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Abstract This paper presents theConstructiveCooperativeCoevolutionary (C3) algo-
rithm, applied to continuous large-scale global optimisation problems. The novelty
of C3 is that it utilises a multi-start architecture and incorporates the Cooperative
Coevolutionary algorithm. The considered optimisation problem is decomposed into
subproblems. An embedded optimisation algorithm optimises the subproblems sep-
arately while exchanging information to co-adapt the solutions for the subproblems.
Further,C3 includes anovel constructive heuristic that generates different feasible solu-
tions for the entire problem and thereby expedites the search. In thiswork, two different
versions of C3 are evaluated on high-dimensional benchmark problems, including the
CEC’2013 test suite for large-scale global optimisation. C3 is compared with several
state-of-the-art algorithms, which shows that C3 is among the most competitive algo-
rithms. C3 outperforms the other algorithms for most partially separable functions
and overlapping functions. This shows that C3 is an effective algorithm for large-scale
global optimisation. This paper demonstrates the enhanced performance by using
constructive heuristics for generating initial feasible solutions for Cooperative Coevo-
lutionary algorithms in a multi-start framework.

Keywords Evolutionary optimisation · Cooperative coevolution · Algorithm design
and analysis · Large-scale optimisation

This work was supported in part by Västra Götalandsregionen, Sweden, under the Grant PROSAM
612-0974-14.

B Emile Glorieux
emile.glorieux@hv.se

1 Department of Engineering Science, University West, S-461 86 Trollhättan, Sweden

2 Department of Signals and Systems, Chalmers University of Technology, S-412 96 Gothenburg,
Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10732-017-9351-z&domain=pdf
http://orcid.org/0000-0002-0044-2795


450 E. Glorieux et al.

1 Introduction

Manypractical real-world optimisationproblemswithin engineering canbe considered
as global optimisation problems. Such problems are also often complex and large-scale
(i.e. large number of parameters) which makes them difficulty to solve (Ali et al. 2005;
Lozano et al. 2011). Heuristics and metaheuristics are among the existing methods to
solve continuous optimisation problems.

Multi-start methods are one type of metaheuristics. These methods usually embed
other optimisation algorithms, such as local search and neighbourhood search, which
lack the required diversification to explore the search space globally (Grendreau and
Potvin 2010). Themulti-start method starts the embedded algorithm frommultiple dif-
ferent initial solutions, often obtained by random sampling. A well-known multi-start
method, the Continuous Greedy Randomised Adaptive Search Procedure (CGRASP)
(Hirsch et al. 2010), is relevant for the work presented in this paper.

Another metaheuristic, that is adopted in this work, is the Cooperative Coevolu-
tionary (CC) algorithm (Potter and De Jong 1994). This algorithm requires that the
optimisation problem is decomposed into subproblems. Then, each subproblem has
a group of corresponding parameters. These subproblems are optimised separately,
but there is cooperation between the optimisations. The cooperation is necessary to
ensure that the solutions for the subproblems are still optimal when combined into a
solution for the entire problem. CC has a good performance especially on large-scale
optimisation problems. Though, other works (Li and Yao 2009; Omidvar et al. 2014,
2010; Potter and De Jong 1994; Ray and Yao 2009; Yang et al. 2008) found that
the CC struggles to solve non-separable problems (i.e. interactions/interdependencies
between parameters). Those works propose different versions of CC to improve the
performance on non-separable problems. These different versions of CCmainly focus
on regrouping the parameters into different subproblems. The aimwith this is to gather
interacting parameters in the same subproblem and optimise them together.

This work considers a different approach to improve CC’s performance, but can
still be used together with earlier proposed regrouping strategies. The focus is on
extending CC using the GRASP multi-start architecture. The algorithm proposed in
this work is called the Constructive Cooperative Coevolutionary (C3) algorithm. A
constructive heuristic is incorporated in C3 to efficiently find good feasible solutions.
These feasible solutions are used as initial solution for CC. When the search of CC
stagnates, C3 restarts the constructive heuristic to get a new initial solution. C3’s
aim is to increase the performance of CC, specifically on non-separable large-scale
optimisation problems.

The main contribution of this paper is the evaluation of the performance and the
robustness of the C3 algorithm and to get insight into its behaviour towards spe-
cific characteristics of large-scale optimisation problems (modality, separability, etc.).
Compared to previous work (Glorieux et al. 2014, 2015), C3 is improved in order to
make it scalable in number of subproblems. Thereby, it can be applied on awider range
of problems. C3 is compared with other algorithms, such as the Cooperative Coevolu-
tionary (CC) algorithm (Potter and De Jong 2000; Wiegand et al. 2001; Zamuda et al.
2008), Self-Adaptive Differential Evolution (jDErpo) (Brest et al. 2014) and Particle
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Swarm Optimiser (PSO) (Nickabadi et al. 2011). This shows that C3 is better than the
other algorithms, both in terms of performance and robustness.

The remaining of this paper is organised as follows, in Sect. 2 the relevant back-
ground information for C3 is given. In Sect. 3, the details of C3 are presented. The
implementation of the tests performed in this paper is described in Sect. 4. The results
of these tests are presented and discussed in Sect. 5 and finally Sect. 6 concludes this
work.

2 Background

In earlier work, C3 is applied on practical optimisation problems concerning control
of interacting production stations (Glorieux et al. 2014, 2015). There, it is used within
a simulation-based optimisation framework and it is shown that C3 outperforms other
optimisation methods. The previous version of C3 was not scalable in number of
subproblems, which was a limitation of the algorithm. In this work, an improved
version of C3 is proposed for which this limitation is removed. Hence, it can be
applied on a wider range of problems. In previous work on C3 the algorithm has only
been tested on problems that has up to 100 dimensions. In this work, C3 is tested on a
wide range of large-scale problems with up to 1000 dimensions. This section provides
the relevant background for the design of C3.

2.1 Greedy randomised adaptive search procedure

A well-known multi-start method (Martí et al. 2010) is the Continuous Greedy Ran-
domised Adaptive Search Procedure (CGRASP) (Hirsch et al. 2007, 2010), which is
based on the discrete GRASP (Feo and Resende 1995). For each start (also referred to
as iteration), two phases are executed: a constructive phase and a local improvement
phase. The constructive phase builds a feasible solution. This is done by performing
a line search separately in each search direction while keeping the parameters for the
other directions fixed to a random initial value. This solution is then used as an initial
solution for the optimisation algorithm used in the local improvement phase. The local
improvement phase terminates when the search reaches a local optimum.

Hirsch et al. (2007, 2010) evaluated the performance of CGRASP on a set of stan-
dard benchmark functions and a real world continuous optimisation problems. For
some of the benchmark functions, CGRASP’s performance was not as good com-
pared to other optimisation methods (Simulated Annealing and Tabu Search). Later,
an improved version of DC-GRASP was proposed by Araújo et al. (2015) that has an
improved performance, especially on high-dimensional problems.

C3 adopts CGRASP’s multi-start architecture with a constructive and improvement
phase for each start. The constructive phase of C3 is different in that the subproblems
are stepwise optimised (instead of a single parameter) and only the previously opti-
mised subproblems are kept fixed and the other subproblems are not considered during
the function evaluations. Another difference is that in C3’s improvement phase CC is
incorporated.
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2.2 Cooperative coevolutionary algorithm

The Cooperative Coevolutionary (CC) algorithm for continuous global function opti-
misationwas first proposed byPotter andDe Jong (1994). It requires that the problem is
decomposed into subproblems. Typically, a natural decomposition is used that groups
the D parameters into n sets, one set for each subproblem. For each subproblem, a
subpopulation is initialised and optimised separately. In order to evaluate the cost of a
member of a subpopulation, collaborator solutions are selected from the other subpop-
ulations in order to form a complete solution. The combination of these collaborators
is called the context solution. These collaborators are updated at specific intervals.

It has been proposed to use multiple collaborators from each subpopulation (Potter
and De Jong 1994;Wiegand et al. 2001). When multiple collaborators are used, differ-
ent combinations of these collaborators are evaluated to calculate the cost for a given
subpopulation member. The function evaluation results of these different combina-
tions are then combined into a single cost value for the subpopulation member. One of
the questions when using CC is how to select the collaborators for the context solution
and how many from each subpopulation.Wiegand et al. (2001) investigate the choice
of the collaborator solutions, more specifically the collaborator selection pressure, the
number of collaborators for a given function evaluation, and the credit assignment
when using multiple collaborators. It was shown that how to select the collaborators
depends on specific characteristics of the problem, especially the separability. More-
over, the selection pressure of collaborators is of less importance than the number of
collaborators.Although, increasing the number of collaborators is not always preferred
becomes the cost calculation because computationally more expensive.

The decomposition or grouping of the parameters influences the performance of
the cooperative coevolutionary algorithm. Random grouping has been proposed to
increase the performance on non-separable high dimensional problems (Omidvar
et al. 2010; Yang et al. 2008). With random grouping, the parameters are frequently
regrouped to increase the chance of having interacting parameters in the same sub-
problem. Omidvar et al. (2014) propose differential grouping to automatically uncover
the underlying substructures of the problem for grouping the parameters. The param-
eter groups are then determined so that the interactions between the subproblems is
kept to a minimum. Results show that this increases the performance significantly
for non-separable problems. Ray and Yao (2009) propose to group the parameters
according to their observed correlation during the optimisation. With this approach, a
population of solutions for the entire problem is generated, prior to the optimisation,
to determine the initial grouping. Thus, it requires an additional computational effort.
Decomposition strategies for C3 are not investigated in the work presented in this
paper but is considered a topic for future studies.

CC could have the tendency to limit its search to a single neighbourhood instead of
exploring the search spacemore (Grendreau andPotvin 2010). This behaviour has been
observed especially when best solution in the subpopulation is used as collaborator.
The search then convergence towards a local optimum.

Shi et al. (2005) propose using Differential Evolution (DE) instead of a genetic
algorithm for the subproblem optimisations in the cooperative coevolutionary algo-
rithm. Furthermore, an alternative static decomposition scheme is proposed in which
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a subproblem takes half of the parameters. Typically, a problem is decomposed so
that there is a subproblem for each parameter. The proposed algorithm (CCDE) and
decomposition scheme showed an improved performance compared to DE and com-
pared to the typical decomposition scheme. Though, the proposed algorithm was not
tested on large scale non-separable problems.

Using the Particle Swarm Optimiser (PSO) for the subproblem optimisation in CC
has been proposed by Bergh and Engelbrecht (2004). CCPSO has an increased perfor-
mance and robustness compared to PSO, especially when the optimisation problem’s
dimension increases. Though, itwas also noticed that the chance of converging to a sub-
optimum increases. Li and Yao (2012) propose a more advanced version of CCPSO
that incorporates a new PSO model and a random parameter regrouping scheme with
dynamic size for large scale problems up to 2000 parameters. The results showed
an increased performance compared to PSO and other state-of-the-art optimisation
algorithms.

3 Constructive cooperative coevolutionary algorithm

The details of the Constructive Cooperative Coevolutionary (C3) algorithm are
described in this section. In Algorithm 1 the pseudo code of C3 is presented. C3

is based on CGRASP’s construction and adopts the multi-start architecture. Further-
more, C3 also incorporates the CC algorithm. Hence, each iteration (or start) of C3

includes a constructive heuristic (Phase I) and CC (Phase II).
The optimisation problem is decomposed into n subproblems. This is done by

partitioning the D-dimensional set of search dimensions G = {1, 2, . . . , D} into n
setsG1, . . . ,Gn (line 1 in Algorithm 1). The decomposition or partitioning G can have
an influence on the performance of C3 and is thus important. This is not investigated
further in this work, but suggested as future work. The problems in this work are
always decomposed randomly in equal sized subproblems.

In Phase I, the constructive heuristic builds up a feasible solution for the entire opti-
misation problem (xi t,constr on line 4 in Algorithm 1). A feasible solution is a solution
that does not violate the constraints of the optimisation problem. Next, xi t,constr is
used in Phase II as initial context solution for CC that further improves this solution
(line 5 in Algorithm 1). Phase II is terminated when CC’s search stagnates. At the
next iteration, i t + 1, the constructive heuristic (Phase I) is restarted to build up a
new feasible solution. This is repeated for all iterations until the termination criteria
are met. An example of a termination criterion is to limit the maximum number of
function evaluations. The best solution x∗ found over all iterations is recorded and
presented as the result when the optimisation ends.

In both Phase I and II, the subproblems are optimised separately during n steps,
by an embedded optimisation algorithm. To calculate the cost of the members during
Phase I, the subproblems’ trial solutions are assembled in a partial solution. A partial
solution pi from Step i , is a solution for the first i subproblems, with 1 ≤ i ≤ n,
and neglects Subproblem i + 1 to Subproblem n. During the function evaluation, the
neglected subproblems are then also not considered. Note that calculating the cost of a
partial solution is equivalent to calculating the cost of a solution for a smaller problem
that only considers the parameters that are included in the partial solution.
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During Phase II, to calculate the cost of a member of a subpopulation, they are
assembled in a context solution (a solution for the entire problem) in the same way as
with CC. Asmentioned earlier, the context solution consists of collaborators, one from
each of the other subpopulations. In this work, different collaborators are randomly
chosen for each function evaluation.

The embedded optimisation algorithmmust be a population-based algorithm.When
it is deployed for optimising a subproblem, it initialises a (sub)population for the
corresponding subproblem’s parameters and evolves this subpopulation according to
the procedure of the used population-based algorithm. After the optimisation, the best
partial solutions in this subpopulations are used while the others are discarded. Hence,
in general terms, C3 can be combined with any suitable population-based optimisation
algorithm. This is demonstrated in this work by using both an evolution algorithm (i.e.
Differential Evolution) and a swarm-based algorithm (i.e. Particle Swarm Optimiser).

1: G = {G1, . . . ,Gn} ← grouping(n)
2: i t ← 0
3: while termination criteria false do
4: xi t,constr ← PhaseI (G, i t)
5: PhaseI I (G, xi t,constr )
6: i t ← i t + 1
7: end while

Algorithm 1: Pseudo code for Constructive Cooperative Coevolutionary (C3) algo-
rithm

3.1 Phase I: constructive heuristic

In Phase I, a constructive heuristic builds up a feasible solution xi t,constr for the
optimisation problem in a stepwise manner, without backtracking. It includes up to
n steps, one for each subproblem. The subproblem is optimised by the embedded
optimisation algorithm. In Algorithm 2, the pseudo code of Phase I is presented.

In the first iteration, i t = 0, Step 1 starts with an empty solution ∅ (line 1–5 in
Algorithm 2) and optimises only Subproblem 1 starting from a randomly initialised
subpopulation pop1 (SubOpt on lines 2-3 inAlgorithm2). During Step 1, the function
evaluations are done on only Subproblem 1. The next subproblem then is added in the
next step to initialise and optimise its subpopulation popi (lines 9–10 in Algorithm 2).
During Step i , Subproblem 1 to Subproblem i are included, and Subproblem i + 1
to Subproblem n are neglected. Hence, the current parameter vector only contains
the parameters of the first i subproblems and the function evaluations only take into
account those subproblems. For the optimisation in each step (SubOpt on line 10 in
Algorithm 2), only the parameters related to the most recently added subproblem are
optimised (Subproblem i in Step i). All the other included parameters are kept fixed
to values of partial solution selected in the previous step. This is illustrated in Fig. 1
for the second and the third step.
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Require: G = {G1, . . . ,Gn}, i t
1: if i t = 0 then
2: pop1 ← ini tialise()
3: {p11, . . . ,p1k } ← SubOpt (G1, pop1,∅)

4: {Xp} ← {p11, . . . , p1k }
5: end if
6: (piji , i) ← BestUnexplored({Xp})
7: while i < n do
8: i ← i + 1
9: popi ← ini tialise()
10: {pi1, . . . , pik } ← SubOpt (Gi , popi , p

i−1
ji−1

)

11: {Xp} ← {Xp} ∪ {pi1, . . . ,pik }
12: piji ← Choose({pi1, . . . , pik })
13: end while
14: return pnjn

Algorithm 2: Pseudo code for Phase I of C3

At the end of the optimisation of subproblem i , the k best (partial) solutions in
subpopulation popi are stored in {Xp} (line 11 in Algorithm 2). The purpose of the
stored partially constructed solutions in {Xp} is to be further constructive in Phase I
of next iterations of C3. For the next step, one of the k stored partial solutions is
randomly chosen (line 12 in Algorithm 2). In the next Step i + 1 of the current
iteration, the parameters of Subproblem i are now kept fixed to the randomly chosen
partial solution. Then, the parameters of Subproblem i + 1 are optimised in the same
way as Subproblem i in Step i . Finally, in the last step, Step n, the found partial solution
is now a solution for the entire problem since all subproblems have been added. The
best one, pnjn , is then used as initial context solution for CC in Phase II.

When the constructive heuristic is restarted in the next iterations, it does not start
constructing a new solution from scratch. Instead, it starts with the best unexplored
partial solution in {Xp} (line 6 in Algorithm 2). That partial solution is then further
constructed in the same way as in the first iteration. Since all stored partial solutions
in {Xp} are unique and different, the constructed solutions will also all be different.

Note that the cost value of all stored partial solutions in {Xp}, even though some
include more parameters (subproblems) than others, is compared to selected the best
one. If all subproblems have the same optimal cost value, this is possible. In the other
cases, a scale factor or a heuristic estimate that compensates for the differences in the
cost value between stored partial solutions from different steps can be introduced.

A constructive heuristic typically creates better feasible solutions, with the same
effort (i.e. in the same number of cost calculations), compared to random sampling
(Grendreau and Potvin 2010). Obviously, using better solutions as initial context solu-
tion for CC is beneficial for its convergence. The role of the constructive heuristic of
Phase I is to construct a feasible solution in a greedy fashion. The greediness of the
constructive heuristic comes from the fact that a single partial solution (one of the k
best) is further constructed in each step. The constructive heuristic also avoids redun-
dancy and guarantees that, in each iteration, a different feasible solution is constructed.
This forces CC in Phase II to search in unexplored areas.
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(a) (b)

Fig. 1 Illustration of the second (a) and third step (b) of the constructive heuristic in Phase I

3.2 Phase II: cooperative coevolution

Phase II starts from the constructed feasible solution xi t,constr and searches for better
solutions using CC. The pseudo code of Phase II is presented in Algorithm 3. The
optimisation in Phase II is organised in cycles. In one cycle, the same subproblems
as in Phase I are optimised stepwise, in a round-robin fashion. Consequently, a cycle
includes n steps, one for each subproblem.

Require: G = {G1, . . . ,Gn}, xi t,constr
1: l ← 0
2: repeat
3: l ← l + 1
4: i ← 1
5: while i < n do
6: if l = 1 then
7: popi ← I ni tialise()
8: popi ← SubOpt (Gi , popi , xi t,constr )
9: else
10: coll ← SelectCollaborators(pop1, . . . , popi−1, popi+1, . . . , popn)

11: popi ← SubOpt (Gi , popi , coll)
12: end if
13: i ← i + 1
14: end while

15: until

∣
∣
∣ f (bl−1∗)− f (bl∗)

∣
∣
∣

∣
∣ f (bl∗)

∣
∣

≤ ε

16: return

Algorithm 3: Pseudo code for Phase II of C3
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Subpopulation popi is optimised in the corresponding Step i by the embedded
optimisation algorithm (line 11 in Algorithm 3). To evaluate the cost, an individual of
the subpopulation is assembled in a context solution to form a complete solution. This
context solution consists of collaborator solutions that are randomly chosen from the
other subpopulations (line 10 in Algorithm 3). For each function evaluation, different
collaborators are randomly selected as proposed by Wiegand et al. (2001).

During the first cycle of Phase II the context solution is initially the constructed
solution xi t,constr instead of collaborators from the other subpopulations (lines 6–9
in Algorithm 3). A collaborator from subpopulation popi of Subproblem i is used
only after Step i has been completed. In other words, in Step i , the collaborators for
Subproblem i + 1 until Subproblem n are taken from xit,constr . Only in the first cycle,
the subpopulations are randomly initialised at the start of the subproblem optimisation
(line 7 in Algorithm 3).

Phase II is terminated when the search stagnates because it is likely that then a
local optimum is reached. When the relative difference between the best solution
found during the current cycle and the best solution from the previous cycle is less
than ε, Phase II is terminated. This is shown in line 15 in Algorithm 3, where bl∗ is
the best solution found in cycle l.

Because CC optimises the smaller subproblems separately, it is well-suited for
large-scale problems. The context solution ensures that a subproblem is co-adaptively
optimised, as a part of the complete problem, and not as an isolated optimisation prob-
lem. By using different collaborators in the context solution for each cost calculation,
a subproblem is optimised to collaborate with the individuals of the other subpopula-
tions and not with just a single specific context solution. On the other hand, using the
constructed solution from Phase I as context solution in the first cycle ensures that the
CC starts search in the region of the search space specific by this constructed solution.
In each iteration, the constructed solution directs CC to search a different region of
the search space.

4 Implementation

Two version of C3, C3jDErpo and C3PSO, are compared with 4 other algorithms. The
6 different optimisation algorithms compared in this work are: C3jDErpo, CCjDErpo,
jDErpo, C3PSO, CCPSO, PSO. Here, C3jDErpo refers to C3 where jDErpo is used as
embedded algorithm to optimise the subproblems, and in the sameway for CCjDErpo,
C3PSO and CCPSO. To evaluate the performance and robustness of C3, 51 tests on
large-scale benchmark functions were done for both versions of C3. Of which, 36 are
based on 12 benchmark functions (see Table 1 and Appendix 1) and each is tested with
3 different number of dimensions (D = 100, D = 500, D = 1000). Additionally,
tests are done on the test suite of the CEC’2013 special session on Large-Scale Global
Optimisation (LSGO) (Li et al. 2013).

The jDErpo algorithmused as an embedded algorithm inC3jDErpo for the subprob-
lem optimisation is proposed by Brest et al. (2014), and has a self-adaptive mechanism
to tune the control parameters, i.e. the mutation scale factor (F) and the crossover
parameter (CR). The PSO algorithm used as an embedded algorithm in C3PSO for
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Table 1 Specifications of the
used benchmark functions (Jamil
and Yang 2013; Li et al. 2013)

Separable Modality Domain

fAckley Yes Multi [−35; 35]
fEliptic Yes Uni [−100; 100]
fRastrigin Yes Multi [−5.12; 5.12]
fSphere Yes Uni [−10; 10]
fSumOfSquares Yes Uni [−10; 10]
fW/Wavy Yes Multi [−π;π ]
fDixon&Price No Uni [−10; 10]
fRot.Ackley No Uni [−35; 35]
fRot.Rastrigin No Uni [−5.12; 5.12]
fRosenbrock No Uni [−10; 10]
fSchwefel No Uni [−10; 10]
fGriewank No Multi [−5; 5]

the subproblem optimisation is proposed byNickabadi et al. (2011), and has a dynamic
inertia weight to progressively increase the greediness of the search as this is beneficial
for large-scale optimisation (Schutte and Groenwold 2005). The used CC algorithm
for the comparison is based on Wiegand et al. (2001) and uses self-adaptation based
on Zamuda et al. (2008).

Thepopulation size of standalone jDErpo is set to N P = 100 andof standalonePSO
to N P = 75. ForC3jDErpo andCCjDErpo, the population size is set to N P = 100 and
for C3PSO and CCPSO, the population size is set to N P = 30. All tests are repeated
25 times to obtain reliable mean results. All repetitions are repeated independently,
with random start values.

For all tests with CC and C3, the problem decomposed randomly into 10 equal sized
different subproblems (n = 10). During the steps of Phase I, only the parameters of
the subproblems that are included so far, are used to calculate the cost. For example
for D = 100, in the first step, the dimension for the function evaluation is 10, in the
second step it becomes 20, in the third step 30, and so on until in the last step it finally
becomes 100.

The termination criteria for the optimisation is 3E+6 function evaluations. The
stop criterion for a subproblem optimisation in a step of C3 and CC is 60,000 function
evaluations. Consequently, in C3 this allows up to five iterations (i t ≤ 5), depending
on how many cycles before Phase II stagnates in each iteration. The predefined value
ε, that is used to detect when the search of Phase II stagnates to start the next iteration,
was set to (ε = 1E−6). The number of stored partial solutions during each step of
Phase I was set to 15 (k = 15), to be able to construct more than enough different
solutions.

The 3 different versions (i.e. C3, CC, and stand-alone) are pairwise compared for
each specific benchmark function and dimension using the Wilcoxon signed-rank
test, which is a non-parametric test as recommended by García et al. (2009). The null
hypothesis is that there is no significant difference (i.e. belong to same distribution)
and is rejected when the p-value is smaller than the significance level of α = 0.05.
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5 Results and discussion

In this section, the results of the performed tests in this work are presented and the
relevant aspects of the results are highlighted and discussed. For simplicity, in this sec-
tion C3 is used as a collective name for C3jDErpo and C3PSO, and CC for CCjDErpo
and CCPSO, and the “stand-alone algorithms” for jDErpo and PSO.

5.1 Convergence analysis

The evaluation of C3’s convergence performance is presented in this section. The
main indicator for this is the cost of the best solution found after all 3E + 6 function
evaluations. The results are shown in Table 2. These are the mean of 25 independent
repetitions. When there is a significant difference between the algorithms according
to the pairwise comparison using the Wilcoxon signed-rank test, the best result(s) are
highlighted in bold font in Table 2.

It can be seen that C3 has a better convergence for themajority of the tests compared
to CC and the stand-alone algorithms. Considering the statistically significant differ-
ences, C3jDErpo is the best algorithm or among the best in 28 of the 36 tests compared
to CCjDErpo and jDErpo, and C3PSO in 23 of the 36 tests compared to CCPSO and
PSO. Furthermore, the pairwise comparison showed that C3jDErpo performs better
than CCjDErpo in 20 of the 36 tests, and similar in 10. C3PSO performs better in 20 of
the 36 tests, and similar in 5 tests. There is also no drastic deterioration in convergence
performance when the number of dimensions increases. It can be concluded that in
general there is a benefit of using C3 instead of CC because it either performs better or
at least similar. It must be noted that C3’s convergence performance is better than CC
on the non-separable functions, except for fRosenbrock. This indicates that C3 struggles
less with this type of optimisation problems.

The pairwise comparison between C3 and the standalone algorithms showed that
C3jDErpo performs significantly better in 33 of the 36 tests compared with jDErpo,
and C3PSO performs significantly better in 31 of the 36 tests. It can be concluded
that C3 performs better on these large-scale problems compared to the stand-alone
algorithms.

It can be concluded that in general C3jDErpo shows the best convergence perfor-
mance compared with C3PSO. The same is true for CCjDErpo and CCPSO, and also
when comparing jDErpo and PSO. Note that the embedded optimisation algorithm
for the subproblem optimisations has a significant influence on the convergence of
C3. If the subproblems have very different characteristics, it might be valuable to even
consider different optimisation algorithms for specific subproblems.

5.2 Computational effort

The difference in computation effort ofC3, CCand a stand-alone algorithm is analysed.
This was done by recording the optimisation time on the Rosenbrock benchmark
function ( fRosenbrock) and with jDErpo. The results of this are presented in Table 3.
Each test was repeated 25 times on the same computer. The specific time values differ
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Table 2 Performance results of different algorithms on the 12 benchmark functions (when there is a
significant difference, the best result is highlighted in bold)

D C3jDErpo CCjDErpo jDErpo C3PSO CCPSO PSO

fAckley 100 6.5E−19 3.4E−15 1.7E−1 1.0E−13 9.4E+0 1.4E−1

500 6.6E−15 2.9E+0 5.4E+0 1.4E+0 1.8E+1 1.9E+1

1000 2.4E−10 6.6E+0 8.4E+0 4.9E+0 1.8E+1 1.9E+1

fElliptic 100 0.0E+0 0.0E+0 1.8E−22 3.9E−25 2.7E−22 1.2E−11

500 2.3E−22 3.4E−23 4.5E−3 9.2E−20 2.9E−18 1.8E+5

1000 4.3E−14 6.2E−19 3.9E+7 1.3E−9 2.8E−9 2.2E+7

fRastrigin 100 0.0E+0 0.0E+0 5.4E+1 4.8E+1 7.8E+1 2.5E+2

500 7.8E+1 8.6E+1 6.1E+2 1.4E+3 1.5E+4 1.4E+3

1000 4.7E+2 5.2E+2 1.4E+3 3.6E+3 3.1E+3 3.9E+3

fSphere 100 0.0E+0 0.0E+0 4.1E−29 4.4E−31 3.1E−29 1.1E−17

500 2.3E−28 1.0E−29 7.2E−9 4.0E−16 5.4E−18 3.8E+0

1000 2.6E−18 1.3E−25 8.9E+1 1.5E−3 4.6E−15 1.3E+3

fSumOfSquares 100 0.0E+0 0.0E+0 2.1E−27 8.5E−30 2.1E−27 1.9E−14

500 1.0E−26 4.5E−27 6.6E−6 8.7E−13 1.1E−16 3.7E+1

1000 1.1E−13 1.4E−22 3.1E+4 3.1E−1 4.4E−8 2.9E+4

fW/Wavy 100 0.0E+0 5.1E−17 6.3E−2 3.2E−2 7.4E−2 1.6E−1

500 1.5E−2 2.0E−2 2.2E−1 1.7E−1 1.7E−1 1.3E−1

1000 5.1E−2 6.5E−2 2.8E−1 1.5E−1 1.5E−1 2.8E−1

fDixonPrice 100 1.1E+0 4.8E+3 6.7E−1 1.6E+1 2.2E+4 1.2E+0

500 2.0E+2 4.6E+2 6.9E+2 4.9E+2 3.9E+4 6.6E+2

1000 2.5E+3 2.3E+3 2.6E+6 5.1E+3 2.2E+3 1.4E+9

fRot.Ackley 100 0.0E+0 3.3E+3 4.3E+3 9.7E+2 3.0E+3 2.3E+3

500 3.2E+3 1.6E+4 1.7E+4 1.2E+4 1.7E+4 1.3E+4

1000 8.3E+3 3.4E+4 3.7E+4 3.2E+4 4.6E+4 2.7E+4

fRot.Rastrigin 100 1.1E−14 2.1E+1 2.0E+1 8.4E−1 2.1E+1 2.0E+1

500 8.8E−5 2.2E+1 2.1E+1 2.1E+1 2.2E+1 2.1E+1

1000 1.1E+0 2.2E+1 2.1E+1 2.2E+1 2.2E+1 2.2E+1

fRosenbrock 100 8.8E+1 1.3E+2 2.1E+1 1.2E+2 2.3E+2 3.5E+1

500 7.5E+2 9.6E+2 1.2E+3 1.0E+3 7.5E+2 1.1E+3

1000 2.4E+3 2.1E+3 1.2E+5 3.2E+3 1.8E+3 1.5E+8

fSchwefels 100 1.5E−13 8.2E+3 2.3E−7 3.0E−29 7.0E+3 1.4E+1

500 1.5E+2 1.4E+5 1.5E+2 5.4E+2 9.2E+4 9.4E+3

1000 2.4E+3 2.8E+5 7.9E+5 1.0E+4 2.9E+5 5.5E+4

fGriewank 100 4.5E−19 4.0E−19 3.0E−4 1.6E−2 6.0E−15 3.8E−3

500 1.3E−18 5.7E−18 2.6E−10 4.8E−3 3.1E−18 6.6E−3

1000 4.8E−17 4.8E−17 5.5E−2 2.6E−3 6.6E−17 5.0E−2

for different problems but the relations between the times for C3jDErpo, CCjDErpo
and jDErpo will remain the same. The results show that C3jDErpo’s optimisation
time is the shortest, and jDErpo’s is the longest. It can be assumed that C3jDErpo’s
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Table 3 Average CPU times for
3E+6 FEs on fRosenbrock
(D = 1000)

C3jDErpo CCjDErpo jDErpo

Time (s) 57.12 60.80 74.48

and CCjDErpo’s shorter optimisation times, compared to jDErpo, is due to separately
optimising smaller subproblems. Furthermore, the difference between C3jDErpo and
CCjDErpo is assumingly due to only considering a subset of subproblems during the
steps of Phase I.

5.3 Robustness analysis

The robustness of C3 has also been analysed and compared with the other optimisation
algorithms CC, jDErpo and PSO. In this analysis, the term robustness implies that the
algorithm succeeds in repeatedly finding a solution that is of a certain expected quality,
as byBergh andEngelbrecht (2004).Hence, a robust algorithmmanages to consistently
find high quality solutions. The tests were done on the same 12 benchmark functions
as before with dimension D = 100. The required quality of the solutions was set to a
cost of maximum 10−9. In Table 4, the number of successful repetitions is shown for
each algorithm. Each test was repeated 25 times.

On the 6 separable functions ( fAckley, fElliptic, fRastrigin, fSphere, fSumOfSquares,
fW/Wavy), the robustness of C3jDErpo and CCjDErpo are similar. Both C3jDErpo
and CCfDErpo are successful for all 25 repetitions on these 6 functions. Whereas
jDErpo is less robust because this is the case on only 3 of the 6 separable functions.
The same behaviour can also be seen when comparing the results of C3PSO, CCPSO
and PSO. The robustness is very similar for C3PSO and CCPSO, whereas PSO is less
robust.

Table 4 Robustness results for D = 100

C3jDErpo CCjDErpo jDErpo C3PSO CCPSO PSO

fAckley 25 25 22 25 0 18

fElliptic 25 25 25 25 25 23

fRastrigin 25 25 0 0 0 0

fSphere 25 25 25 25 25 25

fSumOfSquares 25 25 25 25 25 25

fW/Wavy 25 25 0 0 0 0

fDixonPrice 0 0 0 0 0 0

fRot.Ackley 25 0 0 0 0 0

fRot.Rastrigin 25 0 0 23 0 0

fRosenbrock 0 0 11 0 0 0

fSchwefels 25 0 0 25 0 0

fGriewank 25 25 25 1 25 17
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On the 6 non-separable functions ( fDixonPrice, fRot.Ackley, fRot.Rastrigin, fRosenbrock,
fSchwefels, fGriewank), the results show that C3jDErpo is more robust compared to
CCjDErpo, and to jDErpo. C3jDErpo is successful for all 25 repetitions on 4 of the
5 non-separable functions. Whereas CCjDErpo has 25 successful repetitions on just
a 1 of these 6 functions and on the other 5 functions, all repetitions are unsuccessful.
The difference between C3jDErpo and CCjDErpo is interesting because it is known
that CC struggles to optimise non-separable problems, and these results indicate that
non-separable problems are less problematic for C3. For jDErpo, the robustness is
less compared to C3jDErpo, and interestingly slightly better compared to CCjDErpo.
Again, the same can be seen when comparing the results of C3PSO, CCPSO and PSO
on the non-separable functions, although smaller differences.

5.4 Results CEC’2013 LSGO functions

The two version of C3 was also evaluated on the test suite proposed on CEC’2013
special session on Large-Scale Global Optimisation (LSGO) (Li et al. 2013). This test
suite consists of 15 functions, each function has 1000 dimensions (D = 1000). The
same user-settings for the C3 were used, i.e. 3E+6 function evaluations, n = 10, ε =
1E−6, k = 15, N P = 100 for C3jDErpo and N P = 30 for C3PSO. Again each tests
was repeated 25 times. The results of the tests with C3jDErpo and C3PSO are given
in Table 6 in Appendix 6.1.

These results were compared with 9 other large-scale global optimisation algo-
rithms representing the state-of-the-art, next to the previously usedCCjDErpo, jDErpo,
CCPSO and PSO algorithms. These included the following algorithms:MOS (LaTorre
et al. 2013), IHDELS (Molina and Herrera 2015), CC-CMA-ES (Liu and Tang 2013),
DECC-G (Yang et al. 2008), VMODE (López et al. 2015), MPS-CMA-ES (Bolufe-
Rohler et al. 2015), jDEsps (Brest et al. 2012), FBG-CMA-CC (Liu et al. 2015),
DECC-DG (Omidvar et al. 2014). The results for these 9 algorithms were taken from
literature (LaTorre et al. 2015; López et al. 2015; Bolufe-Rohler et al. 2015; Liu et al.
2015)

The algorithmswere ranked based on their reportedmean performance for each one
of the 15 benchmark functions in theCEC’2013LSGO test suite and an overall ranking
based on the average rank across the 15 functions was consequently calculated. The
results of the ranking are given in Table 5.

Table 5 shows that the one of C3 algorithms is the highest ranked algorithm for 5 of
the 15 benchmark functions ( f4, f5, f8, f9, f13). Furthermore, C3jDErpo is ranked 4th
overall and C3PSO is ranked 6th overall. Both C3 algorithms are thus in the top 6 of
the 15 algorithms. This shows that C3 is a competitive algorithm, with respect to these
other algorithms representing the state-of-the-art. It can thus be said that the proposed
C3 algorithm is effective for solving large-scale global optimisation problems.

The C3 algorithms are high ranked specifically for the partially additively separable
functions ( f4 − f9), the overlapping functions ( f12 − f14) and the non-separable
function ( f15). This indicates that C3 is effective, in respect to the other algorithms,
on all functions except the fully-separable ones. This confirms the conclusion from
the tests presented in Sect. 5.1.
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6 Conclusions and future work

The Constructive Cooperative Coevolutionary (C3) algorithm for global optimisa-
tion of bound-constrained large-scale global optimisation problems is presented in
this paper. C3 includes a novel constructive heuristic combined with the Cooperative
Coevolutionary (CC) algorithm in a multi-start architecture. For each restart, a new
good initial solution is created by the constructive heuristic. The region in the search
space around the constructed solution is then explored by using it as initial solution
for CC. The constructive heuristic ensures that a different solution is constructed for
each restart. Thereby, it drives CC to search specific regions of the search space.

C3 was compared with state-of-the-art algorithms on a set of large-scale benchmark
functions with up to 1000 dimensions, and on the test suite of CEC’2013 competi-
tion on large-scale global optimisation (Li et al. 2013). For the latter, 15 algorithms
(including two versions of C3) were compared on the 15 benchmark functions of the
CEC’2013 test suite. The latter shows that a C3 algorithm is highest ranked for 5 of
the 15 benchmark functions, outperforming the top algorithms from the most recent
CEC’2015 competition on large-scale global optimisation.

Based on the overall ranking across all benchmark function, the two proposed C3

algorithms are in the top 6 out of 15 algorithms (i.e. C3jDErpo is 4th and C3PSO is
6th). The results also showed that C3 outperforms the other algorithms on the partially
separable functions and the overlapping functions. Results also showed that there is
no extra computational cost with C3. It can thus be concluded that C3 is a competitive
effective algorithm for large-scale global optimisation.

It was demonstrated that C3 can be embedded with different population-based
optimisation algorithms for the subproblem optimisation. Results showed that the
embedded algorithm can significantly influence C3’s performance. Hence, it is impor-
tant to select an optimisation algorithm that is well-suited for the specific subproblems
at hand.

Future work with C3 should investigate whether it is rewarding to use automatic
decomposition strategies (i.e. parameter grouping), instead of a static decomposition as
used in this work. An adaptive or dynamic decomposition strategywould be preferable
in order to adjust the decomposition during the search. This could further improve the
performance and abilities of the C3 algorithm.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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Appendix A

6.1 Benchmark functions

Ackley function

fAckley(x) = −20e−0.02
√

D−1
∑D

i=1 x
2
i − eD

−1 ∑D
i=1 cos(2πxi ) + 20 + e

where the global minimum is located at x∗ = f (0, . . . , 0), f (x∗) = 0.
Elliptic function

fElliptic(x) =
D

∑

i=1

106
i−1
D−1

where the global minimum is located at x∗ = f (0, . . . , 0), f (x∗) = 0.
Rastrigin function

fRastrigin(x) = 10D +
D

∑

i=1

[

x2i − 10 cos (2πxi )
]

where the global minimum is located at x∗ = f (0, . . . , 0), f (x∗) = 0.
Sphere function

fSphere(x) =
D

∑

i=1

x2i

where the global minimum is located at x∗ = f (0, . . . , 0), f (x∗) = 0.
Sum of squares function

fSumOfSquares(x) =
D

∑

i=1

i x2i

where the global minimum is located at x∗ = f (0, . . . , 0), f (x∗) = 0.
W/Wavy function

fW/Wavy(x) = 1 − 1

D

D
∑

i=1

cos(kxi )e
−x2i
2

where the global minimum is located at x∗ = f (0, . . . , 0), f (x∗) = 0. The number
of local minima is kD or (k + 1)D for an odd or even value of k, respectively. In this
work, k was set to the arbitrary value of 12.
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Dixon & Price function

fDixon&Price(x) = (x1 − 1)2 +
D

∑

i=2

i
(

2x2i − xi−1

)2

where the global minimum is located at x∗ = f (2− 2i−2
2i ), f (x∗) = 0.

Rotated Ackley function

fRot.Ackley(z) = fAckley(R z)

where z = x − xopt , xopt is a random shift vector, R is a random rotation matrix and
a transformation function to create smooth local irregularities is applied as presented
by Li et al. (2013). The global minimum is located at x = xopt , f (xopt ) = 0.
Rotated Rastrigin function

fRot.Rastrigin(z) = fRastrigin(R z)

where z = x − xopt , xopt is a random shift vector, R is a random rotation matrix and
a transformation function to create smooth local irregularities is applied as presented
by Li et al. (2013). The global minimum is located at x = xopt , f (xopt ) = 0.
Rosenbrock function

fRosenbrock(x) =
D−1
∑

i=1

[

100
(

xi+1 − x2i

)2 + (xi − 1)2
]

where the global minimum is located at x∗ = f (1, . . . , 1), f (x∗) = 0.
Schwefel’s Problem 1.2

fSchwefel(x) =
D

∑

i=1

⎛

⎝

i
∑

j=1

x j

⎞

⎠

2

where the global minimum is located at x∗ = f (0, . . . , 0), f (x∗) = 0.
Griewank function

fGriewank(x) =
D

∑

i=1

x2i
4000

−
D

∏

i=1

cos

(
xi√
i

)

+ 1

where the global minimum is located at x∗ = f (0, . . . , 0), f (x∗) = 0.
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Appendix B

6.2 Results CEC’13 benchmark functions

See Table 6.

Table 6 Results on the
functions of the CEC’13 test
suite for large-scale global
optimisation with D = 1000 and
3E+6 function evaluations (Li
et al. 2013)

C3jDErpo C3PSO

Mean SD Mean SD

f1 2.6E−7 7.1E−7 1.2E+3 2.0E+3

f2 4.9E+3 3.9E+1 4.4E+3 2.2E+2

f3 2.0E+1 1.2E−2 2.1E+1 1.0E−1

f4 2.1E+6 6.0E+5 1.7E+6 7.7E+5

f5 5.2E+2 3.9E+2 5.3E+6 1.6E+6

f6 2.3E+1 5.3E+0 1.7E+4 5.8E+4

f7 2.2E+4 6.6E+3 2.7E+5 8.3E+5

f8 7.7E+7 2.1E+7 7.7E+7 3.6E+7

f9 3.2E+7 3.5E+7 1.2E+9 2.1E+8

f10 9.2E+7 3.9E+5 9.3E+7 7.1E+5

f11 1.4E+12 1.2E+11 1.5E+6 1.4E+6

f12 2.6E+3 2.6E+2 3.3E+3 3.0E+3

f13 3.1E+6 7.3E+5 6.4E+6 2.3E+6

f14 2.0E+7 2.8E+6 3.3E+7 1.4E+7

f15 7.0E+6 5.4E+5 2.1E+7 1.9E+6
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