minima should lie
exactly at n, but as the figures show, there is a slight deviation which grows with
n. This deviation has also been verified for solenoids of various shapes at different
temperatures, and for other pairing symmetries. The deviation is most probably
tied to discretization errors, as shown in Fig. 6.9, where (a) the size D and (b) the
discretization resolution Nx are varied. The deviation gets smaller as the lattice
spacing h ∝ D/(Nx − 1) gets smaller. Thus, a higher spatial resolution decreases
the error.
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Figure 6.8: (a) Free energy versus external magnetic flux Φ = (n + δ)Φ0, in a
grain with sidelength 60ξ0 and a hole in the middle (as shown in Fig. 6.7). The
external magnetic field is a “solenoid field” perpendicular to the sample (non-zero in
the hole, zero in the grain). Here, n is varied from 0 to 10, and for each value, δ
is varied between ±2 in steps of 0.1, while the initial guess is an order parameter
with a 2πn phase winding around the hole. Solid and dashed parabolas correspond
to fits to the calculated free energies with and without the magnetic energy density
taken into account, respectively. As is shown, the configuration with the lowest free
energy is when the phase winding matches the flux quantum of the external field. (b)
Parabolic fit to the minimum of each parabola in (a), the latter which is marked by
the corresponding symbols.
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Figure 6.9: Free energy versus external magnetic flux Φ = (n + δ)Φ0, in a grain
with varying (a) sidelength D, and (b) discretization resolution Nx, as indicated by
the symbols. In (b), the system side length is 60ξ0. While the free energy minimum in
principle should be centered exactly at units of flux quanta, there is a deviation which
scales with n. The figure shows that this deviation gets smaller as the lattice spacing
h ∝ D/(Nx − 1) gets smaller.
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6.4 Chiral spin-triplet superconductors
This section considers a spin-triplet superconducting grain in vacuum and equi-
librium. See App. F for a brief description of the quasiclassical Green functions
and the Riccati equations for spin-triplet superconductors. The order parameter
is assumed to have the p̂x ± ip̂y pairing symmetry

∆αβ(pF ,R) = ∆t(pF ,R) · (σiσ2)αβ , (6.9)
∆t(pF ,R) =

∑
ν

∆ν(R)ηΓν(pF ), (6.10)

ηpx±ipy(pF ) = (p̂x ± ip̂y)d, (6.11)
d = ẑ, (6.12)

where σ, σ′ are spins, pF is the Fermi momentum, p̂x ± ip̂y is the basis function
in Cartesian form, and ẑ is perpendicular to the superconducting plane. This
describes a chiral superconductor which is predicted to host spontaneous surface
currents [129, 130]. The sign in Eq. 6.11 sets the chirality and thus the direction
of the surface currents. Figure 6.10 shows the current magnitude in two grains of
different signs, and hence different current circulation. The chiral currents follow
the edge of the grain even when the shape varies, which is illustrated in Figs. 6.11
(a) and (b) for grains with holes and mesoscopic edge roughness. The circulation is
opposite for internal and external boundaries, as evident in panel (a). Figures 6.11

Figure 6.10: Chiral currents in p̂x ± ip̂y spin-triplet grains. The sign, and hence
the current direction, differs between the left and the right grain.



6.4 Chiral spin-triplet superconductors 99

(c) and (d) show the chiral currents in grains with an external magnetic flux
applied along −ẑ. Panel (d) shows flux entering the grain from the left and right
side in a peculiar manner. To study this peculiarity further, Figure 6.12 shows
the induced currents in a grain with varying external flux density in each panel.
Here, the external field varies up to several flux quanta. The response is anomalous
compared to the response in the spin-singlet superconductors studied in the rest of
this thesis. This illustrates that there might be interesting flux quantization and
magnetic field effects even when considering relatively simple mesoscopic p-wave

Figure 6.11: Chiral currents in spin-triplet p-wave grains.



100 6 Mesoscopic superconductivity

grains. At the present, there is no good explanation for the behavior in the figure,
and further studies are required to describe it. It is worth mentioning that these
simulations were run without any self-consistency in the induced vector potential.
Note that for chiral p-wave superconductors like Sr2RuO4 [131]

κ0 ≡
λ0

ξ0
= 190 nm

66 nm ≈ 2.6. (6.13)

Furthermore, Sr2RuO4 is a multi-band superconductor [129, 130]. It is therefore
questionable which systems the simple simulations above apply to.

Figure 6.12: The current magnitude when applying an external flux that increases
from the top left to the bottom right panel. Several concentric rings of circulating
currents can be seen, as well as “half rings” at the edges.



7 The loop-current phase
The previous chapter showed that interfaces which are misaligned with respect
to the order parameter lobes in an anisotropic superconductor (e.g. the crystal
ab-axes in a d-wave superconductor), lead to a suppression of the order parameter
and the breaking of superconducting pairs on a length scale of the superconduct-
ing coherence length. Such pairbreaking interfaces give rise to a high density of
midgap states, also known as Andreev states, exactly at the Fermi energy [41–43].
It is energetically favorable to shift these states to finite energies, hence broadening
the MGS and possibly even opening up a new gap. A mechanism providing such
a shift can induce a phase transition into a new ground state with an associated
broken symmetry, and thus according to Landaus theory of phase transitions, a
new order parameter [44, 45]. The recently discovered phase that is the topic of
this chapter, referred to as the “loop-current phase” [46–48], is related to spon-
taneous breaking of translational and time-reversal symmetries. It is but one out
of several mechanisms proposed over the last decades [46–48, 50–54]. Many tun-
neling experiments show results in favor of such mechanisms [55–61], but direct
experimental observation, in particular of the associated spontaneously induced
magnetic fields, remains controversial [62, 63]. The loop-current phase is inter-
esting because it offers a possible explanation to this controversy, as it predicts
that the symmetry-breaking phase manifests itself as a “necklace” of circulating
and counter-circulating current loops1, that due to their intrinsic properties are
very difficult to measure experimentally. Furthermore, the introduction of pa-
per I and paper II briefly argues why this phase is believed to be a competitive
mechanism. Two reasons stated are the relatively high transition temperature of
T ∗ ≈ 0.18Tc, and the robustness against other coupling constants, e.g. a relatively
strong sub-dominant s-wave pairing channel as studied in Ref. [46].
The chapter starts by summarizing and cataloging the basic properties of the

circulating currents, explaining why and how they arise. In short, the most funda-
mental property of the phase is a new order parameter characterized by a sponta-
neous superfluid momentum due to translational symmetry breaking, which drives
the circulating currents. The superfluid momentum provides an energetically fa-
vorable Doppler shift to the midgap states, and is associated with a non-trivial
1These circulating loop currents were previously called fractional vortices and antivortices. This
nomenclature is controversial, however, since it will be seen in this chapter that each circulating
current has a phase winding of less than π, and a microscopic flux density. Remnants of the old
terminology might still linger in a few places.
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planar vector field with sources and sinks with Poincaré index (winding number)
n = 1/2, and saddle points with n = −1. The latter was found out after this chap-
ter was written and is ongoing research, which is why it will not be mentioned in
this chapter. Instead, see paper I for more details. The chapter also studies how
the phase is affected by different geometrical effects and external magnetic fields,
as well as at extremely low temperatures. Finally, the possibility of experimental
verification of the phase is discussed.
The system studied here is a clean superconducting grain in the weak-coupling

limit with spin degeneracy, that is in vacuum and equilibrium, with perfectly
specular boundary conditions. No spin-orbit coupling is assumed, and the order
parameter is assumed to have a unitary dx2−y2 pairing symmetry, where the ab-
axes in general are maximally misaligned with the grain edges. The Fermi surface
is assumed to be cylindrically symmetric.
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7.1 What, why and how
The loop-current phase breaks translational and time-reversal symmetries through
the spontaneous generation of circulating and counter-circulating current loops
along the pairbreaking interfaces, as illustrated in Fig. 7.1, at temperatures below
T ∗ ≈ 0.18Tc. These current loops do not contain a full flux quantum, and have a
phase winding that is only a fraction of 2π, as will be seen later in this section. The
loop diameter of ∼ 6ξ0 and the period of ∼ 12.5ξ0 generally does not vary, neither
with temperature nor with the size of the pairbreaking interface. Therefore, the
number of current loops is generally proportional to the length of a pairbreaking
interface. Exceptions to this due to geometric effects is studied in Sec. 7.2, and in
specific circumstances due to an external magnetic field in Sec. 7.3. Note that the
application of an external magnetic field breaks time-reversal symmetry explicitly.
The survival of the phase under such a field (the topic of paper I), illustrates that

+

+

-

-

Figure 7.1: The the circulating and counter-circulating loop current pairs of the
loop-current phase in a square d-wave grain (order parameter lobes and crystal axes
indicated by the graphics), with pairbreaking edges of sidelengths D = 60ξ0 and at
temperature T = 0.1Tc < T ∗ ≈ 0.18Tc. Panel (a) shows the current density, and
panel (b) the magnetic flux density induced by these currents. Lines and arrows mark
the flow of the particle current (the charge current is in the opposite direction). The
diameter of each current loop is roughly 5–6ξ0. Here, the depairing current is jd ≡
4πkBTc|e|NF vF , and Φ0 ≡ hc/2|e|, yielding a flux of each vortex of roughly Φ0 ≈
10−6–10−5Φ0/ξ0, depending on temperature. For YBCO (ξ0 ≈ 2 nm), this corresponds
to a magnetic field of roughly 1–10 mT, distributed over an area of roughly (10 nm)×
(10 nm).
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it is the translation symmetry breaking which is the fundamental property of
the phase. Noether’s theorem states that translation symmetry breaking leads to
non-conservation of momentum. Accordingly, the order parameter of the phase
is the superfluid momentum pS ≡ ~∇χ/2− eA/c which drives the loop currents
(non-locally). The temperature dependence of pS ≡ |pS| is shown in Fig 7.2 (a),
and the energetically favorable shift of the MGS in Fig 7.2 (b). Here, the new
gap is proportional to the Doppler shift

δε ∝ vF · pS. (7.1)

Figure 7.2: (a) Temperature-dependence of the maximum value of the (left axis)
superfluid momentum, and (right axis) current density of the loop currents, both along
the edge of a maximally pairbreaking 60ξ0 × 60ξ0 grain. The superfluid momentum is
the new order parameter of the loop-current phase. (b) The density of states (DOS)
averaged over the same grain (solid line), and along the edge (dashed line), at T =
0.1Tc. Dot-dashed lines show the local density of states (LDOS) on the edge at the
loop currents and between them, respectively. These dot-dashed lines show that there
are MGS between the loops, and that these MGS are Doppler-shifted to finite energies.
The new gap is proportional to |vF · pS|.
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To understand why this shift is energetically favorable, consider the internal en-
ergy, which can be expressed as an energy-integral over the density of states and
the occupation distribution U ∼ ∫

dEN(E)f(E)E. A huge MGS peak centered at
the Fermi energy with finite occupation leads to a high internal energy. Shifting
these MGS symmetrically about the Fermi energy means that half of the states
will be unoccupied and half occupied at a lower energy, leading to a lowering of the
free energy. As Fig. 7.2 (a) showed, the magnitude of the superfluid momentum
grows as the temperature is lowered, which means a stronger Doppler shift and a
higher energy gain. To quantify how favorable the shift is, and to learn more about
the phase-transition, Fig. 7.3 (a)–(b) shows the free energy difference, (c)–(d) the
entropy difference and (e)–(f) the heat capacity difference, as a function of tem-
perature in a grain of area A = 60ξ0× 60ξ0. The difference is with respect to the
normal state in the left column, and with respect to the metastable state (ms) in
the right column. The metastable state2 refers to a grain where the loop currents
do not appear for any temperature, and thus have a higher free energy than the
loop-current phase (the ground state). Results are shown both with and without
an external magnetic field, and both with and without taking the magnetic energy
density (MED) into account, as indicated by the legend. The overlapping of the
latter results illustrates the fact that the MED gives a negligible contribution, as
expected, due to a scaling with κ−2

0 ≡ (ξ0/λ0)2, which is extremely small for the
type-II superconductors considered. The sudden lowering of the free energy at T ∗
leads to a sudden change in the slope of the entropy, and hence a discontinuity in
the heat capacity. The loop-current phase is thus a second-order phase transition
in temperature, without an associated latent heat. The jump is a few percent
of the heat capacity jump in the normal-superconducting phase transition for a
d-wave superconductor (∆Cd). The transition temperature is extracted from the
heat capacity discontinuity to be

T ∗(Bext = 0, D = 60ξ0) ≈ 0.179Tc ± 0.002Tc, (7.2)
T ∗(Bext = 0.5Bg1, D = 60ξ0) ≈ 0.176Tc ± 0.002Tc, (7.3)

where Bg1 ≡ Φ0/A is the first critical field of the grain. The exact method for
extracting T ∗ is explained in detail in Sec. 7.2.4, where the heat capacity jump
and T ∗ are found as a function of the grain size.
In the following, the different observables will be studied at T = 0.1Tc in a dou-

ble unit cell of the loop-current necklace. Figure 7.4 (a) shows the magnitude of
the superfluid momentum, (b) the current density, (c) the induced magnetic flux
density and (d) the induced vector potential. Here, r‖ and r⊥ denote coordinates
2Such a metastable state can be simulated by assuming a completely real order parameter,
which will remain completely real throughout the self-consistent iterations as long as there is
no perturbation present, for example external magnetic fields and other effects leading to phase
fluctuations. Nucleating the loop-current phase thus relies on a complex order parameter and
such perturbations. The phase remains if the perturbations are removed.
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Figure 7.3: Temperature dependence of the (a)–(b) the free energy difference, (c)–
(d) entropy difference and (e)–(f) heat capacity difference. In the left column, the
difference is with respect to the normal state, in the right column with respect to the
metastable state (ms). Here, the meta stable state (fine solid line) does not have
any loop currents at any temperature, and thus a higher free energy than the loop-
current phase. Results are shown both with and without an external field of half
a flux quantum spread across the grain area A = 60ξ0 × 60ξ0, as indicated by the
legend. Results are also shown without taking the magnetic energy density (MED)
into account. The heat capacity is in units of ∆Cd, denoting the heat-capacity jump
in the normal-superconducting phase transition in a bulk sample of area A.
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Figure 7.4: Two loop-current unit cells at T = 0.1Tc, showing the (a) superfluid
momentum, (b) current density, (c) induced magnetic flux density, (d) induced vector
potential. Here, B0 ≡ Φ0/ξ
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respective observable.
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parallel and perpendicular to the pairbreaking interface, respectively. Arrows
mark vector field of the corresponding observable. In the case of the current den-
sity, it marks the particle current, following the right-hand-rule with respect to
the induced fields (the charge current is in the opposite direction). As can be
seen, nodes and anti-nodes form on and between loop currents, respectively. This
is where MGS are shifted and unshifted, respectively, as will be seen later in this
section. It is interesting to note that there is a chain of sources and sinks in the
superfluid momentum, generating a vector field which looks exactly the same as
the vector field due to a chain of dipoles. The stiffness of the vector field increases
with decreasing temperature. The “charge” and the source-sink-separation dis-
tance are the two fundamental parameters of the field, and the question is how
to interpret and derive these analytically. Furthermore, there is a non-local re-
sponse in the current density due to the superfluid momentum. Again, it is seen
in panel (c) that the flux density per loop is on the scale of 10−5Φ0/ξ

2
0 (at higher

temperatures T = 0.17Tc, it is on the scale of 10−6Φ0/ξ
2
0). Figures 7.5 (a) and

(b) show the corresponding parallel and perpendicular components of the super-
fluid momentum, and Figs. 7.5 (c) and (d) the same but for the current density.
Here, positive values (blue) implies flow to the right for the parallel component
and up (away from the pairbreaking interface) for the perpendicular component,
and the opposite directions for negative values (red). The superconducting order
parameter magnitude, phase, real part and imaginary part are shown in Figs. 7.6
(a)–(d), respectively. There is an oscillation in both the magnitude and the phase
of the order parameter, somewhat similar to the Fulde-Ferrell-Larkin-Ovchinnikov
phase [133–135]. Note that the phase winds less than 2π, which indicates that
the loop currents are not associated with e.g. Abrikosov vortices. The instability
mainly arises in the imaginary part. This because the solution was converged
by starting with a completely real order parameter, which was converged to the
bulk value with machine precision, followed by a perturbation with magnetic field
annealing. The oscillations are arguably easier to see in line plots, which is why
the magnitude and phase are plotted in Figs. 7.7 (a) and (b), respectively, and
the real and imaginary parts in Figs. 7.8 (a) and (b), respectively. Here, the
color of the line indicates the value of r⊥ for the respective line cut. Vertical solid
and dashed lines show nodes and anti-nodes, between and through loop currents,
where where MGS are shifted and unshifted, respectively. Exactly at the edge
and in the corners, superconductivity is suppressed. The line r⊥ = 0 contains
noise and appropriately has white color and is therefore not visible. This noise
is most probably caused by interpolation errors exactly at the edge, and the ma-
jor inhibitor in the convergence of the self-consistent iterations. Note that the
phase is not entirely sinusoidal, as it contains some higher modes. Closer to the
transition temperature, however, the oscillations in the phase, and therefore the
superfluid momentum, can be well-approximated by sinusoids. This is a useful
ansatz in making an analytic approach to studying this phase.
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Figure 7.5: Two loop-current necklace unit cells at T = 0.1Tc, showing the parallel
and perpendicular (to the pairbreaking interface) components of the (a)–(b) superfluid
momentum, (c)–(d) current density. Positive values (blue) mark flow to the right and
up away from the interface for the parallel and perpendicular components, respectively,
and the opposite directions for negative values (red).



110 7 The loop-current phase

0

2

4

6

r ⊥
/ξ

0

(a)

0

1.5
|∆
|/k

B
T
c

0

2

4

6

r ⊥
/ξ

0

(b)

−1

1

χ
/π

0

2

4

6

r ⊥
/ξ

0

(c)

0

1.5

R
e{∆
}
/k

B
T
c

0 6.2 12.5 18.7 25.0

r‖/ξ0

0

2

4

6

r ⊥
/ξ

0

(d)

−1

1

Im
{∆
}/k

B
T
c

Figure 7.6: Two loop-current necklace unit cells at T = 0.1Tc, showing the su-
perconducting order parameter (a) magnitude, (b) phase, (c) real part, (d) imagi-
nary part. Note that the phase winding is less than 2π, and that the bulk d-wave
value is ∆0 ≈ 1.51kBTc. The maximal gap is a factor

√
2 larger than this, i.e.

max {|∆d|} ≈ 2.14kBTc. This is because the factor
√

2 is absorbed in the basis func-
tion to make it normalized.



7.1 What, why and how 111

0 7r⊥/ξ0

0 10 20 30 40 50 60

r‖/ξ0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

|∆
|/k

B
T
c

(a)

0 10 20 30 40 50 60

r‖/ξ0

−1.0

−0.5

0.0

0.5

1.0

χ
/π

(b)

Figure 7.7: The superconducting order parameter (a) magnitude and (b) phase along
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colors. The grain is 60ξ0× 60ξ0, and the temperature is T = 0.1Tc. Vertical solid and
dashed lines indicate cuts through and between loop currents, referred to as nodes and
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Figure 7.8: The order parameter (a) real part and (b) imaginary part along a
pairbreaking interface, at different distances from the interface, as indicated by the
colors. The grain is 60ξ0× 60ξ0, and the temperature is T = 0.1Tc. Vertical solid and
dashed lines indicate cuts through and between loop currents, referred to as nodes and
anti-nodes, respectively.
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Finally, the spectral observables are studied. Figure 7.9 shows the LDOS versus
r‖ and r⊥ at different energies ε = 0–0.5kBTc as indicated by the labels, and
Fig. 7.10 shows the LDOS versus r‖ and ε, at different values of r⊥ as indicated
by the labels. At low energies, there are huge densities of MGS between loop
currents. At higher energies, the states shift toward the loop currents, and finally
gets smeared more or less homogeneously across the sample. Figure 7.11 shows
the spectral current component that is parallel to the interface (j‖) versus r‖ and
r⊥ at different energies ε = 0.1–0.5kBTc as indicated by the labels, and Fig. 7.12
shows j‖ versus r‖ and ε, at different values of r⊥ as indicated by the labels.
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Figure 7.9: Two loop-current necklace unit cells at T = 0.1Tc, showing the LDOS
at different energies, as indicated by the labels. Note the varying color scales.
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7.2 Geometric effects
This section studies how the loop currents are affected by grain shape, surface
roughness, the edges-to-crystal-axis angle (denoted θ), as well as the grain size.
The first two effects are studied in a more qualitative way, to illustrate that the
phase can exist even when the system does not have perfect edges. The latter two
effects will be studied to quantify this fact through phase diagrams. Finally, the
size-dependence of a single pairbreaking interface is studied, which is the main
topic of paper II. The main conclusion is that the phase has a tendency to form
at any pairbreaking interface, as long as

• the interface is sufficiently mis-aligned with the crystal ab-axis,

• there is sufficient space around the interface for the loop currents to nucleate.

A main result is also that the system will try to average out the induced flux to
zero (in the absence of external fields), but that when forced to, it will rather shift
midgap states at the expense of having a net flux.

7.2.1 Different shapes
Figure 7.13 shows the current distribution in superconducting grains shaped like
the logotype of the Chalmers Department of Microtechnology and Nanoscience
(MC2). This is a qualitative demonstration that the simulation tool used can
create superconducting grains of any two-dimensional shape that is simply con-
nected (with or without holes). Figure 7.14 shows the induced magnetic flux
density in different systems at temperature T = 0.1Tc < T ∗. The flux is induced
spontaneously by loop currents. In each system, the crystal ab-axis are rotated
45◦ relative to the figure. What is clearly seen is that the loop currents appear at
any interface that has an angle θ ∼ 45◦ to the crystal ab-axis (more specifically,
25◦ < θ < 70◦, as will be seen in Sec. 7.2.3), even if the interface is rounded or
irregular. This is illustrated more profoundly in the next sections.

Figure 7.13: Current distribution in SC grains shaped like the Chalmers MC2 logo.
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Figure 7.14: Induced flux density in grains of various shapes, at temperature T =
0.1Tc. The gray area around and inside each grain is vacuum, and the crystal ab-axis is
rotated 45◦ relative to the edges of the page, as indicated in panel (a). In panel (a) the
SC grain is a square with a square hole, with a thickness that varies around the grain,
from 4.7ξ0 to 18.7ξ0. In the bottom and right parts, the system is in the Vorontsov
phase, but as the thickness increases to > 12.5 ± 0.5ξ0, the loop-current phase is
induced. Note that the critical thickness of ∼ 12.5ξ0 is consistent with previous results
[46], and is the size of one loop-current unit cell along the pairbreaking edge. In panel
(a) Bmin,max ≈ ±2× 10−5Φ0/ξ

2
0 , and in panels (b)–(d) Bmin,max ≈ ±6× 10−6Φ0/ξ

2
0 .
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7.2.2 Surface roughness

SC

V

SC

V

SC
V

Figure 7.15: (b) Mesoscopic roughness on
the order of the superconducting coherence
length, where the roughness consists of sur-
face irregularities that scatter specularly. (b)
For the loop-current phase, the relevant pa-
rameters of the mesoscopic roughness are the
size of the irregularities and the angle with
respect to the crystal ab-axis. (c) Microscopic
roughness, coupling every incoming scatter-
ing trajectory to every outgoing one.

This section briefly studies how the
loop-current phase is affected by meso-
scopic surface roughness, referring to
surface irregularities that scatter spec-
ularly and have a size comparable to
the superconducting coherence length,
as illustrated in Fig. 7.15 (a). Fig-
ures 7.16 and 7.17 show several systems
with mesoscopic surface roughness of
varying shape and regularity, with side-
lengths 150ξ0 and 60ξ0, respectively. It
turns out that the relevant parameters
for the loop currents to form are the
edge-to-crystal-axes angle, as well as
the size of the irregularities [Fig. 7.15
(b)].

Microscopic roughness, in contrast,
refer to irregularities on the atomic
scale [Fig. 7.15 (c)]. The atomic scale
is generally beyond the scope of qua-
siclassical theory, but microscopic sur-
face roughness can still be modeled as a
diffuse boundary condition, where each
incoming trajectory is scattered into
every possible outgoing trajectory (with some weight distribution) [40, 136–140].
A specularity parameter can be introduced to quantify the degree of microscopic
roughness, with a value ranging from 0 to 1 corresponding to completely diffuse
and specular reflection, respectively. Such a parametrization was used to study
the Vorontsov phase [53], showing a gradual suppression of the phase for reduced
specularity, and a complete suppression below ∼ 20% specularity [65]. It would
be surprising if the loop-current phase showed a different dependence, since what
seems to be important for both phases is the amount of midgap states. As the
system becomes more diffuse or dirty, these MGS are broadened. What probably
happens is that for higher diffusivity, there are not enough states close to zero
energy to shift, and there will be no symmetry-breaking phase (with this reason-
ing, systems with non-magnetic impurities might behave the same way). This is
exactly what happens when the angle between the crystal ab-axis and the system
edge varies, which will be shown in the following section.
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Figure 7.16: Induced flux density in grains with mesoscopic surface roughness, at
temperature T = 0.1Tc. The maximum induced flux density is roughly 10−5Φ0/ξ

2
0 .

Loop currents form wherever there is enough space and the edge is sufficiently mis-
aligned with respect to the crystal ab-axis. The large red regions in panel (c) are
probably remnants from the magnetic field used to nucleate the loop currents.
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Figure 7.17: Induced flux density in grains with mesoscopic surface roughness, at
temperature T = 0.1Tc. The maximum induced flux density is roughly 10−5Φ0/ξ

2
0 .

Loop currents form wherever there is enough space and the edge is sufficiently mis-
aligned with respect to the crystal ab-axis.
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7.2.3 Edge-to-crystal-axis angle

A square grain with sidelength 60ξ0 is studied at temperatures T = 0.1–0.2Tc,
while varying the angle θ between the edge and the crystal ab-axis from θ = 0◦
(non-pairbreaking edges) to θ = 45◦ (maximally pairbreaking edges). Two start-
guesses are converged for each angle: a completely real order parameter, and
an order-parameter with the loop-current phase present. The free energy is then
compared between these two guesses, and the system with the lowest free energy is
chosen as the ground state. Figures 7.18 (a) and (b) show the free energy difference
between the ground state and the system with the real order parameter at T =
0.17Tc and T = 0.1Tc, respectively. The completely real order parameter has the
lowest free energy at lower angles, up to some critical angle θ∗(T ), where the loop-
current phase is favorable. Figures 7.18 (c)–(d) show the total induced current
magnitude versus θ. As the angle increases, the edges become more pairbreaking,
leading to more MGS, as illustrated by the DOS and order parameter in Figs. 7.19
and 7.20, respectively.

+

+

-

-

Figure 7.18: Dependence on edge-to-crystal-axis angle (θ) of the loop-current phase,
in a square grain with sidelength 60ξ0. (a)–(b) Free-energy difference with respect to
a phase without loop currents. Note the different scales in the two panels. (c)–(d)
Current density integrated over the grain area, where I =

∫
|j| dR and Id =

∫
jddR.
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Figure 7.19: Edge-averaged DOS dependence on edge-to-crystal-axis angle (θ) of the
loop-current phase, in a square grain with sidelength 60ξ0, where each panel represents
a different temperature (see annotation). The smearing factor is δ = 0.02. The
interpretation is that as θ increases, the edges become more pairbreaking, generating
more MGS. Below T ∗, there is a critical angle θ∗ where there are enough zero-energy
MGS to make a Doppler shift to finite energies energetically favorable. Note that the
ordinate is on a logarithmic scale.
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Figure 7.20: Order parameter dependence on edge-to-crystal-axis angle (θ) of the
loop-current phase (a)–(c) perpendicular to the edge starting at an anti-node (between
loop currents) and (d)–(f) parallel to the edge at y ≈ 0.2ξ0 (to avoid noise exactly at
the edge). The superconductor is a square grain with sidelength 60ξ0 as shown in the
inset in panel (a), at different temperatures (see annotation). Here, ∆0 ≈ 1.51kBTc

is the bulk d-wave gap.
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Once there are enough MGS, there is a non-negligible free energy reduction in
shifting these states to finite energies. Figures 7.20 (a)–(c) show the order pa-
rameter magnitude as a function of the distance to a system edge, and (d)–(f)
along the edge. In the loop-current phase, the order parameter starts oscillating
along the edge, due to suppression and recovery at the nodes and anti-nodes,
respectively. The order parameter recovers to the bulk value roughly 5–6ξ0 from
the edge of the system (which happens to coincide with the loop-current size).
Finally, Fig. 7.21 shows the critical angle as a function of temperature (circles
with error bars), together with a linear fit. The critical angle was obtained from a
logarithmic fit to the I(θ)/Id data (i.e. Fig. 7.18) for each temperature. However,
I(θ)/Id has a shape that closely resembles the temperature dependence of a BCS
gap, since it is directly related to the order parameter of the loop-current phase,
namely the superfluid momentum pS. Therefore, it is probably more appropri-
ate to fit I(θ)/Id with typical functions used to approximate the BCS gap, like
Re{

√
θ/θ∗ − 1} or tanh

(
Re{

√
θ/θ∗ − 1}

)
, but the logarithmic function turned out

to be easier to fit and captured the essential features. Error bars are due to the
discrete resolution in the number of angles.

Figure 7.21: The critical edge-to-crystal-axis angle θ∗ below which the loop-current
phase is induced, as a function of temperature. The error bars are from the discrete
resolution in temperature, and the fit is θ∗fit(T ) = 132.7◦T/Tc + 13.2◦. The formula is
valid below the critical temperature T ∗ ≈ 0.179Tc (at θ = 45◦), and it is unclear if it
is valid for very low temperatures.



7.2 Geometric effects 127

7.2.4 System size

In this section, a square grain is studied with a varying side-length D from 20ξ0
to 210ξ0, in steps of 10ξ0. Similar studies of size-dependence was carried out
by Vorontsov [53] and Håkansson et al. [46]. The former author had a semi-
infinite thin film with translation invariance along the film, and varied the film
thickness. A relatively strong temperature-dependence was found in the maxi-
mum and minimum critical thickness between which the “Vorontsov phase” occurs
(spontaneous breaking of time-reversal, with a translation-invariant current along
the pairbreaking edges). The latter authors had a rectangular shape with one
sidelength fixed at a relatively large value (large enough for several loop-current
periods), while the other sidelength was varied, leading to a critical thickness
D∗slab ≈ 4πξ0, above which the loop currents are induced. Below this critical
thickness, the Vorontsov phase is retained. Thus, these studies constrained one
dimension, while the present study constrains both. Sharper finite-size effects are
therefore expected for small sizes. Of main interest is to see how the transition
temperature varies with size, and to find the critical size D∗square at which the
phase disappears. Since the transition into the phase is of second order, and the
transition temperature T ∗ can therefore be obtained as the temperature where the
heat capacity has a discontinuity. Figure 7.22 shows the heat capacity difference
with respect to the normal state, at D = 60ξ0 and zero external field. The heat
capacity is normalized with the heat capacity jump in the normal-superconducting
phase transition for a bulk d-wave superconductor, ∆Cd ≈ 6.3k2

BTcNF (derived
in Sec. 5.3.5). Open circles correspond to simulations where the start guess is a
well-converged solution with the loop currents present at T < T ∗, and the solid
line a completely real order parameter which does not enter this phase at any
temperature (labeled metastable as it exhibits a higher free energy at T < T ∗).
The solid line follows a second-order polynomial, which is expected for a d-wave
superconductor at low temperatures (the line is negative due to the subtraction
of the larger and linear heat capacity of the normal state, see Sec. 5.3.4). Note
that there is an additional 1/T 2 dependence due to midgap states, but that this
effect becomes smaller as the grain becomes larger, since it is a sidelength-to-area
effect. The jump at T ≈ 0.179Tc is due to a lowering of the free energies by the
spontaneously induced superfluid momentum. The jump in the heat capacity is
a few percent of ∆Cd, and is defined as the difference between the two curves
at T ∗. Since the transition shows a smearing, there is a small uncertainty in the
transition temperature and the heat capacity jump. ∆C2 marks the heat capacity
closest to the transition, but it is probably lower than the sought jump ∆C, as it
might be reduced due to the smearing. Therefore, the heat capacity is calculated
as the mean value between ∆C2 and ∆C1, with symmetric error bars

∆C = ∆C2 + ∆C1 −∆C2

2 ± ∆C1 −∆C2

2 , (7.4)
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where ∆C1 is the maximal heat-capacity jump in the vicinity of T ∗. The transition
temperature is extracted as the point where the heat capacity has increased ∆C/2
from the metastable heat capacity, with an uncertainty corresponding to the width
of the smearing (i.e. the points marked p1 and p2). This procedure is then followed
for different grain sidelengths D, both with and without an external field.
Figures 7.23 (a) and (b) show the transition temperature as a function of grain

size, with and without an external field, respectively. The external field is Bext =
Φ0/2A, where A = D2 is the grain area. Note that this is half the first critical
field Bg1 = Φ0/A, at which point Abrikosov vortices form inside the grain. For
small grains, the transition temperature shows a strong suppression with T ∗ → 0
as D → D∗, while it should level off to a constant value for larger grains. The
suppression is stronger with an external field, probably since the field interferes
with the formation of the loop currents (sources, sinks and saddle points of the
superfluid momentum are constricted to a smaller and smaller area, such that

Figure 7.22: Temperature-dependence of the heat capacity difference between the
normal and the superconducting state, in a square grain of side-length D = 60ξ0
with maximally pairbreaking edges. Here, ∆Cd is the heat capacity jump between the
normal-superconducting phase transition for a bulk d-wave superconductor. The solid
line corresponds to a purely real order parameter which does not exhibit loop currents,
while the open circles correspond to a grain with an order parameter that does at
some transition temperature T ∗ ≈ 0.179Tc. A smearing in the transition presents an
uncertainty in T ∗, marked by the points p1 and p2, and an uncertainty in the heat
capacity jump, marked by ∆C1 and ∆C2.
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Figure 7.23: The sidelength dependence of the (a)–(b) transition temperature, (c)–
(d) heat-capacity jump, and (e) total induced current in the loop-current phase. Here,
T = 0.1Tc and I =

∫
|j|dR with Id =

∫
jddR. Open circles are without an external

field, while open squares are with an external field Bext = Φ0/2A where A ≡ D2 is
the grain area. Solid lines are 1/D fits to the data. See text for interpretation.
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they more easily annihilate). Furthermore, the external field already shifts midgap
states (albeit a rather minuscule shift). Figures 7.23 (c) and (d) show the jump
in heat with respect to the metastable state, with and without an external field,
respectively. There are finite-size effects for smaller grains, and a convergence
to a 1/D-dependence for larger grains, as shown by the fit (solid lines). This is
expected since the density of midgap states scales with the sidelength, as does
then the total Doppler shift. This means that the free energy gain, and therefore
also the heat capacity, scales with one over length as the area increases. The area-
integrated current density exhibits a similar dependence, as shown in Fig 7.23 (e).
Here, I = ∫ |j|dR and Id = ∫

jddR.
In principle, the critical grain size D∗square below which the loop-current phase

disappears could be obtained as the point where ∆C or T ∗ goes to zero. It is
rather difficult to do numerically though, for several reasons. For instance, as the
grain shrinks, it is unclear whether the system is actually in the loop-current phase
(even if there appears to be a heat capacity jump and a transition temperature),
as illustrated in Figs. 7.24 and 7.25 showing the induced magnetic flux density
for different grain sizes at temperature T = 0.15Tc, with and without an external
field, respectively. More importantly, the arrangement of circulating and counter-
circulating loop currents becomes incommensurate and difficult to converge in
small grains, and the heat capacity data gets very noisy as a result. The best
estimate with the available data is that the critical sidelength Dsquare is

D∗slab ≈ 4πξ0 < D∗square < 20ξ0, (7.5)

and that it should decrease with increased external field. Figure 7.24 also illus-
trates that the loop size generally does not scale with the system size. Therefore,
the number of loops scales more or less linearly with the sidelength, with some
additional staggering when the variation of the sidelength is smaller than the
typical loop size. This is the topic of the following section, as well as Paper II.
The conclusion is that although the necklace of loop currents seems to disappear
below the critical size, there still seems to be a phase transition with spontaneous
flux present. Thus, even if the grain cannot accommodate the circulating cur-
rent pairs, it is still energetically favorable to shift midgap states through some
manifestation of spontaneous flux.
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Figure 7.24: The induced magnetic field due to spontaneous loop currents in grains
with varying side-length D, from D = 20ξ0 in panel (a) to D = 210ξ0 in panel (t).
The temperature is T = 0.15Tc, and there is no external field.
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Figure 7.25: The induced magnetic field due to spontaneous loop currents in grains
with varying side-length D, from D = 20ξ0 in panel (a) to D = 210ξ0 in panel (t).
The temperature is T = 0.15Tc and there is a homogeneous external magnetic field
perpendicular to the grain with magnitude Bext = Φ0/2A, where A ≡ D2 is the area
of the grain. There is a diamagnetic response in the bulk of the grain (blue) carried
by the condensate, and a paramagnetic response at the edges carried by quasiparticles.
The latter gives rise to an asymmetry between the circulating and counter-circulating
loop currents (see Sec. 7.3).
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7.2.5 Paper II: A single pairbreaking interface
Paper II deals with a mesoscopic grain with a single pairbreaking interface, as
illustrated in Fig. 7.26, where the length of the interface is varied. The main
conclusion is that the loop-current phase is not a mesoscopic effect in the sense
that it does not require the proximity of two pairbreaking edges, in contrast to
the Vorontsov phase. Thus, systems with any pairbreaking interface should be
unstable to the formation of the loop currents and lead to a broadening of zero-
bias conductance peaks, unless if there is a competing phase which is even more
favorable. Another conclusion is that the loops have a fairly constant diameter of
roughly 5–6ξ0, except the outermost loops. These are generally smaller, until the
pairbreaking edge becomes so large that additional loops enter the system. There
might also be an asymmetry in the number of circulating to counter-circulating
loops, although the total flux density sums to zero. The only exception is for
pairbreaking edges smaller than the typical loop size. Thus, the system finds it
energetically favorable to Doppler shift midgap states, at the expense of having a
net flux (note that since the flux lines must close on themselves, the corresponding
flux of opposite sign lies outside the grain). Hence, although the loop-current
phase “disappears” for smaller grain sizes, there is still a spontaneous breaking of
time-reversal symmetry.

++

-

-

(a) (b) (c)

(d) (e) (f)

Figure 7.26: Square grains with a triangular section cut out either at the corner
(top row) or inside the grain (bottom row), creating a grain with a single pairbreaking
edge.
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7.3 Response to an external magnetic field
This section studies how three different kinds of external magnetic fields affects
the loop-current phase. All fields are considered to be perpendicular to the super-
conducting plane. The first kind of field is a uniform field in the Meissner state of
magnitude Bext ≤ Bg1, and is the main topic of paper I. Here, Bg1 is proportional
to the first critical field of the grain, and is defined as

Bg1 ≡
Φ0

A
, (7.6)

where A is the area of the grain. Note that in a bulk sample, the first critical field
is

Bc1 ∝
Φ0

λ2 , (7.7)

which for the type-II grains considered is smaller than Bg1, since λ ≈ 100ξ and
typically A = D2 with D = 60ξ0. The second kind of field considered is in the
mixed state with magnitude Bg1 < Bext < Bg2, such that an Abrikosov-vortex
lattice is induced. Here, Bg2 is the second critical field of the grain, and should
be roughly equal to the second bulk critical field Bc2, where any difference owes
to finite-size effects

Bg2 ≈ Bc2 ∝
Φ0

ξ2 . (7.8)

The third kind of field considered enters through a hole in the superconductor,
i.e. a solenoid. Thus, there is no flux in the superconductor itself in this case, but
a non-zero vector potential like in the Ahranov-Bohm problem. The final part of
this section goes through the field distribution induced by the loop currents, and
discusses the distribution in the context of NMR measurements.

7.3.1 Paper I: a weak uniform external field
This is a summary of paper I, which studies the loop-current phase in an external
magnetic field Bext ≤ 1.5Bg1. When applying a uniform magnetic field perpendic-
ular to a grain, there is a diamagnetic response in the interior of the grain carried
by the condensate. There is also a paramagnetic response at pairbreaking edges
carried by quasiparticle states. This paramagnetic response occurs due to an en-
ergetically favorable Doppler shift of midgap states to finite energies. It is thus a
competing mechanism to the loop current phase. The shift caused by the param-
agnetic response is relatively small and varies very little with temperature, while
the shift caused by the spontaneous superfluid momentum is large and increases
highly non-linearly with lowered temperature. Therefore, the loop-current phase
is more energetically favorable at lower temperatures. The paramagnetic response
is however still superimposed with the loop currents, leading to a shape asymme-
try between the circulating and counter-circulating loop currents. Another effect
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of the paramagnetic response is that as it already shifts the midgap states, it leads
to a minor decrease in the transition temperature T ∗ with increased external field.
This is because it requires slightly stronger loop currents to increase the Doppler
shift, which occurs at lower temperatures. Consequently, paper I shows that the
phase is robust both in the Meissner state and for the mixed state.
The external field breaks time-reversal symmetry explicitly. Therefore, the

loop-current phase only breaks continuous translational symmetry in an external
field. The breaking of translational symmetry is illustrated by oscillations in
the magnitude and phase of the order parameter, as seen in Figs. 7.27 (a) and
(b), respectively. The figure shows that the oscillation do not occur when only
time-reversal symmetry is broken at Bext > 0 and T > T ∗, but rather when the
spontaneous superfluid momentum arises and breaks translational symmetry at
T < T ∗. Thus, it is translational symmetry-breaking and the appearance of a
spontaneous superfluid momentum which are the most important ingredients of
the loop-current phase.
Below T < T ∗, the paramagnetic current is broken up into circulating and

counter-circulating parts. This is illustrated by the x-component of the spectral
current in Fig. 7.28, i.e. the component parallel to the edge, at y = 0. As
illustrated, all the spectral currents at the edge are carried by midgap states.
Above T ∗, there is a translation-invariant paramagnetic current following the
edge. As T ≈ T ∗, the current starts oscillating up and down in the y-direction at
certain nodes and anti-nodes. As T < T ∗, these are the same nodes and anti-nodes
where the circulating and counter-circulating loop currents develop, and there is
a Doppler shift in the energy spectrum. Since the Doppler shift is proportional to
vF ·A,the current direction determines the sign of the Doppler shift. Furthermore,
the spectral current is directly related to the density of states. The latter is shown
for the same temperatures and external fields in Fig. 7.29. Again, above T > T ∗,
there is a small shift of MGS due to a paramagnetic response at the pairbreaking
interface. As T ≈ T ∗, nodes and anti-nodes develop where the shift is enhanced
and suppressed, respectively. Below T ∗, there are considerable shifts due to loop
currents. The cuts indicated in (c) are plotted in Fig. 7.30 (a). Figure 7.30 (b)
shows a typical area-averaged (solid line) and edge-averaged (dashed line) DOS.
In conclusion, paper I presents the phase diagram for the loop current phase

in the Meissner state and for one Abrikosov vortex in the mixed state. The
question arises what happens at stronger fields in the mixed state. This question
is answered in the following sections.
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Figure 7.27: Order parameter (a) magnitude and (b) phase along a pairbreaking
interface, at different temperatures and external fields (see labels). Here, x is parallel
to the interface, y = 1ξ0, and ∆0 ≈ 1.5kBTc is the d-wave bulk value. At the corners
of the system (x = 0ξ0 and x = 60ξ0), the order parameter is suppressed. Along the
pairbreaking edges, however, both the magnitude and phase of the order parameter
oscillates. The oscillation commences first when T < T ∗, not when time-reversal
symmetry is broken at Bext > 0 and T < T ∗. Note that the phase winds roughly π
rather than 2π radians, indicating that the loop currents are not vortices. Vertical
solid and dashed lines indicate cuts through and between loop currents, referred to as
nodes and anti-nodes, respectively.
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Figure 7.28: The x-component of the spectral current parallel to a pairbreaking
interface (y = 0). Colors indicate the direction of the currents. The different panels
corresponds to different temperatures and external fields (see labels).
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Figure 7.29: The LDOS versus temperature along a pairbreaking edge, at different
temperatures and external fields (see labels). Here, x is parallel to the edge and y = 0.
The LDOS along the vertical lines marked by 1, 2 and 3 are plotted in Fig. 7.30 (b).
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Figure 7.30: (a) The LDOS along the cuts indicated by the same numbers and line
styles in Fig. 7.29. The high peak at zero energy (2) is at an anti-node between loop
currents. This peak is split by the large (1) and (3) small loop currents that are aligned
and anti-aligned with the diamagnetic response to the external fields, respectively. (b)
The area-averaged DOS (solid line) and edge-averaged DOS (dashed line) in a typical
pair-breaking grain at T < T ∗. The midgap state peak at zero energy is broadened by
circulating loop currents.
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7.3.2 Stronger fields: Abrikosov vortex lattices
When applying a uniform magnetic flux density Bg1 < Bext < Bg2 perpendicular
to a grain, Abrikosov vortices start to form in the interior of the grain. The
number of vortices n scales as n = int (Bg1/Bext) in a bulk sample. As discussed
in Sec. 6.2, this relation might not always hold in grains due to finite-size effects.
For higher n, for example, it also becomes increasingly more difficult to find
the vortex lattice configuration which minimizes the free energy. The following
results on what happens to the loop-current phase in the mixed vortex phase are
preliminary, and some of the figures presented do not show a vortex configuration
corresponding to the free energy minimum, although they are believed to closely
resemble such configurations. However, there seems to be a good understanding of
what happens to the phase in the mixed state. The following results are obtained
without solving the induced vector potential self-consistently. As discussed below,
a more careful analysis should do so as the self-consistency becomes relevant at
higher fields.
Figure 7.31 shows (from left to right row) the current density, induced magnetic

flux density, induced vector potential and the phase of the order parameter. The
side-length is D = 180ξ0, the temperature T = 0.1Tc, and the external magnetic
flux density is Bext = nBg1, with n = 1–6 from top to bottom row, respectively.
For small n, the loop currents at the pairbreaking edges seem to be relatively
unaffected. At n = 6, there is a minor distortion in the loop currents closest to
the Abrikosov vortices. Figure 7.32 shows the same observables but with n = 100
and D = 60ξ0. As can be clearly seen, there are no loop currents left. The
interpretation is that since the Abrikosov vortices are repelled from the edges,
there is minimal interaction between the Abrikosov vortices and the loop currents
for small n. As n increases, however, the mutual repulsion between Abrikosov
vortices pushes them closer towards the edges. As they “squeeze” towards the
edges, the vector potential due to the vortices become non-negligible, and the
circulating and counter-circulating loop currents are ripped apart. At a critical
value, the loop-current phase is lost in favor of a phase where there are long
translation invariant (along the pairbreaking edge) currents. The critical field
B∗ext, i.e. critical vector potential A∗ext, for which the loop currents are lost should
be when the vector potential overcomes the Doppler shift from the superfluid
momentum driving the loop currents, i.e. when

A∗ext
Φ0/ξ0

≈ vF · pS
2πkBTc

. (7.9)

The corresponding critical external flux Bg1 < B∗ext < Bg2 is

B∗ext
Φ0/ξ2

0
=
∣∣∣∣∣(ξ0∇)× A∗ext

Φ0/ξ0

∣∣∣∣∣ . (7.10)
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Figure 7.31: Abrikosov vortex lattices for different external flux densities Bext =
nΦ0/A, where A = 180ξ0 × 180ξ0 is the grain area and n is an integer ranging
between n = 1–6 from top to bottom row. The first column shows the induced current
density, the second the magnetic flux density due to these currents, the third the
induced magnetic vector potential and the fourth column shows the order parameter
phase. The penetration depth is λ0 = 100ξ0, and the temperature is T = 0.1Tc. The
loop-current phase survives until some critical external field B∗ in the mixed state:
Bg1 < B∗ . Bg2
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Figure 7.32: An Abrikosov vortex lattice suppressing the loop-current phase. (a)
The current density, (b) induced flux density due to the currents, (c) induced vector
potential, (d) phase of the order parameter. The vortex lattice is not fully converged as
illustrated by the irregularities. The penetration depth is λ0 = 100ξ0, the temperature
is T = 0.1Tc, and the external flux density is Bext = 100Φ0/A, where A = 60ξ0×60ξ0
is the area of the grain.
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Judging by the preliminary results, not all of which are shown here, it is believed
that B∗ext lies closer to Bg1 than Bg2, and that for grains of size D = 60–200ξ0,
the critical field is somewhere around

B∗ext / 10Φ0

ξ2
0
. (7.11)

The critical field B∗ext also seems to depend strongly on the grain size. The size
dependence should be more important when including the self-consistency3 in
the induced vector potential. With the self-consistency included, there should
be different regimes depending on the ratio D/λ, i.e. there should be different
kinds of behavior for D/λ � 1 and D/λ � 1. Another indication that the self-
consistency becomes more important is that at an external field Bext = Φ0/2A,
the induced vector potential due to currents is less than a permille of the external
vector potential, while already at Bext = Φ0/A, the induced vector potential is
several percent of the external vector potential. Thus, it is therefore believed that
the self-consistency in the vector potential becomes relevant at higher fields in the
mixed state, even for extreme type-II superconductors.

7.3.3 Stronger fields: solenoids
This section presents a preliminary study of what happens to the loop current
phase when a magnetic field is applied through a hole in the center of a square
grain. The field is applied in such a manner that it is zero in the grain, but the
vector potential is non-zero (e.g. a solenoid). The grain area isA = 60ξ0×60ξ0 and
the temperature is T = 0.17Tc. Figure 7.33 shows the induced current density
(left columns) and phase winding (right columns) for an external flux Φext =
Φ0(n+ δ) where n is the integer phase-winding number and δ is a shift (which is
zero in this figure). The phase shows only minor modifications even at n = 10.
Figure 7.34 shows that as δ is increased, the circulating and counter-circulating
loop currents are lost in favor of longer currents that are translational invariant
along the pairbreaking edges. These figures illustrate that as long as the winding
number matches the external flux, the loop currents survive an external solenoid
field that is higher than the critical field found for the uniform grain in the previous
section. This is true even though the temperature is T = 0.17Tc, which is relatively
close to T ∗. The interpretation is that the winding number compensates the
vector potential by the external field. If the field is increased without increasing
the winding number, however, the phase cannot compensate the vector potential,
and the latter increases considerably leading to a competitive Doppler shift of the
midgap states. However, it was shown in Fig. 6.8 in Sec. 6.3 that this corresponds
3Recall that no self-consistency in the induced vector potential means that λ0 → ∞ and that
the penetration depth drops out of the theory (except when calculating the induced magnetic
flux density).
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to an energetically unfavorable situation. Figure 7.35 (a) shows that the same
applies to the loop current phase, since the free energy follows a parabola (solid
lines) centered at each integer winding number. The minimum of free energy
therefore switches to a new parabola between flux quanta. The minimum of each
parabola also follows a parabola (dashed lines). Figure 7.35 (b) shows a similar
dependence for the grain-averaged magnitude of the induced current density I/Id,
where I = ∫ |j| dR and Id = ∫

jddR. Figure 7.35 (c) shows the induced flux
density due to these currents.
The question is if it is possible to design an experiment with such solenoid

fields, i.e. with the capability of both staying on a single parabola or following
the minimum. For example, applying a high field far above the phase, it should
be possible for the order parameter to develop the corresponding phase winding.
Upon cooling, the phase would be induced with the phase winding already present.

Figure 7.33: Induced current density (left columns) and phase winding (right
columns) for an external flux Φext = Φ0n applied through a hole in the center of
a grain, where n is the integer phase-winding number (as labeled in each figure). The
area of each grain is A = 60ξ0 × 60ξ0 and the temperature is T = 0.17Tc . T ∗.
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If instead the field is applied once the phase is already induced, there might be
rigidity due to the circulating currents which prevents the phase winding to occur.
If there is a possibility to study both these scenarios, it raises the question of if
there are any observables that differ significantly when the loop currents are lost.
This could be interesting both as a way of tuning the properties of a grain, but
also as a means to verifying the existence of the phase. To answer these question,
further studies have to be carried out.

7.3.4 Magnetic-field distribution and NMR measurements
By using the nuclear magnetic resonance (NMR) technique, it is possible to study
various vortex properties in the mixed state (see for example Ref. [141] and refer-
ences therein), like vortex phase transitions [142]. In particular, it can be used as a
sensitive magnetic probe of spontaneous magnetic fields close to an interface [143].
For example, when applying a magnetic field to a sample, the induced magnetic-
field distribution can be obtained as a function of the induced field magnitude.
It is the aim of this section to study the magnetic-field distribution induced by
the loop currents, to see which signatures might be observable in NMR measure-
ments. This is done by making a histogram of the induced magnetic flux density
as a function of its magnitude. This is in turn done by dividing the magnitude
into discrete intervals (binning), and counting the occurrence of each magnitude
interval (bin) in the discretized grain. For grains, the histogram generally depends
on the geometry and the strength of the external field, since different responses
and effects, (e.g. diamagnetic, paramagnetic, Abrikosov vortices, and the loop
currents) give rise to different signatures in the histogram. Each of these effects

Figure 7.34: Induced current density for an external flux Φext = Φ0(n + δ) applied
through a hole in the center of a grain. Here, n is the integer phase-winding number
and δ is a shift, as labeled in each figure. Note that the behavior is the same regardless
of n ∈ [1, 6], where n = 6 is the highest winding number simulated with a shift. The
area of each grain is A = 60ξ0 × 60ξ0 and the temperature is T = 0.17Tc . T ∗.
The circulating loop currents are lost when δ & 0.8. At lower temperatures, the loop-
current phase can withstand a higher shift.
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Figure 7.35: Area-integrated (a) free energy, (b) current density and (c) induced
flux density, versus an external solenoid flux Φext = Φ0(n+ δ), where n is the integer
phase-winding number and δ is a shift. As δ is varied, the quantities follows certain
functional behavior, as indicated by the lines. In panel (a), the dashed line is a second-
order polynomial fit to the minimum of each free-energy parabola.
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will now be studied separately in order to understand the full distribution, which
is a superposition of all the signatures. The analysis shown here is preliminary.
The next step in the analysis would be to apply proper statistical fits, and study
scenarios that can be compared with experiments, e.g. vortex lattices.
Starting with the Meissner state outside the loop current phase, Fig. 7.36 (a)

shows the induced magnetic flux histogram in a d-wave grain with maximally
pairbreaking edges of length D = 60ξ0 at temperature T = 0.2Tc > T ∗ and
Bext = 0.5Bg1. Here, Bg1 ≡ Φ0/A is the first critical field in the grain of area
A = D2, and the external field is applied perpendicular to the grain along −ẑ.
Figure 7.36 shows the response, i.e. the induced magnetic flux density, with a
dashed line corresponding to the contour Bind = 0. The histogram shows two
distributions, coming from the diamagnetic (Bind > 0) and paramagnetic (Bind <
0) responses lying inside and outside the contour, respectively. The corresponding
histograms are shown in Figs. 7.36 (c) and (e), and the induced flux densities in
Figs. 7.36 (d) and (f). The histograms are exponentially decaying, possibly with
Poisson or Lorentzian distributions, with a constant offset. Figure 7.37 (a) shows
the histogram for the same grain but at T = 0.1Tc < T ∗ and Bext = 0, such that
the entire distribution is from the loop currents, the latter which are illustrated
in Fig. 7.37 (b). Figure 7.37 (c) and (d) shows the same but at Bext = 0.5Bg1,
such that the distribution is a superposition of the diamagnetic, paramagnetic and
loop current fluxes. The loop currents seem to have an exponentially decaying
distribution ∼ exp(−a|Bind|), where a is some decay constant. This distribution
gives rise to a peak at zero field and a sharp edge at the maximal Bind of the loop
currents, as indicated by the arrows in the figures.
In the mixed state, Abrikosov vortices gives rise to an exponentially decaying

distribution, as illustrated in Figs. 7.38 (a) and (b) for a system without pair-
breaking edges. Fig. 7.38 (c) and (d) show how this distribution is superimposed
with the loop-current distribution. Arrows again mark the peak and edge of the
latter. The question arises if these signatures are strong enough to be seen in
NMR measurements. Local measurements close to the interface and in low exter-
nal fields would improve the chances of seeing the signatures, as this reduces the
background distribution from other sources. Even if the signature is swallowed
by the background, it might be possible to extract it through statistical fitting.
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Figure 7.36: Panels (a), (c) and (e) show histograms of the magnetic-field distri-
bution for the induced magnetic flux densities in panels in panels (b), (d) and (f),
respectively. The diamagnetic response (blue) and the paramagnetic response (red)
are separated by the dashed line Bind = 0. The grains are maximally pairbreaking
d-wave grains, at temperature T = 0.2Tc and external field Bext = 0.5Φ0/A, where
A = (60ξ0)2 is the area of the grain.
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Figure 7.37: (a) Histogram of the magnetic-field distribution in in panel (b), in a
maximally pairbreaking d-wave grain at temperature T = 0.1Tc and no external field.
The distribution seems to be exponentially decaying as ∼ exp(−a|Bind|), where a is
some decay constant. The sharp peak exactly at zero (red arrow) is due to singular
points, and might not be present in a real sample. (c) In an external field Bext =
0.5Φ0/A, the histogram is a superposition of the signatures from the loop currents,
the diamagnetic response as well as the paramagnetic response, shown in panel (d).
Blue arrows mark the edges of the distribution of the loop current.
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Figure 7.38: (a) Histogram of the magnetic-field distribution due to the Abrikosov
vortex shown in panel (b), in a grain without pairbreaking edges, at temperature T =
0.1Tc and external field Bext = Φ0/A. (c) With pairbreaking edges, the distribution
is superimposed with that of the loop currents, shown in panel (d). Arrows mark the
peak (red) and edges (blue) of the loop current distribution.
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7.4 Extremely low temperatures
Extremely low temperatures of T = 0.01Tc and T = 0.001Tc have been studied,
to see if the phase survives or shows any qualitative changes. To study such
low temperatures, the Ozaki technique is employed (see Sec. 3.5), with a cutoff of
NO = 100. Figure 7.39 shows the (a) current density and (b) induced flux density,
at T = 0.001Tc, illustrating that the phase is intact with no major changes. The
only change in going to lower temperatures seems to be an increased “stiffness”
in the vector field of the superfluid momentum, hence also the current density
(compare against Fig. 7.1 on p. 103). As a start guess for these simulations, a well-
converged solution at temperature T = 0.1Tc was used. It has also been verified
that the phase is found when starting from a completely real order parameter at
extremely low temperatures and then annealing with an external field to nucleate
the circulating currents. It is however much more difficult to converge to a high
degree due to the increased simulation time, as well as an increased difficulty for
the system to rearrange circulating and counter-circulating currents. The latter
might be due to the increased stiffness.

+

+

-

-

Figure 7.39: (a) Spontaneous loop currents and (b) induced flux density, at T =
0.001Tc. The phase shows no major changes at low temperatures, except an increased
stiffness. Arrows mark the circulation of the particle currents.
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7.5 Discussion: experimental verification
The loop currents of the loop-current phase lead to “blobs” of magnetic fluxes
with magnitudes on the order of 10−5Φ0/ξ

2
0 , which increases at lower tempera-

tures, and is distributed over areas of roughly 5ξ0 × 5ξ0 (yielding a field on the
order of 1 mT in YBCO with ξ0 ≈ 2 nm). This is in stark contrast to typical
magnetic phenomena in superconductors, with integer flux quanta that are dis-
tributed on a length scale of the penetration depth, i.e. two orders of magnitude
longer than the superconducting coherence length in type-II superconductors. The
most commonly used probes, like the superconducting quantum interference de-
vice (SQUID), typically have active areas of hundreds of coherence lengths. Thus,
detecting the fluxes generated in the loop-current phase should be extremely chal-
lenging with conventional tools. Direct detection is further complicated by two
facts, the first being that there generally is an equal amount of positive and nega-
tive flux through the grain. This means that the flux measured with a larger probe
should average to zero. The second fact is that neighboring fluxes have opposite
sign, which implies that the flux lines probably bend and close on themselves
very near the surface of the grain. Therefore, direct detection of the induced flux
ought to rely on very local probes, like recently developed nano-SQUIDs [144],
nitrogen-vacancy cantilevers [145], scanning tunneling microscope tips [146–148],
and magnetic resonance force microscopes [149]. Even if the probe is slightly
larger than the typical blob size, it can be swept across the interface, giving rise
to a modulation in the measured flux depending on the asymmetry of positive
to negative flux covered. As mentioned in Sec. 7.3.4, another route might be to
try to detect the characteristic magnetic field distribution of the current loops in
NMR measurements. These NMR measurements should also be as localized to
the pair breaking interfaces as possible.
As argued in paper I, the situation might be somewhat improved when applying

an external magnetic field. It is shown that an external magnetic field in the
Meissner phase leads to a net induced magnetic field, with both a paramagnetic
and a diamagnetic response. As the temperature is lowered below the transition
temperature T ∗ of the loop-current phase, the loop currents induces a “kink” in
the grain-total induced magnetic flux, on the order of 10−7Φ0/ξ

2
0 , which for YBCO

(ξ0 ≈ 2 nm) corresponds to a magnetic field of ∼ 0.1 mT. Such a kink ought to be
observable as long as the probe can be put close enough to the grain. Furthermore,
the loop currents lead to a sudden disappearance of the paramagnetic response,
which might be detectable in a penetration-depth experiment.
One of the most promising ways to indirectly verify the phase, however, would

be by measuring the heat capacity jump with nano-calorimetry [39]. The jump
was shown in Sec. 7.2.4 and paper I to be a few percent of the heat-capacity
jump in the normal-superconducting phase transition. To improve the chances of
observing the jump, an array of grains could be measured.
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In summary, the purpose of this thesis has been to study mesoscopic unconven-
tional superconductors. In particular, the aim has been to study the “loop-current
phase” in greater detail. This is a phase which spontaneously breaks translational
and time-reversal symmetries along pairbreaking interfaces in d-wave supercon-
ductors. Along such interfaces, midgap states are formed exactly at the Fermi
energy from broken superconducting pairs as a result of a sign inversion in the
order parameter. It is energetically favorable to shift such states to finite energies,
and the loop-current phase is one possible mechanism that provides such a shift.
This is done through a spontaneous generation of a superfluid momentum pS, with
a repeated pattern of sources and sinks separated by a distance of ∼ 6ξ0, where
ξ0 is the superconducting coherence length. This superfluid momentum generates
a necklace of circulating and counter-circulating current loops, and provides an
energetically favorable Doppler shift of the midgap states. The transition temper-
ature into this phase is T ∗ ≈ 0.18Tc, where Tc is the superconducting transition
temperature. Various properties of the phase were cataloged. The main research
goal was to study the stability of the phase against external magnetic fields and
different geometric effects.
It was shown in paper I that the phase survives in the entire Meissner state and

for low fields in the mixed state. An external field explicitly breaks time-reversal
symmetry, and leads to a paramagnetic response carried by midgap states at
pairbreaking interfaces. The paramagnetic response is a competing mechanism to
shift the midgap states, with a shift which grows linearly with decreased temper-
ature. The spontaneous superfluid momentum induces a shift which grows highly
non-linearly, however, and is therefore the winning mechanism. The competition
slightly lowers the transition temperature with increased external field, and gives
rise to observables which might be measured in experiment. The phase also sur-
vives strong fields in a solenoid as long as there is a phase winding corresponding
to the flux quanta of the external field. For stronger fields with Abrikosov vortices,
or with low winding numbers in solenoids, the external field eventually develops
a vector potential which gives a more energetically favorable shift of the midgap
states than the spontaneous superfluid momentum.
Similarly, it was shown that geometric effects that induce a significant broad-

ening of the spectrum also lead to a suppression of the phase. These effects were
related to the shape of the grain, its surface roughness, as well as to the angle
between the crystal ab-axes and the grain edges. The purpose of paper II was to
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illustrate that the phase does not rely on finite-size effects, in contrast to similar
phases studied previously in the literature.
Experimental verification of the phase was discussed. The manner in which the

spontaneous currents and flux appear makes them challenging to observe exper-
imentally, and provides a possible explanation why detection of such predicted
symmetry-broken phases has been controversial. The effects associated with the
phase scale with the surface-to-volume ratio, or edge-to-area ratio, and is there-
fore easier to see in small mesoscopic grains. To observe the phase, it is suggested
to look for the jump in the heat capacity with nanocalorimetry. Direct obser-
vation relies on techniques which can resolve a microscopic flux distributed over
small areas of roughly 5ξ0× 5ξ0. Examples of such techniques are nano SQUIDs,
diamond cantilevers, STMs, and magnetic resonance force microscopes. It might
also be possible to detect signatures of the phase in NMR measurements.
In conclusion, the loop-current phase gives rise to a spectral broadening which is

consistent with current experimental observations. With its potential explanation
of longstanding contradictions regarding spontaneous symmetry-breaking phases,
it offers an interesting topic for further research in both experiment and theory.

8.1 Open questions
The field of mesoscopic superconductivity is today an active area of research, with
many questions that remain open surrounding the nature of the superconducting
state in this regime. Perhaps most relevant to this thesis are the properties of
midgap states. This thesis and its appended papers mainly focus on how these
midgap states enable spontaneous breaking of translational and time-reversal sym-
metries, in phases that are here referred to as the Vorontsov phase [53] and the
loop-current phase [46]. Many questions were answered about the nature of the
latter phase, but even more questions remain. Some of them are listed in the
following, together with questions relevant to mesoscopic superconductors in gen-
eral.
Why does the circulating currents have a size of roughly 5ξ0, and why is the

transition temperature into the phase T ∗ ∼ 1
5Tc? To answer these questions, small

perturbations close to T ∗ will be studied.
The Vorontsov phase has previously been studied with respect to different ef-

fects and perturbations, e.g. external magnetic fields [64], microscopic surface
roughness [65], temperature fluctuations [66], and fermi-surface nesting [67]. Do
these effects show a similar behavior in the loop-current phase?
Another question is what happens to the phase as the penetration depth λ0 →

ξ0, and when the induced vector potential is solved self consistently? Preliminary
studies have been made, which shows negligible influence on the phase even as
λ ' ξ0, assuming no external field. Higher external fields, and in particular in
the mixed state, might give rise to different results. On the same topic, the
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penetration depth might be affected by the phase, which is something that could
be studied in a linear-response regime for weak external fields. It was shown that
the phase is robust against external fields in the Meissner state, but that the phase
breaks down somewhere in the mixed state. It would be relevant to produce the
full phase diagram.
The influence of various geometric effects was studied, with the conclusion that

the phase survives as long as the midgap states are not broadened significantly.
Such results should carry over to grains with microscopic roughness (i.e. diffuse
boundary conditions), and perhaps to non-magnetic impurities as well. The effect
of magnetic impurities is also of interest, as many real materials host these. The
manifestation of the phase in 3D is completely unknown. The preliminary guess is
that, similar to general vortex phenomena, there might be translational invariance
along the third dimension. Of course, the results might vary depending on the
type of superconductor considered, e.g. layered superconductors and “real” 3D
superconductors.
With spin-dependence, it is possible to have in-plane fields which couples to the

spin. The effect of such a coupling is unknown.
p-wave superconductors have been studied (in particular px + ipy), without any

direct sign of the phase. This ought to be due to the strong chiral currents inherent
in these superconductors. More detailed studies might reveal hints of similar
phases though. More generally, it is predicted that p-wave superconductors host
interesting states like half-quantum and double-quantum vortices. By simulating
recently developed Sr2RuO4 grains, it should be possible to study such states.
Of great relevance to real devices is the effects of non-equilibrium and time-

dependence. Such effects would require a significant modification of the formalism
developed here (and the software used), but would open the doors to many new
research topics. Similarly, the effects of coupling the grain to other materials,
such that junctions and transport can be studied, is of great interest.
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Appendix A

Units
This thesis combines theory with numerical implementation, and on occasion
compares results with experiment. To make all of this easier, the (mal)practice of
using natural units (“setting” units like c and ~ to 1) is avoided, except in some
lengthier calculations. Instead, this thesis uses Gaussian centimeter-gram-second
units (CGS), unless otherwise specified, in line with most superconductivity liter-
ature. Equations are generally written on a dimensionless form by normalization
with standard units. This appendix goes through these units and dimensions, and
makes a short comparison between International System units (SI, or mksa) and
CGS units. Note that in this thesis, the sign convention for the elementary charge
is

e = − |e| . (A.1)

For a more elaborate discussion on units and dimensions, see for example the
appendices of Tinkham [73] and Jackson [115].

A.1 Systems of units: SI versus Gaussian CGS
In Tab. A.1, a conversion from SI to CGS systems is provided for a few important
expressions and quantities. Quantities that are not specifically of an electromag-
netic nature (e.g. force, length, mass, time, etc.) remain the same in both systems.
In summary, the most important substitution in going from SI to CGS units is

µ→ 4π
c2 . (A.2)
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Table A.1: Conversion between SI and Gaussian units for various electrodynamic
expressions.

Expression SI (mksa) Gaussian CGS

Speed of Light 1√
ε0µ0

c

Flux Quantum (Φ0) h
2|e|

hc
2|e|

London penetration depth (λ)
√

m
µ0e2ns

√
mc2

4πe2nS

Ampère’s Circuit Law ∇×B = µ0j ∇×B = 4π
c j

Lorentz Force F = q (E + v ×B) F = q
(
E + 1

cv ×B
)

Magnetic B field, flux, vector
potential

√
4π
µ0

(B,Φm,A) (B,Φm,A)

Magnetic H field
√

4πµ0H H

Magnetic moment, Magneti-
zation

√
µ0
4π (m,M) (m,M)

Electric field, Electric poten-
tial

√
4πε0(E, ϕ) (E, ϕ)

Electric displacement field
√

4π
ε0
D D

Dielectric constant ε
ε0

ε

Permeability µ
µ0

µ

Electric susceptibility, Mag-
netic Susceptibility

1
4π (χe, χm) (χe, χm)

Conductivity, Conductance,
Capacitance

1
4πε0 (σ, S, C) (σ, S, C)

Resistivity, Resistance, Induc-
tance

4πε0(ρ,R, L) (ρ,R, L)

Charge, Charge density, Cur-
rent, Current density,
Polarization density, Electric
dipole moment

1√
4πε0 (g, ρ, I,J ,P ,p) (g, ρ, I,J ,P ,p)
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A.2 Table of normalization units
Table A.2 shows the normalization units which are used in the results and in order
to make equations dimensionless in the thesis. In the table, kB is the Boltzmann
constant, Tc the superconducting transition temperature, ∫FS denotes an integral
over the Fermi surface (FS), vF the Fermi velocity, pF the Fermi momentum, h
the Planck constant, ~ the reduced Planck constant, c the speed of light, e = −|e|
the elementary charge, α ≡ 8π2/7ζ(3), and ∆CNS is the heat-capacity jump
between the normal to superconducting (NS) phase transition in bulk (derived in
Sec. 5.3.5). Note that it is common to find both literature with and without the
factor of 2π in ε0 and in the denominator of ξ0. Unfortunately, the combination
chosen here that

[
E
]

= kBTc with ξ0 = ~vF/2πkBTc leads to additional factors of
2π in many equations, but this choice is more consistent with relevant literature.
Note that the notation for the dimensions of the density of states often varies in
the literature, from number of states per energy and volume, to just number of
states per volume. In this thesis, the former notation is chosen except for when
deriving the gap equation. In particular, NF is per spin and has the dimensions

[
NF

]
= (#states)

(energy)× (volume) = 1
Jm3 . (A.3)

Table A.2: Normalization units used for different dimensions/expressions.

Dimension/expression Comment Symbol definition

Energy ε0 ≡ kBTc

Density of states Normal-state DOS at F.S. NF ≡
∫
FS

d2pF
(2π~)3|vF (pF )|

Length (order parameter) coherence length (T = 0) ξ0 ≡ ~vF
2πkBTc

Length (magnetic) penetration depth (T = 0) λ0 ≡
√

c2

4πe2NF v2
F

Momentum superfluid momentum p0 ≡ kBTc
vF

Current density depairing current jd ≡ 4πkBTc|e|NFvF

Magnetic flux magnetic flux quantum Φ0 ≡ hc
2|e|

Magnetic flux density B0 ≡ Φ0
ξ2

0

Magnetic vector potential A0 ≡ B0ξ0 = Φ0
ξ0

Heat Capacity (s-wave) NS-jump (d-wave) ∆Cs
NS ≡ αk2

BTcVNF

Heat Capacity (d-wave) NS-jump (d-wave) ∆Cd
NS ≡ 2

3∆Cs
NS
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Summary of dimensionless equations
This appendix summarizes the most relevant equations on dimensionless forms.
The Eilenberger equation is (Sec. 2.3)

i2πv̂F · (ξ0∇R)ĝ +
( z

kBTc
− 2π2 v̂F ·A

Φ0/ξ0

)
τ̂3 −

∆̂
kBTc

, ĝ


⊗

= 0, (B.1)

with a minus sign relative to the previous formulation due to e = −|e| in Φ0. The
Eilenberger equation is rewritten into the Riccati equations (Sec. 2.5)

[
i2πv̂F · (ξ0∇) + 2

(
z

kBTc
− 2π2 v̂F ·A

Φ0/ξ0

)]
γ = ∆̃

kBTc
γ2 − ∆

kBTc
, (B.2)

[
i2πv̂F · (ξ0∇)− 2

(
z

kBTc
− 2π2 v̂F ·A

Φ0/ξ0

)]
γ̃ = ∆

kBTc
γ̃2 − ∆̃

kBTc
. (B.3)

Note that these Riccati equations are in spin-space, rendering a sign difference
with respect to the scalar Riccati equations introduced later on the appendices.The
gap equation for a spin-singlet order parameter is (Sec. 2.4.1)

∆s,t

kBTc
= Vs,t

T

Tc

∫ dθpF
2π η∗Γs,t(pF )

Ωc∑
εn>0

(
fs,t(pF ,R; εn)± f̃∗s,t(pF ,R; εn)

)
, (B.4)

with + for singlet (s) and − for triplet (t). The dimensionless angle-resolved
LDOS is (Sec. 4.2)

N (pF ,R; ε) = − 1
2π Im

[
Tr
{
ĝR(pF ,R; ε)

}]
(B.5)

= −2
π

Im
[
gR0 (pF ,R; ε)

]
, (B.6)

and the angle-averaged LDOS is (Sec. 2.4.2)

N(R; ε)
NF

= −2
π

∫ dθpF
2π Im

[
gR0 (pF ,R; ε)

]
. (B.7)
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Here, the normal-state DOS at the Fermi surface (FS) is defined as

NF =
∫

FS

d2pF
(2π~)3 |vF (pF )| . (B.8)

The current density is (Sec. 4.2)

j(R)
jd

= − T
Tc

∫
dpF

∑
0<εn<εc

v̂Fg
M
0 (pF ,R; iεn), (B.9)

where jd ≡ 4πkBTceNFvF is the depairing current. The energy shift due to the
presence of a magnetic vector potential A is (Sec. 4.3.2)

z

kBTc
→ z

kBTc
− 2π2 v̂F ·A

Φ0/ξ0
, (B.10)

where z is a complex energy and the vector potential can be separated into one
part that is coupled to external magnetic flux (Aext), and another due to induced
currents in the systems (Aind), according to

A = Aext +Aind. (B.11)

The vector potential also enters the gauge invariant expression of the superfluid
momentum

1
2π
ps
p0

= 1
2 (ξ0∇)χ+ π

A

Φ0/ξ0
, (B.12)

p0 ≡
kBTc
vF

. (B.13)

In homogeneus superconductors without holes, a uniform external flux perpen-
dicular to the SC (Bext = Bextẑ) gives rise to a vector potential (Sec. 4.3.3)

Aext

Φ0/ξ0
= 1

2
Bext

Φ0/ξ2
0
× ρ

ξ0
(B.14)

= 1
2

Φext

Φ0

(
A
ξ2

0

)−1 (
− y
ξ0
x̂+ x

ξ0
ŷ

)
. (B.15)

If the superconductor has holes, and there is a uniform magnetic flux inside the
hole of radius ρa, but no flux in the superconductor itself, (Sec. 4.3.4) the vector
potential can be written

Aext

Φ0/ξ0
= 1

2π

(
ρ

ξ0

)−1 Φext

Φ0
φ̂ (B.16)

= 1
2π

Φext

Φ0

−yx̂+ xŷ

x2 + y2 ξ0. (B.17)
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Currents in the system give rise to an induced vector potential and an induced
flux density (Sec. 4.4.1)

Aind(x)
Φ0/ξ0

= κ−2
0
π2

∫ d2x′

ξ2
0

j(x′)
jd

ln
∣∣∣∣∣x− x

′

ξ0

∣∣∣∣∣ , (B.18)

Bind

Φ0/ξ2
0

= (ξ0∇)× Aind

Φ0/ξ0
, (B.19)

respectively, where κ0 ≡ λ0/ξ0 is the dimensionless Ginzburg-Landau parameter.
The free-energy difference between the normal and superconducting states is given
by the Luttinger-Ward functional (Sec. 5.1.1)

δΩ(T )
VNF (kBTc)2 =

∫ dR

V


(
Bind(R)
Φ0/ξ2

0

)2
2π4κ2

0

+1
2
T

Tc

∫ 1

0
dλ

∫ 2π

0

dθpF
2π

∑
εn

Tr
 ∆̂
kBTc

(
ĝλ −

1
2 ĝ
).(B.20)

or the Eilenberger functional (Sec. 5.1.3)

δΩ(T )
VNF (kBTc)2 =

∫ dR

V


(
Bind(R)
Φ0/ξ2

0

)2
2π4κ2

0 + |∆(R)|2

(kBTc)2 ln T

Tc

+2π T
Tc

∑
εn

 |∆(R)|2

(kBTc)2
kBTc
εn

+ iI(R; εn)
kBTc

, (B.21)

I(R; εn) =
∫ dθpF

2π

[
∆̃(pF ,R)γ(pF ,R; εn)−

∆(pF ,R)γ̃(pF ,R; εn)
]
. (B.22)

The heat capacity difference with respect to the normal state is calculated as the
second-derivative of the Eilenberger free energy (Sec. 5.3.6)

δCV
V∆CNS

= 1
α̃

T

Tc

∂2

∂(T/Tc)2

∫ dR

V


(
B(R)
Φ0/ξ2

0

)2
2π4κ2

0 + |∆(R)|2

(kBTc)2 ln T

Tc

+2π T
Tc

∑
εn

 |∆(R)|2

(kBTc)2
kBTc
εn

+ i
〈I(pF ,R; εn)〉pF

kBTc

, (B.23)

where ∆CNS is the heat capacity jump in the normal-superconducting phase
transition, and

α̃ ≡


8π2

7ζ(3) ≈ 9.4, s-wave,
2
3

8π2

7ζ(3) ≈ 6.3, d-wave.
(B.24)





Appendix C

From summation over momenta to
integration over energies
In this appendix, it is shown how a sum over states in momentum space can
be converted into an integral over energies, through introducing the density of
states, following e.g. Ref [4]. This is an extremely common procedure in quan-
tum mechanics, and especially in condensed matter physics. In contrast to most
similar derivations in the literature, this derivation will keep the angular depen-
dence, which will come in handy when studying systems that are anisotropic in
momentum space, like d-wave superconductors.
Consider a bulk system, in which it is appropriate to assume periodic boundary

conditions (i.e. Born-von Karman boundary conditions) for a wave function of
interest. Let L be length of the period in spatial space. The components of the
wave vector k then take on the form

ki = 2π
L
ni, ni integers, (C.1)

such that each state in k space occupies a cell of volume

∆k ≡ ∆kd =
(2π
L

)d
= (2π)d
V

, (C.2)

where d is the dimension and V = Ld is the corresponding volume in spatial space.
Consider a system of volume Ω. The number of states n in Ω will approximately
be the “total volume divided by volume per k-state”, i.e.

n ≈ Ω
∆kd = ΩV

(2π)d . (C.3)

The density of k-states N is then

N = n

Ω = V
(2π)d . (C.4)
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The sheer amount of states in a typical condensed matter system makes the ap-
proximation very good. For Fermions with γ number of internal degrees of free-
dom, the density of states is 2γN , due to the Pauli exclusion principle. Consider
the sum over momentum states for a smooth function Fk

∑
k

Fk =
∑
k

Fk
∆k
∆k = V

(2π)d
∑
k

Fk∆k. (C.5)

For a very large system, taking the limit V → ∞ corresponds to ∆k→ 0, and an
integral expression will be obtained through the Riemann sum

lim
V→∞

∑
k

Fk = lim
∆k→0

V
(2π)d

∑
k

Fk∆k = V
∫ dk

(2π)dF (k). (C.6)

Let Sξ denote a surface of constant energy ξ, such that the integration measure
can be decomposed as

dk ≡
d∏
i

dki = dSξdk⊥, (C.7)

where dk⊥ is the perpendicular distance between the surface ξ = constant, and
the surface (ξ + dξ) = constant. Perpendicular to these surfaces is also ∇kξ,
which is the gradient of ξ with respect to k

dk⊥ = dk⊥
dξ

dξ
= dk⊥

dξ
dξ = dξ

|∇kξ|
. (C.8)

In spherical coordinates, for example, dSξdk⊥ = sin(θ)k2dkdθdφ, and for a plane-
wave dispersion

|∇kξ| =
d

dk

~2k2

2m = ~k
m
. (C.9)

The integral over F (k) is rewritten
∫ dk

(2π)dF (k) = 1
(2π)d

∫
dSξ

∫
dkF (k)

= 1
(2π)d

∫
dSξ

∫ dξ

|∇kξ|
F (k). (C.10)

The density of states states D(ξ) in a small interval dξ is defined as

D(ξ)dξ ≡ V
(2π)d

∫ dSξ
|∇kξ|

dξ, (C.11)

where [D(ξ)] = #states/energy. Defining the density of states per unit volume
N(ξ)

N(ξ) ≡ D(ξ)
V

= 1
(2π)d

∫ dSξ
|∇kξ|

. (C.12)
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In the case that F (k) only depends on the magnitude of the wave vector (i.e.
isotropic like usual s-wave superconductors), the sum over k thus reduces to

∑
k

Fk −−−−→∆k→0
V
∫
dξN(ξ)F (ξ) (isotropic case). (C.13)

In the case that F (k) is anisotropic, the dispersion relation either needs to be
known or at least isotropic. Under such conditions, 1

|∇kξ| can be evaluated or
pulled out from the integral over dSξ, and substituted for N(ξ), yielding

∑
k

Fk −−−−→∆k→0
V
∫
dSξ

∫
dξN(ξ)F (ξ) (anisotropic case). (C.14)

Note that most literature sets V → 1 to keep a compact notation.
The normal-state density of states at the Fermi surface, denoted NF , commonly

occurs in this thesis. It is defined as

NF =
∫

FS

d2pF
(2π~)3 |vF (pF )| , (C.15)

where the Fermi velocity vF at the Fermi momentum pF takes the role of ∇kξ.





Appendix D

The BCS gap and analytic solutions
In this appendix, the BCS gap equation will be derived from the expectation value
of the BCS Hamiltonian using a variational method, similar to Tinkham [73].
An integral expression will then be derived, which is valid for different pairing
symmetries, like s and d-wave superconductors with a single order parameter (i.e.
no mixtures like s + id). After that, an expression of Tc will be derived in the
weak-coupling limit, together with analytic expressions of the BCS gap at T = 0
and close to Tc. The slope of the gap will also be derived close to Tc. The latter
result is used in Ch. 5 to get an analytic expression for the jump in the heat
capacity ∆C, in the normal-superconductor phase transition (in bulk). Some of
these derivations follow Refs. [16, 73, 78]

D.1 Derivation of the BCS gap equation
The BCS Hamiltonian is usually written (see for example Schrieffer [71], de Gennes
[72] and Tinkham [73]) as a sum over spin indices σ and momenta k, q, of fermionic
creation (c†) and annihilation (c) operators

HBCS =
∑
k,σ

ξkc
†
k,σck,σ + 1

2
∑

k1,σ1,k2,σ2,q

c†k1+q,σ1
c†k2−q,σ2

Vk1,k2,qck1,σ1ck2,σ2, (D.1)

where the first term is the kinetic energy term with kinetic energies ξk, and the
second term is the interaction term with the potential V . The interaction term
describes scattering from momentum states k1,k2 to k1 + q,k2 − q. The BCS
ground state of Cooper pairs is similarly written as a product of creation operators
acting on the vacuum state |0〉

|ΨBCS〉 =
∏
k

(
uk + eiχvkc

†
k+s,↑c

†
−k+s,↓

)
|0〉 , (D.2)

where χ is the phase of the superfluid, s is the center-of-mass momentum for
the Cooper pair, and u2

k and v2
k are the probabilities of a state being empty or

occupied, respectively, such that
∣∣∣u2
k + v2

k

∣∣∣ = 1. Equation (D.2) thus describes
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pairwise creation of particles of momentum k + s and −k + s of opposite spin.
The expectation value of the BCS Hamiltonian can be written

〈E〉 = 〈ΨBCS|HBCS |ΨBCS〉
=

∑
k

2v2
kξk +

∑
kl

vkulukvlVkl

=
∑
k

2v2
kξk +

∑
k

vkuk2
∑
l

ulvlVkl

=
∑
k

(
2v2
kξk − 2vkuk∆k

)
, (D.3)

where opposite spin and momentum pairing has been assumed, and

∆k ≡ −
∑
l

ulvlVkl. (D.4)

The BCS gap equation will be derived by minimizing Eq. (D.3) by variation of
uk, vk

d〈E〉 = ∂〈E〉
∂vk

dvk + ∂〈E〉
∂uk

duk = 0. (D.5)

Rewriting,

d〈E〉 =
∑
k

(4vkξk − 2uk∆k) dvk − 2
∑
k

vk∆kduk = 0. (D.6)

Using the fact that u2
k + v2

k = 1, it is possible to rewrite uk in terms of vk

uk =
√

1− v2
k, (D.7)

duk = −vk
uk

dvk = −vk√
1− v2

k

dvk. (D.8)

Substituting these expressions into Eq. (D.6) yields

0 =
∑
k

[
4vkξkdvk − 2∆kukdvk + 2∆kvk

vk
uk
dvk

]
. (D.9)

This is multiplied with uk/2dvk to obtain

0 =
∑
k

[
2vkukξk − (u2

k − v2
k)∆k

]
. (D.10)

One minimum is obviously if the summand in Eq. (D.10) is zero, which in fact
turns out to be the global minimum. Solving for ∆k,

∆k = 2ukvkξk
u2
k − v2

k

. (D.11)



D.1 Derivation of the BCS gap equation 173

Introducing the new parameter Ek (the excitaiton energy, i.e. the energy of
unpaired electrons relative to that of the supercondensate), the probability am-
plitudes can be written

v2
k = 1

2

(
1− ξk

Ek

)
, (D.12)

u2
k = 1

2

(
1 + ξk

Ek

)
, (D.13)

such that

u2
k − v2

k = ξk
Ek

, (D.14)

u2
kv

2
k = 1

4

(
1− ξ2

k

E2
k

)
, (D.15)

ukvk = 1
2

√√√√1− ξ2
k

E2
k

. (D.16)

This allows ∆k to be rewritten as

∆k =
2ξk 1

2

√
1− ξ2

k

E2
k

ξk/Ek
=
√
E2
k − ξ2

k, (D.17)

which gives an excitation energy with gap ∆k at zero energy (the Fermi energy)

Ek =
√
ξ2
k + ∆2

k. (D.18)

The gap ∆k represents the mimimum energy required to break up a pair, or
consequently, the energy that the superconductor gains by pairing. Combining
Eqs. (D.4), (D.16) and (D.18), the BCS gap equation can be written

∆k = −
∑
l

ulvlVkl = −
∑
l

Vkl
∆l

2
√
ξ2
l + ∆2

l

. (D.19)

The gap equation in Eq. (D.19) is valid at zero temperature. As the temperature
rises above 0 K, more unpaired (quasi)electrons are excited. The following term
needs to be considered to account for the occupation of the unpaired states

1− nk↑ − n−k↓ = 1− c†k↑ck↑ − c
†
−k↓c−k↓. (D.20)

The thermal average of this expression is

〈1− nk↑ − n−k↓〉 = 1− 2f(E) = tanh(βE/2) (D.21)
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where β ≡ kBT , and f(E) ≡ (exp(βE) + 1)−1 is the Fermi-Dirac distribution.
The term tanh(βE/2) accounts for the probability that the pair state (k ↑,−k ↓)
is available for the supercondensate formation at temperature T

lim
T→0

tanh(βE/2) = lim
β→∞

tanh(βE/2) = 1, (D.22)

i.e. at T = 0 K, the “vacuum” is perfect and all quasiparticles are paired. The ex-
pression in Eq. (D.21) is added to Eq. (D.21), yielding the temperature-dependent
gap equation

∆k = −
∑
l

Vkl
∆l

2
√
ξ2
l + ∆2

l

(1− 2f(Ek))

= −
∑
l

Vkl
∆l

2
√
ξ2
l + ∆2

l

tanh
(
β

2
√
ξ2
l + ∆2

l

)
. (D.23)

For a weak electron-phonon coupling, which is valid for all elemental supercon-
ductors except Pb and Hg,

Vkl = −V0, (D.24)
∆k = ∆, (D.25)

for k, l < kD, where kD is the Debye momentum, yielding the weak-coupling gap
equation (s-wave)

1 = V0
∑
l

tanh
(
β
2

√
ξ2
l + ∆2

)
2
√
ξ2
l + ∆2

. (D.26)

D.2 Integral expression of the gap equation
Turning the sum into an integral following App. C, the BCS gap equation becomes

∆(θpF ) = −
∫ 2π

0

dθp′F
2π

∫ ∞
−∞

dξN(ξ)V (θpF , θp′F )
∆(θp′F ) tanh

(
β
2

√
ξ2 + ∆2(θp′F )

)
2
√
ξ2 + ∆2(θp′F )

,

(D.27)
where the volume V is absorbed into the DOS N . Here, both ∆ and V is allowed
to have an angular dependence, through the basis function η(θpF )

∆(pF ) = ∆η(θpF ), (D.28)

V (ξ,pF ,p′F ) =
−V0η(θpF )η∗(θp′F ), −~ωD ≤ ξ ≤ ~ωD

0, otherwise,
(D.29)
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where ωD is the Debye frequency, and θpF is the angle between a scattering di-
rection and the Fermi momentum. The basis functions forms an orthogonal basis

ηaη
∗
b = |ηa|2δab. (D.30)

Examples of typical s-wave and d-wave basis functions are

ηs(θpF ) = 1, (D.31)
ηdx2−y2 (θpF ) = a cos(2θpF ), (D.32)

respectively, where a is a normalization constant. Choosing a =
√

2 yields
∫ 2π

0

dθpF
2π |η(θpF )|2 = 1. (D.33)

Note! Many authors choose to absorb the factor
√

2 into ∆ such that the magni-
tude corresponds to the maximal gap in the DOS, but this gives the basis function
a different normalization. Later on, a will be reintroduced to show how the term
propagates. Inserting the basis functions and multiplying by η∗(θpF ) yields, due
to Eq. (D.30),

∆ = V0

∫ 2π

0

dθp′F |η(θp′F )|2

2π

∫ ~ωD

−~ωD
dξN(ξ)

∆ tanh
(
β
2

√
ξ2 + ∆2|η(θp′F )|2

)
2
√
ξ2 + ∆2|η(θp′F )|2

. (D.34)

Recall that ξ is the single-particle energy measured relative to the Fermi energy
in the normal state, and that in this formalism, µ is the energy shift of the
chemical potential between the normal and superconducting states. If there is a
particle-hole symmetry close to the Fermi surface, then the shift fulfills µ = 0.
As stated earlier, this is quite generally a good approximation [71]. Furthermore,
the density of states N(ξ) typically varies on the energy scale of the Fermi energy
εF � ~ωD � ∆, which means that N(ξ) ' N(0) ≡ NF is a good approximation
in the integral in Eq. (D.34). The integral is symmetric around ξ = 0, and for a
bulk superconductor, Eq. (D.34) can be divided by ∆, yielding

1 = V0NF

∫ 2π

0

dθp′F |η(θp′F )|2

2π

∫ ~ωD

0
dξ

tanh
(
β
2

√
ξ2 + ∆2|η(θp′F )|2

)
√
ξ2 + ∆2|η(θp′F )|2

. (D.35)

D.3 Derivation of Tc
Deriving an expression for the transition temperature Tc has been a fundamental
problem since the discovery of superconductivity. For the unconventional super-
conductors, it is still an ongoing quest in some sense. Rather than trying to find
the exact numerical value of Tc, however, having an expression for Tc is useful for
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other purposes. For example, while Tc is a value that is typically measured in
experiment, the superconducting coupling-constant (λ = NV ) is not, and having
an expression for Tc then makes it possible to “eliminate” the coupling constant
(and also cutoff frequency as it turns out) in favor of Tc. This procedure will now
be shown for the BCS theory, but this practice is carried out in quasiclassical
theory as well.
Starting from Eq. (D.35) under the assumption of weak electron-phonon cou-

pling, noting that the equation is even in ξ, and taking the limit T → Tc ⇒ ∆→ 0,

1
V NF

= A
∫ ~ωc

0
dξ

tanh
(

ξ
2kBTc

)
ξ

, (D.36)

A ≡
∫ 2π

0

dθpF
2π |η(θpF )|2 . (D.37)

Here, A = 1 for orthonormal basis functions, but many authors do not use normal-
ized basis functions for d-wave (the term is kept to show how the end result differs).
Typically, the Debye frequency (ωD) is much less than the Fermi frequency (ωF ),
such that ~ωD � εF , where εF is the Fermi energy. The cutoff frequency is chosen
to be the Debye frequency. It is assumed that the density of states is constant
close to the Fermi surface, such that in the integrand N(ξ) ≈ N(0) =: NF , where
N(0) is the normal-state density of states at the Fermi surface. Making the sub-
stitution x = ξ/2kBTc where xc ≡ ~ωD/2kBTc, Eq. (D.36) can be integrated by
parts

1
V NFA

=
∫ xc

0
dx

tanh(x)
x

=
[

tanh(x) ln(x)
]x=xc

x=0
−
∫ xc

0

ln(x)
cosh2(x)

dx

= tanh(xc) ln(xc)−
(

ln π4 − γE
)

= tanh
(

~ωD
2kBTc

)
ln
(

~ωD
2kBTc

)
−
(

ln π4 − γE
)
, (D.38)

where
γE ≡ lim

n→∞

 n∑
k=1

1
k
− lnn

 ≈ 0.577, (D.39)

is the Euler-Mascheroni constant (or simply the Euler constant). Assuming that
kBTc � ~ωD, the term tanh (~ωD/2kBTc) ≈ 1. The transition temperature is

Tc = 2eγE
π

~ωD
kB

e−1/V NFA (D.40)

≈ 1.13ΘDe
−1/V NFA, (D.41)

as expected [21], where ΘD = ~ωD/kB is the Debye temperature.
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D.4 The BCS gap at zero temperature
Using the same assumptions as in the previous section (weak electron-phonon
coupling and N(ξ) ≈ NF ), and taking the limit T → 0, the gap equation becomes

1
V NF

=
∫ 2π

0

dθpF
2π

∫ ~ωD

0
dξ

|η|2√
ξ2 + ∆2|η|2

=
∫ 2π

0

dθpF
2π |η|

2
[
ln
(
ξ +

√
ξ2 + ∆2|η|2

)]ξ=~ωD

ξ=0

=
∫ 2π

0

dθpF
2π |η|

2

ln
(
~ωD
∆|η|

)
+ ln

1 +

√√√√1 +
(∆|η|
~ωD

)2

 , (D.42)

where η = η(θpF ) are the basis functions
ηs(θpF ) = 1 (s-wave), (D.43)

ηdx2−y2 (θpF ) = a cos(2θpF ) (d-wave), (D.44)
where a is a normalization constant, such that

As ≡
∫ 2π

0

dθpF
2π |ηs|

2 = 1, (D.45)

Ad ≡
∫ 2π

0

dθpF
2π

∣∣∣ηdx2−y2

∣∣∣2 = a2

2 . (D.46)

Due to a separation of scales (∆� ~ωD � εF ),
1

V NF
≈
∫ 2π

0

dθpF
2π |η|

2 ln
(2~ωD

∆|η|

)
. (D.47)

Inserting the basis functions, Eq. (D.47) becomes

(s-wave): 1
V NFAs

= ln
(2~ωD

∆s

)
, (D.48)

(d-wave): 1
V NFAd

= ln
 4~ωD
a∆dx2−y2

− 1
2 . (D.49)

Solving for ∆
∆s(T = 0) = 2~ωDe−1/V NFAs, (D.50)

∆dx2−y2 (T = 0) = 4~ωD
a

e−
1
2e−1/V NFAd (D.51)

Using Eq. (D.40) to eliminate the coupling constant and the cutoff frequency,
∆s(T = 0) = πe−γEkBTc ≈ 1.76kBTc, (D.52)

∆dx2−y2 (T = 0) = 2π
a
e−γE−

1
2kBTc ≈

1.51kBTc, a = 1,
2.14kBTc, a =

√
2.

(D.53)

Note that the maximal d-wave gap is ∼ 2.14kBTc [37].



178 D The BCS gap and analytic solutions

D.5 The functional form of the BCS gap close to Tc
Close to Tc, the small parameters ∆0, δ and ∆T are introduced

∆ −−−−→
T→T−c

∆0, (D.54)

δ ≡ ∆0|η(θp′F )|, (D.55)
T −−−−→

T→T−c
Tc −∆T, (D.56)

β −−−−→
T→T−c

1
kB(Tc −∆T ) , (D.57)

such that Eq. (D.35) becomes

1 = V0NF

∫ 2π

0

dθp′F |η(θp′F )|2

2π

∫ ~ωD

0
dξ

tanh
( √

ξ2+δ2

2kB(Tc−∆T )

)
√
ξ2 + δ2 . (D.58)

Expansion in the small parameters yields

1√
ξ2 + δ2 = 1

ξ

(
1− δ2

ξ2 +O
(
δ4
))
, (D.59)

√
ξ2 + δ2 = ξ

(
1 + δ2

ξ2 +O
(
δ4
))
, (D.60)

1
2kB(Tc −∆T ) = 1

2kBTc

(
1 + ∆T

Tc
+O

(
∆T 2

))
, (D.61)

√
ξ2 + δ2

2kB(Tc −∆T ) = ξ

2kBTc

(
1 + ∆T

Tc
+ δ2

ξ2 +O
(
∆T 2,∆Tδ2, δ4

))
, (D.62)

tanh (a+ δ) = tanh(a) + δ

cosh2(a)
+O

(
δ2
)
. (D.63)

Combining Eqs. (D.59), (D.62) and (D.63), it is found that

tanh
( √

ξ2+δ2

2kB(Tc−∆T )

)
√
ξ2 + δ2 ≈ 1

ξ

(
1− 1

2
δ2

ξ2

)
tanh

[
ξ

2kBTc

(
1 + ∆T

Tc
+ δ2

ξ2

)]

≈ 1
ξ

(
1− 1

2
δ2

ξ2

)tanh
(

ξ

2kBTc

)
+

ξ
2kBTc

(
∆T
Tc

+ 1
2
δ2

ξ2

)
cosh2( ξ

2kBTc )


≈

tanh
(

ξ
2kBTc

)
ξ

+ ∆T
2kBT 2

c cosh2 ( ξ
2kBTc

)
+ δ2

ξ24kBTc

 1
cosh2 ( ξ

2kBTc

) − tanh
(

ξ
2kBTc

)
ξ

2kBTc

 . (D.64)
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Inserting this result back into Eq. (D.58) yields the gap equation

1 = I1 + I2 + I3, (D.65)

where

I1 = V0NF

∫ 2π

0

dθp′F |η(θp′F )|2

2π

∫ ~ωD

0
dξ

tanh
(

ξ
2kBTc

)
ξ

, (D.66)

I2 = V0NF
∆T

2kBT 2
c

∫ 2π

0

dθp′F |η(θp′F )|2

2π

∫ ~ωD

0
dξ

1
cosh2 ( ξ

2kBTc

) , (D.67)

I3 = V0NF

4kBTc

∫ 2π

0

dθp′F |η(θp′F )|2δ2

2π

∫ ~ωD

0

dξ

ξ2

 1
cosh2 ( ξ

2kBTc

)
−

tanh
(

ξ
2kBTc

)
ξ

2kBTc

. (D.68)

The first integral I1 is itself the gap equation, such that

I1 = 1, (D.69)

by definition. For the remaining two integrals, the following substitution is intro-
duced

x = ξ

2kBTc
, (D.70)

dx = dξ

2kBTc
, (D.71)

x −−−−→
ξ→~ωD

~ωD
2kBTc

. (D.72)

In the weak-coupling limit

kBTc � ~ωD � EF , (D.73)

and the integrals I2 and I3 can be taken to infinity. Defining

a ≡
∫ 2π

0

dθp′F |η(θp′F )|2

2π , (D.74)

where a = 1 for normalized base functions (like ηs and ηdx2−y2 , but a = 1/2 for
ηd′

x2−y2
defined below). Carrying out the substitution, the integral I2 becomes

I2 = aV0NF
∆T

2kBT 2
c

2kBTc
∫ ∞

0
dx

1
cosh2 (x)

= aV0NF
∆T
Tc

. (D.75)
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Inserting the definition δ ≡ ∆0|η(θp′F )|, the integral I3 becomes

I3 = V0NF∆2
0

4kBTc
1

2kBTc

∫ 2π

0

dθp′F |η(θp′F )|4

2π

∫ ∞
0

dx

x2

( 1
cosh2 (x)

− tanh (x)
x

)

= V0NF∆2
0

8(kBTc)2 η̃
∫ ∞

0

dx

x2

( 1
cosh2 (x)

− tanh (x)
x

)
, (D.76)

where

η̃ ≡
∫ 2π

0

dθp′F |η(θp′F )|4

2π =


1, if ηs(θpF ) = 1,
3
2 , if ηdx2−y2 (θpF ) =

√
2 cos(θpF ),

3
8 , if ηd′

x2−y2
(θpF ) = cos(θpF ),

(D.77)

and ∫ ∞
0

dx

x2

( 1
cosh2 (x)

− tanh (x)
x

)
= −7ζ(3)

8π2 . (D.78)

Here, ζ is the Riemann zeta function. Combining the results for I1, I2 and I3, the
gap equation finally becomes

1 = 1 + aV0NF
∆T
Tc
− V0NF

∆2
0

8(kBTc)2 η̃
7ζ(3)
8π2 . (D.79)

At an infinitesimal temperature ∆T below the transition temperature, the bulk
order parameter is finally found to be

∆2
0 = 8π2

7ζ(3)aη̃
−1k2

BTc∆T. (D.80)

D.6 Slope of the BCS gap at Tc
The slope of the order parameter can also be evaluated as ∆T → 0, by first noting
that

d∆2
0

dβ

∣∣∣∣∣∣
Tc

= d∆T
dβ

∣∣∣∣∣∣
Tc

d∆2
0

d∆T

∣∣∣∣∣∣
∆T→0

, (D.81)

where

∆T = Tc − T = Tc −
1
kBβ

, (D.82)

d∆T
dβ

= 1
kBβ2 = kBT

2. (D.83)

Applying this to Eq. (D.80), the slope becomes

d∆2
0

dβ

∣∣∣∣∣∣
Tc

= 8π2

7ζ(3)aη̃
−1(kBTc)3. (D.84)



Appendix E

The Riccati formalism
In this appendix, the quasiclassical Green function will be rewritten in terms
of electron-hole coherence functions, through the use of the so-called Shelankov
projectors [70, 80, 97]. The purpose of this is to automatically encode the nor-
malization condition of the quasiclassical Green function into the equations, thus
removing spurious solutions and ensuring numerical stability.
In the first section, the Shelankov projectors and the coherence functions are

introduced, and it is proven that these projectors fulfill certain properties due to
the normalization condition. In the second section, expressions for the spin-space
Green functions are obtained. The projectors are substituted into the Eilenberger
equation in the third section, recasting the latter into a set of coupled Riccati
ordinary differential equations. The Riccati amplitudes to be solved for in these
equations are the coherence functions γ and γ̃, to be defined in this appendix.
In the fourth section, the Riccati equations are solved analytically under cer-
tain assumptions. Some of the derivations in this appendix follow Ref. [150] and
discussions with its author.

E.1 Projectors and coherence functions
A projector P is a linear transformation from a vector space V onto itself that
fulfills idempotency, which means that having projected onto a state x, nothing
changes upon applying the same projection operator again,

P 2x = Px, ∀x ∈ V. (E.1)

Following the formalism of Ref. [97], the projection operators for retarded particle-
like (+) and hole-like (−) excitations in Nambu space are introduced as

P̂+ = 1
2

(
1̂ + ĝ

−iπ

)
(E.2)

P̂− = 1
2

(
1̂− ĝ

−iπ

)
, (E.3)
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respectively. It is straightforward to prove that P̂± in Eqs. (E.2) and (E.3) are
projection operators fulfilling idempotency

P̂ 2
± = 1

4

(
1̂± ĝ

−iπ

)2

= 1
4

(
1̂ + ĝ2

−π2 ± 2 ĝ

−iπ

)

= 1
2

(
1̂± ĝ

−iπ

)
= P̂±, (E.4)

where the normalization condition ĝ2 = −π21̂ was used in the last step. In
addition, the projectors are complementary, since

P̂± + P̂∓ = 1
2

(
1̂± ĝ

−iπ

)
+ 1

2

(
1̂∓ ĝ

−iπ

)
= 1̂. (E.5)

A set of operators which are both idempotent and complementary are also or-
thogonal

P̂±P̂∓ = 1
2

(
1̂± ĝ

−iπ

) 1
2

(
1̂∓ ĝ

−iπ

)

= 1
4

(
1̂− ĝ2

−π2

)

= 1
4
(
1̂− 1̂

)
= 0̂, (E.6)

where the normalization condition was used again. An orthogonal projection
operator P can be cast on a general form

P = A(ATA)−1AT , (E.7)

where the middle term (ATA)−1 is a normalizing factor. The analogy of the trans-
pose in Nambu space is particle-hole conjugation, denoted by the “tilde operator”
Ã(pF ,R; z, t) = A∗(−pF ,R;−z∗, t). The projection operators can then be de-
composed into the retarded, complex, spin-matrices γ(pF ,R; z) and γ̃(pF ,R; z)
as

P̂+ =
(

1
−γ̃

)
(1− γγ̃)−1(1, γ) (E.8)

P̂− =
(
−γ
1

)
(1− γ̃γ)−1(γ̃, 1). (E.9)

Here, the matrix inversion is defined through (1 + ab)−1(1 + ab) = 1. It will now
be shown that this new form of P̂± also satisfies idempotency, complementarity
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and orthogonality. Using the matrix inversion relation, idempotency is shown

P̂ 2
+ =

(
1
−γ̃

)
(1− γγ̃)−1(1, γ)

(
1
−γ̃

)
(1− γγ̃)−1(1, γ)

=
(

1
−γ̃

)
(1− γγ̃)−1(1− γγ̃)(1− γγ̃)−1(1, γ)

=
(

1
−γ̃

)
(1− γγ̃)−1(1, γ) = P̂+ (E.10)

P̂ 2
− =

(
−γ
1

)
(1− γ̃γ)−1(γ̃, 1)

(
−γ
1

)
(1− γ̃γ)−1(γ̃, 1)

=
(
−γ
1

)
(1− γ̃γ)−1(1− γ̃γ)(1− γ̃γ)−1(γ̃, 1)

=
(
−γ
1

)
(1− γ̃γ)−1(γ̃, 1) = P̂−. (E.11)

Using the relation (1 + ab)−1a = a(1 + ba)−1, complementarity is proven

P̂+ + P̂− =
(

1
−γ̃

)
(1− γγ̃)−1(1, γ) +

(
−γ
1

)
(1− γ̃γ)−1(γ̃, 1)

=
(

(1− γγ̃)−1 (1− γγ̃)−1γ
−γ̃(1− γγ̃)−1 −γ̃(1− γγ̃)−1γ

)

+
(
−γ(1− γ̃γ)−1γ̃ −γ(1− γ̃γ)−1

(1− γ̃γ)−1γ̃ (1− γ̃γ)−1

)

=
(

(1− γγ̃)−1 − γγ̃(1− γγ̃)−1 (1− γγ̃)−1γ − (1− γγ̃)−1γ
−γ̃(1− γγ̃)−1 + γ̃(1− γγ̃)−1 −(1− γγ̃)−1γ̃γ + (1− γγ̃)−1

)

=
(

1 0
0 1

)
= 1̂. (E.12)

Orthogonality still holds

P̂+P̂− =
(

1
−γ̃

)
(1− γγ̃)−1(1, γ)

(
−γ
1

)
(1− γ̃γ)−1(γ̃, 1)

=
(

1
−γ̃

)
(1− γγ̃)−1(−γ + γ)(1− γ̃γ)−1(γ̃, 1)

= 0̂ (E.13)

P̂−P̂+ =
(
−γ
1

)
(1− γ̃γ)−1(γ̃, 1)

(
1
−γ̃

)
(1− γγ̃)−1(1, γ)

=
(
−γ
1

)
(1− γ̃γ)−1(γ̃ − γ̃)(1− γγ̃)−1(1, γ)

= 0̂, (E.14)
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since a factors of (−γ + γ) = (γ̃ − γ̃) = 0 appear in both expressions. Rewriting
Eqs. (E.2)–(E.3), it is noted that

ĝ = −iπ(P̂+ − P̂−) (E.15)
= ∓iπ(2P̂± − 1̂). (E.16)

It is now possible to derive Eqs. (2.64)–(2.65), which expresses the quasiclassical
Green function in terms of the coherence functions. This is done by inserting the
projectors in Eqs. (E.8)–(E.9) into Eq. (E.15) to obtain

ĝ = −iπN̂ ⊗
(

(σ0 + γ ⊗ γ̃) 2γ
−2γ̃ − (σ0 + γ̃ ⊗ γ)

)
, (E.17)

N̂ =
(σ0 − γ ⊗ γ̃)−1 0

0 (σ0 − γ̃ ⊗ γ)−1

 , (E.18)

where the spin-dependence of the coherence functions is written explicitly as

γ = (γs + γt · σ) iσ2, (E.19)
γ̃ = iσ2 (γ̃s − γ̃t · σ) . (E.20)

Comparing Eq. (E.17) with Eq. (2.43), it is seen that the coherence functions can
be expressed in terms of the quasiparticle and pair propagators as γ = −(iπ −
g)−1f and γ̃ = (iπ + g̃)−1f̃ . Noting that the inverse is nothing but a projector in
spin-space, one can see that it is possible to interpret the coherence functions as
the particle- and hole-like projections of the pair propagator in spin-space.

E.2 Scalar spin-singlet Green functions
For a unitary singlet system with γ = γsiσ2 and γ̃ = iσ2γ̃s, the Green function ĝ
in Nambu⊗ spin-space is

ĝ =
 g0σ0 + g · σ (fs + ft · σ) iσ2
iσ2

(
f̃s − f̃t · σ

)
σ2 (g̃0 − g̃ · σ)σ2

 singlet=
(
g0σ0 fsiσ2
iσ2f̃s g̃0σ0

)
.(E.21)

Substituting the coherence functions into the Green function in Eq. (E.17) and
comparing to Eq. (E.21), the scalar Green functions are found to be

g0 = −iπ1− γsγ̃s
1 + γsγ̃s

, (E.22)

g̃0 = iπ
1− γsγ̃s
1 + γsγ̃s

, (E.23)

fs = −2iπ γs
1 + γsγ̃s

, (E.24)

f̃s = 2iπ γ̃s
1 + γsγ̃s

. (E.25)
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E.3 Deriving the Riccati equations
The quasiclassical Green function ĝ = ∓iπ(2P̂± − 1̂) in Eq. (E.16) will now
be substituted into the Eilenberger equation in Eq. (2.41). It is noted that 1̂
commutes with every operator in Eq. (2.41), and that ∇R1̂ = 0. Substituting
ĝ = ∓iπ(2P̂± − 1̂) and re-scaling then yields equations of motion for the She-
lankov projectors

i~vF ·∇RP̂± +
[
zτ̂3 − ĥ, P̂±

]
= 0̂, (E.26)

where zτ̂3 and ĥ are the diagonal and off-diagonal self-energies, respectively.
Choosing the + branch and acting with P̂− from the left or right yields

i~vF · P̂−∇RP̂+ + P̂−(zτ̂3 − ĥ)P̂+ = 0̂ (E.27)
i~vF · (∇RP̂+)P̂− − P̂+(zτ̂3 − ĥ)P̂− = 0̂, (E.28)

respectively, where orthogonality of the projectors have been used. The gradient
term in Eq. (E.27) can be rewritten as

P̂−∇RP̂+ = P̂−

(
0

−∇Rγ̃

)
(1− γγ̃)−1(1, γ)

+P̂−
(

1
−γ̃

)
∇R(1− γγ̃)−1(1, γ)

+P̂−
(

1
−γ̃

)
(1− γγ̃)−1(0,∇Rγ)

= P̂−

(
0

−∇Rγ̃

)
(1− γγ̃)−1(1, γ), (E.29)

due to orthogonality between the last factor in P̂− and
(

1
−γ̃
)
. Similarly,

(∇RP̂+)P̂− =
(

1
−γ̃

)
(1− γγ̃)−1(0,∇Rγ)P̂−. (E.30)

Equations (E.27) and (E.28) are written explicitly as

0̂ = i~vF ·
(
−γ
1

)
(1− γ̃γ)−1(γ̃, 1)

(
0

−∇Rγ̃

)
(1− γγ̃)−1(1, γ)

+
(
−γ
1

)
(1− γ̃γ)−1(γ̃, 1)(zτ̂3 − ĥ)

(
1
−γ̃

)
(1− γγ̃)−1(1, γ) (E.31)

0̂ = i~vF ·
(

1
−γ̃

)
(1− γγ̃)−1(0,∇Rγ)

(
−γ
1

)
(1− γ̃γ)−1(γ̃, 1)

+
(

1
−γ̃

)
(1− γγ̃)−1(1, γ)(zτ̂3 − ĥ)

(
−γ
1

)
(1− γ̃γ)−1(γ̃, 1), (E.32)
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respectivley. Equation (E.31) is simiplified by multiplying from the left with the
inverse of

(
−γ
1

)
(1− γ̃γ)−1, and from the right with the inverse of (1−γγ̃)−1(1, γ).

Equation (E.32) is simiplified by multiplying from the left with the inverse of(
1
−γ̃
)
(1 − γγ̃)−1, and from the right with the inverse of (1 − γ̃γ)−1(γ̃, 1). This

yields

i~vF · (γ̃, 1)
(

0
−∇Rγ̃

)
+ (γ̃, 1)(zτ̂3 − ĥ)

(
1
−γ̃

)
= 0̂ (E.33)

i~vF · (0,∇Rγ)
(
−γ
1

)
− (1, γ)(zτ̂3 − ĥ)

(
−γ
1

)
= 0̂. (E.34)

For the problems studied in this thesis, the self-energies are

zτ̂3 − ĥ =
(

z ∆
−∆̃ −z

)
. (E.35)

The Riccati equations (in spin-space) are

(i~vF ·∇R + 2z) γ = γ∆̃γ −∆, (E.36)
(i~vF ·∇R − 2z) γ̃ = γ̃∆γ̃ − ∆̃. (E.37)

E.4 Analytic solutions
Assuming a spin-singlet system with

γ = γsiσ2, (E.38)
γ̃ = iσ2γ̃s, (E.39)
∆ = ∆siσ2, (E.40)
∆̃ = iσ2∆̃s, (E.41)

the Riccati equations in Eqs. (E.36) and (E.37) can due to redundancy be written
as the scalar equations

(i~vF ·∇+ 2z) γs = −∆s − ∆̃sγ
2
s , (E.42)

(i~vF ·∇− 2z) γ̃s = −∆̃s −∆sγ̃
2
s . (E.43)

Note the sign-change due to a factor (iσ2)2 = −σ0. Choosing a coordinate system
such that the x-axis coincides with v̂F , it is possible to write

vF ·∇→ sign(vF )∂x. (E.44)

Recall that γ and γ̃ have stable solutions in opposite integration directions. The
Riccati equations are rewritten

∂xγs = i∆s + 2izγs + i∆̃sγ
2
s , (E.45)

∂xγ̃s = i∆̃s − 2izγ̃s + i∆sγ̃
2
s . (E.46)
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A Riccati equation of the form

y′(x) = q0(x) + q1(x)y(x) + q2(x)y2(x) (E.47)

has a solution
y(x) = yh + 1

w(x) , (E.48)

where yh is the homogeneous solution and w(x) satisfies the linear ODE

w′(x) + [q1(x) + 2q2(x)yh]w(x) = −q2(x). (E.49)

The homogeneous solutions to the coherence functions are found through simple
algebra

γs,h = −z ± iΩ
∆̃s

= −∆s

z ± iΩ , (E.50)

γ̃s,h = z ± iΩ
∆s

= ∆̃s

z ∓ iΩ , (E.51)

Ω ≡
√
|∆s|2 − z2. (E.52)

The choice of sign depends on which quantities are studied, i.e. retarded or
advanced. The retarded (advanced) quantities have poles in the upper (lower)
half-plane with energies z = ε + i0±. Here ε is a real energy and 0± an infinites-
imal shift. To obtain the correct bounded solutions, the upper sign is chosen for
retarded quantities, and the lower sign for advanced.
Matching the coefficients in Eqs. (E.45)–(E.46) with Eq. (E.49), it is found that

w′ +
(
2iz + 2i∆̃sγs,h

)
w = −i∆̃s, (E.53)

w̃′ + (−2iz + 2i∆sγ̃s,h) w̃ = −i∆s, (E.54)

with the solutions

w(x) = exp (±2Ωx)
±2iΩC − ∆̃s

±2iΩ , (E.55)

w̃(x) = exp (±2Ωx)
±2iΩC̃

− ∆s

±2iΩ , (E.56)

where C and C̃ are integration constants to be determined. Substituting these
expressions into Eqs. (E.45)–(E.48) and rearranging yields

γs = γs,h + ±2iΩC exp (∓2Ωx)
1− ∆̃sC exp (∓2Ωx)

, (E.57)

γ̃s = γ̃s,h + ±2iΩC̃ exp (∓2Ωx)
1−∆sC̃ exp (∓2Ωx)

. (E.58)

(E.59)
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The correct bounded solutions for retarded quantities are given by the upper signs
for γ and the lower signs for γ̃. Let γs,0 and γ̃s,0 denote given initial values of the
respective trajectories, such that

γs,0 ≡ γs(x = 0) = γs,h + 2iΩC
1− ∆̃sC

, (E.60)

γ̃s,0 ≡ γ̃s(x′ = 0) = γ̃s,h + 2iΩC̃
1 + ∆sC̃

. (E.61)

Solving for C and C̃,

C = γs,0 − γs,h
2iΩ + ∆̃s (γs,0 − γs,h)

, (E.62)

C̃ = γ̃s,0 − γ̃s,h
2iΩ−∆s (γ̃s,0 − γ̃s,h)

. (E.63)

Summarizing for retarded quantities,

γs = γs,h + 2iΩC exp (−2Ωx)
1− ∆̃sC exp (−2Ωx)

, (E.64)

γ̃s = γ̃s,h + 2iΩC̃ exp (2Ωx)
1 + ∆sC̃ exp (2Ωx)

(E.65)

γs,h = −∆s

z + iΩ , (E.66)

γ̃s,h = ∆̃s

z + iΩ , (E.67)

Ω ≡
√
|∆s|2 − z2. (E.68)

In a discrete lattice, a piecewise order parameter is assumed. This is a reasonable
assumption if the discrete grid size is much smaller than the coherence length,
which is the length-scale that the order parameter is inherently assumed to vary
over in quasiclassics. The trajectories are then solved in discrete steps, where the
solution in the previous step is the initial value for the new step.



Appendix F

Spin-triplet superconductivity
This PhD project was initially spent studying spin-triplet superconductivity. The
pairing symmetry of interest was a p-wave superconductor, e.g. Sr2RuO4 [151],
and in particular, the px+ipy pairing symmetry [129, 130], with spin fixed perpen-
dicular to the superconducting plane dk = ẑ (unitary). This is outside the scope
of paper I and paper II. This appendix derives the Green functions in terms of
Riccati amplitudes for both unitary and non-unitary superconductors. The Ric-
cati equations for a superconductor with a mixed singlet-triplet pairing symmetry
is derived. The analytic solutions to the Riccati equations are introduced for a
unitary triplet pairing. The appendix also includes a table that compares various
expressions between singlet and triplet superconductors.

F.1 Scalar spin-triplet Green functions
Using the Shelankov projectors in App. E.1, the Green functions in Nambu⊗spin-
space where found to be

ĝ =
 g0σ0 + g · σ (fs + ft · σ) iσ2
iσ2

(
f̃s − f̃t · σ

)
σ2 (g̃0 − g̃ · σ)σ2

 , (F.1)

ĝ = −iπN̂ ⊗
(

(1 + γ ⊗ γ̃) 2γ
−2γ̃ − (1 + γ̃ ⊗ γ)

)
(F.2)

N̂ =
(1− γ ⊗ γ̃)−1 0

0 (1− γ̃ ⊗ γ)−1

 . (F.3)

Consider a spin-triplet system with the following coherence functions in spin-space

γ = γt · σiσ2 = γtd · σiσ2, (F.4)
γ̃ = −iσ2γ̃t · σ = −iσ2γ̃td · σ. (F.5)

The goal is to express the spin-space Green functions in Eq. (F.1) in terms of
the coherence functions γt and γ̃t by equating Eqs. (F.1) and (F.2). To do so,
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Eqs. (F.4) and (F.5) are substituted into Eq. (F.2) and reworked a bit, starting
with the terms in N̂ . By using the following expressions,

(a · σ) (b · σ) = a · b+ iσ · (a× b) , (F.6)

a · σ =
(

az ax − iay
ax + iay −az

)
, (F.7)

it is possible to rewrite the upper left term in N̂ as

(1− γ ⊗ γ̃)−1 = (1− (γt · σ)(γ̃t · σ))−1

= (1− γt · γ̃t︸ ︷︷ ︸
≡a

−σ · iγt × γ̃t︸ ︷︷ ︸
≡b

)−1

= (aσ0 − σ · b)−1

=
(
a+ bz bx − iby
bx + iby a− bz

) 1
(a+ bz)(a− bz)− (bx − by)(bx + iby)

= aσ0 + σ · b
a2 − b · b

= 1− γt · γ̃t + iσ · (γt × γ̃t)
1− 2 (γt · γ̃t) + (γt · γt) (γ̃t · γ̃t)

. (F.8)

Similarly, it is possible to rewrite the lower right term in N̂ as

(1− γ̃ ⊗ γ)−1 = 1− γ̃t · γt + iσ2σ · (γ̃t × γt)σ2

1− 2 (γ̃t · γt) + (γt · γt) (γ̃t · γ̃t)
. (F.9)

The common denominators in N̂ can be taken out of the matrix. Next, it is noted
that the diagonal elements of ĝ in Eq. (F.2) can be written as

1 + γ ⊗ γ̃ = 1 + γt · γ̃t + iσ · (γt × γ̃t) , (F.10)
1 + γ̃ ⊗ γ = 1 + γt · γ̃t + iσ2σ · (γ̃t × γt)σ2. (F.11)

Next, Eqs. (F.8)–(F.11) are inserted into ĝ and N̂ in Eq. (F.2). After quite some
algebra in the matrix multiplication between ĝ and N̂ , it is found that

ĝ = −iπ

(
g11 g12
g21 g22

)
1− 2 (γt · γ̃t) + (γt · γt) (γ̃t · γ̃t)

, (F.12)

g11 = 1− (γt · γt) (γ̃t · γ̃t) + 2i (γt × γ̃t) · σ, (F.13)
g12 = (γt · σ − (γt · γt)γ̃t · σ) 2iσ2, (F.14)
g21 = 2iσ2 (γ̃t · σ − (γ̃t · γ̃t)γt · σ) , (F.15)
g22 = −iσ2 (1− (γt · γt) (γ̃t · γ̃t) + 2iσ · (γ̃t × γt))σ2. (F.16)
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In comparing Eqs. (F.12)–(F.16) with Eq. (F.1), it is found that

g0 = −iπ 1− (γt · γt) (γ̃t · γ̃t)
1− 2 (γt · γ̃t) + (γt · γt) (γ̃t · γ̃t)

, (F.17)

g̃0 = iπ
1− (γt · γt) (γ̃t · γ̃t)

1− 2 (γt · γ̃t) + (γt · γt) (γ̃t · γ̃t)
, (F.18)

g = 2π γt × γ̃t
1− 2 (γt · γ̃t) + (γt · γt) (γ̃t · γ̃t)

, (F.19)

g̃ = −2π γt × γ̃t
1− 2 (γt · γ̃t) + (γt · γt) (γ̃t · γ̃t)

, (F.20)

f = −2iπ γt − (γt · γt) γ̃t
1− 2 (γt · γ̃t) + (γt · γt) (γ̃t · γ̃t)

, (F.21)

f̃ = 2iπ γ̃t − (γ̃t · γ̃t)γt
1− 2 (γt · γ̃t) + (γt · γt) (γ̃t · γ̃t)

. (F.22)

(F.23)

The expressions for a unitary system, i.e. where all the cross products vanish due
to d× d∗ = 0, are summarized in Tab. F.1 on p. 194.

F.2 Pure triplet and mixed singlet-triplet pairing
Allowing for a mixed singlet (s) and triplet (t) pairing symmetry, the spinful
coherence functions and the order parameter can be written as

γ = (γs + γt · σ) iσ2, (F.24)
∆ = (∆s + ∆t · σ) iσ2, (F.25)

where bold symbols denote vectors, i.e. γt = γtdk, ∆t = ∆tdk, and σ are the
Pauli spin matrices, with

σ∗ = −σ2σσ2. (F.26)
Recall that the tilde operation for particle-hole conjugation is defined as

α̃(pF ,R; z, t) = α∗(−pF ,R;−z∗, t), (F.27)

and that

∆s(−pF ,R) = ∆s(pF ,R), (F.28)
∆t(−pF ,R) = −∆t(pF ,R). (F.29)

Applying the tilde operation to γ and using Eqs. (F.26) and (F.27)

γ̃(pF ,R; z) = γ∗(−pF ,R;−z∗)
= (γ∗s (−pF ,R;−z∗)− σ2γ

∗
t (−pF ,R;−z∗) · σσ2) iσ2

= iσ2 (γ̃s(pF ,R; z)− γ̃t(pF ,R; z) · σ) . (F.30)
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Similarly for ∆, it is found that
∆̃(pF ,R) = ∆∗(−pF ,R)

= iσ2
(
∆̃s(pF ,R)− ∆̃t(pF ,R) · σ

)
(F.31)

Thus,
γ̃ = iσ2 (γ̃s − γ̃t · σ) , (F.32)
∆̃ = iσ2

(
∆̃s − ∆̃t · σ

)
. (F.33)

Substitution of γ, ∆ and ∆̃ into the Riccati Eq. (E.36) yields
0 = (i~vF ·∇+ 2ε) (γs + γt · σ) iσ2 + (∆s + ∆t · σ) iσ2

− (γs + γt · σ) iσ2iσ2
(
∆̃s − ∆̃t · σ

)
(γs + γt · σ) iσ2. (F.34)

Multiplying from the right with −iσ2 and noting that σ2
i = σ0 is the unit matrix,

it is found that
0 = [(i~vF ·∇+ 2ε) γs + ∆s] + (γsγs + γt · γt) ∆̃s − 2

(
γt · ∆̃t

)
γs

+ [(i~vF ·∇+ 2ε)γt + ∆t] · σ + (−γsγs + γt · γt) ∆̃t · σ − 2
(
γt · ∆̃t

)
γt · σ

+ 2
(
γs∆̃s

)
γt · σ. (F.35)

Here, the identity (a · σ) (b · σ) = a · b + iσ · (a× b) was used, with any cross
products neglected since a unitary triplet system is considered, i.e. γt × γ̃t =
γtγ̃td × d∗ = ẑ × ẑ∗ = 0. Using the fact that σ1,2,3 are traceless, it is possible
to take the trace of Eq. (F.35) to obtain a Riccati equation for γs, as well as a
Riccati equation for γt by multiplying Eq. (F.35) with σ before taking the trace.
Similarly, substituting γ̃, ∆ and ∆̃ into Eq. (E.37) and following the same steps,
Riccati equations for γ̃s and γ̃t are obtained. These are

(i~vF ·∇+ 2ε) γs = − (γsγs + γt · γt) ∆̃s + 2
(
γt · ∆̃t

)
γs −∆s, (F.36)

(i~vF ·∇− 2ε) γ̃s = − (γ̃sγ̃s + γ̃t · γ̃t) ∆s + 2 (γ̃t ·∆t) γ̃s − ∆̃s, (F.37)
(i~vF ·∇+ 2ε)γt = (γsγs − γt · γt) ∆̃t + 2

(
γt · ∆̃t

)
γt −∆t

−2
(
γs∆̃s

)
γt, (F.38)

(i~vF ·∇− 2ε) γ̃t = (γ̃sγ̃s − γ̃t · γ̃t) ∆t + 2 (γ̃t ·∆t) γ̃t − ∆̃t

−2 (γ̃s∆s) γ̃t. (F.39)
Note that these equations are not in spin space, and that the equations couple
the singlet and triplet parts. It is possible to decouple these equations with the
following substitution

γ± ≡ ±(γs ± γt), (F.40)
γ̃± ≡ ±(γ̃s ± γ̃t), (F.41)

∆± ≡ ±(∆s ±∆t), (F.42)
∆̃± ≡ ±(∆∗ ±∆∗t ), (F.43)
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yielding the decoupled Riccati equations for mixed singlet-triplet pairing [152]

(i~vF ·∇+ 2ε) γ± = −∆̃±γ2
± −∆±, (F.44)

(i~vF ·∇− 2ε) γ̃± = −∆±γ̃2
± − ∆̃±. (F.45)

These equations are solved analogously to the spin-singlet case in App. E.4.
The singlet and triplet amplitudes are then obtained from the solutions using
Eqs. (F.40) and (F.41). For a pure triplet pairing, Eqs. (F.38) and (F.39) simplify
to

(i~vF ·∇+ 2ε) γt = −∆t + ∆̃tγ
2
t , (F.46)

(i~vF ·∇− 2ε) γ̃t = −∆̃t + ∆tγ̃
2
t . (F.47)

Again, these equations are are solved analogously to the spin-singlet case in
App. E.4, and have the analytic solutions presented in the Tab. F.1 in the following
section.

F.3 Comparison of singlet and triplet expressions
Table F.1 compares different expressions between pure spin-singlet and pure spin-
triplet superconductors that are unitary, i.e. the spin-triplet superconductor is
assumed to have a spin projection perpendicular to the superconducting plane
dk = ẑ. Here, s denotes singlet and t triplet, while I and II are the first and
second integration domains along the trajectory xv̂F , respectively. None of the
expressions are in spin-space (i.e. scalars), and Ω ≡

√
−∆∆̃− ε2. The singlet

and triplet expressions for the Green functions are derived in Apps. E.2 and F.1,
respectively. The solutions to the Riccati equations are derived in App. E.4.
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Table F.1: Comparison of pure spin-singlet and pure spin-triplet expressions in scalar
form

Expression Singlet Triplet

g0 −iπ1− γsγ̃s
1 + γsγ̃s

−iπ1 + γtγ̃t
1− γtγ̃t

g̃0 iπ
1− γsγ̃s
1 + γsγ̃s

iπ
1 + γtγ̃t
1− γtγ̃t

f −2iπ γs
1 + γsγ̃s

−2iπ γt
1− γtγ̃t

f̃ 2iπ γ̃s
1 + γsγ̃s

2iπ γ̃t
1− γtγ̃t

Matsubara symmetry fs(−εn) = f̃∗s (εn) ft(−εn) = −f̃∗t (εn)

γhomogeneous γs,0 = −∆s

ε+ iΩ γt,0 = −∆t

ε+ iΩ

γ̃homogeneous γ̃s,0 = ∆∗s
ε+ iΩ γ̃t,0 = −∆∗t

ε+ iΩ

γ γs,0+ 2iΩC exp(−2Ωx)
1−∆∗sC exp(−2Ωx) γt,0 + 2iΩC exp(−2Ωx)

1−∆∗tC exp(−2Ωx)

γ̃ γ̃s,0 + 2iΩC̃ exp(2Ωx)
1 + ∆sC̃ exp(2Ωx)

γ̃t,0 + 2iΩC̃ exp(2Ωx)
1−∆tC̃ exp(2Ωx)

C
γI
s,0 − γII

s,0

2iΩ + ∆∗s
(
γI
s,0 − γII

s,0
) γI

t,0 − γII
t,0

2iΩ + ∆∗t
(
γI
t,0 − γII

t,0
)

C̃
γ̃II
s,0 − γ̃I

s,0

2iΩ−∆s

(
γ̃II
s,0 − γ̃I

s,0
) γ̃II

t,0 − γ̃I
t,0

2iΩ + ∆t

(
γ̃II
t,0 − γ̃I

t,0
)



Appendix G

A useful Matsubara symmetry
In this appendix, it will be shown how to reduce the sum over Matsubara frequen-
cies from

εc∑
εn=−εc

−→
εc∑

εn=0
. This greatly improves the numerical calculation time of

the gap equation, and also applies to Ozaki summation. For more details, please
refer to App. C in Ref. [69]. The Matsubara Green function is defined as

ĝM =
(
gM fM

f̃M g̃M

)
, (G.1)

which obeys the symmetry(
ĝM(p̂F , ~R; εn)

)†
= τ̂3ĝ

M(p̂F , ~R;−εn)τ̂3. (G.2)

Dropping theM superscript and inserting the left and right-hand sides of Eq. (G.2),
(
g† f̃ †

f † g̃†

)
=
 g(p̂F , ~R;−εn) −f(p̂F , ~R;−εn)
−f̃(p̂F , ~R;−εn) g̃(p̂F , ~R;−εn)

 , (G.3)

yielding

f̂(−εn) = −
( ˆ̃f(εn)

)†
, (G.4)

ĝ(−εn) = (ĝ(εn))† = ĝ∗(εn). (G.5)

Thus, for a singlet and triplet pair-propagator, the scalar components satisfies

fs(−εn) = f̃∗s (εn), (G.6)
ft(−εn) = −f̃∗t (εn), (G.7)

respectively. The sum in the gap equation then simplifies to only positive energies∑
|εn|≤Ωc

fs =
∑

0<εn≤Ωc

(
fs + f̃∗s

)
, (G.8)

∑
|εn|≤Ωc

ft =
∑

0<εn≤Ωc

(
ft − f̃∗t

)
. (G.9)
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Spontaneously broken translational symmetry at edges of high-temperature
superconductors: thermodynamics in magnetic field

P. Holmvall,1, ∗ A. B. Vorontsov,2, † M. Fogelström,1, ‡ and T. Löfwander1, §

1Department of Microtechnology and Nanoscience - MC2,
Chalmers University of Technology, SE-41296 Göteborg, Sweden

2Department of Physics, Montana State University, Montana 59717, USA
(Dated: November 22, 2017)

We investigate equilibrium properties, including structure of the order parameter, superflow pat-
terns, and thermodynamics of low-temperature surface phases of layered dx2−y2 -wave supercon-
ductors in magnetic field. At zero external magnetic field, time-reversal symmetry and continuous
translational symmetry along the edge are broken spontaneously in a second order phase transi-
tion at a temperature T ∗ ≈ 0.18Tc, where Tc is the superconducting transition temperature. At
the phase transition there is a jump in the specific heat that scales with the ratio between the edge
length D and layer area A as (Dξ0/A)∆Cd, where ∆Cd is the jump in the specific heat at the d-wave
superconducting transition and ξ0 is the superconducting coherence length. The phase with broken
symmetry is characterized by a gauge invariant superfluid momentum ps that forms a non-trivial
planar vector field with a chain of sources and sinks along the edges with a period of approximately
12ξ0, and saddle point disclinations in the interior. To find out the relative importance of time-
reversal and translational symmetry breaking we apply an external field that breaks time-reversal
symmetry explicitly. We find that the phase transition into the state with the non-trivial ps vector
field keeps its main signatures, and is still of second order. In the external field, the saddle point
disclinations are pushed towards the edges, and thereby a chain of edge motifs are formed, where
each motif contains a source, a sink, and a saddle point. Due to a competing paramagnetic response
at the edges, the phase transition temperature T ∗ is slowly suppressed with increasing magnetic
field strength, but the phase with broken symmetry survives into the mixed state.

I. INTRODUCTION

Superconducting devices are often experimentally re-
alized as thin-film circuits or hybrid structures operat-
ing in the mesoscopic regime.1–4 At this length-scale,
where the size of circuit elements become comparable
with the superconducting coherence length, the nature
of the superconducting state may be dictated by various
finite-size or surface/interface effects5. This holds true
in particular for unconventional superconductors, such
as the high-temperature superconductors with an order
parameter of dx2−y2 symmetry that changes sign around
the Fermi surface. Scattering at surfaces, or any defect,
then leads to substantial pair breaking and formation of
Andreev states with energies within the superconducting
gap6,7. Today, the material control of high-temperature
superconducting films is sufficiently good that many ad-
vanced superconducting devices can work at elevated
temperatures8,9. This raises the question how the spe-
cific surface physics of d-wave superconductors influence
devices.

From a theory point of view, the physics at specular
pair-breaking surfaces of d-wave superconductors is rich
and interesting. The reason is the formation of zero-
energy (midgap) Andreev states due to the sign change
of the d-wave order parameter for quasiparticles scattered
at the surface6,7,10. In modern terms, there is a flat band
of spin-degenerate zero-energy surface states as function
of the parallel component of the momentum, p||, which is
a good quantum number for a specular surface. The large
spectral weight of these states exactly at zero energy (i.e.

at the Fermi energy), is energetically unfavorable. Dif-
ferent scenarios have been proposed, within which there
is a low-temperature instability and a phase transition
into a time-reversal symmetry broken phase where the
flat band is split to finite energies, thus lowering the free
energy of the system. One scenario is presence of a sub-
dominant pairing interaction and appearance of another
order parameter component π/2 out of phase with the
dominant one11–14, for instance a subdominant s-wave
resulting in an order parameter combination ∆d + i∆s.
The phase transition is driven by a split of the flat band of
Andreev states to ±∆s. The split Andreev states carry
current along the surface, which results in a magnetic
field that is screened from the bulk. In a second scenario,
exchange interactions drive a ferromagnetic transition at
the edge where the flat Andreev band is instead spin
split15,16. A third scenario involves spontaneous appear-
ance of supercurrents17–19 that Doppler shifts the An-
dreev states and thereby lowers the free energy. This sce-
nario involves coupling of the electrons to the electromag-
netic gauge field A(R), and was first considered theoreti-
cally for a translationally invariant edge. In this case the
transition is a result of the interplay of weakly Doppler
shifted surface bound states, decaying away from the sur-
face on the scale of the superconducting coherence length
ξ0, and weak diamagnetic screening currents, decaying on
the scale of the penetration depth λ. The resulting tran-
sition temperature is very low, of order T ∗ ∼ (ξ0/λ)Tc,
where Tc is the d-wave superconducting transition tem-
perature. Later, the transition temperature was shown
to be enhanced in a film geometry20–24 where two par-

ar
X

iv
:1

71
1.

07
94

6v
1 

 [
co

nd
-m

at
.s

up
r-

co
n]

  2
1 

N
ov

 2
01

7



2

FIG. 1. For Bext = 0, the superfluid momentum ps forms a non-trivial planar vector field with a regular chain of sources and
sinks along the edge (each with winding number n = 1/2), thereby breaking continuous translational symmetry along the edge.
Matching saddle point disclinations with winding number n = −1 are formed in the interior, along the grain diagonals. Because
of the particular grain geometry, four edge sources at the middle of the sides and four corner sources plus an n = 1 source in
the center are matched by four saddle points near the grain center. The temperature is T = 0.1Tc, which is well below T ∗. As
a consequence, the splay patterns are rather stiff, leading to triangular shapes near the edges. The stiffness is clear from the
magnitude variation shown in colorscale and in the inset.
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allel pair breaking edges are separated by a distance of
the order of a few coherence lengths. The suppression
of the order parameter between the pairbreaking edges
can be viewed as an effective Zeeman field that splits the
Andreev states and enhances the transition temperature.
The mechanism does not involve subdominant channels
or coupling to magnetic field, but depends on film thick-
ness D, and the transition temperature decays rapidly
with increasing thickness as T ∗ ∼ (ξ0/D)Tc. In this pa-
per we consider a modified scenario25,26 where sponta-
neous supercurrents also break translational symmetry
along the edge. This scenario too does not rely on any
additional interaction term in the Hamiltonian. Instead,
as we will discuss below, it relies on the development of
a texture in the gradient of the d-wave order parameter
phase χ, or more precisely in the gauge invariant super-
fluid momentum

ps(R) =
~
2
∇χ(R)− e

c
A(R), (1)

where ~ is Planck’s constant, e the charge of the elec-
tron, c the speed of light, and A the vector potential.
This superfluid momentum spontaneously takes the form
of a planar vector field with a chain of sources and sinks
along the edge and saddle point disclinations in the grain
interior, see Fig. 1. The free energy is lowered by a large
split of the flat band of Andreev states by a Doppler shift
vF · ps, where vF is the Fermi velocity. This free energy
gain is maximized by maximizing the magnitude of ps,
which is achieved by the peculiar vector field in Fig. 1.
The balance of the Doppler shift gain and the energy cost
in the disclinations with ∇ × ps 6= 0 and the splay pat-
terns between them leads to a high T ∗ ≈ 0.18Tc. The in-
homogeneous vector field induces a chain of loop-currents
at the edge circulating clockwise and anti-clockwise. The
induced magnetic fluxes of each loop are a fraction of the
flux quantum and forms a chain of fluxes with alternating
signs along the edge. In this paper we study the thermo-
dynamics of this phase in more depth and investigate the
influence of an external magnetic field, explicitly break-
ing time-reversal symmetry. As we shall see, in the exter-
nal magnetic field, the phase transition is still of second
order and is still characterized by the non-trivial vector
field ps(R) breaking continuous translational symmetry
along the edge.

Which of these outlined scenarios wins will ulti-
mately depend on material properties of a specific high-
temperature superconducting sample, or material prop-
erties of other candidate d-wave superconductors, e.g.
FeSe. In the third scenario, studied in Ref. 25 and 26
and in this paper, the resulting transition temperature is
large, T ∗ ∼ 0.18Tc. It means that the interaction terms
in the Hamiltonian for the other scenarios would have to
be sufficiently large in order to compete. It is even pos-
sible that one or another scenario wins in different parts
of the material’s phase diagram15.

From an experimental point of view, the surface
physics of d-wave superconductors is complicated by for

instance surface roughness, inhomogeneous stoichiome-
try, and presence of impurities. The formation of a band
of Andreev states centered at zero energy is well estab-
lished by numerous tunnelling experiments, in agreement
with the expectation for d-wave symmetry of the order
parameter, as reviewed in Refs. 6 and 7. One consis-
tent experimental result is that the band is typically
quite broad, with a width that saturates at low tem-
perature. On the other hand, the establishment of a
time-reversal symmetry breaking phase remains under
discussion, see for instance Refs. 27 and 28. Several
tunneling experiments on YBCO29–31 show a split of
the zero-bias conductance peak, while others do not32,33.
Other probes indicating time-reversal symmetry break-
ing include thermal conductivity34, Coulomb blockade in
nanoscale islands5, and STM tunneling at grain bound-
aries in FeSe35.

As we argued in Refs. 25 and 26 within the scenario
with spontaneous loop currents, the split of the Andreev
band might be difficult to resolve in a tunneling experi-
ment because of the broken translational symmetry along
the edge and associated variations in the superflow field.
This leads to a smearing effect for tunnel contacts with
an area larger than the coherence length and an expected
wide, largely temperature-independent, peak centered at
zero energy. In fact, this would be consistent with most
tunneling experiments. With an eye to inspire a new
generation of experiments, we present results for the in-
terplay between an external magnetic field, that induces
screening supercurrents, and the phase transition at T ∗

into a state with the spontaneous loop currents at the
edges. After a brief overview in Section II of the quasi-
classical formalism that we use, we will in Section III
present results that show this interplay from different
points of view. First, we will show the spontaneous cur-
rents and induced magnetic fields and relate them to
the disclinations in the superfluid momentum; second,
we study the magnetic field dependent thermodynamics
of the phase transition. Finally in Section IV, we sum-
marize our results and provide an outlook.

II. THEORETICAL MODEL

Our aim is to investigate the ground state of clean
mesoscopic d-wave superconducting grains in an exter-
nal magnetic field applied perpendicular to the crystal
ab-plane, as shown in Fig. 2. As a typical geometry we
consider a square grain with sidelengths D = 60ξ0, where
ξ0 = ~vF /(2πkBTc) is the zero-temperature supercon-
ducting coherence length. Here, vF is the normal state
Fermi velocity, and kB the Boltzmann constant. The
sides of the system are assumed to be misaligned by a
45◦ rotation with respect to the crystal ab-axes, inducing
maximal pair-breaking at the edges.

The external field is directed perpendicular to the xy-
plane,

Bext = −Bextẑ ‖ ĉ. (2)
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FIG. 2. (Color online) The system consists of a d-wave
superconducting grain exposed to an external magnetic field
Bext = −Bextẑ. The crystal ab-axes are rotated 45◦ relative
to the grain edges, inducing pair-breaking at the edges of
the system. The color scale shows the magnetic field Bind

induced in response to an external field of size Bext = Φ0/2A
at a temperature T = 0.2Tc. There is a diamagnetic response
carried by the condensate in the interior, and a paramagnetic
response carried by mid-gap surface Andreev states at the
edges.

We shall consider rather small external fields, and will use
a field scale Bg1 = Φ0/A, corresponding to one flux quan-
tum threading the grain of area A = D2 = 60ξ0 × 60ξ0.
The flux quantum Φ0 = hc/(2|e|) is given in Gaussian
CGS units. The field Bg1 is larger than the lower critical
field Bc1 ∝ Φ0/λ

2
0, where vortices can enter a macroscop-

ically large superconductor, since the grain side length
is smaller than the penetration depth. We assume that
λ0 = 100ξ0, relevant for YBCO). The upper critical field
Bc2 ∝ Φ/ξ2

0 is much larger than any field we include
in this study. To be precise, we parameterize the field
strength as

Bext = bBg1, Bg1 ≡
Φ0

A , (3)

and will consider b ∈ [0, 1.5].

A. Quasiclassical theory

We utilize the quasiclassical theory of
superconductivity36–38, which is a theory based on
a separation of scales39–42. For instance the atomic scale
is assumed small compared with the superconducting
coherence length, ~/pF � ξ0. This separation of scales
makes it possible to systematically expand all quantities
in small parameters such as ~/pF ξ0, ∆/εF , and kBTc/εF ,
where ∆ is the superconducting order parameter, pF
is the Fermi momentum, and εF is the Fermi energy.

In equilibrium, the central object of the theory is the
quasiclassical Green’s function ĝ(pF ,R; z), which is
a function of quasiparticle momentum on the Fermi
surface pF , the quasiparticle center-of-mass coordinate
R, and the quasiparticle energy z. The latter is real
z = ε + i0+ with an infinitesimal imaginary part i0+

for the retarded Green’s function, or an imaginary
Matsubara energy z = iεn = iπkBT (2n + 1) in the
Matsubara technique (n is an integer). To keep the
notation compact, the dependence on the parameters
pF , R, and z will often not be written out. The hat on
ĝ denotes Nambu (electron-hole) space

ĝ =

(
g f

−f̃ g̃

)
, (4)

where g and f are the quasiparticle and pair propagators,
respectively. The tilde operation denotes particle-hole
conjugation

α̃(pF ,R; z) = α∗(−pF ,R;−z∗). (5)

The quasiclassical Green’s function is parameterized in
terms of two scalar coherence functions, γ(pF ,R; z) and
γ̃(pF ,R; z), as43–49

ĝ = − iπ

1 + γγ̃

(
1− γγ̃ 2γ

2γ̃ −1 + γγ̃

)
. (6)

Note that with this parameterization, the Green’s func-
tion is automatically normalized to ĝ2 = −π2. The co-
herence functions obey two Riccati equations

(i~vF ·∇ + 2z + 2
e

c
vF ·A)γ = −∆̃γ2 −∆, (7)

(i~vF ·∇− 2z − 2
e

c
vF ·A)γ̃ = −∆γ̃2 − ∆̃, (8)

where A is the vector potential. These first order nonlin-
ear differential equations are solved by integration along
straight (ballistic) quasiparticle trajectories. Quantum
coherence is retained along these trajectories, but not be-
tween neighboring trajectories. A clean superconducting
grain in vacuum is assumed by imposing the boundary
condition of perfect specular reflection of quasiparticles
along the edges of the system.

The superconducting order parameter is assumed to
have pure d-wave symmetry

∆(pF ,R) = ∆d(R)ηd(θ), (9)

where θ is the angle between the Fermi momentum pF
and the crystal â-axis, and ηd(θ) is the d-wave basis func-
tion

ηd(θ) =
√

2 cos(2θ), (10)

fulfilling the normalization condition

∫
dθ

2π
|ηd(θ)|2 = 1. (11)
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The order parameter amplitude satisfies the gap equation

∆d(R) = λdNF kBT
∑

|εn|≤Ωc

∫
dθ

2π
η∗d(θ)f(pF ,R; εn),

(12)
where λd is the pairing interaction, NF is the density of
states at the Fermi level in the normal state, and Ωc is
a cutoff energy. The pairing interaction and the cutoff
energy are eliminated in favor of the superconducting
transition temperature Tc (see for example Ref. 50) as

1

λdNF
= ln

T

Tc
+
∑

n≥0

1

n+ 1
2

. (13)

The above equations are solved self-consistently with re-
spect to γ, γ̃, and ∆d. As an initial condition, a homo-
geneous superconductor is assumed at the start of the
trajectories. Along the trajectory and after a few self-
consistent iterations, the information of the initial con-
dition is lost51.

We choose an electromagnetic gauge where the vector
potential has the form

Aext(R) =
1

2
Bext ×R. (14)

The total vector potential A(R), that enters Eqs. (7)-(8),
is given by Aext(R) and the field Aind(R) induced by the
currents j(R) in the superconductor [Eq.(21) below]:

A(R) = Aext(R) + Aind(R). (15)

The vector potential Aind(R) should be solved from
Ampère’s circuit law

∇×∇×Aind(R) =
4π

c
j(R). (16)

To take the full electrodynamics into account, Aind(R)
also needs to be computed self-consistently in each it-
eration. However, the strength of the electrodynamic
back-coupling scales as κ−2, where κ ≡ λ0/ξ0 is the di-
mensionless Ginzburg-Landau parameter. The electro-
dynamic back-coupling can therefore safely be neglected
for type II superconductors (typically κ−1 ≈ 10−2 for the
cuprates).

The induced magnetic flux density is computed as

Bind = ∇×Aind. (17)

We shall neglect the problem of the field distribution
around the superconductor and focus on the field induced
at the ab-plane where we have simply Bind = Bindẑ.

B. Gauge transformation

Once the Green’s function and the order parameter
have been determined self-consistently, we can perform
a gauge transformation in order to make the order pa-
rameter a real quantity and in the process extract the
superfluid momentum ps. This can be illustrated by
transforming the Riccati equation in Eq. (7). To be-
gin with, the self-consistently obtained order parameter
is complex, i.e.

∆(pF ,R) = |∆d(R)|ηd(θ) eiχ(R). (18)

We make the ansatz

γ(pF ,R; z) = γ0(pF ,R; z) eiχ(R), (19)

and put that into the Riccati equation. We obtain

[i~vF ·∇ + 2(z − vF · ps)] γ0 = −|∆d|ηd(γ2
0 + 1), (20)

where ps is defined in Eq. (1).

C. Observables

The current density is computed within the Matsubara
technique through the formula

j(R) = 2πeNF kBT
∑

εn

∫
dθ

2π
vF g(pF ,R; εn). (21)

In the results section we shall show this current density
in units of the depairing current

jd ≡ 4π|e|kBTcNF vF . (22)

The free-energy difference between the superconduct-
ing and the normal states is calculated with the Eilen-
berger free-energy functional36

ΩS(B, T )− ΩN (B, T ) =

∫
dR

{
Bind(R)2

8π
+ |∆(R)|2NF ln

T

Tc
+ 2πNF kBT

∑

εn>0

[
|∆(R)|2
εn

+ iI(R; εn)

]}
, (23)

I(R, εn) =

∫
dθ

2π

[
∆̃(pF ,R)γ(pF ,R; εn)−∆γ̃(pF ,R; εn)

]
. (24)

We have verified that this form of the free energy give the same results as the Luttinger-Ward functional25,39,48.
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The entropy and specific heat capacity are obtained from
the thermodynamic definitions

S = −∂Ω

∂T
, (25)

C = T
∂S

∂T
= −T ∂

2Ω

∂T 2
. (26)

III. RESULTS

In Fig. 3 we show the influence of a rather weak ex-
ternal magnetic field, B = 0.5Bg1, applied to the d-wave
superconducting grain with pair breaking edges for vary-
ing temperature near the phase transition temperature
T ∗. The left and right columns show the currents and
the magnetic field densities, respectively, induced in re-
sponse to the applied field. To be concrete we discuss
a few selected sets of model parameters, as listed in Ta-
ble I. First, for T > T ∗ (parameter set I), the expected
diamagnetic response of the condensate in the inner part
of the grain is present, see Fig. 3(a) and Fig. 3(e). On the
other hand, midgap quasiparticle Andreev surface states
respond paramagnetically. This situation is well estab-
lished theoretically and experimentally through measure-
ments of the competition between the diamagnetic and
paramagnetic responses seen as a low-temperature up-
turn in the penetration depth52. Upon lowering the tem-
perature to T & T ∗ (parameter set II), see Fig. 3(b) and
Fig. 3(f), the paramagnetic response at the edge becomes
locally suppressed and enhanced, forming a sequence of
local minima and maxima in the induced currents and
fields. The bulk response is on the other hand relatively
unaffected. Finally, as T < T ∗ (parameter set III), see
Fig. 3(c) and Fig. 3(g), the regions of minum current
turns into regions with reversed currents. The resulting
loop currents with clock-wise and anti-clockwise circu-
lations induces magnetic fluxes along the surface with
opposite signs between neighboring fluxes. The situation
for T < T ∗ in an external magnetic field can be compared
with the one in zero magnetic field displayed in Fig. 3(d)
and Fig. 3(h), and also discussed before in Ref. 25. In
the presence of the magnetic field, there is an imbalance
between positive and negative fluxes, while in zero exter-
nal magnetic field, the total induced flux integrated over
the grain area is zero.

Let us quantify the symmetry broken phase in a mag-
netic field by plotting the superfluid momentum defined

Set Temperature External magnetic field
(I) T = 0.182Tc > T ∗ Bext = 0.5Bg1

(II) T = 0.176Tc & T ∗ Bext = 0.5Bg1

(III) T = 0.17Tc < T ∗ Bext = 0.5Bg1

(IV) T = 0.17Tc < T ∗ Bext = 0

TABLE I. Sets of parameters used for presenting results. The
field scale Bg1 = Φ0/A corresponds to an external magnetic
flux through the grain area exactly equal to one flux quantum.

in Eq. (1), see Fig. 4. For T & T ∗ (parameter set II), the
amplitude of ps varies along the edge (coordinate x), see
Fig. 4(a), reflecting the varying paramagnetic response in
Fig. 3(b) and Fig. 3(f). For T < T ∗ (parameter set III),
sources and sinks have appeared pairwise together with a
saddle point disclination, see Fig. 4(b). The left disclina-
tions in the figure are not well developed because of the
proximity to the corner. Finally, in Fig. 4(c), we show
the vector field at a lower temperature when the chain of
sources, sinks, and saddle points are well established and
the magnitude of ps is large, much larger than in the inte-
rior part of the grain still experiencing diamagnetism. In
a magnetic field, the vector field far from the surface has
a preferred direction reflecting the diamagnetic response
of the interior grain. This shifts the sources and sinks
along the surface, as compared with the regular chain for
zero field in Fig. 1, and moves the saddle points to the
surface region.

From a vector field perspective,53,54 the edge sources
and sinks each have a Poincaré index (winding number)
of n = 1/2. It is not n = 1 because they lie exactly on
the edge. On the other hand, the saddle point has index
n = −1. Thus, a motif with one edge source, one edge
sink, and one saddle point sum up to zero and annihilate
at T ∗. In the same fashion, increasing the magnetic field
strength, the motif gets smaller as the disclinations are
forced towards each other to match the superflow in the
bulk. However, the magnitude of ps near the surface due
to Meissner screening of the bulk is not large enough to
force an annihilation of the motifs. The broken symmetry
phase therefore survives the application of an external
magnetic field within the whole Meissner state, b ∈ [0, 1].

In Fig. 5 we show the superfluid momentum for a
higher field Bext = 1.5Bg1, in the mixed state where an
Abrikosov vortex resides in the grain center. We find that
also in this case the phase with edge loop currents sur-
vives. For higher fields, more vortices enter the grain (not
shown), still keeping the edge phase intact. However, the
exact configuration of Abrikosov vortices becomes geom-
etry dependent and the free energy landscape is very flat.
Therefore, the full investigation of the geometry depen-
dent phase diagram for very large fields is beyond the
scope of this paper.

Let us investigate further how the currents and mag-
netic fields are induced at T ∗. As we have seen, the
paramagnetic response and the spontaneously appearing
edge loop currents compete, as they both lead to shifts
of midgap Andreev states. As the temperature is low-
ered, the strength of the paramagnetic response increases
slowly and linearly, while the strength of the loop cur-
rents increases highly non-linearly. This is illustrated in
Fig. 6, by plotting the area-averaged current magnitude

j =
1

A

∫
d2R |j(R)|, (27)

as a function of temperature for the cases when Bext = 0
(solid line), Bext = 0.5Bg1 (dashed line), and for com-
parison also for a system without pair-breaking edges
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FIG. 3. (Color online) (a)–(d) Total current magnitude and (e)–(h) induced magnetic flux density for different temperatures
and external fields (see annotations). Lines and arrows have been added to illustrate the flow of the currents.
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FIG. 4. The superfluid momentum induced in an external magnetic field of Bext = 0.5Bg1 for lowering temperatures from top
to bottom. At the phase transition, source-sink-sadle-point motifs appear and separate along the edge breaking translational
invariance along the edge coordinate x. At the same time the magnitude |ps| grows large. Note the different color scales are
used in the subfigures in order to enhance visibility.

having only a diamagnetic response at Bext = 0.5Bg1
(dash-dotted line). The paramagnetic response is fully
suppressed at low temperatures T < T ∗. Such a sudden
disappearance of the paramagnetic response at a temper-
ature T ∗ should be experimentally measurable, for exam-
ple in the penetration depth or by using nano-squids55,56.

We show in Fig. 7(a) the total induced magnetic flux
through the grain

Φind =

∫
d2RBind(R), (28)

and in Fig. 7(b) the area-averaged order parameter mag-
nitude

∆d =
1

A

∫
d2R |∆d(R)|, (29)

both as functions of temperature for different values of
Bext. The figures also show results for a d-wave grain

without pair-breaking edges at Bext = 0.5Bg1 (dash-
dotted line). For better visibility, the latter results have
been scaled by a factor 0.4 and 0.9 in (a) and (b), re-
spectively. Two different trends are distinguishable in
the observables for T < T ∗ and T > T ∗, separated by
a “kink”. The induced magnetic flux through the grain
area decreases as T decreases down to T ∗ due to the in-
creasing paramagnetic response that competes with the
diamagnetic one. At T ∗, the inhomogeneous edge state
appear and starts competing with the paramagnetic re-
sponse. Thus, the total magnetic flux increases again. At
the same time the order parameter is partially healed.
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FIG. 5. (Color online) (a) Superfluid momentum ps(R) and (b) the induced field Bind(R) at T = 0.1Tc < T ∗ and Bext =
1.5Bg1, with an Abrikosov vortex stabilized in the center of the grain. The penetration depth is larger than the size of the
grain, which means that the Abrikosov vortex is overlapping with the induced fluxes at the pair-breaking edges. The colormap
for the flux density has been chosen to show that the edge fluxes (red to blue colors) are similar to those in Fig. 3.

FIG. 6. (Color online) Area-averaged current magnitude
defined in Eq. (27), versus temperature, without any external
magnetic field (solid line), with an external magnetic field
of magnitude Bext = 0.5Bg1 (dashed line), and for a system
without pair-breaking edges at Bext = 0.5Bg1 (dash-dotted
line). The latter has only a diamagnetic response. Letters
(I)–(IV) indicate the parameter values corresponding to the
fields in Fig. 3, see Table I.

A. Phase transition and thermodynamics

The sudden changes with a discontinuity in the deriva-
tive as function of temperature of the total induced cur-

rent, the magnetic flux, as well as the order parameter
(Fig. 6-Fig. 7) indicate that there is a phase transition
occurring at the temperature T ∗. In zero external mag-
netic field, we showed in Ref. 25 that there is a second
order phase transition at T ∗, where both time-reversal
symmetry and continuous translational symmetry along
the edge are spontaneously broken. Let us now investi-
gate the thermodynamics in an external magnetic field
already explicitly breaking time-reversal symmetry.

In Fig. 8(a) we plot the free energy difference between
the superconducting and normal states ΩS−ΩN , defined
in Eq. (23), for external field B = 0.5Bg1 (red dashed
line) and for zero field (solid black line). For comparison,
we show the free energy difference for a purely real order
parameter in zero field (black fine line), i.e. without the
symmetry breaking edge loop currents. For T < T ∗, this
solution is not the global minimum of the free energy,
and we therefore refer to it as a meta-stable state. To
enhance the visibility of the differences in free energy be-
tween the possible solutions, we show in Fig. 8(b) the free
energy difference with respect to the metastable state,
i.e. ΩS −Ωms. The small slope in the red dashed line at
T > T ∗ in Fig. 8 (b) is caused by the shift of mid-gap
Andreev states due to the paramagnetic response, which
increases as T decreases. The phase transition tempera-
ture T ∗ for the second order phase transition can be iden-
tified with the ”knee” in the entropy difference defined in
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FIG. 7. (Color online) (a) Temperature dependence of the
induced magnetic flux defined in Eq. (28). The solid lines
indicate, from bottom to top (colors purple to red), the ex-
ternal field magnitude from Bext = 0 to Bext = 0.5Bg1 in
steps of 0.05Bg1. The line corresponding to zero field lies ex-
actly at zero since there is an equal amount of positive and
negative fluxes induced in this case, see Fig. 3. Panel (b)
shows the area-averaged order parameter magnitude defined
in Eq. (29) versus temperature. Results are also shown for
a system without pair-breaking edges (dash-dotted line) at
Bext = 0.5Bg1, but scaled with a factor 0.4 and 0.9 in (a) and
(b), respectively.

Eq. (25), see Fig. 8(c) and Fig. 8(d). Since time-reversal
symmetry is already explicitly broken by the external
magnetic field, the phase transition signals breaking of
continuous translational symmetry and establishment of
the vector field ps with the chain of disclinations along
the edge, as shown in Fig. 4.

The knee in the entropy leads to a jump in the specific
heat, as shown in Fig. 8(e) and Fig. 8(f). The heat ca-
pacity is expressed in units of the heat capacity jump at
the normal-superconducting phase transition at Tc for a
bulk d-wave system

∆Cd =
2α

3
Ak2

BTcNF , (30)

where

α =
8π2

7ζ(3)
, (31)

with ζ being the Riemann-zeta function. The jump in
heat capacity at the phase transition is an edge-to-area
effect, and grows linearly as the sample becomes smaller.
The jump is roughly 4.5% of ∆Cd for the mesoscopic
A = 60×60ξ2

0 grain considered here, and grows as the size
of the grain is reduced. The phase transition temperature
T ∗ is extracted as a function of Bext as the midpoint
temperature of the jump in the specific heat. Fig. 9 shows
a phase diagram where the T ∗, extracted in this way from
the specific heat, is plotted versus external field strength
(crosses). We compare this with T ∗ extracted as the
minimum [the “kink”, see Fig. 7(a)] in the induced flux.
The small lowering of T ∗ with increased Bext is caused
by the competing paramagnetic response.

From the above it is clear that the phase with edge
loop-currents shows extreme robustness against an exter-
nal magnetic field in the whole Meissner region (Bext ≤
Bg1). The magnitude of the spontaneously formed su-
perfluid momentum ps at the edge grows nonlinearly
to be very large for T < T ∗, fueled by the lowering of
the free energy by Doppler shifts of the flat band of An-
dreev surface states. The corresponding correction to ps
due to the process of screening of the external magnetic
field, is in comparison small. Thereby, T ∗ is not dra-
matically shifted in a magnetic field and the symmetry
broken phase below T ∗ is robust.

IV. SUMMARY AND CONCLUSIONS

We have used the quasiclassical theory of supercon-
ductivity to study mesoscopic superconducting grains
with pair-breaking edges. Using this method, a phase
which spontaneously breaks translational symmetry and
T -symmetry was found in our previous study25 and we
have in this paper discussed the magnetic field depen-
dent thermodynamics in detail. We have shown that the
phase should be quantified in terms of its order parame-
ter, the vector field ps(R), which contains edge sources
and sinks, as well as saddle point disclinations. At these
points ∇ × ps 6= 0. We have studied how an external
magnetic field in both the Meissner state (Bext < Bc1)
and the mixed state (Bc1 < Bext < Bc2) affects this
phase, and in particular, how the transition temperature
T ∗ into this phase varies with the intensity of the exter-
nal field. Above T ∗, the external field gives rise to the
usual diamagnetic Meissner current in the bulk sample,
and a paramagnetic response along pair-breaking edges.
The paramagnetic current is carried by quasiparticles
(midgap states), typically survives a coherence length
into the sample, and gives rise to a tiny Doppler shift
of mid-gap states that competes with the loop-current
phase. As the temperature approaches T ∗, two types of
nodes form where the paramagnetic response is locally
suppressed and enhanced. As the temperature is low-
ered below T ∗, current loops appears at the nodes with
opposite circulations in neighboring loops. The loop cur-
rent strength increases highly non-linearly, suppressing
the paramagnetic response. As the strength of the exter-
nal magnetic field increases, the size of the Doppler shift
due to the paramagnetic response grows linearly. There-
fore, T ∗ decreases slightly as the magnitude of the ex-
ternal field increases. The influence of the external field,
and in particular the sudden disappearance of the para-
magnetic response, leads to observables which we argue
should be visible in experiment. For example the “kink”
in the total induced flux at the T ∗. The vortices should
be directly observable with recently developed scanning
probes55,56, and the sudden disappearance of the para-
magnetic response should to be observable with nano-
SQUIDS and possibly in penetration-depth experiments.
Furthermore, the large jump in heat capacity at the phase
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FIG. 8. (Color online) (a)–(b) free energy, (c)–(d) entropy, and (e)–(f) specific heat capacity, versus temperature. The lines
correspond to a system with purely real order parameter without edge currents (black fine line), a system with spontaneous
edge currents in zero magnetic field (black solid line), and in a finite external field B = 0.5Bg1 (red dashed line). In the
lower panels (b), (d), and (f), the quantities have been subtracted by the corresponding values of the system with a purely
real order parameter, the meta-stable (ms) state. The heat capacity is normalized by the heat capacity jump in the normal-
superconducting phase transition for a bulk d-wave system, denoted ∆Cd.

FIG. 9. (Color online) Phase diagram of the d-wave super-
conductor with pair breaking edges, showing the transition
temperature T ∗ to a state with spontaneously broken con-
tinuous translational symmetry versus the external magnetic
flux density. The crosses show T ∗ extraced from the jump in
the specific heat in Fig. 8(e), while the open circles show T ∗

extracted from the minimum of the total induced magnetic
flux in Fig. 7(a).

transition should be observable with nanocalorimetry57.
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Abstract. Unconventional d-wave superconductors with pair-breaking edges are predicted to
have ground states with spontaneously broken time-reversal and translational symmetries. We
use the quasiclassical theory of superconductivity to demonstrate that such phases can exist at
any single pair-breaking facet. This implies that a greater variety of systems, not necessarily
mesoscopic in size, should be unstable to such symmetry breaking. The density of states
averaged over the facet displays a broad peak centered at zero energy, which is consistent with
experimental findings of a broad zero-bias conductance peak with a temperature-independent
width at low temperatures.

1. Introduction
It was established already in the 1990s that a number of high-temperature superconductors
have an order parameter with dx2−y2 symmetry [1]. In such materials, quasiparticle scattering
at surfaces or off defects, where the sign of the d-wave order parameter changes for incoming
and outgoing scattering trajectories, leads to the formation of Andreev bound states at zero
energy [2–4]. For an ideal specular surface with [110]-orientation, all scattering trajectories
include the sign change, and the spectral weight of these zero-energy Andreev bound states
is very large: they form a flat band at zero energy as function of momentum parallel to
the interface, k‖. Shifting these mid-gap states to finite energies can lead to lowering of the
free energy. Any mechanism providing such a shift can then lead to a phase transition into
a new ground state with an associated broken symmetry [5, 6]. Several mechanisms have
been proposed, all leading to spontaneous time-reversal symmetry breaking: development of
a subdominant superconducting component of the order parameter in a time-reversal symmetry
breaking combination with the dominant, e.g. dx2−y2 + is, [7–9]; magnetic ordering [10]; and,
finally, spontaneous supercurrents [11–16]. The first two scenarios require an additional coupling
constant leading to an associated mean-field order parameter, while the last does not. Which
scenario that would be realized experimentally depends on material parameters, for instance the
strength of the coupling constants. It was shown in Ref. [15] that the transition temperature
within the third scenario is very large, of the order of 20% of the superconducting transition
temperature Tc. As a consequence, the other scenarios can compete only if their corresponding
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coupling constants are very large, or if the phase with spontaneous supercurrents is suppressed
for one reason or another.

So far, there are several transport experiments supporting spontaneous time-reversal
symmetry breaking [17–23]. But direct measurements of the associated supercurrents and
magnetic fields remain controversial [24, 25]. In our previous studies [15], we showed that
this controversy could be related to the manner in which these currents and magnetic fields
appear. We found a translational and time-reversal symmetry-breaking phase, in which a
staggered pattern of fractional vortex-antivortex pairs forms like a necklace along the pair-
breaking surface. The symmetric proportion of vortices to antivortices effectively eliminates any
net current and magnetic flux, and the small size of the vortices of a few coherence lengths
makes direct observation challenging.

Vorontsov found that a phase gradient can be generated through spontaneous time-reversal
symmetry breaking in thin films [14, 26–29], caused by finite-size effects in the form of a proximity
of two pair-breaking interfaces. In our previous work [15] we studied mesoscopic grains with only
pair-breaking edges and found that the vortex-antivortex phase is more energetically favorable
than the thin-film phase predicted by Vorontsov. In this study, we show that the vortex-
antivortex phase can occur without finite-size effects. This is done by considering a system with
a single pair-breaking edge.

2. Model and methods
We study a mesoscopic superconducting grain in vacuum and equilibrium, with a d-wave pairing
symmetry. The sides of the system are perfectly aligned with the crystal ab-axes, except one
facet which is misaligned by a 45◦ rotation (see Fig. 1). The facet gives rise to mid-gap states
associated with surface pair-breaking, and has a side-length given in units of the superconducting
coherence length ξ0 ≡ h̄vF /2πkBTc. Furthermore, a clean superconductor and a cylindrical
Fermi surface is assumed.

To study this system, the quasiclassical theory of superconductivity [30, 31] is used. In this
formulation, the superconducting d-wave order parameter ∆d(R) depends on the anomalous
Green’s function (pair propagator) f(pF ,R; εn) through the gap equation

∆d(R) = VdkBT

∫
dθpF
2π

η∗d(θpF )
∑

|εn|≤Ωc

f(pF ,R; εn), (1)

at spatial coordinate R, quasiparticle momentum pF and Matsubara energy εn (these parameters
will from now on be dropped for a compact notation). Here, θpF is the angle between the Fermi

momentum and the crystal ab-axes, ηd(θpF ) =
√

2 cos(2θpF ) the d-wave order parameter basis
function, Vd = −NFλd the pair-potential, NF the normal-state density of states at the Fermi
surface, λd the pairing interaction, and Ωc the cutoff energy. The anomalous Green’s function
is the off-diagonal component of the Matsubara Green’s function

ĝ =

(
g f

−f̃ g̃

)
, (2)

where hat denotes Nambu (electron-hole) space. The tilde operation denotes particle-hole
conjugation, g̃(pF ,R; εn) = g∗(−pF ,R, εn) [and the same for f̃ ]. The Green’s function is
obtained by solving the Eilenberger equation with the associated normalization condition

ih̄vF ·∇Rĝ +
[
τ̂3z − ∆̂, ĝ

]
= 0̂, (3)

ĝ2 = −π21̂, (4)



where ∆̂ = i(τ̂2<∆d + τ̂1=∆d)ηd(θpF ), and τ̂i (i = 1, 2, 3) are the three Pauli matrices in Nambu
space. The Eilenberger equation and the gap equation are solved self-consistently by the so-
called Riccati technique (see for instance Ref. [32]). After self-consistency has been achieved,
we compute observables such as the current density

j(R) = 4πeNFkBT

∫
dθpF
2π

vF (pF )
∑

εn

g(pF ,R; εn). (5)

The magnetic flux density induced by the current density is calculated through Maxwells
equations and Ampère’s circuit law.

3. Results and discussion
Figure 1 shows the induced magnetic flux density for two different superconducting grains
that both have a single pair-breaking facet. The flux is generated by the fractional vortex-
antivortex phase, and the pair-breaking facet is formed by cutting away either a triangular
corner or a triangular section in the middle of a square grain, as shown in Figs. 1 (a) and (b),
respectively. Thus, in the latter case, the pair-breaking facet is completely surrounded by bulk
superconductivity. The fact that the phase persists in these two systems clearly illustrates a
contrast to the Vorontsov phase [14], which relies on the proximity of two pair-breaking edges.
Figure 1 (c) shows a magnification of the pair-breaking facet in Figure 1 (a). As shown, there

++

-

-

(a) (b)

(c)

Figure 1. (Color online) (a) A d-wave superconducting grain at temperature T = 0.1Tc
with a spontaneously induced magnetic flux density, due to spontaneous generation of fractional
vortices and antivortices. The latter breaks time-reversal and translational (along the facet)
symmetries, and is linked to an energetically favorable Doppler shift of mid-gap states to finite
energies. These mid-gap states are formed through pair-breaking along the diagonal grain facet,
which is rotated 45◦ relative to the crystal ab-axes. All other grain edges are perfectly aligned
with the crystal axes, as indicated by the graphics. In panel (b), a triangular portion of a
square superconductor has been cut away, such that the pair-breaking facet is surrounded by
bulk superconductivity. Panel (c) is a magnification of the pair-breaking facet in panel (a).



might be an unequal number of vortices and antivortices for certain sizes, although the flux
density sums to zero. This is illustrated further in Fig. 2, where we vary the length of the pair-
breaking facet in corner-cut systems. Each panel shows the induced flux along the pair-breaking
facet in a square grain of side-length 120ξ0. The length of the facet varies from 2.5ξ0 in panel
(a), to 66ξ0 in panel (f). There are two relevant regimes; one when the length of the facet is
comparable to the fractional vortex size (∼ 5ξ0), and another when it is much larger. In the
latter case, the fractional vortices have a fairly constant diameter of 5ξ0, except the corner, or
(outermost, vortices which are generally smaller. Lengthening the facet increases the size of the
corner vortices, until they reach the same size as the central vortices, and new corner vortices
are formed. Therefore, there might be an unequal number of vortices and antivortices for certain
sizes. The flux density sums to zero, however, thanks to the corner vortices being much smaller.
This again illustrates the fractionality of the vortices. The most striking feature, however, is that
the phase survives even as the facet becomes smaller than 5ξ0, yielding a system with a single
fractional vortex and a clear net flux. The system obviously finds it more favorable to shift the
mid-gap states at the expense of having a net flux. Thus, the system with a single pair-breaking
facet seems to lack a critical minimum size, in contrast to both the thin-film geometry [14], and
the mesoscopic grain where all sides are pair-breaking [15].

Finally, Figs. 3 (a)–(b) show the density of states (DOS) along the facet for the systems in
Figs. 2 (a)–(b), respectively. All other systems have an identical DOS as in panel (b). The solid

(f)

(e)

(a) (c)(b)

(d)

Figure 2. (Color online) Magnetic flux density due to spontaneous fractional vortices along
a pair-breaking facet, where the length of the facet varies from panel (a) to (f). In each panel,
the system is a square grain with a side-length of 120ξ0, with one of the corners cut off at a 45◦

angle to generate the pair-breaking facet, as illustrated in Fig. 1 (a). Due to finite-size effects,
there might be an unequal amount of vortices and antivortices, although the total flux still adds
to zero. The only exception is when the facet is smaller than the typical vortex size (∼ 5ξ0) as in
panel (a), at which point there is a single vortex and a net flux. The temperature is T = 0.1Tc.



(a) (b)

Figure 3. (Color online) Density of states as a function of energy at the pair-breaking facet,
evaluated in the middle of a vortex current (dashed line) and between vortices (dot-dashed line).
The solid line is the facet-averaged density of states. Panels (a)–(b) correspond to the systems
in Figs. 2 (a)–(b), respectively. The rest of the systems have an identical DOS as in panel (b).

lines represent the facet-averaged DOS, the dashed lines the local DOS at a node (vortex) and
the dot-dashed lines the local DOS at an anti-node (between vortices). System (a) has a single
vortex, resulting in a fully split peak. All other systems show a wide peak in the facet-averaged
DOS. This result would be observable in a tunneling experiment as a conductance peak centered
at zero energy with a rather large width, that at low temperatures is temperature independent.
Only for system (a), or with a very local probe (point contact with a diameter smaller than the
superconducting coherence length) would a split conductance peak be observable.

4. Conclusions
We have used the quasiclassical theory of superconductivity to study a phase that spontaneously
breaks translational and time-reversal symmetries at pair-breaking edges, in unconventional d-
wave superconductors. Similar phases have been suggested by theory for quite some time, but
up until now, have relied on finite-size effects and the proximity of two such pair-breaking edges.
We have shown that such finite-size effects are not necessary for such a phase to exist, and that
there is no clear critical size below which the phase disappears. This implies that any system
with pair-breaking edges should be unstable to the formation of fractional vortices. Therefore,
the phase should be present at a greater variety of systems than previously proposed, and lead
to a broadening of zero-bias conductance peaks.
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