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Abstract
The increased demand for computing power has lead designers to put an ever increas-
ing number of cores on processor dies. This advance has been made possible through
miniaturization and effectivization of the underlying semi-conductor technology. As a
by-product, however, the resulting computer systems are more vulnerable to interfer-
ence. This has made reliability a first-order concern and is treated both in software and
hardware through some form of redundancy. Redundancy is however detrimental to
performance leading to more resources spent re-computing. Efficient use of hardware
requires software that can take advantage of the computer system.

Compilers are responsible for translating high-level source-code into efficient machine-
code. Transformations in the compiler can improve performance and/or reliability of the
software. Prior to applying such transformation the compiler needs to verify the legality
and benefit of this optimization through program analysis.

This thesis develops program analyses for reasoning about performance and reliability
properties and show how these synthesize information that could not be made available
from previous approaches.

First, I present an analysis based on abstract interpretation to determine the impact
of a finite number of faults. An analysis based on abstract interpretation guarantees
logical soundness by construction, and I evaluate its applicability by deducing the fault
susceptibility of kernels and how a program optimization affect reliability.

Second, I present the fuzzy program analysis framework and show that it admits a
sound approximation in the abstract interpretation framework. Fuzzy sets allow non-
binary membership and, in extension, a qualitative static program analysis that can per-
form common-case analyses. Furthermore this framework admits a dynamic analysis
based on fuzzy control theory that refines the result from the static analysis online. Us-
ing the framework I show improvement on a code motion algorithm and several classical
program analyses that target performance properties.

Third, I present an analysis based on geometric programming for deciding the min-
imal number of redundant executions of an program statement while maintaining a re-
liability threshold. Often a fixed number of redundant executions per statement is em-
ployed throughout the whole program. To minimize performance overhead I exploit
that some statements are naturally more reliable, and more costly, than others. Using
the analysis I show improvement in reliability and performance overhead due to use of
a redundancy level that is tailored for each statement individually.

Keywords: static/dynamic program analysis, performance, reliability, abstract interpretation
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1
Thesis Summary

1 Introduction

Modern society depends on vast amounts of computing power. To this end proces-
sors are designed with increasing number of cores and accelerators. This is made pos-
sible through increasingly densely packed transistors with ever smaller feature sizes.
As a byproduct, however, the computer systems are more susceptible to interference,
from neighboring transistors and outside environment, such as by high-energy particles.
When a sufficiently high amount of charge is induced on the transistor it can manifest
as transient faults (i.e., soft errors or bit flips). This causes non-permanent alteration
to the machine state, such as flipping a binary 0 to a 1. As a consequence, executions
sometimes terminate with incorrect results (or do not terminate at all).

Soft errors have an measurable impact on High-Performance Computing (HPC) ap-
plications and embedded systems in hazardous environments making reliability a first
order concern when designing and using these computer systems. To combat this neg-
ative effect some form of redundancy is employed. Redundancy is however negative to
performance and striking a balance between the two is problematic. Furthermore the
increasing number of computers imply a larger demand for efficiency in terms of power,
performance and reliability to maximize return on investment.

The compiler is responsible for turning source-code into efficient machine-code and
can be used to improve reliability and performance. Transforming the software however
requires consideration into legality and benefit. These questions are answered though
program analyses to extract information from the program under consideration. An im-
portant aspect of program analysis is the accuracy and validity of the result. Program

1



2 CHAPTER 1. THESIS SUMMARY

analyses that are performed statically produce conservative result as an implication of
Rice’s theorem and since it often can not impose assumptions on the input set or envi-
ronment. Dynamic program analysis in contrast is accurate but has limited scope (and in
extension validity) because of the limited set of dynamic executions that are considered.

Much of the current work on program analysis is done by the verification community
that focuses on verifying functionality which is closely related to legality but less so to
benefit. Compiler optimizations for performance are motivated based on improvement in
the common-case as opposed to the worst-case/best-case. The difference in analysis type
when determining benefit and the problem with limited accuracy in program analysis
result motivates focused studies on these properties.

This thesis considers the problem of building program analyses for reliability and
performance properties. The verification community has made significant progress in
scaling and allowing expressive and yet correct-by-construction analyses. We intro-
duce some underlying themes from their work that we rely on to decide reliability and
performance properties efficiently and yet accurate. We will then state explicitly the
scope/problem statement (Sections 1.1 - 1.3) and contribution (Sections 3.1 - 3.6) of this
thesis.

Verification and program analysis Typical verification tasks involve proving a spec-
ification over a very large search-space, sometimes even infinite. Early attempts relied
heavily on implicit descriptions of the specification and state-space.

The Reduced Ordered Binary Decision Diagrams (ROBDD) [24] is a canonical rep-
resentation of a boolean function hence making equality checking tractable. By merging
equivalent components of the function it can furthermore achieve exponential reduc-
tion in storage space, allowing verification of pipelined arithmetic units with 5 × 1020

states [25]. The canonicity property is retained when allowing any finite number of ter-
minals. Arithmetic Decision Diagrams (ADD) [8] uses fixed-point numbers and can be
used to verify probabilistic specifications when representing a finite congruence set of
the unit interval [50]. Bayesian Networks [131] are probabilistic graphical models that
rely on independence assumptions between random variables to represent large prob-
ability distributions. The distributions of the random variables can be represented by
ADD:s to exploit redundancies. Breaking down a large model into simple combinations
of smaller models allows exploiting context-sensitivity to achieve tractable inference.

Decomposed verification is commonly used today. Rather than trying to prove an
invariant for each input of a component assume-guarantee verification [133] iteratively
weakens the pre-condition of a sub-component as it makes progress proving proper-
ties for its predecessors. But dependence between sub-models is not always binary
and some sub-models contribute more to the output. Hence it is possible that we can
ignore some assignments/relations between sub-models and still get a sufficiently accu-
rate output [31]. This is the motivation for introducing abstract models, and approaches
based on abstraction [42] and approximate inference [107], that have allowed the ver-
ification of a pipelined ALU with 101300 states [38]. An abstract model is a simpler
approximation of its concrete counterpart. This simplicity is often achieved by reducing
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the accuracy of the model whereby some properties cannot be decided as true or false.
Finding a suitable abstraction is often non-trivial since it is, a priori, not clear which
properties that are essential and more expressive approximations are often less tractable
to compute. Verification on abstract models typically try to find the strongest/weakest
property before checking if it satisfies the specification and is therefore an optimization
process.

The success of methods based in abstraction depends on how much of the state-space
that can be abstracted away and only explored with very low accuracy. Counter-example
guided abstraction refinement (CEGAR) [37] frameworks use equivalence partitions as
abstract models and refine these based on the counter-examples obtained if the model
does not satisfy the specification. It has been used successfully in a variety of situations,
for instance to verify a Fujitsu multimedia-assist processor which was not possible using
ROBDD based methods [37]. However, CEGAR is problematic to apply in probabilistic
verification as the number of partitions of an infinite state-space is not finite [60].

The verification community has shown that abstraction, modular reasoning and ef-
ficient data-representations allow for tractable verification with very large, even infinite
state-spaces. Hence they have shown that exploring very large models is possible if we
are only interested in a less precise property than the full result.

Limits of program analysis: Predictability As mentioned above, even in a very sim-
ple scenario it is unreasonable to expect to find highly accurate information statically on
the value of a dynamic property. This is in part due to lack of information and further-
more due to the conservative assumptions that are presented to the compiler. Limited
information severely hampers the accuracy of static program analyses such as alias anal-
ysis [121] and dependence analysis [132]. Dynamic program analysis approaches the
problem from the opposite direction by finding a predictor from a set of dynamic traces.
This approach aims for logically completeness as opposed to that of its static counter-
part which target logical soundness. Dynamic analysis based on machine learning has
emerged as a feasible approach to obtain more accurate analysis results and has been
used to analyze the best in-lining heuristic [97] and compilation sequence [98]. These
frameworks collect a training set of feature assignments and property values online and
generate a classifier offline. Deciding on the classifier type and parameter values is non-
trivial and similar in spirit to the problem of deciding on a good abstraction but where
the input set (i.e, training set) is noisy.

In conclusion, its important to make use of more accurate input data when perform-
ing program analysis. For this reason we would like to refine the results from a static
analysis when runtime information is available.

1.1 Thesis overview/restriction

In this thesis we aim to advance the state of the art of deciding program properties re-
lated to performance and reliability. These properties form a class of non-functional
properties [40] that make up a derived relation (or view) of the computation in contrast
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to functional properties (e.g. safety or liveness properties). The performance gain of a
transformation is motivated based on improvement in the average case while reliability
is motivated based on worst-case results. To this end we consider common-case [139]
and worst-case analyses for performance and reliability properties respectively. Fur-
thermore, we consider methods to improve the accuracy of these analyses by allowing
qualitative results that can be refined and updated when more information is available.

We specifically look at general performance and reliability properties (as opposed
to focusing on properties that are specific to a certain computer system). We aim at
producing program analyses that admit tractable and sound approximations.

To this end we consider analyses on flow-graphs where the control structure is known
and the semantics of the program can be described by a basic low-level machine, e.g.
MIPS R3000. Furthermore we only consider transient faults where the fault description
is possibilistic/probabilistic.

1.2 Problem statement

This thesis considers the problems of:
I. How to decide program properties related to performance or reliability when con-

sidering transient faults and assuming a possibilistic model (where a bounded
number of faults occur) or assuming a probabilistic model (where statements fail
according to a given probability distribution).

II. How to construct a framework for deciding a qualitative estimate of a property
statically and then refining this result dynamically.

III. Based on derived abstract properties, how to transform the program automatically
or semi-automatically to improve its reliability and/or performance.

1.3 Main Contributions

We list the contributions of this thesis:

I. For Problem I we present an abstraction to quantify the quality degradation of a
finite number of faults in a possibilistic fault model. (Section 3.3)

II. For Problem I we introduce an analysis to decide the smallest number of redundant
statements, to minimize performance overhead, while still maintaining a target
reliability. (Section 3.2)

III. For Problem I and Problem II we present the fuzzy program analysis framework
that allow us to reason about the common-case and worst-case value of a property.
We apply this framework to decide properties of interest to speculative compiler
optimizations and refine its result dynamically when more information is avail-
able. We show how the analysis framework improve the results of a lazy code
motion algorithm and constant folding. (Section 3.5 and 3.6)
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IV. For Problem III we introduce a source-to-source translation framework for im-
proving the fault-tolerance of an application. Using this framework we evalu-
ate performance overhead and reliability improvement of redundant excutions.
(Section 3.1 and 3.2)

2 Background
This section will review the fundamental concepts that this thesis rely upon. Its aim is to
convey the basics such that the reader can understand related works in Section 2.3 and
later the summaries of the papers in Section 3.1 - 3.6.

For a precise descriptions of these topics we refer to standard textbooks, i.e.. Nielson
et al. [123] (in particular Chapter 4 and Appendix A) for abstract interpretation and
Dubois et al. [56] for fuzzy sets.

2.1 Abstract interpretation
Approximation is central to most engineering fields. Taylor series, which are known
from calculus, can be used to approximate arbitrary continuous functions by a polyno-
mial of fixed order. The error of the approximation can be bounded by an error term±X.
Hence, for any input value we can deduce a range where the output value is guaranteed
to exist.

The extension to approximating programs is less straightforward. What should be
guaranteed by such approximation?

Abstract interpretation is a framework for deducing sound approximations. Sound-
ness implies that a property that is true in the approximation (the abstract program) is
guaranteed to be true in the original program (the concrete program). In contrast, if
the property is false in the approximation then the analysis is inconclusive. The frame-
work defines an abstraction as a order-theoretic relation between two ordered domains
(e.g. representing states or state transformers) where every set of elements have a unique
maximum (and often minimum) value. The order formalizes information content of each
domain element and the relation allows transferring a result from the first domain to the
second in such a way that the result preserve or over-approximate information. The
first domain describe the concrete results and the second describe the approximated,
or abstract, results. In the special case when we consider computations over numeri-
cal domains (i.e. states/state transformers over Rn) the relation amounts to specifying
that the results of a computation in the abstract domain is always a superset of a set of
computations in the concrete domain.

Our work rely on abstract interpretation to crystallize the meaning of approximation,
even when considering very complex or less concrete concepts (such as redundancy and
memory sharing between statements). This allows us to reuse a large number of abstract
domains and methods for combining and improving approximations. Approximation
tend to become complicated when using several abstract domains so having a framework
that guarantees correct-by-construction is very convenient.
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Figure 1.1: Triangular, trapezoidal and gaussian fuzzy sets

2.2 Fuzzy set theory
Elements are either members or non-members in classical sets. For fuzzy sets mem-
bership is graded and measured by a value of [0, 1] (i.e. the unit interval). Fuzzy sets
find applications in reasoning about concepts where membership can be measured but
still not assigned a crisp value, for instance tallness of a person: is 168cm enough to be
considered tall? or 187cm?

Distance to definite values, non-membership (0) or membership (1), determine bias
and distance away from the middle-value (0.5) determine uncertainty of the bias. A
membership of 0.25 is biased towards non-membership but a membership of 0.1 has a
stronger bias towards non-membership. Figure 1.1 exemplify three common types of
fuzzy sets over some linearly ordered domain (e.g. R) where the membership function
is a triangular, trapezoidal and gaussian.

If the domain is length of a person the fuzzy sets can be considered to quantify the
membership degree of a tall person given his/her height. For the triangular and gaussian
fuzzy sets there is a single height with maximal membership and both lower and higher
heights is considered to denote, in this categorization, a less tall person. Other fuzzy
concepts (e.g. short and gigantic) could overlap with tall but have the opposite member-
ship degree, i.e. a person that is unlikely to be considered tall would be more likely to
be considered short or gigantic.

Fuzzy sets can also be used to define various reasoning frameworks,

• Fuzzy logic defines logical connectives over fuzzy memberships to allow rea-
soning over graded truth-values, i.e. logical bias. Fuzzy logic is an extension of
Kleene’s 3-valued logic which is heavily used in computer science to reason about
programs where undefined values are possible.

• Possibility theory is a non-classical probability theory based on fuzzy sets that in
contrast to conventional probability theory employ both a possibility and neces-
sity measure to reason about the uncertainty of a statement. Possibility theory can
hence reason about non-deterministic uncertainty from combinations of informa-
tion from two mutually exclusive sources.

The truth-value of a statement should not be confused with the plausibility of a statement
although they are sometimes related as shown by the bi-lattice framework [70]. A bi-
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lattice employ a truth and information order over the same domain of values. Bi-lattices
can be used to relate seemingly different reasoning frameworks.

Our work use bi-lattices and fuzzy logic to reason about bias of a statement. We
also leverage other concepts from the fuzzy set community like fuzzy control to define
a fuzzy program analysis framework that allow for a solid runtime system where fuzzy
classifiers can refine the analysis result dynamically.

2.3 Related work

This thesis touches on several areas of program analysis and its relation to compiler
optimizations. In particular we present its relation to approximating machine semantics
and performance and reliability. Furthermore we present its relation to previous work
on hybrid and qualitative program analysis.

Static analysis of machine semantics A large body of the abstract interpretation lit-
erature focus on verification of high-level code where numbers are elements from the
set of reals, R. Approximating execution of low-level code in contrast requires other
considerations. Digital processors can only represent finite numbers and therefore com-
pute results over a finite congruence domain of the set of reals, Z2W for some W ∈ N
(typically W is 8, 16, 32 or 64). Here W is the word length of the bit-vector.

Approximation of numerical properties are in general often performed in the convex
polyhedral abstract domain [45] or (because of the high computational complexity in
using this domain) a limited subset thereof. The Z-polyhedra domain [124] can be used
to approximate machine semantics if each variable is bounded by a constraint (which
is possible to express by the polyhedron). However it is hard to implement operations
where wrap-around can occur in this domain. Intervals provide a tractable but often too
inaccurate abstraction but have been used for machine semantics [67]. Karr [86] showed
how hyperplanes (i.e. affine expression) can be used to form an abstraction. This was
extended, and refined to restrict attention to modular arithmetic, by Müller-Olm and
Seidl [122] who instead considered using an intersection of several hyperplanes (i.e. an
affine congruence system of generators). Although programs that only rely on linear
equations can easily be expressed in such a domain its harder to define the abstract
meaning of non-linear expressions in such a domain, even if its possible to express all
state transitions and no state transition in such a domain. King and Søndergaard [88, 89]
instead considered using an affine congruence system of relations and showed how this
could be done for the boolean case (W = 1) using a SAT solver. The abstract meaning is
then defined by incrementally adding new satisfying models of the concrete expression
until no new models can be found (hence the process is limited by the expressiveness of
affine congruence systems). Elder et al. [57] extended this domain to the case of also
include non-boolean cases (W > 1).

Besides numerical properties there are other aspects of low-level code where ap-
proximations is used.
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• (Memory) The bit-vector memory domain of Sharma et al. [153] approximate
memory references by uninterpreted functions. Each memory accessing instruc-
tion is provided with a fresh memory symbol that are constrained according to
the accessing instruction. Following each update of the value of any symbol in a
memory address all pairs of memory symbols are checked if they potentially over-
lap, in which case an equality between the memory symbols is added. Having a
single memory symbol for each static program instruction that access memory is
a course approximation when dealing with memory accesses in a loop. Tropi-
cal polyhedrons has been used to approximate memory references [3], but as the
tropical semi-ring are defined over R∪ {∞} it is not obvious how to extend these
result to low-level semantics.

• (Cache) Ferdinand [62] presented an approximation for caches intended to be used
when deciding worst-case execution time. The approximation allows computing
if an access always hit/miss given a finite, a priori defined number of cache blocks.

As far as we know we are the first to consider approximating machine semantics
where the computer system is affected by transient faults (Section 3.3). This abstraction
in turn rely on the King and Søndergaard (KS) abstract domain. We consider extensions
to our domain and the KS domain in Section 4.1.

Static analysis of reliability and performance properties Program analyses of in-
terest to performance properties either decide if a compiler optimization is legal (i.e.
do not harm performance) or if the compiler optimization is beneficial (i.e. improve
performance). In improving performance through a transformation we’re interested in
properties that suggest minimal performance degradation or maximal performance im-
provement. In using the result of these program analyses the compiler hence inhibit a
transformation based on legality properties and favor a transformation based on benefit
properties1.

Several data-flow analysis have been presented that decide legality of a program
transformation. Many well-known classical data-flow analyses [123] are used for this
purpose. Constant propagation decide if a program variable/expression is constant (and
if so its value). This information is used by the constant folding optimization to compute
results already at compile-time. Similarly, Liveness analysis deduce which variables that
hold values that will be read before being written. Registers allocation rely on this infor-
mation to decide which variables that need to be assigned to a register [134]. However
these optimizations (and analyses) are machine-independent and although legal, given
the correct analysis result, can be harmful to performance if applied. For instance in
applying register allocation it is beneficial to consider the frequency that variables are
accessed when deciding which variables to place in registers or memory (e.g. the spill
heuristic).

1Although legality/benefit analysis can seem similar to may/must analysis we here differentiate analyses
based on the type of property and not the type of collector function
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Recent results on program analysis for legality however focus on more complex anal-
yses such as dependency analysis in loops and alias analysis of pointers. Loops where
any two iterations are independent can be executed in parallel. Dependency analysis
decides if there are two iterations, the first assigning a variable and the second reading
from the same variable. The polyhedron model allows such analysis to performed on
an implicit description of a loop nest with affine transformation/array access. This de-
scription can be used to drive scheduling optimizations. Acharya et al. [1] consider the
problem of deciding which loop transformations to apply given a polyhedral description
of the dependencies.

In presenting the fuzzy program analysis framework (Section 3.4 - 3.6) we have
exemplified the framework using a lazy code motion algorithm, alias analysis and sev-
eral classical program analysis. We elaborate on extending this framework to consider
machine-dependent program analysis in Section 4.3.

Reliability in a probabilistic fault model is hard to accurately approximate at a high
(or functional) level since even small change to a low (or implementation) level can have
a measurable impact [83]. At the same time it is intractable to compute this for a large
and complex model. The Probability Transfer Matrix (PTM) framework [94] defines
algebraic operations of connecting faulty circuits in parallel and serial. It uses the ADD
description to describe the faulty circuits. But even with this description the framework
requires consideration into the order in which algebraic operations are performed and the
ADD variable order [95] as well as simplifications [162] to be considered tractable. For
this reason we have considered using formal reasoning that admits approximations. But
in contrast to the previous works we have considered a possibilistic fault model where a
finite number of faults occur. The Single-Event Upset (SEU) model is the most common
fault model in this class. Seshia et al. [150] used model checking to verify a ESA
SpaceWire communication protocol when it was functioning in an environment affected
by the SEU model. Similarly, type checking in Faulty Logic [114] can be used to validate
an the Triple Modular Redundancy (TMR) design pattern for the SEU model. However
these approaches does not allow any notion of quality to be associated to the results.
The trend to approximate computing have shown that quality is an important aspect
when considering reliability [120]. The Hyperball abstraction (Section 3.3) allows for
an analysis where the quality of a faulty program can be decided.

Hybrid and qualitative program analysis The trade-off between safety and bene-
fit of applying a compiler optimization motivates different uses and interpretations of
program analysis results. Commonly, production compilers (e.g. GCC) only consider
a program transformation if it can decide that the transformation will preserve the se-
mantics of the original program. Motivated by conservative static program analysis
results speculative compilation [157] instead delay this check to run-time. The advent
of approximative computing has also motivated relaxing the semantics preserving re-
quirement (e.g. guarantee that the result is within some bound) or sometimes provide
the user with a knob to decide this level [119].

A promising middle-ground with respect to this trade-off is more expressive program
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analysis frameworks where the results is non-binary.

Qualitative program analysis is done either statically or dynamically and associate
some notion of confidence with the deduced results. This provides more information
to the compiler in deciding if it should apply a transformation or not. Hybrid analyses
employ a dynamic analysis to refine and update results obtained statically. Qualitative
and hybrid program analysis are orthogonal concepts but has a synergistic effect when
combined. The dynamic analysis part of a hybrid analysis can benefit from a static anal-
ysis if it includes qualitative information since it more aggressively can focus attention
on a smaller subspace.

We next consider qualitative program analysis based on probability theory. Uncer-
tainty quantification (UQ) can give a quantitative estimate of the output of a function
given some specification of the input. Intuitively many approaches to UQ are based on
probability theory. (Quasi-)Monte-carlo simulation is a probabilistic UQ approach that
rely on repeated random sampling to construct an estimate of the distribution of a tar-
get function. One major problem with simulation-based approaches is the often large
number of samples that are required. The use of meta-models/surrogate models (e.g.
Kriging) can alleviate this problem at the expense of a model specific approximation
error. Non-sampling based methods instead try to circumvent this problem by deriving
algebras to describe the evolution of the quantitative state representation. The distri-
bution arithmetic [128] describe such a evolution in term of a weighted set of random
variables. More generally, polynomial chaos expansions [129] is an orthogonal series
of a stochastic process that is used for UQ [51]. However, similarly to Fourier series for
deterministic processes, there are corner cases where the Polynomial chaos representa-
tion become intractable. Often, probabilistic approaches to UQ have problems dealing
with discontinuous transitions which are common in programs where information from
mutual exclusive control paths needs to be merged. The problem with discontinuities
can be handled by instead collecting information using a weighted average. Rama-
lingam [139] showed that the meet-over-paths (MOP) solution exists for such conflu-
ence operator (when the transfer function is composed of min and max functions) over
the unit interval. Hence its possible to give a well-defined qualitative data-flow frame-
work inspired by probabilistic reasoning. Several approaches have been introduced to
approximate probabilistic deduction or distributions. Cousot and Monerau [47] intro-
duced a unifying framework for probabilistic abstract interpretation. Their framework
considers approximating the underlying measurable space in probability theory. Adje
et al. [2] introduced an abstraction based on the zonotope abstraction to instead ap-
proximate Dempster-Shafer structures and P-boxes2 that allows also representing non-
deterministic uncertainty.

2Lower and upper bounds on a cumulative probability distribution functions



3. SUMMARY OF PAPERS 11

3 Summary of papers
This thesis is composed of six papers with a common theme. We next summarize these
papers and their contributions.

3.1 ROSE::FTTransform

Paper I makes the following contributions:

I. We introduce a method for semi-automatically transforming a program to a more
resilient version based on a specification.

II. We evaluate the applicability of redundant execution as a fault-tolerance construct
based on performance overhead and reliability.

We introduce ROSE::FTTransform, a framework for building translators that semi-automatically
add fault-tolerance based on a specification. The framework supports different schemes
(e.g., redundant executions, replay) at the statement level and could easily be extended
to work on different granularities. Furthermore, schemes can be combined as build
blocks using control structures as glue (e.g., repeating a scheme N times, if scheme X
fails perform scheme Y). Due to the existence of a large selection of basic control struc-
tures we expect low development cost for many reliability transformations if they are
implemented in this framework3.

We implemented translators based on redundant executions with several voting algo-
rithms. Compared to a programming language extension, minimizing the human factor
decreases the risk of introducing errors into the program. Although the current work of
the framework targets single core systems with vector/out-of-order execution we expect
that it should feasible to implement control structures for multi-core systems. Assum-
ing the overhead of parallelization (e.g. forking/joining threads) is kept low we expect
minimal performance overhead since the redundant computations execute without in-
teraction. Our framework enables compositional verification. We also evaluated the
feasibility of using redundant executions in HPC kernels with respect to performance
and reliability. Our hypothesis was that it should be possible to overlap stall cycles
when waiting for memory with computation from a redundant instruction stream.

Compilers need to make sure that no dependencies break in a statement before ap-
plying a re-ordering optimization. Imperative languages allow pointers. If pointers are
being used in the considered statement the compiler needs to perform alias analysis.
This analysis computes points-to sets which contain all memory locations that a pointer
could reference. Precisely computing points-to sets is difficult and algorithms therefore
over-approximate the resulting set. Many compiler optimizations remove redundancy to
improve execution time. To allow compiler optimizations in our evaluation, we there-
fore manipulated inputs through redundant pointers in the HPC kernels. The compiler

3The 1−m.n voting system in Paper II was implemented without adding any additional control structures
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was unable to deduce that the points-to sets were the same and hence kept all state-
ments operating on these pointers. We showed that we can enable aggressive compiler
optimizations, such as SIMDization and versioning, even with redundant executions.
Because of this we were able to show a low 18% increase in execution time for one of
the kernels with double modular redundancy.

3.2 An Automated Perf.-Aware Approach to Rel. Transformations

Paper II makes the following contributions:

I. We introduce an algorithm for computing the smallest number of redundant exe-
cutions per instruction.

II. We present a voting system which performs a variable (in a pre-specified interval)
number of redundant executions based on necessity.

Approaches based on redundant executions often assign a fixed number of executions
per operation. Some operations are, however, naturally more reliable than other. Log-
ical operations is often more reliable than arithmetic operations due to lower circuit
complexities. Given the same input domain, an operation that only outputs a boolean
value (e.g., the MIPS set on less than instruction) has a higher probability of being cor-
rect then one outputting a 32-bit word. Similarly, for groups of operations, an operation
whose result is consumed frequently is more critical to reliability than one whose result
is consumed infrequently.

Paper II investigates a method for automatically deducing the number of redundant
executions per instruction while maintaining a reliability threshold. To keep perfor-
mance overhead low, we want to minimize these numbers. We denote the performance
impact with an integer weight and assume performance and reliability to be linearly
proportional. Based on these assumptions we create an algorithm using geometric pro-
gramming which is decidable and tractable, admitting solutions to problems with 1000
variables and 10000 constraints in less than a minute on a small desktop computer [19].
The number of redundant executions suggested by our algorithm is often very high (in
one case 39 iterations), making the performance overhead unreasonable. We therefore
introduced the 1−m.n voting system that performs betweenm andm+(n−1)×(m−1)
redundant executions, as needed. The voter performed a fixed number of stages (n), and
in each stage adjudicates on a fixed number of results (m). After performing m execu-
tions (m + 1 in the first stage) we check the bit-wise majority element of the output of
the executions. If this check returns true for all bits we return the majority as the final
result. If not, we compute the bit-wise majority element (which will be at least partially
incorrect) and perform anotherm executions and repeat the process up to n times. Using
a 1− 2.n system, with n determined by our algorithm, we showed improvement over a
scheme with a fixed number of redundant executions or even a fixed n by upto 58.25%.
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3.3 Verifying reliability properties using the hyperball abstract do-
main

Paper III makes the following contributions:

I. We introduce an abstract domain for computing the set of reachable states after a
bounded number of bit flips.

II. We present an abstract domain to quantify the severity of bit flips.

III. We introduce an parametrized abstract domain for maintaining precision as we
combine information from disjunctive paths.

Paper III investigates an analysis that can be used to deduce how essential an instruc-
tion is to the overall results. The analysis computes an over-approximation of the set
of states reachable in a program if a fixed number of faults occur when executing an
instruction. Paper II focused on improving all instructions of an application. In our
formulation of a geometric programming problem we used at least one variable per in-
struction. Although geometric programming for sparse problems scales to millions of
variables, large software can include billions of instructions. Our analysis is formulated
in the abstract interpretation framework. Here an analysis is by construction guaranteed
to be deciable and a sound over-approximation of the set of reachable states.

To compute the reachable states we extended an abstract domain for low-level code.
The extension alters the approximated semantics to include the set of states reachable
after a finite number of faults in a pre-specified set of fault sites. We need a measure to
assess the severity of an increase in the reachable set of states. This measure quantifies
the degradation due to bit flips. Consider an analogy to image processing where degrada-
tion due to noise is often measured by some statistical error measure. The set of values is
then represented by a hyperball in the case of mean squared error. We therefore created a
hyperball abstraction to quantify the worst-case degradation. The hyperball represents a
state as a high-dimensional vector and the maximum distance between any state among
those actually reached (i.e., our analysis result) and the state we expected to reach (i.e.,
the center) are reflected by the radius. We lose precision during analysis since we fol-
low both the fault free path and the faulty path. To maintain precision we introduce the
scale abstraction. This abstraction stores a bounded set of alternative results as elements.
As the number of alternatives grows the abstraction uses mathematical programming to
minimize the loss incurred by combining two alternatives. We use our framework to
quantify the quality degradation of a set of sorting networks and show how a recently
proposed algorithm for improving a cryptographic primitive is affected.

3.4 Briding static and dynamic program analysis using fuzzy logic
Paper IV makes the following contributions:

I. We introduce a static program analysis framework to reason about the average
value of a property.
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II. We apply our framework to program analysis of interest to a compiler optimiza-
tion, lazy code motion, and show that we unveil opportunities classical approaches
missed.

III. We present a mechanism based on fuzzy control theory that refines the result
online thereby increasing the precision as more information becomes available.

Static program analysis is often conservative, in part due to overly pessimistic assump-
tions about the input state and in part due to inherit over-approximation to guarantee
decidability of the analysis. Dynamic program analysis in contrast is precise but only
account for a limited set of executions. Compiler optimizations are justified based on
improvement in the common case. Hence results from conventional static program anal-
ysis is not suitable as they are often too pessimistic. Similarly the results from dynamic
program analysis has limited scope. The aim of this work is to find a middle-ground
that yields a static analysis that benefit from dynamic information and a runtime that can
improve the analysis result online.

Fuzzy sets was introduced to model vaguely defined concepts such as “tall”, “warm”
etc. In contrast to classical sets, element membership is gradual in [0,1] rather than bi-
nary in {0,1}. Fuzzy logic define logical connectives on fuzzy sets to reason about
truth in the presence of vagueness. Our fuzzy program analysis framework compute the
fix-point of a system of fuzzy logic formulas. By using weighted average as collector
function, to weight information from different control paths, the results represent the
common value. Here the weights are constants and can be deduced from profile runs
or provided from other source. This approach allowed us to find opportunities classical
frameworks would miss, e.g. statements that very likely were loop invariant because
their operands was very unlikely to update inside the loop. Furthermore using an anal-
ysis on second-order fuzzy sets (i.e., fuzzy sets of fuzzy sets) we showed that we can
separate inaccuracies introduced due to the framework from that which is given to the
framework. Measuring the uncertainty of the analysis results makes it easier to know
when to rely on the results and justify a speculative optimization. Finally the result
from the fuzzy program analysis framework can be used in a fuzzy regulator to improve
the accuracy of the analysis online. The adaptive neuro fuzzy inference system (AN-
FIS) regulator consists of a set of fuzzy IF-THEN rules which are weighted to produce
classifications. The antecedent of the rules denotes the fuzzy regions where the conse-
quent applies and is the result from our static analysis. The consequent is a polynomial
function that initially is set to a default value but can be updated dynamically using
polynomial least square regression. As far as we know this is the first program analysis
approach that rely on fuzzy classifiers.

3.5 Fuzzy set abstraction
Paper V makes the following contributions:

I. We introduce the fuzzy set abstraction that generalize the 3-valued logic abstract
domain of Sagiv et al. [147].
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II. We present a static analysis that deduce the maximal value of a property.

III. We present a dynamic analysis based on monotonically converging fuzzy control
systems.

Fuzzy data-flow analysis introduces several new techniques based on fuzzy logic
and fuzzy control systems to quantify the logical bias of a property. Given such com-
plex techniques its easy to question the soundness of the results. In Paper V we present
an abstract domain based on fuzzy sets that generalize the well-known 3-valued logic
abstract domain of Sagiv et al. [147]. Our abstraction relies on both fuzzy logic and pos-
sibility theory from the fuzzy set community, where fuzzy logic is used to describe how
a statement transform input values to output values (as in the fuzzy data-flow analysis)
and possibility theory gives some intuition into how values are combined from mutually
exclusive sources.

We present a static analysis that compute the maximum value of each property and
relate this to fuzzy data-flow analysis of Paper IV. Furthermore we show how converg-
ing fuzzy control systems relates to the dynamic refinement mechanism of Paper IV.
Although this procedure improves the classification accuracy of the analysis result (i.e.
completeness) it may sacrifice soundness. The motivation for this is that often when
performing static analysis we conservatively make assumptions on the input informa-
tion. These assumptions add to the uncertainty of the static analysis result. Hence a
dynamic analysis that disregarded some of these assumptions may not introduce errors
with respect to the intended input information.

The fuzzy set abstraction show that the techniques in Paper IV can provide logically
sound results of the maximum values. Hence the result from fuzzy data-flow analysis
can be related to an interval of truth values in [0, 1] which in turn can be related to a
value in classical logic or a value representing unknown (i.e. as in three-valued logic).

3.6 Fuzzy program analysis and its application in speculative opt.
Paper VI makes the following contributions:

I. We extend the fuzzy set abstraction to allow for a common-case analysis.

II. We present a static common-case analysis of two classical program analyses, con-
stant propagation and shape analysis, and show an example of how the analyses
benefit from this formulation.

III. We present a fuzzy alias analysis and relate this to a previously proposed specula-
tive alias analysis algorithm.

Paper VI extends the fuzzy set abstraction and establish soundness of the common-
case analysis from Paper IV together with presenting additional applications in specu-
lative analysis/optimization. This puts the common case analyses on solid ground and
shows, similarly to the analysis in Paper V that computes the maximum value of each
property, that its possible to soundly compute an average value of each property.
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The previous considered fuzzy data-flow analyses operate on a domain where all
values are comparable, making it easy to compute an average. A large class program
analysis operate on domains where some or none of the values are comparable. Paper
VI present the maximum bias analysis that combines the computation of the maximum
and average value. Using this analysis we present a fuzzy version of the classical con-
stant propagation analysis and a shape analysis algorithm and show that the added level
of expressiveness offered by the fuzzy version provides additional insights.

Paper VI additionally presents a speculative alias analysis using fuzzy logic/possi-
bility theory and relates this to a previously presented probabilistic alias analysis show-
ing that in a frequently occurring situation the two analyses are equivalent. However, its
important to stress that this should not be interpreted as a claim of general equivalence
between probability theory and fuzzy logic/possibility theory but that the two can output
the same result, calling for additional research into the general case.

4 Future work
This section presents interesting future work on abstractions for low-level code and com-
puter systems (Section 4.1), reliability and performance (Section 4.2) and possible im-
provements to the fuzzy program analysis framework (Section 4.3). We also present
future work on using program analyses to drive decisions in the compiler optimization
engine and revisit the optimal compilation problem in Section 4.4.

4.1 Approximations for machine semantics
Performance and reliability are both dependent on the values under consideration. Our
work rely on approximating the value-set using a affine congruence system as in the KS
abstract domain [88, 89]. The limited expressiveness of this domain is an advantage
when performing analyses with faulty semantics (as in the k-fault domain) but less so
when approximating the value-set which is later used with a reliability or performance
property. This because the over-approximation of the value-set will spread to any ap-
proximation using it (e.g. approximating a performance property).

We are therefore considering extending the KS domain to approximate piece-wise
affine congruence system as a possible future work. The extension would allow for a
sound and complete approximation that in contrast to the powerdomain does not rep-
resent all solutions explicitly. Since low-level semantics have well-defined bit-length
and hence bounded number of variables there is no issues with decidability of such a
program analysis and in extension no need for widening/narrowing which can decrease
accuracy.

4.2 Approximations for performance and reliability
Finding accurate approximations for a given program is often non-trival due to the com-
plex function of the program. This problem is worsened when we allow faulty semantics
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Figure 1.2: The probability that a 8-bit carry-ripple adder produce correct result as a
function of the operand values (X and Y axis) if the probability that a gate is correct is
p=0.9999

since the function becomes less structured. However even if faults add to the complexity
they do not remove the structure of the function altogether.

The Fourier series is a powerful concept in electrical engineering (and statistics, in
particular the study of random processes). One of its defining properties is that it de-
scribes transformed values in terms of a weighted neighborhood of the original function.
Recently Xue [166] presented work on inference in Bayesian networks where the Fourier
description of the underlying probability distribution was used, in particular they argued
that such a description is smaller in many cases. We are considering an approximation
where such a Fourier description can be used together with an abstraction refinement
process using smoothing to gradually decide the full probability distribution of a faulty
circuit. From simulations we have noted that describing the probability of a fault is often
easier done when looking at neighborhoods since faults tend to preserve at least some
structure (i.e. symmetries). Figure 1.2 show an example from the result of applying
the PTM framework to calculate the probability of a fault in an 8-bit carry-ripple adder.
The figure color encode the probability of failure from low (white) to high (black) as
a function of the value of the operands (X and Y axis). As seen there are consider-
able redundancies that could be better exploited if the description was transformed to a
different domain.

4.3 Fuzzy program analysis
The fuzzy program analysis framework is composed of a static and dynamic analysis
that work in synergy. We however specify extensions to both parts separately but the
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improvement in one should aid the analysis framework as a whole.
Current work on fuzzy static analysis do not specialize the domain (S) or impose

any restriction on the structure of the fuzzy set (S → [0, 1]). As such its possible to
form a fuzzy set over abstract elements, e.g. the set of convex polyhedrons. For numer-
ical approximations the underlying set is a subset of Rn. As numerical approximations
most often are performed over a lattice domain where the height is large (or sometimes
infinite) its important to find a suitable implicit description of the domain as opposed to
our current work where this is represented explicitly. Reductions over a pair of abstract
domains are easier to design if the domains are similar. We are working on a fuzzy
static analysis where we require the structure of the fuzzy set to be a linear fuzzy set,
e.g. triangular/trapezoidal/piece-wise linear. The aim is to use this analysis with the
piece-wise affine congruence domain mentioned in Section 4.1.

We have presented the theoretical foundation of the fuzzy dynamic analysis and are
currently working on a practical implementation. The analysis can be applied to a very
general class of problems considering that the structure of the ANFIS can be updated.
Although expressive it is less obvious how to harness this ability. We are working on
policies for refining the ANFIS classifier such that it improves classification accuracy but
possibly sacrificing soundness since this seems more useful given our target application:
compiler optimizations.

4.4 Optimal compilation
One of the major problems for contemporary compiler research is optimal compilation
for heterogeneous systems [79], i.e. finding the sequence of compiler transformations
that improve performance (or some other objective) of a program the most. Although
this problem is undecidable in the general, theoretical, case it should be understood
that we restrict attention to approaches that terminate. Even in this case the problem is
however intractable where the hardness is often attributed to:

I. The combinatorial complexity [79] and the highly non-linear and discontinuous
objective function [90].

II. The limited predictability due to lack of information about the program input and
state of the execution environment [35].

We elaborate on an approach to design a compiler optimization engine based on abstrac-
tions for performance and reliability properties. First we review lessons from earlier
attempt of solving the optimal compilation problem.

4.4.1 Model-driven optimization

Early attempts to resolve the optimal compilation problem tried to mimic how expert
programmers would optimize code. The BLISS-11 compiler project [164], developed
by experienced compiler designers, was well-known for producing high quality machine
code from BLISS source-code for the PDF-11 processor [21]. Its front-end performed
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syntax/semantical analysis, global data-flow analysis and normalizations to produce the
resulting operator tree of the whole program. A complex decision system then decided
on simplifications and transformations. In comparison, a recent compiler framework
such as the Low-Level Virtual Machine (LLVM) [99] prioritize a modular design over
global decision functionality. This makes it easier to create and replace modules (e.g.,
data-flow analyses of various strengths) but harder to coordinate the modules into pro-
ducing efficient code. The Production Quality Compiler-Compiler (PQCC) [100] was
an attempt to retarget the BLISS-11 compiler to other systems, e.g. the VAX processor.
However abstracting the low-level details from the decision function was problematic
and the heuristic approach was hard to extend to new architectures [125]. Much later it
was shown empirically that the best compiler optimization sequence depends heavily on
the underlying architecture [90].

Most contemporary production compilers such as GCC and LLVM employ decision
functions that only use local information. For instance, the GCC flag “-fvect-cost-model”
enables the vectorization cost model that assigns weights determined from experiments
to alternative implementations.

For a given processor, compiler optimizations can be characterized by which proces-
sor events (e.g. cache misses) they induce. Not all state transitions generate processor
events, but only the subset which cause degradation of performance. Compiler opti-
mizations are in practise motivated based on a subset of situations where they improve
performance. Examples include spatial/temporal locality [16] and cache misses for loop
optimizations or instruction parallelism for instruction scheduling [39]. These situations
can be assigned an event. Hence the improvement of compiler optimizations can in
general be reasoned about by considering events. We can improve performance by itera-
tively detecting and transforming the instructions that cause events [130]. Although this
process is always limited by the accuracy of the underlying processor model, it is always
possible to extend the model and consider additional events. Thus, code transformations
utilized by this process are “optimal” up to the expressiveness of the considered set of
event types.

Modern processors include performance monitor counters (PMCs) that count events
and aid the programmer in this optimization process. The result of this approach has
been shown to be comparable to choosing the best sequence of compiler optimizations
based on runs with execution time [168]. Furthermore, the process of improving per-
formance by compiler optimizations is usually limited by the lack of transformations
that can further remove events of similar types [96]. This explains why many choices of
parameter values for compiler optimizations, e.g. loop tiling factor, produce code with
similar performance [90]. As many architectures have common traits they also induce
similar events allowing for a modular approach to optimal compilation.

A model-driven approach does not change the combinatorial complexity. However,
there are general approaches to optimization that are tractable despite the large search
space.
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4.4.2 Program synthesis, system verification and mathematical optimization

In mathematical optimization it is common to solve large-scale problems in an iterative
fashion where each iteration increases the detail of the problem and accuracy of the
result, e.g. as in graduated [80] and surrogate optimization [135]. Such approaches
operate on gradually increasing the problem complexity starting from a very simple
problem. This shares many similarities with the abstraction refinement process and
many techniques used in computer-aided verification as mentioned above.

But to use advances from the verification community we need to re-phrase optimal
compilation as a verification problem. For this we turn to program synthesis.

Program synthesis is the process of generating a complete program given input-
output examples, constraints or program templates [76]. The process can be interpreted
as a generalization of program verification that generate three sets of conditions [156]:

I. Safety conditions to ensure partial correctness, i.e. requirements that if a result is
produced it will be correct.

II. Progress conditions to ensure termination.

III. Well-formedness conditions to guarantee that the synthesized program is valid
syntactically.

In the setting of a program template the synthesis engine is tasked with completing a
partial program that includes missing values [32] or functions [77] such that the applica-
tion maximize/minimize some objective function. Abstraction refinement has been used
in program synthesis to produce string and matrix transformations [165] upto 90x faster
than previous work where abstractions is not used. It is implicitly assumed that the ap-
plication is semantically-correct for all values of the feasible region of the optimization
problem. Many algorithms for compiler optimizations do not produce correct code for
all parameter values [79]. Angelic non-determinism through Floyd’s choose operator
is useful for solving this miss-match [15]. The operator non-deterministically picks a
value such that the output is correct. Any synthesized deterministic program needs to
satisfy this invariant. Angelic non-determinism hence allows us to incorporate compiler
optimizations in a program synthesis framework where it is used to enforce the synthe-
sis of the decision function that controls which compiler optimization to apply to which
program statement.

As shown Gao et al. [68], the process of optimization, given a decision procedure,
could be achieved by a branch-and-bound algorithm that incrementally try to verify that
there is no better solution than the currently best known option up to some minimum
difference. More generally Optimization Modulo Theory (OPT) allows the optimization
problem to solved as a dedicated decision procedure. This has for example been used to
solve worst-case execution time problems [81].
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5 Conclusion
This thesis have considered program analyses for deciding reliability and performance
properties. We believe advances in abstractions for these properties are key to enabling
optimal compilation which would aid in producing modular compiler optimizations for
heterogeneous systems.

We introduce the fuzzy program analysis framework that allows us in a sound way
to approximate qualitative information and in particular performance properties; an ap-
proach to reason about reliability properties based on three new domains, the hyperball,
the k-fault and the scale domains; and finally, an approach based on geometric pro-
gramming that can decide the minimal reliability of a program required to reach at least
a given threshold on the output while taking into account the performance cost of the
program instructions.

Using these contributions we show how the fuzzy program analysis framework ap-
plied to lazy code motion and constant propagation uncover opportunities classical frame-
works would not; how to deduce the quality degradation of program in the presence of
a bounded number of faults; and finally, how we can reduce the performance impact on
fault-tolerant software that use redundant computations.


